WO2013023507A1 - 转子装置、涡轮转子装置、具有其的燃气轮机和涡轮发动机 - Google Patents
转子装置、涡轮转子装置、具有其的燃气轮机和涡轮发动机 Download PDFInfo
- Publication number
- WO2013023507A1 WO2013023507A1 PCT/CN2012/078518 CN2012078518W WO2013023507A1 WO 2013023507 A1 WO2013023507 A1 WO 2013023507A1 CN 2012078518 W CN2012078518 W CN 2012078518W WO 2013023507 A1 WO2013023507 A1 WO 2013023507A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- turbine rotor
- turbine
- fiber
- prestressed
- rotor device
- Prior art date
Links
- 239000000835 fiber Substances 0.000 claims description 125
- 238000004804 winding Methods 0.000 claims description 31
- 238000007789 sealing Methods 0.000 claims description 15
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 claims description 9
- 239000011248 coating agent Substances 0.000 claims description 9
- 238000000576 coating method Methods 0.000 claims description 9
- HBMJWWWQQXIZIP-UHFFFAOYSA-N silicon carbide Chemical compound [Si+]#[C-] HBMJWWWQQXIZIP-UHFFFAOYSA-N 0.000 claims description 9
- 229910010271 silicon carbide Inorganic materials 0.000 claims description 9
- 229920000049 Carbon (fiber) Polymers 0.000 claims description 8
- 239000004917 carbon fiber Substances 0.000 claims description 8
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 claims description 8
- ZOXJGFHDIHLPTG-UHFFFAOYSA-N Boron Chemical compound [B] ZOXJGFHDIHLPTG-UHFFFAOYSA-N 0.000 claims description 7
- 229910052796 boron Inorganic materials 0.000 claims description 7
- 230000003064 anti-oxidating effect Effects 0.000 claims description 6
- TWNQGVIAIRXVLR-UHFFFAOYSA-N oxo(oxoalumanyloxy)alumane Chemical compound O=[Al]O[Al]=O TWNQGVIAIRXVLR-UHFFFAOYSA-N 0.000 claims description 2
- 230000004308 accommodation Effects 0.000 claims 1
- 230000003647 oxidation Effects 0.000 claims 1
- 238000007254 oxidation reaction Methods 0.000 claims 1
- 230000035882 stress Effects 0.000 description 64
- 239000000463 material Substances 0.000 description 12
- 230000036316 preload Effects 0.000 description 12
- 238000000034 method Methods 0.000 description 11
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 6
- 229910052799 carbon Inorganic materials 0.000 description 6
- UQZIWOQVLUASCR-UHFFFAOYSA-N alumane;titanium Chemical compound [AlH3].[Ti] UQZIWOQVLUASCR-UHFFFAOYSA-N 0.000 description 4
- 230000006378 damage Effects 0.000 description 4
- 230000002093 peripheral effect Effects 0.000 description 4
- 238000003466 welding Methods 0.000 description 4
- 229910001069 Ti alloy Inorganic materials 0.000 description 3
- 239000002131 composite material Substances 0.000 description 3
- 238000009826 distribution Methods 0.000 description 3
- 230000000694 effects Effects 0.000 description 3
- 238000004880 explosion Methods 0.000 description 3
- 229910000765 intermetallic Inorganic materials 0.000 description 3
- 230000035515 penetration Effects 0.000 description 3
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 2
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 2
- 238000010894 electron beam technology Methods 0.000 description 2
- 238000004519 manufacturing process Methods 0.000 description 2
- 229920002239 polyacrylonitrile Polymers 0.000 description 2
- 238000005245 sintering Methods 0.000 description 2
- 229910000838 Al alloy Inorganic materials 0.000 description 1
- 229910000831 Steel Inorganic materials 0.000 description 1
- 229910045601 alloy Inorganic materials 0.000 description 1
- 239000000956 alloy Substances 0.000 description 1
- 239000012080 ambient air Substances 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 239000010941 cobalt Substances 0.000 description 1
- 229910017052 cobalt Inorganic materials 0.000 description 1
- GUTLYIVDDKVIGB-UHFFFAOYSA-N cobalt atom Chemical compound [Co] GUTLYIVDDKVIGB-UHFFFAOYSA-N 0.000 description 1
- 239000013078 crystal Substances 0.000 description 1
- 229910052742 iron Inorganic materials 0.000 description 1
- 230000007774 longterm Effects 0.000 description 1
- 229910052759 nickel Inorganic materials 0.000 description 1
- 230000009528 severe injury Effects 0.000 description 1
- 239000010959 steel Substances 0.000 description 1
- 229910000601 superalloy Inorganic materials 0.000 description 1
- 230000008646 thermal stress Effects 0.000 description 1
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01D—NON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
- F01D5/00—Blades; Blade-carrying members; Heating, heat-insulating, cooling or antivibration means on the blades or the members
- F01D5/12—Blades
- F01D5/28—Selecting particular materials; Particular measures relating thereto; Measures against erosion or corrosion
- F01D5/282—Selecting composite materials, e.g. blades with reinforcing filaments
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01D—NON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
- F01D5/00—Blades; Blade-carrying members; Heating, heat-insulating, cooling or antivibration means on the blades or the members
- F01D5/02—Blade-carrying members, e.g. rotors
- F01D5/03—Annular blade-carrying members having blades on the inner periphery of the annulus and extending inwardly radially, i.e. inverted rotors
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01D—NON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
- F01D5/00—Blades; Blade-carrying members; Heating, heat-insulating, cooling or antivibration means on the blades or the members
- F01D5/12—Blades
- F01D5/22—Blade-to-blade connections, e.g. for damping vibrations
- F01D5/225—Blade-to-blade connections, e.g. for damping vibrations by shrouding
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01D—NON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
- F01D5/00—Blades; Blade-carrying members; Heating, heat-insulating, cooling or antivibration means on the blades or the members
- F01D5/12—Blades
- F01D5/28—Selecting particular materials; Particular measures relating thereto; Measures against erosion or corrosion
- F01D5/288—Protective coatings for blades
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01D—NON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
- F01D5/00—Blades; Blade-carrying members; Heating, heat-insulating, cooling or antivibration means on the blades or the members
- F01D5/34—Rotor-blade aggregates of unitary construction, e.g. formed of sheet laminae
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F05—INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
- F05D—INDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
- F05D2300/00—Materials; Properties thereof
- F05D2300/60—Properties or characteristics given to material by treatment or manufacturing
- F05D2300/603—Composites; e.g. fibre-reinforced
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02T—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
- Y02T50/00—Aeronautics or air transport
- Y02T50/60—Efficient propulsion technologies, e.g. for aircraft
Definitions
- the rotor is equipped with more turbines and has its own
- the present invention relates to the field of turbine engines and gas turbines, and in particular to a prestressed wound rotor device, particularly a turbine rotor device, and a gas turbine and turbine engine therewith. Background technique
- Turbine rotors are key operating components for aerospace, aerospace engines and gas turbines. In the harsh conditions of high temperature and high speed, long-term stable operation is required. The centrifugal force generated by the high rotation speed, as well as the complex stresses such as the thermal stress, the pneumatic force of the gas or steam, and the vibration load act on the turbine disk and the blades of the turbine rotor to form a stress state mainly based on tensile stress.
- the turbine material must have high strength at high temperatures and excellent fatigue resistance. Once the blades or turbine disks of the turbine rotor fail, the centrifugal force of high-speed rotation causes the debris to fly out at high speed, causing severe damage to other parts of the engine.
- the present invention aims to at least solve one of the technical problems existing in the prior art.
- the present invention is required to provide a rotor device which can improve the fatigue life or operating temperature of the turbine rotor and further improve its safety.
- the invention also needs to provide a gas turbine or turbine engine having the turbine rotor arrangement.
- a turbine rotor apparatus comprising: a turbine rotor body; and a pre-stressed fiber winding layer disposed on an outer circumference of the turbine rotor body to The turbine rotor body applies a predetermined preload force.
- the working stress in the turbine rotor can be reduced by prestressing the prestressed fiber wound layer, thereby increasing the working life and operating temperature of the turbine rotor.
- the crack growth generated in the turbine rotor main body at a high temperature can be effectively prevented, thereby having good antiknock performance and further improving the safety of the gas turbine.
- the coefficient of thermal expansion of the prestressed fiber wound layer is not greater than a coefficient of thermal expansion of the turbine rotor body.
- a gas turbine comprising a turbine rotor arrangement as described above.
- a turbine engine comprising a turbine rotor arrangement as described above.
- a rotor apparatus comprising: a rotor body; and a pre-stressed fiber winding layer, the pre-stressed fiber winding layer being disposed on an outer circumference of the rotor body to face the rotor body A predetermined preload is applied.
- the working stress in the rotor can be reduced by prestressing the prestressed fiber wound layer, thereby increasing the working life and operating temperature of the rotor.
- the crack growth generated in the rotor body at a high temperature can be effectively prevented, thereby having good explosion-proof performance and further improving the safety of the gas turbine.
- the pre-stressed fiber wound layer has a coefficient of thermal expansion not greater than a coefficient of thermal expansion of the turbine rotor body.
- Figure 1 is a perspective view of a turbine rotor device in accordance with a first embodiment of the present invention
- Figure 2 is a partially cutaway perspective view of the turbine rotor assembly shown in Figure 1;
- Figure 3 is a partial enlarged view of the turbine rotor device shown in Figure 2;
- Figure 4 is a partial cross-sectional perspective view showing a turbine rotor device according to a second embodiment of the present invention
- Figure 5 is a partial enlarged view of the turbine rotor device shown in Figure 4;
- Figure 6 is a partial cross-sectional perspective view showing a turbine rotor device according to a third embodiment of the present invention
- Figure 7 is a partially enlarged view of the turbine rotor device shown in Figure 6;
- Figure 8 is a perspective view of a turbine rotor apparatus in accordance with a fourth embodiment of the present invention. Symbol Description:
- first and second are used for descriptive purposes only and are not to be construed as indicating or implying a relative importance or implicit indication of the number of technical features indicated. Thus, features defining “first”, “second” may explicitly or implicitly include one or more of the features. Further, in the description of the present invention, “multiple” means two or more unless otherwise stated.
- the present invention is based on the inventor's inventive concept that a fiber having a low mass density, high strength, and high temperature performance is wound onto a peripheral circumference of a turbine rotor with a predetermined tensile stress, and a predetermined preload force is applied to a rotor such as a turbine rotor.
- a rotor such as a turbine rotor.
- the additional pre-stress caused by the difference in coefficient of thermal expansion between the pre-stressed fiber wound layer and the rotor body when operating at high temperatures greatly enhances the operating life of the entire gas turbine and increases the operating temperature of the gas turbine.
- due to the protection of the prestressed fiber wrap layer it has good explosion-proof performance and further improves the safety of the gas turbine.
- the prestressing technique is a structural design technique that improves the fatigue resistance and load carrying capacity of the structure by changing the working stress state of the structure and the material. Therefore, the stress state of the whole structure during work is mainly changed from tensile stress to compressive stress, or tensile stress is greatly reduced, thereby improving the fatigue resistance of the entire structure ;
- the working temperature of the existing prestressed steel wire winding is not more than 80 ° C, there is a disadvantage of large creep and relaxation at high temperature, and in the present invention, low density, high temperature resistance and high strength are considered.
- the wire or fiber acts as a winding pretension.
- one or more of carbon fiber, silicon carbide fiber, boron fiber, alumina fiber or the like may be used.
- a general-purpose polyacrylonitrile (PAN)-based carbon fiber T700 produced by Japan Toray Co., Ltd., having a density of 1.80 g/cm 3 and a tensile strength of up to 4. 9 GPa, can be used under anaerobic conditions. Above 2000 °C, there is no high temperature creep problem.
- a turbine rotor apparatus for a gas turbine in an embodiment of the present invention includes a turbine rotor main body 1 and a pre-stressed fiber winding layer 2.
- the pre-stressed fiber wound layer 1 is provided on the outer circumference of the turbine rotor main body 1 to apply a predetermined pre-tightening force to the turbine rotor main body 1.
- the working stress in the turbine rotor can be reduced by prestressing the prestressed fiber wound layer 2, thereby increasing the working life and operating temperature of the turbine rotor.
- the coefficient of thermal expansion of the prestressed fiber wound layer 2 is not greater than the coefficient of thermal expansion of the turbine rotor body 1.
- an additional prestressed phase can be obtained by pre-stressing the prestressed fiber wound layer 1 and the difference in thermal expansion coefficient between the prestressed fiber wound layer 2 and the turbine rotor body 1 when operating at high temperatures.
- the combination further reduces the working stress in the turbine rotor, thereby increasing the operating life and operating temperature of the turbine rotor.
- the expansion of cracks generated in the turbine rotor main body 1 at a high temperature can be effectively prevented, thereby having good explosion-proof performance and further improving the safety of the gas turbine.
- the turbine rotor apparatus in the first embodiment of the present invention comprises a turbine rotor main body 1 and a pre-stressed fiber winding layer 2 wound around the outer circumference of the turbine rotor main body 1.
- the turbine rotor main body 1 includes a turbine disk 11, a boring head 12, blades 13 and a shroud 14.
- the blade 13 is fixed to the outer circumference of the turbine disk 11 by a boring head 12 which is disposed on the outer circumference of the blade 13.
- the pre-stressed fiber winding layer 1 includes a receiving groove body 21 and pre-stressed fibers 22.
- the accommodating groove body 21 is provided on the outer circumference of the turbine rotor main body 1 and is formed with a accommodating groove 210 along the circumferential direction of the accommodating groove body 21.
- the prestressed fibers are wound in the accommodating groove 210 with a predetermined tensile stress.
- the pre-stressed fiber has a coefficient of thermal expansion that is not greater than a coefficient of thermal expansion of the turbine rotor body.
- the pre-stressed fiber winding layer 2 may further include a sealing cover 23 for sealing the receiving groove 210 of the receiving groove body 21 to form a sealed structure, and isolating the prestressing force.
- the fiber 22 is in contact with the ambient air stream.
- the accommodating tank body 21 may be made of a low-temperature-resistant high-temperature material such as a titanium alloy, a titanium-aluminum intermetallic compound, a carbon/carbon composite material, an alumina ceramic, or the like, which is substantially formed with the turbine rotor main body 1.
- the outer peripheral surface is shaped to have a circular shape, and the outer peripheral surface of the accommodating groove body 21 is formed with a circumferentially extending accommodating groove 210 as shown in FIG.
- the pre-stressed fiber 11 may be made of at least one of a material having a low mass density, a high strength, and a high-temperature property, such as carbon fiber, silicon carbide fiber, alumina fiber, and boron fiber, preferably 0 to 10. OGPa.
- Stress layer by layer A wound layer having a winding thickness of about 0.5 to 100 mm along the turbine rotor main body 1 is formed in the above-described accommodating tank body 21, thereby applying a predetermined magnitude of pre-stress to the turbine rotor main body 1 in the radial direction.
- the expansion of the crack generated in the turbine rotor main body 1 at a high temperature can be effectively prevented, thereby having good explosion-proof performance and further improving the safety of the gas turbine.
- the outer circumferential winding layer can slow down the crack penetration speed, thereby preventing explosion and preventing the debris from flying out, and avoiding more serious secondary damage.
- the coefficient of thermal expansion of the prestressed fiber 11 is not greater than the coefficient of thermal expansion of the turbine rotor body 1 (specifically, the turbine disk 11, the boring head 12, the blade 13 and the lobes 14).
- the coefficient of thermal expansion of the prestressed fiber 11 is about 0.93 X 10-7 ° C
- the coefficient of thermal expansion of the turbine rotor body 1 is about 11 ⁇ 10-7 ° C _ 16 xl O-7 ° C.
- the thermal pre-tightening force due to the difference in the thermal expansion coefficient of the pre-stressed fiber 11 and the turbine rotor main body 1 and the uneven distribution of the operating temperature of the turbine rotor main body 1 causes the turbine rotor main body 1 to be placed.
- the actual preload force is greater than the initial preload force, thereby further reducing the working stress of the turbine rotor body 1 and improving the safety of the gas turbine.
- the sealing cover 23, similar to the accommodating groove body 21, may also be made of a low-temperature-resistant high-temperature material such as a titanium alloy, a titanium-aluminum intermetallic compound, a carbon/carbon composite material, or an alumina ceramic, which is mounted on the entanglement
- a low-temperature-resistant high-temperature material such as a titanium alloy, a titanium-aluminum intermetallic compound, a carbon/carbon composite material, or an alumina ceramic, which is mounted on the entanglement
- the outer side of the prestressed fiber 11 in the tank body 21 is accommodated to isolate the prestressed fiber 11 from the external environment, thereby preventing the prestressed fiber 11 from being oxidized and damaged in a high temperature environment.
- the turbine disk 11, the boring head 12, the blade 13 and the blade crown 14 are first assembled to constitute the turbine rotor main body 1. Then, after the accommodating groove body 21 is sleeved outside the blade crown 14 of the turbine rotor body 1 with a gap of 0.001 mm - 0.01, the prestressed fiber 11 is layer by layer with a tensile stress of 0 - 10. OGPa.
- the entangled layer having a thickness of about 0.5 to 100 indented along the turbine rotor body 1 is formed in the accommodating groove 210.
- the sealing cover 23 is mounted in the accommodating groove 210 on the accommodating groove body 21 to cover the pre-stressed fibers 22. Finally, the sealing cover 23 and the accommodating groove 21 are hermetically joined at the joint of the sealing cover 23 and the accommodating groove 210 by means of electron beam welding, laser welding or sintering.
- the initial pre-stress (pressure) of up to 300 MPa and OO MPa can be accurately applied to the turbine disk 11 and the blade 13 by effectively setting the tensile stress of the pre-stressed fiber 22.
- the pre-stress provided by the pre-stressed fiber wound layer 1 and the additional pre-stress caused by the difference in thermal expansion coefficient between the pre-stressed fiber wound layer 1 and the turbine rotor body 1 when operating at a high temperature The working stress in the turbine rotor is further reduced, thereby increasing the working life and operating temperature of the turbine rotor.
- the expansion of cracks generated in the turbine rotor main body 1 at a high temperature can be effectively prevented, thereby having good explosion-proof performance and further improving the safety of the gas turbine.
- the turbine rotor apparatus in the second embodiment of the present invention includes a turbine rotor main body 1 and a pre-stressed fiber winding layer 2 wound around the outer circumference of the turbine rotor main body 1.
- the turbine rotor main body 1 includes a turbine disk 11, a boring head 12, a blade 13 and a blade crown 14.
- the blade 13 is fixed to the outer circumference of the turbine disk 11 by a boring head 12.
- the crown 14 is disposed on the outer circumference of the blade 13, and the two peripheral edges of the crown 14 are turned outward to form a circumferentially extending receiving groove 140 (corresponding to the canopy 14 and the receiving groove in the first embodiment) 21 - body formation).
- the pre-stressed fiber 11 may be made of at least one of a material having a low mass density, a high strength, and a high-temperature property, such as carbon fiber, silicon carbide fiber, alumina fiber, and boron fiber, preferably 0 to 10. OGPa.
- the stress is wound layer by layer in the accommodating groove 140 to form a wound layer having a thickness of about 0.5 to 100 in the radial direction of the turbine rotor main body 1, thereby applying a predetermined size to the turbine rotor main body 1 in the radial direction. Prestressing.
- the expansion of the crack generated in the turbine rotor main body 1 at a high temperature can be effectively prevented, thereby having good explosion-proof performance and further improving the safety of the gas turbine.
- the outer wrap layer can slow the crack penetration speed, thereby preventing explosion and preventing debris from flying out, avoiding more serious secondary damage.
- the coefficient of thermal expansion of the prestressed fibers 11 is not greater than the coefficient of thermal expansion of the turbine rotor main body 1 (specifically, the turbine disk 11, the hoe 12, the blade 13 and the shroud 14).
- the coefficient of thermal expansion of the prestressed fiber 11 is about 0.93 X 10-7 ° C
- the coefficient of thermal expansion of the turbine rotor body 1 is about 11 ⁇ 10-7 ° C - 16 x 10-7 °C.
- the thermal pre-tightening force due to the difference in thermal expansion coefficient between the pre-stressed fiber 22 and the turbine rotor main body 1 and the uneven distribution of the operating temperature of the turbine rotor main body 1 causes the turbine rotor main body 1 to be placed.
- the actual preload force is greater than the initial preload force, thereby further reducing the working stress of the turbine rotor body 1 and improving the safety of the gas turbine.
- the sealing cover 23 may be made of a low-temperature-resistant high-temperature material such as a titanium alloy, a titanium-aluminum intermetallic compound, a carbon/carbon composite material, an alumina ceramic, or the like, and is mounted in the accommodating groove 140 wound around the shroud 14.
- the outer side of the pre-stressed fibers 22 isolates the pre-stressed fibers 22 from the external environment, thereby preventing the pre-stressed fibers 11 from being oxidized and damaged in a high temperature environment.
- the turbine disk 11, the boring head 12, the blade 13 and the blade crown 14 are first assembled to constitute the turbine rotor main body 1. 5 ⁇ 100 ⁇
- the thickness of the winding body of the turbine rotor body 1 is about 0. 5 ⁇ 100mm
- the sealing layer 23 is then mounted in the receiving groove 140 on the shroud 14 to cover the prestressed fibers 22. Finally, the sealing cover 23 and the shroud 14 are welded by electron beam welding, laser welding or sintering, or the like.
- the sealing cover 23 and the receiving groove 140 are hermetically sealed.
- the initial pre-stress (pressure) of up to 300 MPa flying OO MPa can be accurately applied to the turbine disk 11 and the blade 13 by effectively setting the tensile stress of the pre-stressed fiber 22.
- the pre-stress provided by the pre-stressed fiber wound layer 1 and the additional pre-stress caused by the difference in thermal expansion coefficient between the pre-stressed fiber wound layer 1 and the turbine rotor body 1 when operating at a high temperature The working stress in the turbine rotor is further reduced, thereby increasing the working life and operating temperature of the turbine rotor.
- FIGS. 6 and 7 show the structure of a turbine rotor device in a third embodiment of the present invention.
- the turbine rotor device of the third embodiment of the present invention differs from the second embodiment only in the structure of the prestressed fiber wound layer 2, so that the prestressed fiber wound layer will be mainly described below. 2, and other structures identical to those of the second embodiment will be omitted below.
- the pre-stressed fiber 22 may be made of at least one of a material having a low mass density, a high strength, and a high-temperature property, such as carbon fiber, silicon carbide fiber, alumina fiber, and boron fiber, preferably 0 to 10. OGPa.
- the stress is wound layer by layer in the accommodating groove 140 to form a wound layer having a winding thickness of about 0.5 to 100 along the turbine rotor main body 1, thereby applying a predetermined magnitude of prestress to the turbine rotor main body 1 in the radial direction.
- the expansion of the crack generated in the main body 1 of the turbine rotor at a high temperature can be effectively prevented, thereby having good explosion-proof performance and further improving the safety of the gas turbine.
- the outer circumferential winding layer can slow the crack penetration speed, thereby preventing explosion and preventing the debris from flying out, and avoiding more serious secondary damage.
- the coefficient of thermal expansion of the prestressed fiber 11 is not greater than the coefficient of thermal expansion of the turbine rotor body 1 (specifically, the turbine disk 11, the boring head 12, the blade 13 and the lobes 14).
- the coefficient of thermal expansion of the prestressed fiber 11 is about 0.93 X 10-7 ° C
- the coefficient of thermal expansion of the turbine rotor body 1 is about 11 ⁇ 10-7 ° C _ 16 xl 0-7 ° C.
- the thermal pre-tightening force due to the difference in the thermal expansion coefficient of the pre-stressed fiber 11 and the turbine rotor main body 1 and the uneven distribution of the operating temperature of the turbine rotor main body 1 causes the turbine rotor main body 1 to be placed.
- the actual preload force is greater than the initial preload force, thereby further reducing the working stress of the turbine rotor body 1 and improving the safety of the gas turbine.
- the surface of the prestressed fiber 22 is provided with an anti-oxidation coating such as a silicon carbide coating or an aluminum oxide coating to isolate the prestressed fiber 11 from the external environment, thereby preventing the prestressed fiber 11 from being oxidized in a high temperature environment. And damage.
- an anti-oxidation coating such as a silicon carbide coating or an aluminum oxide coating to isolate the prestressed fiber 11 from the external environment, thereby preventing the prestressed fiber 11 from being oxidized in a high temperature environment. And damage.
- the turbine disk 11, the boring head 12, the blade 13 and the blade crown 14 are first assembled to constitute the turbine rotor main body 1. 5 ⁇ 100 ⁇
- the thickness of the winding body of the turbine rotor body 1 is about 0. 5 ⁇ 100mm Wrap the layer.
- the initial pre-stress (pressure) of up to 300 MPa flying OO MPa can be accurately applied to the turbine disk 11 and the blade 13 by effectively setting the tensile stress of the pre-stressed fiber 22.
- the pre-stress provided by the pre-stressed fiber wound layer 1 and the additional pre-stress caused by the difference in thermal expansion coefficient between the pre-stressed fiber wound layer 1 and the turbine rotor body 1 when operating at a high temperature The working stress in the turbine rotor is further reduced, thereby increasing the working life and operating temperature of the turbine rotor.
- Fig. 8 shows the structure of a turbine rotor device in a fourth embodiment of the present invention.
- the turbine rotor device in the fourth embodiment of the present invention is different from the first, second, and third embodiments in the structure of the turbine rotor main body 1, and therefore the turbine rotor main body 1 will be mainly described below.
- the same structure as the other embodiments will be omitted below.
- the turbine rotor main body 1 includes a turbine disk 11, a vane 13 and a shroud 14.
- the blade 13 is formed on the outer circumference of the turbine disk 11, and the blade crown 14 is disposed on the outer circumference of the blade 13.
- the initial pre-stress (pressure) of up to 300 MPa and OO MPa can be accurately applied to the turbine disk 11 and the blade 13 by effectively setting the tensile stress of the pre-stressed fiber 22.
- the pre-stress provided by the pre-stressed fiber wound layer 1 and the additional pre-stress caused by the difference in thermal expansion coefficient between the pre-stressed fiber wound layer 1 and the turbine rotor body 1 when operating at a high temperature The working stress in the turbine rotor is further reduced, thereby increasing the working life and operating temperature of the turbine rotor.
- the expansion of cracks generated in the turbine rotor main body 1 at a high temperature can be effectively prevented, thereby having good explosion-proof performance and further improving the safety of the gas turbine.
- an embodiment of the present invention also provides a gas turbine including the above-described turbine rotor device.
- the initial pre-stress (pressure) of up to 300 MPa and OO MPa can be accurately applied to the turbine disk 11 and the blade 13 by effectively setting the tensile stress of the pre-stressed fiber 11.
- the pre-stress provided by the pre-stressed fiber wound layer 1 and the additional pre-stress caused by the difference in thermal expansion coefficient between the pre-stressed fiber wound layer 1 and the turbine rotor body 1 when operating at a high temperature The working stress in the turbine rotor is further reduced, thereby increasing the working life and operating temperature of the gas turbine.
- the expansion of cracks generated in the turbine rotor main body 1 at a high temperature can be effectively prevented, thereby having good explosion-proof performance and further improving the safety of the gas turbine.
- a turbine engine having the above rotor device is also provided.
- the turbine engine of the present invention it is possible to accurately apply a maximum initial prestress (pressure) to the rotor of the turbine engine by effectively setting the tensile stress of the prestressed fiber.
- a maximum initial prestress pressure
- the pre-stress provided by the pre-stressed fiber wound layer and the additional pre-stress caused by the difference in thermal expansion coefficient between the pre-stressed fiber wound layer and the rotor when operating at high temperatures The working stress in the rotor is further reduced, thereby increasing the operating life and operating temperature of the turbine engine.
- the turbine rotor apparatus and the gas turbine having the turbine rotor apparatus provided by several embodiments of the present invention are exemplarily described in detail above. It will be understood by those skilled in the art that the technical features of the turbine rotor device of the above several embodiments may be arbitrarily combined without contradiction, for example, the prestressed fibers 11 of the turbine rotor device of the first and second embodiments.
- An anti-oxidation layer may also be provided on the surface, or the shroud 14 and the accommodating groove 21 in the third embodiment may be formed separately as in the first embodiment, and these combinations should all be regarded as the present invention. Public content.
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Materials Engineering (AREA)
- Composite Materials (AREA)
- Ceramic Engineering (AREA)
- Turbine Rotor Nozzle Sealing (AREA)
Abstract
一种用于燃气轮机的涡轮转子装置,所述涡轮转子装置包括:涡轮转子主体(1);以及预应力纤维缠绕层(2),所述预应力纤维缠绕层(2)设置在所述涡轮转子主体(1)的外周上,以对所述涡轮转子主体(1)施加预定的预紧力。另外,还提供了一种转子装置和具有所述涡轮转子装置的燃气轮机和涡轮发动机。
Description
转子装更、 涡轮特子装更、 具有其的
燃气轮机和涡轮发动机
* ^域
本发明涉及涡轮发动机和燃气轮机技术领域, 具体而言, 涉及一种预应力缠绕的转子 装置、 特别是涡轮转子装置及具有其的燃气轮机和涡轮发动机。 背景技术
涡轮转子是航空、 航天发动机及燃气轮机的关键工作部件。 在高温及高转速的恶劣工 况条件下, 要求长期稳定地工作。 高转速产生的离心力, 以及热应力、 燃气或蒸汽的气动 力、 振动载荷等复杂载荷综合作用在涡轮转子的涡轮盘及叶片上, 形成以拉应力为主的应 力状态。 导致涡轮材料必须具备在高温下的高强度和优良的抗疲劳性能。 一旦涡轮转子的 叶片或涡轮盘失效破坏, 高速旋转的离心力使碎片高速飞出, 对发动机的其它部件产生严 重的破坏。
为了提高涡轮转子的工作安全性、 可靠性及其工作的性能, 开发了多种高温性能优越 的镍基、 钴基或铁基的高温合金以及钛-铝合金等高温合金。 此外, 还开发了多种制造定向 凝固叶片或单晶叶片的材料及制造技术。 这些技术通过改进涡轮转子部件材料的高温性能 或降低部件的实际工作温度等手段, 提高涡轮转子的工作性能。 但涡轮转子的受力及应力 状态却改变不多, 因此难以从根本上改善涡轮转子的工作环境。 发明内容
有鉴于此, 本发明旨在至少解决现有技术中存在的技术问题之一。
由此, 本发明需要提供一种涡轮转子装置, 所述涡轮转子装置可以提高涡轮转子的疲 劳寿命或工作温度, 进一步提高其安全性。
进一步地, 本发明需要提供一种转子装置, 所述转子装置可以提高涡轮转子的疲劳寿 命或工作温度, 并进一步提高其安全性。
此外, 本发明还需要提供一种具有该涡轮转子装置的燃气轮机或者涡轮发动机。
根据本发明的一方面, 提供了一种涡轮转子装置, 包括: 涡轮转子主体; 以及预应力 纤维缠绕层, 所述预应力纤维缠绕层设置在所述涡轮转子主体的外周上, 以对所述涡轮转 子主体施加预定的预紧力。
由此, 可以通过将预应力纤维缠绕层所提供的预应力而降低涡轮转子中的工作应力, 从而提高该涡轮转子的工作寿命和工作温度。 此外, 由于预应力缠绕层的多层缠绕结构的 缘故, 可以有效地防止在高温下涡轮转子主体内所产生的裂紋的扩展, 从而具有良好的防 爆性能, 进一步提高燃气轮机的安全性。
根据本发明的一方面, 所述预应力纤维缠绕层的热膨胀系数不大于所述涡轮转子主体 的热膨胀系数。
由此, 可以通过将预应力纤维缠绕层所提供的预应力以及在高温下工作时预应力纤维 缠绕层和涡轮转子主体之间的热膨胀系数的差异所带来的额外的预应力相结合而进一步降 低涡轮转子中的工作应力, 从而提高该涡轮转子的工作寿命和工作温度。
根据本发明的另外一方面, 提供了一种燃气轮机, 包括如上所述的涡轮转子装置。 根据本发明的另外一方面, 提供了一种涡轮发动机, 包括如上所述的涡轮转子装置。 根据本发明的又一方面, 提供了一种转子装置, 包括: 转子主体; 以及预应力纤维缠 绕层, 所述预应力纤维缠绕层设置在所述转子主体的外周上, 以对所述转子主体施加预定 的预紧力。
由此, 可以通过将预应力纤维缠绕层所提供的预应力而降低转子中的工作应力, 从而 提高该转子的工作寿命和工作温度。 此外, 由于预应力缠绕层的多层缠绕结构的缘故, 可 以有效地防止在高温下转子主体内所产生的裂紋的扩展, 从而具有良好的防爆性能, 进一 步提高燃气轮机的安全性。
根据本发明的一方面, 所述预应力纤维缠绕层的热膨胀系数不大于所述涡轮转子主体 的热膨胀系数。
由此, 可以通过将预应力纤维缠绕层所提供的预应力以及在高温下工作时预应力纤维 缠绕层和涡轮转子主体之间的热膨胀系数的差异所带来的额外的预应力相结合而进一步降 低涡轮转子中的工作应力, 从而提高该涡轮转子的工作寿命和工作温度。
本发明的附加方面和优点将在下面的描述中部分给出, 部分将从下面的描述中变得明 显, 或通过本发明的实践了解到。 附困说明
本发明的上述和 /或附加的方面和优点从结合下面附图对实施例的描述中将变得明显 和容易理解, 其中:
图 1为根据本发明的第一实施例的涡轮转子装置的立体示意图;
图 2为如图 1所示的涡轮转子装置的部分剖视立体示意图;
图 3为图 2所示的涡轮转子装置的局部放大图;
图 4为根据本发明的第二实施例的涡轮转子装置的部分剖视立体结构示意图; 图 5为图 4所示的涡轮转子装置的局部放大图;
图 6为根据本发明的第三实施例的涡轮转子装置的部分剖视立体结构示意图; 图 7为图 6所示的涡轮转子装置的局部放大图; 以及
图 8为根据本发明的第四实施例的涡轮转子装置的立体示意图。 符号说明:
1 涡轮转子主体(转子主体); 2 预应力纤维缠绕层;
11 涡轮盘; 12 叶片; 1 3 叶冠; 21 容纳槽体;
22 预应力纤维; 23 密封盖板
实施方式
下面详细描述本发明的实施例, 所述实施例的示例在附图中示出, 其中自始至终相同 或类似的标号表示相同或类似的元件或具有相同或类似功能的元件。 下面通过参考附图描 述的实施例是示例性的, 仅用于解释本发明, 而不能理解为对本发明的限制。
在本发明的描述中, 需要理解的是, 术语 "中心"、 "上"、 "下"、 "前"、 "后"、 "左"、 "右"、 "竖直"、 "水平"、 "顶"、 "底"、 "内"、 "外" 等指示的方位或位置关系为基于附图 所示的方位或位置关系, 仅是为了便于描述本发明和筒化描述, 而不是指示或暗示所指的 装置或元件必须具有特定的方位、 以特定的方位构造和操作, 因此不能理解为对本发明的 限制。
需要说明的是, 术语 "第一"、 "第二" 仅用于描述目的, 而不能理解为指示或暗示相 对重要性或者隐含指明所指示的技术特征的数量。 由此, 限定有 "第一"、 "第二" 的特征 可以明示或者隐含地包括一个或者更多个该特征。 进一步地, 在本发明的描述中, 除非另 有说明, "多个" 的含义是两个或两个以上。
本发明基于发明人的如下发明构思, 即将质量密度低、 高强度、 高温性能优良的纤维 以预设的张应力缠绕到涡轮转子的外周上, 对例如涡轮转子的转子施加预设的预紧力, 以 降低涡轮转子中的工作应力, 从而提高该涡轮转子的工作寿命和工作温度。 此外, 利用在 高温下工作时预应力纤维缠绕层和转子主体之间的热膨胀系数的差异所带来的额外的预应 力, 从而极大地增强整个燃气轮机的工作寿命并提高燃气轮机的工作温度。 此外, 由于预 应力纤维缠绕层的保护, 从而具有良好的防爆性能, 并进一步提高燃气轮机的安全性。
具体而言, 预应力技术是通过改变结构及材料的工作应力状态来提高结构抗疲劳性能 及承载能力的结构设计技术。 从而使得整个结构在工作时的应力状态由拉应力为主变为压 应力为主, 或拉应力大大降低, 从而提高整个结构的抗疲劳性能 ;.
为了克服现有的预应力钢丝缠绕的工作温度不易超过 80 °C , 在高温下会出现较大的蠕 变及松弛的缺点, 在本发明中考虑釆用质量密度低、 耐高温、 高强度的丝材或纤维作为缠 绕预紧件。
为了提高纤维的高温性能, 根据本发明的一个实施例, 可以釆用碳纤维、 碳化硅纤维、 硼纤维、 氧化铝纤维等的一种或者多种。 例如, 可以釆用日本东丽公司生产的通用级聚丙 烯腈(PAN )基碳纤维 T700 , 其密度为 1. 80g/cm3 , 抗拉强度可达 4. 9GPa , 在无氧条件下强 度能够保持到 2000 °C以上, 且不存在高温蠕变问题。
下面将结合附图来详细描述根据本发明的转子结构和具有其的燃气轮机和涡轮发动 机。 需要说明的是, 在下面的说明中, 将以用于燃气轮机的涡轮转子装置作为典型示例来 进行说明, 但是该涡轮转子装置只是为了说明的目的, 而不是为了限制本发明的保护范围, 普通技术人员在阅读了本公开中相关的技术方案之后, 可以很容易地将其应用到例如涡轮 发动机的压气机转子、 风扇转子等组件上, 也可以将其应用到涡轮发动机上, 从而提高转 子在高温下的表现性能。
图 1至图 8为根据本发明的几种实施例的用于燃气轮机的涡轮转子装置的立体示意图。 如图 1至图 8所示, 本发明实施例中的用于燃气轮机的涡轮转子装置包括涡轮转子主 体 1和预应力纤维缠绕层 2。 其中, 预应力纤维缠绕层 1设置在涡轮转子主体 1的外周上, 以对涡轮转子主体 1施加预定的预紧力。 由此, 可以通过将预应力纤维缠绕层 2所提供的 预应力而降低涡轮转子中的工作应力, 从而提高该涡轮转子的工作寿命和工作温度。
根据本发明的一个实施例, 预应力纤维缠绕层 2 的热膨胀系数不大于涡轮转子主体 1 的热膨胀系数。
由此, 可以通过将预应力纤维缠绕层 1 所提供的预应力以及在高温下工作时预应力纤 维缠绕层 2和涡轮转子主体 1之间的热膨胀系数的差异所带来的额外的预应力相结合而进 一步降低涡轮转子中的工作应力, 从而提高该涡轮转子的工作寿命和工作温度。 此外, 由 于预应力缠绕层 2的多层缠绕结构的缘故, 可以有效地防止在高温下涡轮转子主体 1 内所 产生的裂紋的扩展, 从而具有良好的防爆性能, 进一步提高燃气轮机的安全性。
为了使本领域技术人员能够更清楚地理解本发明的技术方案, 以下将进一步详细描述 图 1至图 8中所示的用于燃气轮机的涡轮转子装置。
〈第一实施例〉
如图 1至图 3所示, 本发明第一实施例中的涡轮转子装置包括涡轮转子主体 1和缠绕 在该涡轮转子主体 1的外周上的预应力纤维缠绕层 2。
具体而言, 如图 3所示, 涡轮转子主体 1包括涡轮盘 11、 榫头 12、 叶片 13和叶冠 14。 叶片 13通过榫头 12固定在涡轮盘 11的外周上, 叶冠 14设置在叶片 13的外周上。
预应力纤维缠绕层 1包括容纳槽体 21和预应力纤维 22。 容纳槽体 21设置在涡轮转子 主体 1的外周上且沿着容纳槽体 21的周向形成有容纳槽 210。 预应力纤维以预定的张应力 缠绕在所述容纳槽 210 中。 根据本发明的一个实施例, 所述预应力纤维的热膨胀系数不大 于所述涡轮转子主体的热膨胀系数。 由此可以通过将预应力纤维缠绕层所提供的预应力以 及在高温下工作时预应力纤维缠绕层和涡轮转子主体之间的热膨胀系数的差异所带来的额 外的预应力相结合而进一步降低涡轮转子中的工作应力, 从而提高该涡轮转子的工作寿命 和工作温度。
根据本发明的一个实施例, 预应力纤维缠绕层 2可以进一步包括密封盖板 23 , 密封盖 板 23用于对容纳槽体 21的容纳槽 210进行密封, 以形成一个密封的结构, 隔绝预应力纤 维 22与外界气流的接触。
进一步地, 容纳槽体 21 可以由钛合金、 钛铝金属间化合物、 碳 /碳复合材料、 氧化铝 陶瓷等质量密度较低的耐高温材料制成, 其大体上形成为与涡轮转子主体 1 的外周面形状 相适应的圆形形状, 并且容纳槽体 21的外周面上形成有周向延伸的容纳槽 210 , 如图 3中 所示。
预应力纤维 11可以通过例如碳纤维、碳化硅纤维、氧化铝纤维和硼纤维等质量密度低、 强度高、 高温性能优良的材料中的至少一种制成, 其优选以 0—10. OGPa 的张应力逐层地缠
绕在上述容纳槽体 21内以形成沿着涡轮转子主体 1的缠绕厚度约为 0. 5~100mm的缠绕层, 从而沿径向方向向涡轮转子主体 1 施加预定大小的预应力。 如此, 可以有效地防止在高温 下涡轮转子主体 1 内所产生的裂紋的扩展, 从而具有良好的防爆性能, 进一步提高燃气轮 机的安全性。 当涡轮转子主体 1 出现破坏时, 外周的缠绕层能够减緩裂紋的贯穿速度, 从 而起到防爆和防止碎片飞出的作用, 避免造成更加严重的二次破坏。
在本实施例中,预应力纤维 11的热膨胀系数不大于涡轮转子主体 1 (具体为涡轮盘 11、 榫头 12、 叶片 1 3和叶冠 14 ) 的热膨胀系数。 例如, 在一种供选择的具体方案中, 预应力 纤维 11的热膨胀系数约为 0. 93 X 10— 7°C , 涡轮转子主体 1的热膨胀系数约为 11 χ 10— 7°C _16 x l O—7°C。 如此, 当涡轮转子装置工作时, 由于预应力纤维 11与涡轮转子主体 1 的热 膨胀系数不同以及涡轮转子主体 1 的工作温度不均匀分布而产生的热致预紧力就会使涡轮 转子主体 1上的实际预紧力大于初始预紧力, 从而使涡轮转子主体 1 的工作应力进一步降 低, 提高燃气轮机的安全性。 并且, 还可以使预应力纤维 22的实际预紧力随涡轮转子主体 1工作温度的升高而增大,进而更有效地弥补涡轮转子主体 1在高温环境中强度性能的下降。
密封盖板 23 , 与容纳槽体 21相似, 也可以由钛合金、 钛铝金属间化合物、 碳 /碳复合 材料、 氧化铝陶瓷等质量密度较低的耐高温材料制成, 其安装在缠绕在容纳槽体 21内的预 应力纤维 11的外侧以将预应力纤维 11与外界环境隔离开, 从而防止预应力纤维 11在高温 环境下受到氧化和损伤。
以下筒要说明本实施例中的涡轮转子装置的装配过程及有益效果。
在装配过程中, 如图 1至图 3所示, 首先将涡轮盘 11、 榫头 12、 叶片 1 3和叶冠 14组 装起来, 构成涡轮转子主体 1。 然后, 在将容纳槽体 21以 0. 001mm - 0. 01隱的间隙套设在 涡轮转子主体 1的叶冠 14外以后, 将预应力纤维 11以 0—10. OGPa的张应力逐层地缠绕在 上述容纳槽体 21上的容纳槽 210内, 形成沿着涡轮转子主体 1的缠绕厚度约为 0. 5—100隱 的缠绕层。 然后, 将密封盖板 23安装在容纳槽体 21上的容纳槽 210内以覆盖预应力纤维 22。 最后, 通过电子束焊接、 激光焊接或烧结等方式将密封盖板 23和容纳槽体 21在密封 盖板 23和容纳槽 210的接缝处密闭连接起来。
根据本发明第一实施例的涡轮转子装置,可以通过有效地设置预应力纤维 22的张应力, 精确地对涡轮盘 11及叶片 1 3施加最高达到 300MPa飞 OOMPa的初始预应力 (压力)。 并且, 可以通过将预应力纤维缠绕层 1 所提供的预应力以及在高温下工作时预应力纤维缠绕层 1 和涡轮转子主体 1 之间的热膨胀系数的差异所带来的额外的预应力相结合而进一步降低涡 轮转子中的工作应力, 从而提高该涡轮转子的工作寿命和工作温度。 此外, 由于预应力缠 绕层 2的多层缠绕结构的缘故, 可以有效地防止在高温下涡轮转子主体 1 内所产生的裂紋 的扩展, 从而具有良好的防爆性能, 进一步提高燃气轮机的安全性。
〈第二实施例〉
如图 4和图 5所示, 本发明第二实施例中的涡轮转子装置包括涡轮转子主体 1和缠绕 在该涡轮转子主体 1的外周上的预应力纤维缠绕层 2。
具体而言, 如图 5所示, 涡轮转子主体 1包括涡轮盘 11、 榫头 12、 叶片 1 3和叶冠 14。 叶片 1 3通过榫头 12固定在涡轮盘 11的外周上。 叶冠 14设置在叶片 1 3的外周上, 且叶冠 14的两个周缘向外侧翻起形成沿周向延伸的容纳槽 140 (相当于将第一实施例中的叶冠 14 和容纳槽体 21—体地形成)。
预应力纤维 11可以通过例如碳纤维、碳化硅纤维、氧化铝纤维和硼纤维等质量密度低、 强度高、 高温性能优良的材料中的至少一种制成, 其优选以 0—10. OGPa 的张应力逐层地缠 绕在容纳槽 140内以形成沿着涡轮转子主体 1的径向方向的缠绕厚度约为 0. 5—100隱的缠 绕层, 从而沿径向方向向涡轮转子主体 1 施加预定大小的预应力。 如此, 可以有效地防止 在高温下涡轮转子主体 1 内所产生的裂紋的扩展, 从而具有良好的防爆性能, 进一步提高 燃气轮机的安全性。 当涡轮转子主体 1 出现破坏时, 外周的缠绕层能够减緩裂紋的贯穿速 度, 从而起到防爆和防止碎片飞出的作用, 避免造成更加严重的二次破坏。
在本实施例中,预应力纤维 11的热膨胀系数不大于涡轮转子主体 1 (具体为涡轮盘 11、 榫头 12、 叶片 1 3和叶冠 14 ) 的热膨胀系数。 例如, 在一种供选择的具体方案中, 预应力 纤维 11的热膨胀系数约为 0. 93 X 10— 7°C , 涡轮转子主体 1的热膨胀系数约为 11 χ 10— 7°C —16 x 10— 7 °C。 如此, 当涡轮转子装置工作时, 由于预应力纤维 22与涡轮转子主体 1 的热 膨胀系数不同以及涡轮转子主体 1 的工作温度不均匀分布而产生的热致预紧力就会使涡轮 转子主体 1上的实际预紧力大于初始预紧力, 从而使涡轮转子主体 1 的工作应力进一步降 低, 提高燃气轮机的安全性。 并且, 还可以使预应力纤维 22的实际预紧力随涡轮转子主体 1工作温度的升高而增大,进而更有效地弥补涡轮转子主体 1在高温环境中强度性能的下降。
密封盖板 23 可以由钛合金、 钛铝金属间化合物、 碳 /碳复合材料、 氧化铝陶瓷等质量 密度较低的耐高温材料制成, 其安装在缠绕在叶冠 14上的容纳槽 140 内的预应力纤维 22 的外侧以将预应力纤维 22与外界环境隔离开, 从而防止预应力纤维 11在高温环境下受到 氧化和损伤。
以下筒要说明本实施例中的涡轮转子装置的装配过程及有益效果。
在装配过程中, 如图 4和图 5所示, 首先将涡轮盘 11、 榫头 12、 叶片 1 3和叶冠 14组 装起来, 构成涡轮转子主体 1。 然后, 将预应力纤维 22以 (Tl O. OGPa的张应力逐层地缠绕 在上述叶冠 14上的容纳槽 140内, 形成沿着涡轮转子主体 1的缠绕厚度约为 0. 5~100mm的 缠绕层。 然后, 将密封盖板 23安装在叶冠 14上的容纳槽 140内以覆盖预应力纤维 22。 最 后, 通过电子束焊接、 激光焊接或烧结等方式将密封盖板 23和叶冠 14在密封盖板 23和容 纳槽 140的接缝处密闭连接起来。
根据本发明第二实施例的涡轮转子装置,可以通过有效地设置预应力纤维 22的张应力, 精确地对涡轮盘 11及叶片 1 3施加最高达到 300MPa飞 OOMPa的初始预应力 (压力)。 并且, 可以通过将预应力纤维缠绕层 1 所提供的预应力以及在高温下工作时预应力纤维缠绕层 1 和涡轮转子主体 1 之间的热膨胀系数的差异所带来的额外的预应力相结合而进一步降低涡 轮转子中的工作应力, 从而提高该涡轮转子的工作寿命和工作温度。 此外, 由于预应力缠 绕层 2的多层缠绕结构的缘故, 可以有效地防止在高温下涡轮转子主体 1 内所产生的裂紋
的扩展, 从而具有良好的防爆性能, 进一步提高燃气轮机的安全性。 〈第三实施例〉
图 6和图 7示出了本发明第三实施例中的涡轮转子装置的结构。 如图 6和图 7所示, 本发明第三实施例中的涡轮转子装置与第二实施例的不同之处仅在于预应力纤维缠绕层 2 的结构, 因此以下将着重描述预应力纤维缠绕层 2 , 而对于其他与第二实施例相同的结构, 下文将会加以省略。
预应力纤维 22可以通过例如碳纤维、碳化硅纤维、氧化铝纤维和硼纤维等质量密度低、 强度高、 高温性能优良的材料中的至少一种制成, 其优选以 0—10. OGPa 的张应力逐层地缠 绕在容纳槽 140内以形成沿着涡轮转子主体 1的缠绕厚度约为 0. 5—100隱的缠绕层, 从而 沿径向方向向涡轮转子主体 1 施加预定大小的预应力。 如此, 可以有效地防止在高温下涡 轮转子主体 1 内所产生的裂紋的扩展, 从而具有良好的防爆性能, 进一步提高燃气轮机的 安全性。 当涡轮转子主体 1 出现破坏时, 外周的缠绕层能够减緩裂紋的贯穿速度, 从而起 到防爆和防止碎片飞出的作用, 避免造成更加严重的二次破坏。
在本实施例中,预应力纤维 11的热膨胀系数不大于涡轮转子主体 1 (具体为涡轮盘 11、 榫头 12、 叶片 1 3和叶冠 14 ) 的热膨胀系数。 例如, 在一种供选择的具体方案中, 预应力 纤维 11的热膨胀系数约为 0. 93 X 10— 7°C , 涡轮转子主体 1的热膨胀系数约为 11 χ 10— 7°C _16 x l 0—7°C。 如此, 当涡轮转子装置工作时, 由于预应力纤维 11与涡轮转子主体 1 的热 膨胀系数不同以及涡轮转子主体 1 的工作温度不均匀分布而产生的热致预紧力就会使涡轮 转子主体 1上的实际预紧力大于初始预紧力, 从而使涡轮转子主体 1 的工作应力进一步降 低, 提高燃气轮机的安全性。 并且, 还可以使预应力纤维 22的实际预紧力随涡轮转子主体 1工作温度的升高而增大,进而更有效地弥补涡轮转子主体 1在高温环境中强度性能的下降。
并且, 预应力纤维 22的表面上设有碳化硅涂层或氧化铝涂层等防氧化涂层, 从而以将 预应力纤维 11与外界环境隔离开, 防止预应力纤维 11在高温环境下受到氧化和损伤。
以下筒要说明本实施例中的涡轮转子装置的装配过程及有益效果。
在装配过程中, 如图 6和图 7所示, 首先将涡轮盘 11、 榫头 12、 叶片 1 3和叶冠 14组 装起来, 构成涡轮转子主体 1。 然后, 将预应力纤维 22以 (Tl O. OGPa的张应力逐层地缠绕 在上述叶冠 14上的容纳槽 140内, 形成沿着涡轮转子主体 1的缠绕厚度约为 0. 5~100mm的 缠绕层。
根据本发明第三实施例的涡轮转子装置,可以通过有效地设置预应力纤维 22的张应力, 精确地对涡轮盘 11及叶片 1 3施加最高达到 300MPa飞 OOMPa的初始预应力 (压力)。 并且, 可以通过将预应力纤维缠绕层 1 所提供的预应力以及在高温下工作时预应力纤维缠绕层 1 和涡轮转子主体 1 之间的热膨胀系数的差异所带来的额外的预应力相结合而进一步降低涡 轮转子中的工作应力, 从而提高该涡轮转子的工作寿命和工作温度。 此外, 由于预应力缠 绕层 1的多层缠绕结构的缘故, 可以有效地防止在高温下涡轮转子主体 1 内所产生的裂紋 的扩展, 从而具有良好的防爆性能, 进一步提高燃气轮机的安全性。
〈第四实施例〉
图 8示出了本发明第四实施例中的涡轮转子装置的结构。 如图 8所示, 本发明第四实 施例中的涡轮转子装置与第一、 第二及第三实施例的不同之处在于涡轮转子主体 1的结构, 因此以下将着重描述涡轮转子主体 1 , 而对于与其他实施例相同的结构, 下文将加以省略。
如图 8所示, 涡轮转子主体 1包括涡轮盘 11、 叶片 1 3和叶冠 14。 叶片 1 3形成在涡轮 盘 11的外周上, 叶冠 14设置在叶片 1 3的外周上。
根据本发明第四实施例的涡轮转子装置,可以通过有效地设置预应力纤维 22的张应力, 精确地对涡轮盘 11及叶片 1 3施加最高达到 300MPa飞 OOMPa的初始预应力 (压力)。 并且, 可以通过将预应力纤维缠绕层 1 所提供的预应力以及在高温下工作时预应力纤维缠绕层 1 和涡轮转子主体 1 之间的热膨胀系数的差异所带来的额外的预应力相结合而进一步降低涡 轮转子中的工作应力, 从而提高该涡轮转子的工作寿命和工作温度。 此外, 由于预应力缠 绕层 2的多层缠绕结构的缘故, 可以有效地防止在高温下涡轮转子主体 1 内所产生的裂紋 的扩展, 从而具有良好的防爆性能, 进一步提高燃气轮机的安全性。
另外, 本发明实施例还提供了一种包括上述涡轮转子装置的燃气轮机。 根据本发明实 施例的燃气轮机, 可以通过有效地设置预应力纤维 11的张应力, 精确地对涡轮盘 11及叶 片 1 3施加最高达到 300MPa飞 OOMPa的初始预应力 (压力)。 并且, 可以通过将预应力纤维 缠绕层 1所提供的预应力以及在高温下工作时预应力纤维缠绕层 1和涡轮转子主体 1之间 的热膨胀系数的差异所带来的额外的预应力相结合而进一步降低涡轮转子中的工作应力, 从而提高该燃气轮机的工作寿命和工作温度。 此外, 由于预应力缠绕层 1 的多层缠绕结构 的缘故, 可以有效地防止在高温下涡轮转子主体 1 内所产生的裂紋的扩展, 从而具有良好 的防爆性能, 进一步提高燃气轮机的安全性。
此外, 根据本发明的一个实施例, 也提供了一种具有上述转子装置的涡轮发动机。 根 据本发明的涡轮发动机, 可以通过有效地设置预应力纤维的张应力, 精确地对涡轮发动机 的转子施加最高达到很大的初始预应力 (压力)。 并且, 可选地, 可以通过将预应力纤维缠 绕层所提供的预应力以及在高温下工作时预应力纤维缠绕层和转子之间的热膨胀系数的差 异所带来的额外的预应力相结合而进一步降低转子中的工作应力, 从而提高该涡轮发动机 的工作寿命和工作温度。
以上详示例性地细描述了本发明的几种实施例提供的涡轮转子装置和具有该涡轮转子 装置的燃气轮机。 本领域技术人员应当理解, 在不矛盾的前提下, 上述几种实施例中的涡 轮转子装置的技术特征可以任意组合, 例如, 第一和第二实施方式中的涡轮转子装置的预 应力纤维 11的表面上也可以设置防氧化层, 或者第三实施例中的叶冠 14和容纳槽体 21也 可以如第一实施例中的那样分体形成, 这些组合均应当被看作是本发明所公开的内容。
在本说明书的描述中, 参考术语 "一个实施例"、 "一些实施例"、 "示意性实施例"、 "示 例"、 "具体示例"、 或 "一些示例" 等的描述意指结合该实施例或示例描述的具体特征、 结 构、 材料或者特点包含于本发明的至少一个实施例或示例中。 在本说明书中, 对上述术语
的示意性表述不一定指的是相同的实施例或示例。 而且, 描述的具体特征、 结构、 材料或 者特点可以在任何的一个或多个实施例或示例中以合适的方式结合。
尽管已经示出和描述了本发明的实施例, 本领域的普通技术人员可以理解: 在不脱离 本发明的原理和宗旨的情况下可以对这些实施例进行多种变化、 修改、 替换和变型, 本发 明的范围由权利要求及其等同物限定。
Claims
1、 一种涡轮转子装置, 其特征在于, 包括:
涡轮转子主体; 以及
预应力纤维缠绕层, 所述预应力纤维缠绕层设置在所述涡轮转子主体的外周上, 以对 所述涡轮转子主体施加预定的预紧力。
2、 根据权利要求 1所述的涡轮转子装置, 其特征在于, 所述预应力纤维缠绕层的热膨 胀系数不大于所述涡轮转子主体的热膨胀系数。
3、 根据权利要求 1所述的涡轮转子装置, 其特征在于, 所述预应力纤维缠绕层包括: 容纳槽体, 所述容纳槽体设置在所述涡轮转子主体的所述外周上且沿着所述容纳槽体 的周向形成有容纳槽; 以及
预应力纤维, 所述预应力纤维以预定的张应力缠绕在所述容纳槽中。
4、 根据权利要求 3所述的涡轮转子装置, 其特征在于, 且所述预应力纤维的热膨胀系 数不大于所述涡轮转子主体的热膨胀系数。
5、 根据权利要求 3所述的涡轮转子装置, 其特征在于, 所述涡轮转子主体包括: 涡轮盘;
叶片, 所述叶片形成在所述涡轮盘的外周上; 以及
叶冠, 所述叶冠设置在所述叶片的外周上, 其中所述预应力纤维缠绕层设置在所述叶 冠的外周上。
6、根据权利要求 3所述的涡轮转子装置,其特征在于,所述张应力的大小为 0—10. OGPa , 且所述预应力纤维沿着所述涡轮转子主体的径向方向的缠绕厚度为 0. 5mm ~ 100mm。
7、 根据权利要求 5所述的涡轮转子装置, 其特征在于, 所述容纳槽体与所述叶冠单独 形成; 或
所述容纳槽体与所述叶冠一体形成。
8、 根据权利要求 3所述的涡轮转子装置, 其特征在于, 所述预应力纤维为碳纤维、 碳 化硅纤维、 氧化铝纤维和硼纤维中的至少一种。
9、根据权利要求 3所述的涡轮转子装置, 其特征在于, 所述预应力纤维缠绕层还包括: 密封盖板, 所述密封盖板用于对所述容纳槽体进行密封。
10、 根据权利要求 3 所述的涡轮转子装置, 其特征在于, 所述预应力纤维的表面形成 有防氧化涂层。
11、 根据权利要求 10所述的涡轮转子装置, 其特征在于, 所述防氧化涂层为碳化硅涂 层或氧化铝涂层。
12、 根据权利要求 5 所述的涡轮转子装置, 其特征在于, 所述的涡轮盘和叶片单独形 成 或者
所述涡轮盘和所述叶片一体形成。
1 3、 根据权利要求 1 所述的涡轮转子装置, 其特征在于, 所述涡轮转子装置用于燃气 轮机或者涡轮发动机。
14、 一种燃气轮机, 其特征在于, 包括如权利要求 1-11任一项所述的涡轮转子装置。
15、 一种涡轮发动机, 其特征在于, 包括如权利要求 1-11任一所述的涡轮转子装置。
16、 一种转子装置, 其特征在于, 包括:
转子主体; 以及
预应力纤维缠绕层, 所述预应力纤维缠绕层设置在所述转子主体的外周上, 以对所述 转子主体施加预定的预紧力。
17、 根据权利要求 16所述的转子装置, 其特征在于, 所述预应力纤维缠绕层的热膨胀 系数不大于所述转子主体的热膨胀系数。
18、 根据权利要求 16所述的转子装置, 其特征在于, 所述预应力纤维缠绕层包括: 容纳槽体, 所述容纳槽体设置在所述转子主体的所述外周上且沿着所述容纳槽体的周 向形成有容纳槽; 以及
预应力纤维, 所述预应力纤维以预定的张应力缠绕在所述容纳槽中。
19、 根据权利要求 16所述的转子装置, 其特征在于, 所述预应力纤维的热膨胀系数不 大于所述涡轮转子主体的热膨胀系数。
20、 根据权利要求 18所述的转子装置, 其特征在于, 所述张应力的大小为 0—10. OGPa , 且所述预应力纤维沿着所述转子主体的径向方向的缠绕厚度为 0. 5mm ~ 100mm。
21、 根据权利要求 18所述的转子装置, 其特征在于, 所述预应力纤维为碳纤维、 碳化 硅纤维、 氧化铝纤维或硼纤维中的至少一种。
11、 根据权利要求 18所述的转子装置, 其特征在于, 所述预应力纤维的表面形成有防 氧化涂层。
23、 根据权利要求 22所述的转子装置, 其特征在于, 所述转子装置用于涡轮发动机或 者燃气轮机。
24、 一种预应力纤维缠绕的涡轮转子, 包括涡轮盘、 叶片和设置在叶片上的叶冠, 其 特征在于: 在所述的叶冠上设有一个环槽, 在该环槽内以 G ~ 10. OGPa的张应力逐圏逐层缠 绕预应力纤维, 形成预应力纤维缠绕层, 所述预应力纤维缠绕层的厚度为 0. 5隱〜 100隱。
25、 按照权利要求 24所述的涡轮转子, 其特征在于: 所述的环槽是套在叶冠上的环槽 部件, 或是直接在叶冠上加工出的缠绕槽。
26、 按照权利要求 24所述的一种预应力纤维缠绕的涡轮转子, 其特征在于: 所述的预 应力纤维为碳纤维、 碳化硅或硼纤维。
27、 按照权利要求 24-26 任一所述的涡轮转子, 其特征在于: 在预应力纤维缠绕层上 设有密封盖板, 密封盖板和环槽构成防止预应力纤维缠绕层氧化的密闭结构。
28、 按照权利要求 24-26 任一所述的涡轮转子, 其特征在于: 所述的预应力纤维的表 面制备有防氧化涂层。
29、 按照权利要求 24所述的涡轮转子, 其特征在于: 所述的涡轮盘和叶片釆用分体制
造的组合结构, 或是一体制造的整体结构。
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP12823737.7A EP2752553B1 (en) | 2011-08-15 | 2012-07-11 | Rotor device, turbine rotor device, and gas turbine and turbine engine having same |
US14/238,626 US10378365B2 (en) | 2011-08-15 | 2012-07-11 | Rotor device, turbine rotor device, and gas turbine and turbine engine having same |
ES12823737T ES2711332T3 (es) | 2011-08-15 | 2012-07-11 | Dispositivo de rotor, dispositivo de rotor de turbina, y turbina de gas y motor de turbina con los mismos |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201110233574.X | 2011-08-15 | ||
CN201110233574.XA CN102418562B (zh) | 2011-08-15 | 2011-08-15 | 一种纤维缠绕的预应力涡轮转子 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2013023507A1 true WO2013023507A1 (zh) | 2013-02-21 |
Family
ID=45943182
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2012/078518 WO2013023507A1 (zh) | 2011-08-15 | 2012-07-11 | 转子装置、涡轮转子装置、具有其的燃气轮机和涡轮发动机 |
Country Status (5)
Country | Link |
---|---|
US (1) | US10378365B2 (zh) |
EP (1) | EP2752553B1 (zh) |
CN (1) | CN102418562B (zh) |
ES (1) | ES2711332T3 (zh) |
WO (1) | WO2013023507A1 (zh) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB2521588A (en) * | 2013-10-11 | 2015-07-01 | Reaction Engines Ltd | Turbine blades |
Families Citing this family (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US9194259B2 (en) * | 2012-05-31 | 2015-11-24 | General Electric Company | Apparatus for minimizing solid particle erosion in steam turbines |
US20140169972A1 (en) * | 2012-12-17 | 2014-06-19 | United Technologies Corporation | Fan with integral shroud |
US20150285259A1 (en) * | 2014-04-05 | 2015-10-08 | Arthur John Wennerstrom | Filament-Wound Tip-Shrouded Axial Compressor or Fan Rotor System |
FR3025562B1 (fr) * | 2014-09-04 | 2019-08-23 | Safran Aircraft Engines | Disque aubage monobloc pour une turbomachine |
US10876407B2 (en) * | 2017-02-16 | 2020-12-29 | General Electric Company | Thermal structure for outer diameter mounted turbine blades |
GB2572360B (en) * | 2018-03-27 | 2020-04-08 | Intelligent Power Generation Ltd | An axial turbine |
US11428160B2 (en) | 2020-12-31 | 2022-08-30 | General Electric Company | Gas turbine engine with interdigitated turbine and gear assembly |
US11761632B2 (en) | 2021-08-05 | 2023-09-19 | General Electric Company | Combustor swirler with vanes incorporating open area |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB2065237A (en) * | 1979-12-10 | 1981-06-24 | Harris A J | Turbine blades |
DE4411679C1 (de) * | 1994-04-05 | 1994-12-01 | Mtu Muenchen Gmbh | Schaufelblatt in Faserverbundbauweise mit Schutzprofil |
US5429877A (en) * | 1993-10-20 | 1995-07-04 | The United States Of America As Represented By The Secretary Of The Air Force | Internally reinforced hollow titanium alloy components |
CN1163982A (zh) * | 1996-01-31 | 1997-11-05 | 株式会社日立制作所 | 蒸汽涡轮 |
EP1627726A1 (de) * | 2004-08-18 | 2006-02-22 | ABB Turbo Systems AG | Verbundfaserverdichter |
CN101482029A (zh) * | 2008-01-10 | 2009-07-15 | 通用电气公司 | 涡轮叶片叶冠 |
Family Cites Families (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3095138A (en) * | 1957-05-28 | 1963-06-25 | Studebaker Corp | Rotating shroud |
GB938123A (en) | 1960-05-19 | 1963-10-02 | Studebaker Packard Corp | Improvements in or relating to an axial flow compressor |
IT975329B (it) * | 1972-10-23 | 1974-07-20 | Fiat Spa | Struttura di parti metalliche e nom metalliche statiche o rotanti per ambienti ad alta temperatura particolarmente per rotori e stato ri di turbine a gas |
US4017209A (en) * | 1975-12-15 | 1977-04-12 | United Technologies Corporation | Turbine rotor construction |
FR2877034B1 (fr) * | 2004-10-27 | 2009-04-03 | Snecma Moteurs Sa | Aube de rotor d'une turbine a gaz |
FR2901497B1 (fr) | 2006-05-24 | 2009-03-06 | Snecma Sa | Procede de fabrication d'un disque de rotor de turbomachine |
US8527241B2 (en) * | 2011-02-01 | 2013-09-03 | Siemens Energy, Inc. | Wireless telemetry system for a turbine engine |
CN102491128B (zh) | 2011-11-21 | 2013-10-30 | 清华大学 | 一种缠绕束平行联动张力加载装置 |
-
2011
- 2011-08-15 CN CN201110233574.XA patent/CN102418562B/zh active Active
-
2012
- 2012-07-11 WO PCT/CN2012/078518 patent/WO2013023507A1/zh active Application Filing
- 2012-07-11 EP EP12823737.7A patent/EP2752553B1/en not_active Not-in-force
- 2012-07-11 US US14/238,626 patent/US10378365B2/en active Active
- 2012-07-11 ES ES12823737T patent/ES2711332T3/es active Active
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB2065237A (en) * | 1979-12-10 | 1981-06-24 | Harris A J | Turbine blades |
US5429877A (en) * | 1993-10-20 | 1995-07-04 | The United States Of America As Represented By The Secretary Of The Air Force | Internally reinforced hollow titanium alloy components |
DE4411679C1 (de) * | 1994-04-05 | 1994-12-01 | Mtu Muenchen Gmbh | Schaufelblatt in Faserverbundbauweise mit Schutzprofil |
CN1163982A (zh) * | 1996-01-31 | 1997-11-05 | 株式会社日立制作所 | 蒸汽涡轮 |
EP1627726A1 (de) * | 2004-08-18 | 2006-02-22 | ABB Turbo Systems AG | Verbundfaserverdichter |
CN101482029A (zh) * | 2008-01-10 | 2009-07-15 | 通用电气公司 | 涡轮叶片叶冠 |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB2521588A (en) * | 2013-10-11 | 2015-07-01 | Reaction Engines Ltd | Turbine blades |
Also Published As
Publication number | Publication date |
---|---|
ES2711332T3 (es) | 2019-05-03 |
EP2752553A1 (en) | 2014-07-09 |
US10378365B2 (en) | 2019-08-13 |
EP2752553B1 (en) | 2018-11-14 |
EP2752553A4 (en) | 2015-07-08 |
CN102418562A (zh) | 2012-04-18 |
US20140301858A1 (en) | 2014-10-09 |
CN102418562B (zh) | 2014-04-02 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2013023507A1 (zh) | 转子装置、涡轮转子装置、具有其的燃气轮机和涡轮发动机 | |
JP5082563B2 (ja) | 遮熱被覆を有する耐熱部材 | |
US8382436B2 (en) | Non-integral turbine blade platforms and systems | |
JP4083009B2 (ja) | 金属セル状構造物 | |
US9228445B2 (en) | Turbine airfoil components containing ceramic-based materials and processes therefor | |
US4494287A (en) | Method of manufacturing a turbine rotor | |
US20120171039A1 (en) | Turbine airfoil component assembly for use in a gas turbine engine and methods for fabricating same | |
US20160341070A1 (en) | Gas turbine engine having energy dissipating gap and containment layer | |
JP2007262447A (ja) | 耐酸化膜及びその形成方法、遮熱コーティング、耐熱部材、及びガスタービン | |
US6213720B1 (en) | High strength composite reinforced turbomachinery disk | |
US20120163986A1 (en) | Turbine airfoil components containing ceramic-based materials and processes therefor | |
US20150361825A1 (en) | Turbine Engine Component with Vibration Damping | |
JP2012148338A (ja) | セラミック基材料と金属材料とから成る部品の製造工程 | |
JP3872632B2 (ja) | 遮熱コーティング材、それを適用したガスタービン部材およびガスタービン | |
JP2015531840A (ja) | セラミックセンターボディ及び製造方法 | |
EP2570601A2 (en) | Ceramic matrix composite rotor disk for a gas turbine engine and corresponding rotor module | |
JP2012140935A (ja) | セラミック基材料を含む部品とその被膜 | |
JP2013227968A (ja) | ターボ機械ブレード用の抵抗バンド | |
JP4628865B2 (ja) | ガスタービン動翼とそれを用いたガスタービン及びその発電プラント | |
CN110439626A (zh) | 用于叉指转子的复合翼型组件 | |
JP5625690B2 (ja) | エンジン用バルブ | |
US20140065433A1 (en) | Coatings for dissipating vibration-induced stresses in components and components provided therewith | |
JPS6215722B2 (zh) | ||
JP2015527522A (ja) | タービンブレード封止構造体 | |
JP2001050005A (ja) | 熱ターボ機械の摩擦を受ける構成要素 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 12823737 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
WWE | Wipo information: entry into national phase |
Ref document number: 14238626 Country of ref document: US |