WO2013024538A1 - Wireless communication apparatus and method for controlling wireless apparatus - Google Patents

Wireless communication apparatus and method for controlling wireless apparatus Download PDF

Info

Publication number
WO2013024538A1
WO2013024538A1 PCT/JP2011/068630 JP2011068630W WO2013024538A1 WO 2013024538 A1 WO2013024538 A1 WO 2013024538A1 JP 2011068630 W JP2011068630 W JP 2011068630W WO 2013024538 A1 WO2013024538 A1 WO 2013024538A1
Authority
WO
WIPO (PCT)
Prior art keywords
unit
timing
detection
temperature
width
Prior art date
Application number
PCT/JP2011/068630
Other languages
French (fr)
Japanese (ja)
Inventor
聡 金沢
藤本 俊文
徳明 高橋
Original Assignee
富士通株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 富士通株式会社 filed Critical 富士通株式会社
Priority to PCT/JP2011/068630 priority Critical patent/WO2013024538A1/en
Publication of WO2013024538A1 publication Critical patent/WO2013024538A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2647Arrangements specific to the receiver only
    • H04L27/2655Synchronisation arrangements
    • H04L27/2656Frame synchronisation, e.g. packet synchronisation, time division duplex [TDD] switching point detection or subframe synchronisation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2647Arrangements specific to the receiver only
    • H04L27/2655Synchronisation arrangements
    • H04L27/2666Acquisition of further OFDM parameters, e.g. bandwidth, subcarrier spacing, or guard interval length
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2647Arrangements specific to the receiver only
    • H04L27/2655Synchronisation arrangements
    • H04L27/2668Details of algorithms
    • H04L27/2681Details of algorithms characterised by constraints

