CN107356276B - 一种减弱光纤自发布里渊散射幅度振荡的方法及装置 - Google Patents

一种减弱光纤自发布里渊散射幅度振荡的方法及装置 Download PDF

Info

Publication number
CN107356276B
CN107356276B CN201710547462.9A CN201710547462A CN107356276B CN 107356276 B CN107356276 B CN 107356276B CN 201710547462 A CN201710547462 A CN 201710547462A CN 107356276 B CN107356276 B CN 107356276B
Authority
CN
China
Prior art keywords
light
polarization
optical fiber
brillouin scattering
brillouin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201710547462.9A
Other languages
English (en)
Other versions
CN107356276A (zh
Inventor
郝蕴琦
杨坤
翟凤潇
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Zhengzhou University of Light Industry
Original Assignee
Zhengzhou University of Light Industry
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Zhengzhou University of Light Industry filed Critical Zhengzhou University of Light Industry
Priority to CN201710547462.9A priority Critical patent/CN107356276B/zh
Publication of CN107356276A publication Critical patent/CN107356276A/zh
Application granted granted Critical
Publication of CN107356276B publication Critical patent/CN107356276B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D5/00Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable
    • G01D5/26Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light
    • G01D5/32Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light
    • G01D5/34Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light the beams of light being detected by photocells
    • G01D5/353Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light the beams of light being detected by photocells influencing the transmission properties of an optical fibre
    • G01D5/35338Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light the beams of light being detected by photocells influencing the transmission properties of an optical fibre using other arrangements than interferometer arrangements
    • G01D5/35354Sensor working in reflection
    • G01D5/35358Sensor working in reflection using backscattering to detect the measured quantity
    • G01D5/35364Sensor working in reflection using backscattering to detect the measured quantity using inelastic backscattering to detect the measured quantity, e.g. using Brillouin or Raman backscattering
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D5/00Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable
    • G01D5/26Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light
    • G01D5/32Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light
    • G01D5/34Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light the beams of light being detected by photocells
    • G01D5/353Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light the beams of light being detected by photocells influencing the transmission properties of an optical fibre
    • G01D5/3537Optical fibre sensor using a particular arrangement of the optical fibre itself
    • G01D5/35377Means for amplifying or modifying the measured quantity

Abstract

本发明提出一种减弱光纤自发布里渊散射幅度振荡的方法及装置,核心思想是同时采用偏振分集接收和预放大技术,用偏振分束器将本地光分为p分量和s分量,用第二1:1光纤耦合器将后向布里渊散射光分为两束,p分量、s分量分别和两束散射光相干拍频,同时用数据采集卡检测并采集两路相干信号,并利用后继的均方和数据处理方法,实现减少相干检测中幅度的振荡的目的。本发明的特点和优点是:本发明适用于任何线宽的主激光器传感系统,在更换主光源的情况下无需改变装置,无需任何调制和转动模块,系统响应速度快,稳定性好,有利于实用化。

Description

一种减弱光纤自发布里渊散射幅度振荡的方法及装置
技术领域
本发明涉及光纤传感器,特别是指一种减弱光纤自发布里渊散射幅度振荡的方法及装置。
背景技术
近些年来,分布式光纤传感器因其能够长距离分布式传感和抗电磁干扰等一系列优点得到了广泛的研究和应用[Li Mi,Jiao Wenxiang,Zhang Xuping,Song Yuejiang,Qian Hongqiang,Yu Jianjie,An algorithm for determining the peak frequency ofBOTDR under the case of transient interference,IEEE Journal of SelectedTopics in Quantum Electronics,2017,23(2):56011051-5.]。当前研究的热点包括布里渊光时域分析仪(BOTDA)和布里渊光时域反射计(BOTDR)。前者需要相向传输的泵浦光和探针光,实验结构比较复杂。而后者仅需要单端脉冲注入,比较简单,应用范围更加广泛。
由于布里渊散射光和入射光的频差只有大约11GHz(1550nm波段),微弱的自发布里渊散射光淹没于瑞利散射中,很难通过直接检测的方法将布里渊散射光提取出来。一般采用相干检测的方案[K.Shimizu,T.Horiguchi,Y.Koyamada,T.Kurashima.Coherentself-heterodyne Brillouin OTDR for measurement of Brillouin frequency-shiftdistribution in optical fibers[J].Journal of Lightwave Technology,1994,12(5):730-736.],其中主光源的一部分被调制成脉冲用来产生散射光,另外一部分用来产生本地光,散射光和本地光进行混频,所得到的拍频信号可将布里渊信号从瑞利散射中分离出来。但是,在相干检测过程中,本地光和散射光的偏振性会影响探测到的拍频信号的幅度,使得拍信号的幅度振动剧烈[M.Alahbabi,Y.T.Cho,T.P.Newson.Comparison of the methodsfor discriminating temperature and strain in spontaneous Brillouin-baseddistributed sensors[J].Optics Letters,2004,29(1):26-28.],影响传感测量时幅度变化的准确度,进而影响了传感系统的精度。
为了抑制偏振对幅度的影响,目前已有的技术方案如下:
在先方案之一是在本地参考光后放置扰偏器以改变本地光的偏振度[参见:T.Kurashima,M.Tateda,T.Horiguchi,Y.Koyamada,Performance improvement of acombined OTDR for distributed strain and loss measurement by randomizing thereference light polarization state,IEEE Photonics Technology Letters,1997,9(3):360-362.]。该方案针对本地光的偏振性,利用扰偏器将本地光的偏振状态完全扰乱,使得其与散射光干涉时不受偏振状态变化的影响,可消除幅度分布中偏振带来的振荡。
在先方案之二是在本地光中加入两个电控1/4波片,通过调整波片的状态以改变本地光的偏振状态[参见:Muping Song,Bin Zhao,Xianmin Zhang,Optical coherentdetection Brillouin distributed optical fiber sensor based on orthogonalpolarization diversity reception[J].Chinese Optics Letters,2005,3(5):271-274.]。文中单个脉冲周期内每一点的散射光的偏振状态不定、但多个脉冲周期内同一点的散射光偏振状态接近相同这一情况,结合数据采集卡的采集速率,提出了以高于脉冲调制频率和数据采集速率的波片转动速度,以保证干涉时单个脉冲周期时间内本地光的偏振状态是退偏的,即可消除偏振带来的后继的幅度振荡问题。
在先方案之三是利用偏振开关的方案在时间上交替产生相互垂直的偏振光[参见:Hotate Kazuo,Abe Koji,Song Kwang Yong,Suppression of signal fluctuation onBrillouin optical correlation domain analysis system using polarizationdiversity scheme,IEEE Photonics Technology Letters,2006,18(24):2653-2655]。对于相邻的两个脉冲所对应的布里渊散射光与其相干的本地光在两个时间周期内依次分别为p光和s光。在数据处理中,将相邻两个脉冲周期内的数据联合处理,以获得完整的干涉信号,同时消除了偏振的影响。
在先方案之四利用两个PBS将本地偏振光去偏振化[参见:Jing Yang,ChangyuanYu,Zhihao Chen,Junhong Ng,Xiufeng Yang,Suppression of polarizationsensitivity in BOTDAfiber distributed sensing system,19th InternationalConference on Optical Fibre Sensors,Vol.7004,2008,700421 1-4.]。文中根据主激光器的相干长度,首先利用一个PBS将本地光分为两束,和另外一个PBS的两个输出端连接。但是,其中一个连接臂中加入了长于主激光器相干长度的单模光纤,使得从第二个PBS处输出的本地光具有偏振无关的特征,进而可消除后继偏振带来的影响。
在先方案之五是利用被动Mach-Zehnder结构[参见:Wang Feng,Li Cunlei,ZhaoXiaodong,Zhang Xuping,Using a Mach-Zehnder-interference-based passiveconfiguration to eliminate the polarizationnoise in Brillouin optical timedomain reflectometry,Applied Optics,2012,51(2):176-180]。文中首先分析了将本地光退偏振的条件,并据此利用Mach-Zehnder结构使得本地光去偏振化,来消除偏振的影响。
上述方案一中实验效果和扰偏器的速率有关。如果其速率太低,则不能够消除偏振的影响;如果其速率很高,则价格高昂。上述方案二在本质上是和方案一相同的,但是电控波片的机械转动过程具有一定的时间延迟性,在高速数据采集过程中会导致每个脉冲对应数据的前部分效果较差。方案三中所加偏振开关给本地光带来了较大的损耗。方案四、五均是采用本地光去偏振的方案,结构比较复杂,且和主激光器的性能有关;若将主激光器的线宽压窄,则需要随之改变去偏振模块结构,使用极其不便。
发明内容
本发明提出一种减弱光纤自发布里渊散射幅度振荡的方法及装置,可用于消除布里渊分布式光纤传感系统中相干检测时的偏振衰落效应以及对应的幅度振荡问题,可用于提高布里渊光纤传感器的测量精度。
本发明的技术方案是这样实现的:
一种减弱光纤自发布里渊散射幅度振荡的方法,核心思想是同时采用偏振分集接收和预放大技术,用偏振分束器将本地光分为p分量和s分量,用第二1:1光纤耦合器将后向布里渊散射光分为两束,p分量、s分量分别和两束散射光相干拍频,同时用数据采集卡检测并采集两路相干信号,并利用后继的均方和数据处理方法,实现减少相干检测中幅度的振荡的目的。
一种减弱光纤自发布里渊散射幅度振荡的装置,其构成包括:主光源、第一1:1光纤耦合器、光纤传感部分(声光调制器、环形器、长距离传感光纤、掺铒光纤放大器、第二1:1光纤耦合器)、本地光部分(偏振分束器、第三1:1光纤耦合器和第四1:1光纤耦合器)、探测采集部分(第一平衡探测器、第二平衡探测器、第一放大器、第二放大器和数据采集卡)。
主激光器是整个传感系统正常运行所用到的主光源,当用于光纤传感时,一般要求具有较窄的线宽。第一1:1耦合器是在相干检测中所必须的,它将主激光器输出的光分为两部分,一部分用于传感,另一部分用于本地光。光纤传感部分是整个传感系统的核心,包括声光调制器、环形器、长距离传感光纤、掺铒光纤放大器和第二1:1光纤耦合器,通过声光调制器产生的脉冲经由环形器进入到长距离传感光纤,产生自发布里渊散射,用以传感外界事件。掺铒光纤放大器用以放大后向传感信号。本地光部分包括偏振分束器、第三1:1光纤耦合器和第四1:1光纤耦合器,偏振分束器将本地光分为p光和s光,第二1:1光纤耦合器将后向传感信号分为两束,p光和s光分别和两束传感信号相拍频。探测采集部分包括第一平衡探测器、第二平衡探测器、第一放大器、第二放大器和高速数据采集卡,两个平衡探测器同时将光信号转换成电信号,微波放大器将该电信号放大到合适的电压以供数据采集卡采集信号,并进行后继数据处理,实时显示传感光纤沿线的布里渊散射信号的幅度分布。
本发明的特点和优点是:
本发明充分利用激光的偏振特性,引入偏振分束器和掺铒光纤放大器,不需额外增加其他光学或电学辅助系统,实现布里渊光纤传感系统中偏振影响的消除,减小幅度分布的振荡程度,为光纤传感系统中传感事件的测量提供了较高的测量精度。
本发明适用于任何线宽的主激光器传感系统,在更换主光源的情况下无需改变装置,无需任何调制和转动模块,系统响应速度快,稳定性好,有利于实用化。
附图说明
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1是本发明的结构图。
图2是使用本发明和未使用本发明的幅度分布振荡对比图。
图3是未使用本发明的温度传感效果图。
图4是使用本发明的温度传感效果图。
具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有付出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
一种减弱光纤自发布里渊散射幅度振荡的方法,用偏振分束器8将本地光分为p分量和s分量,用第二1:1光纤耦合器7将后向布里渊散射光分为两束,p分量、s分量分别和两束散射光相干拍频,同时用数据采集卡15检测并采集两路相干信号,并利用后继的均方和数据处理方法,实现减少相干检测中幅度的振荡的目的。
一种减弱光纤自发布里渊散射幅度振荡的装置,包括主光源1,主光源1与第一1:1光纤耦合器2连接,第一1:1光纤耦合器2的端口一21与声光调节器3的端口三31连接,声光调节器3上设有端口五33,第一1:1光纤耦合器2的端口二22与偏振分束器8的端口十二81连接,声光调节器3的端口四32与环形器4的端口六41连接,环形器的端口七42与长距离传感光纤5连接,环形器4的端口八43与掺铒光纤放大器6连接,掺铒光纤放大器6与第二1:1光纤耦合器7的端口九71连接,第二1:1光纤耦合器7的端口十72与第三1:1光纤耦合器9的端口十五91连接,第二1:1光纤耦合器7的端口十一73与第四1:1光纤耦合器10的端口十九101连接,偏振分束器8的端口十三82与第三1:1光纤耦合器9的端口十六92连接,偏振分束器8的端口十四83与第四1:1光纤耦合器10的端口二十102连接,第三1:1光纤耦合器9的端口十七93与第一平衡探测器11的端口二三111连接,第三1:1光纤耦合器9的端口十八94与第一平衡探测器11的端口二四112连接,第一平衡探测器11的端口二五113与第一放大器13连接,第一放大器13与数据采集卡15的端口二九151连接,第四1:1光纤耦合器10的端口二一103与第二平衡探测器12的端口二六121连接,第四1:1光纤耦合器10的端口二二104与第二平衡探测器12的端口二七122连接,第二平衡探测器12的端口二八123与第二放大器14连接,第二放大器14与数据采集卡15的端口三十152连接。
光纤中布里渊散射光的强度和频移与外界的温度和应变成线性关系:
Figure BDA0001343525320000061
其中△ν和△P分别为频率变化和功率变化,△T和△ε分别为温度变化和应变,CνT、Cνε、CPT和C分别为频率-温度、应变系数和功率-温度、应变系数。对于普通的单模光纤来说,文献[M.Belal,T.P.Newson.Experimental Examination of the Variation of theSpontaneous Brillouin Power and Frequency Coefficients Under the CombinedInfluence of Temperature and Strain[J].Journal of Lightwave Technology,2012,30(8):1250-1255.]中报道这四个系数分别为1.07MHz/℃、0.048MHz/με、0.36%/℃和-9×10-4%/με。可以看出,对于光纤传感链路中施加的应变,布里渊散射光的幅度变化非常微弱。如果在检测过程中所得到的光强分布因偏振的影响而波动剧烈的话,那么外界应变所产生的光功率变化则淹没在光强自身的变化中,不能够得到传感信息,或者限制传感系统的分辨精度。
请参阅图1,图1是本发明的实现原理示意图。
窄线宽光纤激光器作为主光源1,发出的光进入第一1:1光纤耦合器2的输入端,由第一1:1光纤耦合器2的端口一21输出光用于传感支路,第一1:1光纤耦合器2的端口二22输出光用于本地光。
端口一21的输出光进入声光调制器3的端口三31,经由和驱动电信号相连的端口五33,连续光被调制为脉冲光由端口四32输出,进入环形器4的端口六41。环形器4的端口七42输出脉冲进入长距离传感光纤5,光纤中各种散射光和端面反射经由环形器4的端口八43输出,由于后向传输的光强度很弱,掺铒光纤放大器6将此处微弱的光信号进行放大,经由第二1:1耦合器7分为两束通过端口十72和端口十一73输出,用于和两束本地光干涉。每路布里渊信号可以表示为:
Figure BDA0001343525320000071
Figure BDA0001343525320000072
其中K表示预防大技术的放大倍数,νB表示布里渊散射信号的频移,φ表示散射光的相位。
端口二22的输出连接偏振分束器8输入的端口十二81,其输出的端口十三82和端口十四83分别对应p光和s光。本文所提方案主要目的是为了减小偏振带来的相干拍频信号的强度振荡。对于参与光学混频的本地光信号来说,其s分量和p分量可分别表示为:
ELp=E//exp{i2π(ν0LO)t}
ELs=Eexp{i2π(ν0LO)t+π/2}
其中ν0为主激光器的频率,νLO为本地移频光的频率。为了减小后继探测器带宽的要求,本方案中νLO≈11GHz,得到的拍频信号的频率大约在~百MHz[Yunqi Hao,Qing Ye,Zhengqing Pan,Fei Yang,Haiwen Cai,Ronghui Qu,Design of wide-band frequencyshift technology by using compact Brillouin fiber laser for Brillouin opticaltime domain reflectometry sensing system.IEEE Photonics Journal,2012,4:1686-1692.]。
端口十72和端口十三82的输出光分别进入第三1:1光纤耦合器9的两个输入端口十五91和端口十六92用于干涉,输出的拍频信号通过端口十七93和端口十八94分别进入第一平衡探测器11的输入端口二三111和端口二四112,和布里渊散射强度相关的信号经由端口二五113输出。端口十一73和端口十四83的输出光分别进入第四1:1光纤耦合器10的两个输入的端口十九101和端口二十102用于干涉,输出的拍频信号通过端口二一103和端口二二104分别进入第二平衡探测器12输入的端口二六121和端口二七122,和布里渊散射强度相关的信号经由端口二八123输出。可得到:
Figure BDA0001343525320000081
Figure BDA0001343525320000082
由于平衡探测器输出的电压较小,需要再对两路干涉信号由第一放大器13和第二放大器14进行放大,放大后的两路电信号分别进入数据采集卡15的两个输入的端口二九151和端口三十152,进行数据采集,采集数据之后,利用“均方和”数据处理方法进行数据处理。可得到:
Figure BDA0001343525320000083
从上式可以看出,所探测到的光强和本地光、布里渊散射光以及预防大技术的放大倍数相关的,信号强度的包络受到频率νLOB的调制。
请参阅图2,图中所示为采用本文所提方法和装置时得到的幅度分布振荡图,且和未采用此方案时的幅度振荡进行了对比。从图中可以看出,采用此方案可以大大的消减相干时偏振对布里渊光纤传感系统的影响,可降低幅度振荡程度,提高布里渊传感系统的传感精度。
请参阅图3和图4。从图3中可以看出,由于直接拍频时偏振的影响,幅度的振荡剧烈,此时温度变化产生的幅度变化淹没于幅度的振荡中,所以无法分辨出温度的变化。利用本文所述方案,从图4中可以看出,在2Km处幅度有明显的凸起,经过线性转化即得到温度的变化。对比实验结果表明,所提方案对于消除偏振的影响、提高BOTDR传感精度是有效的。
以上所述仅为本发明的较佳实施例而已,并不用以限制本发明,凡在本发明的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。

Claims (1)

1.一种减弱光纤自发布里渊散射幅度振荡的方法,其特征在于:减弱光纤自发布里渊散射幅度振荡的装置,包括主光源(1),主光源(1)与第一1:1光纤耦合器(2)连接,第一1:1光纤耦合器(2)的端口一(21)与声光调节器(3)的端口三(31)连接,声光调节器(3)上设有端口五(33),第一1:1光纤耦合器(2)的端口二(22)与偏振分束器(8)的端口十二(81)连接,声光调节器(3)的端口四(32)与环形器(4)的端口六(41)连接,环形器的端口七(42)与长距离传感光纤(5)连接,环形器(4)的端口八(43)与掺铒光纤放大器(6)连接,掺铒光纤放大器(6)与第二1:1光纤耦合器(7)的端口九(71)连接,第二1:1光纤耦合器(7)的端口十(72)与第三1:1光纤耦合器(9)的端口十五(91)连接,第二1:1光纤耦合器(7)的端口十一(73)与第四1:1光纤耦合器(10)的端口十九(101)连接,偏振分束器(8)的端口十三(82)与第三1:1光纤耦合器(9)的端口十六(92)连接,偏振分束器(8)的端口十四(83)与第四1:1光纤耦合器(10)的端口二十(102)连接,第三1:1光纤耦合器(9)的端口十七(93)与第一平衡探测器(11)的端口二三(111)连接,第三1:1光纤耦合器(9)的端口十八(94)与第一平衡探测器(11)的端口二四(112)连接,第一平衡探测器(11)的端口二五(113)与第一放大器(13)连接,第一放大器(13)与数据采集卡(15)的端口二九(151)连接,第四1:1光纤耦合器(10)的端口二一(103)与第二平衡探测器(12)的端口二六(121)连接,第四1:1光纤耦合器(10)的端口二二(104)与第二平衡探测器(12)的端口二七(122)连接,第二平衡探测器(12)的端口二八(123)与第二放大器(14)连接,第二放大器(14)与数据采集卡(15)的端口三十(152)连接;
方法为:用偏振分束器(8)将本地光分为p分量和s分量,用第二1:1光纤耦合器(7)将后向布里渊散射光分为两束,p分量、s分量分别和两束散射光相干拍频,同时用数据采集卡(15)检测并采集两路相干信号,并利用后继的均方和数据处理方法,实现减少相干检测中幅度的振荡的目的。
CN201710547462.9A 2017-07-06 2017-07-06 一种减弱光纤自发布里渊散射幅度振荡的方法及装置 Active CN107356276B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201710547462.9A CN107356276B (zh) 2017-07-06 2017-07-06 一种减弱光纤自发布里渊散射幅度振荡的方法及装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201710547462.9A CN107356276B (zh) 2017-07-06 2017-07-06 一种减弱光纤自发布里渊散射幅度振荡的方法及装置

Publications (2)

Publication Number Publication Date
CN107356276A CN107356276A (zh) 2017-11-17
CN107356276B true CN107356276B (zh) 2023-03-21

Family

ID=60292280

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201710547462.9A Active CN107356276B (zh) 2017-07-06 2017-07-06 一种减弱光纤自发布里渊散射幅度振荡的方法及装置

Country Status (1)

Country Link
CN (1) CN107356276B (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102018124435A1 (de) * 2018-10-03 2020-04-09 Nkt Photonics Gmbh Verteilte Messvorrichtung

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1116977A2 (en) * 2000-01-17 2001-07-18 Agency of Industrial Science and Technology of Ministry of International Trade and Industry Optical apparatus adjustment method, and storage medium recorded with a processing program that executes said adjustment method
CN102538985A (zh) * 2011-12-27 2012-07-04 中国计量学院 基于光纤布里渊环形激光器的传感信号检测装置及方法
CN103292903A (zh) * 2013-06-09 2013-09-11 哈尔滨工业大学 基于布里渊动态光栅的光谱分析装置及其分析方法
WO2014012411A1 (zh) * 2012-07-19 2014-01-23 南京大学 基于脉冲编码和相干探测的botda系统

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1116977A2 (en) * 2000-01-17 2001-07-18 Agency of Industrial Science and Technology of Ministry of International Trade and Industry Optical apparatus adjustment method, and storage medium recorded with a processing program that executes said adjustment method
CN102538985A (zh) * 2011-12-27 2012-07-04 中国计量学院 基于光纤布里渊环形激光器的传感信号检测装置及方法
WO2014012411A1 (zh) * 2012-07-19 2014-01-23 南京大学 基于脉冲编码和相干探测的botda系统
CN103292903A (zh) * 2013-06-09 2013-09-11 哈尔滨工业大学 基于布里渊动态光栅的光谱分析装置及其分析方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
刘铁根 ; 于哲 ; 江俊峰 ; 刘琨 ; 张学智 ; 丁振扬 ; 王双 ; 胡浩丰 ; 韩群 ; 张红霞 ; 李志宏 ; .分立式与分布式光纤传感关键技术研究进展.2017,(07),全文. *
宋牟平 ; 鲍 ; 裘超 ; 叶险峰 ; .结合布里渊光时域分析和光时域反射计的分布式光纤传感器.2010,(03),全文. *

Also Published As

Publication number Publication date
CN107356276A (zh) 2017-11-17

Similar Documents

Publication Publication Date Title
Parker et al. Simultaneous distributed measurement of strain and temperature from noise-initiated Brillouin scattering in optical fibers
CN110220470B (zh) 基于瑞利散射的单端混沌布里渊动态应变测量装置及方法
CN110243493B (zh) 基于超连续谱的布里渊光时域反射仪装置及方法
CN107727367B (zh) 一种激光器频率噪声测量方法及系统
Healey Review of long wavelength single-mode optical fiber reflectometry techniques
EP0479925B1 (en) Optical carrier generation using stimulated brillouin scattering
Song et al. 100 km Brillouin optical time-domain reflectometer based on unidirectionally pumped Raman amplification
JP3306819B2 (ja) 光パルス試験器
Murray et al. Combining Stokes and anti-Stokes interactions to achieve ultra-low noise dynamic Brillouin strain sensing
CN110726468A (zh) 一种基于直波导相位调制器的分布式光纤声波传感系统
CN107356276B (zh) 一种减弱光纤自发布里渊散射幅度振荡的方法及装置
CN111141414B (zh) 基于混沌bocda的温度与应变同时测量装置及方法
Li et al. A self-heterodyne detection Rayleigh Brillouin optical time domain analysis system
CN113686424A (zh) 基于波长分集技术的高信噪比声传感系统及多波长合并方法
Lv et al. Performance limit of a multi-frequency probe based coherent optical time domain reflectometry caused by nonlinear effects
Wang et al. Temporal depolarization suppressed POTDR system for quasi-distributed instantaneous intrusion sensing and vibration frequency measurement
Liao et al. Distributed measurement of polarization mode coupling in polarization maintaining fibers using microwave photonic filter technique
Zhu et al. Wavelength coded optical time-domain reflectometry
Chang et al. A novel detection method of Brillouin backscattered light in optical fiber
Tsuji et al. Sweep-free Brillouin optical time domain analysis using two individual laser sources
Hu et al. Methods for signal-to-noise ratio improvement on the measurement of temperature using BOTDR sensor
CN114608631B (zh) 一种布里渊光时域反射传感装置
CN218918124U (zh) 一种真空涨落量子随机数发生器熵源装置
Chen et al. Multi point strain and temperature sensing based on Brillouin optical time domain reflectometry
Lin et al. System design and optimization of optically amplified WDM-TDM hybrid polarization-insensitive fiber-opticmichelson interferometric sensor

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant