WO2013023551A1 - 上行功率控制的方法、用户设备和基站 - Google Patents

上行功率控制的方法、用户设备和基站 Download PDF

Info

Publication number
WO2013023551A1
WO2013023551A1 PCT/CN2012/079914 CN2012079914W WO2013023551A1 WO 2013023551 A1 WO2013023551 A1 WO 2013023551A1 CN 2012079914 W CN2012079914 W CN 2012079914W WO 2013023551 A1 WO2013023551 A1 WO 2013023551A1
Authority
WO
WIPO (PCT)
Prior art keywords
reference signal
information
csi
path loss
rsrp
Prior art date
Application number
PCT/CN2012/079914
Other languages
English (en)
French (fr)
Inventor
刘昆鹏
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to EP12823417.6A priority Critical patent/EP2747494B1/en
Priority to EP18202454.7A priority patent/EP3512264B1/en
Publication of WO2013023551A1 publication Critical patent/WO2013023551A1/zh
Priority to US14/183,101 priority patent/US9578603B2/en
Priority to US15/399,424 priority patent/US10484949B2/en
Priority to US16/669,171 priority patent/US11470558B2/en

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/06TPC algorithms
    • H04W52/14Separate analysis of uplink or downlink
    • H04W52/146Uplink power control
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0032Distributed allocation, i.e. involving a plurality of allocating devices, each making partial allocation
    • H04L5/0035Resource allocation in a cooperative multipoint environment
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0048Allocation of pilot signals, i.e. of signals known to the receiver
    • H04L5/0051Allocation of pilot signals, i.e. of signals known to the receiver of dedicated pilots, i.e. pilots destined for a single user or terminal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/18TPC being performed according to specific parameters
    • H04W52/24TPC being performed according to specific parameters using SIR [Signal to Interference Ratio] or other wireless path parameters
    • H04W52/242TPC being performed according to specific parameters using SIR [Signal to Interference Ratio] or other wireless path parameters taking into account path loss
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/18TPC being performed according to specific parameters
    • H04W52/24TPC being performed according to specific parameters using SIR [Signal to Interference Ratio] or other wireless path parameters
    • H04W52/245TPC being performed according to specific parameters using SIR [Signal to Interference Ratio] or other wireless path parameters taking into account received signal strength
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/23Control channels or signalling for resource management in the downlink direction of a wireless link, i.e. towards a terminal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0014Three-dimensional division
    • H04L5/0023Time-frequency-space
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/30TPC using constraints in the total amount of available transmission power
    • H04W52/32TPC of broadcast or control channels
    • H04W52/325Power control of control or pilot channels
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/38TPC being performed in particular situations
    • H04W52/40TPC being performed in particular situations during macro-diversity or soft handoff
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W88/00Devices specially adapted for wireless communication networks, e.g. terminals, base stations or access point devices
    • H04W88/08Access point devices
    • H04W88/085Access point devices with remote components