Definitions

  • the present invention relates to a wireless communication device and a wireless communication device control method.
  • the wireless communication terminal checks whether there is reception from the base station at regular time intervals when the signal transmission / reception processing is not performed, and waits for other times. An intermittent reception operation is performed. And in order to reduce power consumption, the radio
  • the function for processing the reception signal includes a function for generating an operation clock synchronized with the reception signal (hereinafter referred to as “reception circuit operation clock”).
  • the reception circuit operation clock is used for reception signal processing performed by, for example, a path timing detection circuit. That is, in the standby wireless communication terminal, only a clock of a crystal oscillator (RTC: Real Time Clock) mounted on the wireless communication terminal is operating as the clock oscillator.
  • the wireless communication terminal when starting intermittent reception, measures the error between the RTC and the receiving circuit operation clock, and multiplies the measured error by the number of RTCs from the previous intermittent reception to the current intermittent reception. Thus, the total amount of error from the previous intermittent reception to the current intermittent reception is calculated. Then, the wireless communication terminal predicts the synchronization timing at the current intermittent reception by using the total amount of errors generated from the previous intermittent reception to the current intermittent reception and the synchronization timing used at the previous intermittent reception. .
  • the wireless communication terminal performs processing called path timing tracking processing before performing data processing on the received signal, corrects the predicted synchronization timing, and matches the actual synchronization timing. By performing this correction, the wireless communication terminal can perform reception signal processing at a more accurate path timing.
  • these synchronization processes are performed using RS (Reference Signal) which is a signal for synchronization having a pattern specific to a base station that transmits a signal.
  • the wireless communication terminal receives a signal from the base station.
  • the signal from this base station is handled in units of time called frames.
  • One frame is, for example, 10 ms.
  • a signal of one frame is composed of, for example, ten 1 ms subframes, and transmission / reception is performed in units of subframes.
  • the subframe is composed of a plurality of symbols, which are the minimum unit of data during communication.
  • RS is contained in the predetermined symbol of the symbols which comprise one sub-frame.
  • the wireless communication terminal adds the time measured by the RTC to the timing of receiving the previous RS, and further adds the total amount of error between the RTC and the receiving circuit operation clock, and the signal received this time
  • the predicted RS timing is obtained.
  • the predicted RS timing is referred to as “predicted RS timing”.
  • the wireless communication terminal sets a path timing detection window for setting a predetermined time around the predicted RS timing.
  • the wireless communication terminal detects a position having the same waveform as that of the known RS replica within the range of the path timing detection window by the correlation calculation process.
  • the radio communication terminal extracts a waveform that matches the RS replica with the upper limit from the position of the predicted RS timing to the preset path timing tracking width.
  • path timing tracking process The process of extracting a waveform that matches the replica of the RS within the range up to the path timing tracking width centered on the predicted RS timing is called “path timing tracking process”.
  • the wireless communication terminal determines that the timing moved from the predicted RS timing to the limit of the path timing tracking width is a new predicted RS timing. And Then, at the time of the next intermittent reception, the wireless communication terminal performs the path timing tracking process again using the new predicted RS timing.
  • the wireless communication terminal can specify the start timing of the frame.
  • the wireless communication terminal performs periodic path timing detection processing based on the reception circuit operation clock, and therefore can always operate according to the timing synchronized with the latest wireless frame.
  • a conventional technique for widening a detection window width for detecting a propagation path of a radio wave when the moving speed is fast is provided so that the power consumption of the wireless communication terminal can be reduced.
  • the RS timing is predicted based on the error between the RTC at the highest temperature and the operation clock of the receiving circuit. This is because the error becomes the largest at the highest temperature among the allowable values of the internal temperature of the wireless communication terminal. Further, the size of the path timing detection window width is determined on the assumption that the path timing detection window width can be detected even when an actual RS exists at a position farthest from the expected RS timing. Therefore, the same path timing detection window width is used regardless of whether the temperature is high or low.
  • the RS timing is predicted using the error at the maximum temperature
  • the difference between the predicted timing and the actual RS timing should be small at high temperatures. If so, in the conventional method using a large path timing detection window width at both high and low temperatures, wasteful processing is performed and wasteful power consumption occurs.
  • the temperature is not taken into account when using the conventional technology that widens the detection window width for detecting the propagation path of radio waves, thus reducing wasteful processing and reducing power consumption. It was difficult. Furthermore, the temperature is not taken into account in the prior art that selects one of a plurality of tracking widths for detecting a radio wave propagation path based on the magnitude relationship between the moving speed and the speed threshold. Therefore, it has been difficult to reduce wasteful processing and reduce power consumption.
  • the disclosed technology has been made in view of the above, and an object thereof is to provide a wireless communication device and a wireless communication device control method with reduced power consumption.
  • the signal reception unit receives a wireless signal including a known synchronization signal for synchronizing the operation of the reception circuit.
  • the replica generation unit generates a replica of the synchronization signal.
  • the temperature measurement unit measures the temperature inside the device itself.
  • the detection range determination unit determines a detection range for detecting the position of the synchronization signal in the radio signal received by the signal reception unit based on the temperature measured by the temperature measurement unit.
  • the synchronization detection unit detects a synchronization timing in the detection range determined by the detection range determination unit in the radio signal based on a correlation peak obtained by a correlation calculation between the copy of the synchronization signal and the radio signal.
  • the signal processing unit processes the radio signal based on the synchronization timing detected by the synchronization detection unit.
  • FIG. 1 is a block diagram of a wireless communication apparatus according to the first embodiment.
  • FIG. 2 is a diagram illustrating an example of a table representing the correspondence between temperature, path timing detection window width, and path timing tracking width.
  • FIG. 3 is a flowchart of the path timing detection process when the temperature condition is divided into two stages.
  • FIG. 4 is a flowchart of the path timing detection process when the temperature condition is divided into three stages.
  • FIG. 5 is a hardware configuration diagram of the wireless communication apparatus according to the first embodiment.
  • FIG. 6 is a block diagram of a wireless communication apparatus according to the second embodiment.
  • FIG. 7 is a flowchart of a path timing detection process of the wireless communication apparatus according to the second embodiment.
  • FIG. 8 is a diagram for explaining detection of correlation peak timing in intermittent reception by the wireless communication apparatus according to the second embodiment.
  • a wireless communication device and a wireless communication device control method disclosed in the present application will be described in detail with reference to the drawings.
  • the wireless communication apparatus and the wireless communication apparatus control method disclosed in the present application are not limited by the following embodiments.
  • a mobile phone will be described as an example of a wireless communication device.
  • the present invention is not limited thereto, and any device that performs wireless communication may be used.
  • FIG. 1 is a block diagram of the wireless communication apparatus according to the first embodiment.
  • a mobile phone will be described as an example of the wireless communication device.
  • the radio communication apparatus includes an RF (Radio Frequency) unit 1, an A / D (Analog / Digital) unit 2, an FFT (Fast Fourier Transform) unit 3, a replica correlation unit 4, and An RS replica generation unit 5 is included.
  • RF Radio Frequency
  • a / D Analog / Digital
  • FFT Fast Fourier Transform
  • the wireless communication device includes an IFFT (Inverse Fast Fourier Transform) unit 6, a peak detection unit 7, an RTC (Real Time Clock) 8, a reception circuit operation clock 9, an error measurement unit 10, a peak timing correction unit 11, and a peak timing holding. Part 12 is provided. Further, the wireless communication apparatus includes a temperature measurement unit 13, a detection range determination unit 14, a radio frame head timing calculation unit 15, a signal processing unit 16, and a Cell-ID detection unit 18.
  • IFFT Inverse Fast Fourier Transform
  • RTC Real Time Clock
  • the wireless communication apparatus includes a temperature measurement unit 13, a detection range determination unit 14, a radio frame head timing calculation unit 15, a signal processing unit 16, and a Cell-ID detection unit 18.
  • the RF unit 1 receives a radio signal from the base station via an antenna.
  • the radio signal received by the RF unit 1 from the base station is referred to as a received signal.
  • the RF unit 1 performs reception of a radio signal from the base station using a frame period of 10 ms.
  • the RF unit 1 receives a data packet in units of 1 ms subframes.
  • a subframe divided into 12 or 14 is a symbol which is a minimum unit of data during communication.
  • RS Reference Signal
  • This RS signal has a waveform shape (also referred to as “pattern”) unique to the Cell-ID to be received.
  • the position of the symbol including the RS in one frame is determined in advance.
  • the RF unit 1 outputs the received signal to the A / D unit 2.
  • the RF unit 1 corresponds to an example of a “signal receiving unit”.
  • the A / D unit 2 receives the received signal from the RF unit 1. Then, the A / D unit 2 converts the received signal from an analog signal to a digital signal. Thereafter, the A / D unit 2 outputs the received signal converted into the digital signal to the FFT unit 3. Further, the A / D unit 2 outputs the received signal converted into the digital signal to the Cell-ID detection unit 18.
  • the FFT unit 3 receives the received signal converted into the digital signal from the A / D unit 2. Further, the FFT unit 3 receives the input of the start timing of the radio frame calculated from the previous path timing detection processing from the radio frame start timing calculation unit 15. The path timing detection process by the radio frame head timing calculation unit 15 will be described in detail later. Then, the FFT unit 3 predicts the position of the RS symbol from the head timing of the received radio frame. The FFT unit 3 performs fast Fourier transform on a predetermined range including the expected RS symbol position in the received signal, and converts the received signal, which is a time domain signal, into a frequency domain signal. Then, the FFT unit 3 outputs the received signal converted into the frequency domain signal to the replica correlation unit 4.
  • the Cell-ID detector 18 receives the received signal converted into a digital signal from the A / D unit 2. Then, the Cell-ID detector 18 detects the Cell-ID indicating the base station that transmitted the received signal from the received signals. Thereafter, the Cell-ID detection unit 18 outputs the detected Cell-ID to the RS replica generation unit 5.
  • the RS replica generation unit 5 receives the Cell-ID input from the Cell-ID detection unit 18. Then, the RS replica generation unit 5 generates an RS replica that is a replica of the RS having a unique pattern corresponding to the Cell-ID. For example, the RS replica generation unit 5 stores an expression for generating an RS replica in advance, and generates an RS replica according to the expression. In addition, for example, when the RS replica generation unit 5 already has an RS replica corresponding to the Cell-ID of the received signal, the RS replica generation unit 5 may use the RS replica without performing the generation again. . The RS replica generation unit 5 outputs the generated RS replica to the replica correlation unit 4.
  • the temperature measuring unit 13 measures the temperature around the processor that processes the received signal in the device itself. Then, the temperature measurement unit 13 outputs the measured temperature to the detection window width determination unit 141 and the tracking width determination unit 142 of the detection range determination unit 14.
  • the detection range determination unit 14 includes a detection window width determination unit 141 and a tracking width determination unit 142.
  • the detection range determination unit 14 stores a table representing the correspondence between the temperature condition, the path timing detection window width, and the path timing tracking width.
  • FIG. 2 is a diagram illustrating an example of a table indicating the correspondence between the temperature condition, the path timing detection window width, and the path timing tracking width.
  • the detection range determination unit 14 stores, for example, a correspondence table 200 as shown in FIG.
  • the correspondence table 200 represents a correspondence table of temperature conditions when the temperature is divided into three stages.
  • the values of the path timing detection window width and the path timing tracking width of the correspondence table 200 represent the number of sampling clocks. In this embodiment, the sampling clock is 30.72 MHz.
  • the path timing detection window width decreases and the path timing tracking width also decreases. Conversely, as the temperature decreases, the path timing detection window width increases and the path timing tracking width also increases.
  • the path timing detection width 202 is 10 us
  • the path timing follow-up width 203 is 3.3 us.
  • the path timing detection width 205 is 3.3 us
  • the path timing tracking width 206 is 1.6 us.
  • FIG. 2 a correspondence table in which the temperature conditions are divided into three stages is shown as an example, but the number of divisions of the temperature conditions may be another number, for example, two stages or four or more stages.
  • the detection window width determination unit 141 receives a temperature input from the temperature measurement unit 13. Then, the detection window width determination unit 141 refers to the correspondence table stored in the detection range determination unit 14 and acquires the path timing detection window width corresponding to the received temperature. Then, the detection window width determination unit 141 outputs the acquired path timing detection window width to the replica correlation unit 4.
  • the tracking width determination unit 142 receives a temperature input from the temperature measurement unit 13. Then, the follow-up width determining unit 142 refers to the correspondence table stored in the detection range determining unit 14 and acquires the path timing follow-up width corresponding to the received temperature. Then, the tracking width determination unit 142 outputs the acquired path timing detection window width to the peak detection unit 7.
  • the RTC 8 is an oscillator that outputs a clock (hereinafter referred to as “real time clock”) generated by a crystal oscillator, for example.
  • the RTC 8 outputs the generated real-time clock to the error measurement unit 10.
  • the RTC 8 continues to operate even when the wireless communication apparatus is in a standby state.
  • the reception circuit operation clock 9 generates an operation clock for synchronizing the operation with the reception signal in the processing of the reception signal. Then, the reception circuit operation clock 9 outputs the generated operation clock to the error measurement unit 10.
  • the reception circuit operation clock 9 stops generating and outputting clocks when the wireless communication apparatus is in a standby state.
  • the reception circuit operation clock 9 generates and outputs a clock when the wireless communication apparatus recovers from the standby state or when it is an intermittent reception operation for checking whether there is a signal transmitted from the base station in the standby state. .
  • the error measurement unit 10 receives a real-time clock input from the RTC 8. In addition, the error measurement unit 10 receives an operation clock input from the reception circuit operation clock 9 when the wireless communication apparatus is in an operating state. Then, the error measurement unit 10 measures an error between the real time clock and the operation clock. Next, the error measurement unit 10 outputs the measured error to the peak timing correction unit 11.
  • the peak timing correction unit 11 receives an error between the real time clock and the operation clock from the error measurement unit 10.
  • the peak timing correction unit 11 holds the newest error among the acquired errors. Further, the peak timing correction unit 11 acquires the previous peak timing from the peak timing holding unit 12.
  • the peak timing correction unit 11 is a time from the end timing of the previous intermittent reception operation to the start timing of the current intermittent reception operation (hereinafter referred to as “standby time”). Is obtained from the operating clock. Further, the peak timing correction unit 11 obtains the maximum generated error from the error between the real time clock and the operation clock. The maximum generation error occurs in a state where the temperature is near the maximum temperature among the operating temperatures of the wireless communication device. Next, the peak timing correction unit 11 obtains an error generated between the real time clock and the operation clock within the standby time using the maximum generated error. Then, the peak timing correction unit 11 adds the error generated within the standby time to the standby time to obtain the corrected standby time. Next, the peak timing correction unit 11 adds the standby time corrected with respect to the previous peak timing to obtain the predicted peak timing as the current peak timing.
  • the peak timing correction unit 11 predicts the peak timing using an error when the temperature is a high temperature close to the operating temperature limit value of the wireless communication device. Therefore, it is considered that the predicted peak timing is likely to be closer to the actual peak timing as the temperature is higher near the limit value of the operating temperature of the wireless communication device.
  • the peak timing correction unit 11 outputs the calculated predicted peak timing to the peak timing holding unit 12.
  • the peak timing holding unit 12 acquires the predicted peak timing obtained by the peak timing correction unit 11. Then, the peak timing holding unit 12 holds the predicted peak timing. Further, the peak timing holding unit 12 acquires the peak timing obtained by the peak detection unit 7. The peak timing holding unit 12 holds the peak timing detected by the peak detection unit 7 as the previous peak timing for use in detection of the next peak timing.
  • the replica correlation unit 4 receives the input of the received signal converted into the frequency signal from the FFT unit 3. Further, the replica correlation unit 4 receives an RS replica input from the RS replica generation unit 5. Further, the replica correlation unit 4 receives an input of the path timing detection window width from the detection window width determination unit 141. Further, the replica correlation unit 4 acquires the predicted peak timing from the peak timing holding unit 12 when the intermittent reception operation is started in the wireless communication device.
  • the replica correlation unit 4 extracts a portion in the range of the path timing detection window width around the predicted peak timing from the acquired reception signal. And the replica correlation part 4 performs the correlation calculation process which calculates
  • the replica correlation unit 4 obtains the correlation between the received signal and the RS replica in a smaller range as the temperature is higher. Therefore, the replica correlation unit 4 can reduce the correlation calculation process by reducing the range for obtaining the correlation as the temperature is higher. Therefore, power consumption due to execution of the correlation calculation process can be suppressed. Further, as described above, it is considered that the predicted peak timing is closer to the actual peak timing as the temperature is higher. Therefore, even if the path timing window width is reduced as the temperature increases, the replica correlation unit 4 can obtain the correlation including the peak timing.
  • the IFFT unit 6 receives an input of the correlation between the received signal and the RS replica from the replica correlation unit 4. Then, the IFFT unit 6 performs inverse fast Fourier transform on the received correlation to obtain a correlation in the time domain between the received signal and the RS replica, and an RS symbol representing the correlation between the received signal and the RS replica. Create a correlation profile. The IFFT unit 6 outputs the correlation profile of the RS symbol to the peak detection unit 7.
  • the peak detector 7 receives an RS symbol correlation profile from the IFFT unit 6. Further, the peak detection unit 7 receives the input of the path timing tracking width from the tracking width determination unit 142. Furthermore, when the wireless communication apparatus starts the intermittent reception operation, the peak detection unit 7 acquires the predicted peak timing from the peak timing holding unit 12.
  • the peak detection unit 7 specifies the position of the predicted peak timing in the correlation profile of the received RS symbol. Furthermore, the peak detection unit 7 specifies a correlation peak in the correlation profile of the RS symbol.
  • the correlation peak is a position where the correlation between the received signal and the RS replica is the largest, in other words, a place where the received signal and the RS replica are most similar. That is, it is estimated that the timing at which the correlation peak occurs is the RS timing in the frame.
  • the peak detector 7 determines whether or not the correlation peak is within the range of the path timing tracking width from the position of the predicted peak timing.
  • the peak detector 7 detects the timing of the correlation peak as the RS timing. The peak detector 7 then outputs the detected RS timing to the radio frame head timing calculator 15. Then, the peak detector 7 outputs the RS timing to the peak timing holding unit 12 as the peak timing.
  • the peak detection unit 7 outputs the limit timing of the path timing tracking width to the peak timing holding unit 12 as the peak timing. . In this case, the peak detector 7 cannot detect the correlation peak, and therefore does not output the RS timing to the radio frame head timing calculator 15.
  • the path timing tracking width decreases as the temperature increases. That is, the peak detection unit 7 follows only to a smaller range as the temperature is higher. Conversely, when the temperature is low, the peak detector 7 follows up to a larger range. Therefore, when the temperature is low and the window width is large, the peak detection unit 7 can detect a far peak by increasing the tracking range. Therefore, even when the temperature is low, accurate timing can be detected quickly.
  • the radio frame head timing calculation unit 15 receives an RS timing input from the peak detection unit 7. Next, the radio frame head timing calculation unit 15 calculates the head timing of the frame from the position in the RS frame having the received timing. Then, the radio frame head timing calculation unit 15 outputs the calculated timing of the head of the frame to the signal processing unit 16.
  • the peak detection unit 7 or a combination of the peak detection unit 7 and the radio frame head timing calculation unit 15 corresponds to an example of a “synchronization detection unit”.
  • the signal processing unit 16 receives an input of the start timing of the frame from the radio frame start timing calculation unit 15. Further, the signal processing unit 16 receives an input of a reception signal received by the RF unit 1 from the RF unit 1. Then, the signal processing unit 16 processes the received signal after synchronizing with the received signal using the clock received from the receiving circuit operation clock 9 on the basis of the timing of the head of the received frame.
  • FIG. 3 is a flowchart of the path timing detection process when the temperature condition is divided into two stages.
  • a path timing detection window width “small” which is a predetermined value
  • a path timing follow-up width “small” which is a predetermined value
  • a path timing detection window width “large” that is a predetermined value
  • a path timing follow-up width “large” that is a predetermined value
  • the temperature measuring unit 13 measures the temperature inside the wireless terminal device (step S101). Then, the temperature measurement unit 13 outputs the measured temperature to the detection window width determination unit 141 and the tracking width determination unit 142.
  • the detection window width determination unit 141 and the tracking width determination unit 142 determine whether the temperature is equal to or higher than a threshold value (step S102). When the temperature is equal to or higher than the threshold (step S102: affirmative), the detection window width determining unit 141 sets the path timing detection window width to “small” (step S103). Further, the tracking width determination unit 142 sets the path timing tracking width to “small” (step S104).
  • the detection window width determining unit 141 sets the path timing detection window width to “large” (Step S105). Furthermore, the tracking width determination unit 142 sets the path timing tracking width to “large” (step S106).
  • the RF unit 1 receives a radio signal (step S107).
  • the RS replica generation unit 5 acquires the Cell-ID from the Cell-ID detection unit 18 and generates an RS replica having an RS pattern unique to the Cell-ID (step S108).
  • the replica correlation unit 4 extracts a portion in the range of the path timing detection window width around the predicted peak timing acquired from the peak timing holding unit 12 or the current peak timing. And the replica correlation part 4 acquires a correlation by performing the correlation calculation with the extracted received signal and RS replica (step S109).
  • the peak detector 7 detects a correlation peak from the correlation between the received signal converted into the time domain by the IFFT unit 6 and the RS replica (step S110).
  • the peak detector 7 determines whether or not the detected correlation peak is within the range of the path timing tracking width from the reference peak timing (step S111). When it is within the range of the path timing tracking width (step S111: affirmative), the peak detector 7 outputs the detected correlation peak timing to the radio frame head timing calculator 15 as the RS timing.
  • the radio frame start timing calculation unit 15 calculates the start timing of the frame using the received RS timing (step S112).
  • Step S111 if it is not within the range of the path timing follow-up width (No at Step S111), the peak detector 7 proceeds to Step S113.
  • the peak detection unit 7 When there is a correlation peak in the range of the path timing tracking width, the peak detection unit 7 outputs the correlation peak timing to the peak timing holding unit 12 as the peak timing. If there is no correlation peak in the range of the path timing tracking width, the peak detection unit 7 outputs the limit timing of the path timing tracking width when tracking is performed to the peak timing holding unit 12 as the peak timing.
  • the peak timing holding unit 12 updates the held peak timing to the received peak timing (step S113).
  • FIG. 4 is a flowchart of the path timing detection process when the temperature condition is divided into three stages.
  • the temperature condition equal to or higher than the first threshold is the highest temperature condition
  • the temperature condition lower than the first threshold is equal to or higher than the second threshold
  • the temperature is intermediate
  • the temperature condition lower than the second threshold is the highest.
  • a path timing detection window width “small” that is a predetermined value and a path timing tracking width “small” that is a predetermined value are used.
  • a path timing detection window width “large” that is a predetermined value and a path timing tracking width “large” that is a predetermined value are used. Further, when the temperature is an intermediate temperature condition, a path timing detection window width “medium” that is a predetermined value and a path timing follow-up width “medium” that is a predetermined value are used.
  • the temperature measuring unit 13 measures the temperature inside the wireless terminal device (step S201). Then, the temperature measurement unit 13 outputs the measured temperature to the detection window width determination unit 141 and the tracking width determination unit 142.
  • the detection window width determination unit 141 and the tracking width determination unit 142 determine whether the temperature is equal to or higher than the first threshold (step S202). When the temperature is equal to or higher than the first threshold (step S202: affirmative), the detection window width determining unit 141 sets the path timing detection window width to “small” (step S203). Further, the tracking width determination unit 142 sets the path timing tracking width to “small” (step S204).
  • the detection window width determining unit 141 and the tracking width determining unit 142 determine whether the temperature is equal to or higher than the second threshold (Step S205). .
  • the detection window width determination unit 141 sets the path timing detection window width to “medium” (step S206). Further, the tracking width determination unit 142 sets the path timing tracking width to “medium” (step S207).
  • the detection window width determination unit 141 and the tracking width determination unit 142 set the path timing detection window width to “large” (Step S208). . Further, the tracking width determination unit 142 sets the path timing tracking width to “large” (step S209).
  • the RF unit 1 receives a radio signal (step S210).
  • the RS replica generation unit 5 acquires the Cell-ID from the Cell-ID detection unit 18 and generates an RS replica having an RS pattern specific to the Cell-ID (step S211).
  • the replica correlation unit 4 extracts a portion in the range of the path timing detection window width around the predicted peak timing acquired from the peak timing holding unit 12 or the current peak timing. And the replica correlation part 4 acquires a correlation by performing the correlation calculation with the extracted received signal and RS replica (step S212).
  • the peak detector 7 detects a correlation peak from the correlation between the received signal converted into the time domain by the IFFT unit 6 and the RS replica (step S213).
  • the peak detector 7 determines whether or not the detected correlation peak is within the range of the path timing tracking width from the reference peak timing (step S214). When it is within the range of the path timing tracking width (step S214: affirmative), the peak detector 7 outputs the detected correlation peak timing to the radio frame head timing calculator 15 as the RS timing.
  • the radio frame start timing calculation unit 15 calculates the start timing of the frame using the received RS timing (step S215).
  • Step S214 when it is not within the range of the path timing follow-up width (No at Step S214), the peak detector 7 proceeds to Step S216.
  • the peak detection unit 7 When there is a correlation peak in the range of the path timing tracking width, the peak detection unit 7 outputs the correlation peak timing to the peak timing holding unit 12 as the peak timing. If there is no correlation peak in the range of the path timing tracking width, the peak detection unit 7 outputs the limit timing of the path timing tracking width when tracking is performed to the peak timing holding unit 12 as the peak timing.
  • the peak timing holding unit 12 updates the held peak timing to the received peak timing (step S216).
  • FIG. 5 is a hardware configuration diagram of the wireless communication apparatus according to the first embodiment.
  • the wireless communication apparatus includes an antenna 301, a UIM (User Identity Medium) 302, a wireless communication unit 303, an A / D converter 304, and a temperature sensor 305.
  • the wireless communication apparatus also includes a baseband processor 306, an application processor 307, a multimedia processor 308, a sound source 309, a 3D (3 Dimension) engine 310, and a moving image codec 311.
  • the wireless communication apparatus includes a ROM (Read Only Memory) 312, a RAM (Random Access Memory) 313, a camera 314, an LCD (Liquid Crystal Display) 315, and a power source 316.
  • the antenna 301 is connected to the wireless communication unit 303.
  • the wireless communication unit 303 is connected to the baseband processor 306 via the A / D converter 304.
  • the temperature sensor 305 is connected to the baseband processor 306.
  • the camera 314 and the LCD 315 are connected to the multimedia processor 308.
  • the baseband processor 306, the application processor 307, the multimedia processor 308, the sound source 309, the 3D engine 310, and the moving image codec 311 are connected to each other.
  • the ROM 312 and the RAM 313 are connected to the baseband processor 306, the application processor 307, the multimedia processor 308, the sound source 309, the 3D engine 310, and the moving image codec 311, respectively.
  • only the connection to the application processor 307 is described as the connection of the ROM 312 and the RAM 313 as a representative.
  • the power source 316 supplies power to each internal part surrounded by a dotted line.
  • the multimedia processor 308 reproduces or records the image received from the camera 314 in cooperation with the sound source 309, the 3D engine 310, the moving image codec 311 and the like.
  • the application processor 307 performs processing of the operation of the designated application.
  • the function of the RF unit 1 in FIG. 1 is realized by the wireless communication unit 303. Further, the function of the A / D unit 2 in FIG. 1 is realized by the A / D converter 304.
  • the temperature sensor 305 is disposed in the vicinity of the baseband processor 306. And the function of the temperature measurement part 13 in FIG. 1 is implement
  • FIG. 1 is a diagrammatic representation of the temperature measurement part 13 in FIG. 1 .
  • the functions of the FFT unit 3 to the signal processing unit 16 in FIG. 1 are realized by the baseband processor 306, the ROM 312 and the RAM 313.
  • the RAM 313 stores various programs for realizing the functions of the FFT unit 3 to the signal processing unit 16.
  • the baseband processor 306 reads a program stored in the RAM 313, develops it in the RAM 313, and processes a process for realizing the functions of the FFT unit 3 to the signal processing unit 16.
  • the wireless communication apparatus reduces the detection window width when the temperature inside the apparatus is high, and increases the detection window width when the temperature is low.
  • a large detection window width in this embodiment is used at any temperature. For this reason, when the temperature is high, the wireless communication apparatus according to the present embodiment can reduce the correlation calculation process compared to the conventional case, and can suppress the overall power consumption.
  • the wireless communication device reduces the tracking width when the temperature inside the device is high, and increases the tracking width when the temperature inside the device is low. As a result, even when the correlation peak is far away in a state where the temperature is low, the correlation peak can be followed once, and accurate peak timing detection can be performed quickly.
  • FIG. 6 is a block diagram of the wireless communication apparatus according to the second embodiment.
  • FIG. 6 shows a configuration in which an SNR measuring unit 17 is added to the wireless communication apparatus according to the first embodiment shown in FIG.
  • the wireless communication apparatus according to the present embodiment is different from the first embodiment in that the SNR value is used in addition to the temperature in the apparatus for determining the path timing detection width and the path timing tracking width. Therefore, in the following, the determination of the path timing detection width and the path timing tracking width will be mainly described.
  • each part having the same reference numeral as in FIG. 1 has the same function unless otherwise specified.
  • the SNR measurement unit 17 measures the SNR (signal to noise ratio) of the received signal. Then, the SNR measurement unit 17 outputs the measured SNR value to the detection window width determination unit 141 and the tracking width determination unit 142.
  • the detection range determination unit 14 stores a correspondence table in which a path timing detection window width and a path timing tracking width are associated with a combination of temperature and SNR.
  • the correspondence table when the temperature condition is equal to or greater than a predetermined threshold, the path timing detection window width corresponds to “small” and the path timing tracking width corresponds to “small”.
  • the path timing detection window width corresponds to “small” and the path timing tracking width corresponds to “small”. is doing.
  • the path timing detection window width corresponds to “large” and the path timing tracking width corresponds to “large”. is doing.
  • the actual RS when the temperature is high, as described above, the actual RS is in a position near the predicted peak. Therefore, when the temperature is high, the path timing detection window width may be reduced, and the path timing tracking width may also be reduced. On the other hand, when the temperature is low, the actual RS is far from the predicted peak. Therefore, it is better to increase the path timing detection window width and increase the path timing tracking width.
  • the SNR value when the SNR value is small, there is a lot of noise, so the actual RS waveform is buried in the noise, and the peak detector 7 may erroneously detect a peak that is different from the actual RS. High nature.
  • the correspondence table in this embodiment is determined.
  • the detection window width determination unit 141 and the tracking width determination unit 142 receive an input of the temperature in the apparatus from the temperature measurement unit 13. In addition, the detection window width determination unit 141 and the tracking width determination unit 142 receive an input of the SNR value from the SNR measurement unit 17.
  • the detection window width determination unit 141 refers to the correspondence table stored in the detection range determination unit 14, and determines the path timing detection window width corresponding to the received temperature and SNR values. Specifically, the detection window width determination unit 141 determines the path timing detection window width to be “small” when the temperature is higher than the threshold value. The detection window width determination unit 141 determines the path timing detection window width to be “small” if the temperature is lower than the threshold value and the SNR value is less than the threshold value. On the other hand, if the temperature is lower than the threshold and the SNR value is equal to or greater than the threshold, the detection window width determination unit 141 determines the path timing detection window width to be “large”.
  • the follow-up width determining unit 142 refers to the correspondence table stored in the detection range determining unit 14 and determines the path timing follow-up width corresponding to the received temperature and SNR values. Specifically, the tracking width determination unit 142 determines the path timing tracking width to be “small” when the temperature is higher than the threshold value. If the temperature is lower than the threshold and the SNR value is less than the threshold, the tracking width determination unit 142 determines the path timing tracking width to be “small”. On the other hand, if the temperature is lower than the threshold and the SNR value is equal to or greater than the threshold, the tracking width determination unit 142 determines the path timing tracking width to be “large”.
  • FIG. 7 is a flowchart of a path timing detection process of the wireless communication apparatus according to the second embodiment.
  • the temperature measurement unit 13 measures the temperature inside the wireless terminal device (step S301). Then, the temperature measurement unit 13 outputs the measured temperature to the detection window width determination unit 141 and the tracking width determination unit 142.
  • the detection window width determination unit 141 and the tracking width determination unit 142 determine whether the temperature is equal to or higher than a threshold value (step S302). When the temperature is equal to or higher than the threshold (step S302: Yes), the detection window width determination unit 141 sets the path timing detection window width to “small” (step S304). Further, the tracking width determination unit 142 sets the path timing tracking width to “small” (step S305).
  • the detection window width determining unit 141 and the tracking width determining unit 142 determine whether or not the SNR is equal to or greater than the threshold value (Step S303).
  • the detection window width determining unit 141 sets the path timing detection window width to “small” (Step S304). Further, the tracking width determination unit 142 sets the path timing tracking width to “small” (step S305).
  • step S303 affirmative
  • the detection window width determination unit 141 sets the path timing detection window width to “large” (step S306). Further, the tracking width determination unit 142 sets the path timing tracking width to “large” (step S307).
  • the RF unit 1 receives a radio signal (step S308).
  • the RS replica generation unit 5 acquires the Cell-ID from the Cell-ID detection unit 18 and generates an RS replica having an RS pattern specific to the Cell-ID (step S309).
  • the replica correlation unit 4 extracts a portion in the range of the path timing detection window width around the predicted peak timing acquired from the peak timing holding unit 12 or the current peak timing. And the replica correlation part 4 acquires a correlation by performing the correlation calculation with the extracted received signal and RS replica (step S310).
  • the peak detector 7 detects a correlation peak from the correlation between the received signal converted into the time domain by the IFFT unit 6 and the RS replica (step S311).
  • the peak detector 7 determines whether or not the detected correlation peak is within the range of the path timing tracking width from the reference peak timing (step S312). When it is within the range of the path timing tracking width (step S312: affirmative), the peak detector 7 outputs the detected correlation peak timing to the radio frame head timing calculator 15 as the RS timing.
  • the radio frame start timing calculation unit 15 calculates the start timing of the frame using the received RS timing (step S313).
  • Step S312 when it is not within the range of the path timing follow-up width (No at Step S312), the peak detector 7 proceeds to Step S314.
  • the peak detection unit 7 When there is a correlation peak in the range of the path timing tracking width, the peak detection unit 7 outputs the correlation peak timing to the peak timing holding unit 12 as the peak timing. If there is no correlation peak in the range of the path timing tracking width, the peak detection unit 7 outputs the limit timing of the path timing tracking width when tracking is performed to the peak timing holding unit 12 as the peak timing.
  • the peak timing holding unit 12 updates the held peak timing to the received peak timing (step S314).
  • FIG. 8 is a diagram for explaining the detection of the correlation peak timing in the intermittent reception by the wireless communication apparatus according to the second embodiment.
  • the detection of the correlation peak in the intermittent reception by the wireless communication apparatus according to the present embodiment will be described again.
  • FIG. 8 shows that time has passed in the right direction toward the page.
  • a frame 411 represents a frame of a signal transmitted from the base station.
  • the frame 411 is one frame in 10 ms.
  • a graph 412 shows the timing of intermittent reception. The portion of the graph 412 that rises upward toward the paper surface represents the intermittent reception timing.
  • the second column from the bottom toward the page represents the correlation peak detection process when the temperature in the apparatus is low and the SNR is high, that is, when the SNR value is large.
  • the bottom row toward the paper surface represents a correlation peak detection process when the temperature in the apparatus is high and the SNR is low, that is, when the SNR value is small.
  • Correlation peak detection processing 420 represents detection of a correlation peak in the first intermittent reception.
  • a correlation peak detection process 430 represents detection of a correlation peak in the next intermittent reception of the correlation peak detection process 420.
  • the correlation peak detection process 440 represents detection of a correlation peak in the next intermittent reception after the correlation peak detection process 430.
  • the correlation peak detection process 450 represents detection of a correlation peak in the next intermittent reception after the correlation peak detection process 440.
  • correlation peak detection processing 420 it is assumed that a correlation peak is detected at a position that matches the actual RS timing in both cases of high SNR and low SNR.
  • the timing 421 is the position of the correlation peak that is detected in the correlation peak detection process 420 and is a correct peak that matches the RS timing.
  • the peak detection unit 7 can largely follow the correct peak timing 431 like the tracking 433. Therefore, the peak detector 7 can detect the correct peak timing 431 by one follow-up.
  • the operation is the same as the case of the correlation peak detection process 430. That is, the predicted peak timing 442 deviates greatly from the correct peak timing 441. However, since the tracking width is large, the peak detection unit 7 can largely follow the correct peak timing 441 like the tracking 443. Therefore, the peak detector 7 can detect the correct peak timing 441 by one follow-up.
  • the operation is the same as in the case of the correlation peak detection process 430. That is, the predicted peak timing 452 deviates greatly from the correct peak timing 451. However, since the tracking width is large, the peak detection unit 7 can largely follow the correct peak timing 451 like the tracking 453. Therefore, the peak detector 7 can detect the correct peak timing 451 by one follow-up.
  • the correct peak timing can be quickly detected by using a large path timing tracking width.
  • the timing 422 is the position of the correlation peak that is a correct peak that matches the RS timing and is detected in the correlation peak detection process 420 when the temperature in the apparatus is high and the SNR is low.
  • the predicted peak timing 435 is small from the correct peak 434 timing.
  • the peak 434 indicates the correct peak position.
  • the RS peak waveform is buried in the noise, and the peak detector 7 erroneously detects the peak 437 as a correlation peak representing RS.
  • the peak detection unit 7 performs tracking in the range of the path timing tracking width in the direction of the detected peak 437.
  • the peak detector 7 ends the tracking at the position of the timing 436 before reaching the peak 437.
  • the predicted peak timing 444 is slightly shifted from the correct peak 434 timing than in the correlation peak detection process 430. Further, in this case as well, the waveform of the RS peak is buried in the noise, and the peak detector 7 erroneously detects the peak 446 as a correlation peak representing RS. In this case, the peak detection unit 7 performs tracking in the range of the path timing tracking width in the direction of the detected peak 446. However, since the path timing tracking width is small, the peak detector 7 ends the tracking at the position of the timing 445 before reaching the peak 446.
  • the peak detector 7 can detect the correct peak 434 as a correlation peak. For example, when the state shifts to a high SNR in this state, the peak detector 7 can appropriately follow the correct peak 434, and can return to a state in which the correct peak position is detected as a correlation peak.
  • a path timing tracking width considering a maximum error is used regardless of the magnitude of SNR (Signal Noise Ratio). Therefore, under conditions where there is a lot of noise, such as at low SNR, and it is difficult to detect the RS waveform, the radio communication device erroneously matches the waveform with the RS replica at a location far away from the reference RS timing. May be detected. When such a state in which a large follow-up to the erroneously detected timing occurs is continued by several intermittent receptions, after the correct RS timing exceeds the detectable range and returns to the high SNR state. May not be able to follow the correct RS timing.
  • SNR Synignal Noise Ratio
  • the radio communication apparatus follows largely when the temperature in the apparatus is low, when the SNR value is large, and when the SNR value is small.
  • the wireless communication apparatus can quickly detect a correct correlation peak as long as the SNR value is large and detection can be performed accurately.
  • the wireless communication apparatus according to the present embodiment can reduce the false detection and improve the probability of returning to the correct peak if the SNR value is small and it is difficult to perform the detection accurately. The probability of executing accurate path timing tracking can be improved.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

The present invention provides a wireless communication apparatus that reduces power consumption, and a method for controlling the wireless communication apparatus. An RF unit (1) receives a wireless signal including an already-known synchronization signal for synchronizing with the operation of a reception circuit. A replica generator generates a reproduction of the synchronization signal. A temperature-measurement unit (13) measures the temperature of the interior of the apparatus. A detection-range-setting unit (14) sets a detection range for detecting the position of the synchronization signal in the wireless signal received from the RF unit (1) on the basis of the temperature measured by the temperature measurement unit (13). A peak detector (7) detects the synchronization timing for the detection range set by the detection-range-setting unit (14) for the wireless signal on the basis of the correlation peak found using a calculation of the correlation between the reproduction of the synchronization signal and the wireless signal. A signal processor (16) processes the wireless signal on the basis of the synchronization timing detected by the peak detector (7).

Description

無線通信装置及び無線通信装置制御方法Wireless communication apparatus and wireless communication apparatus control method
 本発明は、無線通信装置及び無線通信装置制御方法に関する。 The present invention relates to a wireless communication device and a wireless communication device control method.
 近年、通信標準化団体である3GPP(3rd Generation Partnership Project)では、LTE(Long Term Evolution)と呼ばれる通信方式の規格化が進められている。LTE方式などを用いて通信を行う場合、無線通信端末は、信号の送受信処理を行っていない状態では、一定時間毎に基地局からの受信があるか否かを調べ、それ以外の時間は待機しているという間欠受信動作を行なっている。そして、無線通信端末は、消費電力を低減させるために、待機中は受信信号の処理を実行する機能を停止させている。この受信信号の処理をするための機能の中には、受信信号に同期した動作クロック(以下では、「受信回路動作クロック」という。)を発生する機能も含まれる。受信回路動作クロックは、例えば、パスタイミング検出回路などが行う受信信号処理に使用される。すなわち、待機中の無線通信端末では、クロックの発振器としては、無線通信端末に搭載されている水晶発振子のクロック(RTC:Real Time Clock)のみが動作している。 Recently, the 3GPP (3 rd Generation Partnership Project) which is a communication standards body, is standardized communication system called an LTE (Long Term Evolution) has been promoted. When performing communication using the LTE method, the wireless communication terminal checks whether there is reception from the base station at regular time intervals when the signal transmission / reception processing is not performed, and waits for other times. An intermittent reception operation is performed. And in order to reduce power consumption, the radio | wireless communication terminal has stopped the function which performs the process of a received signal during standby. The function for processing the reception signal includes a function for generating an operation clock synchronized with the reception signal (hereinafter referred to as “reception circuit operation clock”). The reception circuit operation clock is used for reception signal processing performed by, for example, a path timing detection circuit. That is, in the standby wireless communication terminal, only a clock of a crystal oscillator (RTC: Real Time Clock) mounted on the wireless communication terminal is operating as the clock oscillator.
 また、間欠受信を開始する際、無線通信端末は、RTCと受信回路動作クロックとの誤差を測定し、前回の間欠受信時から今回の間欠受信時までのRTCの回数に測定した誤差を乗算して、前回の間欠受信時から今回の間欠受信時までの誤差の総量を算出する。そして、無線通信端末は、前回の間欠受信時から今回の間欠受信時までに発生した誤差の総量及び前回の間欠受信時に用いた同期タイミングを用いて、今回の間欠受信時における同期タイミングを予測する。 Also, when starting intermittent reception, the wireless communication terminal measures the error between the RTC and the receiving circuit operation clock, and multiplies the measured error by the number of RTCs from the previous intermittent reception to the current intermittent reception. Thus, the total amount of error from the previous intermittent reception to the current intermittent reception is calculated. Then, the wireless communication terminal predicts the synchronization timing at the current intermittent reception by using the total amount of errors generated from the previous intermittent reception to the current intermittent reception and the synchronization timing used at the previous intermittent reception. .
 ただし、温度条件などにより、RTCと受信回路動作クロックとの誤差は変動してしまう。そのため、実際の同期タイミングと測定した誤差を用いて予測した同期タイミングとは異なる結果となる場合がある。そこで、無線通信端末は、間欠受信を行う場合、受信信号のデータ処理を行う前に、パスタイミング追従処理と呼ばれる処理を行い、予測した同期タイミングを補正し、実際の同期タイミングに合わせる。この補正を行うことで、無線通信端末は、より正確なパスタイミングでの受信信号処理を行うことが可能となる。LTEでは、信号を送信する基地局固有のパターンを有する同期用の信号であるRS(Reference Signal)を用いてこれらの同期処理を行っている。 However, the error between the RTC and the receiver circuit operation clock varies depending on temperature conditions. Therefore, the actual synchronization timing may be different from the synchronization timing predicted using the measured error. Therefore, when performing intermittent reception, the wireless communication terminal performs processing called path timing tracking processing before performing data processing on the received signal, corrects the predicted synchronization timing, and matches the actual synchronization timing. By performing this correction, the wireless communication terminal can perform reception signal processing at a more accurate path timing. In LTE, these synchronization processes are performed using RS (Reference Signal) which is a signal for synchronization having a pattern specific to a base station that transmits a signal.
 ここで、従来のパスタイミング検出処理の概略について説明する。無線通信端末は、基地局からの信号を受信する。この基地局からの信号は、フレームという時間単位で取り扱われる。1フレームは、例えば、10msである。さらに、1フレームの信号は、例えば、1msのサブフレーム10個で構成されており、サブフレーム単位で送受信が行なわれる。そして、サブフレームは通信時のデータの最小単位であるシンボルが複数集まって構成されている。そして、1つのサブフレームを構成するシンボルのうちの所定のシンボルにRSが含まれている。 Here, an outline of a conventional path timing detection process will be described. The wireless communication terminal receives a signal from the base station. The signal from this base station is handled in units of time called frames. One frame is, for example, 10 ms. Further, a signal of one frame is composed of, for example, ten 1 ms subframes, and transmission / reception is performed in units of subframes. The subframe is composed of a plurality of symbols, which are the minimum unit of data during communication. And RS is contained in the predetermined symbol of the symbols which comprise one sub-frame.
 次に、無線通信端末は、前回のRSを受信したタイミングに対して、RTCで計測した時間を加え、さらにRTCと受信回路動作クロックとの誤差の総量を加えて、今回受信した信号に対して予測されるRSのタイミングを求める。以下では、予測したRSのタイミングを「予測RSタイミング」と言う。 Next, the wireless communication terminal adds the time measured by the RTC to the timing of receiving the previous RS, and further adds the total amount of error between the RTC and the receiving circuit operation clock, and the signal received this time The predicted RS timing is obtained. Hereinafter, the predicted RS timing is referred to as “predicted RS timing”.
 そして、無線通信端末は、予測RSタイミングを中心として所定の時間を設定するパスタイミング検出窓を設定する。そして、無線通信端末は、そのパスタイミング検出窓の範囲内で、既知のRSのレプリカと同じ波形を有する位置を相関演算処理により検出する。このとき、無線通信端末は、予測RSタイミングの位置から予め設定されたパスタイミング追従幅までを上限としてRSのレプリカと一致する波形の抽出を行う。予測RSタイミングを中心としたパスタイミング追従幅までの範囲内でのRSのレプリカと一致する波形の抽出処理が、「パスタイミング追従処理」と呼ばれる。ここで、パスタイミング追従幅までの間に、RSのレプリカと一致する波形が検出されなければ、無線通信端末は、予測RSタイミングからパスタイミング追従幅の限度まで移動したタイミングを新たな予測RSタイミングとする。そして、無線通信端末は、次の間欠受信の際に、新たな予想RSタイミングを用いて、再度パスタイミング追従処理を行う。 Then, the wireless communication terminal sets a path timing detection window for setting a predetermined time around the predicted RS timing. The wireless communication terminal detects a position having the same waveform as that of the known RS replica within the range of the path timing detection window by the correlation calculation process. At this time, the radio communication terminal extracts a waveform that matches the RS replica with the upper limit from the position of the predicted RS timing to the preset path timing tracking width. The process of extracting a waveform that matches the replica of the RS within the range up to the path timing tracking width centered on the predicted RS timing is called “path timing tracking process”. Here, if a waveform that matches the replica of the RS is not detected before the path timing tracking width, the wireless communication terminal determines that the timing moved from the predicted RS timing to the limit of the path timing tracking width is a new predicted RS timing. And Then, at the time of the next intermittent reception, the wireless communication terminal performs the path timing tracking process again using the new predicted RS timing.
 以上に説明したパスタイミング検出処理を行い、RSの位置を特定することで、無線通信端末は、フレームの先頭のタイミングを特定することができる。また、連続受信を行なっている間は、無線通信端末は、受信回路動作クロックによる周期的なパスタイミング検出処理を実行するため、常に最新の無線フレームに同期したタイミングに従って動作することができる。 By performing the path timing detection process described above and specifying the position of the RS, the wireless communication terminal can specify the start timing of the frame. During continuous reception, the wireless communication terminal performs periodic path timing detection processing based on the reception circuit operation clock, and therefore can always operate according to the timing synchronized with the latest wireless frame.
 このようなパスタイミング検出処理において、無線通信端末の消費電力を軽減できるように、移動速度が速い場合に、電波の伝播路を検出するための検出窓幅を広くする従来技術が提供されている。また、無線通信端末の処理負荷を軽減するために、無線通信端末において検出された移動速度と、速度閾値との大小関係を基に、電波の伝播経路を検出するための複数の追従幅から一つを選択する従来技術が提供されている。 In such a path timing detection process, a conventional technique for widening a detection window width for detecting a propagation path of a radio wave when the moving speed is fast is provided so that the power consumption of the wireless communication terminal can be reduced. . Further, in order to reduce the processing load of the wireless communication terminal, it is determined from a plurality of tracking widths for detecting the propagation path of the radio wave based on the magnitude relationship between the moving speed detected in the wireless communication terminal and the speed threshold. Conventional techniques for selecting one are provided.
特開2001-267961号公報JP 2001-267961 A 特開2002-164817号公報JP 2002-164817 A
 ここで、従来は、最高温度の場合のRTCと受信回路動作クロックとの誤差を基準にRSのタイミングの予想を行なっていた。これは、無線通信端末の内部温度の許容値のうち最高温度の場合に最も誤差が大きくなるためである。さらに、パスタイミング検出窓幅は、予想したRSのタイミングから最も離れた位置に実際のRSが存在する場合にも検出できることを前提として大きさが決定されていた。そのため、温度が高い場合でも、低い場合でも、同じパスタイミング検出窓幅が用いられていた。 Here, conventionally, the RS timing is predicted based on the error between the RTC at the highest temperature and the operation clock of the receiving circuit. This is because the error becomes the largest at the highest temperature among the allowable values of the internal temperature of the wireless communication terminal. Further, the size of the path timing detection window width is determined on the assumption that the path timing detection window width can be detected even when an actual RS exists at a position farthest from the expected RS timing. Therefore, the same path timing detection window width is used regardless of whether the temperature is high or low.
 しかしながら、最高温度の場合の誤差を用いてRSのタイミングの予想を行なっているため、高温の場合には予想したタイミングと実際のRSのタイミングとのズレは小さくなるはずである。そうだとすると、高温の場合にも低温の場合にも、大きなパスタイミング検出窓幅を使用する従来の方法では、無駄な処理を行っていることになり、無駄な消費電力が発生していた。 However, since the RS timing is predicted using the error at the maximum temperature, the difference between the predicted timing and the actual RS timing should be small at high temperatures. If so, in the conventional method using a large path timing detection window width at both high and low temperatures, wasteful processing is performed and wasteful power consumption occurs.
 また、移動速度が速い場合に、電波の伝播路を検出するための検出窓幅を広くする従来技術を用いた場合も、温度は考慮されていないため、無駄な処理を削減し消費電力を抑えることは困難であった。さらに、移動速度と、速度閾値との大小関係を基に、電波の伝播経路を検出するための複数の追従幅から一つを選択する従来技術においても、温度が考慮されていないことは同様であり、無駄な処理を削減し消費電力を抑えることは困難であった。 In addition, when the moving speed is high, the temperature is not taken into account when using the conventional technology that widens the detection window width for detecting the propagation path of radio waves, thus reducing wasteful processing and reducing power consumption. It was difficult. Furthermore, the temperature is not taken into account in the prior art that selects one of a plurality of tracking widths for detecting a radio wave propagation path based on the magnitude relationship between the moving speed and the speed threshold. Therefore, it has been difficult to reduce wasteful processing and reduce power consumption.
 開示の技術は、上記に鑑みてなされたものであって、消費電力を低減した無線通信装置及び無線通信装置制御方法を提供することを目的とする。 The disclosed technology has been made in view of the above, and an object thereof is to provide a wireless communication device and a wireless communication device control method with reduced power consumption.
 本願の開示する無線通信装置及び無線通信装置制御方法は、一つの態様において、信号受信部は、受信回路の動作の同期を取るための既知の同期信号を含む、無線信号を受信する。レプリカ生成部は、前記同期信号の複製を生成する。温度測定部は、自装置内部の温度を測定する。検出範囲決定部は、前記温度測定部により測定された温度を基に、前記信号受信部により受信された前記無線信号における同期信号の位置を検出するための検出範囲を決定する。同期検知部は、前記無線信号における前記検出範囲決定部により決定された検出範囲において、前記同期信号の複製と前記無線信号との相関演算により求めた相関ピークに基づいて、同期タイミングを検知する。信号処理部は、前記同期検知部により検知された同期タイミングを基に前記無線信号を処理する。 In the wireless communication device and the wireless communication device control method disclosed in the present application, in one aspect, the signal reception unit receives a wireless signal including a known synchronization signal for synchronizing the operation of the reception circuit. The replica generation unit generates a replica of the synchronization signal. The temperature measurement unit measures the temperature inside the device itself. The detection range determination unit determines a detection range for detecting the position of the synchronization signal in the radio signal received by the signal reception unit based on the temperature measured by the temperature measurement unit. The synchronization detection unit detects a synchronization timing in the detection range determined by the detection range determination unit in the radio signal based on a correlation peak obtained by a correlation calculation between the copy of the synchronization signal and the radio signal. The signal processing unit processes the radio signal based on the synchronization timing detected by the synchronization detection unit.
 本願の開示する無線通信装置及び無線通信装置制御方法の一つの態様によれば、消費電力を低減することができるという効果を奏する。 According to one aspect of the wireless communication device and the wireless communication device control method disclosed in the present application, there is an effect that power consumption can be reduced.
図1は、実施例1に係る無線通信装置のブロック図である。FIG. 1 is a block diagram of a wireless communication apparatus according to the first embodiment. 図2は、温度とパスタイミング検出窓幅及びパスタイミング追従幅との対応を表すテーブルの一例の図である。FIG. 2 is a diagram illustrating an example of a table representing the correspondence between temperature, path timing detection window width, and path timing tracking width. 図3は、温度条件を2段階に分けた場合のパスタイミング検出処理のフローチャートである。FIG. 3 is a flowchart of the path timing detection process when the temperature condition is divided into two stages. 図4は、温度条件を3段階に分けた場合のパスタイミング検出処理のフローチャートである。FIG. 4 is a flowchart of the path timing detection process when the temperature condition is divided into three stages. 図5は、実施例1に係る無線通信装置のハードウェア構成図である。FIG. 5 is a hardware configuration diagram of the wireless communication apparatus according to the first embodiment. 図6は、実施例2に係る無線通信装置のブロック図である。FIG. 6 is a block diagram of a wireless communication apparatus according to the second embodiment. 図7は、実施例2に係る無線通信装置のパスタイミング検出処理のフローチャートである。FIG. 7 is a flowchart of a path timing detection process of the wireless communication apparatus according to the second embodiment. 図8は、実施例2に係る無線通信装置による間欠受信における相関ピークのタイミングの検出を説明するための図である。FIG. 8 is a diagram for explaining detection of correlation peak timing in intermittent reception by the wireless communication apparatus according to the second embodiment.
 以下に、本願の開示する無線通信装置及び無線通信装置制御方法の実施例を図面に基づいて詳細に説明する。なお、以下の実施例により本願の開示する無線通信装置及び無線通信装置制御方法が限定されるものではない。特に以下では、無線通信装置として携帯電話を例に説明するが、これに限らず、無線通信を行う装置であればよい。 Hereinafter, embodiments of a wireless communication device and a wireless communication device control method disclosed in the present application will be described in detail with reference to the drawings. The wireless communication apparatus and the wireless communication apparatus control method disclosed in the present application are not limited by the following embodiments. In the following, a mobile phone will be described as an example of a wireless communication device. However, the present invention is not limited thereto, and any device that performs wireless communication may be used.
 図1は、実施例1に係る無線通信装置のブロック図である。ここでは、無線通信装置として、携帯電話を例に説明する。以下では、単に「無線通信装置」と呼ぶ。図1に示すように、本実施例に係る無線通信装置は、RF(Radio Frequency)部1、A/D(Analog/Digital)部2、FFT(Fast Fourier Transform)部3、レプリカ相関部4及びRSレプリカ生成部5を有している。さらに、無線通信装置は、IFFT(Inverse Fast Fourier Transform)部6、ピーク検出部7、RTC(Real Time Clock)8、受信回路動作クロック9、誤差測定部10、ピークタイミング補正部11及びピークタイミング保持部12を有している。さらに、無線通信装置は、温度測定部13、検出範囲決定部14、無線フレーム先頭タイミング算出部15、信号処理部16及びCell-ID検出部18を有している。 FIG. 1 is a block diagram of the wireless communication apparatus according to the first embodiment. Here, a mobile phone will be described as an example of the wireless communication device. Hereinafter, it is simply referred to as a “wireless communication device”. As shown in FIG. 1, the radio communication apparatus according to this embodiment includes an RF (Radio Frequency) unit 1, an A / D (Analog / Digital) unit 2, an FFT (Fast Fourier Transform) unit 3, a replica correlation unit 4, and An RS replica generation unit 5 is included. Further, the wireless communication device includes an IFFT (Inverse Fast Fourier Transform) unit 6, a peak detection unit 7, an RTC (Real Time Clock) 8, a reception circuit operation clock 9, an error measurement unit 10, a peak timing correction unit 11, and a peak timing holding. Part 12 is provided. Further, the wireless communication apparatus includes a temperature measurement unit 13, a detection range determination unit 14, a radio frame head timing calculation unit 15, a signal processing unit 16, and a Cell-ID detection unit 18.
 RF部1は、基地局との間でアンテナを介して無線信号を受信する。以下では、基地局からRF部1が受信した無線信号を受信信号と言う。例えば、RF部1は、基地局からの無線信号の受信を10msのフレーム周期を用いて行う。そして、RF部1は、例えば、1msのサブフレーム単位でデータパケットを受信する。サブフレームが12又は14に分割したものが、通信時のデータの最小単位であるシンボルとなる。そして、1つのサブフレームを構成するシンボルのうちの4つのシンボルにRS(Reference Signal)が含まれている。このRS信号は、受信するCell-IDに対して固有の波形形状(「パターン」とも言う。)を有している。1つのフレームの中におけるRSを含むシンボルの位置は、予め決められている。RF部1は、受信信号をA/D部2へ出力する。このRF部1が、「信号受信部」の一例にあたる。 The RF unit 1 receives a radio signal from the base station via an antenna. Hereinafter, the radio signal received by the RF unit 1 from the base station is referred to as a received signal. For example, the RF unit 1 performs reception of a radio signal from the base station using a frame period of 10 ms. For example, the RF unit 1 receives a data packet in units of 1 ms subframes. A subframe divided into 12 or 14 is a symbol which is a minimum unit of data during communication. Then, RS (Reference Signal) is included in four symbols of symbols constituting one subframe. This RS signal has a waveform shape (also referred to as “pattern”) unique to the Cell-ID to be received. The position of the symbol including the RS in one frame is determined in advance. The RF unit 1 outputs the received signal to the A / D unit 2. The RF unit 1 corresponds to an example of a “signal receiving unit”.
 A/D部2は、受信信号の入力をRF部1から受ける。そして、A/D部2は、受信信号をアナログ信号からデジタル信号へ変換する。その後、A/D部2は、デジタル信号に変換した受信信号をFFT部3へ出力する。また、A/D部2は、デジタル信号に変換した受信信号をCell-ID検出部18に出力する。 The A / D unit 2 receives the received signal from the RF unit 1. Then, the A / D unit 2 converts the received signal from an analog signal to a digital signal. Thereafter, the A / D unit 2 outputs the received signal converted into the digital signal to the FFT unit 3. Further, the A / D unit 2 outputs the received signal converted into the digital signal to the Cell-ID detection unit 18.
 FFT部3は、デジタル信号に変換された受信信号をA/D部2から受ける。さらに、FFT部3は、前回のパスタイミング検出処理で算出された、無線フレームの先頭タイミングの入力を無線フレーム先頭タイミング算出部15から受ける。無線フレーム先頭タイミング算出部15によるパスタイミング検出処理については後で詳細に説明する。そして、FFT部3は、受信した無線フレームの先頭タイミングからRSシンボルの位置を予想する。FFT部3は、受信信号における予想したRSシンボルの位置を含む予め決められた範囲に対して高速フーリエ変換を施し、時間領域信号である受信信号を、周波数領域信号へと変換する。そして、FFT部3は、周波数領域信号に変換した受信信号をレプリカ相関部4へ出力する。 The FFT unit 3 receives the received signal converted into the digital signal from the A / D unit 2. Further, the FFT unit 3 receives the input of the start timing of the radio frame calculated from the previous path timing detection processing from the radio frame start timing calculation unit 15. The path timing detection process by the radio frame head timing calculation unit 15 will be described in detail later. Then, the FFT unit 3 predicts the position of the RS symbol from the head timing of the received radio frame. The FFT unit 3 performs fast Fourier transform on a predetermined range including the expected RS symbol position in the received signal, and converts the received signal, which is a time domain signal, into a frequency domain signal. Then, the FFT unit 3 outputs the received signal converted into the frequency domain signal to the replica correlation unit 4.
 Cell-ID検出部18は、デジタル信号に変換された受信信号をA/D部2から受ける。そして、Cell-ID検出部18は、受信信号の中からその受信信号を送信した基地局を示すCell-IDを検出する。その後、Cell-ID検出部18は、検出したCell-IDをRSレプリカ生成部5へ出力する。 The Cell-ID detector 18 receives the received signal converted into a digital signal from the A / D unit 2. Then, the Cell-ID detector 18 detects the Cell-ID indicating the base station that transmitted the received signal from the received signals. Thereafter, the Cell-ID detection unit 18 outputs the detected Cell-ID to the RS replica generation unit 5.
 RSレプリカ生成部5は、Cell-IDの入力をCell-ID検出部18から受ける。そして、RSレプリカ生成部5は、Cell-IDに対応した固有のパターンのRSの複製であるRSレプリカを生成する。例えば、RSレプリカ生成部5は、RSレプリカを生成するための式を予め記憶しており、その式にしたがってRSレプリカを生成する。また、RSレプリカ生成部5は、例えば、既に受信信号のCell-IDに対応するRSレプリカを有している場合には、再度の生成は行わずに有しているRSレプリカを用いてもよい。RSレプリカ生成部5は、生成したRSレプリカをレプリカ相関部4へ出力する。 The RS replica generation unit 5 receives the Cell-ID input from the Cell-ID detection unit 18. Then, the RS replica generation unit 5 generates an RS replica that is a replica of the RS having a unique pattern corresponding to the Cell-ID. For example, the RS replica generation unit 5 stores an expression for generating an RS replica in advance, and generates an RS replica according to the expression. In addition, for example, when the RS replica generation unit 5 already has an RS replica corresponding to the Cell-ID of the received signal, the RS replica generation unit 5 may use the RS replica without performing the generation again. . The RS replica generation unit 5 outputs the generated RS replica to the replica correlation unit 4.
 温度測定部13は、自装置内部における受信信号の処理を行うプロセッサ周辺の温度を計測する。そして、温度測定部13は、計測した温度を検出範囲決定部14の検出窓幅決定部141及び追従幅決定部142へ出力する。 The temperature measuring unit 13 measures the temperature around the processor that processes the received signal in the device itself. Then, the temperature measurement unit 13 outputs the measured temperature to the detection window width determination unit 141 and the tracking width determination unit 142 of the detection range determination unit 14.
 検出範囲決定部14は、検出窓幅決定部141及び追従幅決定部142を有する。検出範囲決定部14は、温度条件とパスタイミング検出窓幅及びパスタイミング追従幅との対応を表すテーブルを記憶している。図2は、温度条件とパスタイミング検出窓幅及びパスタイミング追従幅との対応を表すテーブルの一例の図である。検出範囲決定部14は、例えば、図2に示すような対応テーブル200を記憶している。対応テーブル200は、温度を3つの段階に分けた場合の温度条件の対応テーブルを表している。ここで、対応テーブル200のパスタイミング検出窓幅及びパスタイミング追従幅の値は、サンプリングクロックの数を表している。本実施例では、サンプリングクロックは、30.72MHzである。対応テーブル200に示すように、温度が高くなるにつれて、パスタイミング検出窓幅は小さくなり、パスタイミング追従幅も小さくなる。逆に、温度が低くなるにつれて、パスタイミング検出窓幅は大きくなり、パスタイミング追従幅も大きくなる。例えば、温度が0℃未満である端末内部温度201の場合、パスタイミング検出幅202は10usであり、パスタイミング追従幅203は3.3usである。また、温度が50℃以上である端末内部温度204の場合、パスタイミング検出幅205は3.3usであり、パスタイミング追従幅206は1.6usとなる。図2では、一例として温度条件を3段階に分けた対応テーブルを表しているが、温度条件の分割は他の数でもよく、例えば、2段階でもよいし、4段階以上でもよい。 The detection range determination unit 14 includes a detection window width determination unit 141 and a tracking width determination unit 142. The detection range determination unit 14 stores a table representing the correspondence between the temperature condition, the path timing detection window width, and the path timing tracking width. FIG. 2 is a diagram illustrating an example of a table indicating the correspondence between the temperature condition, the path timing detection window width, and the path timing tracking width. The detection range determination unit 14 stores, for example, a correspondence table 200 as shown in FIG. The correspondence table 200 represents a correspondence table of temperature conditions when the temperature is divided into three stages. Here, the values of the path timing detection window width and the path timing tracking width of the correspondence table 200 represent the number of sampling clocks. In this embodiment, the sampling clock is 30.72 MHz. As shown in the correspondence table 200, as the temperature increases, the path timing detection window width decreases and the path timing tracking width also decreases. Conversely, as the temperature decreases, the path timing detection window width increases and the path timing tracking width also increases. For example, in the case of the terminal internal temperature 201 where the temperature is less than 0 ° C., the path timing detection width 202 is 10 us, and the path timing follow-up width 203 is 3.3 us. In the case of the terminal internal temperature 204 where the temperature is 50 ° C. or higher, the path timing detection width 205 is 3.3 us, and the path timing tracking width 206 is 1.6 us. In FIG. 2, a correspondence table in which the temperature conditions are divided into three stages is shown as an example, but the number of divisions of the temperature conditions may be another number, for example, two stages or four or more stages.
 検出窓幅決定部141は、温度の入力を温度測定部13から受ける。そして、検出窓幅決定部141は、検出範囲決定部14が記憶している対応テーブルを参照し、受信した温度に対応するパスタイミング検出窓幅を取得する。そして、検出窓幅決定部141は、取得したパスタイミング検出窓幅をレプリカ相関部4へ出力する。 The detection window width determination unit 141 receives a temperature input from the temperature measurement unit 13. Then, the detection window width determination unit 141 refers to the correspondence table stored in the detection range determination unit 14 and acquires the path timing detection window width corresponding to the received temperature. Then, the detection window width determination unit 141 outputs the acquired path timing detection window width to the replica correlation unit 4.
 追従幅決定部142は、温度の入力を温度測定部13から受ける。そして、追従幅決定部142は、検出範囲決定部14が記憶している対応テーブルを参照し、受信した温度に対応するパスタイミング追従幅を取得する。そして、追従幅決定部142は、取得したパスタイミング検出窓幅をピーク検出部7へ出力する。 The tracking width determination unit 142 receives a temperature input from the temperature measurement unit 13. Then, the follow-up width determining unit 142 refers to the correspondence table stored in the detection range determining unit 14 and acquires the path timing follow-up width corresponding to the received temperature. Then, the tracking width determination unit 142 outputs the acquired path timing detection window width to the peak detection unit 7.
 RTC8は、例えば水晶発振子により発生するクロック(以下では、「リアルタイムクロック」と言う。)を出力する発振器である。RTC8は、発生させたリアルタイムクロックを誤差測定部10へ出力する。RTC8は、無線通信装置が待ち受け状態の場合にも動作し続ける。 The RTC 8 is an oscillator that outputs a clock (hereinafter referred to as “real time clock”) generated by a crystal oscillator, for example. The RTC 8 outputs the generated real-time clock to the error measurement unit 10. The RTC 8 continues to operate even when the wireless communication apparatus is in a standby state.
 受信回路動作クロック9は、受信信号の処理において動作を受信信号に同期させるための動作クロックを発生する。そして、受信回路動作クロック9は、発生させた動作クロックを誤差測定部10へ出力する。受信回路動作クロック9は、無線通信装置が待ち受け状態の場合には、クロックの発生及び出力の動作を停止する。そして、受信回路動作クロック9は、無線通信装置が待ち受け状態から回復した場合又は待受け状態において基地局から送信された信号があるか否かを調べる間欠受信動作の場合、クロックの発生及び出力を行う。 The reception circuit operation clock 9 generates an operation clock for synchronizing the operation with the reception signal in the processing of the reception signal. Then, the reception circuit operation clock 9 outputs the generated operation clock to the error measurement unit 10. The reception circuit operation clock 9 stops generating and outputting clocks when the wireless communication apparatus is in a standby state. The reception circuit operation clock 9 generates and outputs a clock when the wireless communication apparatus recovers from the standby state or when it is an intermittent reception operation for checking whether there is a signal transmitted from the base station in the standby state. .
 誤差測定部10は、リアルタイムクロックの入力をRTC8から受ける。また、誤差測定部10は、無線通信装置が動作状態のとき、動作クロックの入力を受信回路動作クロック9から受ける。そして、誤差測定部10は、リアルタイムクロックと動作クロックとの誤差を測定する。次に、誤差測定部10は、測定した誤差をピークタイミング補正部11へ出力する。 The error measurement unit 10 receives a real-time clock input from the RTC 8. In addition, the error measurement unit 10 receives an operation clock input from the reception circuit operation clock 9 when the wireless communication apparatus is in an operating state. Then, the error measurement unit 10 measures an error between the real time clock and the operation clock. Next, the error measurement unit 10 outputs the measured error to the peak timing correction unit 11.
 ピークタイミング補正部11は、リアルタイムクロックと動作クロックとの誤差を誤差測定部10から受ける。ピークタイミング補正部11は、取得した誤差のうち最も新しい誤差を保持しておく。さらに、ピークタイミング補正部11は、前回のピークタイミングをピークタイミング保持部12から取得する。 The peak timing correction unit 11 receives an error between the real time clock and the operation clock from the error measurement unit 10. The peak timing correction unit 11 holds the newest error among the acquired errors. Further, the peak timing correction unit 11 acquires the previous peak timing from the peak timing holding unit 12.
 ピークタイミング補正部11は、間欠受信動作が開始されると、前回の間欠受信動作の終了のタイミングから今回の間欠受信動作の開始のタイミングまでの時間(以下では、「待受け時間」と言う。)を動作クロックから求める。さらに、ピークタイミング補正部11は、リアルタイムクロックと動作クロックとの誤差から最大発生誤差を求める。最大発生誤差は、無線通信装置の動作温度のうち最高温度付近の温度となっている状態において発生する。次に、ピークタイミング補正部11は、最大発生誤差を用いて待受け時間内にリアルタイムクロックと動作クロックとの間で発生する誤差を求める。そして、ピークタイミング補正部11は、待ち受け時間内に発生する誤差を待受け時間に加えて、補正した待受け時間を求める。次に、ピークタイミング補正部11は、前回のピークタイミングに対して補正した待受け時間を加えて、現在のピークタイミングとして予想される予測ピークタイミングを求める。 When the intermittent reception operation is started, the peak timing correction unit 11 is a time from the end timing of the previous intermittent reception operation to the start timing of the current intermittent reception operation (hereinafter referred to as “standby time”). Is obtained from the operating clock. Further, the peak timing correction unit 11 obtains the maximum generated error from the error between the real time clock and the operation clock. The maximum generation error occurs in a state where the temperature is near the maximum temperature among the operating temperatures of the wireless communication device. Next, the peak timing correction unit 11 obtains an error generated between the real time clock and the operation clock within the standby time using the maximum generated error. Then, the peak timing correction unit 11 adds the error generated within the standby time to the standby time to obtain the corrected standby time. Next, the peak timing correction unit 11 adds the standby time corrected with respect to the previous peak timing to obtain the predicted peak timing as the current peak timing.
 このように、ピークタイミング補正部11は、温度が無線通信装置の動作温度の限界値に近い高温の場合の誤差を用いてピークタイミングを予測する。そのため、予測ピークタイミングは、温度が無線通信装置の動作温度の限界値に近い高温の場合ほど、実際のピークタイミングに近い可能性が高いと考えられる。 Thus, the peak timing correction unit 11 predicts the peak timing using an error when the temperature is a high temperature close to the operating temperature limit value of the wireless communication device. Therefore, it is considered that the predicted peak timing is likely to be closer to the actual peak timing as the temperature is higher near the limit value of the operating temperature of the wireless communication device.
 ピークタイミング補正部11は、求めた予測ピークタイミングをピークタイミング保持部12へ出力する。 The peak timing correction unit 11 outputs the calculated predicted peak timing to the peak timing holding unit 12.
 ピークタイミング保持部12は、ピークタイミング補正部11が求めた予測ピークタイミングを取得する。そして、ピークタイミング保持部12は、予測ピークタイミングを保持しておく。また、ピークタイミング保持部12は、ピーク検出部7が求めたピークタイミングを取得する。そして、ピークタイミング保持部12は、ピーク検出部7が検出したピークタイミングを次のピークタイミングの検出に用いるための前回のピークタイミングとして保持しておく。 The peak timing holding unit 12 acquires the predicted peak timing obtained by the peak timing correction unit 11. Then, the peak timing holding unit 12 holds the predicted peak timing. Further, the peak timing holding unit 12 acquires the peak timing obtained by the peak detection unit 7. The peak timing holding unit 12 holds the peak timing detected by the peak detection unit 7 as the previous peak timing for use in detection of the next peak timing.
 レプリカ相関部4は、周波数信号に変換された受信信号の入力をFFT部3から受ける。さらに、レプリカ相関部4は、RSレプリカの入力をRSレプリカ生成部5から受ける。また、レプリカ相関部4は、パスタイミング検出窓幅の入力を検出窓幅決定部141から受ける。さらに、レプリカ相関部4は、無線通信装置において間欠受信動作が開始されると、予測ピークタイミングをピークタイミング保持部12から取得する。 The replica correlation unit 4 receives the input of the received signal converted into the frequency signal from the FFT unit 3. Further, the replica correlation unit 4 receives an RS replica input from the RS replica generation unit 5. Further, the replica correlation unit 4 receives an input of the path timing detection window width from the detection window width determination unit 141. Further, the replica correlation unit 4 acquires the predicted peak timing from the peak timing holding unit 12 when the intermittent reception operation is started in the wireless communication device.
 レプリカ相関部4は、取得した受信信号のうち、予測ピークタイミングを中心としてパスタイミング検出窓幅の範囲にある部分を抽出する。そして、レプリカ相関部4は、受信信号の抽出した範囲とRSレプリカとの相関関係を求める相関演算処理を行う。例えば、レプリカ相関部4は、受信信号の比較する位置をずらしながらRSレプリカと比較し、各点においてどの程度受信信号とRS信号とが似ているかを求める。これにより、レプリカ相関部4は、周波数領域における受信信号とRSレプリカとの相関関係を求めることができる。そして、レプリカ相関部4は、求めた受信信号とRSレプリカとの相関関係をIFFT部6へ出力する。 The replica correlation unit 4 extracts a portion in the range of the path timing detection window width around the predicted peak timing from the acquired reception signal. And the replica correlation part 4 performs the correlation calculation process which calculates | requires the correlation with the range which received signal extracted, and RS replica. For example, the replica correlation unit 4 compares the received signal with the RS replica while shifting the position to be compared, and determines how much the received signal and the RS signal are similar at each point. Thereby, the replica correlation part 4 can obtain | require the correlation of the received signal and RS replica in a frequency domain. Then, the replica correlation unit 4 outputs the obtained correlation between the received signal and the RS replica to the IFFT unit 6.
 ここで、前述したように、温度が高いほどパスタイミング検出窓幅は小さくなる。すなわち、レプリカ相関部4は、温度が高いほど、より小さい範囲における受信信号とRSレプリカとの相関関係を求めることになる。したがって、レプリカ相関部4は、温度が高いほど、相関関係を求める範囲が少なくなり、相関演算処理を軽減することができる。そのため、相関演算処理の実行による消費電力を抑えることができる。また、前述したように、温度が高いほど予測ピークタイミングは、実際のピークタイミングに近い位置にあると考えられる。そのため、温度が高くなるにつれてパスタイミング窓幅を小さくしても、レプリカ相関部4は、ピークタイミングを含んだ相関関係を求めることができる。 Here, as described above, the higher the temperature, the smaller the path timing detection window width. That is, the replica correlation unit 4 obtains the correlation between the received signal and the RS replica in a smaller range as the temperature is higher. Therefore, the replica correlation unit 4 can reduce the correlation calculation process by reducing the range for obtaining the correlation as the temperature is higher. Therefore, power consumption due to execution of the correlation calculation process can be suppressed. Further, as described above, it is considered that the predicted peak timing is closer to the actual peak timing as the temperature is higher. Therefore, even if the path timing window width is reduced as the temperature increases, the replica correlation unit 4 can obtain the correlation including the peak timing.
 IFFT部6は、受信信号とRSレプリカとの相関関係の入力をレプリカ相関部4から受ける。そして、IFFT部6は、受信した相関関係に対して逆高速フーリエ変換を行い、受信信号とRSレプリカとの時間領域における相関関係を求め、受信信号とRSレプリカとの相関関係を表すRSシンボルの相関プロファイルを作成する。IFFT部6は、RSシンボルの相関プロファイルをピーク検出部7へ出力する。 The IFFT unit 6 receives an input of the correlation between the received signal and the RS replica from the replica correlation unit 4. Then, the IFFT unit 6 performs inverse fast Fourier transform on the received correlation to obtain a correlation in the time domain between the received signal and the RS replica, and an RS symbol representing the correlation between the received signal and the RS replica. Create a correlation profile. The IFFT unit 6 outputs the correlation profile of the RS symbol to the peak detection unit 7.
 ピーク検出部7は、RSシンボルの相関プロファイルの入力をIFFT部6から受ける。また、ピーク検出部7は、パスタイミング追従幅の入力を追従幅決定部142から受ける。さらに、無線通信装置が間欠受信動作を開始すると、ピーク検出部7は、予測ピークタイミングをピークタイミング保持部12から取得する。 The peak detector 7 receives an RS symbol correlation profile from the IFFT unit 6. Further, the peak detection unit 7 receives the input of the path timing tracking width from the tracking width determination unit 142. Furthermore, when the wireless communication apparatus starts the intermittent reception operation, the peak detection unit 7 acquires the predicted peak timing from the peak timing holding unit 12.
 ピーク検出部7は、無線通信装置において間欠受信動作が開始されると、受信したRSシンボルの相関プロファイルにおける予測ピークタイミングの位置を特定する。さらに、ピーク検出部7は、RSシンボルの相関プロファイルの中の相関ピークを特定する。相関ピークとは、受信信号とRSレプリカとの相関関係が最も大きい位置、言い換えれば、受信信号とRSレプリカとが最も似ている場所である。すなわち、相関ピークとなるタイミングが、そのフレームにおけるRSのタイミングであると推定される。 When the intermittent reception operation is started in the wireless communication device, the peak detection unit 7 specifies the position of the predicted peak timing in the correlation profile of the received RS symbol. Furthermore, the peak detection unit 7 specifies a correlation peak in the correlation profile of the RS symbol. The correlation peak is a position where the correlation between the received signal and the RS replica is the largest, in other words, a place where the received signal and the RS replica are most similar. That is, it is estimated that the timing at which the correlation peak occurs is the RS timing in the frame.
 ピーク検出部7は、相関ピークが予測ピークタイミングの位置からパスタイミング追従幅の範囲にあるか否かを判定する。 The peak detector 7 determines whether or not the correlation peak is within the range of the path timing tracking width from the position of the predicted peak timing.
 相関ピークが予測ピークタイミングの位置からパスタイミング追従幅の範囲にあれば、ピーク検出部7は、相関ピークのタイミングをRSのタイミングとして検出する。そして、ピーク検出部7は、検出したRSのタイミングを無線フレーム先頭タイミング算出部15へ出力する。そして、ピーク検出部7は、RSのタイミングをピークタイミングとしてピークタイミング保持部12へ出力する。 If the correlation peak is in the range of the path timing tracking width from the position of the predicted peak timing, the peak detector 7 detects the timing of the correlation peak as the RS timing. The peak detector 7 then outputs the detected RS timing to the radio frame head timing calculator 15. Then, the peak detector 7 outputs the RS timing to the peak timing holding unit 12 as the peak timing.
 これに対して、相関ピークが予測ピークタイミングの位置からパスタイミング追従幅の範囲になければ、ピーク検出部7は、パスタイミング追従幅の限度のタイミングをピークタイミングとしてピークタイミング保持部12へ出力する。この場合、ピーク検出部7は、相関ピークを検出できていないので、無線フレーム先頭タイミング算出部15へのRSのタイミングの出力は行なわない。 On the other hand, if the correlation peak is not in the range of the path timing tracking width from the position of the predicted peak timing, the peak detection unit 7 outputs the limit timing of the path timing tracking width to the peak timing holding unit 12 as the peak timing. . In this case, the peak detector 7 cannot detect the correlation peak, and therefore does not output the RS timing to the radio frame head timing calculator 15.
 ここで、前述したように、温度が高いほどパスタイミング追従幅は小さくなる。すなわち、ピーク検出部7は、温度が高いほど、より小さい範囲までしか追従を行なわない。逆に、ピーク検出部7は、温度が低い場合には、より大きな範囲まで追従を行う。したがって、ピーク検出部7は、温度が低く窓幅が大きい場合には、追従する範囲を大きくして遠くのピークまで検出することができる。そのため、温度が低位場合にも、正確なタイミングを迅速に検出することができる。 Here, as described above, the path timing tracking width decreases as the temperature increases. That is, the peak detection unit 7 follows only to a smaller range as the temperature is higher. Conversely, when the temperature is low, the peak detector 7 follows up to a larger range. Therefore, when the temperature is low and the window width is large, the peak detection unit 7 can detect a far peak by increasing the tracking range. Therefore, even when the temperature is low, accurate timing can be detected quickly.
 無線フレーム先頭タイミング算出部15は、RSのタイミングの入力をピーク検出部7から受ける。次に、無線フレーム先頭タイミング算出部15は、受信したタイミングを有するRSのフレームにおける位置から、そのフレームの先頭のタイミングを算出する。そして、無線フレーム先頭タイミング算出部15は、算出したフレームの先頭のタイミングを信号処理部16へ出力する。 The radio frame head timing calculation unit 15 receives an RS timing input from the peak detection unit 7. Next, the radio frame head timing calculation unit 15 calculates the head timing of the frame from the position in the RS frame having the received timing. Then, the radio frame head timing calculation unit 15 outputs the calculated timing of the head of the frame to the signal processing unit 16.
 このピーク検出部7、もしくはピーク検出部7及び無線フレーム先頭タイミング算出部15の組合せが、「同期検知部」の一例にあたる。 The peak detection unit 7 or a combination of the peak detection unit 7 and the radio frame head timing calculation unit 15 corresponds to an example of a “synchronization detection unit”.
 信号処理部16は、フレームの先頭のタイミングの入力を無線フレーム先頭タイミング算出部15から受ける。また、信号処理部16は、RF部1が受信した受信信号の入力をRF部1から受ける。そして、信号処理部16は、受信したフレームの先頭のタイミングを基準として、受信回路動作クロック9から受信するクロックを用いて、受信信号と同期を取った上で、受信信号を処理する。 The signal processing unit 16 receives an input of the start timing of the frame from the radio frame start timing calculation unit 15. Further, the signal processing unit 16 receives an input of a reception signal received by the RF unit 1 from the RF unit 1. Then, the signal processing unit 16 processes the received signal after synchronizing with the received signal using the clock received from the receiving circuit operation clock 9 on the basis of the timing of the head of the received frame.
 次に、図3を参照して、温度条件を2段階に分けた場合のパスタイミング検出処理の流れについて説明する。図3は、温度条件を2段階に分けた場合のパスタイミング検出処理のフローチャートである。ここでは、温度が高い温度条件の場合には、予め決められた値であるパスタイミング検出窓幅「小」及び予め決められた値であるパスタイミング追従幅「小」を用いる。また、温度が低い温度条件の場合には、予め決められた値であるパスタイミング検出窓幅「大」及び予め決められた値であるパスタイミング追従幅「大」を用いる。 Next, the flow of the path timing detection process when the temperature condition is divided into two stages will be described with reference to FIG. FIG. 3 is a flowchart of the path timing detection process when the temperature condition is divided into two stages. Here, when the temperature condition is high, a path timing detection window width “small” which is a predetermined value and a path timing follow-up width “small” which is a predetermined value are used. In the case of a low temperature condition, a path timing detection window width “large” that is a predetermined value and a path timing follow-up width “large” that is a predetermined value are used.
 温度測定部13は、無線端末装置内部の温度を測定する(ステップS101)。そして、温度測定部13は、測定した温度を検出窓幅決定部141及び追従幅決定部142へ出力する。 The temperature measuring unit 13 measures the temperature inside the wireless terminal device (step S101). Then, the temperature measurement unit 13 outputs the measured temperature to the detection window width determination unit 141 and the tracking width determination unit 142.
 検出窓幅決定部141及び追従幅決定部142は、温度が閾値以上か否かを判定する(ステップS102)。温度が閾値以上の場合(ステップS102:肯定)、検出窓幅決定部141は、パスタイミング検出窓幅を「小」に設定する(ステップS103)。さらに、追従幅決定部142は、パスタイミング追従幅を「小」に設定する(ステップS104)。 The detection window width determination unit 141 and the tracking width determination unit 142 determine whether the temperature is equal to or higher than a threshold value (step S102). When the temperature is equal to or higher than the threshold (step S102: affirmative), the detection window width determining unit 141 sets the path timing detection window width to “small” (step S103). Further, the tracking width determination unit 142 sets the path timing tracking width to “small” (step S104).
 これに対して、温度が閾値未満の場合(ステップS102:否定)、検出窓幅決定部141は、パスタイミング検出窓幅を「大」に設定する(ステップS105)。さらに、追従幅決定部142は、パスタイミング追従幅を「大」に設定する(ステップS106)。 On the other hand, when the temperature is lower than the threshold (No at Step S102), the detection window width determining unit 141 sets the path timing detection window width to “large” (Step S105). Furthermore, the tracking width determination unit 142 sets the path timing tracking width to “large” (step S106).
 RF部1は、無線信号を受信する(ステップS107)。 The RF unit 1 receives a radio signal (step S107).
 RSレプリカ生成部5は、Cell-ID検出部18からCell-IDを取得して、そのCell-ID固有のRSのパターンを有するRSレプリカを生成する(ステップS108)。 The RS replica generation unit 5 acquires the Cell-ID from the Cell-ID detection unit 18 and generates an RS replica having an RS pattern unique to the Cell-ID (step S108).
 レプリカ相関部4は、ピークタイミング保持部12から取得した予測ピークタイミング又は現在のピークタイミングを中心としてパスタイミング検出窓幅の範囲にある部分を抽出する。そして、レプリカ相関部4は、抽出した受信信号とRSレプリカとの相関演算を行うことにより相関関係を取得する(ステップS109)。 The replica correlation unit 4 extracts a portion in the range of the path timing detection window width around the predicted peak timing acquired from the peak timing holding unit 12 or the current peak timing. And the replica correlation part 4 acquires a correlation by performing the correlation calculation with the extracted received signal and RS replica (step S109).
 ピーク検出部7は、IFFT部6により時間領域に変換された受信信号とRSレプリカとの相関関係から相関ピークを検出する(ステップS110)。 The peak detector 7 detects a correlation peak from the correlation between the received signal converted into the time domain by the IFFT unit 6 and the RS replica (step S110).
 ピーク検出部7は、検出した相関ピークが基準ピークタイミングからパスタイミング追従幅の範囲にあるか否かを判定する(ステップS111)。パスタイミング追従幅の範囲にある場合(ステップS111:肯定)、ピーク検出部7は、検出した相関ピークのタイミングをRSのタイミングとして無線フレーム先頭タイミング算出部15へ出力する。無線フレーム先頭タイミング算出部15は、受信したRSのタイミングを用いて、フレームの先頭のタイミングを算出する(ステップS112)。 The peak detector 7 determines whether or not the detected correlation peak is within the range of the path timing tracking width from the reference peak timing (step S111). When it is within the range of the path timing tracking width (step S111: affirmative), the peak detector 7 outputs the detected correlation peak timing to the radio frame head timing calculator 15 as the RS timing. The radio frame start timing calculation unit 15 calculates the start timing of the frame using the received RS timing (step S112).
 これに対して、パスタイミング追従幅の範囲にない場合(ステップS111:否定)、ピーク検出部7は、ステップS113へ進む。 On the other hand, if it is not within the range of the path timing follow-up width (No at Step S111), the peak detector 7 proceeds to Step S113.
 ピーク検出部7は、パスタイミング追従幅の範囲に相関ピークがある場合、相関ピークのタイミングをピークタイミングとしてピークタイミング保持部12へ出力する。また、パスタイミング追従幅の範囲に相関ピークがない場合、ピーク検出部7は、追従を行ったときのパスタイミング追従幅の限界のタイミングをピークタイミングとしてピークタイミング保持部12へ出力する。ピークタイミング保持部12は、保持しているピークタイミングを受信したピークタイミングに更新する(ステップS113)。 When there is a correlation peak in the range of the path timing tracking width, the peak detection unit 7 outputs the correlation peak timing to the peak timing holding unit 12 as the peak timing. If there is no correlation peak in the range of the path timing tracking width, the peak detection unit 7 outputs the limit timing of the path timing tracking width when tracking is performed to the peak timing holding unit 12 as the peak timing. The peak timing holding unit 12 updates the held peak timing to the received peak timing (step S113).
 次に、図4を参照して、温度条件を3段階に分けた場合のパスタイミング検出処理の流れについて説明する。図4は、温度条件を3段階に分けた場合のパスタイミング検出処理のフローチャートである。ここでは、第1閾値以上の温度条件を最も温度が高い温度条件とし、第1閾値未満第2閾値以上の温度条件を温度が中間の温度条件とし、第2閾値未満の温度条件を温度が最も低い温度条件とする。そして、温度が最も高い温度条件の場合には、予め決められた値であるパスタイミング検出窓幅「小」及び予め決められた値であるパスタイミング追従幅「小」を用いる。また、温度が最も低い温度条件の場合には、予め決められた値であるパスタイミング検出窓幅「大」及び予め決められた値であるパスタイミング追従幅「大」を用いる。さらに、温度が中間の温度条件の場合には、予め決められた値であるパスタイミング検出窓幅「中」及び予め決められた値であるパスタイミング追従幅「中」を用いる。 Next, the flow of the path timing detection process when the temperature condition is divided into three stages will be described with reference to FIG. FIG. 4 is a flowchart of the path timing detection process when the temperature condition is divided into three stages. Here, the temperature condition equal to or higher than the first threshold is the highest temperature condition, the temperature condition lower than the first threshold is equal to or higher than the second threshold, the temperature is intermediate, and the temperature condition lower than the second threshold is the highest. Use low temperature conditions. When the temperature condition is the highest, a path timing detection window width “small” that is a predetermined value and a path timing tracking width “small” that is a predetermined value are used. When the temperature condition is the lowest, a path timing detection window width “large” that is a predetermined value and a path timing tracking width “large” that is a predetermined value are used. Further, when the temperature is an intermediate temperature condition, a path timing detection window width “medium” that is a predetermined value and a path timing follow-up width “medium” that is a predetermined value are used.
 温度測定部13は、無線端末装置内部の温度を測定する(ステップS201)。そして、温度測定部13は、測定した温度を検出窓幅決定部141及び追従幅決定部142へ出力する。 The temperature measuring unit 13 measures the temperature inside the wireless terminal device (step S201). Then, the temperature measurement unit 13 outputs the measured temperature to the detection window width determination unit 141 and the tracking width determination unit 142.
 検出窓幅決定部141及び追従幅決定部142は、温度が第1閾値以上か否かを判定する(ステップS202)。温度が第1閾値以上の場合(ステップS202:肯定)、検出窓幅決定部141は、パスタイミング検出窓幅を「小」に設定する(ステップS203)。さらに、追従幅決定部142は、パスタイミング追従幅を「小」に設定する(ステップS204)。 The detection window width determination unit 141 and the tracking width determination unit 142 determine whether the temperature is equal to or higher than the first threshold (step S202). When the temperature is equal to or higher than the first threshold (step S202: affirmative), the detection window width determining unit 141 sets the path timing detection window width to “small” (step S203). Further, the tracking width determination unit 142 sets the path timing tracking width to “small” (step S204).
 これに対して、温度が第1閾値未満の場合(ステップS202:否定)、検出窓幅決定部141及び追従幅決定部142は、温度が第2閾値以上か否かを判定する(ステップS205)。温度が第2閾値以上の場合(ステップS205:肯定)、検出窓幅決定部141は、パスタイミング検出窓幅を「中」に設定する(ステップS206)。さらに、追従幅決定部142は、パスタイミング追従幅を「中」に設定する(ステップS207)。 On the other hand, when the temperature is lower than the first threshold (No at Step S202), the detection window width determining unit 141 and the tracking width determining unit 142 determine whether the temperature is equal to or higher than the second threshold (Step S205). . When the temperature is equal to or higher than the second threshold (step S205: Yes), the detection window width determination unit 141 sets the path timing detection window width to “medium” (step S206). Further, the tracking width determination unit 142 sets the path timing tracking width to “medium” (step S207).
 これに対して、温度が第2閾値未満の場合(ステップS205:否定)、検出窓幅決定部141及び追従幅決定部142は、パスタイミング検出窓幅を「大」に設定する(ステップS208)。さらに、追従幅決定部142は、パスタイミング追従幅を「大」に設定する(ステップS209)。 On the other hand, when the temperature is lower than the second threshold (No at Step S205), the detection window width determination unit 141 and the tracking width determination unit 142 set the path timing detection window width to “large” (Step S208). . Further, the tracking width determination unit 142 sets the path timing tracking width to “large” (step S209).
 RF部1は、無線信号を受信する(ステップS210)。 The RF unit 1 receives a radio signal (step S210).
 RSレプリカ生成部5は、Cell-ID検出部18からCell-IDを取得して、そのCell-ID固有のRSのパターンを有するRSレプリカを生成する(ステップS211)。 The RS replica generation unit 5 acquires the Cell-ID from the Cell-ID detection unit 18 and generates an RS replica having an RS pattern specific to the Cell-ID (step S211).
 レプリカ相関部4は、ピークタイミング保持部12から取得した予測ピークタイミング又は現在のピークタイミングを中心としてパスタイミング検出窓幅の範囲にある部分を抽出する。そして、レプリカ相関部4は、抽出した受信信号とRSレプリカとの相関演算を行うことにより相関関係を取得する(ステップS212)。 The replica correlation unit 4 extracts a portion in the range of the path timing detection window width around the predicted peak timing acquired from the peak timing holding unit 12 or the current peak timing. And the replica correlation part 4 acquires a correlation by performing the correlation calculation with the extracted received signal and RS replica (step S212).
 ピーク検出部7は、IFFT部6により時間領域に変換された受信信号とRSレプリカとの相関関係から相関ピークを検出する(ステップS213)。 The peak detector 7 detects a correlation peak from the correlation between the received signal converted into the time domain by the IFFT unit 6 and the RS replica (step S213).
 ピーク検出部7は、検出した相関ピークが基準ピークタイミングからパスタイミング追従幅の範囲にあるか否かを判定する(ステップS214)。パスタイミング追従幅の範囲にある場合(ステップS214:肯定)、ピーク検出部7は、検出した相関ピークのタイミングをRSのタイミングとして無線フレーム先頭タイミング算出部15へ出力する。無線フレーム先頭タイミング算出部15は、受信したRSのタイミングを用いて、フレームの先頭のタイミングを算出する(ステップS215)。 The peak detector 7 determines whether or not the detected correlation peak is within the range of the path timing tracking width from the reference peak timing (step S214). When it is within the range of the path timing tracking width (step S214: affirmative), the peak detector 7 outputs the detected correlation peak timing to the radio frame head timing calculator 15 as the RS timing. The radio frame start timing calculation unit 15 calculates the start timing of the frame using the received RS timing (step S215).
 これに対して、パスタイミング追従幅の範囲にない場合(ステップS214:否定)、ピーク検出部7は、ステップS216へ進む。 On the other hand, when it is not within the range of the path timing follow-up width (No at Step S214), the peak detector 7 proceeds to Step S216.
 ピーク検出部7は、パスタイミング追従幅の範囲に相関ピークがある場合、相関ピークのタイミングをピークタイミングとしてピークタイミング保持部12へ出力する。また、パスタイミング追従幅の範囲に相関ピークがない場合、ピーク検出部7は、追従を行ったときのパスタイミング追従幅の限界のタイミングをピークタイミングとしてピークタイミング保持部12へ出力する。ピークタイミング保持部12は、保持しているピークタイミングを受信したピークタイミングに更新する(ステップS216)。 When there is a correlation peak in the range of the path timing tracking width, the peak detection unit 7 outputs the correlation peak timing to the peak timing holding unit 12 as the peak timing. If there is no correlation peak in the range of the path timing tracking width, the peak detection unit 7 outputs the limit timing of the path timing tracking width when tracking is performed to the peak timing holding unit 12 as the peak timing. The peak timing holding unit 12 updates the held peak timing to the received peak timing (step S216).
〔ハードウェア構成〕
 次に、図5を参照して、本実施例に係る無線通信装置のハードウェア構成を説明する。図5は、実施例1に係る無線通信装置のハードウェア構成図である。
[Hardware configuration]
Next, the hardware configuration of the wireless communication apparatus according to the present embodiment will be described with reference to FIG. FIG. 5 is a hardware configuration diagram of the wireless communication apparatus according to the first embodiment.
 本実施例1に係る無線通信装置は、アンテナ301、UIM(User Identity Medium)302、無線通信部303、A/D変換器304及び温度センサ305を有している。また、無線通信装置は、ベースバンドプロセッサ306、アプリケーションプロセッサ307、マルチメディアプロセッサ308、音源309、3D(3 Dimension)エンジン310及び動画コーデック311を有している。さらに、無線通信装置は、ROM(Read Only Memory)312、RAM(Random Access Memory)313、カメラ314、LCD(Liquid Crystal Display)315及び電源316を有している。 The wireless communication apparatus according to the first embodiment includes an antenna 301, a UIM (User Identity Medium) 302, a wireless communication unit 303, an A / D converter 304, and a temperature sensor 305. The wireless communication apparatus also includes a baseband processor 306, an application processor 307, a multimedia processor 308, a sound source 309, a 3D (3 Dimension) engine 310, and a moving image codec 311. Further, the wireless communication apparatus includes a ROM (Read Only Memory) 312, a RAM (Random Access Memory) 313, a camera 314, an LCD (Liquid Crystal Display) 315, and a power source 316.
 アンテナ301は、無線通信部303に接続されている。また無線通信部303は、A/D変換器304を介してベースバンドプロセッサ306に接続されている。さらに、温度センサ305はベースバンドプロセッサ306に接続されている。また、カメラ314及びLCD315は、マルチメディアプロセッサ308に接続されている。また、ベースバンドプロセッサ306、アプリケーションプロセッサ307、マルチメディアプロセッサ308、音源309、3Dエンジン310及び動画コーデック311はそれぞれ相互に接続されている。また、ROM312及びRAM313は、ベースバンドプロセッサ306、アプリケーションプロセッサ307、マルチメディアプロセッサ308、音源309、3Dエンジン310及び動画コーデック311のそれぞれに接続されている。だたし、図では、ROM312及びRAM313の接続は、代表としてアプリケーションプロセッサ307への接続のみを記載している。 The antenna 301 is connected to the wireless communication unit 303. The wireless communication unit 303 is connected to the baseband processor 306 via the A / D converter 304. Further, the temperature sensor 305 is connected to the baseband processor 306. The camera 314 and the LCD 315 are connected to the multimedia processor 308. In addition, the baseband processor 306, the application processor 307, the multimedia processor 308, the sound source 309, the 3D engine 310, and the moving image codec 311 are connected to each other. The ROM 312 and the RAM 313 are connected to the baseband processor 306, the application processor 307, the multimedia processor 308, the sound source 309, the 3D engine 310, and the moving image codec 311, respectively. However, in the figure, only the connection to the application processor 307 is described as the connection of the ROM 312 and the RAM 313 as a representative.
 また、電源316は、点線で囲われた内部の各部に電源を供給する。 In addition, the power source 316 supplies power to each internal part surrounded by a dotted line.
 マルチメディアプロセッサ308は、カメラ314から受信した画像などを音源309、3Dエンジン310及び動画コーデック311などと協働して再生や録画などを行う。また、アプリケーションプロセッサ307は、指定されたアプリケーションの動作の処理を行う。 The multimedia processor 308 reproduces or records the image received from the camera 314 in cooperation with the sound source 309, the 3D engine 310, the moving image codec 311 and the like. In addition, the application processor 307 performs processing of the operation of the designated application.
 そして、無線通信部303によって、図1におけるRF部1の機能が実現される。さらに、A/D変換器304によって、図1におけるA/D部2の機能が実現される。 And the function of the RF unit 1 in FIG. 1 is realized by the wireless communication unit 303. Further, the function of the A / D unit 2 in FIG. 1 is realized by the A / D converter 304.
 また、温度センサ305は、ベースバンドプロセッサ306の近傍に配置される。そして、温度センサ305によって、図1における温度測定部13の機能が実現される。 Further, the temperature sensor 305 is disposed in the vicinity of the baseband processor 306. And the function of the temperature measurement part 13 in FIG. 1 is implement | achieved by the temperature sensor 305. FIG.
 さらに、ベースバンドプロセッサ306、ROM312及びRAM313によって、図1における、FFT部3~信号処理部16の機能が実現される。例えば、RAM313には、FFT部3~信号処理部16の機能を実現する各種プログラムが格納されている。そして、ベースバンドプロセッサ306は、RAM313に格納されたプログラムを読み出し、RAM313に展開してFFT部3~信号処理部16の機能を実現するプロセスを処理する。 Further, the functions of the FFT unit 3 to the signal processing unit 16 in FIG. 1 are realized by the baseband processor 306, the ROM 312 and the RAM 313. For example, the RAM 313 stores various programs for realizing the functions of the FFT unit 3 to the signal processing unit 16. Then, the baseband processor 306 reads a program stored in the RAM 313, develops it in the RAM 313, and processes a process for realizing the functions of the FFT unit 3 to the signal processing unit 16.
 以上に説明したように、本実施例に係る無線通信装置は、装置内部の温度が高い場合には検出窓幅を小さくし、温度が低い場合には検出窓幅を大きくする。これに対して従来は、どのような温度の場合にも本実施例における大きい検出窓幅を用いていた。このため、本実施例に係る無線通信装置は、温度が高い場合には、従来にくらべて相関演算の処理を軽減することができ、全体的な消費電力を抑えることができる。 As described above, the wireless communication apparatus according to the present embodiment reduces the detection window width when the temperature inside the apparatus is high, and increases the detection window width when the temperature is low. In contrast, conventionally, a large detection window width in this embodiment is used at any temperature. For this reason, when the temperature is high, the wireless communication apparatus according to the present embodiment can reduce the correlation calculation process compared to the conventional case, and can suppress the overall power consumption.
 また、本実施例に係る無線通信装置は、装置内部の温度が高い場合に追従幅を小さくし、装置内部の温度が低い場合には追従幅を大きくする。これにより、温度が低い状態で、相関ピークが遠くにある場合でも、その相関ピークまで1回で追従することができ、迅速に正確なピークタイミング検出を行うことができる。 In addition, the wireless communication device according to the present embodiment reduces the tracking width when the temperature inside the device is high, and increases the tracking width when the temperature inside the device is low. As a result, even when the correlation peak is far away in a state where the temperature is low, the correlation peak can be followed once, and accurate peak timing detection can be performed quickly.
 図6は、実施例2に係る無線通信装置のブロック図である。図6は、図1に示す実施例1に係る無線通信装置にSNR測定部17を加えた構成である。本実施例に係る無線通信装置は、パスタイミング検出幅及びパスタイミング追従幅の決定に装置内の温度に加えてSNRの値を用いることが実施例1と異なるものである。そこで、以下では、パスタイミング検出幅及びパスタイミング追従幅の決定について主に説明する。図6において、図1と同じ符号を有する各部は、特に説明の無い限り同じ機能を有するものとする。 FIG. 6 is a block diagram of the wireless communication apparatus according to the second embodiment. FIG. 6 shows a configuration in which an SNR measuring unit 17 is added to the wireless communication apparatus according to the first embodiment shown in FIG. The wireless communication apparatus according to the present embodiment is different from the first embodiment in that the SNR value is used in addition to the temperature in the apparatus for determining the path timing detection width and the path timing tracking width. Therefore, in the following, the determination of the path timing detection width and the path timing tracking width will be mainly described. In FIG. 6, each part having the same reference numeral as in FIG. 1 has the same function unless otherwise specified.
 SNR測定部17は、受信信号のSNR(信号雑音比)を測定する。そして、SNR測定部17は、測定したSNRの値を検出窓幅決定部141及び追従幅決定部142へ出力する。 The SNR measurement unit 17 measures the SNR (signal to noise ratio) of the received signal. Then, the SNR measurement unit 17 outputs the measured SNR value to the detection window width determination unit 141 and the tracking width determination unit 142.
 検出範囲決定部14は、本実施例では、温度及びSNRの組合せにパスタイミング検出窓幅及びパスタイミング追従幅を対応させた対応テーブルを記憶している。本実施例では、対応テーブルは、温度条件が予め決められた閾値以上の場合は、パスタイミング検出窓幅が「小」でありパスタイミング追従幅が「小」に対応している。また、温度条件が予め決められた閾値未満であり、SNRの値が予め決められた閾値未満の場合には、パスタイミング検出窓幅が「小」でありパスタイミング追従幅が「小」に対応している。さらに、温度条件が予め決められた閾値未満であり、SNRの値が予め決められた閾値以上の場合には、パスタイミング検出窓幅が「大」でありパスタイミング追従幅が「大」に対応している。 In the present embodiment, the detection range determination unit 14 stores a correspondence table in which a path timing detection window width and a path timing tracking width are associated with a combination of temperature and SNR. In this embodiment, in the correspondence table, when the temperature condition is equal to or greater than a predetermined threshold, the path timing detection window width corresponds to “small” and the path timing tracking width corresponds to “small”. When the temperature condition is less than a predetermined threshold and the SNR value is less than the predetermined threshold, the path timing detection window width corresponds to “small” and the path timing tracking width corresponds to “small”. is doing. Furthermore, if the temperature condition is less than a predetermined threshold and the SNR value is greater than or equal to the predetermined threshold, the path timing detection window width corresponds to “large” and the path timing tracking width corresponds to “large”. is doing.
 これは、以下の理由による。まず、温度が高い場合には、上述したように、実際のRSは、予測ピークから近い位置にある。そこで、温度が高い場合には、パスタイミング検出窓幅は小さくしてよく、さらにパスタイミング追従幅も小さくしてよい。これに対して、温度が低い場合には、実際のRSが予測ピークから遠い位置にある。そこで、本来であればパスタイミング検出窓幅は大きくし、パスタイミング追従幅も大きくした方がよい。しかし、SNRの値が小さい場合には、ノイズが多いため、実際のRSの波形がノイズに埋もれてしまい、ピーク検出部7が、実際のRSとは違う箇所をピークとして誤検出してしまう可能性が高い。そのため、SNRの値が小さい場合には、パスタイミング検出窓幅を小さくし、パスタイミング追従幅を小さくした方がよい。これに対して、SNRの値が大きい場合には、ピークの誤検出の可能性が低いため、遠くにあるピークを迅速に検出するように、パスタイミング検出窓幅を大きくし、パスタイミング追従幅を大きくした方がよい。このような理由から、本実施例における対応テーブルが決定されている。 This is due to the following reasons. First, when the temperature is high, as described above, the actual RS is in a position near the predicted peak. Therefore, when the temperature is high, the path timing detection window width may be reduced, and the path timing tracking width may also be reduced. On the other hand, when the temperature is low, the actual RS is far from the predicted peak. Therefore, it is better to increase the path timing detection window width and increase the path timing tracking width. However, when the SNR value is small, there is a lot of noise, so the actual RS waveform is buried in the noise, and the peak detector 7 may erroneously detect a peak that is different from the actual RS. High nature. Therefore, when the SNR value is small, it is better to reduce the path timing detection window width and the path timing tracking width. On the other hand, when the SNR value is large, the possibility of false detection of the peak is low, so the path timing detection window width is increased and the path timing follow-up width is set so that a distant peak can be detected quickly. Should be larger. For this reason, the correspondence table in this embodiment is determined.
 検出窓幅決定部141及び追従幅決定部142は、装置内の温度の入力を温度測定部13から受ける。また、検出窓幅決定部141及び追従幅決定部142は、SNRの値の入力をSNR測定部17から受ける。 The detection window width determination unit 141 and the tracking width determination unit 142 receive an input of the temperature in the apparatus from the temperature measurement unit 13. In addition, the detection window width determination unit 141 and the tracking width determination unit 142 receive an input of the SNR value from the SNR measurement unit 17.
 検出窓幅決定部141は、検出範囲決定部14が記憶している対応テーブルを参照して、受信した温度及びSNRの値に対応するパスタイミング検出窓幅を決定する。具体的には、検出窓幅決定部141は、温度が閾値よりも高い場合には、パスタイミング検出窓幅を「小」に決定する。また、検出窓幅決定部141は、温度が閾値よりも低く、SNRの値が閾値未満であれば、パスタイミング検出窓幅を「小」に決定する。これに対して、温度が閾値よりも低く、SNRの値が閾値以上であれば、検出窓幅決定部141は、パスタイミング検出窓幅を「大」に決定する。 The detection window width determination unit 141 refers to the correspondence table stored in the detection range determination unit 14, and determines the path timing detection window width corresponding to the received temperature and SNR values. Specifically, the detection window width determination unit 141 determines the path timing detection window width to be “small” when the temperature is higher than the threshold value. The detection window width determination unit 141 determines the path timing detection window width to be “small” if the temperature is lower than the threshold value and the SNR value is less than the threshold value. On the other hand, if the temperature is lower than the threshold and the SNR value is equal to or greater than the threshold, the detection window width determination unit 141 determines the path timing detection window width to be “large”.
 追従幅決定部142は、検出範囲決定部14が記憶している対応テーブルを参照して、受信した温度及びSNRの値に対応するパスタイミング追従幅を決定する。具体的には、追従幅決定部142は、温度が閾値よりも高い場合には、パスタイミング追従幅を「小」に決定する。また、追従幅決定部142は、温度が閾値よりも低く、SNRの値が閾値未満であれば、パスタイミング追従幅を「小」に決定する。これに対して、温度が閾値よりも低く、SNRの値が閾値以上であれば、追従幅決定部142は、パスタイミング追従幅を「大」に決定する。 The follow-up width determining unit 142 refers to the correspondence table stored in the detection range determining unit 14 and determines the path timing follow-up width corresponding to the received temperature and SNR values. Specifically, the tracking width determination unit 142 determines the path timing tracking width to be “small” when the temperature is higher than the threshold value. If the temperature is lower than the threshold and the SNR value is less than the threshold, the tracking width determination unit 142 determines the path timing tracking width to be “small”. On the other hand, if the temperature is lower than the threshold and the SNR value is equal to or greater than the threshold, the tracking width determination unit 142 determines the path timing tracking width to be “large”.
 次に、図7を参照して、本実施例に係る無線通信装置のパスタイミング検出処理の流れについて説明する。図7は、実施例2に係る無線通信装置のパスタイミング検出処理のフローチャートである。 Next, the flow of path timing detection processing of the wireless communication apparatus according to the present embodiment will be described with reference to FIG. FIG. 7 is a flowchart of a path timing detection process of the wireless communication apparatus according to the second embodiment.
 温度測定部13は、無線端末装置内部の温度を測定する(ステップS301)。そして、温度測定部13は、測定した温度を検出窓幅決定部141及び追従幅決定部142へ出力する。 The temperature measurement unit 13 measures the temperature inside the wireless terminal device (step S301). Then, the temperature measurement unit 13 outputs the measured temperature to the detection window width determination unit 141 and the tracking width determination unit 142.
 検出窓幅決定部141及び追従幅決定部142は、温度が閾値以上か否かを判定する(ステップS302)。温度が閾値以上の場合(ステップS302:肯定)、検出窓幅決定部141は、パスタイミング検出窓幅を「小」に設定する(ステップS304)。さらに、追従幅決定部142は、パスタイミング追従幅を「小」に設定する(ステップS305)。 The detection window width determination unit 141 and the tracking width determination unit 142 determine whether the temperature is equal to or higher than a threshold value (step S302). When the temperature is equal to or higher than the threshold (step S302: Yes), the detection window width determination unit 141 sets the path timing detection window width to “small” (step S304). Further, the tracking width determination unit 142 sets the path timing tracking width to “small” (step S305).
 これに対して、温度が閾値未満の場合(ステップS302:否定)、検出窓幅決定部141及び追従幅決定部142は、SNRが閾値以上か否かを判定する(ステップS303)。SNRが閾値未満の場合(ステップS303:否定)、検出窓幅決定部141は、パスタイミング検出窓幅を「小」に設定する(ステップS304)。さらに、追従幅決定部142は、パスタイミング追従幅を「小」に設定する(ステップS305)。 On the other hand, when the temperature is lower than the threshold value (No at Step S302), the detection window width determining unit 141 and the tracking width determining unit 142 determine whether or not the SNR is equal to or greater than the threshold value (Step S303). When the SNR is less than the threshold (No at Step S303), the detection window width determining unit 141 sets the path timing detection window width to “small” (Step S304). Further, the tracking width determination unit 142 sets the path timing tracking width to “small” (step S305).
 これに対して、温度が閾値以上の場合(ステップS303:肯定)、検出窓幅決定部141は、パスタイミング検出窓幅を「大」に設定する(ステップS306)。さらに、追従幅決定部142は、パスタイミング追従幅を「大」に設定する(ステップS307)。 On the other hand, when the temperature is equal to or higher than the threshold (step S303: affirmative), the detection window width determination unit 141 sets the path timing detection window width to “large” (step S306). Further, the tracking width determination unit 142 sets the path timing tracking width to “large” (step S307).
 RF部1は、無線信号を受信する(ステップS308)。 The RF unit 1 receives a radio signal (step S308).
 RSレプリカ生成部5は、Cell-ID検出部18からCell-IDを取得して、そのCell-ID固有のRSのパターンを有するRSレプリカを生成する(ステップS309)。 The RS replica generation unit 5 acquires the Cell-ID from the Cell-ID detection unit 18 and generates an RS replica having an RS pattern specific to the Cell-ID (step S309).
 レプリカ相関部4は、ピークタイミング保持部12から取得した予測ピークタイミング又は現在のピークタイミングを中心としてパスタイミング検出窓幅の範囲にある部分を抽出する。そして、レプリカ相関部4は、抽出した受信信号とRSレプリカとの相関演算を行うことにより相関関係を取得する(ステップS310)。 The replica correlation unit 4 extracts a portion in the range of the path timing detection window width around the predicted peak timing acquired from the peak timing holding unit 12 or the current peak timing. And the replica correlation part 4 acquires a correlation by performing the correlation calculation with the extracted received signal and RS replica (step S310).
 ピーク検出部7は、IFFT部6により時間領域に変換された受信信号とRSレプリカとの相関関係から相関ピークを検出する(ステップS311)。 The peak detector 7 detects a correlation peak from the correlation between the received signal converted into the time domain by the IFFT unit 6 and the RS replica (step S311).
 ピーク検出部7は、検出した相関ピークが基準ピークタイミングからパスタイミング追従幅の範囲にあるか否かを判定する(ステップS312)。パスタイミング追従幅の範囲にある場合(ステップS312:肯定)、ピーク検出部7は、検出した相関ピークのタイミングをRSのタイミングとして無線フレーム先頭タイミング算出部15へ出力する。無線フレーム先頭タイミング算出部15は、受信したRSのタイミングを用いて、フレームの先頭のタイミングを算出する(ステップS313)。 The peak detector 7 determines whether or not the detected correlation peak is within the range of the path timing tracking width from the reference peak timing (step S312). When it is within the range of the path timing tracking width (step S312: affirmative), the peak detector 7 outputs the detected correlation peak timing to the radio frame head timing calculator 15 as the RS timing. The radio frame start timing calculation unit 15 calculates the start timing of the frame using the received RS timing (step S313).
 これに対して、パスタイミング追従幅の範囲にない場合(ステップS312:否定)、ピーク検出部7は、ステップS314へ進む。 On the other hand, when it is not within the range of the path timing follow-up width (No at Step S312), the peak detector 7 proceeds to Step S314.
 ピーク検出部7は、パスタイミング追従幅の範囲に相関ピークがある場合、相関ピークのタイミングをピークタイミングとしてピークタイミング保持部12へ出力する。また、パスタイミング追従幅の範囲に相関ピークがない場合、ピーク検出部7は、追従を行ったときのパスタイミング追従幅の限界のタイミングをピークタイミングとしてピークタイミング保持部12へ出力する。ピークタイミング保持部12は、保持しているピークタイミングを受信したピークタイミングに更新する(ステップS314)。 When there is a correlation peak in the range of the path timing tracking width, the peak detection unit 7 outputs the correlation peak timing to the peak timing holding unit 12 as the peak timing. If there is no correlation peak in the range of the path timing tracking width, the peak detection unit 7 outputs the limit timing of the path timing tracking width when tracking is performed to the peak timing holding unit 12 as the peak timing. The peak timing holding unit 12 updates the held peak timing to the received peak timing (step S314).
 図8は、実施例2に係る無線通信装置による間欠受信における相関ピークのタイミングの検出を説明するための図である。ここで、図8を参照して、再度、本実施例に係る無線通信装置による間欠受信における相関ピークの検出について説明する。図8は、紙面に向かって右方向に時間が経過していることを表している。 FIG. 8 is a diagram for explaining the detection of the correlation peak timing in the intermittent reception by the wireless communication apparatus according to the second embodiment. Here, with reference to FIG. 8, the detection of the correlation peak in the intermittent reception by the wireless communication apparatus according to the present embodiment will be described again. FIG. 8 shows that time has passed in the right direction toward the page.
 フレーム411は、基地局から送信される信号のフレームを表している。本実施例では、フレーム411は、10msで1フレームである。また、グラフ412は、間欠受信を行うタイミングを示している。グラフ412における紙面に向かって上方向へ上がっている部分が間欠受信のタイミングを表している。また、紙面に向かって下から2番目の列は、装置内の温度が低く、且つ高SNRの場合、すなわちSNRの値が大きい場合の相関ピークの検出処理を表している。さらに、紙面に向かって一番下の列は、装置内の温度が高く、且つ低SNRの場合、すなわちSNRの値が小さい場合の相関ピークの検出処理を表している。 A frame 411 represents a frame of a signal transmitted from the base station. In this embodiment, the frame 411 is one frame in 10 ms. A graph 412 shows the timing of intermittent reception. The portion of the graph 412 that rises upward toward the paper surface represents the intermittent reception timing. Further, the second column from the bottom toward the page represents the correlation peak detection process when the temperature in the apparatus is low and the SNR is high, that is, when the SNR value is large. Further, the bottom row toward the paper surface represents a correlation peak detection process when the temperature in the apparatus is high and the SNR is low, that is, when the SNR value is small.
 相関ピーク検出処理420は、最初の間欠受信における相関ピークの検出を表している。相関ピーク検出処理430は、相関ピーク検出処理420の次の間欠受信における相関ピークの検出を表している。相関ピーク検出処理440は、相関ピーク検出処理430の次の間欠受信における相関ピークの検出を表している。相関ピーク検出処理450は、相関ピーク検出処理440の次の間欠受信における相関ピークの検出を表している。ここでは、相関ピーク検出処理420では、高SNR及び低SNRいずれの場合でも実際のRSのタイミングと一致する位置で相関ピークが検出されたものとする。 Correlation peak detection processing 420 represents detection of a correlation peak in the first intermittent reception. A correlation peak detection process 430 represents detection of a correlation peak in the next intermittent reception of the correlation peak detection process 420. The correlation peak detection process 440 represents detection of a correlation peak in the next intermittent reception after the correlation peak detection process 430. The correlation peak detection process 450 represents detection of a correlation peak in the next intermittent reception after the correlation peak detection process 440. Here, in correlation peak detection processing 420, it is assumed that a correlation peak is detected at a position that matches the actual RS timing in both cases of high SNR and low SNR.
 まず、紙面に向かって下から二番目の列に表される、装置内の温度が低く、且つ高SNRの場合における相関ピーク検出処理について説明する。タイミング421が、相関ピーク検出処理420において検出された、RSのタイミングと一致する正しいピークとなっている相関ピークの位置である。 First, correlation peak detection processing in the case where the temperature in the apparatus is low and the SNR is high, which is represented in the second column from the bottom toward the paper surface, will be described. The timing 421 is the position of the correlation peak that is detected in the correlation peak detection process 420 and is a correct peak that matches the RS timing.
 次に、相関ピーク検出処理430の場合、予測ピークタイミング432は、正しいピークのタイミング431から大きくずれる。しかし、大きな追従幅を有しているので、ピーク検出部7は、追従433のように正しいピークのタイミング431にむけて大きく追従させることができる。そのため、ピーク検出部7は、正しいピークのタイミング431を1回の追従で検出することができる。 Next, in the case of the correlation peak detection processing 430, the predicted peak timing 432 deviates greatly from the correct peak timing 431. However, since the tracking width is large, the peak detection unit 7 can largely follow the correct peak timing 431 like the tracking 433. Therefore, the peak detector 7 can detect the correct peak timing 431 by one follow-up.
 次に、相関ピーク検出処理440の場合、相関ピーク検出処理430の場合と同様の動作となる。すなわち、予測ピークタイミング442は、正しいピークのタイミング441から大きくずれる。しかし、大きな追従幅を有しているので、ピーク検出部7は、追従443のように正しいピークのタイミング441にむけて大きく追従させることができる。そのため、ピーク検出部7は、正しいピークのタイミング441を1回の追従で検出することができる。 Next, in the case of the correlation peak detection process 440, the operation is the same as the case of the correlation peak detection process 430. That is, the predicted peak timing 442 deviates greatly from the correct peak timing 441. However, since the tracking width is large, the peak detection unit 7 can largely follow the correct peak timing 441 like the tracking 443. Therefore, the peak detector 7 can detect the correct peak timing 441 by one follow-up.
 次に、相関ピーク検出処理450の場合、相関ピーク検出処理430の場合と同様の動作となる。すなわち、予測ピークタイミング452は、正しいピークのタイミング451から大きくずれる。しかし、大きな追従幅を有しているので、ピーク検出部7は、追従453のように正しいピークのタイミング451にむけて大きく追従させることができる。そのため、ピーク検出部7は、正しいピークのタイミング451を1回の追従で検出することができる。 Next, in the case of the correlation peak detection process 450, the operation is the same as in the case of the correlation peak detection process 430. That is, the predicted peak timing 452 deviates greatly from the correct peak timing 451. However, since the tracking width is large, the peak detection unit 7 can largely follow the correct peak timing 451 like the tracking 453. Therefore, the peak detector 7 can detect the correct peak timing 451 by one follow-up.
 このように、装置内の温度が低い場合にも、高SNRであれば、大きなパスタイミング追従幅を用いることで、正しいピークのタイミングを迅速に検出することができる。 As described above, even when the temperature in the apparatus is low, if the SNR is high, the correct peak timing can be quickly detected by using a large path timing tracking width.
 次に、紙面に向かって一番下の列に表される、装置内の温度が高く且つ低SNRの場合における相関ピーク検出処理について説明する。タイミング422が、装置内の温度が高く且つ低SNRの場合の相関ピーク検出処理420において検出された、RSのタイミングと一致する正しいピークとなっている相関ピークの位置である。 Next, the correlation peak detection process in the case where the temperature inside the apparatus is high and the SNR is low, which is represented in the bottom row toward the paper surface, will be described. The timing 422 is the position of the correlation peak that is a correct peak that matches the RS timing and is detected in the correlation peak detection process 420 when the temperature in the apparatus is high and the SNR is low.
 次に、相関ピーク検出処理430では、予測ピークタイミング435は、正しいピーク434のタイミングからのズレは小さい。ここで、ピーク434が正しいピークの位置を示している。しかし、雑音にRSピークの波形が埋もれてしまい、ピーク検出部7は、ピーク437をRSを表す相関ピークとして誤検出する。この場合、ピーク検出部7は、検出したピーク437の方向に向けてパスタイミング追従幅の範囲で追従を行う。しかし、パスタイミング追従幅が小さいため、ピーク検出部7は、ピーク437に到達する前の、タイミング436の位置で追従を終了する。 Next, in the correlation peak detection process 430, the predicted peak timing 435 is small from the correct peak 434 timing. Here, the peak 434 indicates the correct peak position. However, the RS peak waveform is buried in the noise, and the peak detector 7 erroneously detects the peak 437 as a correlation peak representing RS. In this case, the peak detection unit 7 performs tracking in the range of the path timing tracking width in the direction of the detected peak 437. However, since the path timing tracking width is small, the peak detector 7 ends the tracking at the position of the timing 436 before reaching the peak 437.
 次に、相関ピーク検出処理440では、予測ピークタイミング444は、正しいピーク434のタイミングからのズレは、相関ピーク検出処理430の場合よりもすこし大きくなる。さらに、この場合も雑音にRSピークの波形が埋もれてしまい、ピーク検出部7は、ピーク446をRSを表す相関ピークとして誤検出する。この場合、ピーク検出部7は、検出したピーク446の方向に向けてパスタイミング追従幅の範囲で追従を行う。しかし、パスタイミング追従幅が小さいため、ピーク検出部7は、ピーク446に到達する前の、タイミング445の位置で追従を終了する。 Next, in the correlation peak detection process 440, the predicted peak timing 444 is slightly shifted from the correct peak 434 timing than in the correlation peak detection process 430. Further, in this case as well, the waveform of the RS peak is buried in the noise, and the peak detector 7 erroneously detects the peak 446 as a correlation peak representing RS. In this case, the peak detection unit 7 performs tracking in the range of the path timing tracking width in the direction of the detected peak 446. However, since the path timing tracking width is small, the peak detector 7 ends the tracking at the position of the timing 445 before reaching the peak 446.
 次に、相関ピーク検出処理450では、図に示すように、予測ピークタイミングの位置が正しいピークの位置からそれほどずれていないので、正しいピーク434がまだ検出窓幅の中に入っている。そのため、ピーク検出部7は、正しいピーク434を相関ピークとして検出することができる。例えば、この状態で、高SNRに移行した場合、ピーク検出部7は、正しいピーク434に向けて適切な追従を行うことができ、いずれ正しいピークの位置を相関ピークとして検出する状態に復帰できる。 Next, in the correlation peak detection processing 450, as shown in the figure, since the position of the predicted peak timing is not so deviated from the correct peak position, the correct peak 434 is still within the detection window width. Therefore, the peak detector 7 can detect the correct peak 434 as a correlation peak. For example, when the state shifts to a high SNR in this state, the peak detector 7 can appropriately follow the correct peak 434, and can return to a state in which the correct peak position is detected as a correlation peak.
 ここで、従来は、無線通信装置では、SNR(Signal Noise Ratio)の大きさに関わらず最大誤差を考慮したパスタイミング追従幅が用いられていた。このため、低SNR時のようなノイズが多くRSの波形の検出が困難な条件下では、基準RSタイミングから大きく離れた場所で、無線通信装置が、誤って波形をRSのレプリカと一致する波形として検出してしまうおそれがある。このような誤検出されたタイミングへの大きな追従が発生する状態が数回の間欠受信で継続した場合、正しいRSのタイミングが検出可能である範囲を超えてしまい、高SNRの状態に戻った後も正しいRSのタイミングに追従できなくなるおそれがあった。 Here, conventionally, in a wireless communication device, a path timing tracking width considering a maximum error is used regardless of the magnitude of SNR (Signal Noise Ratio). Therefore, under conditions where there is a lot of noise, such as at low SNR, and it is difficult to detect the RS waveform, the radio communication device erroneously matches the waveform with the RS replica at a location far away from the reference RS timing. May be detected. When such a state in which a large follow-up to the erroneously detected timing occurs is continued by several intermittent receptions, after the correct RS timing exceeds the detectable range and returns to the high SNR state. May not be able to follow the correct RS timing.
 これに対して、以上に説明したように、本実施例に係る無線通信装置は、装置内の温度が低い場合で、SNRの値が大きい場合には大きく追従し、SNRの値が小さい場合には小さく追従する。このため、本実施例に係る無線通信装置は、SNRの値が大きく検出が正確に行える状態であれば、迅速に正しい相関ピークを検出することができる。また、本実施例に係る無線通信装置は、SNRの値が小さく検出を正確に行うことが困難な状態であれば、誤検出を減らし、正しいピークへ復帰する確率を向上させることができ、正常なパスタイミング追従の実行の確率を向上させることができる。 On the other hand, as described above, the radio communication apparatus according to the present embodiment follows largely when the temperature in the apparatus is low, when the SNR value is large, and when the SNR value is small. Follow small. For this reason, the wireless communication apparatus according to the present embodiment can quickly detect a correct correlation peak as long as the SNR value is large and detection can be performed accurately. In addition, the wireless communication apparatus according to the present embodiment can reduce the false detection and improve the probability of returning to the correct peak if the SNR value is small and it is difficult to perform the detection accurately. The probability of executing accurate path timing tracking can be improved.
 1 RF部
 2 A/D部
 3 FFT部
 4 レプリカ相関部
 5 RSレプリカ生成部
 6 IFFT部
 7 ピーク検出部
 8 RTC
 9 受信回路動作クロック
 10 誤差測定部
 11 ピークタイミング補正部
 12 ピークタイミング保持部
 13 温度測定部
 14 検出範囲決定部
 15 無線フレーム先頭タイミング算出部
 16 信号処理部
 17 SNR測定部
1 RF unit 2 A / D unit 3 FFT unit 4 Replica correlation unit 5 RS replica generation unit 6 IFFT unit 7 Peak detection unit 8 RTC
DESCRIPTION OF SYMBOLS 9 Reception circuit operation clock 10 Error measurement part 11 Peak timing correction part 12 Peak timing holding part 13 Temperature measurement part 14 Detection range determination part 15 Radio frame head timing calculation part 16 Signal processing part 17 SNR measurement part

Claims (12)

  1.  受信回路の動作の同期を取るための既知の同期信号を含む、無線信号を受信する信号受信部と、
     前記同期信号の複製を生成するレプリカ生成部と、
     自装置内部の温度を測定する温度測定部と、
     前記温度測定部により測定された温度を基に、前記信号受信部により受信された前記無線信号における同期信号の位置を検出するための検出範囲を決定する検出範囲決定部と、
     前記無線信号における前記検出範囲決定部により決定された検出範囲において、前記同期信号の複製と前記無線信号との相関演算により求めた相関ピークに基づいて、同期タイミングを検知する同期検知部と、
     前記同期検知部により検知された同期タイミングを基に前記無線信号を処理する信号処理部と
     を備えたことを特徴とする無線通信装置。
    A signal receiving unit for receiving a radio signal, including a known synchronization signal for synchronizing the operation of the receiving circuit;
    A replica generator for generating a replica of the synchronization signal;
    A temperature measuring unit for measuring the temperature inside the device,
    Based on the temperature measured by the temperature measurement unit, a detection range determination unit that determines a detection range for detecting the position of the synchronization signal in the radio signal received by the signal reception unit;
    In the detection range determined by the detection range determination unit in the wireless signal, a synchronization detection unit that detects a synchronization timing based on a correlation peak obtained by a correlation calculation between the replica of the synchronization signal and the wireless signal;
    A wireless communication apparatus comprising: a signal processing unit that processes the wireless signal based on the synchronization timing detected by the synchronization detection unit.
  2.  前記検出範囲決定部は、前記温度測定部により測定された温度を基に、前記同期検知部による相関演算の対象とする範囲を示す検出窓幅を決定し、
     前記同期検知部は、前記無線信号における前記検出範囲決定部により決定された検出窓幅の範囲において、前記レプリカ生成部により生成された前記同期信号の複製と前記無線信号との相関演算により相関関係を求めることを特徴とする請求項1に記載の無線通信装置。
    The detection range determination unit determines a detection window width indicating a range to be subjected to correlation calculation by the synchronization detection unit based on the temperature measured by the temperature measurement unit,
    The synchronization detection unit is configured to correlate by performing a correlation operation between a replica of the synchronization signal generated by the replica generation unit and the radio signal in a detection window width range determined by the detection range determination unit in the radio signal. The wireless communication apparatus according to claim 1, wherein:
  3.  前記検出範囲決定部は、前記温度測定部により測定された温度が所定値以上の場合、前記検出窓幅を第1窓幅とし、前記温度測定部により測定された温度が所定値未満の場合、前記検出窓幅を前記第1窓幅よりも大きい幅を有する第2窓幅とすることを特徴とする請求項2に記載の無線通信装置。 When the temperature measured by the temperature measurement unit is equal to or greater than a predetermined value, the detection range determination unit sets the detection window width as a first window width, and when the temperature measured by the temperature measurement unit is less than a predetermined value, The wireless communication apparatus according to claim 2, wherein the detection window width is a second window width having a width larger than the first window width.
  4.  前記検出範囲決定部は、前記温度測定部により測定された温度が第1所定値以上の場合、前記検出窓幅を第1窓幅とし、前記温度測定部により測定された温度が第1所定値未満であり第2所定値以上の場合、前記検出窓幅を前記第1窓幅よりも大きい幅を有する第2窓幅とし、前記温度測定部により測定された温度が第2所定値未満の場合、前記検出窓幅を前記第2窓幅よりも大きい幅を有する第3窓幅とすることを特徴とする請求項2に記載の無線通信装置。 When the temperature measured by the temperature measurement unit is equal to or greater than a first predetermined value, the detection range determination unit sets the detection window width as a first window width, and the temperature measured by the temperature measurement unit is a first predetermined value. Less than a second predetermined value, the detection window width is a second window width larger than the first window width, and the temperature measured by the temperature measurement unit is less than a second predetermined value The wireless communication apparatus according to claim 2, wherein the detection window width is a third window width having a width larger than the second window width.
  5.  前記検出範囲決定部は、前記温度測定部により測定された温度を基に、前記相関ピークのタイミングを同期タイミングとして用いるか否かの制御に用いられる追従幅を決定し、
     前記同期検知部は、求めた前記相関ピークが前記追従幅決定部により決定された追従幅の範囲内に存在すれば、該相関ピークのタイミングを前記無線信号における同期信号のタイミングとして検知することを特徴とする請求項1~4のいずれか一つに記載の無線通信装置。
    The detection range determination unit determines a tracking width used for controlling whether or not to use the timing of the correlation peak as a synchronization timing based on the temperature measured by the temperature measurement unit,
    The synchronization detection unit detects the timing of the correlation peak as the timing of the synchronization signal in the radio signal if the obtained correlation peak is within the range of the tracking width determined by the tracking width determination unit. The wireless communication device according to any one of claims 1 to 4, wherein the wireless communication device is characterized in that:
  6.  前記検出範囲決定部は、前記温度測定部により測定された温度が所定値以上の場合、前記追従幅を第1追従幅とし、前記温度測定部により測定された温度が所定値未満の場合、前記追従幅を前記第1追従幅よりも大きい幅を有する第2追従幅とすることを特徴とする請求項5に記載の無線通信装置。 When the temperature measured by the temperature measurement unit is equal to or greater than a predetermined value, the detection range determination unit sets the tracking width as a first tracking width, and when the temperature measured by the temperature measurement unit is less than a predetermined value, 6. The wireless communication apparatus according to claim 5, wherein the tracking width is a second tracking width having a width larger than the first tracking width.
  7.  SNRを検出するSNR測定部をさらに備え、
     前記検出範囲決定部は、前記温度測定部により測定された温度及び前記SNR測定部により測定されたSNRの値を基に、前記同期検知部による相関演算の対象とする範囲を示す検出窓幅及び前記相関ピークのタイミングを同期タイミングとして用いるか否かの制御に用いられる追従幅を決定し、
     前記同期検知部は、求めた前記相関ピークが前記検出範囲決定部により決定された追従幅の間に存在すれば、該相関ピークのタイミングを前記無線信号における同期信号のタイミングとして検知することを特徴とする請求項2に記載の無線通信装置。
    An SNR measuring unit for detecting the SNR;
    The detection range determination unit, based on the temperature measured by the temperature measurement unit and the SNR value measured by the SNR measurement unit, a detection window width indicating a range subject to correlation calculation by the synchronization detection unit, Determine the tracking width used for controlling whether to use the timing of the correlation peak as the synchronization timing,
    The synchronization detection unit detects the timing of the correlation peak as the timing of the synchronization signal in the radio signal if the calculated correlation peak exists between the tracking widths determined by the detection range determination unit. The wireless communication apparatus according to claim 2.
  8.  前記検出範囲決定部は、前記温度測定部により測定された温度が所定の温度以上の場合、及び前記温度測定部により測定された温度が所定の温度未満であり、前記SNR測定部により検出されたSNRの値が所定のSNR値未満の場合、前記検出窓幅を第1窓幅とし、前記追従幅を第1追従幅とし、前記温度測定部により測定された温度が所定の温度未満であり、前記SNR検出部により検出されたSNRの値が所定のSNR値以上の場合、前記検出窓幅を前記第1窓幅よりも大きい第2窓幅とし、前記追従幅を第1追従幅よりも大きい第2追従幅とすることを特徴とする請求項7に記載の無線通信装置。 The detection range determination unit is detected by the SNR measurement unit when the temperature measured by the temperature measurement unit is equal to or higher than a predetermined temperature, and the temperature measured by the temperature measurement unit is lower than a predetermined temperature. When the SNR value is less than a predetermined SNR value, the detection window width is the first window width, the tracking width is the first tracking width, and the temperature measured by the temperature measurement unit is less than the predetermined temperature, When the SNR value detected by the SNR detector is equal to or greater than a predetermined SNR value, the detection window width is set to a second window width larger than the first window width, and the follow width is larger than the first follow width. The wireless communication apparatus according to claim 7, wherein the second tracking width is set.
  9.  リアルタイムクロックと受信回路動作クロックとの動作誤差を基に前記信号受信部が受信した信号における前記同期信号の検出の基準となる基準タイミングを求める基準取得部をさらに備え、
     前記同期検知部は、前記無線信号における前記基準取得部により求められた前記基準タイミングを中心とする前記検出範囲決定部により決定された検出窓幅の範囲において、前記レプリカ生成部により生成された前記同期信号の複製と前記無線信号との相関演算により相関関係を求めることを特徴とする請求項2に記載の無線通信装置。
    A reference acquisition unit for obtaining a reference timing serving as a reference for detection of the synchronization signal in the signal received by the signal reception unit based on an operation error between the real-time clock and the reception circuit operation clock;
    The synchronization detection unit is generated by the replica generation unit in a detection window width range determined by the detection range determination unit centered on the reference timing obtained by the reference acquisition unit in the radio signal. The wireless communication apparatus according to claim 2, wherein a correlation is obtained by a correlation operation between a replica of a synchronization signal and the wireless signal.
  10.  リアルタイムクロックと受信回路動作クロックとの動作誤差を基に前記信号受信部が受信した信号における前記同期信号の検出の基準となる基準タイミングを求める基準取得部をさらに備え、
     前記同期検知部は、求めた前記相関ピークが前記基準タイミングから前記追従幅までの範囲に存在すれば、該相関ピークのタイミングを前記受信信号における同期信号のタイミングとして検出することを特徴とする請求項5に記載の無線通信装置。
    A reference acquisition unit for obtaining a reference timing serving as a reference for detection of the synchronization signal in the signal received by the signal reception unit based on an operation error between the real-time clock and the reception circuit operation clock;
    The synchronization detection unit detects the timing of the correlation peak as the timing of the synchronization signal in the received signal if the obtained correlation peak exists in a range from the reference timing to the tracking width. Item 6. The wireless communication device according to Item 5.
  11.  前記温度測定部は、前記同期検知部の近傍の温度を測定対象とすることを特徴とする請求項1に記載の無線通信装置。 The wireless communication device according to claim 1, wherein the temperature measuring unit measures a temperature in the vicinity of the synchronization detecting unit.
  12.  受信回路の動作の同期を取るための固有の波形形状を有する同期信号を含む、無線信号を受信し、
     前記同期信号の複製を生成し、
     前記無線通信装置内部の温度を測定し、
     測定させた温度を基に、受信した前記無線信号における同期信号の位置を検出するための検出範囲を決定し、
     前記無線信号における決定した検出範囲において、前記同期信号の複製と前記無線信号との相関演算により求めた相関ピークに基づいて同期タイミングを検知し、
     検知した同期タイミングを基に前記無線信号を処理する
     処理を無線通信装置に実行させることを特徴とする無線通信装置制御方法。
    Receiving a radio signal including a synchronization signal having a unique waveform shape for synchronizing the operation of the receiving circuit;
    Generating a replica of the synchronization signal;
    Measuring the temperature inside the wireless communication device;
    Based on the measured temperature, determine a detection range for detecting the position of the synchronization signal in the received radio signal,
    In the detection range determined in the radio signal, the synchronization timing is detected based on the correlation peak obtained by the correlation calculation between the replica of the synchronization signal and the radio signal,
    A wireless communication apparatus control method, comprising: causing a wireless communication apparatus to execute a process of processing the wireless signal based on a detected synchronization timing.
PCT/JP2011/068630 2011-08-17 2011-08-17 Wireless communication apparatus and method for controlling wireless apparatus WO2013024538A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2011/068630 WO2013024538A1 (en) 2011-08-17 2011-08-17 Wireless communication apparatus and method for controlling wireless apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2011/068630 WO2013024538A1 (en) 2011-08-17 2011-08-17 Wireless communication apparatus and method for controlling wireless apparatus

Publications (1)

Publication Number Publication Date
WO2013024538A1 true WO2013024538A1 (en) 2013-02-21

Family

ID=47714881

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/068630 WO2013024538A1 (en) 2011-08-17 2011-08-17 Wireless communication apparatus and method for controlling wireless apparatus

Country Status (1)

Country Link
WO (1) WO2013024538A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09238092A (en) * 1996-02-29 1997-09-09 Canon Inc Radio communication system
JPH10209952A (en) * 1997-01-24 1998-08-07 Nec Ic Microcomput Syst Ltd Intermittent receiving system for mobile communication device
JPH1174876A (en) * 1997-08-27 1999-03-16 Mitsubishi Electric Corp Frame synchronization controller
JP2002141894A (en) * 2000-10-31 2002-05-17 Toshiba Corp Reception timing controller
JP2002368729A (en) * 2001-06-05 2002-12-20 Toshiba Corp Wireless communication terminal

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09238092A (en) * 1996-02-29 1997-09-09 Canon Inc Radio communication system
JPH10209952A (en) * 1997-01-24 1998-08-07 Nec Ic Microcomput Syst Ltd Intermittent receiving system for mobile communication device
JPH1174876A (en) * 1997-08-27 1999-03-16 Mitsubishi Electric Corp Frame synchronization controller
JP2002141894A (en) * 2000-10-31 2002-05-17 Toshiba Corp Reception timing controller
JP2002368729A (en) * 2001-06-05 2002-12-20 Toshiba Corp Wireless communication terminal

Similar Documents

Publication Publication Date Title
US9277519B1 (en) Method for performing mobile communications and mobile terminal device
US9526050B2 (en) Method and apparatus for neighbor cell tracking
US8300623B2 (en) Frame synchronization method of OFDM communication system and receiver therefor
US9363004B2 (en) Apparatus and associated methods for switching between antennas in a multi-antenna receiver
CN102209052B (en) Method and device for carrying out frequency offset compensation on random access signals
WO2018126756A1 (en) Information synchronization method and device
JPWO2011065033A1 (en) Mobile radio terminal
GB2491001A (en) A wireless communication device calibrates a sleep clock with a fast clock and determines a quality of the calibration
WO2018126633A1 (en) Methods and devices for facilitating discontinuous reception
EP3041298A1 (en) Wireless base-station device and transmission-power-level determination method
JP2011146858A (en) Synchronizing signal generator and base station device
JP5772351B2 (en) Apparatus, method, and terminal apparatus for performing synchronization detection in time division duplex system
WO2013024538A1 (en) Wireless communication apparatus and method for controlling wireless apparatus
CN108512570B (en) Signal synchronization capturing method, system, computer device and readable storage medium
CN108243436B (en) Time offset calibration method and device and mobile terminal
CN108738124B (en) Timing synchronization method and device
JP2021005780A (en) Signal processing device and synchronization signal detection method thereof
JP2001119368A (en) Receiver, receiving method and medium
CN111294900B (en) Paging receiving method and device, storage medium and terminal
US8081976B2 (en) Mobile radio terminal and base station search method
JP5282820B2 (en) Wireless communication system, mobile station, and wireless communication method
CN112399552B (en) Synchronization method, user equipment and computer-readable storage medium
CN106332263B (en) Terminal pattern switching method and terminal
WO2024051583A1 (en) Information determination method, low-power-consumption signal receiving power measurement method and device, and terminal
JP7007975B2 (en) Measuring equipment, measuring methods and programs

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11870881

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11870881

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP