WO2013023448A1 - 膜动聚合物微流控芯片及其制备方法 - Google Patents

膜动聚合物微流控芯片及其制备方法 Download PDF

Info

Publication number
WO2013023448A1
WO2013023448A1 PCT/CN2012/071776 CN2012071776W WO2013023448A1 WO 2013023448 A1 WO2013023448 A1 WO 2013023448A1 CN 2012071776 W CN2012071776 W CN 2012071776W WO 2013023448 A1 WO2013023448 A1 WO 2013023448A1
Authority
WO
WIPO (PCT)
Prior art keywords
substrate
hole
fuse
soldering
welding
Prior art date
Application number
PCT/CN2012/071776
Other languages
English (en)
French (fr)
Inventor
杨奇
Original Assignee
北京博晖创新光电技术股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 北京博晖创新光电技术股份有限公司 filed Critical 北京博晖创新光电技术股份有限公司
Publication of WO2013023448A1 publication Critical patent/WO2013023448A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L3/00Containers or dishes for laboratory use, e.g. laboratory glassware; Droppers
    • B01L3/50Containers for the purpose of retaining a material to be analysed, e.g. test tubes
    • B01L3/502Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures
    • B01L3/5027Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures by integrated microfluidic structures, i.e. dimensions of channels and chambers are such that surface tension forces are important, e.g. lab-on-a-chip
    • B01L3/502707Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures by integrated microfluidic structures, i.e. dimensions of channels and chambers are such that surface tension forces are important, e.g. lab-on-a-chip characterised by the manufacture of the container or its components
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K11/00Resistance welding; Severing by resistance heating
    • B23K11/002Resistance welding; Severing by resistance heating specially adapted for particular articles or work
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K11/00Resistance welding; Severing by resistance heating
    • B23K11/02Pressure butt welding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/20Bonding
    • B23K26/21Bonding by welding
    • B23K26/24Seam welding
    • B23K26/244Overlap seam welding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/20Bonding
    • B23K26/32Bonding taking account of the properties of the material involved
    • B23K26/324Bonding taking account of the properties of the material involved involving non-metallic parts
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C65/00Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor
    • B29C65/02Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure
    • B29C65/08Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure using ultrasonic vibrations
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C65/00Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor
    • B29C65/02Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure
    • B29C65/14Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure using wave energy, i.e. electromagnetic radiation, or particle radiation
    • B29C65/16Laser beams
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C65/00Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor
    • B29C65/02Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure
    • B29C65/14Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure using wave energy, i.e. electromagnetic radiation, or particle radiation
    • B29C65/16Laser beams
    • B29C65/1629Laser beams characterised by the way of heating the interface
    • B29C65/1635Laser beams characterised by the way of heating the interface at least passing through one of the parts to be joined, i.e. laser transmission welding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C65/00Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor
    • B29C65/02Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure
    • B29C65/14Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure using wave energy, i.e. electromagnetic radiation, or particle radiation
    • B29C65/16Laser beams
    • B29C65/1696Laser beams making use of masks
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C65/00Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor
    • B29C65/78Means for handling the parts to be joined, e.g. for making containers or hollow articles, e.g. means for handling sheets, plates, web-like materials, tubular articles, hollow articles or elements to be joined therewith; Means for discharging the joined articles from the joining apparatus
    • B29C65/7841Holding or clamping means for handling purposes
    • B29C65/7844Holding or clamping means for handling purposes cooperating with specially formed features of at least one of the parts to be joined, e.g. cooperating with holes or ribs of at least one of the parts to be joined
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/01General aspects dealing with the joint area or with the area to be joined
    • B29C66/05Particular design of joint configurations
    • B29C66/302Particular design of joint configurations the area to be joined comprising melt initiators
    • B29C66/3022Particular design of joint configurations the area to be joined comprising melt initiators said melt initiators being integral with at least one of the parts to be joined
    • B29C66/30223Particular design of joint configurations the area to be joined comprising melt initiators said melt initiators being integral with at least one of the parts to be joined said melt initiators being rib-like
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/01General aspects dealing with the joint area or with the area to be joined
    • B29C66/32Measures for keeping the burr form under control; Avoiding burr formation; Shaping the burr
    • B29C66/324Avoiding burr formation
    • B29C66/3242Avoiding burr formation on the inside of a tubular or hollow article
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/50General aspects of joining tubular articles; General aspects of joining long products, i.e. bars or profiled elements; General aspects of joining single elements to tubular articles, hollow articles or bars; General aspects of joining several hollow-preforms to form hollow or tubular articles
    • B29C66/51Joining tubular articles, profiled elements or bars; Joining single elements to tubular articles, hollow articles or bars; Joining several hollow-preforms to form hollow or tubular articles
    • B29C66/54Joining several hollow-preforms, e.g. half-shells, to form hollow articles, e.g. for making balls, containers; Joining several hollow-preforms, e.g. half-cylinders, to form tubular articles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/80General aspects of machine operations or constructions and parts thereof
    • B29C66/83General aspects of machine operations or constructions and parts thereof characterised by the movement of the joining or pressing tools
    • B29C66/832Reciprocating joining or pressing tools
    • B29C66/8322Joining or pressing tools reciprocating along one axis
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B81MICROSTRUCTURAL TECHNOLOGY
    • B81CPROCESSES OR APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OR TREATMENT OF MICROSTRUCTURAL DEVICES OR SYSTEMS
    • B81C1/00Manufacture or treatment of devices or systems in or on a substrate
    • B81C1/00015Manufacture or treatment of devices or systems in or on a substrate for manufacturing microsystems
    • B81C1/00023Manufacture or treatment of devices or systems in or on a substrate for manufacturing microsystems without movable or flexible elements
    • B81C1/00119Arrangement of basic structures like cavities or channels, e.g. suitable for microfluidic systems
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2200/00Solutions for specific problems relating to chemical or physical laboratory apparatus
    • B01L2200/02Adapting objects or devices to another
    • B01L2200/026Fluid interfacing between devices or objects, e.g. connectors, inlet details
    • B01L2200/027Fluid interfacing between devices or objects, e.g. connectors, inlet details for microfluidic devices
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2200/00Solutions for specific problems relating to chemical or physical laboratory apparatus
    • B01L2200/06Fluid handling related problems
    • B01L2200/0689Sealing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2300/00Additional constructional details
    • B01L2300/08Geometry, shape and general structure
    • B01L2300/0809Geometry, shape and general structure rectangular shaped
    • B01L2300/0816Cards, e.g. flat sample carriers usually with flow in two horizontal directions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K2101/00Articles made by soldering, welding or cutting
    • B23K2101/18Sheet panels
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K2103/00Materials to be soldered, welded or cut
    • B23K2103/30Organic material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29LINDEXING SCHEME ASSOCIATED WITH SUBCLASS B29C, RELATING TO PARTICULAR ARTICLES
    • B29L2031/00Other particular articles
    • B29L2031/756Microarticles, nanoarticles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B81MICROSTRUCTURAL TECHNOLOGY
    • B81BMICROSTRUCTURAL DEVICES OR SYSTEMS, e.g. MICROMECHANICAL DEVICES
    • B81B2201/00Specific applications of microelectromechanical systems
    • B81B2201/05Microfluidics
    • B81B2201/058Microfluidics not provided for in B81B2201/051 - B81B2201/054
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B81MICROSTRUCTURAL TECHNOLOGY
    • B81BMICROSTRUCTURAL DEVICES OR SYSTEMS, e.g. MICROMECHANICAL DEVICES
    • B81B2203/00Basic microelectromechanical structures
    • B81B2203/01Suspended structures, i.e. structures allowing a movement
    • B81B2203/0127Diaphragms, i.e. structures separating two media that can control the passage from one medium to another; Membranes, i.e. diaphragms with filtering function
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B81MICROSTRUCTURAL TECHNOLOGY
    • B81CPROCESSES OR APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OR TREATMENT OF MICROSTRUCTURAL DEVICES OR SYSTEMS
    • B81C2203/00Forming microstructural systems
    • B81C2203/03Bonding two components
    • B81C2203/033Thermal bonding
    • B81C2203/035Soldering

Definitions

  • the invention relates to the technical field of membrane dynamic polymer microfluidic chip manufacturing, in particular to a membrane dynamic polymer microfluidic chip and a preparation method thereof.
  • Microfluidics are techniques for manipulating tiny volumes of fluids that are applied to the structure and control of biological and chemical fluid systems. Applications and potential applications that microfluidics have achieved include disease diagnosis, life science research, and biological and/or chemical sensor development.
  • the membrane dynamic polymer microfluidic structure includes a substrate having one or more microfluidic channels or paths, and a cover plate or second or more submounts having fluid paths that may or may not be interconnected,
  • the microfluidic structures can be collectively referred to as microfluidic chips.
  • the microfluidic chip can be made of inorganic material microfluidic chips made of glass, quartz or silicon. These chips typically utilize the already fine microfabrication technology of the semiconductor industry. However, when the fluid path requires a large area or the chip must be disposable In the case of a disposable chip, the material and manufacturing cost of the inorganic chip may inevitably be high.
  • microfluidic structures or devices can also be made from polymeric materials, which have low material cost and potentially high yield advantages.
  • the membrane dynamic polymer microfluidic chip is to fix the membrane to the plane of the rigid plastic substrate.
  • the substrate bonding surface is divided into a bonding zone and a non-bonding zone according to the microstructure, and constitutes an active component and structure required for operation.
  • the membrane dynamic polymer microfluidic chip can also include a variety of containers, and different combinations of fluid flow patterns can be performed according to application requirements to achieve personalized high-efficiency sample detection. See invention patent "Microfluidic Chips and Laboratory Systems” Application No. 200780002511.5.
  • the goal of microfluidic chip development is to achieve reliable, high-efficiency, low-cost scale manufacturing.
  • the production of substrates is usually by injection molding.
  • a structure in which a container or the like is contained in the substrate may cause uneven distribution of the planar material of the substrate, and uneven material structure during injection molding may cause uneven stress, which may cause shrinkage on the plane corresponding to the substrate structure and damage the flatness of the surface of the substrate.
  • the adhesion between the separator and the substrate requires that the bonding surface of the substrate is very flat, and the uneven surface may cause defects or bubbles in the bonding area, destroying the micro-structure function, causing the product to fail, directly affecting the qualification rate of the bonding.
  • the unevenness of the injection molded substrate can be solved by subsequent flatness treatment, but the subsequent treatment effect is not very good, and the subsequent processing cost leads to an increase in production cost and a decrease in production efficiency.
  • the membrane dynamic polymer microfluidic chip sometimes needs to contain more than two substrates according to the application, and the fuses (ductible wires) can be welded between the substrates.
  • fuses ductible wires
  • the invention patent "200710059255.5" A conductive wire welding plate and a working method thereof, the patent provides a working method of a conductive wire welding plate; but does not solve the welding method of the conduction connection of the two plates, and how to ensure the bonding surface of the substrate and the diaphragm Flatness problem.
  • the present invention provides a membrane dynamic polymer microfluidic chip, comprising: a first substrate, a separator, a plurality of structural components on one side of the first substrate, and the first substrate
  • the first through holes further include: a second substrate, one surface of the second substrate is bonded to the other surface of the first substrate, and the other surface of the second substrate is flat, and the second substrate is disposed on the second substrate
  • the first substrate and the second substrate are bonded around the entire through hole, and a gap is formed at other portions between the two substrates.
  • the inner wall of the integral through hole has the same cross-sectional size and shape.
  • the cross section of the integral through hole is elliptical or polygonal.
  • the invention also provides a preparation method for preparing the above membrane dynamic polymer microfluidic chip, comprising the steps of: preparing the first substrate and the second substrate, wherein the surface of the first substrate facing away from the structural component is welded The surface of the second substrate that is in contact with the first substrate is a soldering surface, and at least one fuse is disposed on the soldering surface of the first substrate or the second substrate; and the first substrate and the second substrate are bonded a soldering surface, melting the fuse, soldering the first substrate and the second substrate together; and bonding the separator to a surface of the second substrate after soldering.
  • a fuser groove is disposed on one side of the fuse line.
  • a core is inserted into the corresponding first through hole and the second through hole on the first substrate and the second substrate before soldering, and the fuse is melted during soldering, and the first substrate and the second substrate are Solder together and remove the core after soldering.
  • the fuse line is disposed around the first through hole or the second through hole.
  • the cross-sectional shape of the fuse is trapezoidal, rectangular, triangular or semi-circular.
  • the fuse is melted by an ultrasonic indenter during welding.
  • a fuse line is disposed between the fuse and the core.
  • the ultrasonic ram is placed on a surface of the second substrate facing away from the first substrate.
  • the fuse is disposed on a surface of the second substrate facing the first substrate.
  • the first substrate or the second substrate is a transparent substrate, and a mask is covered on the non-welding surface of the transparent substrate before soldering, and a transparent area is disposed on the mask corresponding to the position of the fuse.
  • the laser illuminates and melts the fuse through the light-transmitting region on the mask, and the first substrate and the second substrate are welded together, and the mask is removed after the soldering is completed.
  • the second substrate is a transparent substrate, and the fuse is disposed on a soldering surface of the first substrate.
  • the original substrate is divided into two, which effectively solves the problem of flattening the bonding surface of the injection substrate substrate; the process is simple and the cost is not increased much.
  • the two substrates are re-welded together to have all the design functions of the original substrate.
  • the welding fuses are arranged on the soldering surface, and can be arranged on the upper substrate or the lower substrate according to the structural characteristics of the chip to facilitate the production of the substrate.
  • the core body is welded to make the inner wall of the through hole smooth and smooth, and the core body has a precise positioning function.
  • the core design adopts a variety of regular shapes or shapes, which makes the chip design more flexible and improves the application function and performance;
  • FIG. 1 is a schematic structural view of a membrane dynamic polymer microfluidic chip according to an embodiment of the present invention
  • Figure 2 is a cross-sectional view taken along line A-A of Figure 1;
  • Figure 3 is a partial enlarged view of B in Figure 2, (a) is the state of the junction of the two substrates before the welding, (b) is the completion of the welding, the formation of the membrane dynamic polymer microfluidic chip after the two substrate through hole connection State.
  • Figure 4 is a cross-sectional view showing the structure before the partial welding of the substrate during the ultrasonic welding process
  • Figure 5 is a cross-sectional view showing the structure after partial welding of the substrate during ultrasonic welding
  • Fig. 6 is a cross-sectional view showing the structure before the partial welding of the substrate during the laser welding process.
  • the overall structure of the membrane dynamic polymer microfluidic chip of the present embodiment includes: a first substrate 100, a separator 300, and a first substrate. A plurality of structural components 101 on one side of the 100, and a plurality of first through holes 102 on the first substrate 100.
  • the structural component 101 is a variety of channels, containers, and external mechanisms in the chip.
  • the chip further includes a second substrate 200, and one surface of the second substrate 200 is bonded to the other surface of the first substrate 100. In order to facilitate the sticking of the diaphragm, the adhesive area after the sticking does not have any defects or bubbles, and the other surface of the second substrate 200 is a flat surface.
  • the second substrate 200 is provided with a second through hole 201 corresponding to the first through hole 102 of the first substrate 100.
  • the first through hole 102 and the second through hole 201 form an integral through hole 400, that is, the first through hole 102 and
  • the cross-sectional shapes and shapes of the second through holes 201 are the same, and after being attached together, the entire through holes 400 are formed after being welded together.
  • the cross-sections of the entire through-holes 400 have the same size and shape, and are the same in size and shape as the cross-sections of the first through-holes 102 and the second through-holes 201.
  • the diaphragm 300 is attached to the other surface of the second substrate 200.
  • the first substrate 100 and the second substrate 200 are pasted around the first through hole 102 and the second through hole 201, that is, radially along the first through hole 102 and the second through hole 201.
  • the first substrate 100 and the second substrate 200 are integrally connected to each other such that the first through hole 102 and the second through hole 201 form the integral through hole 400. Since the cross-sections of the entire through-hole 400 are the same in size and shape, the inner wall surface of the integral through-hole 400 is a smooth surface, and the liquid can smoothly flow through the whole through the membrane-driven polymer microfluidic chip. Hole 400 does not remain.
  • the other portion between the two substrates, that is, the portion away from the through hole 400 forms a gap 500.
  • the cross section of the integral through hole 400 may be any shape, such as a regular shape or an irregular shape such as an ellipse, a polygon or a profile.
  • the membrane dynamic polymer microfluidic chip of the embodiment adopts the structure of two-layer substrate, and the bonding surface of the second substrate and the separator is flat, so that the adhesive area after the sticking does not have defects or bubbles, and the product quality is improved. Between the two substrates, the two substrates are integrated by welding or other bonding at the first through hole 102 and the second through hole 201 to form an integral through hole 400.
  • the inner wall of the integral through hole 400 is smooth, and the liquid flows through No residue, so that the product achieves better use.
  • the embodiment provides a method for fabricating the membrane dynamic polymer microfluidic chip of Embodiment 1, comprising the steps of: preparing a first substrate 100 and a second substrate 200, wherein the surface of the first substrate facing away from the structural component is a soldering surface, The surface of the second substrate 200 that is in contact with the first substrate 100 is a soldering surface, and at least one fuse is disposed on the soldering surface of the first substrate 100 or the second substrate 200; and the first substrate 100 and the second substrate 200 are bonded The soldering surface melts the fuse, and the first substrate 100 and the second substrate 200 are soldered together; after soldering, the diaphragm 300 is attached to the surface (non-welded surface) of the second substrate 200.
  • an ultrasonic ram is used to melt the fuse to weld the first substrate 100 and the second substrate 200.
  • the core 600 is inserted into the first through hole 102 and the second through hole 201 of the first substrate 100 and the second substrate 200 to fix the first substrate 100 and the second substrate 200. Since the non-welding surface of the first substrate 100 has structural members, it is inconvenient to place the ultrasonic ram 700. Therefore, in the present embodiment, the ultrasonic ram 700 is placed on the non-welding surface of the second substrate 200.
  • a fuse 202 is provided on the welding surface of the second substrate 200.
  • the outer wall of the core 600 needs to completely contact the first through hole 102 and the second through hole 201.
  • the inner wall that is, the outer wall of the core 600 and the inner wall of the first through hole 102 and the second through hole 201 have no gap, and the second through hole 201 is provided with a fuse 202 next to the second through hole 201 to The fuse 202 is melted and completely encases the core 600 under the pressure of the ultrasonic ram 700, thereby smoothing the inner wall of the integral through hole 400.
  • a flow guiding groove 203 is disposed on one side of the fuse 202.
  • the guiding groove 203 is disposed on the second substrate. 200 (may also be disposed on the first substrate 100).
  • the ultrasonic ram 700 is vibrated at a high frequency, and the fuse 202 is heated by friction with the first substrate 100 to melt the fuse 202.
  • the ultrasonic energy is transmitted to the core 600, resulting in an increase in energy loss and damage of the core by the ultrasonic energy, between the fuse 202 and the core 600.
  • a fuse line 204 is provided.
  • the fuses 202 are soldered without surface soldering, so that energy can be concentrated on the conductive fuses (ie, the fuses 202 next to the second through holes 201) and other fuses, that is, not to be soldered.
  • the two substrates are pressed into contact with each other. Otherwise, when ultrasonic welding is used, the increase of the load of the ultrasonic indenter 700 may be out of control, which may also affect the quality of the welding. Therefore, a gap 500 is left between the two substrates after soldering.
  • the use of fuse welding can ensure the quality of the conduction welding and the quality of the bonding of the two substrates, and at the same time, it can control the influence of the welding on the bonding surface of the diaphragm, and can realize the low-power welding and the control equipment use cost.
  • the fuse 202 is disposed immediately around the second through hole 201 so that the inner wall of the formed integral through hole 400 after the completion of the welding is smooth.
  • the cross-sectional shape of the fuse 202 is trapezoidal, rectangular, triangular or semi-circular.
  • the two substrates after welding are integrally formed as shown in FIG. 5, and have a gap 500 therebetween, and the inner wall of the integral through hole 400 is smooth.
  • the method for preparing the membrane dynamic polymer microfluidic chip of the present embodiment is substantially the same as the method of the second embodiment, that is, the first substrate 100 and the second substrate 200 are prepared, and the first substrate faces away from the surface of the structural member.
  • a surface to be bonded to the first substrate 100 on the second substrate 200 is a soldering surface, at least one fuse is disposed on the soldering surface of the first substrate 100 or the second substrate 200; and the first substrate 100 is bonded
  • the soldering surface of the second substrate 200 melts the fuse, and the first substrate 100 and the second substrate 200 are soldered together; after soldering, the diaphragm 300 is attached to the surface (non-welded surface) of the second substrate 200.
  • the difference is that the fuse is melted by a laser to solder the first substrate 100 and the second substrate 200. Therefore, one or both of the first substrate 100 and the second substrate 200 are transparent materials, so that the laser 900 Through the can reach the welding surface.
  • the core 600 is inserted into the first through hole 102 and the second through hole 201 of the first substrate 100 and the second substrate 200 to fix the first substrate 100 and the second substrate 200.
  • the second substrate 200 is a transparent material
  • the fuse 103 is disposed on the first substrate 100.
  • the mask 800 is covered on the non-welding surface of the second substrate 200, and a transparent region 801 through which the laser light 900 passes is opened on the mask 800 corresponding to each of the fuses 103.
  • the laser 900 transmits and melts the fuse through the 801. 103.
  • the outer wall of the core 600 needs to completely contact the first through hole 102 and the second through hole 201.
  • the inner wall that is, the outer wall of the core 600 and the inner wall of the first through hole 102 and the second through hole 201 have no gap, and the first through hole 102 is provided with a fuse 103 close to the first through hole 102 to The fuse 103 is melted to completely wrap the core 600, thereby smoothing the inner wall of the integral through hole 400.
  • a flow guiding groove 104 is disposed on one side of the fuse 103.
  • the guiding groove 203 is disposed on the first substrate. 100 on.
  • the first substrate 100 is further provided with a fuse interval 105.
  • the fuse 103 since there is no high frequency vibration of the ultrasonic ram, the fuse 103 can be placed close to the core 600, and therefore, the fuse interval 105 can be omitted. .
  • the fuse 103 is disposed immediately around the first through hole 102 so that the inner wall of the formed integral through hole 400 after the completion of the welding is smooth.
  • the fuse 103 has a cross-sectional shape of a trapezoidal shape, a rectangular shape, a triangular shape, or a semicircular shape.
  • the mask 800 is removed, and the fuse 103 to be melted is solidified, and then the core 600 is taken out.
  • the two substrates after welding are as shown in FIG. 5, and the two substrates are integrally formed with a gap 500 therebetween, and the whole through hole 400 is provided.
  • the inner wall is smooth.
  • the invention divides the substrate into two parts and then welds, ensures all the functions of use, ensures the flatness of the bonding surface with the diaphragm, and has low scale production cost; and the core body is welded (injected) to ensure smooth inner surface after welding (injection), It will damage the flatness of the bonding surface with the diaphragm, and the production cost of the scale is low.
  • the welding of the two substrates does not use large-area welding, so that the energy is concentrated on the conduction fuse and other fuse lines, which can ensure the quality of the conduction welding.
  • the quality of the bonding can control the influence of the welding on the bonding surface of the diaphragm.
  • the welding structure and method of the membrane dynamic polymer microfluidic chip substrate of the invention make the polymer membrane dynamic microfluidic chip meet the high scale production.
  • the requirements of quality, high efficiency and low cost make the application of microfluidic chips out of the laboratory and widely used.
  • the original substrate is divided into two, which effectively solves the problem of flattening the bonding surface of the injection substrate substrate; the process is simple and the cost is not increased much.
  • the two substrates are re-welded together to have all the design functions of the original substrate.
  • the welding fuses are arranged on the soldering surface, and can be arranged on the upper substrate or the lower substrate according to the structural characteristics of the chip to facilitate the production of the substrate.
  • the core body is welded to make the inner wall of the through hole smooth and smooth, and the core body has a precise positioning function.
  • the core design adopts a variety of regular shapes or shapes, which makes the chip design more flexible and improves the application function and performance;

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Electromagnetism (AREA)
  • Analytical Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Dispersion Chemistry (AREA)
  • Plasma & Fusion (AREA)
  • General Health & Medical Sciences (AREA)
  • Hematology (AREA)
  • Clinical Laboratory Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Lining Or Joining Of Plastics Or The Like (AREA)
  • Micromachines (AREA)

Abstract

一种膜动聚合物微流控芯片及其制备方法,该微流控芯片包括:第一基板(100)、隔膜(300)、位于第一基板(100)的一面上的若干结构部件(101)、位于第一基板(100)上的若干第一通孔(102)和第二基板(200)。第二基板(200)一面与第一基板(100)另一面相贴合,另一面表面平整。第二基板(200)上设有与第一基板(100)的第一通孔(102)对应的第二通孔(201),第一通孔(102)和第二通孔(201)形成整体通孔(400),隔膜(300)贴合在第二基板(200)的另一面。其制备方法包括以下步骤:在第一基板(100)和第二基板(200)的焊接面上设置至少一个熔线(103,202);贴合第一基板(100)和第二基板(200)的焊接面,熔化熔线(103,202),将第一基板(100)和第二基板(200)焊接在一起,焊接后将隔膜(300)贴合在第二基板(200)的表面上。

Description

膜动聚合物微流控芯片及其制备方法
技术领域
本发明涉及膜动聚合物微流控芯片制造技术领域,特别涉及一种膜动聚合物微流控芯片及其制备方法。
背景技术
微流体是采用操控微小体积流体的技术,应用于生物和化学流体系统的结构和控制方法。微流体已经实现的应用和潜在的应用包括疾病诊断、生命科学研究、以及生物和/或化学传感器研制。
膜动聚合物微流体结构包括基板,其具有一个或多个微流体通道或路径,以及盖板或第二或更多的子基板,其具有可以互连也可以不互连的流体路径,这种微流体结构可以统称作微流控芯片。
微流控芯片可由玻璃、石英或硅制成无机材料微流控芯片,这些芯片典型地利用了半导体工业已经较好的微制造技术,然而,当流体路径要求面积很大或芯片必须是一次性可抛弃式芯片时,无机芯片的材料和制造成本可能不可避免地高。
作为无机微流体结构的替代,微流体结构或装置也可以由聚合材料制成,聚合微流控芯片具有低材料成本和潜在的高产量优势。
膜动聚合物微流控芯片,是将隔膜固定粘合至刚性塑料基板的平面上,基板粘合表面根据微结构分为粘合区和非粘合区,构成操作所需的主动部件和结构基板单元;如阀和泵;参见发明专利“微流体膜片泵和阀”申请号 200680037019.7。
膜动聚合物微流控芯片还可以包括各种容器,可以根据应用要求进行流体流动模式的不同组合,实现个性化高效率样本检测。参见发明专利“微流体芯片及化验系统” 申请号200780002511.5。
微流控芯片研制的目标是实现可靠、高效率、低成本的规模制造生产。基板的生产通常采用注塑方式。对于基板内包含容器等会造成基板平面材料分布不均匀的结构,注塑时材料结构不均匀造成应力不均匀,会在基板结构对应的平面上产生缩坑,破坏基板表面平整度。而隔膜与基板的粘合要求基板的粘合表面非常平整,表面不平整会造成粘合区域出现残缺或气泡,破坏了微结构功能,造成产品不合格,直接影响粘合的合格率。对注塑基板的不平整可以进行后续平面度处理解决这个问题,但后续处理效果也会不是很好,另外后续处理成本导致产品生产成本增加,生产效率降低。
膜动聚合物微流控芯片根据应用用途有时需要包含两个以上的基板,基板间可采用熔线(导能线)焊接的方式,参见发明专利“200710059255.5 一种导能线焊接板及其工作方法”,该专利提供了一种导能线焊接板的工作方法;但没有解决两板导通连接处的焊接方法,及如何保证基板与隔膜粘合面的平整度问题。
发明内容
(一)要解决的技术问题
本发明要解决的技术问题是:
1、如何实现多基板连接时,保证基板与隔膜粘合面的平整度问题。
2、如何实现两板通孔连接处的焊接。
(二)技术方案
为解决上述技术问题,本发明提供了一种膜动聚合物微流控芯片,包括:第一基板、隔膜、位于所述第一基板的一面上的若干结构部件及位于所述第一基板上的若干第一通孔,还包括:第二基板,所述第二基板一面与所述第一基板另一面相贴合,所述第二基板的另一面表面平整,所述第二基板上设有与所述第一基板的第一通孔对应的第二通孔,第一通孔和第二通孔形成整体通孔,所述隔膜贴合在所述第二基板的另一面。
其中,所述第一基板和第二基板在所述整体通孔周围贴合,两基板间其它部位形成间隙。
其中,所述整体通孔内壁的各横截面大小、形状相同。
其中,所述整体通孔的横截面为:椭圆形或多边形。
本发明还提供了一种制备上述的膜动聚合物微流控芯片的制备方法,包括步骤:制备所述第一基板和第二基板,所述第一基板背离所述结构部件的表面为焊接面,第二基板上与第一基板相贴合的表面为焊接面,在所述第一基板或第二基板的焊接面上设置至少一个熔线;贴合所述第一基板和第二基板的焊接面,熔化所述熔线,将所述第一基板和第二基板焊接在一起;焊接后将所述隔膜贴合在所述第二基板的表面上。
其中,所述熔线一侧设置有导流槽。
其中,焊接前将一芯体插入所述第一基板和第二基板上相对应的第一通孔和第二通孔,焊接时熔化所述熔线,将所述第一基板和第二基板焊接在一起,焊接完成后取出芯体。
其中,所述芯体外壁与所述第一通孔和第二通孔的内壁之间无间隙。
其中,所述第一通孔或第二通孔周围设置有所述熔线。
其中,其特征在于,所述熔线的横截面形状为梯形、长方形、三角形或半圆形。
其中,焊接时采用超声波压头熔化所述熔线。
其中,所述熔线与所述芯体之间设有熔线间隔。
其中,所述超声波压头置于所述第二基板背离所述第一基板的表面上。
其中,所述熔线设置在第二基板面向所述第一基板的表面上。
其中,所述第一基板或第二基板为透明基板,焊接前将蒙板覆盖在所述透明基板的非焊接面上,所述蒙板上对应所述熔线的位置设有透光区域,焊接时,激光透过蒙板上的透光区域照射并熔化所述熔线,将所述第一基板和第二基板焊接在一起,焊接完成后取下蒙板。
其中,所述第二基板为透明基板,所述熔线设置在所述第一基板的焊接面上。
(三)有益效果
1、采用本技术方案,将原基板一分为二,有效的解决了注塑基板隔膜粘接面平整问题;工艺简单,成本增加不多。
2、将两块基板再焊接在一起,使其具有原基板的所有设计功能,焊接熔线设置在焊接面上,可以根据芯片结构特征选择设置在上基板或下基板上,便于基板的生产。
3、焊接基板时,采用熔线焊接,不用面焊接,可以使能量集中在导通熔线和其它熔线处,能保证导通焊接质量和两基板粘合的质量,同时可以控制焊接不对隔膜粘合面产生的影响,可以实现低功耗焊接,控制设备使用成本。
4、基板焊接后基板间留有间隙,即在焊接时不要将两基板压合成面接触;否则,在采用超声波焊接时,设备负载增加会失控,也会影响焊接质量。
5、采用夹芯体焊接,使通孔内壁光滑通畅,同时芯体又有精确定位的作用。
6、芯体设计采用多种规则形状或异形,使芯片设计更加灵活,提高了应用功能和性能;
7、在超声波压头焊接时芯体与熔线间留有间隙,避免了焊接初始时,刚体(固态)熔线与芯体接触,使超声能量传递到芯体上,减少了能量损耗,减少了超声能量对芯体的损伤;同时保持有限的间距,使熔线熔化后,在压力挤压下,将芯体包裹。
附图说明
图1是本发明实施例的一种膜动聚合物微流控芯片结构示意图;
图2是图1沿A-A向的剖面图;
图3是图2中的B处的局部放大图,(a)为焊接前两基板通孔连接处状态,(b)为焊接完成,形成膜动聚合物微流控芯片后两基板通孔连接处状态。
图4是采用超声波焊接过程中,基板局部焊接前结构剖视图;
图5是采用超声波焊接过程中,基板局部焊接后结构剖视图;
图6是采用激光焊接过程中,基板局部焊接前结构剖视图。
具体实施方式
下面结合附图和实施例,对本发明的具体实施方式作进一步详细描述。以下实施例用于说明本发明,但不用来限制本发明的范围。
实施例1
如图1、图2、图3中(a)和(b)所示,为本实施例的膜动聚合物微流控芯片整体结构,包括:第一基板100、隔膜300、位于第一基板100的一面上的若干结构部件101、位于第一基板100上的若干第一通孔102。其中结构部件101为芯片中的各种沟道、容器、及外接机构。该芯片还包括:第二基板200,第二基板200的一面与第一基板100另一面相贴合。为了方便隔膜的粘贴,使粘贴后的粘合区域不会出现残缺或气泡,第二基板200的另一面表面为一平整的面。第二基板200上设有与第一基板100的第一通孔102对应的第二通孔201,第一通孔102和第二通孔201形成整体通孔400,即第一通孔102与第二通孔201的各横截面大小、形状都相同,贴附在一起后,如焊接在一起后形成整体通孔400。整体通孔400的各横截面的大小、形状相同,且与第一通孔102、第二通孔201的各横截面大小、形状都相同。隔膜300贴合在第二基板200的另一面。
如图3中(b)所示,第一基板100和第二基板200在第一通孔102和第二通孔201周围贴合,即沿第一通孔102和第二通孔201径向向外的一定距离使第一基板100和第二基板200连为一体,以致第一通孔102和第二通孔201形成整体通孔400。由于该整体通孔400的各横截面的大小、形状相同,因此整体通孔400的内壁表面为一光滑的表面,在使用膜动聚合物微流控芯片过程中,液体能够顺利流过整体通孔400,不会残留。两基板间其它部位,即远离通孔400的部位形成间隙500。其中,整体通孔400的横截面可为任意形状,如:椭圆形、多边形或异形等规则形状或不规则形状。
本实施例的膜动聚合物微流控芯片采用了两层基板的结构,且第二基板与隔膜的贴合面平整,使粘贴后的粘合区域不会出现残缺或气泡,提高了产品质量;两基板之间通过在第一通孔102和第二通孔201处焊接或其它贴合方式使两基板成为一体,形成的整体通孔400,该整体通孔400的内壁光滑,液体流过时不残留,使得产品达到了更好的使用效果。
实施例2
本实施例提供了一种制作实施例1中的膜动聚合物微流控芯片的方法,包括步骤:制备第一基板100和第二基板200,第一基板背离结构部件的表面为焊接面,第二基板200上与第一基板100相贴合的表面为焊接面,在第一基板100或第二基板200的焊接面上设置至少一个熔线;贴合第一基板100和第二基板200的焊接面,熔化熔线,将第一基板100和第二基板200焊接在一起;焊接后将隔膜300贴合在第二基板200的表面(非焊接面)上。
如图4所示,本实施例中采用超声波压头的方式来熔化熔线以焊接第一基板100和第二基板200。芯体600插入第一基板100和第二基板200的第一通孔102和第二通孔201,以固定第一基板100和第二基板200。由于第一基板100的非焊接面上具有结构部件,不方便放置超声波压头700,因此,本实施例中将超声波压头700放置在第二基板200的非焊接面上。第二基板200的焊接面上设有熔线202。优选地,为了使熔线202熔化后第一通孔102和第二通孔201形成整体通孔400的内壁光滑,芯体600的外壁需要完全接触第一通孔102和第二通孔201的内壁,即芯体600的外壁与第一通孔102和第二通孔201的内壁之间无间隙,且第二通孔201的周围设有紧挨第二通孔201的熔线202,以使得熔线202熔化后在超声波压头700的压力下完全包裹住芯体600,从而使整体通孔400的内壁光滑。
为了使熔化的熔线202的熔液均匀覆盖在熔线202周围的焊接面上,在熔线202的一侧设置有导流槽203,本实施例中,导流槽203设置在第二基板200上(也可以设置在第一基板100上)。
超声波压头700高频振动,熔线202与第一基板100接触处摩擦生热,使熔线202熔化。为了避免焊接初始时刚体(固态)熔线202与芯体600接触,使超声能量传递到芯体600上,导致增加能量损耗及超声能量对芯体的损伤,熔线202与芯体600之间设有熔线间隔204。
焊接两基板时,采用熔线202焊接,不用面焊接,可以使能量集中在导通熔线(即紧挨第二通孔201的熔线202)和其它熔线处,即在焊接时不要将两基板压合成面接触,否则在采用超声波焊接时,超声波压头700负载增加会失控,也会影响焊接质量。因此,焊接后两基板间留有间隙500。采用熔线焊接能保证导通焊接质量和两基板粘合的质量,同时可以控制焊接不对隔膜粘合面产生的影响,可以实现低功耗焊接,控制设备使用成本。在紧挨第二通孔201的周围设置熔线202,使得焊接完成后的形成的整体通孔400的内壁光滑。其中,熔线202横截面形状为梯形、长方形、三角形或半圆形等多种形状。
焊接完成后,待熔化的熔线凝固后取出芯体600,焊接后的两基板如图5所示,两基板形成一体,且之间具有间隙500,整体通孔400的内壁光滑。
实施例3
如图6所示,本实施例的膜动聚合物微流控芯片的制备方法与实施例2的方法基本相同,即制备第一基板100和第二基板200,第一基板背离结构部件的表面为焊接面,第二基板200上与第一基板100相贴合的表面为焊接面,在第一基板100或第二基板200的焊接面上设置至少一个熔线;贴合第一基板100和第二基板200的焊接面,熔化熔线,将第一基板100和第二基板200焊接在一起;焊接后将隔膜300贴合在第二基板200的表面(非焊接面)上。
不同的是采用激光的方式来熔化熔线以焊接第一基板100和第二基板200,因此,第一基板100和第二基板200的其中之一或两者都为透明材料,以使激光900通过能达到焊接面。
芯体600插入第一基板100和第二基板200的第一通孔102和第二通孔201,以固定第一基板100和第二基板200。本实施例中,第二基板200为透明材料,熔线103设置在第一基板100上。将蒙板800覆盖在第二基板200的非焊接面上,且蒙板800上对应各个熔线103的位置开有供激光900通过的透光区域801,激光900透过801照射并熔化熔线103。
优选地,为了使熔线103熔化后第一通孔102和第二通孔201形成整体通孔400的内壁光滑,芯体600的外壁需要完全接触第一通孔102和第二通孔201的内壁,即芯体600的外壁与第一通孔102和第二通孔201的内壁之间无间隙,且第一通孔102的周围设有紧挨第一通孔102的熔线103,以使得熔线103熔化后完全包裹住芯体600,从而使整体通孔400的内壁光滑。
为了使熔化的熔线103的熔液均匀覆盖在熔线103周围的焊接面上,在熔线103的一侧设置有导流槽104,本实施例中,导流槽203设置在第一基板100上。
第一基板100上还设有熔线间隔105,在本实施例中,由于没有超声波压头的高频振动,可以使熔线103紧挨芯体600,因此,熔线间隔105也可以省去。
焊接两基板时,采用熔线103焊接,不用面焊接,可以使能量集中在导通熔线(即紧挨第一通孔102的熔线103)和其它熔线处。因此,焊接后两基板间留有间隙500。采用熔线焊接能保证导通焊接质量和两基板粘合的质量,同时可以控制焊接不对隔膜粘合面产生的影响,可以实现低功耗焊接,控制设备使用成本。在紧挨第一通孔102的周围设置熔线103,使得焊接完成后的形成的整体通孔400的内壁光滑。其中,熔线103横截面形状为梯形、长方形、三角形或半圆形等多种形状。
焊接完成后,取下蒙板800,待熔化的熔线103凝固后取出芯体600,焊接后的两基板如图5所示,两基板形成一体,且之间具有间隙500,整体通孔400的内壁光滑。
本发明将基板一分二,再焊接,保证所有使用功能,保证与隔膜粘合面的平整度,规模生产成本低;加芯体焊接(注塑),保证焊接(注塑)后内表面光滑,不会破坏与隔膜的粘合表面的平整度,规模化生产成本低;两基板焊接不采用大面积焊接,使能量集中在导通熔线和其它熔线处,能保证导通焊接质量,两基板粘合的质量,同时可以控制焊接不对隔膜粘合面产生的影响,总之本发明的膜动聚合物微流控芯片基板焊接结构及方法使得聚合物膜动微流控芯片符合规模化生产的高质量、高效率、低成本的目标要求,使微流控芯片的应用得以走出实验室,广泛应用。
以上实施方式仅用于说明本发明,而并非对本发明的限制,有关技术领域的普通技术人员,在不脱离本发明的精神和范围的情况下,还可以做出各种变化和变型,因此所有等同的技术方案也属于本发明的范畴,本发明的专利保护范围应由权利要求限定。
工业实用性
1、采用本发明的技术方案,将原基板一分为二,有效的解决了注塑基板隔膜粘接面平整问题;工艺简单,成本增加不多。
2、将两块基板再焊接在一起,使其具有原基板的所有设计功能,焊接熔线设置在焊接面上,可以根据芯片结构特征选择设置在上基板或下基板上,便于基板的生产。
3、焊接基板时,采用熔线焊接,不用面焊接,可以使能量集中在导通熔线和其它熔线处,能保证导通焊接质量和两基板粘合的质量,同时可以控制焊接不对隔膜粘合面产生的影响,可以实现低功耗焊接,控制设备使用成本。
4、基板焊接后基板间留有间隙,即在焊接时不要将两基板压合成面接触;否则,在采用超声波焊接时,设备负载增加会失控,也会影响焊接质量。
5、采用夹芯体焊接,使通孔内壁光滑通畅,同时芯体又有精确定位的作用。
6、芯体设计采用多种规则形状或异形,使芯片设计更加灵活,提高了应用功能和性能;
7、在超声波压头焊接时芯体与熔线间留有间隙,避免了焊接初始时,刚体(固态)熔线与芯体接触,使超声能量传递到芯体上,减少了能量损耗,减少了超声能量对芯体的损伤;同时保持有限的间距,使熔线熔化后,在压力挤压下,将芯体包裹。

Claims (1)

  1. 权 利 要 求 书
    1、一种膜动聚合物微流控芯片,包括:第一基板(100)、隔膜(300)、位于所述第一基板(100)的一面上的若干结构部件(101)及位于所述第一基板(100)上的若干第一通孔(102),其特征在于,还包括:第二基板(200),所述第二基板(200)一面与所述第一基板(100)另一面相贴合,所述第二基板(200)的另一面表面平整,所述第二基板(200)上设有与所述第一基板(100)的第一通孔(102)对应的第二通孔(201),第一通孔(102)和第二通孔(201)形成整体通孔(400),所述隔膜(300)贴合在所述第二基板(200)的另一面。
    2、如权利要求1所述的膜动聚合物微流控芯片,其特征在于,所述第一基板(100)和第二基板(200)在所述第一通孔(102)和第二通孔(201)周围贴合,两基板间其它部位形成间隙(500)。
    3、如权利要求1或2所述的膜动聚合物微流控芯片,其特征在于,所述整体通孔(400)内壁的各横截面大小、形状相同。
    4、如权利要求3所述的膜动聚合物微流控芯片,其特征在于,所述整体通孔(400)的横截面为:椭圆形或多边形。
    5、一种制备权利要求1~4中任一项所述的膜动聚合物微流控芯片的制备方法,其特征在于,包括步骤:制备所述第一基板和第二基板,所述第一基板背离所述结构部件的表面为焊接面,第二基板上与第一基板相贴合的表面为焊接面,在所述第一基板或第二基板的焊接面上设置至少一个熔线;贴合所述第一基板和第二基板的焊接面,熔化所述熔线,将所述第一基板和第二基板焊接在一起;焊接后将所述隔膜贴合在所述第二基板的表面上。
    6、如权利要求5所述的制备方法,其特征在于,所述熔线一侧设置有导流槽。
    7、如权利要求6所述的制备方法,其特征在于,焊接前将一芯体插入所述第一基板和第二基板上相对应的第一通孔和第二通孔,焊接时熔化所述熔线,将所述第一基板和第二基板焊接在一起,焊接完成后取出芯体。
    8、如权利要求7所述的制备方法,其特征在于,所述芯体外壁与所述第一通孔和第二通孔的内壁之间无间隙。
    9、如权利要求8所述的制备方法,其特征在于,所述第一通孔或第二通孔周围设置有所述熔线。
    10、如权利要求5~9中任一项所述的制备方法,其特征在于,所述熔线的横截面形状为梯形、长方形、三角形或半圆形。
    11、如权利要求10所述的制备方法,其特征在于,焊接时采用超声波压头熔化所述熔线。
    12、如权利要求11所述的制备方法,其特征在于,所述熔线与所述芯体之间设有熔线间隔。
    13、如权利要求11所述的制备方法,其特征在于,所述超声波压头置于所述第二基板背离所述第一基板的表面上。
    14、如权利要求13所述的制备方法,其特征在于,所述熔线设置在第二基板面向所述第一基板的表面上。
    15、如权利要求10所述的制备方法,其特征在于,所述第一基板或第二基板为透明基板,焊接前将蒙板覆盖在所述透明基板的非焊接面上,所述蒙板上对应所述熔线的位置设有透光区域,焊接时,激光透过蒙板上的透光区域照射并熔化所述熔线,将所述第一基板和第二基板焊接在一起,焊接完成后取下蒙板。
    16、如权利要求15所述的制备方法,其特征在于,所述第二基板为透明基板,所述熔线设置在所述第一基板的焊接面上。
PCT/CN2012/071776 2011-08-16 2012-02-29 膜动聚合物微流控芯片及其制备方法 WO2013023448A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN2011102351992A CN102319593B (zh) 2011-08-16 2011-08-16 膜动聚合物微流控芯片及其制备方法
CN201110235199.2 2011-08-16

Publications (1)

Publication Number Publication Date
WO2013023448A1 true WO2013023448A1 (zh) 2013-02-21

Family

ID=45447498

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2012/071776 WO2013023448A1 (zh) 2011-08-16 2012-02-29 膜动聚合物微流控芯片及其制备方法

Country Status (2)

Country Link
CN (1) CN102319593B (zh)
WO (1) WO2013023448A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2719460A1 (en) * 2012-10-12 2014-04-16 Sony DADC Austria AG Microfluidic devices

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102319593B (zh) * 2011-08-16 2013-11-20 北京博晖创新光电技术股份有限公司 膜动聚合物微流控芯片及其制备方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006088427A1 (en) * 2005-02-15 2006-08-24 Agency For Science, Technology And Research Microfluidics package and method of fabricating the same
CN1865924A (zh) * 2006-06-13 2006-11-22 清华大学 一种带z型光度检测池的微流控芯片的制作方法
CN101108537A (zh) * 2007-08-23 2008-01-23 铭丰科技(天津)有限公司 一种导能线焊接板及其工作方法
CN101332972A (zh) * 2008-08-05 2008-12-31 西安交通大学 一种微流体系统的制作方法
CN101495236A (zh) * 2006-01-19 2009-07-29 奇奥尼公司 微流体芯片及化验系统
CN102319593A (zh) * 2011-08-16 2012-01-18 北京博晖创新光电技术股份有限公司 膜动聚合物微流控芯片及其制备方法

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6287850B1 (en) * 1995-06-07 2001-09-11 Affymetrix, Inc. Bioarray chip reaction apparatus and its manufacture
US6096562A (en) * 1997-10-27 2000-08-01 Nalge Nunc International Corporation Multi-slide assembly including slide, frame and strip cap, and methods thereof
US6066216A (en) * 1999-02-05 2000-05-23 Biometric Imaging, Inc. Mesa forming weld depth limitation feature for use with energy director in ultrasonic welding
CN100590063C (zh) * 2007-05-30 2010-02-17 大连理工大学 一种导能导流和精密定位的聚合物微结构超声波键合结构
CN202191912U (zh) * 2011-08-16 2012-04-18 北京博晖创新光电技术股份有限公司 膜动聚合物微流控芯片

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006088427A1 (en) * 2005-02-15 2006-08-24 Agency For Science, Technology And Research Microfluidics package and method of fabricating the same
CN101495236A (zh) * 2006-01-19 2009-07-29 奇奥尼公司 微流体芯片及化验系统
CN1865924A (zh) * 2006-06-13 2006-11-22 清华大学 一种带z型光度检测池的微流控芯片的制作方法
CN101108537A (zh) * 2007-08-23 2008-01-23 铭丰科技(天津)有限公司 一种导能线焊接板及其工作方法
CN101332972A (zh) * 2008-08-05 2008-12-31 西安交通大学 一种微流体系统的制作方法
CN102319593A (zh) * 2011-08-16 2012-01-18 北京博晖创新光电技术股份有限公司 膜动聚合物微流控芯片及其制备方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2719460A1 (en) * 2012-10-12 2014-04-16 Sony DADC Austria AG Microfluidic devices
US9188991B2 (en) 2012-10-12 2015-11-17 Sony Dadc Austria Ag Microfluidic device and a method of manufacturing a microfluidic device

Also Published As

Publication number Publication date
CN102319593A (zh) 2012-01-18
CN102319593B (zh) 2013-11-20

Similar Documents

Publication Publication Date Title
US20030106799A1 (en) Adhesiveless microfluidic device fabrication
KR101813391B1 (ko) 수지 성형 장치 및 수지 성형 방법 및 성형형
WO2013023448A1 (zh) 膜动聚合物微流控芯片及其制备方法
WO2021249124A1 (zh) 传感器的制造方法
TW202041133A (zh) 無注入管的可攜式電子裝置用薄膜均熱板及其製造方法
JP2004134445A (ja) 上部電極、パワーモジュール、および上部電極のはんだ付け方法
CN202191912U (zh) 膜动聚合物微流控芯片
WO2019092989A1 (ja) マイクロ流体チップおよびマイクロ流体デバイス
JP2007174990A5 (zh)
JP5598432B2 (ja) マイクロ流路デバイスの製造方法及びマイクロ流路チップ
WO2015000276A1 (zh) 一种薄膜型led器件及其制造方法
ITTO20010086A1 (it) Procedimento per sigillare e connettere parti di microsistemi elettromeccanici, fluidi, ottici e dispositivo cosi' ottenuto.
CN105109034A (zh) 一种用于poct芯片产品精密超声波焊接的接头结构
JP5251983B2 (ja) マイクロチップの製造方法
WO2012157292A1 (ja) レンズユニットの製造方法、及びレンズアレイユニットの製造方法
CN105289767B (zh) 一种微流控芯片
TW201901878A (zh) 具有有內建媒介通道的印刷電路板基板之感測器裝置
JP2015073080A (ja) 半導体装置およびその製造方法
JP2004318136A5 (zh)
WO2021203633A1 (zh) 一种led显示装置及巨量转移方法
WO2023082241A1 (zh) 膜组件及其制造方法、燃料电池单元以及燃料电池包
JP2009226503A (ja) マイクロチップ基板の接合方法およびマイクロチップ
JP2005186033A (ja) マイクロリアクターチップの作製方法
WO2024067607A1 (zh) 微流控芯片及其制备方法、微流控系统
JP2005158717A5 (zh)

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12823635

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12823635

Country of ref document: EP

Kind code of ref document: A1