WO2013023425A1 - 偏振敏感的分布式光频域反射扰动传感装置和解调方法 - Google Patents

偏振敏感的分布式光频域反射扰动传感装置和解调方法 Download PDF

Info

Publication number
WO2013023425A1
WO2013023425A1 PCT/CN2011/084101 CN2011084101W WO2013023425A1 WO 2013023425 A1 WO2013023425 A1 WO 2013023425A1 CN 2011084101 W CN2011084101 W CN 2011084101W WO 2013023425 A1 WO2013023425 A1 WO 2013023425A1
Authority
WO
WIPO (PCT)
Prior art keywords
polarization
module
optical frequency
phase
signal
Prior art date
Application number
PCT/CN2011/084101
Other languages
English (en)
French (fr)
Inventor
刘铁根
刘琨
丁振扬
江俊峰
李定杰
Original Assignee
天津大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 天津大学 filed Critical 天津大学
Priority to US13/880,732 priority Critical patent/US9322740B2/en
Publication of WO2013023425A1 publication Critical patent/WO2013023425A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M11/00Testing of optical apparatus; Testing structures by optical methods not otherwise provided for
    • G01M11/30Testing of optical devices, constituted by fibre optics or optical waveguides
    • G01M11/31Testing of optical devices, constituted by fibre optics or optical waveguides with a light emitter and a light receiver being disposed at the same side of a fibre or waveguide end-face, e.g. reflectometers
    • G01M11/3172Reflectometers detecting the back-scattered light in the frequency-domain, e.g. OFDR, FMCW, heterodyne detection
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D5/00Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable
    • G01D5/26Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light
    • G01D5/32Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light
    • G01D5/34Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light the beams of light being detected by photocells
    • G01D5/353Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light the beams of light being detected by photocells influencing the transmission properties of an optical fibre
    • G01D5/35306Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light the beams of light being detected by photocells influencing the transmission properties of an optical fibre using an interferometer arrangement
    • G01D5/35325Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light the beams of light being detected by photocells influencing the transmission properties of an optical fibre using an interferometer arrangement using interferometer with two arms in reflection, e.g. Mickelson interferometer
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D5/00Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable
    • G01D5/26Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light
    • G01D5/32Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light
    • G01D5/34Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light the beams of light being detected by photocells
    • G01D5/353Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light the beams of light being detected by photocells influencing the transmission properties of an optical fibre
    • G01D5/35306Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light the beams of light being detected by photocells influencing the transmission properties of an optical fibre using an interferometer arrangement
    • G01D5/35329Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light the beams of light being detected by photocells influencing the transmission properties of an optical fibre using an interferometer arrangement using interferometer with two arms in transmission, e.g. Mach-Zender interferometer
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D5/00Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable
    • G01D5/26Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light
    • G01D5/32Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light
    • G01D5/34Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light the beams of light being detected by photocells
    • G01D5/353Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light the beams of light being detected by photocells influencing the transmission properties of an optical fibre
    • G01D5/35338Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light the beams of light being detected by photocells influencing the transmission properties of an optical fibre using other arrangements than interferometer arrangements
    • G01D5/35354Sensor working in reflection
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M11/00Testing of optical apparatus; Testing structures by optical methods not otherwise provided for
    • G01M11/30Testing of optical devices, constituted by fibre optics or optical waveguides
    • G01M11/31Testing of optical devices, constituted by fibre optics or optical waveguides with a light emitter and a light receiver being disposed at the same side of a fibre or waveguide end-face, e.g. reflectometers
    • G01M11/3181Reflectometers dealing with polarisation
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01HMEASUREMENT OF MECHANICAL VIBRATIONS OR ULTRASONIC, SONIC OR INFRASONIC WAVES
    • G01H9/00Measuring mechanical vibrations or ultrasonic, sonic or infrasonic waves by using radiation-sensitive means, e.g. optical means
    • G01H9/004Measuring mechanical vibrations or ultrasonic, sonic or infrasonic waves by using radiation-sensitive means, e.g. optical means using fibre optic sensors

Definitions

  • the invention belongs to the field of optical fiber sensing technology.
  • the invention is applied to long-distance fiber distributed disturbance and stress sensing, and relates to a polarization-sensitive distributed optical frequency domain reflection disturbance sensing device and method.
  • the main technical solutions are Laser interference method, phase sensitive optical time domain reflection method and polarization sensitive optical time domain reflection method, all of which have short test distance ( ⁇ 80km), This topic is aimed at the current all-fiber distributed disturbance sensing technology: short test distance (less than 80km), low spatial resolution (greater than 10m), single point separation and other defects.
  • the object of the present invention is to solve the prior art that the test distance is short (less than 80km) and the spatial resolution is low (more than 10m) And a single point separation problem, providing a polarization-sensitive distributed optical frequency domain reflection disturbance sensing device and demodulation method.
  • the basic principle of the polarization-sensitive distributed optical frequency domain reflection disturbance sensing device is to use a combination of an optical frequency domain reflection method and a polarization sensitive detection disturbance method.
  • the optical frequency domain reflection method adopts optical heterodyne interference technology, adopts ultra-narrow linewidth laser for high-speed and linear scanning wavelength, and the reference arm is reflected by mirror and backscattered light of single-mode fiber (Rayleigh reflected light) Related. Because the optical paths of the two are different, the interference end is actually, the two arms of different frequencies interfere to form a beat frequency.
  • the beat frequency signals of different frequencies correspond to different positions of the sensing fiber.
  • FFT FFT The transformation can get the back-direction Rayleigh scattering information at different positions.
  • the device of the invention adds a light source optical frequency and phase monitoring module to the traditional optical frequency domain reflection method device and a reference arm of the core interference module to add phase modulation, and suppresses phase noise, nonlinear scanning noise, and the like by the corresponding demodulation algorithm. And Rayleigh coherent scatter noise, achieving high sensitivity and high signal to noise ratio.
  • the basic principle of the polarization-sensitive detection perturbation method is that external disturbance information (vibration, stress) and the like are applied to the sensing fiber. According to the photoelastic effect, the external disturbance will inevitably cause a change in the birefringence in the optical fiber, thereby causing a change in the polarization state of the light in the optical fiber.
  • Polarization-sensitive optical frequency domain reflection technique P-OFDR the polarized light of several known polarization states is injected into a common communication fiber, and the polarization information of each position in the fiber is obtained by polarization diversity detection technology and optical heterodyne coherent detection technology of optical frequency domain reflection, and the polarization information can be obtained.
  • the birefringence information at each position in the fiber is obtained, and the disturbance sensing is performed.
  • the device of the invention adopts a polarization generating module and a polarization beam splitting balance detecting module, and can inject two to four polarizations of known polarization states (linearly polarized light, 45° Linearly polarized light, left-handed circularly polarized light, right-handed circularly polarized light), acquired by the polarization eigenmode acquisition of the polarization beam splitting balance detection module, using the series wave plate model and the Jones matrix or Mueller matrix algorithm to obtain various positions in the fiber
  • the wave plate model obtains the polarization information of each position in the fiber, and realizes the distributed relationship between the linear birefringence, the polarization dependent loss, the circular birefringence and other polarization parameters and the external disturbance (stress, vibration) at various positions in the fiber. Disturbance sensing purpose.
  • the device of the invention adopts an extended sensing distance and a composition ultra-long distance sensing network.
  • the polarization-sensitive distributed optical frequency domain reflection and disturbance sensing device provided by the present invention is shown in FIG. 1 , and the specific implementation is shown in FIG. 2 and FIG. 3 .
  • the device includes:
  • Core interference module using Mach-Zehnder structure, Is the sensor fiber backscattered light and the reference arm occur in the beat frequency interference, wherein the reference arm is added to the programmable gate array modulation phase modulator (EOM The frequency shift is formed, the frequency shift value is greater than the maximum beat frequency generated by the test fiber, the receiving end is denoised by the band pass filter, and the frequency is lowered by the mixer, so that the acquisition card can suppress the Rayleigh scattering coherent noise ( Fading) Noise ) and ghost peak.
  • EOM programmable gate array modulation phase modulator
  • source optical frequency and phase monitoring module due to the optical frequency nonlinear scanning and phase noise of the laser, which will seriously affect the spatial resolution and signal-to-noise ratio of the system, using a depolarization Michelson interferometer ( Michelson).
  • Michelson interferometer The interference structure, using modulator phase modulation, and subsequent phase-locked demodulation of the phase of the interference signal, can extract the optical frequency and phase of the laser at each time point, and solve the problem by using a correction and compensation algorithm.
  • the Mach Zehnder interferometer structure of the 3 ⁇ 3 coupler uses a 120° phase difference of the port output of the 3 ⁇ 3 coupler to acquire two 3 ⁇ 3
  • the signal output from the port of the coupler can obtain the optical frequency and phase of the laser at each time point through a certain trigonometric operation relationship.
  • polarization generation module use it to generate several fixed polarization states, to facilitate the subsequent polarization information solution.
  • Polarization beam splitting balance detection module decomposes the light entering into the orthogonal eigenstate and acquires the function, the function is to suppress the polarization fading and obtain the polarization information, and the balance detection module can know the common mode noise and improve the signal to noise ratio by 3dB. .
  • light source tuning drive module provide drive signals for light source tuning, using programmable gate array (FPGA) and 20 The number of bits is converted by a converter.
  • FPGA programmable gate array
  • Tunable Laser Ultra-narrow linewidth continuous linearly polarized light that provides high speed linear tuning.
  • High-speed optical switch It is convenient to switch the sensing optical cable, and the optical switch can be used to expand the sensing distance and form an ultra-long-distance sensing network.
  • High-speed acquisition module used to collect the signals generated by the core interference module and the source optical frequency and phase monitoring module for high-speed synchronous acquisition.
  • Computer Demodulate and signal the data collected by the high-speed acquisition module.
  • the sensing optical cable is composed of a common communication optical cable or a vibration sensing optical cable. When used, only a single core is used, and it is disposed in a position such as a fence or a large structure that requires disturbance monitoring.
  • Tunable laser 6 for providing light source for optical frequency domain reflection system, including ultra-narrow linewidth tunable fiber laser, external cavity semiconductor laser;
  • Light source tuning drive module 5 Connected to a tunable laser to provide tuned drive for a tunable laser. It is an ultra-low ripple voltage driver consisting of a high precision digital-to-analog converter, programmable gate array, and amplifier.
  • Beam splitter 12 The laser light is split 1 : 99 and distributed to the core interference module 1 And light source phase optical frequency monitoring module 2;
  • Light source optical frequency and phase monitoring module 2 For the collection and monitoring of laser optical frequency, two structures can be used, one is depolarization Jackson interferometer ( Michelson) interferometer structure; the second structure is based on a 3 ⁇ 3 coupler Mach Zehnder structure as shown in Fig. 3. Wherein the depolarization of the Michelson interferometer ( Michelson) Interference includes isolator 13: Prevents 50:50 coupler 15's 2-port reflected light from entering the laser.
  • Michelson depolarization Jackson interferometer
  • 50 : 50 coupler 15 For optical interference, light enters from port 2 of coupler 15 and exits through ports 3 and 4, which are reflected by the Faraday mirrors 17 and 18 of the two arms of the Michelson interferometer, returning to 3, 4 At the port, two beams of light interfere in the coupler 15 and are output from the 1 port. Two Faraday mirrors 17 and 18 provide reflection for the interferometer and eliminate the polarization fading of the interferometer.
  • Delay fiber 16 It is used to realize the beat frequency interference of the non-equal arm, and the optical frequency can be obtained according to the beat frequency and the length of the delay fiber.
  • the interference detector 14 is used for the acquisition coupler 15 to emit light from the 1 port, that is, the light source phase optical frequency monitoring module 2 Beat signal.
  • the phase modulator 16 is configured to phase modulate an arm of the interferometer to facilitate subsequent phase-locked demodulation of the phase of the interference signal. Machzend based on 3 ⁇ 3 coupler (Mach Zehnder)
  • the interferometer structure is shown in Figure 3. It consists of a 50: 50 beam splitter 33 for 50:50 splitting of incident light, through a delay fiber 34, into 3 ⁇ 3 The coupler interferes. 35, the two ports of the 3 ⁇ 3 coupler are respectively connected to the two detectors 36 and 37 optical interfaces, and the collected electrical signals are connected to the high-speed acquisition module.
  • the core interference module 1 is the core of the optical frequency domain reflectometer, and is provided by an adjustable polarization maintaining attenuator 20 and a polarization maintaining beam splitter 21
  • the reference arm, the test arm and the polarization maintaining coupler 24 are formed, and the adjustable polarization maintaining attenuator 20 is used for adjusting the light intensity, the polarization maintaining beam splitter 21, and the light is in a certain ratio 50 : 50 , 20 : 80 , 30 : 70 or 40 : 60
  • the selection ratio is larger such as 20: 80 , 30: 70, when the stimulated Brillouin absorption effect is small, the selection ratio is, for example, 50:50, 40:60.
  • the reference arm consists of a phase modulator 22 and a 45 degree aligner 23, wherein the reference arm fiber is a polarization maintaining fiber.
  • Phase modulator 22 The programmable gate array 31 is modulated with the maximum beat frequency value of the test, and the high-pass filtering is performed on the acquired signal to suppress the Rayleigh scattering Fading noise and the phantom peak ( ghost peak ).
  • the 45 degree aligner 23 will maintain the polarization-maintaining fiber fast axis and the slow axis 45 degrees to the axis, ensuring that the reference arm fast and slow axis has the same amount of light intensity.
  • the test arm of the core interference module 1 is connected to the test arm of the core interference module 1 and connected to the polarization generator of the polarization generating module 3
  • the backscattered light of the sensing cables 10 and 11 passes through the high speed optical switch 7 and the circulator in the polarization generating module 3 to enter the second port of the polarization maintaining coupler 24, the core interference module 3
  • the reference arm light enters the first port of the polarization maintaining coupler 24, and the backscattered light of the sensing cables 10 and 11 and the reference arm light are in the polarization maintaining coupler 24
  • the beat frequency interference occurs to generate the beat frequency interference signal, and the beat frequency signal enters the polarization splitting balance detection module 4 from the third port and the fourth port of the polarization maintaining coupler 24;
  • a polarization generating module 3 includes a polarization generator 38 and a circulator 29, and a polarization generator 38
  • Light capable of producing several polarization states includes: line polarization, 45 degree line polarization, left-hand circular polarization or right-hand circular polarization, providing a known reference polarization state for subsequent algorithm processing; circulator 29
  • the polarization maintaining circulator for biaxial operation is connected to the polarization generator 38, the high speed optical switch 7 and the polarization maintaining coupler of the core interference module 1 24
  • the specific connection mode enters the circulator from the first port and the high-speed optical switch from the second port.
  • the backscattered light of the sensing cable with the connected high speed optical switch is returned through the second port of the circulator, and enters the first port and the second of the polarization maintaining coupler 24 of the core interference module 1 from the third port of the circulator port
  • High-speed optical switch 7 connected to sensor cables 10 and 11
  • the sensing of the multi-channel sensing cable can be realized, the test distance of the system is expanded, and a large-scale sensing network is formed.
  • Polarization splitting balance detection module 4 includes two polarization beam splitters 25 and 26 and two balance detectors 27 and 28 Wherein the polarization beam splitters 25 and 26 enter the core interference module 1 into which the output beat signal is decomposed into two components of the polarization intrinsic orthogonal fast and slow axis; two of the polarization beam splitters 25 and 26 The fast axis component enters the first balance detector 27 and the slow axis component enters the second balance detector 28;
  • High-speed acquisition module 8 for collecting the first and second balance detectors of the polarization splitting balance detection module 27 and 28
  • High-speed acquisition module 8 blocks of data for data processing, including light source optical frequency and phase module 2 Phase, optical frequency extraction and demodulation algorithms, and demodulation of the beat signal generated by the core interference module 1 to provide control signals for the source tuning drive module 5
  • Sensor cables 10 and 11 It consists of ordinary communication optical cable or vibration sensing optical cable. It is only used in single core and is placed in the position of fence, large structure and other disturbance monitoring.
  • First step laser real time Phase optical frequency acquisition, performing Hilbert transform or trigonometric function transformation and time-frequency domain transform on the signals collected by the source optical frequency and phase monitoring module to obtain the optical frequency or phase of the laser at each time point;
  • the optical frequency and phase signals of the laser are phase-compensated for the two signals including the polarization eigenstate in the signal of the core interference module by using a non-uniform fast Fourier transform or a compensated interpolation algorithm to suppress optical frequency nonlinearity and phase noise of the light source.
  • the third step after the second step compensation Spectral analysis of the signal of the core interference module:
  • the signal estimation is performed by any of the following two methods.
  • the specific methods are divided into two methods: non-parametric spectrum estimation and parametric spectrum estimation.
  • the first method the non-parametric spectrum estimation method, uses a window function for the signal processed in the second step: Kaiser window or Gaussian window to suppress the signal side lobes, and then adopts advanced window technology: convolution
  • the window and spatial apodization or apodization method further suppress the signal side lobes for signal processing;
  • the second method additionally adopts the method of parameterized spectrum estimation: using the autoregressive moving average model or autoregressive for the signal processed in the second step Parametric methods such as model or multiple signal classification model the system output signal to achieve system super-resolution analysis;
  • the fourth step is to denoise the signal processed in the third step.
  • the specific methods are: wavelet denoising, Wiener deconvolution adaptive denoising, median denoising, morphological denoising, partial differential denoising and based on Local statistical feature denoising; It is the advanced window technology that does not use the third step to suppress the side lobes and the signal that is denoised in the fourth step.
  • Figure 3 shows the advanced window technique that suppresses the side lobes in the third step and the signal that is denoised in the fourth step.
  • the polarization solution based on the fiber-distributed waveplate model is performed on the signal processed in the fourth step by using either of the following two methods:
  • the first method through the polarization generator and polarization beam splitting detection, the polarization states and Jones vectors of the input and output lights are known, and the eigenvalue method is obtained by using the similar matrix of the Jones matrix. This method only needs to input two polarization states. , the Jones matrix of each small segment in the test fiber is obtained, and the small segments of the test fiber to linear birefringence and linear double attenuation can be obtained;
  • the second method through the polarization generator and polarization beam splitting detection, the Stokes vector of the input and output light is known, and the distributed Miller matrix of each small segment in the test fiber is obtained by matrix operation, and the test fiber can be obtained.
  • Each small segment to linear birefringence and linear double attenuation, circular birefringence.
  • the polarization-sensitive optical frequency domain reflection perturbation device and method (P-OFDR) proposed by the present invention has a long test distance ( >200km ), high spatial resolution (centimeter level), high sensitivity, continuous multi-point measurement. It can be applied to the real-time monitoring of power and communication cables in long-distance perimeter safety and oil and gas pipeline safety.
  • FIG. 1 is a block diagram of a polarization-sensitive distributed optical frequency domain reflection disturbance sensing device
  • 1 is the core interference module
  • 2 is the source optical frequency and phase monitoring module
  • 3 is the polarization generation module
  • 4 It is a polarization beam splitting balance detection module
  • 5 is a light source tuning drive module
  • 6 is a tunable laser
  • 7 is a high speed optical switch
  • 8 is a high speed acquisition module
  • 9 is a computer
  • 10 is a sensing optical cable. 11 It is a sensor cable.
  • FIG. 2 is a schematic diagram of a specific structure of a polarization-sensitive distributed optical frequency domain reflection disturbance sensing device
  • Figure 3 is a second specific structure of the light source optical frequency and phase monitoring module in the polarization-sensitive distributed optical frequency domain reflection disturbance sensing device based on 3 ⁇ 3 Schematic diagram of the Mach Zehnder structure of the coupler;
  • Figure 4 shows the signal spectrum that is not processed using denoising and windowing techniques.
  • Figure 5 shows the signal spectrum processed using denoising and windowing techniques.
  • 1 is the core interference module
  • 2 is the source optical frequency and phase monitoring module
  • 3 is the polarization generation module
  • 4 It is a polarization beam splitting balance detection module
  • 5 is a light source tuning drive module
  • 6 is a tunable laser
  • 7 is a high speed optical switch
  • 8 is a high speed acquisition module
  • 9 is a computer
  • 10 is a sensing optical cable. 11 It is a sensor cable.
  • 12 is the beam splitter (1: 99) 13 is the isolator, 14 is the detector, 15 is the coupler, 16 is the delay fiber, 17 is the Faraday rotating mirror, 18 Is a Faraday rotating mirror, 19 phase modulator, 20 is an adjustable attenuator, 21 is a polarization maintaining beam splitter, 22 is a phase modulator, 23 is a 45 degree aligner, and 24 is a polarization maintaining coupler, 25 is a polarization beam splitter, 26 is a polarization beam splitter, 27 is the first balance detector, 28 is the second balance detector, 29 is a polarization maintaining circulator, 30 is a high precision digital to analog converter, 31
  • the programmable gate array (FPGA) 32 is an amplifier. 33 is 50: 50 beam splitter, 34 is the delay fiber, 35 is the 3 ⁇ 3 coupler, 36 is the detector 1 and 37 is the detector 2 . 38 is the polarization generator
  • Embodiment 1 Polarization-sensitive distributed optical frequency domain reflection disturbance sensing device
  • the basic structure of the core interference module 1 is the Mach Zehnder interferometer structure. Forming a light heterodyne interference structure; the light source optical frequency and phase monitoring module 2, which mainly collects the real-time optical frequency and phase of the laser for nonlinear scanning and phase noise compensation of the signal of the core interference module; the polarization generating module 3 And polarization splitting balance detection module 4 realizes extraction of polarization information in the sensing cable; light source tuning drive module 5 and tunable laser 6 High-speed and linear scanning wavelength narrow-linewidth laser source for polarization-sensitive distributed optical-frequency reflected perturbation sensing devices; high-speed optical switch 7 for long-distance large-scale sensing networks; high-speed acquisition module 8 Signal for acquiring core interference module 1 and source optical frequency and phase monitoring module 2; computer 9 Demodulation and signal processing of the signals collected by the high-speed acquisition module, finally obtaining distributed disturbance (vibration, stress) information on the sensing cable; sensing optical cables 10 and 11 It consists of ordinary communication optical cable
  • FIGS. 1 and Figure 3 show the specific implementation of each functional module in Figure 1, including the connection and composition of each module.
  • Tunable laser 6 for providing light source for optical frequency domain reflection system, including ultra-narrow linewidth tunable fiber laser, external cavity semiconductor laser;
  • Light source tuning drive module 2 Connected to a tunable laser to provide tuned drive for a tunable laser, it is an ultra-low ripple voltage driver consisting of a precision digital-to-analog converter 30, a programmable gate array 31, and an amplifier 32.
  • Beam splitter 12 The laser light is split 1 : 99 and distributed to the light source Optical frequency and phase monitoring module and core interference module;
  • Light source optical frequency and phase monitoring module 2 For the collection and monitoring of laser optical frequency, two structures can be used, one is a depolarized Jackson interferometer ( Michelson) the interferometer structure, as shown in Figure 2; the second structure is based on the Mach Zehnder structure of the 3 ⁇ 3 coupler, as shown in Figure 3. .
  • the depolarized Michelson interferometer (Mixson) interference includes an isolator 13: prevents the reflected light from the 2nd port of the 50:50 coupler 15 from entering the laser.
  • Coupler 15 For optical interference, light enters from port 2 of coupler 15 and exits at ports 3 and 4, respectively, by Faraday mirrors 17 and 18 of the two arms of the Michelson interferometer Reflection, return to port 3, 4, the two beams interfere in coupler 15 and output from port 1.
  • Two Faraday mirrors 17 and 18 It provides reflection for the interferometer and eliminates the polarization fading phenomenon of the interferometer.
  • the delay fiber 16 is used to realize the beat frequency interference of the non-equal arm, and the optical frequency can be obtained according to the beat frequency and the delay fiber length.
  • Interference detector 14 Used to acquire the coupler 15 to emit light from the 1 port, that is, the beat signal of the light source phase optical frequency monitoring module 2.
  • Phase Modulator 16 It is used for phase modulation of one arm of the interferometer, so that the subsequent phase lock demodulates the phase of the interference signal.
  • the structure of the Mach Zehnder interferometer based on the 3 ⁇ 3 coupler is shown in Figure 3. It consists of a 50:50 beam splitter 33 for 50:50 splitting of incident light, through a delay fiber 34, into a 3 ⁇ 3 coupler for interference 35 , 3 ⁇ 3
  • the two ports of the coupler are respectively connected to two detectors 36 and 37 optical interfaces, and the electrical signals collected by the detector are connected to the high-speed acquisition module.
  • the core interference module 1 is the core of the optical frequency domain reflectometer, and is provided by an adjustable polarization maintaining attenuator 20 and a polarization maintaining beam splitter 21
  • the reference arm, the test arm and the polarization maintaining coupler 24 are formed, and the adjustable polarization maintaining attenuator 20 is used for adjusting the light intensity, the polarization maintaining beam splitter 21, and the light is in a certain ratio 50 : 50 , 20 : 80 , 30 : 70 or 40 : 60
  • the selection ratio is larger such as 20: 80 , 30: 70, when the stimulated Brillouin absorption effect is small, the selection ratio is, for example, 50:50, 40:60.
  • the reference arm consists of a phase modulator 22 and a 45 degree aligner 23, wherein the reference arm fiber is a polarization maintaining fiber.
  • Phase modulator 22 The programmable gate array 31 is modulated with the maximum beat frequency value of the test, and the high-pass filtering is performed on the acquired signal to suppress the Rayleigh scattering Fading noise and the phantom peak ( ghost peak ).
  • the 45 degree aligner 23 will maintain the polarization-maintaining fiber fast axis and the slow axis 45 degrees to the axis, ensuring that the reference arm fast and slow axis has the same amount of light intensity.
  • the test arm of the core interference module 1 is connected to the test arm of the core interference module 1 and connected to the polarization generator of the polarization generating module 3
  • the backscattered light of the sensing cables 10 and 11 passes through the high speed optical switch 7 and the circulator in the polarization generating module 3 to enter the second port of the polarization maintaining coupler 24, the core interference module 3
  • the reference arm signal enters the first port of the polarization maintaining coupler 24, and the backscattered light and the reference arm signal are subjected to beat frequency interference in the polarization maintaining coupler 24 to generate a beat frequency interference signal, and the beat signal is obtained from the polarization maintaining coupler 24
  • the third port and the fourth port enter the polarization beam splitting balance detecting module 4;
  • a polarization generating module 3 includes a polarization generator 38 and a circulator 29, and a polarization generator 38
  • Light capable of producing several polarization states includes: line polarization, 45 degree line polarization, left-hand circular polarization or right-hand circular polarization, providing a known reference polarization state for subsequent algorithm processing; circulator 29
  • the polarization maintaining circulator for biaxial operation is connected to the polarization generator 38, the high speed optical switch 7 and the polarization maintaining coupler of the core interference module 1 24
  • the specific connection mode causes light to enter the circulator from the first port, enters the high-speed optical switch 7 from the second port, and the backscattered light of the sensing optical cables 10 and 11 of the connected high-speed optical switch 7 passes through the circulator 29
  • the second port returns from the third port of the circulator 29 to the first port and the second port of the polarization maintaining coupler 24 of the core interference module 1;
  • Polarization splitting balance detection module 4 includes two polarization beam splitters 25 and 26 and two balance detectors 27 and 28 Wherein the polarization beam splitters 25 and 26 enter the core interference module 1 into which the output beat signal is decomposed into two components of the polarization intrinsic orthogonal fast and slow axis; two of the polarization beam splitters 25 and 26 The fast axis component enters the first balance detector 27 and the slow axis component enters the second balance detector 28;
  • High-speed optical switch 7 connected to sensor cables 10 and 11
  • the sensing of the multi-channel sensing cable can be realized, the test distance of the system is expanded, and a large-scale sensing network is formed.
  • High-speed acquisition module 8 for collecting the first and second balance detectors of the polarization splitting balance detection module 27 and 28
  • High-speed acquisition module 8 blocks of data for data processing, including light source optical frequency and phase module 2 Phase, optical frequency extraction and demodulation algorithms, and demodulation of the beat signal generated by the core interference module 1 to provide control signals for the source tuning drive module 5
  • Sensor cables 10 and 11 It consists of ordinary communication optical cable or vibration sensing optical cable. It is only used in single core and is placed in the position of fence, large structure and other disturbance monitoring.
  • Embodiment 2 Polarization-sensitive distributed optical frequency domain reflection disturbance sensing method
  • First step laser real time Phase optical frequency acquisition, performing Hilbert transform or trigonometric function transformation and time-frequency domain transform on the signals collected by the source optical frequency and phase monitoring module to obtain the optical frequency or phase of the laser at each time point;
  • the optical frequency or phase signal of the laser uses a non-uniform fast Fourier transform or a compensated interpolation algorithm to phase compensate the two signals including the polarization eigenstate in the signal of the core interference module to suppress the optical frequency nonlinearity and the phase noise of the light source.
  • the third step after the second step compensation Spectral analysis of the signal of the core interference module:
  • the signal estimation is performed by any of the following two methods.
  • the specific methods are divided into two methods: non-parametric spectrum estimation and parametric spectrum estimation.
  • the first method, the non-parametric spectrum estimation method uses a window function for the signal processed in the second step: Kaiser window or Gaussian window to suppress the signal side lobes, and then adopts advanced window technology: convolution window.
  • the spatial apodization or apodization method further suppresses the signal side lobes for signal processing;
  • the second method additionally adopts the method of parameterized spectrum estimation: the auto-regressive moving average model or the autoregressive model is used for the signal processed in the second step or Parametric methods such as multiple signal classification model the system output signal to achieve system super-resolution analysis;
  • the fourth step is to denoise the signal processed in the third step.
  • the specific methods are: wavelet denoising, Wiener deconvolution adaptive denoising, median denoising, morphological denoising, partial differential denoising and based on Local statistical feature denoising; It is the advanced window technology that does not use the third step to suppress the side lobes and the signal that is denoised in the fourth step.
  • Figure 3 shows the advanced window technique that suppresses the side lobes in the third step and the signal that is denoised in the fourth step.
  • the polarization solution based on the fiber-distributed waveplate model is performed on the signal processed in the fourth step by using either of the following two methods:
  • the first method through the polarization generator and polarization beam splitting detection, the polarization state and the Jones vector of the input and output light are known, and the eigenvalue method is obtained by using the similar matrix of the Jones matrix. This method only needs to be input in the polarization generation module. Two polarization states are obtained, and the Jones matrix of each small segment in the test fiber is obtained, so that each segment of the test fiber can be tested to linear birefringence and linear double attenuation;
  • the second method through the polarization generator and polarization beam splitting detection, the Stokes vector of the input and output light is known, and the distributed Miller matrix of each small segment in the test fiber is obtained by matrix operation, and the test fiber can be obtained. Sex birefringence and linear double attenuation, round birefringence in each small segment.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Instruments For Measurement Of Length By Optical Means (AREA)
  • Optical Modulation, Optical Deflection, Nonlinear Optics, Optical Demodulation, Optical Logic Elements (AREA)

Abstract

一种偏振敏感的分布式光频域反射扰动传感装置,采用光频域反射技术和偏振控制及提取技术,包括超窄线宽可调谐激光器模块、偏振产生和偏振分集探测模块、光频和相位监控模块、高速光开关模块,组成大规模长距离光传感网络。还提供了一种偏振敏感的分布式光频域反射扰动解调方法,采用光频非线性及光源相位噪声的抑制和补偿、超分辨分析方法、先进去噪方法以及基于光纤分布式波片模型的琼斯和穆勒矩阵的偏振解算方法实现传感光缆中偏振信息提取。

Description

偏振敏感的分布式光频域反射扰动传感装置和解调方法
技术领域
本发明属于光纤传感技术领域。本发明应用于长距离光纤分布式扰动、应力传感,涉及一种偏振敏感的分布式光频域反射扰动传感装置和方法。
背景技术
目前,应用于长距离光纤分布式扰动、应力传感,主要技术方案有 激光干涉方法、相位敏感光时域反射方法和偏振敏感光时域反射方法,这些方法都存在测试距离短( <80km ) , 本课题针对目前全光纤分布式扰动传感技术:测试距离短(小于 80km )、空间分辨率低(大于 10m )、单点分立等缺陷。
由于上述技术的缺陷,将偏振特性提取与控制技术和光频域反射( OFDR,Optical Frequency Domain Reflectometry )相结合,提出了基于 偏振敏感的光频域反射扰动技术和装置( P-OFDR )。
在用于光纤通讯网络测试以及应力、温度、扰动传感等领域的已知的技术光频域反射技术) 采用高相干激光器进行高速和线性扫描波长,参考臂是由法拉第反射镜反射的光与单模光纤背向散射光 ( 瑞利反射光 ) 相干。由于二者的光程不同,干涉端实际是不同频率的两臂光进行干涉,形成拍频。通过探测不同的拍频信号,就可以探测传感光纤不同位置的背向散射信息。
发明内容
本发明目的是解决现有技术存在测试距离短(小于 80km )、空间分辨率低(大于 10m )和单点分立等问题,提供一种偏振敏感的分布式光频域反射扰动传感装置和解调方法。
其基本原理是
偏振敏感的分布式光频域反射扰动传感装置的基本原理是利用光频域反射方法和偏振敏感检测扰动方法的结合。
其中光频域反射方法其采用光外差干涉技术,采用超窄线宽激光器进行高速和线性扫描波长,参考臂是由反射镜反射的光与单模光纤背向散射光 ( 瑞利反射光 ) 相干。由于二者的光程不同,干涉端实际是,不同频率的两臂光进行干涉,形成拍频。不同频率的拍频信号对应传感光纤不同位置。通过 FFT 变换就可以得到不同位置的背向瑞利散射信息。
本发明装置在传统光频域反射方法装置上加入了光源光频和相位监视模块以及核心干涉模块中参考臂加入相位调制,通过相应的解调算法抑制了光源的相位噪声、非线性扫描噪声、以及瑞利相干散射噪声,实现了高灵敏度、高信噪比。
偏振敏感检测扰动方法的基本原理是外界扰动信息(振动、应力)等施加到传感光纤上,根据光弹效应,外界扰动必然引起光纤中双折射变化,进而导致光纤中光的偏振态变化,偏振敏感光频域反射技术( P-OFDR ),是将几个已知偏振态的偏振光注入到普通通讯光纤中,通过偏振分集探测技术和光频域反射的光外差相干探测技术,得到光纤中各个位置的偏振信息,可以通过偏振信息得到光纤中各个位置的双折射信息,进行扰动传感。
本发明装置采用偏振产生模块和偏振分束平衡探测模块,可对传感光缆注入两到四种已知偏振态的偏振光(线偏振光、 45° 线偏振光、左旋圆偏振光、右旋圆偏振光),通过偏振分束平衡探测模块的偏振本征态采集,利用串联波片模型和琼斯矩阵或穆勒矩阵算法,可以得到光纤中各个位置的波片模型,继而得到光纤中各个位置的偏振信息,利用得到光纤中各个位置的线性双折射、偏振相关损耗、圆双折射等偏振参量与外界扰动(应力、振动)作用关系,实现分布式扰动传感的目的。
本发明装置采用拓展传感距离和组成超长距离传感网络。
本发明提供的偏振敏感的分布式光频域反射扰动传感装置如图 1 所示,具体实现见图 2 和图 3 , 该装置包括:
1 、核心干涉模块:采用马赫曾德尔干涉仪( Mach-Zehnder )结构, 是传感光纤背向散射光与参考臂发生拍频干涉,其中参考臂加入可编程门阵列调制的相位调制器( EOM )形成频移,频移值大于测试光纤产生最大拍频,接收端通过带通滤波器进行去噪和并用混频器将频率降下来,便于采集卡接受抑制瑞利散射相干噪声( Fading noise )和幻峰( Ghost peak )。
2 、光源光频和相位监视模块:由于激光器存在光频非线性扫描和相位噪声,这会严重影响系统空间分辨率和信噪比,采用消偏振迈克逊干涉仪( Michelson )干涉结构,采用调制器相位调制,后续进行锁相解调出干涉信号的相位,即可提取各个时间点的激光器的光频与相位,采用校正与补偿算法,解决这一问题。此外,也可以基于 3×3 耦合器的马赫曾德耳 (Mach Zehnder) 干涉仪结构 , 利用 3×3 耦合器的端口输出的 120° 相位差,通过采集两路 3×3 耦合器的端口输出的信号,通过一定三角函数运算关系,可以得到 各个时间点的激光器的光频与相位。
3 、偏振产生模块:利用其产生几种固定偏振态,便于后面的偏振信息解算。
4 、偏振分束平衡探测模块:将进入其中的光分解为正交本征的两态并采集,功能是抑制偏振衰落和得到偏振信息,平衡探测模块可以已知共模噪声,提升信噪比 3dB 。
5 、光源调谐驱动模块:为光源调谐提供驱动信号,采用可编程门阵列( FPGA )和 20 位数摸转换器组成。
6 、可调谐激光器:提供高速线性调谐的超窄线宽连续线偏振光。
7 、高速光开关:便于切换传感光缆,可以利用光开关拓展传感距离和组成超长距离传感网络。
8 、高速采集模块:用于采集核心干涉模块和光源光频和相位监视模块产生的信号进行高速同步采集。
9 、计算机:对高速采集模块采集的数据进行解调和信号处理。
10 、传感光缆,由普通通讯光缆或振动传感光缆构成,使用时只使用单芯,布设于围栏、大型结构等需要扰动监测的位置。
传感装置各模块具体组成和连接方式见图 2 :
可调谐激光器 6 :用于为光频域反射系统提供光源,包括超窄线宽可调谐光纤激光器、外腔式半导体激光器;
光源调谐驱动模块 5 :与可调谐激光器连接,为可调谐激光器提供调谐驱动,是一种超低纹波的电压驱动器,由高精度的数模转换器、可编程门阵列、放大器组成;
1 : 99 光分束器 12 :将激光器的出射光进行 1 : 99 比例分束,分别分配到核心干涉模块 1 和 光源相位光频监视模块 2 ;
光源光频和相位监视模块 2 :用于对激光器光频的采集和监控,可以采用两种结构一种是消偏振迈克逊干涉仪( Michelson )干涉仪结构;第二种结构是基于 3×3 耦合器的马赫曾德耳干涉仪 (Mach Zehnder) 结构如图 3 。其中 消偏振迈克逊干涉仪( Michelson )干涉包括隔离器 13 :防止 50 : 50 耦合器 15 的 2 端口的反射光进入激光器。 50 : 50 耦合器 15 用于光干涉,光从耦合器 15 的 2 端口进入,从 3 、 4 端口出射,分别被 迈克逊干涉仪两臂的法拉第转镜 17 和 18 反射,返回到 3 、 4 端口,两束光在耦合器 15 中发生干涉,从 1 端口输出。两个法拉第转镜 17 和 18 用为干涉仪提供反射,且可以消除干涉仪的偏振衰落现象。延迟光纤 16 ,用于实现非等臂的拍频干涉,可以根据拍频和延迟光纤长度得到光频。干涉探测器 14 ,用于采集耦合器 15 从 1 端口出射光,即光源 相位光频监视模块 2 的拍频信号。相位调制器 16 ,用于对干涉仪的一臂进行相位调制,便于后续的锁相解调出干涉信号的相位。基于 3×3 耦合器的马赫曾德耳 (Mach Zehnder) 干涉仪结构如图 3, 其包括 50 : 50 分束器 33 ,用于入射光的 50:50 分束,经过延迟光纤 34 ,进入 3×3 耦合器进行干涉 35 , 3×3 耦合器的两个端口分别接入两个探测器 36 和 37 光接口,其采集的电信号接入高速采集模块。
核心干涉模块 1 :是光频域反射仪的核心,由可调保偏衰减器 20 ,保偏振分束器 21 、参考臂、测试臂以及保偏耦合器 24 组成,其可调保偏衰减器 20 ,用于调节光强大小,保偏分束器 21 ,将光以一定比例 50 : 50 , 20 : 80 , 30 : 70 或 40 : 60 分配到干涉仪的参考臂和测试臂。其中比例的选择,根据测试光纤中受激布里渊吸收效应较大时,选择比例较大的如 20 : 80 , 30 : 70 ,受激布里渊吸收效应较小时,选择比例如 50 : 50 , 40 : 60 。
参考臂由相位调制器 22 和 45 度对准器 23 组成,其中参考臂光纤是保偏光纤。相位调制器 22 用可编程门阵列 31 以测试的最大拍频值为调制频率值调制,后续将采集信号做高通滤波,可以抑制 瑞利散射相干噪声( Fading noise )和幻峰( Ghost peak )。 45 度对准器 23 将保偏光纤快轴和慢轴 45 度对轴,保证参考臂快慢轴有等量光强。
核心干涉模块 1 的 测试臂上连接核心干涉模块 1 的测试臂上连接偏振产生模块 3 中偏振产生器 38 ,传感光缆 10 和 11 的背向散射光经过高速光开关 7 和偏振产生模块 3 中的环行器进入保偏耦合器 24 的第二端口,核心干涉模块 3 的参考臂光进入保偏耦合器 24 的第一端口,传感光缆 10 和 11 的背向散射光与参考臂光在保偏耦合器 24 中发生拍频干涉产生拍频干涉信号,其拍频信号从保偏耦合器 24 的第三端口和第四端口进入 偏振分束平衡探测模块 4 ;
偏振产生模块 3 ,包括偏振产生器 38 和环形器 29 ,偏振产生器 38 能够产生固定几种偏振态的光包括:线偏光、 45 度线偏光、左旋圆偏光或右旋圆偏光,为后面算法处理提供已知的参考偏振态;环行器 29 为双轴工作的保偏环行器,其作用是连接偏振产生器 38 ,高速光开关 7 以及核心干涉模块 1 的保偏耦合器 24 ,具体连接方式将光由第一端口进入环行器,从第二端口进入高速光开关 7 ,与连接的高速光开关的传感光缆的背向散射光通过环行器的第二端口返回,从环行器的第三端口进入核心干涉模块 1 的保偏耦合器 24 的第一端口和第二端口
高速光开关 7 ,连接传感光缆 10 和 11 可以实现多路传感光缆的传感,拓展了系统的测试距离,便于形成大规模传感网络。
偏振分束平衡探测模块 4 :包括两个偏振分束器 25 和 26 以及两个平衡探测器 27 和 28 ;其中偏振分束器 25 和 26 将进入其中的核心干涉模块 1 输出拍频信号分解成偏振本征正交的快慢轴两个分量;其中两个偏振分束器 25 和 26 的快轴分量进入第一个平衡探测器 27 ,慢轴分量进入第二个平衡探测器 28 ;
高速采集模块 8, 用于采集 偏振分束平衡探测模块的第一和第二平衡探测器 27 和 28 、光源光频和相位监视模块的探测器 14 (第一种结构) 或探测器 36 和 37 (第二种结构) 的干涉信号。
计算机 9 ,高速采集模 8 块采集的信号进行数据处理,包括 光源光频和相位模块 2 的相位、光频的提取和解调算法以及对于核心干涉模块 1 产生的拍频信号进行解调,为光源调谐驱动模块 5 提供控制信号
传感光缆 10 和 11 , 由普通通讯光缆或振动传感光缆构成,使用时只使用单芯,布设于围栏、大型结构等需要扰动监测的位置。
具体技术方案解调方法包括几步骤:
第一步、激光器实时 相位光频采集,对光源光频和相位监视模块采集的信号进行希尔伯特变换或三角函数变换和时频域变换得到各个时间点的激光器的光频或相位;
第二步、利用第一步实时采集的 激光器的光频和相位的信号,采用非均匀快速傅立叶变换或补偿插值算法,对核心干涉模块的信号中包括偏振本征态的两路信号进行相位补偿,以抑制光频非线性和光源相位噪声对系统信噪比和空间分辨率的影响;
第三步、对经过第二步补偿后 核心干涉模块的信号进行谱分析:以下两种方法中任一种方法对信号进行谱估计,其具体方法分为非参数化谱估计和参数化谱估计两种方法。其中第一种方法,非参数化谱估计方式的处理方法:对第二步处理处理后的信号采用窗函数:凯泽窗或高斯窗,来抑制信号旁瓣,然后采用先进窗技术:卷积窗和空间变迹法或切趾法对信号处理进一步抑制信号旁瓣;第二种方法另外采用参数化谱估计的方式:对第二步处理处理后的信号采用自回归滑动平均模型或自回归模型或多重信号分类等参数化方法对系统输出信号进行建模,实现系统超分辨率分析;
第四步、对第三步处理后的信号进行去噪处理,具体方法:小波去噪,维纳反卷积自适应去噪,中值去噪,形态学去噪,偏微分去噪和基于局部统计特征去噪;如图 3 是未采用第三步抑制旁瓣的先进窗技术和第四步去噪处理的信号,图 3 是采用第三步抑制旁瓣的先进窗技术和第四步去噪处理的信号
第五步、采用以下两种方法中任一种方法对第四步处理后的信号进行基于光纤分布式波片模型的偏振解算:
第一种方法:通过偏振产生器和偏振分束探测,已知输入和输出光的偏振态和琼斯向量,利用琼斯矩阵的相似矩阵求本征值法,这种方法只需输入两个偏振态,就得到测试光纤中各个小段的琼斯矩阵,即可得测试光纤中各个小段到线性双折射和线性双衰减;
第二种方法:通过偏振产生器和偏振分束探测,已知输入和输出光的斯托克斯向量,利用矩阵运算,得到测试光纤中各个小段的分布式穆勒矩阵,即可得测试光纤中各个小段到线性双折射和线性双衰减,圆双折射。
本发明的优点和积极效果:
本发明提出的基于 偏振敏感的光频域反射扰动装置和方法( P-OFDR ),具有测试距离长( >200km )、空间分辨率高(厘米级)、灵敏度高、可以连续多点测量的特点。可应用于长距离周界安全、油气管道安全等电力、通讯线缆安全实时监控领域。
附图说明
图 1 是偏振敏感的分布式光频域反射扰动传感装置框图;
图中, 1 是核心干涉模块, 2 是光源光频和相位监视模块, 3 是偏振产生模块, 4 是偏振分束平衡探测模块, 5 是光源调谐驱动模块, 6 是可调谐激光器, 7 是高速光开关, 8 是高速采集模块, 9 是计算机, 10 是传感光缆。 11 是传感光缆。
图 2 是偏振敏感的分布式光频域反射扰动传感装置具体结构一示意图;
图 3 是偏振敏感的分布式光频域反射扰动传感装置中光源光频和相位监视模块的第二种具体结构基于 3×3 耦合器的马赫曾德耳干涉仪 (Mach Zehnder) 结构的 示意图;
图 4 是未采用去噪和窗技术处理的信号谱。
图 5 是采用去噪和窗技术处理的信号谱。
图中, 1 是核心干涉模块, 2 是光源光频和相位监视模块, 3 是偏振产生模块, 4 是偏振分束平衡探测模块, 5 是光源调谐驱动模块, 6 是可调谐激光器, 7 是高速光开关, 8 是高速采集模块, 9 是计算机, 10 是传感光缆。 11 是传感光缆。 12 是分束器( 1 : 99 ) 13 是隔离器, 14 是探测器, 15 是耦合器, 16 是延迟光纤, 17 是法拉第旋转镜, 18 是法拉第旋转镜, 19 相位调制器 ,20 是可调衰减器, 21 是保偏分束器, 22 是相位调制器, 23 是 45 度对准器,, 24 是保偏耦合器, 25 是偏振分束器, 26 是偏振分束器, 27 是第一平衡探测器, 28 是第二平衡探测器, 29 保偏环行器, 30 是高精密数模转换器, 31 是可编程门阵列( FPGA ) 32 是放大器。 33 是 50 : 50 分束器, 34 是延迟光纤, 35 是 3×3 耦合器, 36 是探测器 1 和 37 是探测器 2 。 38 是偏振产生器
具体实施方式
实施例 1 : 偏振敏感的分布式光频域反射扰动传感装置
如图 1 所示 ,核心干涉模块 1 其基本结构是马赫曾德耳 (Mach Zehnder) 干涉仪结构 ,构成光外差干涉结构;光源光频和相位监视模块 2 ,其主要是采集激光器实时的光频和相位,用以对核心干涉模块的信号进行非线性扫描和相位噪声补偿;偏振产生模块 3 和偏振分束平衡探测模块 4 实现传感光缆中偏振信息的提取;光源调谐驱动模块 5 和可调谐激光器 6 为偏振敏感的分布式光频域反射扰动传感装置提供高速和线性扫描波长的窄线宽激光光源;高速光开关 7 用于构建长距离大规模的传感网络;高速采集模块 8 用于采集核心干涉模块 1 和光源光频和相位监视模块 2 的信号;计算机 9 是对高速采集模块采集的信号进行解调和信号处理,最终得到传感光缆上分布式的扰动(振动、应力)信息;传感光缆 10 和 11 由普通通讯光缆或振动传感光缆构成,使用时只使用单芯,布设于围栏、大型结构等需要扰动监测的位置。
图 2 和图 3 所示是图 1 中各功能模块的具体实现,包括各模块的连接和组成
可调谐激光器 6 :用于为光频域反射系统提供光源,包括超窄线宽可调谐光纤激光器、外腔式半导体激光器;
光源调谐驱动模块 2 :与可调谐激光器连接,为可调谐激光器提供调谐驱动,是一种超低纹波的电压驱动器,由高精度的数模转换器 30 、可编程门阵列 31 、放大器 32 组成。
分束比 1 : 99 光分束器 12 :将激光器的出射光进行 1 : 99 比例分束,分别分配到光源 光频和相位监视模块与核心干涉模块;
光源光频和相位监视模块 2 :用于对激光器光频的采集和监控,可以采用两种结构,一种是消偏振迈克逊干涉仪( Michelson )干涉仪结构,如图 2 所示;第二种结构是基于 3×3 耦合器的马赫曾德耳干涉仪 (Mach Zehnder) 结构,如图 3 所示 。其中 消偏振迈克逊干涉仪( Michelson )干涉包括隔离器 13 :防止 50 : 50 耦合器 15 的 2 端口的反射光进入激光器。 50 : 50 耦合器 15 用于光干涉,光从耦合器 15 的 2 端口进入,从 3 、 4 端口出射,分别被 迈克逊干涉仪两臂的法拉第转镜 17 和 18 反射,返回到 3 、 4 端口,两束光在耦合器 15 中发生干涉,从 1 端口输出。两个法拉第转镜 17 和 18 用为干涉仪提供反射,且可以消除干涉仪的偏振衰落现象。延迟光纤 16 ,用于实现非等臂的拍频干涉,可以根据拍频和延迟光纤长度得到光频。干涉探测器 14 ,用于采集耦合器 15 从 1 端口出射光,即光源 相位光频监视模块 2 的拍频信号。相位调制器 16 ,用于对干涉仪的一臂进行相位调制,便于后续的锁相解调出干涉信号的相位。基于 3×3 耦合器的马赫曾德耳 (Mach Zehnder) 干涉仪结构如图 3, 其包括 50 : 50 分束器 33 ,用于入射光的 50:50 分束,经过延迟光纤 34 ,进入 3×3 耦合器进行干涉 35 , 3×3 耦合器的两个端口分别接入两个探测器 36 和 37 光接口,探测器采集的电信号接入高速采集模块。
核心干涉模块 1 :是光频域反射仪的核心,由可调保偏衰减器 20 ,保偏振分束器 21 、参考臂、测试臂以及保偏耦合器 24 组成,其可调保偏衰减器 20 ,用于调节光强大小,保偏分束器 21 ,将光以一定比例 50 : 50 , 20 : 80 , 30 : 70 或 40 : 60 分配到干涉仪的参考臂和测试臂。其中比例的选择,根据测试光纤中受激布里渊吸收效应较大时,选择比例较大的如 20 : 80 , 30 : 70 ,受激布里渊吸收效应较小时,选择比例如 50 : 50 , 40 : 60 。
参考臂由相位调制器 22 和 45 度对准器 23 组成,其中参考臂光纤是保偏光纤。相位调制器 22 用可编程门阵列 31 以测试的最大拍频值为调制频率值调制,后续将采集信号做高通滤波,可以抑制 瑞利散射相干噪声( Fading noise )和幻峰( Ghost peak )。 45 度对准器 23 将保偏光纤快轴和慢轴 45 度对轴,保证参考臂快慢轴有等量光强。
核心干涉模块 1 的 测试臂上连接核心干涉模块 1 的测试臂上连接偏振产生模块 3 中偏振产生器 38 ,传感光缆 10 和 11 的背向散射光经过高速光开关 7 和偏振产生模块 3 中的环行器进入保偏耦合器 24 的第二端口,核心干涉模块 3 的参考臂信号进入保偏耦合器 24 的第一端口,背向散射光与参考臂信号在保偏耦合器 24 中发生拍频干涉产生拍频干涉信号,其拍频信号从保偏耦合器 24 的第三端口和第四端口进入 偏振分束平衡探测模块 4 ;
偏振产生模块 3 ,包括偏振产生器 38 和环形器 29 ,偏振产生器 38 能够产生固定几种偏振态的光包括:线偏光、 45 度线偏光、左旋圆偏光或右旋圆偏光,为后面算法处理提供已知的参考偏振态;环行器 29 为双轴工作的保偏环行器,其作用是连接偏振产生器 38 ,高速光开关 7 以及核心干涉模块 1 的保偏耦合器 24 ,具体连接方式将光由第一端口进入环行器,从第二端口进入高速光开关 7 ,与连接的高速光开关 7 的传感光缆 10 和 11 的背向散射光通过环行器 29 的第二端口返回,从环行器 29 的第三端口进入核心干涉模块 1 的保偏耦合器 24 的第一端口和第二端口;
偏振分束平衡探测模块 4 :包括两个偏振分束器 25 和 26 以及两个平衡探测器 27 和 28 ;其中偏振分束器 25 和 26 将进入其中的核心干涉模块 1 输出拍频信号分解成偏振本征正交的快慢轴两个分量;其中两个偏振分束器 25 和 26 的快轴分量进入第一个平衡探测器 27 ,慢轴分量进入第二个平衡探测器 28 ;
高速光开关 7 ,连接传感光缆 10 和 11 可以实现多路传感光缆的传感,拓展了系统的测试距离,便于形成大规模传感网络。
高速采集模块 8, 用于采集 偏振分束平衡探测模块的第一和第二平衡探测器 27 和 28 、光源光频和相位监视模块的探测器 14 (第一种结构) 或探测器 36 和 37 (第二种结构) 的干涉信号。
计算机 9 ,高速采集模 8 块采集的信号进行数据处理,包括 光源光频和相位模块 2 的相位、光频的提取和解调算法以及对于核心干涉模块 1 产生的拍频信号进行解调,为光源调谐驱动模块 5 提供控制信号
传感光缆 10 和 11 , 由普通通讯光缆或振动传感光缆构成,使用时只使用单芯,布设于围栏、大型结构等需要扰动监测的位置。
实施例 2 : 偏振敏感的分布式光频域反射扰动传感方法
其具体技术方法和算法包括几个步骤:
第一步、激光器实时 相位光频采集,对光源光频和相位监视模块采集的信号进行希尔伯特变换或三角函数变换和时频域变换得到各个时间点的激光器的光频或相位;
第二步、利用第一步实时采集的 激光器的光频或相位的信号,采用非均匀快速傅立叶变换或补偿插值算法,对核心干涉模块的信号中包括偏振本征态的两路信号进行相位补偿,以抑制光频非线性和光源相位噪声对系统信噪比和空间分辨率的影响;
第三步、对经过第二步补偿后 核心干涉模块的信号进行谱分析:以下两种方法中任一种方法对信号进行谱估计,其具体方法分为非参数化谱估计和参数化谱估计两种方法。其中第一种方法,非参数化谱估计方式的处理方法:对第二步处理后的信号采用窗函数:凯泽窗或高斯窗,来抑制信号旁瓣,然后采用先进窗技术:卷积窗和空间变迹法或切趾法对信号处理进一步抑制信号旁瓣;第二种方法另外采用参数化谱估计的方式:对第二步处理后的信号采用自回归滑动平均模型或自回归模型或多重信号分类等参数化方法对系统输出信号进行建模,实现系统超分辨率分析;
第四步、对第三步处理后的信号进行去噪处理,具体方法:小波去噪,维纳反卷积自适应去噪,中值去噪,形态学去噪,偏微分去噪和基于局部统计特征去噪;如图 3 是未采用第三步抑制旁瓣的先进窗技术和第四步去噪处理的信号,图 3 是采用第三步抑制旁瓣的先进窗技术和第四步去噪处理的信号
第五步、采用以下两种方法中任一种方法对第四步处理后的信号进行基于光纤分布式波片模型的偏振解算:
第一种方法:通过偏振产生器和偏振分束探测,已知输入和输出光的偏振态和琼斯向量,利用琼斯矩阵的相似矩阵求本征值法,这种方法只需在偏振产生模块输入两个偏振态,就得到测试光纤中各个小段的琼斯矩阵,即可得测试光纤中各个小段到线性双折射和线性双衰减;
第二种方法:通过偏振产生器和偏振分束探测,已知输入和输出光的斯托克斯向量,利用矩阵运算,得到测试光纤中各个小段的分布式穆勒矩阵,即可得测试光纤中各个小段的性双折射和线性双衰减,圆双折射。

Claims (1)

  1. 1 、一种偏振敏感的分布式光频域反射扰动传感装置,其特征在于该装置包括:
    可调谐激光器:用于为光频域反射系统提供光源,包括超窄线宽可调谐光纤激光器、外腔式半导体激光器;
    光源调谐驱动模块:与可调谐激光器连接,为可调谐激光器提供调谐驱动,是一种超低纹波的电压驱动器,由高精度的数模转换器、可编程门阵列、放大器组成;
    分束比为 1 : 99 光分束器:将激光器的出射光进行 1 : 99 比例分束,分别分配到光源 光频和相位监视模块与核心干涉模块;
    光源光频和相位监视模块:用于对激光器光频的采集和监控,采用以下两种结构中任一种结构实现,一种结构是消偏振迈克逊干涉仪结构,另一种结构是基于 3×3 耦合器的马赫曾德尔干涉仪结构;
    核心干涉模块:是光频域反射仪的核心,由可调保偏衰减器,保偏振分束器、参考臂、测试臂以及保偏耦合器组成;可调保偏衰减器,用于调节光强大小;保偏分束器,将光以 50 : 50 、 20 : 80 、 30 : 70 或 40 : 60 的比例分配到干涉仪的参考臂和测试臂,其中比例的选择,根据测试光纤中受激布里渊吸收效应较大时,选择较大的比例 20 : 80 或 30 : 70 ,受激布里渊吸收效应较小时,选择比例为 50 : 50 或 40 : 60 ;参考臂,由相位调制器和 45 度对准器组成,其中参考臂光纤是保偏光纤,相位调制器以测试的最大拍频值为调制频率值调制,后续将采集信号做高通滤波,能够抑制 瑞利散射相干噪声和幻峰, 45 度对准器将保偏光纤快轴和慢轴 45 度对轴,保证参考臂快慢轴有等量光强;核心干涉模块的测试臂上连接偏振产生模块中偏振产生器,传感光缆的背向散射光经过高速光开关和偏振产生模块中的环行器进入保偏耦合器的第二端口,核心干涉模块的参考臂光进入保偏耦合器的第一端口,传感光缆的背向散射光与参考臂光在保偏耦合器中发生拍频干涉产生拍频干涉信号,其拍频信号从保偏耦合器的第三端口和第四端口进入 偏振分束平衡探测模块;
    偏振产生模块,包括偏振产生器和环形器,偏振产生器能够产生固定几种偏振态的光包括:线偏光、 45 度线偏光、左旋圆偏光或右旋圆偏光,为后面算法处理提供已知的参考偏振态;环行器为双轴工作的保偏环行器,其作用是连接偏振产生模块,高速光开关以及核心干涉模块的保偏耦合器,具体连接方式将光由第一端口进入环行器,从第二端口进入高速光开关,与连接的高速光开关的传感光缆的背向散射光通过环行器的第二端口返回,从环行器的第三端口进入核心干涉模块的保偏耦合器的第一端口和第二端口;
    高速光开关:连接传感光缆,能够实现多路传感光缆的传感,拓展了系统的测试距离,便于形成大规模传感网络;
    偏振分束平衡探测模块:包括两个偏振分束器以及两个平衡探测器;其中偏振分束器将进入其中的核心干涉模块输出拍频信号分解成偏振本征正交的快慢轴两个分量;其中两个偏振分束器的快轴分量进入第一个平衡探测器,慢轴分量进入第二个平衡探测器;
    高速采集模块 : 用于采集 偏振分束平衡探测模块的平衡探测器以及光源光频和相位监视模块的干涉信号;
    计算机,高速采集模块采集的信号进行数据处理,包括 光源光频和相位的提取和解调算法以及对于核心干涉模块产生的拍频信号进行解调,为光源调谐驱动模块提供控制信号;
    传感光缆, 由普通通讯光缆或振动传感光缆构成,使用时只使用单芯,布设于围栏、大型结构要扰动监测的位置。
    2 、根据权利要求 1 所述的偏振敏感的分布式光频域反射扰动传感装置,其特征在于所述的光源光频和相位监视模块中的一种结构,消偏振迈克逊干涉仪结构包括隔离器,分束比 50 : 50 耦合器,两个法拉第转镜,干涉探测器,延迟光纤,相位调制器。其中各组成单元的作用,隔离器:防止 50 : 50 耦合器的第二端口的反射光进入激光器,分束比 50 : 50 耦合器用于光干涉,光从 50 : 50 耦合器的第二端口进入,从第三、第四端口出射,分别被两臂的法拉第转镜反射,返回到第三、第四端口,两束光在 50 : 50 耦合器中发生干涉,从第一端口输出,两个法拉第转镜用为干涉仪提供反射,且能够消除干涉仪的偏振衰落现象,延迟光纤,用于实现非等臂的拍频干涉,能够根据拍频和延迟光纤长度得到光频,干涉探测器,用于采集耦合器从 1 端口出射光,即 相位光频监视模块的拍频信号;相位调制器,用于对干涉仪的一臂进行相位调制,便于后续的锁相解调出干涉信号的相位。
    3 、根据权利要求 1 所述的偏振敏感的分布式光频域反射扰动传感装置,其特征在于所述的光源光频和相位监视模块中的另一种结构,基于 3×3 耦合器的马赫曾德尔干涉仪包括 , 50 : 50 分束器,延迟光纤, 3×3 耦合器,两个探测器;其中各组成单元的作用, 50 : 50 分束器,用于入射光的 50:50 分束,经过延迟光纤,进入 3×3 耦合器进行干涉, 3×3 耦合器的两个端口分别接入两个探测器光接口,探测器将采集的电信号接入高速采集模块。
    4 、一种偏振敏感的分布式光频域反射扰动解调方法,其特征在于该方法的步骤包括:
    第一步、激光器实时 相位光频采集,对光源光频和相位监视模块采集的信号进行希尔伯特变换或三角函数变换和时频域变换,得到各个时间点的激光器的光频或相位;
    第二步、利用第一步实时采集的 激光器的光频和相位的信号,采用非均匀快速傅立叶变换或补偿插值算法,对核心干涉模块的信号中包括偏振本征态的两路信号进行相位补偿,以抑制光频非线性和光源相位噪声对系统信噪比和空间分辨率的影响;
    第三步、对经过第二步补偿后 核心干涉模块的信号进行谱分析:用以下两种方法中任一种方法对信号进行谱估计,具体方法分为非参数化谱估计和参数化谱估计两种方法;其中第一种方法,非参数化谱估计方式的处理方法:对第二步处理后的信号采用窗函数:凯泽窗或高斯窗,来抑制信号旁瓣,然后采用先进窗技术:卷积窗和空间变迹法或切趾法对信号处理;第二种方法另外采用参数化谱估计的方式:对第二步处理后的信号采用自回归滑动平均模型或自回归模型或多重信号分类等参数化方法对系统输出信号进行建模,实现系统超分辨率分析;
    第四步、对第三步处理后的信号进行去噪处理,具体方法:小波去噪,维纳反卷积自适应去噪,中值去噪,形态学去噪,偏微分去噪和基于局部统计特征去噪;
    第五步、采用以下两种方法中任一种方法,对第四步处理后的信号进行基于光纤分布式波片模型的偏振解算:
    第一种方法:通过偏振产生器和偏振分束探测,已知输入和输出光的偏振态和琼斯向量,利用琼斯矩阵的相似矩阵求本征值法,这种方法只需在偏振产生模块输入两个正交偏振态,就得到测试光纤中各个小段的琼斯矩阵,即可得测试光纤中各个小段的线性双折射和线性双衰减;
    第二种方法:通过偏振产生器和偏振分束探测,已知输入和输出光的斯托克斯向量,利用矩阵运算,得到测试光纤中各个小段的分布式穆勒矩阵,即可得测试光纤中各个小段到线性双折射和线性双衰减,圆双折射。
PCT/CN2011/084101 2011-08-18 2011-12-16 偏振敏感的分布式光频域反射扰动传感装置和解调方法 WO2013023425A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US13/880,732 US9322740B2 (en) 2011-08-18 2011-12-16 Distributed disturbance sensing device and the related demodulation method based on polarization sensitive optical frequency domain reflectometry

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201110237417.6 2011-08-18
CN2011102374176A CN102322880B (zh) 2011-08-18 2011-08-18 偏振敏感的分布式光频域反射扰动传感装置和解调方法

Publications (1)

Publication Number Publication Date
WO2013023425A1 true WO2013023425A1 (zh) 2013-02-21

Family

ID=45450674

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2011/084101 WO2013023425A1 (zh) 2011-08-18 2011-12-16 偏振敏感的分布式光频域反射扰动传感装置和解调方法

Country Status (3)

Country Link
US (1) US9322740B2 (zh)
CN (1) CN102322880B (zh)
WO (1) WO2013023425A1 (zh)

Cited By (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104319623A (zh) * 2014-10-31 2015-01-28 中国科学院半导体研究所 基于偏振反馈的超窄线宽半导体激光器装置
WO2014201057A3 (en) * 2013-06-10 2015-11-26 General Photonics Corporation Devices and methods for characterization of distributed fiber bend and stress
CN106482822A (zh) * 2016-12-07 2017-03-08 吉林大学 一种基于双重同源外差相干检测的相位敏感光时域反射系统
US9632006B2 (en) 2013-06-10 2017-04-25 General Photonics Corporation Distributed fiber bend and stress measurement for determining optical fiber reliability by multi-wavelength optical reflectometry
CN109187194A (zh) * 2018-10-26 2019-01-11 南京大学 一种基于ofdr的土体张拉力学特性光纤监测与测试方法及装置
CN109560877A (zh) * 2019-01-24 2019-04-02 哈尔滨工业大学(深圳) 基于k-k接收的双偏振qam调制直接检测通信系统与方法
CN109807471A (zh) * 2019-02-01 2019-05-28 佛山科学技术学院 一种激光打标装置及方法
CN111964663A (zh) * 2020-07-30 2020-11-20 广东工业大学 一种光纤环分布式偏振串扰双向同时测量装置及方法
CN112033521A (zh) * 2020-08-07 2020-12-04 太原理工大学 一种本地噪声自滤除的混合式光纤振动传感系统
CN112033567A (zh) * 2020-08-07 2020-12-04 太原理工大学 一种opgw架空地线温度、振动分离测量光纤传感系统
CN113167636A (zh) * 2018-11-29 2021-07-23 日本电信电话株式会社 相位测定方法、信号处理装置和程序
CN113218518A (zh) * 2021-05-07 2021-08-06 姚晓天 一种基于集成光路的正弦-余弦光频率检测装置及其在光学感测中的应用
CN113358240A (zh) * 2021-06-04 2021-09-07 燕山大学 基于dus-fbg的大面积柔性智能皮肤的温度及压力传感器
CN113358142A (zh) * 2021-05-21 2021-09-07 复旦大学 基于光单向传输的光纤干涉光路及其构造方法
CN113405646A (zh) * 2021-06-17 2021-09-17 润智科技有限公司 一种基于双通道φ-OTDR地埋光缆分布式振动识别方法
CN114323242A (zh) * 2021-11-19 2022-04-12 中国科学院上海光学精密机械研究所 基于偏振分解光纤干涉仪的全频段激光频率噪声的测量装置与方法
CN114485732A (zh) * 2022-02-11 2022-05-13 天津大学 一种基于降噪处理的y波导偏振特性参数测量方法
CN114719955A (zh) * 2022-04-15 2022-07-08 北京理工大学 光频域反射仪分布式光纤测量中的相干衰落噪声抑制方法
CN115031651A (zh) * 2022-06-07 2022-09-09 天津大学 一种改进bm3d去噪ofdr分布式应变测量方法
CN115112603A (zh) * 2022-06-24 2022-09-27 浙江师范大学 一种新型的准分布式光纤气体探测方法
CN116086591A (zh) * 2023-01-18 2023-05-09 之江实验室 采用时频复用和相位基值参考的分布式声波传感方法和系统
CN116337777A (zh) * 2023-05-29 2023-06-27 之江实验室 一种基于单光梳的宽频带光声光谱测量系统及方法
CN115112603B (zh) * 2022-06-24 2024-06-11 浙江师范大学 一种新型的准分布式光纤气体探测方法

Families Citing this family (126)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9207168B2 (en) * 2012-01-20 2015-12-08 Norscan Instruments Ltd. Monitoring for disturbance of optical fiber
CN102636196B (zh) * 2012-04-09 2014-09-17 天津大学 一种基于瑞利散射光谱相关系数的分布式扰动传感装置的解调方法
CN102997937B (zh) * 2012-12-12 2014-07-30 天津大学 一种可抑制光源相位噪声的光频域反射装置和解调方法
CN103543124A (zh) * 2013-06-26 2014-01-29 天津大学 一种基于软件锁相的可调激光吸收光谱气体检测方法
CN103776474A (zh) * 2014-01-10 2014-05-07 江苏昂德光电科技有限公司 一种3d矩阵式多通道光纤传感解调系统
CN105021216A (zh) * 2014-04-28 2015-11-04 中国计量学院 一种实现抗偏振衰落的光纤周界传感装置
GB201408125D0 (en) 2014-05-08 2014-06-25 Optasense Holdings Ltd Fibre optic distributed sensing
CN103983289B (zh) * 2014-05-09 2016-06-15 天津大学 一种基于双偏振光纤激光传感器的拍频信号双路解调装置
CN103984184B (zh) * 2014-05-19 2016-08-24 上海交通大学 光脉冲压缩反射装置
CN104180834B (zh) * 2014-07-29 2016-08-24 天津大学 一种用于双频率声波检测的光纤激光传感系统
CN104155619B (zh) * 2014-08-20 2018-03-09 天津大学 基于磁致伸缩分布式光频域反射磁场传感装置和解调方法
CN104198030B (zh) * 2014-08-29 2017-11-10 中国石油天然气股份有限公司 基于相干瑞利散射的多路振动检测方法及其检测系统
EP3194923A1 (en) * 2014-09-17 2017-07-26 Ecole Polytechnique Federale de Lausanne (EPFL) Method and apparatus for measuring the local birefingence along an optical waveguide
CN107209052B (zh) * 2015-01-21 2019-08-23 光纳株式会社 分布型光纤声波检测装置
CN105222815A (zh) * 2015-09-18 2016-01-06 南京派光信息技术有限公司 基于120度相差干涉仪的相位敏感光时域反射计
WO2017117707A1 (zh) * 2016-01-05 2017-07-13 上海交通大学 基于频率合成的光频域反射方法及系统
CN105651373B (zh) * 2016-01-18 2019-01-11 南京大学 一种基于偏振光时域反射技术中测量两点同频振动的方法
CN105698871B (zh) * 2016-03-29 2018-08-21 天津大学 基于光频域反射的分布式应变温度同时测量装置及方法
CN105897414B (zh) * 2016-05-26 2022-11-22 安徽问天量子科技股份有限公司 基于法拉第-迈克尔逊干涉连续变量量子密钥分发系统
CN106248121B (zh) * 2016-08-11 2018-03-06 天津大学 环境变温下波动抑制的光纤光栅传感解调装置与解调方法
CN106092305B (zh) 2016-08-25 2022-02-18 上海交通大学 分布式光纤传感系统及其振动检测定位方法
WO2018063546A1 (en) 2016-09-27 2018-04-05 Intuive Surgical Operations, Inc. Micro-optic assemblies and optical interrogation systems
CN106323478B (zh) * 2016-10-09 2019-01-18 中国船舶重工集团公司第七一五研究所 抗偏振衰落的光纤干涉型传感器相位生成载波调制解调系统
CN106525092A (zh) * 2016-11-03 2017-03-22 华南理工大学 高空间分辨率长距离分布式光纤温度应变传感系统
CN106525362B (zh) * 2016-12-02 2019-07-26 山东省科学院激光研究所 光纤分布式传感监测系统
CN106840486B (zh) * 2017-01-09 2019-03-26 武汉理工大学 全分布式齿根弯曲应力动态检测装置和方法
CN106705863B (zh) * 2017-01-16 2019-03-22 南京大学 一种提高光频域反射仪的最大测试距离的方法
US11366244B2 (en) 2017-02-23 2022-06-21 Halliburton Energy Services, Inc. Distributed acoustic sensing system with a polarization control device for improving signal-to-noise ratio
GB2560522B (en) 2017-03-13 2022-03-16 Aiq Dienstleistungen Ug Haftungsbeschraenkt Dynamic sensitivity distributed acoustic sensing
CN106908139A (zh) * 2017-04-24 2017-06-30 安徽师范大学 一种低成本多事件定位型分布式光纤振动传感装置
JP6828227B2 (ja) * 2017-04-27 2021-02-10 アンリツ株式会社 光周波数領域反射測定装置及び光周波数領域反射測定方法
FR3066280B1 (fr) * 2017-05-11 2019-09-13 Febus Optics Dispositif optoelectronique de mesure repartie par fibre optique
CN107179559A (zh) 2017-05-23 2017-09-19 广东复安科技发展有限公司 长距离光缆物理安全监控系统
CN107179431B (zh) * 2017-06-22 2023-04-18 上海交通大学 基于双折射实时测量的光纤电流传感装置及其方法
CN107436158A (zh) * 2017-07-27 2017-12-05 天津求实飞博科技有限公司 一种光纤光栅传感解调系统
CN107270952B (zh) * 2017-07-27 2020-03-31 天津求实飞博科技有限公司 基于光频域反射长距离光纤分布式扰动传感信号处理方法
CN107332611B (zh) * 2017-08-04 2023-05-12 中国电子科技集团公司第三十四研究所 一种数字信号控制的光纤相位补偿器及补偿方法
CN107302399B (zh) * 2017-08-04 2023-05-12 中国电子科技集团公司第三十四研究所 一种模数混合控制的光纤相位补偿器及补偿方法
CN107576341B (zh) * 2017-08-09 2021-06-04 武汉昊衡科技有限公司 Ofdr中消除偏振衰落的装置和方法
CN107453805B (zh) * 2017-08-09 2019-10-18 国家电网公司信息通信分公司 一种光时域反射仪鬼影干扰的消除方法及装置
CN107560710A (zh) * 2017-09-20 2018-01-09 北京邮电大学 一种面向φ‑otdr技术的三维振动信号去噪方法
CN107645341B (zh) * 2017-10-23 2019-09-17 南京航空航天大学 微波光子鉴相方法、装置及微波光子锁相方法、装置
CN108131569A (zh) * 2018-01-10 2018-06-08 浙江工业大学 一种海底天然气管道泄漏监测实验平台及其数据处理方法
CN108507981B (zh) * 2018-04-11 2020-09-22 南京大学 基于ofdr的硅基波导背反射传感装置及其测量方法
CN108519147A (zh) * 2018-04-25 2018-09-11 浙江杰昆科技有限公司 多光源相位敏感光时域反射计及其方法
CN108844615B (zh) * 2018-05-02 2020-05-22 太原理工大学 基于混沌布里渊相位谱测量的分布式光纤传感装置及方法
CN108645601B (zh) * 2018-05-11 2019-11-15 南京大学 一种光学微腔的光频域反射装置及其测量方法
CN109061296B (zh) * 2018-07-17 2020-11-27 南京恒电电子有限公司 一种射频脉冲信号的高精度载频估计方法
CN108709895A (zh) * 2018-08-16 2018-10-26 昆仑杰信(北京)科技有限责任公司长沙分公司 一种用于泄露监测系统的光纤声波检测探头
CN108759936A (zh) * 2018-08-23 2018-11-06 中铁第四勘察设计院集团有限公司 基于ofdr分布式光纤的排水管道监测补偿系统及方法
CN109171659A (zh) * 2018-09-28 2019-01-11 南京航空航天大学 基于琼斯矩阵的光纤型扫频偏振敏感oct成像方法及系统
CN109211289B (zh) * 2018-10-19 2021-06-25 华南师范大学 基于圆偏振光干涉的自发布里渊散射光纤传感方法与装置
CN111220569A (zh) * 2018-11-23 2020-06-02 中国石油天然气集团有限公司 气体泄漏监测系统
CN109579726B (zh) * 2018-12-24 2023-03-07 南京东智安全科技有限公司 一种长标距分布式光纤布里渊传感-解调系统及应变测量方法
CN109510669B (zh) * 2019-01-15 2023-10-31 哈尔滨工业大学(深圳) DSP-free的双偏振QAM调制的相干接收通信方法与系统
JP7331373B2 (ja) * 2019-02-12 2023-08-23 日本電信電話株式会社 光周波数反射計測装置およびその計測方法
JP6729737B1 (ja) * 2019-03-13 2020-07-22 沖電気工業株式会社 光コヒーレントセンサ
CN113574427B (zh) * 2019-03-28 2023-07-14 东丽株式会社 认证器件及膜
CN110095177B (zh) * 2019-04-24 2021-08-03 上海传输线研究所(中国电子科技集团公司第二十三研究所) 一种光纤光栅水听器相位解调偏振衰落抑制的系统和方法
CN110071759B (zh) * 2019-04-29 2020-11-27 青岛诺克通信技术有限公司 一种基于偏振白光干涉的光缆故障定位装置及方法
CN110132330B (zh) * 2019-05-22 2021-08-10 电子科技大学 一种基于cp-φotdr的双折射分布式测量系统及其方法
CN110146732A (zh) * 2019-06-05 2019-08-20 湖北工业大学 一种全光纤电流互感器系统
EP3757523B1 (en) * 2019-06-28 2022-08-03 Alcatel Submarine Networks Method and apparatus for suppression of noise due to transmitted signal instability in a coherent fiber optical sensor system
CN112197878A (zh) * 2019-07-08 2021-01-08 上海交通大学 基于光频域反射仪的高精度光波长检测方法及系统
CN110440899B (zh) * 2019-08-09 2024-02-06 大连理工大学 一种共路双波长正交相位解调系统
CN110749420B (zh) * 2019-09-12 2022-05-06 芯华创(武汉)光电科技有限公司 一种ofdr检测装置
CN110702263B (zh) * 2019-10-24 2024-03-29 国家电网有限公司 一种大芯径多模光纤的测温装置及方法
CN110823411B (zh) * 2019-11-25 2021-04-27 国家电网有限公司 基于光谱傅里叶变换解调的高精度光纤温度测量装置及方法
CN110731755A (zh) * 2019-12-03 2020-01-31 南京沃福曼医疗科技有限公司 一种导管偏振敏感光学相干层析成像系统的偏振调平方法
EP3855138A1 (en) 2020-01-24 2021-07-28 Nokia Solutions and Networks Oy Fiber phase sensing using a ladder topology
CN111337052B (zh) * 2020-03-20 2024-03-22 北京世维通光智能科技有限公司 一种y波导参数测量仪、测量系统及测量方法
CN111464240B (zh) * 2020-03-29 2023-01-06 复旦大学 基于偏振复用强度调制器的矢量射频信号发生系统
CN111609999B (zh) * 2020-05-12 2021-10-22 浙江理工大学 激光偏频锁定中宽波长范围的拍频信号探测装置与方法
US20210356332A1 (en) * 2020-05-18 2021-11-18 Nec Laboratories America, Inc Joint wavelet denoising for distributed temperature sensing
CN111780856B (zh) * 2020-06-01 2022-03-29 哈尔滨工业大学 基于瑞利散射谱的相位谱分析的光纤分布式振动测量方法
CN111735527B (zh) * 2020-06-01 2022-03-29 哈尔滨工业大学 基于时域相位计算的光纤分布式振动传感方法
CN111896095A (zh) * 2020-06-09 2020-11-06 山东大学 一种基于hht变换的分布式光纤双m-z干涉仪的振动定位方法
CN111678583B (zh) * 2020-06-17 2022-02-18 珠海任驰光电科技有限公司 一种光源噪声改善的光纤振动测量装置及方法
CN111811551B (zh) * 2020-07-07 2021-12-21 中国南方电网有限责任公司超高压输电公司昆明局 一种低损耗的偏振干涉型特高压直流控制保护系统otdr装置
CN111865421B (zh) * 2020-08-05 2021-09-07 中国电子科技集团公司第三十四研究所 一种高精度光纤干涉仪的光纤相位补偿器
CN114389707B (zh) * 2020-10-16 2024-01-26 西安电子科技大学 一种频率可灵活选择的多波段线性调频信号生成方法
CN112946611B (zh) * 2021-02-04 2022-11-01 哈尔滨工业大学 基于相似三角插值采样的扫频非线性矫正测距方法
CN112927317B (zh) * 2021-02-08 2024-04-16 天津大学 光学相干层析成像快速空间自适应去卷积方法
CN113188647B (zh) * 2021-04-12 2022-02-08 武汉理工大学 三脉冲错位干涉的光栅增强型分布式振动解调系统及方法
US20220326068A1 (en) * 2021-04-12 2022-10-13 Wuhan University Of Technology Grating enhanced distributed vibration demodulation system and method based on three-pulse shearing interference
CN113237570A (zh) * 2021-04-28 2021-08-10 安徽大学 一种基于波长分光的低相干分布式光纤传感器
CN113237431B (zh) * 2021-05-06 2022-03-18 山东大学 一种提升ofdr系统分布式空间分辨率的测量方法
CN114353778B (zh) * 2021-05-17 2022-11-29 中山大学 在非保偏的Sagnac型干涉仪中实现π/2初始相位锁定的方法及装置
CN113405566B (zh) * 2021-05-27 2023-05-16 广东工业大学 基于分布式偏振串音的光纤敏感环光学性能测试方法
CN113447110B (zh) * 2021-06-10 2022-08-30 天津大学 一种分布式光纤振动传感系统及其相位载波解调方法
CN113419341B (zh) * 2021-06-22 2022-11-18 中国人民解放军国防科技大学 一种光纤干涉仪光场的复数化重构方法及装置
CN113804298B (zh) * 2021-07-20 2023-09-12 广东工业大学 一种基于匹配校正光频域干涉的分布式双向偏振测量装置
CN113804302A (zh) * 2021-07-20 2021-12-17 广东工业大学 一种基于光频域干涉的光纤分布式偏振串音快速测量装置
CN113804301A (zh) * 2021-07-20 2021-12-17 广东工业大学 一种基于光频域移频干涉的分布式偏振串音快速测量装置
CN113804300B (zh) * 2021-07-20 2023-12-26 广东工业大学 一种基于光频域最优移频干涉的分布式偏振串音测量装置
CN113566728B (zh) * 2021-07-22 2023-03-14 太原理工大学 一种格构梁形变光纤实时传感监测系统
CN113686366B (zh) * 2021-07-30 2023-10-20 南方科技大学 一种基于傅里叶域锁模的光频域反射计装置及测量方法
CN113465528B (zh) * 2021-08-09 2022-08-23 天津大学 基于光频域反射高速分布式应变测量系统和方法
CN113776781B (zh) * 2021-08-09 2022-09-09 电子科技大学 一种窄线宽激光器相位噪声测量系统
CN113804303B (zh) * 2021-08-16 2023-12-26 广东工业大学 一种基于双拍频单辅助干涉仪的分布式双向偏振测量装置
CN113654642B (zh) * 2021-08-23 2022-06-24 之江实验室 一种基于参考传感器的分布式声波传感降噪系统及方法
CN113776567A (zh) * 2021-08-27 2021-12-10 武汉普赛斯电子技术有限公司 一种基于光频域反射计的偏振衰落消除装置及方法
CN113888478B (zh) * 2021-09-15 2022-11-11 天津大学 一种对血管内导管偏振敏感相干层析成像优化去消偏方法
CN113852416B (zh) * 2021-09-23 2023-09-01 西北大学 具有衰落噪声识别消除的相位解调方法及装置
CN114001813B (zh) * 2021-11-04 2023-04-07 中国科学院半导体研究所 加加速度计
CN114018392B (zh) * 2021-11-04 2024-03-01 全球能源互联网研究院有限公司 一种偏振衰落抑制方法及装置
CN114002185B (zh) * 2021-11-17 2023-08-04 哈尔滨工业大学 基于光学调频连续波的多点色散光谱测量装置和方法
CN114300918B (zh) * 2021-11-26 2024-01-23 北京无线电计量测试研究所 一种超稳窄线宽激光器系统和耦合调节方法
CN116337199A (zh) * 2021-12-23 2023-06-27 华为技术有限公司 一种探测设备和光纤探测方法
CN114485746B (zh) * 2021-12-24 2023-10-31 中山大学 基于时分复用多载波探测光干涉型传感器的光声成像系统
CN114665976A (zh) * 2022-01-07 2022-06-24 南京鼎芯光电科技有限公司 一种基于Kramers-Kronig的集成自相干接收机信号处理方法及系统
CN114112004B (zh) * 2022-01-26 2022-06-07 北京信维科技股份有限公司 一种光纤传感系统电子调偏和监测偏振状态的方法
CN114567384B (zh) * 2022-02-17 2023-06-27 上海交通大学 通用型硅基光子毫米波/太赫兹芯片及其传递系统和方法
CN114486179B (zh) * 2022-02-21 2023-06-13 电子科技大学中山学院 一种反卷积滤波的高精度光纤质量检测方法及系统
CN114374441B (zh) * 2022-03-23 2022-06-10 北京中科国光量子科技有限公司 一种免疫信道扰动的量子密钥分发相位解码装置
CN114739633B (zh) * 2022-03-31 2023-01-06 华中科技大学 一种快速测量多模光纤串扰矩阵的装置
CN114813576B (zh) * 2022-04-19 2023-02-14 浙江大学 一种自适应全光纤激光超声测量仪
CN114923559B (zh) * 2022-04-19 2023-05-05 北京理工大学 基于相位解调光频域反射仪的分布式光纤声波测量方法
CN114878141B (zh) * 2022-04-22 2023-08-04 成都飞机工业(集团)有限责任公司 一种机载光缆连接故障定位方法及系统
CN115235602B (zh) * 2022-07-15 2023-06-23 中国人民解放军海军工程大学 可降噪的分布反馈式光纤激光水听器解调干涉仪及方法
CN114894227A (zh) * 2022-07-15 2022-08-12 安徽至博光电科技股份有限公司 一种光纤传感集成光学芯片及其系统
CN115420208B (zh) * 2022-11-04 2023-03-24 之江实验室 一种基于光纤结敏感结构与弹性拨片的纹理传感器
CN116067313B (zh) * 2022-12-01 2023-09-22 复旦大学 一种油气输送管道用自行走检测设备定位系统及方法
CN117030000B (zh) * 2023-10-10 2024-01-12 之江实验室 一种分布式声波传感偏振控制系统及偏振衰落抑制方法
CN117629057B (zh) * 2024-01-26 2024-03-29 武汉工程大学 基于白光干涉测量抗扰动环境信号的装置及方法
CN117723144B (zh) * 2024-02-07 2024-04-23 青岛哈尔滨工程大学创新发展中心 一种偏振调制式水声检测装置、方法及水听器

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5880824A (en) * 1996-09-13 1999-03-09 Ando Electric Co., Ltd. Optical fiber strain measuring apparatus
CN101261141A (zh) * 2008-04-22 2008-09-10 东南大学 宽域全光纤扰动传感网络系统自适应扰动信号处理识别装置
CN101639379A (zh) * 2009-08-26 2010-02-03 南京大学 基于光纤偏振光时域反射传感的振动监测结构及方法
CN101650197A (zh) * 2008-08-13 2010-02-17 上海波汇通信科技有限公司 一种光频域反射光纤传感系统
CN101680781A (zh) * 2008-02-29 2010-03-24 株式会社藤仓 光频域反射测定方式的物理量测量装置、及使用了其的温度和应变的同时测量方法
WO2010073002A1 (en) * 2008-12-22 2010-07-01 Fotech Solutions Limited Distributed optical fibre sensor
CN102045120A (zh) * 2010-10-29 2011-05-04 成都九洲电子信息系统有限责任公司 光纤周界系统的振动信号识别方法
CN102147236A (zh) * 2011-03-23 2011-08-10 南京大学 一种全分布式光纤应变及振动的传感方法与传感器

Family Cites Families (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4840481A (en) * 1987-12-10 1989-06-20 Simmonds Precision Polarimetric optical frequency domain distributed strain sensor and method
US5268741A (en) * 1992-01-31 1993-12-07 Hewlett-Packard Company Method and apparatus for calibrating a polarization independent optical coherence domain reflectometer
WO1996024038A1 (fr) * 1995-02-02 1996-08-08 Yokogawa Electric Corporation Dispositif de detection a fibres optiques
EP1644697A4 (en) * 2003-05-30 2006-11-29 Univ Duke SYSTEM AND METHOD FOR BROADBAND QUADRATURE INTERFEROMETRY WITH LOW COHERENCE
EP3009815B1 (en) * 2003-10-27 2022-09-07 The General Hospital Corporation Method and apparatus for performing optical imaging using frequency-domain interferometry
EP1825215B1 (en) * 2004-12-14 2013-10-30 Luna Innovations, Inc. Compensating for time varying phase changes in interferometric measurements
EP1869511B1 (en) * 2005-03-10 2012-08-01 Luna Innovations, Inc. Calculation of birefringence in a waveguide based on rayleigh scatter
WO2007008788A2 (en) * 2005-07-08 2007-01-18 Imalux Corporation Common-path frequency-domain optical coherence reflectometer and optical coherence tomography device
US7728985B2 (en) * 2005-11-14 2010-06-01 Imalux Corporation Polarization-sensitive common path optical coherence reflectometry/tomography device
US7742173B2 (en) * 2006-04-05 2010-06-22 The General Hospital Corporation Methods, arrangements and systems for polarization-sensitive optical frequency domain imaging of a sample
WO2007149230A2 (en) * 2006-06-16 2007-12-27 Luna Innovations Incorporated Distributed strain and temperature discrimination in polarization maintaining fiber
WO2008013705A2 (en) * 2006-07-26 2008-01-31 Luna Innovations Incorporated High resolution interferometric optical frequency domain reflectometry ( ofdr) beyond the laser coherence length
US7920271B2 (en) * 2006-08-25 2011-04-05 The General Hospital Corporation Apparatus and methods for enhancing optical coherence tomography imaging using volumetric filtering techniques
WO2008089393A2 (en) * 2007-01-19 2008-07-24 Thorlabs, Inc. An optical coherence tomography imaging system and method
CN101611301B (zh) * 2007-02-28 2012-11-07 日本电信电话株式会社 光反射测定方法以及装置
US7504618B2 (en) * 2007-07-03 2009-03-17 Schlumberger Technology Corporation Distributed sensing in an optical fiber using brillouin scattering
CA2695587C (en) * 2008-02-29 2013-07-30 Fujikura Ltd. Physical quantity measuring apparatus utilizing optical frequency domain reflectometry and method for temperature and strain measurement using the apparatus
EP2315999B1 (en) * 2008-05-15 2013-11-20 Axsun Technologies, Inc. Oct combining probes and integrated systems
US9178611B2 (en) * 2011-06-28 2015-11-03 Intuitive Surgical Operations, Inc. Fiber optic network interrogation tool for combined swept-heterodyne optical spectrum analysis and optical frequency-domain reflectometry

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5880824A (en) * 1996-09-13 1999-03-09 Ando Electric Co., Ltd. Optical fiber strain measuring apparatus
CN101680781A (zh) * 2008-02-29 2010-03-24 株式会社藤仓 光频域反射测定方式的物理量测量装置、及使用了其的温度和应变的同时测量方法
CN101261141A (zh) * 2008-04-22 2008-09-10 东南大学 宽域全光纤扰动传感网络系统自适应扰动信号处理识别装置
CN101650197A (zh) * 2008-08-13 2010-02-17 上海波汇通信科技有限公司 一种光频域反射光纤传感系统
WO2010073002A1 (en) * 2008-12-22 2010-07-01 Fotech Solutions Limited Distributed optical fibre sensor
CN101639379A (zh) * 2009-08-26 2010-02-03 南京大学 基于光纤偏振光时域反射传感的振动监测结构及方法
CN102045120A (zh) * 2010-10-29 2011-05-04 成都九洲电子信息系统有限责任公司 光纤周界系统的振动信号识别方法
CN102147236A (zh) * 2011-03-23 2011-08-10 南京大学 一种全分布式光纤应变及振动的传感方法与传感器

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
WU, ZHAOXIA ET AL.: "The Fully Distributed Optical Fiber Strain Sensor Based on Brilliouin Optical-fiber Frequency Domain Reflectometry", CHINESE JOURNAL OF SCIENTIFIC INSTRUMENT, vol. 27, no. 3, March 2006 (2006-03-01), pages 237 - 240 *

Cited By (39)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10324002B2 (en) 2013-06-10 2019-06-18 General Photonics Corporation Devices and methods for characterization of distributed fiber bend and stress
WO2014201057A3 (en) * 2013-06-10 2015-11-26 General Photonics Corporation Devices and methods for characterization of distributed fiber bend and stress
US9632006B2 (en) 2013-06-10 2017-04-25 General Photonics Corporation Distributed fiber bend and stress measurement for determining optical fiber reliability by multi-wavelength optical reflectometry
US9719883B2 (en) 2013-06-10 2017-08-01 General Photonics Corporation Devices and methods for characterization of distributed fiber bend and stress
US9829410B2 (en) 2013-06-10 2017-11-28 General Photonics Corporation Distributed fiber bend and stress measurement for determining optical fiber reliability by multi-wavelength optical reflectometry
CN104319623A (zh) * 2014-10-31 2015-01-28 中国科学院半导体研究所 基于偏振反馈的超窄线宽半导体激光器装置
CN106482822B (zh) * 2016-12-07 2023-05-09 吉林大学 一种基于双重同源外差相干检测的相位敏感光时域反射系统
CN106482822A (zh) * 2016-12-07 2017-03-08 吉林大学 一种基于双重同源外差相干检测的相位敏感光时域反射系统
CN109187194A (zh) * 2018-10-26 2019-01-11 南京大学 一种基于ofdr的土体张拉力学特性光纤监测与测试方法及装置
CN109187194B (zh) * 2018-10-26 2023-10-13 南京大学 一种基于ofdr的土体张拉力学特性光纤监测与测试方法及装置
CN113167636B (zh) * 2018-11-29 2023-06-20 日本电信电话株式会社 相位测定方法、相位测定装置和记录介质
CN113167636A (zh) * 2018-11-29 2021-07-23 日本电信电话株式会社 相位测定方法、信号处理装置和程序
CN109560877A (zh) * 2019-01-24 2019-04-02 哈尔滨工业大学(深圳) 基于k-k接收的双偏振qam调制直接检测通信系统与方法
CN109560877B (zh) * 2019-01-24 2024-02-06 哈尔滨工业大学(深圳) 基于k-k接收的双偏振qam调制直接检测通信系统与方法
CN109807471B (zh) * 2019-02-01 2024-03-26 佛山科学技术学院 一种激光打标装置及方法
CN109807471A (zh) * 2019-02-01 2019-05-28 佛山科学技术学院 一种激光打标装置及方法
CN111964663A (zh) * 2020-07-30 2020-11-20 广东工业大学 一种光纤环分布式偏振串扰双向同时测量装置及方法
CN112033567A (zh) * 2020-08-07 2020-12-04 太原理工大学 一种opgw架空地线温度、振动分离测量光纤传感系统
CN112033521B (zh) * 2020-08-07 2022-03-15 太原理工大学 一种本地噪声自滤除的混合式光纤振动传感系统
CN112033521A (zh) * 2020-08-07 2020-12-04 太原理工大学 一种本地噪声自滤除的混合式光纤振动传感系统
CN113218518A (zh) * 2021-05-07 2021-08-06 姚晓天 一种基于集成光路的正弦-余弦光频率检测装置及其在光学感测中的应用
CN113358142A (zh) * 2021-05-21 2021-09-07 复旦大学 基于光单向传输的光纤干涉光路及其构造方法
CN113358142B (zh) * 2021-05-21 2022-11-18 复旦大学 基于光单向传输的光纤干涉光路及其构造方法
CN113358240B (zh) * 2021-06-04 2024-04-26 燕山大学 基于dus-fbg的大面积柔性智能皮肤的温度及压力传感器
CN113358240A (zh) * 2021-06-04 2021-09-07 燕山大学 基于dus-fbg的大面积柔性智能皮肤的温度及压力传感器
CN113405646A (zh) * 2021-06-17 2021-09-17 润智科技有限公司 一种基于双通道φ-OTDR地埋光缆分布式振动识别方法
CN114323242A (zh) * 2021-11-19 2022-04-12 中国科学院上海光学精密机械研究所 基于偏振分解光纤干涉仪的全频段激光频率噪声的测量装置与方法
CN114323242B (zh) * 2021-11-19 2024-04-12 中国科学院上海光学精密机械研究所 基于偏振分解光纤干涉仪的全频段激光频率噪声的测量装置与方法
CN114485732B (zh) * 2022-02-11 2023-09-26 天津大学 一种基于降噪处理的y波导偏振特性参数测量方法
CN114485732A (zh) * 2022-02-11 2022-05-13 天津大学 一种基于降噪处理的y波导偏振特性参数测量方法
CN114719955A (zh) * 2022-04-15 2022-07-08 北京理工大学 光频域反射仪分布式光纤测量中的相干衰落噪声抑制方法
CN115031651B (zh) * 2022-06-07 2023-04-18 天津大学 一种改进bm3d去噪ofdr分布式应变测量方法
CN115031651A (zh) * 2022-06-07 2022-09-09 天津大学 一种改进bm3d去噪ofdr分布式应变测量方法
CN115112603A (zh) * 2022-06-24 2022-09-27 浙江师范大学 一种新型的准分布式光纤气体探测方法
CN115112603B (zh) * 2022-06-24 2024-06-11 浙江师范大学 一种新型的准分布式光纤气体探测方法
CN116086591A (zh) * 2023-01-18 2023-05-09 之江实验室 采用时频复用和相位基值参考的分布式声波传感方法和系统
CN116086591B (zh) * 2023-01-18 2023-12-22 之江实验室 采用时频复用和相位基值参考的分布式声波传感方法和系统
CN116337777A (zh) * 2023-05-29 2023-06-27 之江实验室 一种基于单光梳的宽频带光声光谱测量系统及方法
CN116337777B (zh) * 2023-05-29 2023-08-29 之江实验室 一种基于单光梳的宽频带光声光谱测量系统及方法

Also Published As

Publication number Publication date
US9322740B2 (en) 2016-04-26
US20140176937A1 (en) 2014-06-26
CN102322880B (zh) 2013-06-05
CN102322880A (zh) 2012-01-18

Similar Documents

Publication Publication Date Title
WO2013023425A1 (zh) 偏振敏感的分布式光频域反射扰动传感装置和解调方法
CN103196584B (zh) 测量光纤中温度和应力的方法、以及布里渊光时域反射仪
US7009691B2 (en) System and method for removing the relative phase uncertainty in device characterizations performed with a polarimeter
CN102997937A (zh) 一种可抑制光源相位噪声的光频域反射装置和解调方法
CA2514813C (en) Method and apparatus for measuring polarization mode dispersion
Lopez-Gil et al. Simple method for the elimination of polarization noise in BOTDA using balanced detection and orthogonal probe sidebands
CN107515017A (zh) 一种光波移频调制的光频域反射计
Jiang et al. Low-crosstalk and polarization-independent inline interferometric fiber sensor array based on fiber Bragg gratings
JP4241252B2 (ja) 光ファイバ特性測定装置および光ファイバ特性測定方法
Qu et al. Improvement of strain measurement range via image processing methods in OFDR system
Song et al. A novel weak-scattering Michelson interferometer based on PBS for long-distance disturbance localization
CN109946048A (zh) 一种任意波长激光相频噪声测试装置及方法
CA2965714C (en) Method and apparatus for characterization of terahertz radiation
Tu et al. Ultra long distance distributed fiber-optic system for intrusion detection
CN106525390A (zh) 一种用于具有超高分布式双折射色散的光纤保偏器件的色散补偿方法
CN112461276B (zh) 一种减小ofdr光源非线性相位影响的系统及方法
Shaheen et al. Phase-sensitive optical time domain reflectometry based on geometric phase measurement
CN107356276B (zh) 一种减弱光纤自发布里渊散射幅度振荡的方法及装置
JPH02311722A (ja) 光サンプリング波形測定装置
Fraņois et al. A Simple Method to Measure the Group Delay of Chirped Fiber Gratings in Polarization-Maintaining Fiber
JP3998460B2 (ja) 光学装置の特性を決定する方法及び検査装置
Liu et al. High-resolution and high-precision φ-OFDR strain sensing scheme based on adaptive phase unwrapping and wavelet packet denoising
RU2664692C1 (ru) Измеритель фазовых шумов узкополосных лазеров, основанный на состоящем из рм-волокна интерферометре маха-цендера
Hu et al. Wide-frequency-range vibration positioning based on adaptive TQWT for long-distance asymmetric interferometer sensor
Heffner et al. Measurement of polarization-mode dispersion

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11871027

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 13880732

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11871027

Country of ref document: EP

Kind code of ref document: A1