WO2013023422A1 - 一种谐振腔及具有该谐振腔的滤波器 - Google Patents

一种谐振腔及具有该谐振腔的滤波器 Download PDF

Info

Publication number
WO2013023422A1
WO2013023422A1 PCT/CN2011/083926 CN2011083926W WO2013023422A1 WO 2013023422 A1 WO2013023422 A1 WO 2013023422A1 CN 2011083926 W CN2011083926 W CN 2011083926W WO 2013023422 A1 WO2013023422 A1 WO 2013023422A1
Authority
WO
WIPO (PCT)
Prior art keywords
resonant cavity
cavity
serpentine
wire
substrate
Prior art date
Application number
PCT/CN2011/083926
Other languages
English (en)
French (fr)
Inventor
刘若鹏
栾琳
刘京京
苏翠
钟果
刘尧
Original Assignee
深圳光启高等理工研究院
深圳光启创新技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳光启高等理工研究院, 深圳光启创新技术有限公司 filed Critical 深圳光启高等理工研究院
Publication of WO2013023422A1 publication Critical patent/WO2013023422A1/zh

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01PWAVEGUIDES; RESONATORS, LINES, OR OTHER DEVICES OF THE WAVEGUIDE TYPE
    • H01P7/00Resonators of the waveguide type
    • H01P7/06Cavity resonators

Definitions

  • the present invention relates to the field of wireless communications, and more particularly to a resonant cavity and a filter having the same. Background technique
  • Filters are one of the common devices in radio technology and are widely used in electronic devices such as communication, radar, navigation, electronic countermeasures, satellites, and test instruments.
  • the filter is internally filled with a resonant cavity.
  • the volume of the filter depends mainly on the number and volume of the resonant cavity.
  • the resonant frequency of the microwave cavity depends on the volume of the cavity. Generally, the larger the cavity volume is, the lower the resonance frequency is. The cavity volume is reduced. The higher the resonance frequency is, so how to achieve the situation without increasing the cavity size. Lowering the resonant frequency of the resonant cavity is important for the miniaturization of the filter. Summary of the invention
  • the technical problem to be solved by the present invention is to provide a resonant cavity and a filter which realize low frequency resonance and have a small volume in view of the above-mentioned defects in which the above-mentioned resonant frequency is low and the cavity volume is large.
  • the present invention provides a resonant cavity including a cavity, two excitation ports respectively mounted on both sidewalls of the cavity and extending into the interior of the cavity, the two excitation ports being disposed opposite to each other
  • the cavity is provided with at least one metamaterial sheet, each of the super material sheets comprising a substrate of non-metallic material and an artificial microstructure attached to the substrate, the artificial microstructure being a wire of a conductive material multiple times The structure that is made around.
  • the artificial microstructure is spirally wound around the wire.
  • the wire forms two parallel spiral wound segments and a third segment connecting the ends of the two segments.
  • the artificial microstructure is a structure in which the wire snake is wound around. Wherein, after the wire is surrounded by an open circular ring, the two ends of the opening are respectively wound around the ring in a plurality of serpentine shapes.
  • the wire comprises four branches, each branch having a serpentine bypass portion.
  • the wire comprises two parallel segments and a serpentine segment between the two segments.
  • the direction of the serpentine winding line segment between the two line segments is perpendicular to the two parallel line segments.
  • the artificial microstructure is a structure in which the wire has both a spiral wrap and a serpentine wrap.
  • the wire comprises the two serpentine wraps, the spiral wrap being connected between the two serpentine wraps.
  • the wire comprises the two spiral wraps, and the serpentine wrap is connected between the two spiral wraps.
  • the area occupied by the artificial microstructure on the substrate is greater than 30% of the area of the substrate.
  • the area occupied by the artificial microstructure on the substrate is greater than 50% of the area of the substrate.
  • the substrate is made of non-metallic polytetrafluoroethylene, epoxy resin, ceramic, ferroelectric material, ferrite material, SiO 2 or FR-4 material.
  • the artificial microstructure is made of a conductive material of silver, copper or ITO.
  • the metamaterial sheet layer is placed in the middle of the interior of the cavity.
  • a support for supporting the metamaterial sheet layer is placed on the inner bottom surface of the cavity, and the support is made of a wave transmissive material.
  • embodiments of the present invention also provide a filter including at least one of the above-described resonant cavities.
  • the implementation of the resonant cavity of the present invention has the following beneficial effects:
  • the resonant frequency of the resonant cavity can be greatly reduced, and to achieve the same resonant frequency, it is apparent that the volume of the resonant cavity is greatly reduced.
  • FIG. 1 is a schematic structural view of a resonant cavity of a preferred embodiment of the present invention
  • Figure 2 is a plan view of the resonant cavity shown in Figure 1;
  • Figure 3 is a cross-sectional view of the resonant cavity shown in Figure 1;
  • 4 to 7 are four examples of structures in which the artificial microstructure is serpentine;
  • FIG. 8 and Figure 9 are two examples of structures in which the artificial microstructure is spirally wound
  • Fig. 10 and Fig. 11 are two examples of the structure in which the artificial microstructure has both a spiral bypass and a serpentine bypass. Specific embodiment
  • the invention relates to a resonant cavity for a filter, the filter comprising at least the resonant cavity.
  • the resonant cavity includes a cavity 1, an excitation port 3, and a metamaterial sheet 4.
  • the cavity 1 is a structure in which the upper end is opened to form a cavity
  • the cavity further includes a cavity cover 2 which covers the open end of the cavity 1 to thereby close the cavity.
  • the metamaterial sheet 4 is located inside the cavity 1 and is located between the two excitation ports 3.
  • the ends of the two excitation ports 3 abut against the side edges of the metamaterial sheet 4, respectively, as shown in FIG.
  • the adjacent two super-material sheets 4 are connected by mechanical connection such as welding, riveting, and bolting, and may be bonded together by an adhesive.
  • the supermaterial composed of at least one metamaterial sheet 4 is preferably placed in the middle of the interior of the cavity 1, that is, the front and back surfaces of the whole of the supermaterial are equal to the front and rear inner walls of the cavity 1, respectively, and the entire left side of the super material
  • the right surface is equal to the inner walls of both sides of the cavity 1
  • the upper and lower surfaces of the entire super-material are equal to the upper and lower inner walls of the cavity 1.
  • a support for supporting the super-material sheet 4 may be placed on the lower bottom surface of the cavity 1, the support being made of a wave-transparent material such as plastic, foam or the like.
  • the excitation port 3 does not necessarily contact both sides of the metamaterial sheet 4, and the metamaterial sheet 4 is not necessarily located in the middle of the cavity, which can be directly placed.
  • Cavity Bottom horizontal or vertical placement, etc.
  • each of the metamaterial sheets 4 includes a substrate 5 and an artificial microstructure 6 attached to the substrate 5.
  • the substrate 5 is usually made of a non-metallic material such as polytetrafluoroethylene, epoxy resin, ceramic, ferroelectric material, ferrite material, ferromagnetic material, Si0 2 , FR-4 material, and the like.
  • the substrate 5 is preferably a ceramic material.
  • the artificial microstructure 6 is a structure obtained by winding a wire of a conductive material multiple times; the conductive material here is usually a metal such as copper, silver, etc., and other conductive materials such as ITO, graphite, carbon nanotubes. Wait.
  • the wire is wound around the surface of the substrate in order to occupy as much as possible the surface area of the substrate, thereby winding the wire as long as possible on the surface of the limited substrate.
  • the influence of artificial microstructure on electromagnetic waves can be analyzed by a circuit that is approximately equivalent to a capacitive inductor.
  • the increase in wire length can be approximated as an increase in inductance.
  • the resonant frequency Also reduced. Therefore, the artificial microstructure 6 having the feature of the present invention can effectively reduce the resonant frequency of the resonant cavity, and reducing the resonant frequency of the resonant cavity is the key to reducing the filter volume.
  • the serpentine bypass means that after a reciprocating motion from a starting point, the end of the last reciprocating motion is used as the starting point for the next reciprocating, and the reciprocating end is repeated, and the end point of each reciprocating motion is left in the same direction.
  • the starting point is a certain distance
  • the obtained trajectory is a serpentine bypass
  • one reciprocating motion is one round.
  • An example of such a serpentine-shaped artificial microstructure 6 is shown in Figures 4-7.
  • the artificial microstructure 6 shown in FIG. 4 is a structure in which a copper wire is surrounded by an open circular ring and the two ends are respectively wound around the ring in a plurality of serpentine shapes;
  • FIG. 5 shows the artificial microstructure 6 Including four branches, each branch has a serpentine bypass portion, and is still a wire because the four branches are connected to one point;
  • the artificial microstructure 6 shown in Fig. 6 is composed of two parallel copper segments and The serpentine winding segments between the two copper segments are still a wire because they are connected together.
  • the artificial microstructure 6 of Figure 7 is also a two-parallel copper segment and a serpentine segment between the copper segments, the difference from Figure 6 is that the direction of the detour, i.e., the end of each reciprocating motion, is far from its starting point. The direction is perpendicular to the bypass direction of Figure 6.
  • the spiral bypass in this paper refers to a curve formed by swirling outwards at a point, and each winding is a round trip.
  • An example of a spiral-shaped artificial microstructure 6 is shown in Figs.
  • Figure 8 shows a spiral structure obtained by winding a copper wire or a silver wire four times;
  • Figure 9 can be regarded as a line segment wound by two parallel spirals and a third line connecting the ends of the two line segments.
  • the root segment is composed of three wires, which are still connected to each other because they are connected end to end and are not broken.
  • the artificial microstructure shown in Figure 3 is also spiral
  • the bypass structure is obtained by spirally winding a plurality of ends of a wire a plurality of times.
  • the artificial microstructure 6 of the present invention can have both a spiral wrap and a serpentine wrap, as shown in Figs.
  • Figure 10 shows a spiral wrap between the two serpentine turns
  • Figure 11 shows a serpentine wrap between the two spiral wraps.
  • any of the artificial microstructures 6 belonging to the surface of the finite substrate 5 is as long as possible by a plurality of bypasses, and such artificial microstructures 6 belong to the artificial microstructures 6 of the present invention.
  • the area occupied by the artificial microstructure 6 on the base 5 can be more than 30% of the area of the substrate surface, that is, the duty ratio is 30%.
  • the line width of the artificial microstructure 6 is close to the line spacing of the wire or the line width is slightly larger than the line spacing, so that the duty ratio can reach 50% or more, and the line width can be as small as 0.1 in the modern processing process. Mm.
  • a simulation experiment was conducted on the resonant cavity of the resonator and the cavity of the present invention.
  • a copper resonator was simulated with a cavity size of 20 mm X 20 mm X 20 mm and a measured resonant frequency of 10.63 GHz.
  • the substrate is made of ceramic material.
  • the size of each substrate is 10mm X 10mm X lmm, of which 1mm is thickness; the artificial structure is copper wire, the line width is 0.1mm, the thickness is 0.018mm, and the structure is as follows. As shown in Figure 3, the dimensions are 9.8mm x 9.8mm.
  • the resonator with such a super-material sheet is simulated, and its resonant frequency is reduced to 0.238 GHz. It can be seen that the resonant frequency is greatly reduced. To achieve the same resonant frequency, it is obvious that the volume of the resonant cavity is greatly reduced.

Landscapes

  • Control Of Motors That Do Not Use Commutators (AREA)
  • Shielding Devices Or Components To Electric Or Magnetic Fields (AREA)

Abstract

本发明涉及一种谐振腔,包括腔体、分别安装在所述腔体的两侧壁上且均伸入到所述腔体内部的两个激励端口,所述两个激励端口相向设置,所述腔体内放置有至少一个超材料片层,每个超材料片层包括非金属材料的基板和附着在所述基板上的人造微结构,所述人造微结构为一根导电材料的丝线多次绕行而成的结构,这种结构大大增加了超材料介质的电感,从而改变了谐振频率。采用本发明能大大降低谐振腔的谐振频率,若要实现相同的谐振频率,显然谐振腔的体积大大减小。另,本发明还提供一种具有该谐振腔的滤波器。

Description

一种谐振腔及具有该谐振腔的滤波器
本申请要求于 2011年 8月 16曰提交中国专利局、申请号为 201110233297.2, 发明名称为 "一种谐振腔" 的中国专利申请的优先权, 其全部内容通过引用结 合在本申请中。 技术领域
本发明涉及无线通信领域, 更具体地说, 涉及一种谐振腔及具有该谐振腔 的滤波器。 背景技术
滤波器是无线电技术中的常见器件之一, 被广泛应用于通讯、 雷达、 导航、 电子对抗、 卫星、 测试仪表等电子设备中。 滤波器内部装有谐振腔, 滤波器的 体积主要取决于谐振腔的个数和容积。 而微波谐振腔的谐振频率取决于该腔的 容积, 一般来说, 谐振腔容积越大谐振频率越低, 谐振腔容积减小谐振频率越 高, 因此如何实现在不增大谐振腔尺寸的情况下降低谐振腔的谐振频率对于滤 波器的小型化具有重要的意义。 发明内容
本发明要解决的技术问题在于, 针对现有技术的上述谐振频率低必然谐振 腔体积大的缺陷, 提供一种实现低频谐振而体积小的谐振腔及滤波器。
本发明提供一种谐振腔, 包括腔体、 分别安装在所述腔体的两侧壁上且均 伸入到所述腔体内部的两个激励端口, 所述两个激励端口相向设置, 所述腔体 内放置有至少一个超材料片层, 每个超材料片层包括非金属材料的基板和附着 在所述基板上的人造微结构, 所述人造微结构为一根导电材料的丝线多次绕行 而成的结构。
其中, 所述人造微结构为所述丝线螺旋形绕行。
其中, 所述丝线形成的两个轴对称的螺旋形绕行。
其中, 所述丝线形成两根平行的螺旋绕行的线段和连接所述两线段末端的 第三根线段。
其中, 所述人造微结构为所述丝线蛇形绕行而成的结构。 其中, 所述丝线围成一个开口圓环后, 开口处的两端分别向环内多次蛇形 绕行。
其中, 所述丝线包括四个支路, 每个支路具有一个蛇形绕行部分。
其中, 所述丝线包括两根平行的线段和位于所述两个线段之间的蛇形绕行 线段。
其中, 所述两个线段之间的蛇形绕行线段的绕行方向垂直于所述两根平行 的线段。
其中, 所述人造微结构为所述丝线既有螺旋形绕行又有蛇形绕行而成的结 构。
其中, 所述丝线包括所述两个蛇形绕行, 所述螺旋形绕行连接于所述两个 蛇形绕行之间。
其中, 所述丝线包括所述两个螺旋形绕行, 所述蛇形绕行连接于所述两个 螺旋形绕行之间。
其中, 所述人造微结构在所述基板上附着所占的面积大于所述基板的面积 的 30%。
其中, 所述人造微结构在所述基板上附着所占的面积大于所述基板的面积 的 50%。
其中, 所述超材料片层有多个, 相邻两超材料片层之间通过机械连接或者 粘接的方式成为一体。
其中, 所述基板由非金属的聚四氟乙烯、 环氧树脂、 陶瓷、 铁电材料、 铁 氧材料、 Si02或者 FR-4材料制成。
其中, 所述人造微结构由导电材料银、 铜或 ITO制成。
其中, 所述超材料片层置于所述腔体内部的正中间。
其中, 所述腔体内部底面上放置有支撑所述超材料片层的支座, 所述支座 由透波材料制成。
相应地, 本发明实施例还提供了一种滤波器, 所述滤波器包括至少一个上 述的谐振腔。
实施本发明的谐振腔, 具有以下有益效果: 能大大降低谐振腔的谐振频率, 若要实现相同的谐振频率, 显然谐振腔的体积大大减小。 附图说明 例或现有技术描述中所需要使用的附图作筒单地介绍, 显而易见地, 下面描述 中的附图仅仅是本发明的一些实施例, 对于本领域普通技术人员来讲, 在不付 出创造性劳动性的前提下, 还可以根据这些附图获得其他的附图。
图 1是本发明优选实施例的谐振腔的结构示意图;
图 2是图 1所示谐振腔的俯视图;
图 3是图 1所示谐振腔的剖视图;
图 4至图 7是人造微结构为蛇形绕行而成的结构的四种示例;
图 8、 图 9是人造微结构为螺旋形绕行而成的结构的两种示例;
图 10、图 11是人造微结构既有螺旋形绕行又有蛇形绕行而成的结构的两种 示例。 具体实施例
本发明涉及一种谐振腔, 所述谐振腔用于一滤波器, 所述滤波器包括至少 所述谐振腔。如图 1所示, 所述谐振腔包括腔体 1、激励端口 3和超材料片层 4。 当腔体 1为上端开口从而形成空腔的结构时, 谐振腔还包括盖在腔体 1开口端 上、 从而封闭空腔的腔盖 2。 激励端口 3有两个, 分别安装在所述腔体 1的两侧 壁上, 且均伸入到腔体 1内部, 两个激励端口 3相向设置。
如图 2所示, 超材料片层 4位于腔体 1内部, 且位于两个激励端口 3之间。 两激励端口 3的端部分别抵在超材料片层 4的两侧边缘上, 如图 3所示。 当超 材料片层 4有多个时, 相邻两超材料片层 4之间通过机械连接如焊接、 铆接、 螺栓连接的方式连在一起, 也可通过粘接剂粘接成一体。 至少一个超材料片层 4 构成的超材料整体, 优选置于腔体 1 内部的正中间, 即超材料整体的前、 后表 面距离腔体 1的前、 后内壁分别相等, 超材料整体的左、 右表面距离腔体 1的 两侧内壁分别相等, 超材料整体的上、 下表面距离腔体 1 的上、 下内壁分别相 等。 为了保证超材料整体在腔体内部的稳固性, 可以在腔体 1 的下底面上放置 支撑超材料片层 4 的支座, 所述支座由透波材料制成, 例如塑料、 泡沫等。 以 上是谐振腔在结构上的优选方案,例如激励端口 3并不必然接触在超材料片层 4 的两侧, 超材料片层 4也并不必然位于腔体的正中间, 其可以直接置于腔体的 底部, 水平或竖直放置等。
如图 2、 图 3所示,每个超材料片层 4包括基板 5和附着在基板 5上的人造 微结构 6。 基板 5通常由非金属材料制成, 例如聚四氟乙烯、 环氧树脂、 陶瓷、 铁电材料、 铁氧材料、 铁磁材料、 Si02、 FR-4材料等。 本发明中, 基板 5优选 陶瓷材料。 人造微结构 6是由一根导电材料的丝线多次绕行而成的结构; 这里 的导电材料通常是金属如铜、银等, 也可以是其他可以导电的材料例如 ITO、石 墨、 碳纳米管等。
丝线在基板表面上绕行, 是为了尽可能地占据基板的表面面积, 从而在有 限的基板表面上绕行尽可能长的丝线。 在超材料领域, 人造微结构对电磁波的 影响可以通过近似等效为电容电感组成的电路来分析, 丝线线长增大可以近似 等效为电感增大, 根据公式 / = ~ ^可知, 谐振频率也降低。 因此, 采用本发 明的具有这种特征的人造微结构 6, 能够有效降低谐振腔的谐振频率, 而降低谐 振腔的谐振频率正是减小滤波器体积的关键所在。
绕行分螺旋形绕行和蛇形绕行两种。 这里的蛇形绕行, 是指一点自一起始 点往复运动一次后在上一次往复运动的终点作为起始点进行下一个往复, 依次 递推, 每次往复运动的终点均沿同一个方向离开其起始点一定距离, 得到的轨 迹即为蛇形绕行, 一次往复运动为一次绕行。 这样的蛇形绕行的人造微结构 6 示例如图 4至图 7所示。
图 4所示的人造微结构 6,是由一根铜线围成一个开口圓环后两端分别向环 内多次蛇形绕行而得到的结构; 图 5示出的是人造微结构 6包括四个支路, 每 个支路具有一个蛇形绕行部分, 由于四个支路连接到一点因此仍为一条丝线; 图 6所示的人造微结构 6是包括两根平行的铜线段和位于所述两铜线段之间的 蛇形绕行线段, 由于它们三者连接在一起, 因此仍然是一条丝线。 图 7 的人造 微结构 6也是包括两平行的铜线段和位于铜线段之间的蛇形绕行线段, 与图 6 的区别是,其绕行方向也即每个往复运动的终点远离其起始点的方向垂直于图 6 的绕行方向。
本文的螺旋形绕行, 是指以一点开始向外逐圏旋绕而形成的曲线, 每绕一 圏即为绕行一次。 螺旋形绕行的人造微结构 6的示例如图 8、 图 9所示。 图 8示 出的是一根铜线或银线绕行 4次得到的螺旋形结构; 图 9所示的可以看作是由 两根平行的螺旋绕行的线段和连接两线段末端的第三根线段构成, 由于三者首 尾连接, 没有断开, 因此仍然是一条丝线。 图 3 所示的人造微结构也为螺旋形 绕行结构, 其为一根丝线两端分别螺旋形绕行多次得到。
当然, 本发明的人造微结构 6可以既有螺旋形绕行, 又有蛇形绕行, 如图 10、 图 11所示。 图 10所示的为两个蛇形绕行之间还具有螺旋形绕行, 而图 11 所示的是两个螺旋形绕行之间还具有蛇形绕行。
当然, 本发明的人造微结构 6 的绕行, 有多种变化方式, 本文不再——列 举。 凡是通过多次绕行的方式以在有限的基板 5表面上设置的丝线尽可能长, 这样的人造微结构 6均属于本发明的人造微结构 6。 采用这样的方式, 使得人造 微结构 6在基 5板上附着所占的面积能达到所在的基板表面的面积的 30%以上, 也即占空比达到 30%。 优选的, 本发明中人造微结构 6的丝线的线宽与丝线的 走线间距接近或者线宽略大于走线间距, 使得占空比能达到 50%以上, 现代加 工工艺中线宽最小可以达到 0.1mm。
为了验证本发明的效果, 对本发明的谐振腔和空腔的谐振腔进行仿真对比 实验。 对一个铜质谐振腔进行仿真, 其空腔尺寸为 20mm X 20mm X 20mm, 测 量的谐振频率是 10.63GHz。 加入的超材料片层有 6片, 基板为陶瓷材料, 每块 基板的尺寸为 10mm X 10mm X lmm, 其中 1mm为厚度; 人造 结构为铜线, 线宽 0.1mm, 厚度为 0.018mm, 结构如图 3所示, 尺寸为 9.8mm x 9.8mm。 仿 真得出具有这样超材料片层的谐振腔, 其谐振频率降到 0.238GHz。 可见, 谐振 频率大大降低, 若要实现相同的谐振频率, 显然谐振腔的体积大大减小。
上面结合附图对本发明的实施例进行了描述, 但是本发明并不局限于上述 的具体实施方式, 上述的具体实施方式仅仅是示意性的, 而不是限制性的, 本 领域的普通技术人员在本发明的启示下, 在不脱离本发明宗旨和权利要求所保 护的范围情况下, 还可做出很多形式, 这些均属于本发明的保护之内。

Claims

权 利 要 求
1. 一种谐振腔, 包括腔体、 分别安装在所述腔体的两侧壁上且均伸入到所 述腔体内部的两个激励端口, 所述两个激励端口相向设置, 其特征在于, 所述 腔体内放置有至少一个超材料片层, 每个超材料片层包括非金属材料的基板和 附着在所述基板上的人造微结构, 所述人造微结构为一根导电材料的丝线多次 绕行而成的结构。
2. 如权利要求 1所述的谐振腔, 其特征在于, 所述人造微结构为所述丝线 螺旋形绕行。
3. 如权利要求 2所述的谐振腔, 其特征在于, 所述丝线形成的两个轴对称 的螺旋形绕行。
4. 如权利要求 2所述的谐振腔, 其特征在于, 所述丝线形成两根平行的螺 旋绕行的线段和连接所述两线段末端的第三根线段。
5. 如权利要求 1所述的谐振腔, 其特征在于, 所述人造微结构为所述丝线 蛇形绕行而成的结构。
6. 如权利要求 5所述的谐振腔, 其特征在于, 所述丝线围成一个开口圓环 后, 开口处的两端分别向环内多次蛇形绕行。
7. 如权利要求 5所述的谐振腔, 其特征在于, 所述丝线包括四个支路, 每 个支路具有一个蛇形绕行部分。
8. 如权利要求 5所述的谐振腔, 其特征在于, 所述丝线包括两根平行的线 段和位于所述两个线段之间的蛇形绕行线段。
9. 如权利要求 8所述的谐振腔, 其特征在于, 所述两个线段之间的蛇形绕 行线段的绕行方向垂直于所述两根平行的线段。
10. 如权利要求 1所述的谐振腔, 其特征在于, 所述人造微结构为所述丝线 既有螺旋形绕行又有蛇形绕行而成的结构。
11. 如权利要求 10所述的谐振腔, 其特征在于, 所述丝线包括所述两个蛇 形绕行, 所述螺旋形绕行连接于所述两个蛇形绕行之间。
12. 如权利要求 10所述的谐振腔, 其特征在于, 所述丝线包括所述两个螺 旋形绕行, 所述蛇形绕行连接于所述两个螺旋形绕行之间。
13. 如权利要求 1-12任一项所述的谐振腔, 其特征在于, 所述人造微结构 在所述基板上附着所占的面积大于所述基板的面积的 30%。
14. 如权利要求 1-12任一项所述的谐振腔, 其特征在于, 所述人造微结构 在所述基板上附着所占的面积大于所述基板的面积的 50%。
15. 如权利要求 1-12任一项所述的谐振腔, 其特征在于, 所述超材料片层 有多个, 相邻两超材料片层之间通过机械连接或者粘接的方式成为一体。
16. 如权利要求 1-12任一项所述的谐振腔, 其特征在于, 所述基板由非金 属的聚四氟乙烯、 环氧树脂、 陶瓷、 铁电材料、 铁氧材料、 Si02或者 FR-4材料 制成。
17. 如权利要求 1-12任一项所述的谐振腔, 其特征在于, 所述人造微结构 由导电材料银、 铜或 ITO制成。
18. 如权利要求 1-12任一项所述的谐振腔, 其特征在于, 所述超材料片层 置于所述腔体内部的正中间。
19. 如权利要求 1-12任一项所述的谐振腔, 其特征在于, 所述腔体内部底 面上放置有支撑所述超材料片层的支座, 所述支座由透波材料制成。
20. 一种滤波器, 所述滤波器包括至少一个如权利要求 1-19任一项所述的 谐振腔。
PCT/CN2011/083926 2011-08-16 2011-12-14 一种谐振腔及具有该谐振腔的滤波器 WO2013023422A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201110233297.2 2011-08-16
CN201110233297.2A CN102938488B (zh) 2011-08-16 2011-08-16 一种谐振腔

Publications (1)

Publication Number Publication Date
WO2013023422A1 true WO2013023422A1 (zh) 2013-02-21

Family

ID=47697370

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2011/083926 WO2013023422A1 (zh) 2011-08-16 2011-12-14 一种谐振腔及具有该谐振腔的滤波器

Country Status (2)

Country Link
CN (1) CN102938488B (zh)
WO (1) WO2013023422A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103594766B (zh) * 2013-11-20 2016-03-09 集美大学 小型化共面紧凑型电磁带隙结构

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101026257A (zh) * 2007-02-09 2007-08-29 哈尔滨工业大学 超小型谐振腔
KR101008974B1 (ko) * 2010-03-24 2011-01-17 주식회사 메타테크놀로지 이중 h자 메타 전자파구조 공진기 및 이를 적용한 저위상잡음 전압 제어 발진기
CN102064374A (zh) * 2010-12-17 2011-05-18 哈尔滨工程大学 基于异向介质的分裂式谐振器
CN202150533U (zh) * 2011-07-29 2012-02-22 深圳光启高等理工研究院 一种谐振腔
CN202150532U (zh) * 2011-07-29 2012-02-22 深圳光启高等理工研究院 一种谐振腔

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005223665A (ja) * 2004-02-06 2005-08-18 Tamagawa Electronics Co Ltd 誘電体共振器及びフィルタ装置
CN202217775U (zh) * 2011-08-16 2012-05-09 深圳光启高等理工研究院 一种谐振腔

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101026257A (zh) * 2007-02-09 2007-08-29 哈尔滨工业大学 超小型谐振腔
KR101008974B1 (ko) * 2010-03-24 2011-01-17 주식회사 메타테크놀로지 이중 h자 메타 전자파구조 공진기 및 이를 적용한 저위상잡음 전압 제어 발진기
CN102064374A (zh) * 2010-12-17 2011-05-18 哈尔滨工程大学 基于异向介质的分裂式谐振器
CN202150533U (zh) * 2011-07-29 2012-02-22 深圳光启高等理工研究院 一种谐振腔
CN202150532U (zh) * 2011-07-29 2012-02-22 深圳光启高等理工研究院 一种谐振腔

Also Published As

Publication number Publication date
CN102938488B (zh) 2016-09-28
CN102938488A (zh) 2013-02-20

Similar Documents

Publication Publication Date Title
US7136029B2 (en) Frequency selective high impedance surface
WO2012093603A1 (ja) 電磁波伝播シート
WO2010105230A2 (en) Multiband composite right and left handed (crlh) slot antenna
WO2011043494A1 (en) Electromagnetic filter and electronic device having said filter
US7136028B2 (en) Applications of a high impedance surface
KR101349222B1 (ko) Crlh 전송선을 이용한 안테나 장치 및 그 제조 방법
JP6512837B2 (ja) 電子回路及び構造体
JP2011078138A (ja) Lh特性を有する伝送線路及び結合器
CN202217775U (zh) 一种谐振腔
CN101847772A (zh) 双频微波谐振器
WO2013023422A1 (zh) 一种谐振腔及具有该谐振腔的滤波器
US8576027B2 (en) Differential-common mode resonant filters
WO2012139370A1 (zh) 一种人造微结构及其应用的磁谐振超材料
WO2013023423A1 (zh) 一种谐振腔及具有该谐振腔的滤波器
WO2015190610A1 (ja) 回路基板及び回路基板におけるノイズ低減方法
Dewani et al. Transmission bandwidth enhancement using lateral displacement in a thin flexible single layer double sided FSS
CN104620441A (zh) 人工介质谐振器和基于它的人工介质滤波器
WO2013037173A1 (zh) 一种谐振腔及具有该谐振腔的滤波器
Basuki et al. Artificial circular dielectric resonator with resonant mode selectability
JP5964785B2 (ja) 高周波伝送線路
WO2013016922A1 (zh) 一种谐振腔及具有该谐振腔的滤波器
CN206282952U (zh) 高性能带阻滤波器及其通信腔体器件
WO2013023424A1 (zh) 一种谐振腔及具有该谐振腔的滤波器
WO2013037172A1 (zh) 一种谐振腔及具有该谐振腔的滤波器
CN103367857B (zh) 一种谐振子

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11871006

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11871006

Country of ref document: EP

Kind code of ref document: A1