Definitions

  • Embodiments of the present invention relate to the field of communications technologies, and, more particularly, to a method, user equipment, and base station for uplink power control. Background of the invention
  • CoMP Coordinated Multi-Point
  • scenario 4 is in a macro station.
  • the transmission points including the Macro Site and the Remote Radio Head (RRH) in the area share the same 'Cell IDentity', which is also called Distributed Antenna System (DAS). , Distributed Antenna System ).
  • DAS Distributed Antenna System
  • the received power is approximately at the same level to avoid inter-user interference due to the near-far effect, and usually the UE Use uplink power control.
  • LTE Long Term Evolution
  • PUSCH Physical Uplink Shared Channel
  • PUCCH Physical Uplink Control Channel
  • SRS Sounding Reference Signal
  • the transmission power of Signal is determined according to the path loss (PL, Path Loss) estimated by the UE side, which is specifically as follows (1):
  • the ReferenceSignalPower is a reference signal power defined by the base station, and the UE obtains the reference signal power by cell-specific high-level signaling; the RSRP is measured by the UE in a common reference signal (CRS, Common Reference Signal) antenna port PortO or Port1. Reference Signal Receiving Power.
  • CRS Common Reference Signal
  • the path loss is measured based on CRS, wherein CRS PortO and Portl can be virtually mapped to all RRH antennas for transmission, and the user equipment can receive CRS from all RRH transmissions.
  • RSRP is a superposition of the energy of the measurement reference signals received by the UE from each RRH, as shown in the following equation (2):
  • the road loss can be obtained as:
  • is the transmit power of each RRH
  • 3 ⁇ 4 is the path loss of each RRH to the user equipment. It can be seen that since the received power is the signal energy superposition from different RRHs, the path loss based on the CRS measurement using the above formula (3) is a nonlinear superposition of the path loss of all RRHs to the user equipment.
  • the actual uplink destination RRH is not all RRHs, but a collection of one RRH or multiple RRHs. At this time, the actual path loss compensation for the target RRH does not match the measured path loss, resulting in inaccurate calculation of the uplink transmit power, which in turn affects the performance of the uplink transmission. Summary of the invention
  • Embodiments of the present invention provide a method, user equipment, and a base station for uplink power control, which are capable of Improve the performance of uplink power control.
  • a method for uplink power control including: receiving configuration information of a channel state information reference signal CSI-RS from a base station, where configuration information of the CSI-RS includes reference signal port information and reference signal power information; The configuration information of the RS measures the path loss for the uplink power control.
  • a method for uplink power control including: generating configuration information of a channel state information reference signal CSI-RS, where configuration information of the CSI-RS includes reference signal port information and reference signal power information; The configuration information of the CSI-RS is transmitted, so that the user equipment measures the path loss for the uplink power control based on the configuration information of the CSI-RS.
  • CSI-RS channel state information reference signal
  • a user equipment including: a receiving unit, configured to receive configuration information of a channel state information reference signal CSI-RS from a base station, where configuration information of the CSI-RS includes reference signal port information and reference signal power information And a measuring unit, configured to measure a path loss for performing uplink power control based on CSI-RS configuration information.
  • a receiving unit configured to receive configuration information of a channel state information reference signal CSI-RS from a base station, where configuration information of the CSI-RS includes reference signal port information and reference signal power information
  • a measuring unit configured to measure a path loss for performing uplink power control based on CSI-RS configuration information.
  • a base station including: a generating unit, configured to generate configuration information of a channel state information reference signal CSI-RS, where configuration information of the CSI-RS includes reference signal port information and reference signal power information; And configured to send configuration information of the CSI-RS to the user equipment, so that the user equipment measures the path loss for the uplink power control based on the configuration information of the CSI-RS.
  • a generating unit configured to generate configuration information of a channel state information reference signal CSI-RS, where configuration information of the CSI-RS includes reference signal port information and reference signal power information
  • CSI-RS includes reference signal port information and reference signal power information
  • the CSI-RS is used for path loss measurement.
  • the CSI-RS can be specific to the base station, so the path loss measurement can be performed for the target base station of the uplink transmission, so that the path loss compensation and the actual path loss are performed. Matching, thereby improving the performance of the uplink power control.
  • FIG. 1 is a flow chart of a method of uplink power control in accordance with an embodiment of the present invention.
  • FIG. 2 is a flow chart of a method of uplink power control according to another embodiment of the present invention.
  • Fig. 3 is a schematic diagram showing an example of a CSI-RS pattern according to an embodiment of the present invention.
  • FIG. 4 is a block diagram of a user equipment in accordance with an embodiment of the present invention.
  • FIG. 5 is a block diagram of a base station in accordance with one embodiment of the present invention. Mode for carrying out the invention
  • GSM Global System of Mobile Communication
  • CDMA Code Division Multiple Access
  • WCDMA Wideband Code Division Multiple Access
  • GPRS General Packet Radio Service
  • LTE Long Term Evolution
  • LTE-A Long Term Evolution
  • a user equipment which may also be called a mobile terminal (Mobile Terminal), a mobile user equipment, etc., may communicate with one or more core networks via a radio access network (eg, RAN, Radio Access Network).
  • the user equipment may be a mobile phone (or "cellular" phone) and a computer with a mobile terminal, for example, a portable, pocket, handheld, computer built-in or in-vehicle mobile device, and a wireless access network Exchange language and/or data.
  • the base station may be a base station (BTS, Base Transceiver Station) in GSM or CDMA, or may be a base station (NodeB) in WCDMA, or may be an evolution in LTE or LTE-A.
  • BTS Base Transceiver Station
  • NodeB base station
  • a type of base station (eNB or e-NodeB, evolutional Node B) is not limited in the present invention.
  • FIG. 1 is a flow chart of a method of uplink power control in accordance with an embodiment of the present invention.
  • the method of Figure 1 is performed by a User Equipment UE.
  • Receive configuration information of a CSI-RS (Channel State Information Reference Signal), where the configuration information of the CSI-RS includes reference signal port information and reference signal power information.
  • CSI-RS Channel State Information Reference Signal
  • the CSI-RS configuration information sent by the base station may include corresponding antenna port information of the target base station (eg, RRH) that needs to perform uplink transmission, that is, reference signal port information, to indicate that the need is performed. Measured antenna port.
  • RRHs can be configured with CSI-RSs of different antenna ports. For example, RRH1 can be configured with CSI-RSs of 2 antenna ports, and RRH2 can be configured with CSI-RSs of 8 antenna ports.
  • the reference signal port information may comprise a set consisting of path loss measurement indications for the respective antenna ports.
  • the reference signal port information can be an explicit indication for each antenna port to indicate whether or not to perform a path loss measurement based on the CSI-RS on the antenna port.
  • the set of path loss measurement indications may include a reference signal port bitmap of a CSI-RS configuration of 1 antenna port, or a cascade of reference signal port bitmaps of a CSI-RS configuration including all antenna port numbers.
  • the reference signal port information may include a set consisting of RSRP measurement indications of the respective antenna ports and a subset selection indication of the set.
  • the path loss measurement based on the CSI-RS may be implicitly indicated by the RSRP measurement indication and the corresponding subset selection indication jointly on the antenna port.
  • the set of RSRP measurement indications may include a reference signal port bitmap of a CSI-RS configuration of 1 antenna port, or a cascade of reference signal port bitmaps of CSI-RS configurations including all antenna port numbers.
  • the reference signal port information may include a set of RSRP measurement indications of the respective antenna ports and CSI-RS muting information configured by the base station.
  • RSRP measurement indication the RSRP measurement indication
  • silence information whether it is on the antenna port.
  • Path loss measurement based on CSI-RS.
  • the subset selection indication of the collection can include an indication bitmap corresponding to the collection.
  • the foregoing reference signal port information and reference signal power information may be received through high layer signaling or dynamic signaling.
  • the reference signal port information and the reference signal power information may be transmitted together or separately.
  • the measurement operation may be performed according to the identifier bit.
  • the identifier bit indicates that the reference signal port information is used for channel state information (CSI) measurement
  • channel state information on the antenna port represented by the reference signal port information such as a precoding indication (PMI, is measured).
  • PMI precoding indication
  • Precoding Matrix Index rank indication
  • CQI Channel Quality Information
  • the flag indicates that the reference signal port information is used for performing RSRP measurement, performing a process of measuring RSRP of the CSI-RS on the determined antenna port and determining a path loss according to the measured RSRP and reference signal power information process.
  • the identifier bit may be transmitted through high layer signaling or dynamic signaling, for example, may be transmitted together with the reference signal port information and the reference signal power information, or separately.
  • the flag does not need to correspond to the reference signal port information, for example, one flag may represent one or more reference signal port information, and may also indicate a corresponding indication of one or more ports in a reference signal port information. effect.
  • various indications in the foregoing configuration information may be for one or more antenna ports.
  • the antenna port for measurement based on the reference signal port information is a plurality of antenna ports
  • the path loss of each antenna port is determined, and according to each antenna port
  • the road loss is comprehensively determined for the path loss used for uplink power control.
  • the reference signal power information may include a transmit power of the CSI-RS, or a difference between a transmit power of the CSI-RS and a transmit power of the CRS.
  • the units of the above various transmission powers or differences are db.
  • the path loss on an antenna port is equal to the transmit power of the CSI-RS minus the RSRP measured at the antenna port.
  • the reference signal power information includes a difference between a transmit power of the CSI-RS and a transmit power of the CRS
  • a path loss on an antenna port is equal to a sum of the difference and a transmit power of the CRS minus the antenna.
  • the unit of the path loss is db.
  • the CSI-RS is used for path loss measurement.
  • the CSI-RS can be specific to the base station, so the path loss measurement can be performed for the target base station of the uplink transmission, so that the path loss compensation and the actual path loss are performed. Matching, thereby improving the performance of the uplink power control.
  • FIG. 2 is a flow chart of a method of uplink power control according to another embodiment of the present invention.
  • the method of Fig. 2 is performed by a base station (e.g., an eNodeB of a serving cell of a UE) and corresponds to the method of Fig. 1, and thus the duplicated description is appropriately omitted.
  • a base station e.g., an eNodeB of a serving cell of a UE
  • 201 Generate configuration information of a CSI-RS, where the configuration information of the CSI-RS includes reference signal port information and reference signal power information.
  • the reference signal port information may comprise a set consisting of path loss measurement indications for the respective antenna ports.
  • the reference signal port information can be an explicit indication for each antenna port to indicate whether or not to perform a path loss measurement based on the CSI-RS on the antenna port.
  • the set of path loss measurement indications may include a cascade of reference signal port bitmaps of CSI-RS configurations for all antenna port numbers, and other suitable indication methods may be used.
  • the reference signal port information may include a set consisting of RSRP measurement indications of the respective antenna ports and a subset selection indication of the set.
  • the path loss measurement based on the CSI-RS may be implicitly indicated by the measurement indication of the RSRP and the corresponding subset selection indication jointly on the antenna port.
  • the set of RSRP measurement indications may include 1 antenna port
  • the reference signal port bitmap of the CSI-RS configuration, or the cascading of the reference signal port bitmap of the CSI-RS configuration including the number of all antenna ports, may also use other suitable indication methods.
  • the reference signal port information may include a set of RSRP measurement indications of the respective antenna ports and CSI-RS muting information configured by the base station.
  • the subset selection indication of the above set may include an indication bitmap corresponding to the collection, and other suitable indication manners may be employed.
  • the configuration information of the CSI-RS may be sent to the user equipment by using high layer signaling or dynamic signaling.
  • the various information included in the configuration information can be sent together or separately.
  • the reference signal port information and the reference signal power information do not need to be a pair.
  • the configuration information includes the identification bit
  • the identification bit may be transmitted through high layer signaling or dynamic signaling, for example, may be transmitted together with the reference signal port information and the reference signal power information, or separately.
  • the flag does not need to correspond to the reference signal port information.
  • the CSI-RS is used for path loss measurement.
  • the CSI-RS can be specific to the base station, so the path loss measurement can be performed for the target base station of the uplink transmission, so that the path loss compensation and the actual path loss are performed. Matching, thereby improving the performance of the uplink power control.
  • the UE represents the user equipment
  • the eNodeB represents the serving base station of the UE, such as a macro base station.
  • Embodiment 1
  • the UE receives the CSI-RS configuration information sent by the eNodeB.
  • the configuration information includes reference signal port information and reference signal power information.
  • the reference signal port information is an explicit indication, for example, a bitmap format may be used.
  • Table 1 is an example of a CSI-RS configuration table. As shown in Table 1, there are 32 CSI-RS configurations for one antenna port, and a 32-bit bitmap can be used. Each bit of the bitmap indicates whether the corresponding antenna port performs path loss measurement. For example, bit 1 indicates that path loss measurement is required, and bit 0 indicates that path loss measurement is not performed, and vice versa.
  • the mod in Table 1 is the modulo operation.
  • the bitmap "1010000000000000000000000000” indicates that the UE measures the RSRP and calculates the corresponding path loss for the first antenna port corresponding to the first CSI-RS pattern in Table 1 (assuming the antenna port is CSI-RS1).
  • the PL lo simultaneously measures the RSRP of the corresponding first antenna port corresponding to the third CSI-RS pattern in Table 1 (assuming that the antenna port is CSI-RS2) and calculates the corresponding path loss PL 2 .
  • the UE then integrates the path losses PLi and PL 2 measured at the two antenna ports to calculate the path loss PL ta et for the uplink power control. A more or lesser number of antenna ports are measured in a similar manner.
  • the path loss PL target for uplink power control can be calculated according to the following equation (4).
  • the corresponding CSI-RS can be divided into several 1 antenna port CSI-RSs, and one of the 1 antenna ports CSI-RS is selected.
  • the corresponding bit indicates whether the CSI-RS is used to measure the path loss.
  • Fig. 3 is a schematic diagram showing an example of a CSI-RS pattern according to an embodiment of the present invention.
  • the example of Figure 3 corresponds to Table 1 above.
  • Table 1 For the sake of brevity, only the pattern of the 1 antenna port CSI-RS configuration and the 8 antenna port CSI-RS configuration is shown in FIG. 3, and the patterns of the other antenna port numbers are similar.
  • the shaded blocks in Figure 3 represent the resources that can be used for CSI-RS, corresponding to the individual CSI-RS configurations in Table 1, respectively.
  • the eNodeB requires the UE to measure the path loss information of an RRH, and the RRH corresponds to a CSI-RS configured with an 8-antenna port, and the time-frequency position is the second slot (slot) configured as an 8-antenna port in Table 1. (9, 5), representing the 9th subcarrier and the 5th OFDM of the second time slot (Orthogonal Frequency Division Multiplexing)
  • the 8-antenna port CSI-RS whose symbol is the starting point, that is, the CSI-RS of the broken line frame B2 in FIG.
  • the CSI-RS in the dashed box B2 can be divided into four CSI-RSs of one antenna port, such as (0, 1), (4, 5), (2, 3), (6, 7).
  • the eNodeB may select one of the CSI-RSs of the 1 antenna port corresponding to (0, 1), that is, the CSI-RS in the dotted box B1.
  • the CSI-RS in the dashed box B1 is notified to the UE in the form of corresponding bits in the bitmap, that is, the fifth bit of the bitmap is set to 1.
  • the corresponding bit position of the other CRI-RS of the four 1-antenna port CRI-RSs may also be selected to indicate the measurement indication of all ports of the RRH.
  • the UE measures the RSRP of the corresponding antenna port according to the reference signal port information set as above, and calculates the path loss of the corresponding RRH according to the corresponding power value included in the reference signal power information.
  • the reference signal power information is information related to the CSI-RS power, which is assumed to be represented as Pd.
  • the reference signal power information may include a difference between the transmit power of the CSI-RS and the CRS, and may also include the absolute power of the CSI-RS, that is, the transmit power of the CSI-RS.
  • the ReferenceSignalPower is the transmit power of the CRS signal, which can be sent to the UE by the eNodeB in the configuration information of the CRS.
  • RSRP1 is the RSRP measured on antenna port CSI-RS1
  • RSRP2 is the RSRP measured on antenna port CSI-RS2.
  • the path loss PLi and PL 2 of the two antenna ports are calculated according to the following equation (6):
  • the final result can be obtained according to the above formula (4).
  • the path loss PL target for the uplink power control is targeted and improves the performance of the uplink power control.
  • the embodiment of the present invention is not limited thereto, and the path loss PL target for uplink power control may also be obtained in other manners.
  • the reference signal port information indicates that the antenna port to be measured includes multiple antenna ports
  • the RSRP measured on one or more subsets of the plurality of antenna ports is averaged (including a weighted average), and then A path loss corresponding to one or more of the subsets is obtained according to the RSRP after the average processing, and a path loss PL ta et for uplink power control is obtained according to the corresponding path loss.
  • RRHs that need to perform uplink transmission are RRH1 and RRH2, RRH1 corresponds to a 2-port CSI-RS configuration, and RRH2 corresponds to an 8-port CSI-RS configuration.
  • the RSRP measured on the two ports of RRH1 can be averaged to obtain the average RSRP1.
  • the RSPR measured on the eight ports corresponding to RRH2 is averaged to obtain the average RSRP2.
  • RSRP1 and RSPR2 are substituted into the above formula (5) or (6) to obtain corresponding path losses PLi and PL 2 , and then the path loss PL target for uplink power control is finally obtained according to the above formula (4).
  • P in the above formula (4) represents the path loss of each of the plurality of antenna ports.
  • the above method may be similarly used to average the RSRP measured on some or all of the ports.
  • the path loss PL target for uplink power control is obtained.
  • the RSRP measured on multiple antenna ports can be averaged to improve the performance of the uplink power control. Moreover, there is less reference signal power information that needs to be transmitted, and only one reference signal power information needs to be transmitted for each subset.
  • the second embodiment differs from the first embodiment in that the reference signal port information is cascaded with reference signal port bitmaps of CSI-RS configurations of all port numbers.
  • Table 1 there are 32 CSI-RS configurations for antenna ports, 32 CSI-RS configurations for 2 antenna ports, and 16 CSI-RS configurations for 4-antenna ports.
  • CSI-RS configuration for 8 antenna ports. There are eight. Therefore, a total of 88 ( 32+32+16+8) bits of the cascaded bitmap b0 bl b2 b3 b4 b5 b6 b7....b31b32 b33 b34 b35 b36 b37 b38 b39....b63 b64 b65.
  • bit 1 indicates that path loss measurement is required, and bit 0 indicates that path loss measurement is not performed, and vice versa.
  • the path loss PL target finally used for uplink power control can be obtained according to the above formulas (4)-(6).
  • the PL toget obtained in this way is targeted and improves the performance of the uplink power control.
  • the third embodiment can use the indication mode and the path loss measurement mode of the first embodiment and the second embodiment.
  • the difference is that the reference signal port information of the third embodiment can further include the identifier bit.
  • the flag bit indicates the role of the reference signal port information, and the UE performs a measurement operation according to the flag bit.
  • the flag bit 1 indicates that the path loss measurement is performed on the corresponding antenna port
  • the flag bit 0 indicates that the reference signal port information is used for CSI measurement.
  • the UE measures channel state information on the antenna port indicated by the reference signal port information, such as a PMI (Precoding Matrix Index), a rank indication (RI, Rank Index), and channel quality information ( CQI, Channel Quality Information) and so on.
  • the flag is 1, the phase The RSRP is measured on the antenna port and the path loss is determined based on the measured RSRP and reference signal power information.
  • the path loss PL target finally used for uplink power control can be obtained according to the above formulas (4)-(6).
  • the PL target thus obtained is targeted and improves the performance of the uplink power control.
  • CSI-RS can still be used for CSI feedback, which increases the flexibility of the application.
  • the reference signal port information is in an explicitly indicated manner. Implicit indications are used in the following embodiments, such as combining two or more indications to indicate whether path loss measurements are made based on CSI-RS on the corresponding antenna port.
  • the reference signal port information may include a first group of CSI-RS configuration information similar to the bitmap or bitmap cascade in the above embodiments 1 to 3, but the bitmap or bitmap cascade indicates UE measurement.
  • the bitmap "1010000000000000000000000000” indicates that the UE measures RSRP for the first antenna port corresponding to the first CSI-RS pattern in Table 1, assuming that the antenna port is CSI-RS1. At the same time, the UE measures RSRP in the first antenna port corresponding to the third CSI-RS pattern in Table 1, assuming that the antenna port is CSI-RS2.
  • the first set of CSI-RS configuration information includes a set of RSRP measurement indications for each antenna port.
  • the reference signal port information may further include a second group of CSI-RS configuration information for jointly indicating an antenna port for performing path loss measurement with the first group of CSI-RS configuration information.
  • the second group of CSI-RS configuration information may be a subset selection indication of the set of RSRP measurement indications, for example, an indication bitmap corresponding to the set.
  • M 3 as an example, assume that the ⁇ CSI-RS(i) ⁇ set is ⁇ CSI-RS(1), CSI-RS(6), CSI-RS(9) ⁇ , and is used to indicate the path loss measurement.
  • the bitmap of CSI-RS is 011, indicating that the subset ⁇ CSI_RS(6), CSI_RS(9) ⁇ is selected for path loss measurement.
  • the reference signal power information configures Pd6 and Pd9.
  • Pd6 is the CSI-RS transmit power of the CSI-RS(6) antenna port
  • Pd9 is the CSI-RS transmit power of the CSI-RS(9) antenna port
  • Pd6 is the CSI-RS transmit of the CSI-RS(6) antenna port
  • Pd9 is the difference between the CSI-RS transmit power of the CSI-RS(9) antenna port and the CRS transmit power.
  • the PL target for uplink power control can be similarly calculated according to the above formulas (4) - (6). The PL target thus obtained is targeted, improves the performance of uplink power control, and can support RSRP measurement of multiple antenna ports.
  • Embodiment 5 For other indication manners and path loss measurement methods of the fourth embodiment, reference may be made to the first embodiment to the third embodiment, and therefore no further details are provided. Embodiment 5
  • the fifth embodiment is different from the fourth embodiment in that the second group of CSI-RS configuration information can utilize CSI-RS muting information configured by the base station.
  • the first set of CSI-RS configuration information also represents a set of RSRP measurement indications for each antenna port.
  • the CSI-RS muting information is 16-bit bitmap information.
  • the first group of CSI-RS configuration information is configured with 1 antenna port CSI-RS, if a certain antenna port CSI-RS is selected for RSRP measurement, and the CSI-RS of the 4 antenna port corresponding to the muting bit is The CSI-RS of the first antenna port indicated by the first group has an intersection, and the UE performs path loss measurement based on the CSI-RS of the one antenna port.
  • the antenna port at the corresponding position of (9, 5) is selected for RSRP measurement, and
  • the antenna port of the corresponding position of (9, 2) is selected for RSRP measurement.
  • Two RRH above configuration, the touch d 2 Q, time-frequency locations (9, 5) have been arranged, i.e. two sets of configuration information have an intersection on the respective antenna port RRH, the UE based on the antenna port Road loss measurement.
  • the PL target for uplink power control can be similarly calculated according to the above formulas (4) - (6).
  • the PL target thus obtained is targeted and improves the performance of the uplink power control.
  • the signaling overhead can be reduced.
  • the fourth embodiment and the fifth embodiment may be combined.
  • the first group configuration information indicates that the UE measures the RSRP of the CSI-RS signal on the corresponding antenna port, and the second group configuration information uses the CSI-RS silence information, and the first group configuration information.
  • the joint indicates which path ports are used for path loss measurement.
  • the foregoing embodiment 3 and the fourth/fith embodiment may be combined, and the UE determines, according to the identifier of the eNodeB that the high-level signaling or the dynamic signaling is transmitted, whether the first group of configuration information indicates the measurement RSRP or the indication measurement CSI.
  • the second set of configuration information may also use CSI-RS silence information or a subset selection indication of the set to jointly indicate which antenna ports to perform path loss measurements.
  • the user equipment 40 of FIG. 4 includes a receiving unit 41 and a measuring unit 42.
  • the receiving unit 41 receives the configuration information of the channel state information reference signal CSI-RS from the base station, the configuration information of the CSI-RS includes the reference signal port information and the reference signal power information, and the measurement unit is configured to use the CSI-RS based configuration information measurement The path loss for uplink power control.
  • the CSI-RS is used for path loss measurement.
  • the CSI-RS can be specific to the base station, so the path loss measurement can be performed for the target base station of the uplink transmission, so that the path loss compensation and the actual path loss are performed. Matching, thereby improving the performance of the uplink power control.
  • the user equipment 40 may perform the various processes of the method illustrated in Figure 1, and may determine the path loss for uplink power control in the manner of Embodiments 1 through 5. Therefore, in order to avoid duplication, a detailed description is omitted as appropriate.
  • the measuring unit 42 may determine, according to the reference signal port information, an antenna port that performs measurement, measure an RSRP of the CSI-RS on the determined antenna port, and determine according to the measured RSRP and reference signal power information. Road damage.
  • the configuration information received by the receiving unit 41 may further include an identifier bit for indicating the role of the reference signal port information.
  • the measuring unit 42 is further configured to measure the channel state information CSI on the antenna port indicated by the reference signal port information.
  • the measuring unit 42 measures the RSRP of the CSI-RS on the determined antenna port, and determines the path loss based on the measured RSRP and reference signal power information. For example, as described in the third embodiment above.
  • the receiving unit 41 may receive the foregoing configuration information by using high layer signaling or dynamic signaling.
  • the various information included in the configuration information may be received together or separately.
  • the reference signal port information and the reference signal power information do not need to be in one-to-one correspondence.
  • the configuration information includes the identification bit
  • the identification bit may be transmitted through high layer signaling or dynamic signaling, for example, may be transmitted together with the reference signal port information and the reference signal power information, or separately.
  • the flag does not need to correspond to the reference signal port information.
  • the reference signal port information received by the receiving unit 41 may be included.
  • a set consisting of path loss measurement indications of the respective antenna ports is included, for example, as described in the first embodiment above.
  • the reference signal port information received by the receiving unit 41 may include a set of RSRP measurement indications of the respective antenna ports and CSI-RS muting information configured by the base station, for example, as described in Embodiment 5 above.
  • the reference signal port information received by the receiving unit 41 may include a set and a subset selection indication of the set of RSRP measurement indications of the respective antenna ports, as described in the fourth embodiment above.
  • the foregoing set of RSRP measurement indications by the respective antenna ports includes a reference signal port bitmap of the 1 antenna port CSI-RS configuration, or a reference of a CSI-RS configuration including all antenna port numbers. Cascading of signal port bitmaps.
  • the subset selection indication of the foregoing set includes an indication bitmap corresponding to the set.
  • the reference signal power information includes a transmit power of the CSI-RS, or a difference between a transmit power of the CSI-RS and a transmit power of the common reference signal CRS.
  • the path loss measured by the measurement unit 42 is equal to the transmit power of the CSI-RS minus the RSRP, for example, the above formula (6).
  • the path loss measured by the measurement unit 42 is equal to the sum of the difference and the transmit power of the CRS minus the RSRP, such as the above formula ( 5).
  • the measurement unit is specifically configured to determine a path loss of each of the multiple antenna ports. , determining the path loss for uplink power control according to the path loss of each antenna port, for example, the above formula (4)
  • the user equipment 40 of the embodiment of the present invention uses the CSI-RS to perform path loss measurement.
  • the CSI-RS can be specific to a specific base station, so that the path loss measurement can be performed for the target base station of the uplink transmission, so that the path loss compensation is performed. Matches the actual path loss, thus improving the uplink power control Performance.
  • FIG. 5 is a block diagram of a base station in accordance with one embodiment of the present invention.
  • the base station 50 of Fig. 5 includes a generating unit 51 and a transmitting unit 52.
  • the generating unit 51 generates configuration information of the channel state information reference signal CSI-RS, and the configuration information of the CSI-RS includes reference signal port information and reference signal power information.
  • the transmitting unit 52 transmits the configuration information of the CSI-RS to the user equipment, so that the user equipment measures the path loss for the uplink power control based on the configuration information of the CSI-RS.
  • the CSI-RS is used for path loss measurement.
  • the CSI-RS can be specific to the base station, so the path loss measurement can be performed for the target base station of the uplink transmission, so that the path loss compensation and the actual path loss are performed. Matching, thereby improving the performance of the uplink power control.
  • the base station 50 can perform the various processes of the method illustrated in Figure 2 and can cause the user equipment to determine the path loss for uplink power control in the manner of Embodiments 1 through 5. Therefore, in order to avoid repetition, a detailed description is omitted as appropriate.
  • the configuration information generated by the generating unit 51 further includes an identifier bit for indicating the role of the reference signal port information.
  • the configuration information transmitted by the transmitting unit 52 causes the user equipment to measure the channel state information CSI on the antenna port indicated by the reference signal port information.
  • the identifier bit indicates that the reference signal port information is used for RSRP measurement
  • the configuration information sent by the sending unit 52 causes the user equipment to measure the RSRP of the CSI-RS on the determined antenna port and according to the measured RSRP and reference signal power information. Determine the path loss.
  • the reference signal port information generated by the generating unit 51 may include a set consisting of path loss measurement indications of the respective antenna ports.
  • the reference signal port information generated by the generating unit 51 may include a set consisting of RSRP measurement indications of the respective antenna ports and CSI-RS muting information configured by the base station.
  • the reference signal port information generated by the generating unit 51 includes a set consisting of RSRP measurement indications of the respective antenna ports and a subset selection indication of the set.
  • the foregoing set of RSRP measurement indications of the respective antenna ports includes a reference signal port bitmap of one CSI-RS antenna port configuration, or a reference signal including all CSI-RS antenna port configurations. Cascading of port bitmaps.
  • the subset selection indication of the foregoing set includes an indication bitmap corresponding to the set.
  • the reference signal power information generated by the generating unit 51 may include a transmit power of the CSI-RS, or a difference between a transmit power of the CSI-RS and a transmit power of the common reference signal CRS.
  • the sending unit 52 may send configuration information of the CSI-RS to the user equipment by using high layer signaling or dynamic signaling.
  • the various information included in the configuration information can be sent together or separately.
  • reference signal port information and reference signal power information are not required - corresponding.
  • the configuration information includes the identification bit
  • the identification bit may be transmitted through high layer signaling or dynamic signaling, for example, may be transmitted together with the reference signal port information and the reference signal power information, or separately.
  • the flag does not need to correspond to the reference signal port information.
  • the base station 50 of the embodiment of the present invention enables the user equipment to perform path loss measurement by using the CSI-RS.
  • the CSI-RS can be targeted to a specific base station, so that the path loss measurement can be performed for the target base station of the uplink transmission.
  • the loss compensation matches the actual path loss, thereby improving the performance of the uplink power control.
  • a communication system may include the above-described user equipment 40 or base station 50.
  • Those of ordinary skill in the art will appreciate that the elements and algorithm steps of the various examples described in connection with the embodiments disclosed herein can be implemented in electronic hardware, or a combination of computer software and electronic hardware. Whether these functions are performed in hardware or software depends on the specific application and design constraints of the solution. A person skilled in the art can use different methods to implement the described functions for each particular application, but such implementation should not be considered to be beyond the scope of the present invention. A person skilled in the art can clearly understand that, for the convenience and brevity of the description, the specific working process of the system, the device and the unit described above may refer to the corresponding processes in the foregoing method embodiments, and details are not described herein again.
  • the disclosed systems, devices, and methods may be implemented in other ways.
  • the device embodiments described above are merely illustrative.
  • the division of the unit is only a logical function division.
  • there may be another division manner for example, multiple units or components may be combined or Can be integrated into another system, or some features can be ignored, or not executed.
  • the mutual coupling or direct coupling or communication connection shown or discussed may be an indirect coupling or communication connection through some interface, device or unit, and may be in an electrical, mechanical or other form.
  • the components displayed as units may or may not be physical units, i.e., may be located in one place, or may be distributed over multiple network units. Some or all of the units may be selected according to actual needs to achieve the purpose of the solution of the embodiment.
  • each functional unit in each embodiment of the present invention may be integrated into one processing unit, or each unit may exist physically separately, or two or more units may be integrated into one unit.
  • the functions may be stored in a computer readable storage medium if implemented in the form of a software functional unit and sold or used as a standalone product.
  • the technical solution of the present invention which is essential or contributes to the prior art, or a part of the technical solution, may be embodied in the form of a software product, which is stored in a storage medium, including
  • the instructions are used to cause a computer device (which may be a personal computer, server, or network device, etc.) to perform all or part of the steps of the methods described in various embodiments of the present invention.
  • the foregoing storage medium includes: a USB flash drive, a mobile hard disk, a read-only memory (ROM), a random access memory (RAM), a magnetic disk or an optical disk, and the like, and the program code can be stored. Medium.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本发明实施例提供一种上行功率控制的方法、用户设备和基站。该方法包括:从基站接收信道状态信息参考信号CSI-RS的配置信息,CSI-RS的配置信息包括参考信号端口信息和参考信号功率信息;基于CSI-RS的配置信息测量用于上行功率控制的路损。本发明实施例利用CSI-RS进行路损测量,与公共的CRS不同,CSI-RS可以针对于特定的基站,因此可以针对上行传输的目标基站进行路损测量,使得路损补偿与实际路损相匹配,从而提高了上行功率控制的性能。

Description

上行功率控制的方法、 用户设备和基站 本申请要求于 2011 年 8 月 18 日提交中国专利局、 申请号为 201110237430.1、 发明名称为 "上行功率控制的方法、 用户设备和基站" 的 中国专利申请的优先权, 其全部内容通过引用结合在本申请中。 技术领域
本发明实施例涉及通信技术领域, 并且更具体地, 涉及上行功率控制 的方法、 用户设备和基站。 发明背景
在第三代合作伙伴计划( 3GPP, 3rd Generation Partnership Project )中, 定义了四种协作多点传输( CoMP, Coordinated Multi-Point ) 的场景, 其中 第四种场景 ( scenario 4 )是在一个宏站区域内的包括宏站点 ( Macro Site ) 和远程无线头 (RRH, Remote Radio Head ) 的传输点都共享同一'〗、区识别 码 (Cell IDentity ), 该架构也被称为分布式天线系统 (DAS , Distributed Antenna System )。
在 DAS系统中, 为了使不同用户设备 ( UE , User Equipment )到达基 站(eNB, evolved Node B ) 时的接收功率大致处于相同水平, 以避免由于 远近效应而造成的用户间干扰,通常会对 UE釆用上行功率控制。在长期演 进(LTE, Long Term Evolution ) R-10标准中, 物理上行共享信道( PUSCH, Physical Uplink Shared Channel ), 物理上行控制信道 ( PUCCH, Physical Uplink Control Channel )和探测参考信号 ( SRS, Sounding Reference Signal ) 的发送功率根据 UE侧估计的路损 (PL, Path Loss )来决定, 具体为如下 公式 (1):
PL =ReferenceSignalPower - RSRP (1) 其中, ReferenceSignalPower为基站定义的参考信号功率, UE通过小 区专用 ( cell specific ) 的高层信令获取该参考信号功率; RSRP为 UE在公 共参考信号 (CRS, Common Reference Signal )天线端口 PortO或者 Portl 测量到的参考信号接收功率( Reference Signal Receiving Power )。
目前的 scenario 4中, 釆用上述公式 (1), 基于 CRS来测量路损, 其中 CRS PortO及 Portl 可以虚拟映射到所有 RRH的天线进行发射, 用户设备 可以收到来自所有 RRH发射的 CRS。
RSRP为 UE接收到的来自各个 RRH的测量参考信号能量的叠加, 如 下式 (2)所示:
(P, - PL , )
N - 1
RSRP = 10 log 10
10 ∑ 10
; = 0
(2)
可以得到路损为:
Figure imgf000003_0001
(3)
其中 Λ为每个 RRH的发送功率, ¾为每个 RRH到用户设备的路损。 由此可见, 由于接收功率为来自不同 RRH的信号能量叠加, 因此利用 上述公式 (3)基于 CRS测量的路损为所有 RRH到用户设备的路损的非线性 叠加。 实际的上行目标 RRH并非所有的 RRH, 而是其中一个 RRH或多个 RRH的集合。 此时针对目标 RRH的实际的路损补偿与测量的路损不匹配, 导致上行发射功率的计算不准确, 进而影响上行传输的性能。 发明内容
本发明实施例提供一种上行功率控制的方法、 用户设备和基站, 能够 提高上行功率控制的性能。
一方面, 提供了一种上行功率控制的方法, 包括: 从基站接收信道状 态信息参考信号 CSI-RS的配置信息, 该 CSI-RS的配置信息包括参考信号 端口信息和参考信号功率信息;基于 CSI-RS的配置信息测量用于上行功率 控制的路损。
另一方面, 提供了一种上行功率控制的方法, 包括: 生成信道状态信 息参考信号 CSI-RS的配置信息, 该 CSI-RS的配置信息包括参考信号端口 信息和参考信号功率信息; 向用户设备发送 CSI-RS的配置信息, 以便用户 设备基于 CSI-RS的配置信息测量用于上行功率控制的路损。
另一方面, 提供了一种用户设备, 包括: 接收单元, 用于从基站接收 信道状态信息参考信号 CSI-RS的配置信息, 该 CSI-RS的配置信息包括参 考信号端口信息和参考信号功率信息; 测量单元, 用于基于 CSI-RS的配置 信息测量用于进行上行功率控制的路损。
另一方面, 提供了一种基站, 包括: 生成单元, 用于生成信道状态信 息参考信号 CSI-RS的配置信息, 该 CSI-RS的配置信息包括参考信号端口 信息和参考信号功率信息; 发送单元, 用于向用户设备发送 CSI-RS的配置 信息,以便用户设备基于 CSI-RS的配置信息测量用于上行功率控制的路损。
本发明实施例利用 CSI-RS进行路损测量,与公共的 CRS不同, CSI-RS 可以针对于特定的基站, 因此可以针对上行传输的目标基站进行路损测量, 使得路损补偿与实际路损相匹配, 从而提高了上行功率控制的性能。 附图简要说明
为了更清楚地说明本发明实施例的技术方案, 下面将对实施例或现有 技术描述中所需要使用的附图作简单地介绍, 显而易见地, 下面描述中的 附图仅仅是本发明的一些实施例, 对于本领域普通技术人员来讲, 在不付 出创造性劳动的前提下, 还可以根据这些附图获得其他的附图。 图 1是本发明一个实施例的上行功率控制的方法的流程图。
图 2是本发明另一实施例的上行功率控制的方法的流程图。
图 3是本发明一个实施例的 CSI-RS图案的例子的示意图。
图 4是本发明一个实施例的用户设备的框图。
图 5是本发明一个实施例的基站的框图。 实施本发明的方式
下面将结合本发明实施例中的附图, 对本发明实施例中的技术方案进 行清楚、 完整地描述, 显然, 所描述的实施例是本发明一部分实施例, 而 不是全部的实施例。 基于本发明中的实施例, 本领域普通技术人员在没有 作出创造性劳动前提下所获得的所有其他实施例, 都属于本发明保护的范 围。
本发明的技术方案, 可以应用于各种通信系统, 例如: 全球移动通讯 系统( GSM, Global System of Mobile communication ), 码分多址( CDMA, Code Division Multiple Access ) 系统, 宽带码分多址( WCDMA, Wideband Code Division Multiple Access Wireless ) 系统, 通用分组无线业务 ( GPRS , General Packet Radio Service )系统, 长期演进 ( LTE, Long Term Evolution ) 系统, 增强的长期演进 ( LTE- A, long term evolution advance ) 系统等。
用户设备 ( UE , User Equipment ) , 也可称之为移动终端 ( Mobile Terminal ),移动用户设备等,可以经无线接入网(例如, RAN, Radio Access Network )与一个或多个核心网进行通信, 用户设备可以是移动电话(或称 为"蜂窝"电话)和具有移动终端的计算机, 例如, 可以是便携式、 袖珍式、 手持式、 计算机内置的或者车载的移动装置, 它们与无线接入网交换语言 和 /或数据。
基站,可以是 GSM或 CDMA中的基站( BTS, Base Transceiver Station ), 也可以是 WCDMA中的基站 ( NodeB ), 还可以是 LTE或 LTE-A中的演进 型基站( eNB或 e-NodeB , evolutional Node B ) , 本发明并不限定。
图 1是本发明一个实施例的上行功率控制的方法的流程图。 图 1的方 法由用户设备 UE执行。
101 , 从基站接收 CSI-RS ( Channel State Information Reference Signal, 信道状态信息参考信号)的配置信息, 该 CSI-RS的配置信息包括参考信号 端口信息和参考信号功率信息。
由于 CSI-RS可以针对于特定的基站, 因此基站发送的 CSI-RS配置信 息可以包括需要进行上行传输的目标基站 (例如, RRH ) 的相应天线端口 信息,即参考信号端口信息,以指示需要进行测量的天线端口。不同的 RRH 可以配置不同天线端口的 CSI-RS , 例如 RRH1 可以配置 2 天线端口的 CSI-RS, RRH2可以配置 8天线端口的 CSI-RS。
可选地, 作为一个实施例, 参考信号端口信息可包括由各个天线端口 的路损测量指示组成的集合。 换句话说, 参考信号端口信息可以是针对每 个天线端口的显式指示,用于表示是否在该天线端口上基于 CSI-RS进行路 损测量。 例如, 路损测量指示的集合可包括 1天线端口的 CSI-RS配置的参 考信号端口位图,或者包括所有天线端口数的 CSI-RS配置的参考信号端口 位图的级联。
可选地, 作为另一实施例, 参考信号端口信息可包括由各个天线端口 的 RSRP测量指示组成的集合和该集合的子集选择指示。可以由 RSRP的测 量指示和相应的子集选择指示联合地隐式表示是否在该天线端口上基于 CSI-RS进行路损测量。 例如, RSRP测量指示的集合可包括 1天线端口的 CSI-RS配置的参考信号端口位图, 或者包括所有天线端口数的 CSI-RS配 置的参考信号端口位图的级联。
可选地, 作为另一实施例, 参考信号端口信息可包括由各个天线端口 的 RSRP测量指示组成的集合与基站配置的 CSI-RS静默信息。 换句话说, 可以由 RSRP 的测量指示和静默信息联合地隐式表示是否在该天线端口上 基于 CSI-RS进行路损测量。 例如, 集合的子集选择指示可包括与该集合对 应的指示位图。
可选地, 作为另一实施例, 可通过高层信令或动态信令接收上述参考 信号端口信息和参考信号功率信息。 参考信号端口信息和参考信号功率信 息可以一起传输, 也可以分开单独传输。 此外, 参考信号端口信息和参考 信号功率信息无需一一对应。
102, 基于 CSI-RS的配置信息测量用于上行功率控制的路损。
可选地, 作为一个实施例, 基于参考信号端口信息确定进行测量的天 线端口,在所确定的天线端口上测量 CSI-RS的 RSRP,才艮据所测量的 RSRP 和参考信号功率信息确定路损。
可选地, 作为另一实施例, 在配置信息还包括用于表示参考信号端口 信息的作用的标识位时, 可根据该标识位进行测量操作。 例如, 在标识位 表示参考信号端口信息用于进行信道状态信息 (CSI , Channel State Information )测量时, 测量该参考信号端口信息所表示的天线端口上的信道 状态信息, 例如预编码指示 (PMI, Precoding Matrix Index ), 秩指示 (RI, Rank Index )、 信道质量信息 ( CQI, Channel Quality Information )等。 另夕卜, 在标识位表示参考信号端口信息用于进行 RSRP测量时, 执行在所确定的 天线端口上测量 CSI-RS的 RSRP的过程以及根据所测量的 RSRP和参考信 号功率信息确定路损的过程。 可选地, 标识位可以通过高层信令或动态信 令传输, 例如可以与上述参考信号端口信息和参考信号功率信息一起传输, 也可以分开单独传输。 此外, 标识位无需与参考信号端口信息——对应, 例如, 一个标识位可表示一个或多个参考信号端口信息的作用, 也可以表 示一个参考信号端口信息中一个或多个端口的相应指示的作用。
可选地, 作为另一实施例, 上述配置信息中的各种指示可以针对一个 或多个天线端口。 例如, 在基于参考信号端口信息确定的进行测量的天线 端口为多个天线端口时, 确定每个天线端口的路损, 并根据每个天线端口 的路损综合确定用于进行上行功率控制的路损。
可选地, 作为另一实施例, 上述参考信号功率信息可包括 CSI-RS的发 射功率, 或者包括 CSI-RS的发射功率与 CRS的发射功率之间的差值。 这 里, 上述各种发射功率或差值的单位为 db。
例如, 在所述参考信号功率信息包括 CSI-RS的发射功率时, 某一天线 端口上的路损等于 CSI-RS的发射功率减去在该天线端口上测得的 RSRP。 或者, 在参考信号功率信息包括 CSI-RS的发射功率与 CRS的发射功率之 间的差值时, 某一天线端口上的路损等于该差值与 CRS的发射功率之和减 去在该天线端口上测得的 RSRP。 这里, 路损的单位为 db。
本发明实施例利用 CSI-RS进行路损测量,与公共的 CRS不同, CSI-RS 可以针对于特定的基站, 因此可以针对上行传输的目标基站进行路损测量, 使得路损补偿与实际路损相匹配, 从而提高了上行功率控制的性能。
图 2是本发明另一实施例的上行功率控制的方法的流程图。 图 2的方 法由基站 (例如 UE的服务小区的 eNodeB )执行, 并且与图 1的方法相对 应, 因此适当省略重复的描述。
201 , 生成 CSI-RS的配置信息, 该 CSI-RS的配置信息包括参考信号端 口信息和参考信号功率信息。
可选地, 作为一个实施例, 参考信号端口信息可包括由各个天线端口 的路损测量指示组成的集合。 换句话说, 参考信号端口信息可以是针对每 个天线端口的显式指示,用于表示是否在该天线端口上基于 CSI-RS进行路 损测量。 例如, 路损测量指示的集合可包括所有天线端口数的 CSI-RS配置 的参考信号端口位图的级联, 也可以釆用其他合适指示方式。
可选地, 作为另一实施例, 参考信号端口信息可包括由各个天线端口 的 RSRP测量指示组成的集合和该集合的子集选择指示。可以由 RSRP的测 量指示和相应的子集选择指示联合地隐式表示是否在该天线端口上基于 CSI-RS进行路损测量。 例如, RSRP测量指示的集合可包括 1天线端口的 CSI-RS配置的参考信号端口位图, 或者包括所有天线端口数的 CSI-RS配 置的参考信号端口位图的级联, 也可以釆用其他合适的指示方式。
可选地, 作为另一实施例, 参考信号端口信息可包括由各个天线端口 的 RSRP测量指示组成的集合与基站配置的 CSI-RS静默信息。 换句话说, 可以由 RSRP 的测量指示和静默信息联合地隐式表示是否在该天线端口上 基于 CSI-RS进行路损测量。 例如, 上述集合的子集选择指示可包括与该集 合对应的指示位图, 也可以釆用其他合适指示方式。
202, 向用户设备发送 CSI-RS的配置信息, 以便用户设备基于 CSI-RS 的配置信息测量用于上行功率控制的路损。
可选地, 作为一个实施例, 可通过高层信令或动态信令向用户设备发 送 CSI-RS的配置信息。 可以一起发送配置信息所包括的各种信息, 也可以 分开单独发送。 例如, 参考信号端口信息和参考信号功率信息无需一一对 应。 在配置信息中包括标识位的情况下, 标识位可以通过高层信令或动态 信令传输, 例如可以与上述参考信号端口信息和参考信号功率信息一起传 输, 也可以分开单独传输。 此外, 标识位无需与参考信号端口信息——对 应。
本发明实施例利用 CSI-RS进行路损测量,与公共的 CRS不同, CSI-RS 可以针对于特定的基站, 因此可以针对上行传输的目标基站进行路损测量, 使得路损补偿与实际路损相匹配, 从而提高了上行功率控制的性能。
下面结合具体例子, 更加详细地描述本发明的实施例。 下面的例子中, UE表示用户设备; eNodeB表示 UE的服务基站, 例如宏基站。 实施例一
UE接收 eNodeB发送的 CSI-RS配置信息。 该配置信息包括参考信号 端口信息和参考信号功率信息。 本实施例中, 参考信号端口信息为显式指 示, 例如可以釆用位图形式。 举例而言, 假设参考信号端口信息釆用 1 天线端口的 CSI-RS 配置 ( CSI-RS端口数为 1 )的参考信号端口位图。表 1是 CSI-RS配置表的例子。 如表 1所示, 1天线端口的 CSI-RS配置共有 32个, 可以使用 32个比特的 位图, 位图的每个比特指示相应的天线端口是否进行路损测量。 例如, 比 特 1表示需要进行路损测量, 比特 0表示不进行路损测量, 反之亦可。 表 1 中的 mod为取模操作。
例如, 位图 "10100000000000000000000000000000" 表示 UE在表 1 中对应的第一个 CSI-RS图案 (pattern )对应的第一个天线端口 (假设该天 线端口为 CSI— RS1 )测量 RSRP并计算相应的路损 PLl o 同时 UE在表 1中 对应的第三个 CSI-RS 图案对应的第一个天线端口 (假设该天线端口为 CSI— RS2 )测量 RSRP并计算相应的路损 PL2。 然后 UE综合两个天线端口 上测量的路损 PLi和 PL2, 计算出用于上行功率控制的路损 PLta et。 更多或 更少数目的天线端口的测量方式与此类似。
表 1 CSI-RS配置表
Figure imgf000010_0001
Figure imgf000011_0001
在一个实施例中 , 用于上行功率控制的路损 PLtarget可按照下式 (4)计算
' (4) 其中 P 为天线端口对应的路损, W为权重因子。 应注意, 公式 (4)中 路损 PL的单位是 db。
对于其他天线端口数( 2个、 4个或 8个) 的 CSI-RS配置, 可以将相 应的 CSI-RS分为若干个 1 天线端口 CSI-RS, 选择其中一个 1 天线端口 CSI-RS, 用相应的比特表示该 CSI-RS是否用于测量路损。
图 3是本发明一个实施例的 CSI-RS图案的例子的示意图。 图 3的例子 与上面的表 1相对应。 为了简洁, 图 3中只显示了 1天线端口 CSI-RS配置 和 8天线端口 CSI-RS配置的图案,其他天线端口数的配置的图案是类似的。 图 3 中的阴影块表示能够用于 CSI-RS的资源, 分别对应于表 1 中的各个 CSI-RS配置。
假设 eNodeB要求 UE测量某一 RRH的路损信息, 该 RRH对应的为 8 天线端口配置的 CSI-RS, 其时频位置为表 1中配置为 8天线端口的第二个 时隙 (slot ) 的 (9, 5 ), 表示第二个时隙的第 9个子载波和第 5个 OFDM ( Orthogonal Frequency Division Multiplexing, 正交频分复用 )符号为起点 的 8天线端口 CSI-RS, 即图 3中的虚线框 B2的 CSI-RS。可以将虚线框 B2 中的 CSI-RS分成 4个 1天线端口的 CSI-RS, 如(0, 1 ), ( 4, 5 ), ( 2, 3 ), ( 6, 7 )。 eNodeB可以选择其中一个, 例如(0, 1 )对应的 1天线端口的 CSI-RS, 即虚线框 B1中的 CSI-RS。 将虚线框 B1中的 CSI-RS以位图中相 应比特的形式通知给 UE, 即位图的第 5个比特置为 1。 当然, 也可以选择 4个 1天线端口 CRI-RS中的另一个 CRI-RS相应的比特位置表示该 RRH的 所有端口的测量指示。
UE根据如上设置的参考信号端口信息, 测量相应天线端口的 RSRP并 根据参考信号功率信息中包括的相应功率值, 计算相应 RRH的路损。
参考信号功率信息是与 CSI-RS功率相关的信息, 假设表示为 Pd。 例 如, 参考信号功率信息可以包括 CSI-RS与 CRS的发射功率的差值, 也可 以包括 CSI-RS的绝对功率, 即 CSI-RS的发射功率。
以上述两个天线端口 CSI— RS1和 CSI-RS2的情况为例, 如果参考信号 功率信息是 CSI-RS与 CRS的发射功率的差值,分别为 Pdl和 Pd2,则可按 照下式 (5)计算两个天线端口的路损 PLi和 PL2:
PLi = ReferenceSignalPower -RSRPl+Pdl ,
PL2 = ReferenceSignalPower -RSRP2+Pd2 (5)
其中 ReferenceSignalPower是 CRS信号的发射功率,可以由 eNodeB在 CRS 的配置信息中下发给 UE。 RSRP1 是在天线端口 CSI— RS1 上测得的 RSRP, RSRP2是在天线端口 CSI— RS2上测得的 RSRP。
如果参考信号功率信息 Pd是 CSI-RS的发射功率,则按照下式 (6) 计算 两个天线端口的路损 PLi和 PL2:
PLi = Pdl-RSRPl ,
PL2 = Pd2-RSRP2 (6)
得到各个天线端口对应的路损之后, 可按照上面的公式 (4)得到最终用 于上行功率控制的路损 PLtarget。 这样得到的 PLtarget具有针对性, 提高了上 行功率控制的性能。 但是, 本发明实施例不限于此, 也可以按照其他方式 得到用于上行功率控制的路损 PLtarget
作为一个例子, 在参考信号端口信息指示需要进行测量的天线端口包 括多个天线端口的情况下, 对该多个天线端口的一个或多个子集上测量的 RSRP进行平均 (包含加权平均), 然后根据平均处理之后的 RSRP得到与 上述一个或多个子集对应的路损, 并根据该对应的路损得到用于上行功率 控制的路损 PLta et
具体地, 假设需要进行上行传输的 RRH为 RRH1和 RRH2, RRH1对 应于 2端口的 CSI-RS配置, RRH2对应于 8端口的 CSI-RS配置。 可以首 先将 RRH1 对应 2 个端口上测得的 RSRP进行平均处理, 得到平均后的 RSRPl o 同时将 RRH2对应的 8个端口上测得的 RSPR进行平均处理, 得 到平均后 RSRP2。 然后将 RSRP1和 RSPR2代入上述公式 (5)或 (6), 得到相 应的路损 PLi和 PL2,然后按照上述公式 (4)最终得到用于上行功率控制的路 损 PLtarget。换句话说,上述公式 (4)中的 P 表示多个天线端口中每个子集的 路损。
如果需要进行上行传输的 RRH的数目更多, 或者两个或多个 RRH对 应于同一种 CSI-RS配置, 也可以类似地釆用上述方法, 先平均部分或全部 端口上测得的 RSRP, 再得到用于上行功率控制的路损 PLtarget
这样, 能够平均多个天线端口上测量的 RSRP, 提高上行功率控制的性 能。 而且, 需要传输的参考信号功率信息更少, 只需对每个子集传输一个 参考信号功率信息即可。
应注意, 上述公式 (4)-(6)中各个参数的单位为 db。 如果使用线性域的 绝对值进行计算, 上述公式相应地变为乘法或除法计算。 这样的等价变换 落入本发明实施例的范围内。 实施例二
实施例二与实施例一的不同之处在于, 参考信号端口信息釆用所有端 口数的 CSI-RS配置的参考信号端口位图的级联。 例如, 按照表 1 , 1天线 端口的 CSI-RS配置有 32个, 2天线端口的 CSI-RS配置有 32个, 4天线端 口的 CSI-RS配置有 16个, 8天线端口的 CSI-RS配置有 8个。 因此, 可使 用总共 88( =32+ 32+16+8 )比特的级联位图 b0 bl b2 b3 b4 b5 b6 b7....b31b32 b33 b34 b35 b36 b37 b38 b39....b63 b64 b65...b79 b80 b81 ...b87。 其中 bO ~ b31 指示的是 1 天线端口的 CSI-RS, b32 - b63 指示的是 2 天线端口的 CSI-RS, b64 ~ b79指示的是 4天线端口的 CSI-RS , b80 ~ b87指示的是 8 天线端口的 CSI-RS。 位图的每个比特指示相应的天线端口是否进行路损测 量。 例如, 比特 1表示需要进行路损测量, 比特 0表示不进行路损测量, 反之亦可。
实施例二的其他指示方式和路损测量方式可参照实施例一, 因此不再 赘述。
可按照上面的公式 (4)-(6)得到最终用于上行功率控制的路损 PLtarget。 这 样得到的 PLtoget具有针对性, 提高了上行功率控制的性能。 实施例三
实施例三可使用实施例一和实施例二的指示方式和路损测量方式, 不 同之处在于, 实施例三的参考信号端口信息还可以包括标识位。 该标识位 表示参考信号端口信息的作用, UE根据标识位进行测量操作。
例如,假设标识位 1表示在相应的天线端口上进行路损测量, 标识位 0 表示参考信号端口信息用于进行 CSI测量。 在标识位为 0时, UE测量该参 考信号端口信息所表示的天线端口上的信道状态信息, 例如预编码指示 ( PMI, Precoding Matrix Index ), 秩指示(RI, Rank Index )、 信道质量信 息 ( CQI, Channel Quality Information )等。 另外, 在标识位为 1时, 在相 应天线端口上测量 RSRP并根据所测量的 RSRP和参考信号功率信息确定路 损。
实施例三的其他指示方式和路损测量方式可参照实施例一或实施例 二, 因此不再赘述。
可按照上面的公式 (4)-(6)得到最终用于上行功率控制的路损 PLtarget。 这 样得到的 PLtarget具有针对性, 提高了上行功率控制的性能。 并且仍可以将 CSI-RS用于 CSI反馈, 提高了应用的灵活性。 实施例四
上面的实施例中, 参考信号端口信息为显式指示的方式。 下面的实施 例中釆用隐式指示, 例如联合两种或更多种指示方式以表示是否在相应天 线端口上基于 CSI-RS进行路损测量。
在本实施例中, 参考信号端口信息可包括类似于上述实施例一至三中 的位图或位图级联的第一组 CSI-RS配置信息,但是该位图或位图级联表示 UE测量相应天线端口上 CSI-RS信号的 RSRP。
例如, 位图 "10100000000000000000000000000000" 表示 UE在表 1 中对应的第一个 CSI-RS图案 (pattern )对应的第一个天线端口 (假设该天 线端口为 CSI— RS1 )测量 RSRP。同时 UE在表 1中对应的第三个 CSI-RS 图 案对应的第一个天线端口 (假设该天线端口为 CSI-RS2 )测量 RSRP。 换句 话说, 第一组 CSI-RS配置信息包括由各个天线端口的 RSRP测量指示组成 的集合。
此外, 参考信号端口信息还可以包括第二组 CSI-RS配置信息, 用于与 第一组 CSI-RS配置信息联合指示进行路损测量的天线端口。 本实施例中, 第二组 CSI-RS 配置信息可以是上述 RSRP测量指示的集合的子集选择指 示, 例如是与该集合对应的指示位图。
举例而言, 假设 eNodeB配置的用于让 UE测量 RSRP的 CSI-RS天线 端口的集合为 {CSI— RS(i)} , 0<i<=M, M为正整数。 因此, 可以通过配置 M 比特的指示位图, 以指示用于进行路损测量的 CSI-RS天线端口。 以 M = 3 为例, 假设 {CSI— RS(i)}集合为 {CSI— RS(1),CSI— RS(6),CSI— RS(9)} , 同时用 来指示进行路损测量的 CSI-RS 的位图为 011 , 则表示子集 {CSI_RS(6),CSI_RS(9)}被选中用于进行路损测量。
在此情况下, 参考信号功率信息会配置 Pd6和 Pd9。 Pd6 为 CSI— RS(6) 天线端口的 CSI-RS发射功率, Pd9为 CSI— RS(9)天线端口的 CSI-RS发射功 率; 或者 Pd6 为 CSI— RS(6)天线端口的 CSI-RS发射功率与 CRS发射功率 的差值, Pd9为 CSI— RS(9)天线端口的 CSI-RS发射功率与 CRS发射功率的 差值。 可类似地按照上述公式 (4)-(6)计算用于上行功率控制的 PLtarget。 这样 得到的 PLtarget具有针对性, 提高了上行功率控制的性能, 并且能够支持多 个天线端口的 RSRP的测量。
实施例四的其他指示方式和路损测量方式可参照实施例一至实施例 三, 因此不再赘述。 实施例五
实施例五与实施例四的不同之处在于, 第二组 CSI-RS配置信息可利用 基站配置的 CSI-RS静默(muting )信息。 第一组 CSI-RS配置信息同样表 示由各个天线端口的 RSRP测量指示组成的集合。
CSI-RS muting信息为 16比特的位图信息。 当第一组 CSI-RS配置信息 釆用 1天线端口 CSI-RS配置时, 如果某个 1天线端口 CSI-RS被选择用于 RSRP测量,并且该 muting比特对应的 4天线端口的 CSI-RS与第一组指示 的 1天线端口的 CSI-RS有交集, 则 UE基于该 1天线端口的 CSI-RS进行 路损测量。
例如, 假设 CSI-RS的 muting信息为 1000000000000100, 则第一位比 特指示的天线端口" mQd 2 = Q ,且( 9, 5 )的对应位置的 4天线端口的 CSI-RS 被 muting, 以及第十四位比特指示的天线端口 m°d 2 = 1 , (10,1)对应的位置 的 4 天线端 口 的 CSI-RS 被 muting。 第 一组配置信息 中
"10100000000000000000000000000000" 对应的天线端口中 。d 2 = 0 , 且
( 9, 5 ) 的对应位置的天线端口被选中进行 RSRP测量, 以及
且(9, 2 ) 的对应位置的天线端口被选中进行 RSRP测量。 上述两组配置 信息中, 觸 d 2 = Q , 时频位置 (9, 5 ) 的 RRH都被配置, 即两组配置信 息在该 RRH相应的天线端口上有交集, 则 UE基于该天线端口进行路损测 量。
可类似地按照上述公式 (4)-(6)计算用于上行功率控制的 PLtarget。 这样得 到的 PLtarget具有针对性, 提高了上行功率控制的性能。 并且, 结合现有的 muting信息联合编码, 能够减小信令开销。
实施例五的其他指示方式和路损测量方式可参照实施例一至实施例 四, 因此不再赘述。
上面给出的各个实施例并不是完全独立的, 可以根据需要组合使用。 这些变化均落入本发明实施例的范围内。
例如,可组合上述实施例四和实施例五,第一组配置信息指示 UE测量 相应天线端口上 CSI-RS信号的 RSRP, 第二组配置信息使用 CSI-RS静默 信息, 与第一组配置信息联合指示对哪些天线端口进行路损测量。
或者, 可组合上述实施例三和实施例四 /五, UE根据 eNodeB通过高层 信令或动态信令传输的标识位, 确定第一组配置信息指示测量 RSRP还是 指示测量 CSI。在第一组配置信息指示测量 RSRP的情况下, 第二组配置信 息还可使用 CSI-RS静默信息或集合的子集选择指示,联合指示对哪些天线 端口进行路损测量。
图 4是本发明一个实施例的用户设备的框图。 图 4的用户设备 40包括 接收单元 41和测量单元 42。 接收单元 41从基站接收信道状态信息参考信号 CSI-RS的配置信息, CSI-RS的配置信息包括参考信号端口信息和参考信号功率信息;测量单元, 用于基于 CSI-RS的配置信息测量用于进行上行功率控制的路损。
本发明实施例利用 CSI-RS进行路损测量,与公共的 CRS不同, CSI-RS 可以针对于特定的基站, 因此可以针对上行传输的目标基站进行路损测量, 使得路损补偿与实际路损相匹配, 从而提高了上行功率控制的性能。
用户设备 40可执行图 1所示的方法的各个过程, 并且可按照实施例一 至五的方式确定用于上行功率控制的路损。 因此, 为了避免重复, 适当省 略详细的描述。
可选地, 作为一个实施例, 测量单元 42可基于参考信号端口信息确定 进行测量的天线端口, 在所确定的天线端口上测量 CSI-RS的 RSRP, 根据 所测量的 RSRP和参考信号功率信息确定路损。
可选地, 作为另一实施例, 接收单元 41接收的配置信息还可以包括用 于表示参考信号端口信息的作用的标识位。 在标识位表示参考信号端口信 息用于进行信道状态信息测量时, 测量单元 42还用于测量参考信号端口信 息所表示的天线端口上的信道状态信息 CSI。在标识位表示参考信号端口信 息用于进行 RSRP测量时,测量单元 42在所确定的天线端口上测量 CSI-RS 的 RSRP, 根据所测量的 RSRP和参考信号功率信息确定路损。 例如上述实 施例三所述。
可选地, 作为另一实施例, 接收单元 41可通过高层信令或动态信令接 收上述配置信息。 可以一起接收配置信息所包括的各种信息, 也可以分开 单独接收。 例如, 参考信号端口信息和参考信号功率信息无需一一对应。 在配置信息中包括标识位的情况下, 标识位可以通过高层信令或动态信令 传输, 例如可以与上述参考信号端口信息和参考信号功率信息一起传输, 也可以分开单独传输。 此外, 标识位无需与参考信号端口信息——对应。
可选地, 作为另一实施例, 接收单元 41接收的参考信号端口信息可包 括由各个天线端口的路损测量指示组成的集合, 例如上述实施例一所述。 或者,接收单元 41接收的参考信号端口信息可包括由各个天线端口的 RSRP 测量指示组成的集合与基站配置的 CSI-RS静默信息,例如上述实施例五所 述。 或者, 接收单元 41接收的参考信号端口信息可包括由各个天线端口的 RSRP 测量指示组成的集合和集合的子集选择指示, 例如上述实施例四所 述。
可选地, 作为另一实施例, 上述由各个天线端口的 RSRP测量指示组 成的集合包括 1天线端口 CSI-RS配置的参考信号端口位图,或者包括所有 天线端口数的 CSI-RS配置的参考信号端口位图的级联。
可选地, 作为另一实施例, 上述集合的子集选择指示包括与集合对应 的指示位图。
可选地, 作为另一实施例, 上述参考信号功率信息包括 CSI-RS的发射 功率, 或者包括 CSI-RS的发射功率与公共参考信号 CRS的发射功率之间 的差值。
可选地, 作为另一实施例, 在参考信号功率信息包括 CSI-RS的发射功 率时, 测量单元 42测量的路损等于 CSI-RS的发射功率减去 RSRP,例如上 述公式 (6)。 在参考信号功率信息包括 CSI-RS的发射功率与 CRS的发射功 率之间的差值时,测量单元 42测量的路损等于该差值与 CRS的发射功率之 和减去 RSRP, 例如上述公式 (5)。
可选地, 作为另一实施例, 在基于参考信号端口信息确定的进行测量 的天线端口包括多个天线端口的情况下, 测量单元具体用于确定多个天线 端口中每个天线端口的路损, 根据每个天线端口的路损确定用于上行功率 控制的路损, 例如上述公式 (4
本发明实施例的用户设备 40利用 CSI-RS进行路损测量,与公共的 CRS 不同, CSI-RS可以针对于特定的基站, 因此可以针对上行传输的目标基站 进行路损测量, 使得路损补偿与实际路损相匹配, 从而提高了上行功率控 制的性能。
图 5是本发明一个实施例的基站的框图。 图 5的基站 50包括生成单元 51和发送单元 52。
生成单元 51生成信道状态信息参考信号 CSI-RS的配置信息, CSI-RS 的配置信息包括参考信号端口信息和参考信号功率信息。 发送单元 52向用 户设备发送 CSI-RS的配置信息, 以便用户设备基于 CSI-RS的配置信息测 量用于上行功率控制的路损。
本发明实施例利用 CSI-RS进行路损测量,与公共的 CRS不同, CSI-RS 可以针对于特定的基站, 因此可以针对上行传输的目标基站进行路损测量, 使得路损补偿与实际路损相匹配, 从而提高了上行功率控制的性能。
基站 50可执行图 2所示的方法的各个过程, 并且可按照实施例一至五 的方式使得用户设备确定用于上行功率控制的路损。 因此, 为了避免重复, 适当省略详细的描述。
可选地, 作为一个实施例, 生成单元 51生成的配置信息还包括用于表 示参考信号端口信息的作用的标识位。 在该标识位表示参考信号端口信息 用于进行信道状态信息测量时, 发送单元 52发送的配置信息使得用户设备 测量参考信号端口信息所表示的天线端口上的信道状态信息 CSI。在该标识 位表示参考信号端口信息用于进行 RSRP测量时, 发送单元 52发送的配置 信息使得用户设备在所确定的天线端口上测量 CSI-RS的 RSRP并根据所测 量的 RSRP和参考信号功率信息确定路损。
可选地, 作为另一实施例, 生成单元 51生成的参考信号端口信息可包 括由各个天线端口的路损测量指示组成的集合。 或者, 生成单元 51生成的 参考信号端口信息可包括由各个天线端口的 RSRP测量指示组成的集合与 基站配置的 CSI-RS静默信息。 或者, 生成单元 51生成的参考信号端口信 息包括由各个天线端口的 RSRP测量指示组成的集合和该集合的子集选择 指示。 可选地, 作为另一实施例, 上述由各个天线端口的 RSRP测量指示组 成的集合包括 1个 CSI-RS天线端口配置的参考信号端口位图,或者包括所 有 CSI-RS天线端口配置的参考信号端口位图的级联。
可选地, 作为另一实施例, 上述集合的子集选择指示包括与该集合对 应的指示位图。
可选地, 作为另一实施例, 生成单元 51生成的参考信号功率信息可包 括 CSI-RS的发射功率, 或者包括 CSI-RS的发射功率与公共参考信号 CRS 的发射功率之间的差值。
可选地, 作为另一实施例, 发送单元 52可通过高层信令或动态信令, 向用户设备发送 CSI-RS的配置信息。可以一起发送配置信息所包括的各种 信息, 也可以分开单独发送。 例如, 参考信号端口信息和参考信号功率信 息无需——对应。 在配置信息中包括标识位的情况下, 标识位可以通过高 层信令或动态信令传输, 例如可以与上述参考信号端口信息和参考信号功 率信息一起传输, 也可以分开单独传输。 此外, 标识位无需与参考信号端 口信息——对应。
本发明实施例的基站 50使得用户设备利用 CSI-RS进行路损测量, 与 公共的 CRS不同, CSI-RS可以针对于特定的基站, 因此可以针对上行传输 的目标基站进行路损测量, 使得路损补偿与实际路损相匹配, 从而提高了 上行功率控制的性能。
根据本发明实施例的通信系统可包括上述用户设备 40或基站 50。 本领域普通技术人员可以意识到, 结合本文中所公开的实施例描述的 各示例的单元及算法步骤, 能够以电子硬件、 或者计算机软件和电子硬件 的结合来实现。 这些功能究竟以硬件还是软件方式来执行, 取决于技术方 案的特定应用和设计约束条件。 专业技术人员可以对每个特定的应用来使 用不同方法来实现所描述的功能, 但是这种实现不应认为超出本发明的范 围。 所属领域的技术人员可以清楚地了解到, 为描述的方便和简洁, 上述 描述的系统、 装置和单元的具体工作过程, 可以参考前述方法实施例中的 对应过程, 在此不再赘述。
在本申请所提供的几个实施例中, 应该理解到, 所揭露的系统、 装置 和方法, 可以通过其它的方式实现。 例如, 以上所描述的装置实施例仅仅 是示意性的, 例如, 所述单元的划分, 仅仅为一种逻辑功能划分, 实际实 现时可以有另外的划分方式, 例如多个单元或组件可以结合或者可以集成 到另一个系统, 或一些特征可以忽略, 或不执行。 另一点, 所显示或讨论 的相互之间的耦合或直接耦合或通信连接可以是通过一些接口, 装置或单 元的间接耦合或通信连接, 可以是电性, 机械或其它的形式。 作为单元显示的部件可以是或者也可以不是物理单元, 即可以位于一个地 方, 或者也可以分布到多个网络单元上。 可以根据实际的需要选择其中的 部分或者全部单元来实现本实施例方案的目的。
另外, 在本发明各个实施例中的各功能单元可以集成在一个处理单元 中, 也可以是各个单元单独物理存在, 也可以两个或两个以上单元集成在 一个单元中。
所述功能如果以软件功能单元的形式实现并作为独立的产品销售或使 用时, 可以存储在一个计算机可读取存储介质中。 基于这样的理解, 本发 明的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的 部分可以以软件产品的形式体现出来, 该计算机软件产品存储在一个存储 介质中, 包括若干指令用以使得一台计算机设备(可以是个人计算机, 服 务器, 或者网络设备等)执行本发明各个实施例所述方法的全部或部分步 骤。而前述的存储介质包括: U盘、移动硬盘、只读存储器(ROM, Read-Only Memory )、 随机存取存者器( RAM, Random Access Memory ), 磁碟或者光 盘等各种可以存储程序代码的介质。 以上所述, 仅为本发明的具体实施方式, 但本发明的保护范围并不局 限于此, 任何熟悉本技术领域的技术人员在本发明揭露的技术范围内, 可 轻易想到变化或替换, 都应涵盖在本发明的保护范围之内。 因此, 本发明 的保护范围应所述以权利要求的保护范围为准。

Claims

权利要求
1、 一种上行功率控制的方法, 其特征在于, 包括:
从基站接收信道状态信息参考信号 CSI-RS的配置信息, 所述 CSI-RS 的配置信息包括参考信号端口信息和参考信号功率信息;
基于所述 CSI-RS的配置信息测量用于上行功率控制的路损。
2、 根据权利要求 1所述的方法, 其特征在于, 所述基于所述 CSI-RS 的配置信息测量所述用于上行功率控制的路损, 包括:
基于所述参考信号端口信息确定进行测量的天线端口;
在所确定的天线端口上测量所述 CSI-RS的参考信号接收功率 RSRP; 根据所测量的 RSRP和所述参考信号功率信息确定路损。
3、 根据权利要求 2所述的方法, 其特征在于, 所述配置信息还包括用 于表示所述参考信号端口信息的作用的标识位,
在所述标识位表示所述参考信号端口信息用于进行信道状态信息测量 时, 所述方法还包括测量所述参考信号端口信息所表示的天线端口上的信 道状态信息;
在所述标识位表示所述参考信号端口信息用于进行 RSRP测量时, 执 行在所确定的天线端口上测量所述 CSI-RS的 RSRP的过程以及根据所测量 的 RSRP和所述参考信号功率信息确定路损的过程。
4、 根据权利要求 3所述的方法, 其特征在于, 所述标识位通过动态信 令或高层信令传输。
5、 根据权利要求 1-4任一项所述的方法, 其特征在于,
所述参考信号端口信息包括由各个天线端口的路损测量指示组成的集 合; 或者,
所述参考信号端口信息包括由各个天线端口的 RSRP测量指示组成的 集合与基站配置的 CSI-RS静默信息; 或者,
所述参考信号端口信息包括由各个天线端口的 RSRP测量指示组成的 集合和所述集合的子集选择指示。
6、 根据权利要求 5所述的方法, 其特征在于, 所述由各个天线端口的 RSRP测量指示组成的集合包括 1天线端口的 CSI-RS配置的参考信号端口 位图,或者包括所有天线端口数的 CSI-RS端口配置的参考信号端口位图的 级联。
7、 根据权利要求 5所述的方法, 其特征在于, 所述集合的子集选择指 示包括与所述集合对应的指示位图。
8、 根据权利要求 2-4任一项所述的方法, 其特征在于, 所述参考信号 功率信息包括 CSI-RS的发射功率, 或者包括 CSI-RS的发射功率与公共参 考信号 CRS的发射功率之间的差值。
9、 根据权利要求 8所述的方法, 其特征在于,
在所述参考信号功率信息包括 CSI-RS的发射功率时,所述根据所测量 的 RSRP 和所述参考信号功率信息确定路损, 包括: 所述路损等于所述 CSI-RS的发射功率减去所述 RSRP;
在所述参考信号功率信息包括 CSI-RS的发射功率与 CRS的发射功率 之间的差值时, 所述根据所测量的 RSRP和所述参考信号功率信息确定路 损, 包括: 所述路损等于所述差值与 CRS的发射功率之和减去所述 RSRP, 所述路损的单位为 db。
10、 根据权利要求 2-4任一项所述的方法, 其特征在于, 在基于所述 参考信号端口信息确定的进行测量的天线端口包括多个天线端口的情况 下, 所述根据所测量的 RSRP和所述参考信号功率信息确定路损, 包括: 按照下式计算用于上行功率控制的路损 PLtarget
= - ioiog wio— ^ (4) 其中 P 为天线端口对应的路损, w为权重因子。
11、 根据权利要求 2-4任一项所述的方法, 其特征在于, 在基于所述 参考信号端口信息确定的进行测量的天线端口包括多个天线端口的情况 下, 所述根据所测量的 RSRP和所述参考信号功率信息确定路损, 包括: 对所述多个天线端口的一个或多个子集上测量的 RSRP进行平均, 然 后根据平均处理之后的 RSRP得到与上述一个或多个子集对应的路损, 并 根据所述对应的路损得到用于上行功率控制的路损。
12、 一种上行功率控制的方法, 其特征在于, 包括:
生成信道状态信息参考信号 CSI-RS的配置信息, 所述 CSI-RS的配置 信息包括参考信号端口信息和参考信号功率信息;
向用户设备发送所述 CSI-RS的配置信息,以便所述用户设备基于所述 CSI-RS的配置信息测量用于上行功率控制的路损。
13、 根据权利要求 12所述的方法, 其特征在于, 所述配置信息还包括 用于表示所述参考信号端口信息的作用的标识位,
在所述标识位表示所述参考信号端口信息用于进行信道状态信息测量 时, 所述配置信息使得所述用户设备测量所述参考信号端口信息所表示的 天线端口上的信道状态信息;
在所述标识位表示所述参考信号端口信息用于进行 RSRP测量时, 所 述配置信息使得所述用户设备在所确定的天线端口上测量所述 CSI-RS 的 RSRP并根据所测量的 RSRP和所述参考信号功率信息确定路损的过程。
14、 根据权利要求 12或 13所述的方法, 其特征在于,
所述参考信号端口信息包括由各个天线端口的路损测量指示组成的集 合; 或者,
所述参考信号端口信息包括由各个天线端口的 RSRP测量指示组成的 集合与基站配置的 CSI-RS静默信息; 或者,
所述参考信号端口信息包括由各个天线端口的 RSRP测量指示组成的 集合和所述集合的子集选择指示。
15、 根据权利要求 14所述的方法, 其特征在于, 所述由各个天线端口 的 RSRP测量指示组成的集合包括 1天线端口的 CSI-RS配置的参考信号端 口位图,或者包括所有天线端口数的 CSI-RS配置的参考信号端口位图的级 联。
16、 根据权利要求 14所述的方法, 其特征在于, 所述集合的子集选择 指示包括与所述集合对应的指示位图。
17、 根据权利要求 12或 13所述的方法, 其特征在于, 所述参考信号 功率信息包括 CSI-RS的发射功率, 或者包括 CSI-RS的发射功率与公共参 考信号 CRS的发射功率之间的差值。
18、 根据权利要求 12或 13所述的方法, 其特征在于, 所述向用户设 备发送所述 CSI-RS的配置信息, 包括:
通过高层信令或动态信令, 向用户设备发送所述 CSI-RS的配置信息。
19、 一种用户设备, 其特征在于, 包括:
接收单元, 用于从基站接收信道状态信息参考信号 CSI-RS 的配置信 息, 所述 CSI-RS的配置信息包括参考信号端口信息和参考信号功率信息; 测量单元,用于基于所述 CSI-RS的配置信息测量用于进行上行功率控 制的路损。
20、 根据权利要求 19所述的用户设备, 其特征在于, 所述测量单元具 体用于基于所述参考信号端口信息确定进行测量的天线端口, 在所确定的 天线端口上测量所述 CSI-RS 的参考信号接收功率 RSRP, 根据所测量的 RSRP和所述参考信号功率信息确定路损。
21、 根据权利要求 20所述的用户设备, 其特征在于, 所述接收单元接 收的配置信息还包括用于表示所述参考信号端口信息的作用的标识位, 在所述标识位表示所述参考信号端口信息用于进行信道状态信息测量 时, 所述测量单元还用于测量所述参考信号端口信息所表示的天线端口上 的信道状态信息;
在所述标识位表示所述参考信号端口信息用于进行 RSRP测量时, 所 述测量单元在所确定的天线端口上测量所述 CSI-RS的 RSRP, 根据所测量 的 RSRP和所述参考信号功率信息确定路损。
22、 根据权利要求 19-21任一项所述的用户设备, 其特征在于, 所述接收单元接收的参考信号端口信息包括由各个天线端口的路损测 量指示组成的集合; 或者,
所述接收单元接收的参考信号端口信息包括由各个天线端口的 RSRP 测量指示组成的集合与基站配置的 CSI-RS静默信息; 或者,
所述接收单元接收的参考信号端口信息包括由各个天线端口的 RSRP 测量指示组成的集合和所述集合的子集选择指示。
23、 根据权利要求 20或 21所述的用户设备, 其特征在于, 所述参考 信号功率信息包括 CSI-RS的发射功率, 或者包括 CSI-RS的发射功率与公 共参考信号 CRS的发射功率之间的差值。
24、 根据权利要求 23所述的用户设备, 其特征在于,
在所述参考信号功率信息包括 CSI-RS的发射功率时,所述测量单元测 量的路损等于所述 CSI-RS的发射功率减去所述 RSRP;
在所述参考信号功率信息包括 CSI-RS的发射功率与 CRS的发射功率 之间的差值时, 所述测量单元测量的路损等于所述差值与 CRS的发射功率 之和减去所述 RSRP,
所述路损的单位为 db。
25、 一种基站, 其特征在于, 包括:
生成单元, 用于生成信道状态信息参考信号 CSI-RS的配置信息, 所述 CSI-RS的配置信息包括参考信号端口信息和参考信号功率信息;
发送单元, 用于向用户设备发送所述 CSI-RS的配置信息, 以便所述用 户设备基于所述 CSI-RS的配置信息测量用于上行功率控制的路损。
26、 根据权利要求 25所述的基站, 其特征在于, 所述生成单元生成的 配置信息还包括用于表示所述参考信号端口信息的作用的标识位,
在所述标识位表示所述参考信号端口信息用于进行信道状态信息测量 时, 所述发送单元发送的配置信息使得所述用户设备测量所述参考信号端 口信息所表示的天线端口上的信道状态信息;
在所述标识位表示所述参考信号端口信息用于进行 RSRP测量时, 所 述发送单元发送的配置信息使得所述用户设备在所确定的天线端口上测量 所述 CSI-RS的 RSRP并根据所测量的 RSRP和所述参考信号功率信息确定 路损。
27、 根据权利要求 25或 26所述的基站, 其特征在于,
所述生成单元生成的参考信号端口信息包括由各个天线端口的路损测 量指示组成的集合; 或者,
所述生成单元生成的参考信号端口信息包括由各个天线端口的 RSRP 测量指示组成的集合与基站配置的 CSI-RS静默信息; 或者,
所述生成单元生成的参考信号端口信息包括由各个天线端口的 RSRP 测量指示组成的集合和所述集合的子集选择指示。
28、 根据权利要求 25或 26所述的方法, 其特征在于, 所述生成单元 生成的参考信号功率信息包括 CSI-RS的发射功率, 或者包括 CSI-RS的发 射功率与公共参考信号 CRS的发射功率之间的差值。
29、 根据权利要求 25或 26所述的方法, 其特征在于, 所述发送单元具体 用于通过高层信令或动态信令, 向用户设备发送所述 CSI-RS的配置信息。
PCT/CN2012/079914 2011-08-18 2012-08-10 上行功率控制的方法、用户设备和基站 WO2013023551A1 (zh)

Priority Applications (5)

Application Number Priority Date Filing Date Title
EP12823417.6A EP2747494B1 (en) 2011-08-18 2012-08-10 Uplink power control method, user equipment and base station
EP18202454.7A EP3512264B1 (en) 2011-08-18 2012-08-10 Uplink power control method, user equipment and base station
US14/183,101 US9578603B2 (en) 2011-08-18 2014-02-18 Uplink power control method, user equipment and base station
US15/399,424 US10484949B2 (en) 2011-08-18 2017-01-05 Uplink power control method, user equipment and base station
US16/669,171 US11470558B2 (en) 2011-08-18 2019-10-30 Uplink power control method, user equipment and base station

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201110237430.1 2011-08-18
CN201110237430.1A CN102958147B (zh) 2011-08-18 2011-08-18 上行功率控制的方法、用户设备和基站

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US14/183,101 Continuation US9578603B2 (en) 2011-08-18 2014-02-18 Uplink power control method, user equipment and base station

Publications (1)

Publication Number Publication Date
WO2013023551A1 true WO2013023551A1 (zh) 2013-02-21

Family

ID=47714750

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2012/079914 WO2013023551A1 (zh) 2011-08-18 2012-08-10 上行功率控制的方法、用户设备和基站

Country Status (4)

Country Link
US (3) US9578603B2 (zh)
EP (2) EP3512264B1 (zh)
CN (2) CN102958147B (zh)
WO (1) WO2013023551A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106921478A (zh) * 2015-12-28 2017-07-04 夏普株式会社 窄带物联网物理下行信道的复用方法、基站和用户设备
CN110535605A (zh) * 2019-06-19 2019-12-03 中兴通讯股份有限公司 路损参考信号指示方法及装置、终端、基站及存储介质

Families Citing this family (39)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2605433B1 (en) * 2010-08-11 2019-02-27 GoldPeak Innovations Inc. Apparatus and method for transmitting muting information, and apparatus and method for acquiring channel state using same
CN102984746A (zh) * 2011-09-05 2013-03-20 爱立信(中国)通信有限公司 提高网络中性能的参考信号功率测量和报告
WO2014153745A1 (zh) * 2013-03-27 2014-10-02 富士通株式会社 发送功率确定方法及其装置、通信系统
EP2996378B1 (en) 2013-06-19 2019-01-30 Huawei Technologies Co., Ltd. Communication quality measurement method
US10404442B2 (en) * 2013-07-02 2019-09-03 Texas Instruments Incorporated Inter-point parameter signaling in coordinated multi-point (CoMP) networks
US9439097B2 (en) * 2014-02-10 2016-09-06 Alcatel Lucent Selective signaling information sharing for CoMP enhancement
EP3119121B1 (en) * 2014-04-04 2020-06-03 Huawei Technologies Co., Ltd. Reference signal detection method, receiving method, user equipment and base station
KR102301826B1 (ko) 2014-08-27 2021-09-14 삼성전자 주식회사 무선 통신 시스템 및 그 시스템에서 간섭 조정을 위한 자원 관리 방법
CN105450272B (zh) * 2014-09-15 2021-07-20 中兴通讯股份有限公司 一种导频信息的反馈方法、装置及终端
US9992746B2 (en) * 2014-10-28 2018-06-05 Qualcomm Incorporated Uplink power control in multi-user unlicensed wireless networks
US10476563B2 (en) * 2014-11-06 2019-11-12 Futurewei Technologies, Inc. System and method for beam-formed channel state reference signals
ES2847624T5 (es) 2015-01-30 2024-02-23 Nokia Solutions & Networks Oy Método y aparato para realizar mediciones de gestión de recursos de radio
CN105992427A (zh) * 2015-01-30 2016-10-05 峒鑫科技股份有限公司 发光二极管调光电路
WO2017007240A1 (ko) * 2015-07-06 2017-01-12 삼성전자 주식회사 이동 통신 시스템에서 채널을 측정하는 방법 및 장치
US11178646B2 (en) 2016-04-19 2021-11-16 Qualcomm Incorporated Beam reference signal based narrowband channel measurement and CQI reporting
CN107623942B (zh) * 2016-07-14 2022-06-17 中兴通讯股份有限公司 上行功率的调整方法和装置
WO2018027918A1 (zh) 2016-08-12 2018-02-15 华为技术有限公司 上行信道发送方法和装置
CN108207029B (zh) * 2016-12-18 2020-05-26 上海朗帛通信技术有限公司 一种ue、基站中的方法和设备
CN108259149B (zh) * 2016-12-29 2023-05-05 华为技术有限公司 发送/接收参考信号的方法及终端设备、网络设备
CN108260197B (zh) 2016-12-29 2019-03-08 上海朗帛通信技术有限公司 一种用于功率调整的ue、基站中的方法和装置
CN108574982B (zh) * 2017-03-07 2021-05-28 上海朗帛通信技术有限公司 一种被用于功率调整的用户设备、基站中的方法和装置
KR20190140020A (ko) * 2017-04-28 2019-12-18 후아웨이 테크놀러지 컴퍼니 리미티드 정보 송신 방법, 수신 전력 측정 방법, 장치 및 시스템
CN116015378A (zh) * 2017-05-05 2023-04-25 中兴通讯股份有限公司 信道状态信息的反馈、接收方法及装置、设备、存储介质
CN111132294B (zh) * 2017-05-27 2021-03-09 Oppo广东移动通信有限公司 无线通信方法和设备
CN109120355B (zh) * 2017-06-26 2024-01-02 华为技术有限公司 确定路径损耗的方法与装置
CN109257818B (zh) * 2017-07-13 2023-05-09 中国移动通信有限公司研究院 参考信号配置、发送方法、基站、终端、计算机可读存储介质
CN108111274B (zh) * 2017-08-11 2021-11-30 中兴通讯股份有限公司 信道状态信息的、信息发送、接收方法及装置
CN109412767B (zh) * 2017-08-18 2021-01-15 中国移动通信有限公司研究院 参考信号的发射功率的指示、接收方法、网络设备及终端
JP2019062506A (ja) * 2017-09-28 2019-04-18 シャープ株式会社 端末装置および方法
CA3083010A1 (en) 2017-11-23 2019-05-31 Guangdong Oppo Mobile Telecommunications Corp., Ltd. Signal transmission method, terminal device and network device
CN109842926B (zh) * 2017-11-27 2021-06-29 华为技术有限公司 一种功率控制的方法、装置及系统
KR102414678B1 (ko) 2018-01-08 2022-06-29 삼성전자주식회사 무선통신시스템에서 상향링크 전송전력 제어 방법 및 장치
KR102439792B1 (ko) 2018-02-14 2022-09-02 삼성전자주식회사 무선 통신 시스템에서 송신 전력을 결정하기 위한 장치 및 방법
US11909480B2 (en) * 2018-03-23 2024-02-20 Lenovo (Beijing) Limited Method and apparatus for non-codebook based UL transmission
CN111224698B (zh) 2018-11-23 2021-03-26 上海朗帛通信技术有限公司 一种被用于无线通信的用户设备、基站中的方法和装置
KR102551164B1 (ko) * 2019-05-03 2023-07-04 엘지전자 주식회사 Nr v2x에서 rsrp를 결정하는 방법 및 장치
KR20220124030A (ko) * 2021-03-02 2022-09-13 삼성전자주식회사 복수의 안테나들을 포함하는 전자 장치 및 이의 동작 방법
WO2023180065A2 (en) * 2022-03-23 2023-09-28 Sony Group Corporation Methods, communications devices, infrastructure equipment and systems
WO2023196281A1 (en) * 2022-04-08 2023-10-12 Interdigital Patent Holdings, Inc. Enhanced power control

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101420702A (zh) * 2008-10-30 2009-04-29 中兴通讯股份有限公司 中继系统部署方法和中继系统
WO2010091425A2 (en) * 2009-02-09 2010-08-12 Interdigital Patent Holdings, Inc. Apparatus and method for uplink power control for a wireless transmitter/receiver unit utilizing multiple carriers

Family Cites Families (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100025447A1 (en) * 2008-07-30 2010-02-04 Colin Smart Bandolier
KR101571563B1 (ko) * 2008-09-24 2015-11-25 엘지전자 주식회사 다중셀 협력 무선통신시스템에서의 상향링크 전력의 제어 방법 및 이를 지원하는 단말
KR101619446B1 (ko) * 2008-12-02 2016-05-10 엘지전자 주식회사 하향링크 mimo시스템에 있어서 rs 전송 방법
KR101513637B1 (ko) * 2008-12-31 2015-04-20 엘지전자 주식회사 다중 안테나를 구비한 이동 단말기 및 그의 안테나 정보 표시방법
US8472539B2 (en) * 2009-04-07 2013-06-25 Lg Electronics Inc. Method of transmitting power information in wireless communication system
CN101902750B (zh) * 2009-05-26 2012-12-05 电信科学技术研究院 一种调整功率参数值的方法和设备
US8543128B2 (en) * 2009-06-22 2013-09-24 Htc Corporation Method of handling positioning measurement and related communication device
US8331937B2 (en) * 2009-08-17 2012-12-11 Motorola Mobility Llc Mitigation of uplink interference from wireless communication device connected to a micro cell
KR101641968B1 (ko) * 2009-09-14 2016-07-29 엘지전자 주식회사 다중입출력 무선 통신 시스템에서 하향링크 신호 전송 방법 및 장치
CN102076076B (zh) * 2009-11-20 2015-11-25 夏普株式会社 一种解调参考信号的资源分配通知方法
EP2518919A4 (en) * 2009-12-22 2016-12-28 Lg Electronics Inc METHOD AND APPARATUS FOR EFFICIENT CHANNEL MEASUREMENT IN A MULTI-CARRIER WIRELESS COMMUNICATION SYSTEM
JP2011142437A (ja) * 2010-01-06 2011-07-21 Ntt Docomo Inc 無線基地局装置、移動端末装置及び無線通信方法
EP3761550B1 (en) * 2010-02-11 2021-07-07 Samsung Electronics Co., Ltd. Method for indicating a dm-rs antenna port in a wireless communication system
US8918135B2 (en) * 2010-03-08 2014-12-23 Lg Electronics Inc. Method and apparatus for controlling uplink transmission power
WO2011125300A1 (ja) * 2010-04-05 2011-10-13 パナソニック株式会社 無線通信装置、及び無線通信方法
US9185570B2 (en) * 2010-05-18 2015-11-10 Lg Electronics Inc. Method and apparatus for performing channel measurement in a distributed multi-node system
WO2012020963A2 (en) * 2010-08-13 2012-02-16 Lg Electronics Inc. Method and base station for transmitting downlink signal and method and equipment for receiving downlink signal
KR101671287B1 (ko) * 2010-08-13 2016-11-01 삼성전자 주식회사 무선 통신 시스템에서 기준 신호 송수신 방법 및 장치
CN101986752B (zh) * 2010-11-04 2013-03-13 杭州市电信规划设计院有限公司 一种lte系统上行功率的控制方法
US20120281555A1 (en) * 2011-05-02 2012-11-08 Research In Motion Limited Systems and Methods of Wireless Communication with Remote Radio Heads
US9344299B2 (en) * 2011-05-13 2016-05-17 Lg Electronics Inc. CSI-RS based channel estimating method in a wireless communication system and device for same
US20140141830A1 (en) * 2011-06-08 2014-05-22 Peter Skov Transmission Power
US20130003604A1 (en) * 2011-06-30 2013-01-03 Research In Motion Limited Method and Apparatus for Enhancing Downlink Control Information Transmission
US8983391B2 (en) * 2011-08-12 2015-03-17 Sharp Kabushiki Kaisha Signaling power allocation parameters for uplink coordinated multipoint (CoMP)

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101420702A (zh) * 2008-10-30 2009-04-29 中兴通讯股份有限公司 中继系统部署方法和中继系统
WO2010091425A2 (en) * 2009-02-09 2010-08-12 Interdigital Patent Holdings, Inc. Apparatus and method for uplink power control for a wireless transmitter/receiver unit utilizing multiple carriers

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
INTEL CORPORATION: "Uplink Power Control Discussion for CoMP Scenario 4", 3GPP TSG-RAN WGL #65 R1-111598, 13 May 2011 (2011-05-13) *
See also references of EP2747494A4 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106921478A (zh) * 2015-12-28 2017-07-04 夏普株式会社 窄带物联网物理下行信道的复用方法、基站和用户设备
CN110535605A (zh) * 2019-06-19 2019-12-03 中兴通讯股份有限公司 路损参考信号指示方法及装置、终端、基站及存储介质

Also Published As

Publication number Publication date
US9578603B2 (en) 2017-02-21
CN106413067B (zh) 2019-11-29
US20200068498A1 (en) 2020-02-27
EP3512264A1 (en) 2019-07-17
CN102958147A (zh) 2013-03-06
EP2747494A1 (en) 2014-06-25
US10484949B2 (en) 2019-11-19
US11470558B2 (en) 2022-10-11
CN106413067A (zh) 2017-02-15
EP2747494B1 (en) 2018-11-28
EP2747494A4 (en) 2014-06-25
US20170118720A1 (en) 2017-04-27
US20140162717A1 (en) 2014-06-12
EP3512264B1 (en) 2020-10-07
CN102958147B (zh) 2016-08-24

Similar Documents

Publication Publication Date Title
US11470558B2 (en) Uplink power control method, user equipment and base station
US11317353B2 (en) Beam indication for uplink power control
CN110291762B (zh) 减少无线通信系统中的干扰的系统和方法
US11758485B2 (en) Signal transmission method, terminal device, and network device
CN106455030B (zh) 上行功率控制的方法、用户设备和接入点
TWI676370B (zh) 一種發送下行控制資訊dci的方法及裝置
JP6388348B2 (ja) パイロット信号伝送方法、基地局、およびユーザ装置
WO2018137424A1 (zh) 上行测量参考信号的功率控制方法、网络设备及终端设备
JP7230193B2 (ja) アンテナパネル決定方法、ユーザ端末、およびコンピュータ可読記憶媒体
WO2012175812A1 (en) Codebooks for mobile communications
WO2018187977A1 (zh) 上行功率控制方法、设备及系统
WO2015149333A1 (zh) 一种csi报告方法和设备
WO2012159364A1 (zh) 一种上行功率控制方法、基站及用户设备
EP3829243A1 (en) Resource management method and communication apparatus
WO2014075282A1 (zh) 接入方法及设备
JP6625747B2 (ja) 共通セルネットワークにおけるマルチアンテナ伝送方法、及び基地局
JP7127070B2 (ja) アンテナポートマッピング方法およびネットワーク機器
WO2013087024A1 (zh) 发射信号的方法和基站
CN106559119B (zh) 用于大规模天线虚拟扇区赋形的方法、基站和系统
WO2023202338A1 (zh) 信息传输方法、装置、终端、网络侧设备及介质
US20160183270A1 (en) Information transmission method, base station, user equipment, and radio network controller

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12823417

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE