WO2013022312A2 - C y p 4 a 저해제를 유효성분으로 함유하는 당뇨병 또는 지방간의 예방 또는 치료용 약학적 조성물 - Google Patents

C y p 4 a 저해제를 유효성분으로 함유하는 당뇨병 또는 지방간의 예방 또는 치료용 약학적 조성물 Download PDF

Info

Publication number
WO2013022312A2
WO2013022312A2 PCT/KR2012/006395 KR2012006395W WO2013022312A2 WO 2013022312 A2 WO2013022312 A2 WO 2013022312A2 KR 2012006395 W KR2012006395 W KR 2012006395W WO 2013022312 A2 WO2013022312 A2 WO 2013022312A2
Authority
WO
WIPO (PCT)
Prior art keywords
cyp4a
pharmaceutical composition
liver
inhibitor
diabetes
Prior art date
Application number
PCT/KR2012/006395
Other languages
English (en)
French (fr)
Other versions
WO2013022312A3 (ko
Inventor
김건화
김수현
최종순
김승일
박창균
Original Assignee
한국기초과학지원연구원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 한국기초과학지원연구원 filed Critical 한국기초과학지원연구원
Priority to JP2014525926A priority Critical patent/JP5901770B2/ja
Publication of WO2013022312A2 publication Critical patent/WO2013022312A2/ko
Publication of WO2013022312A3 publication Critical patent/WO2013022312A3/ko
Priority to US14/178,090 priority patent/US9295667B2/en

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/395Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
    • A61K31/41Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having five-membered rings with two or more ring hetero atoms, at least one of which being nitrogen, e.g. tetrazole
    • A61K31/41921,2,3-Triazoles
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/045Hydroxy compounds, e.g. alcohols; Salts thereof, e.g. alcoholates
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/045Hydroxy compounds, e.g. alcohols; Salts thereof, e.g. alcoholates
    • A61K31/065Diphenyl-substituted acyclic alcohols
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/13Amines
    • A61K31/15Oximes (>C=N—O—); Hydrazines (>N—N<); Hydrazones (>N—N=) ; Imines (C—N=C)
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/13Amines
    • A61K31/155Amidines (), e.g. guanidine (H2N—C(=NH)—NH2), isourea (N=C(OH)—NH2), isothiourea (—N=C(SH)—NH2)
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/16Amides, e.g. hydroxamic acids
    • A61K31/18Sulfonamides
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/185Acids; Anhydrides, halides or salts thereof, e.g. sulfur acids, imidic, hydrazonic or hydroximic acids
    • A61K31/19Carboxylic acids, e.g. valproic acid
    • A61K31/20Carboxylic acids, e.g. valproic acid having a carboxyl group bound to a chain of seven or more carbon atoms, e.g. stearic, palmitic, arachidic acids
    • A61K31/201Carboxylic acids, e.g. valproic acid having a carboxyl group bound to a chain of seven or more carbon atoms, e.g. stearic, palmitic, arachidic acids having one or two double bonds, e.g. oleic, linoleic acids
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/395Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
    • A61K31/41Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having five-membered rings with two or more ring hetero atoms, at least one of which being nitrogen, e.g. tetrazole
    • A61K31/41641,3-Diazoles
    • A61K31/4174Arylalkylimidazoles, e.g. oxymetazolin, naphazoline, miconazole
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P1/00Drugs for disorders of the alimentary tract or the digestive system
    • A61P1/16Drugs for disorders of the alimentary tract or the digestive system for liver or gallbladder disorders, e.g. hepatoprotective agents, cholagogues, litholytics
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P3/00Drugs for disorders of the metabolism
    • A61P3/08Drugs for disorders of the metabolism for glucose homeostasis
    • A61P3/10Drugs for disorders of the metabolism for glucose homeostasis for hyperglycaemia, e.g. antidiabetics
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P43/00Drugs for specific purposes, not provided for in groups A61P1/00-A61P41/00

Definitions

  • composition for the prevention or treatment of diabetes or fatty liver containing C YP 4 A inhibitor as an active ingredient
  • the present invention relates to a pharmaceutical composition for preventing or treating diabetes or fatty liver, and more particularly, to a pharmaceutical composition for preventing or treating diabetes or fatty liver containing CYP4A (cytochrome P450 4A) inhibitor as an active ingredient. It is about.
  • CYP4A cytochrome P450 4A
  • Type 2 diabetes mellitus (T2DM), characterized by elevated blood glucose levels, is the most prevalent and serious metabolic disease affecting 6.4% of the world's population, accounting for over 90% of diabetics. .
  • Obesity is a major pathology underlying the development of T2DM, nonalcoholic steatohepatitis (NASH) and cardiovascular disease.
  • Insulin resistance is a condition in which cells do not utilize insulin properly, and obesity in T2DM is a central risk factor for insulin resistance in muscle, adipose tissue and liver.
  • ER stress is caused by disruption of Ca 2+ homeostasis, overload of protein / lipid biosynthesis, and oxidative stress, which are evolutionarily conserved such as IRE1, ATF6, and PERK, referred to as unfolded protein response pathways. Trigger the mechanism that has been. Recently, ER stress and the UPR pathway have been shown to play a role in the pathogenesis of diabetes. However, the exact mechanisms that directly regulate the UPR pathway are not well understood.
  • cytochrome P450 enzyme family acts as NADPH monooxidases localized primarily on the ER membrane, catalyzing the oxidative metabolism of a wide variety of foreign chemicals and endogenous compounds.
  • Profiles of CYP450s under conditions of obesity and diabetes are reported to be dynamic in liver tissue.
  • CYP2E1 in particular reduces the expression of ER chaperone protein and ER protein through the catalytic activation of its oxidation promoter It appears to induce vaginal damage and stress.
  • CYP450S may be involved in the development of ER stress and T2DM as novel components that regulate UPR signaling and hepatic insulin resistance.
  • the problem to be solved in the present invention is that the control of the expression of CYP4A among the enzyme groups of CYP450S associated with endoplasmic reticulum is effective for the prevention or treatment of diabetes or fatty liver, and for the prevention or treatment of the diseases It is to provide an inhibitor of CYP4A as a composition.
  • the present invention provides a pharmaceutical composition for treating or preventing diabetes or fatty liver containing CYP4A (cytochrome P450 4A) inhibitor as an active ingredient.
  • CYP4A cytochrome P450 4A
  • the CYP4A inhibitor is N-hydroxy-N '-(4-butyl-2-methylphenyl) -formamidine or a derivative thereof.
  • the diabetes is type 2 diabetes.
  • the diabetes may be derived from obesity.
  • the CYP4A inhibitor inhibits endoplasmic reticulum stress.
  • the CYP4A inhibitor decreases blood insulin concentrations.
  • CYP4A inhibitor inhibits apoptosis of hepatocytes.
  • the present invention confirmed that inhibition of CYP4A (cytochrome P450 4A) is a potent therapeutic target for vesicle stress-induced hepatic insulin resistance and apoptosis, and the inhibitor of the enzyme is derived from obesity. It is proposed that it can be used as a pharmaceutical composition for the prevention or treatment of diabetes and fatty liver.
  • CYP4A cytochrome P450 4A
  • ER stress is implicated in the development of diabetes and regulates ER stress. Understanding the basics of the mechanisms is very important in the present invention.
  • HET0016 N-hydroxy-N '-(4-butyl-2-methylphenyl) -formamidine
  • HET0016 N-hydroxy-N '-(4-butyl-2-methylphenyl) -formamidine
  • Our findings suggest that a decrease in CYP4A activity may be a potent therapeutic target for diabetes and fatty liver.
  • the present invention provides a pharmaceutical composition for treating or preventing diabetes mellitus or fatty liver containing a CYP4A (cytochrome P450 4A) inhibitor as an active ingredient.
  • a CYP4A cytochrome P450 4A
  • CYP cytochrome P450 protein is an enzyme that mediates NADPH-dependent electron transport and oxidizes various substances such as steroids, fatty acids and xenobiotics.
  • CYP4A is expressed in the liver and kidney and is located in the endoplasmic reticulum (ER) membrane, which plays an important role in the metabolism of various fatty acids.
  • CYP has several alternative splicing varients with the same function.
  • CYP4A is Human Cyp4all (Gl: 158937241, NP_000769), Human Cyp4a22 (GI: 62952505, NP_001010969), Mouse Cyp4al0 (GI: 227116293, NP_034141), Mouse Cyp4al2a (GI: 86198311, NP_803125), Mouse Cyp4al2b 86198313, NP_758510) or Mouse Cyp4al4 (GI: 164518936, NP_031848), preferably Human Cyp4all (GI: 158937241, NP_000769, SEQ ID NO: 1) or Human Cyp4a22 (GI: 62952505, NP_001010969, SEQ ID NO: 2 May be).
  • CYP4A inhibitors may be compounds that inhibit the enzymatic or physiological function of CYP4A and may be compounds that exhibit this activity, antibodies to CYP4A, or other polypeptides.
  • the compound is preferably N-hydroxy-N '-(4-butyl-2-methylphenyl) -formamidine, dibromododecenyl methylsulfonimide (Dibromododecenyl methylsulfonimide, DDMS, American Journal of Pathology) 2005, 166: 615-624), 1-aminobenzotriazole (1-aminobenzotriazole, ABT, Am J Physiol Renal Physiol 2003, 285: F295— F302) or 17-octadecynoic acid, 17— ODA, Am J Physiol Heart Circ Physiol- 2001, 280: H1840-H1845), miconazole (02002/036108) or derivatives thereof, wherein N-hydroxy-N '-(4-butyl- Derivatives of 2-methylphenyl) -formamidine are known derivatives of known N-hydroxy-N '-(4-butyl-2-methylphenyl) -
  • N-hydroxy "'-(4_butyl- 2-methylphenyl) -formamidine may be as described in the following formula.
  • the inhibitor of CYP4A may be a substance that inhibits CYP4A production as well as an inhibitor of the enzyme itself.
  • the production of CYP4A means that CYP4A is expressed in cells through gene expression, and the substance that inhibits CYP4A production may be antisense RNA or siRNA (small interference RNA) for the Cyp4a gene.
  • CYP4A (cytochrome P450 4A) inhibitor of the present invention can be usefully used for the purpose of treating or preventing diabetes or fatty liver.
  • Diabetes is a metabolic disorder caused by insulin deficiency and is caused by genetic causes or acquired causes such as obesity, infection, and pregnancy. Diabetes of the present invention
  • It may be type 2 diabetes, which may be derived from obesity.
  • Fatty liver is an abnormal accumulation of fat, especially triglycerides, such as alcoholic fatty liver, hypertrophy fatty liver or diabetic fatty liver.
  • CYP4A inhibitors of the present invention act as a mechanism to inhibit vesicle stress, reduce blood insulin concentrations, and inhibit apoptosis of liver cells.
  • the present invention provides a method for treating diabetes mellitus or fatty liver comprising administering an effective amount of a CYP4A (cytochrome P450 4A) inhibitor to an individual in need thereof. do.
  • the present invention provides the use of a CYP4A (cytochrome P4504A) inhibitor for the preparation of a therapeutic agent for diabetes or fatty liver.
  • the term "effective amount" refers to an amount that exhibits an effect of treating diabetes or fatty liver in the subject to which the composition or formulation of the present invention is to be administered.
  • the term 'subject' refers to an animal, preferably It may be a mammal, particularly an animal including a human, or may be a cell, tissue, organ or the like derived from an animal. The subject may be a patient in need of treatment. '
  • the composition of the present invention may be a pharmaceutical composition, and the pharmaceutical composition according to the present invention may be suitable together with the pure form or pharmaceutically acceptable carrier of the peptide, drug or medicament, label, or a combination thereof.
  • 'Pharmaceutically acceptable' refers to a non-toxic composition that, when administered physiologically and when administered to humans, does not normally cause an allergic reaction, such as a gastrointestinal disorder, dizziness, or the like.
  • the carrier includes all kinds of solvents, dispersion media, oil-in-water or water-in-oil emulsions, aqueous compositions, liposomes, microbeads and microsomes, biodegradable nanoparticles and the like.
  • it may comprise 0.001 to 99.999% by weight of the pharmaceutical composition according to the present invention and 99.999-0.001% by weight of the pharmaceutically acceptable carrier.
  • the pharmaceutical composition according to the present invention may be formulated with a suitable carrier depending on the route of administration.
  • the route of administration of the pharmaceutical composition according to the present invention is not limited thereto, but may be administered orally or parenterally.
  • Parenteral routes of administration include, for example, transdermal, nasal, abdominal, muscle, subcutaneous or intravenous routes.
  • the pharmaceutical composition of the present invention may be prepared in powder, granule, tablet, pill, dragee, capsule, It may be formulated in the form of a liquid, gel, syrup, suspension, wafer, and the like.
  • suitable carriers include sugars and corn starch, wheat starch, rice starch and potato starch, including lactose, dextrose, sucrose, solbi, manny, xili, erysri and malta, etc.
  • the pharmaceutical composition may further include an anticoagulant, a lubricant, a humectant, a fragrance, an emulsifier and a preservative.
  • compositions of the present invention may be formulated according to methods known in the art in the form of injections, transdermal and nasal inhalants together with suitable parenteral carriers.
  • suitable parenteral carriers include, but are not limited to, solvents including water, ethanol, poly (e.g. glyce, propylene glycol and liquid polyethylene glycols), combinations thereof and / or vegetable oils, or It may be a dispersion medium.
  • suitable carriers are Hanks solution, Ringer's solution, phosphate buffered saline (PBS) containing triethanol amine or sterile water for injection, 10% ethanol, 40% propylene glycol and 5% dextrose Etc. can be used.
  • PBS phosphate buffered saline
  • it may further include various antibacterial and antifungal agents such as parabens, chlorobutanol, phenol, sorbic acid and thimerosal.
  • the injection may in most cases further comprise an isotonic agent, such as sugar or sodium chloride.
  • the compounds used according to the invention may be prepared using suitable propellants, for example, dichlorofluoromethane, trichlorofluoromethane, dichlorotetrafluoroethane, carbon dioxide or other suitable gas. It can be delivered conveniently in the form of aerosol spray from pressurized pack or nebulizer. In the case of a pressurized aerosol, the dosage unit can be determined by providing a valve to deliver a metered amount.
  • gelatin capsules and cartridges for use in inhalers or blowers may be formulated to contain a compound and a powdered mixture of suitable powder based such as lactose or starch.
  • the pharmaceutical composition according to the present invention may contain one or more septic agents (eg saline or PBS), carbohydrates (eg / glucose, mannose, sucrose or dextran), stable Topical agents (sodium bisulfite, sodium sulfite or ascorbic acid) antioxidants, bacteriostatic agents, chelating agents (e.g. EDTA or glutathione), adjuvants (e.g. aluminum hydroxide), suspending agents, thickeners and / Or preservatives (benzalkonium chloride, methyl- or propyl-paraben and chlorobutane).
  • septic agents eg saline or PBS
  • carbohydrates eg / glucose, mannose, sucrose or dextran
  • stable Topical agents sodium bisulfite, sodium sulfite or ascorbic acid
  • bacteriostatic agents e.g. EDTA or glutathione
  • adjuvants e.g. aluminum hydroxide
  • suspending agents e.
  • compositions of the present invention may be formulated using methods known in the art to provide rapid, sustained or delayed release of the active ingredient after administration to a mammal.
  • compositions formulated in such a manner can be administered in an effective amount via various routes including oral, transdermal, subcutaneous, intravenous or intramuscular.
  • the term 'effective amount' refers to an amount of a compound or extract that enables the tracking of a diagnostic or therapeutic effect when administered to a patient.
  • the dosage of the pharmaceutical composition according to the present invention may be appropriately selected according to the route of administration, the subject to be administered, the target disease and its severity, age, sex weight, individual difference and disease state.
  • the pharmaceutical composition comprising the peptide of the present invention may vary the content of the active ingredient depending on the extent of the disease, but usually 10 to 10 mg effective dose per dose based on an adult Can be repeated several times a day, depending on the subject can be administered at 0.001-100 mg / kg (weight) per day.
  • the CYP4A inhibitor has an effect on preventing or treating diabetes or regional liver by inhibiting vesicle stress, reducing blood insulin concentration, and inhibiting apoptosis of liver cells.
  • FIG. 1 is a diagram illustrating a process of separating membrane proteins from liver tissue of 10-week-old C57BL / 6J or c / db mice and identifying proteins using Fourier transform followed by cyclotron resonance (FT-ICR) mass spectrometry. It is shown as.
  • FT-ICR Fourier transform followed by cyclotron resonance
  • FIG. 3 shows Western blotting of liver tissue from C57BL / 6J and db / db mice.
  • ER-localized proteins such as ATF6, IRE1, PERK, PRP72 and BiP were analyzed from microsomal fractions of liver tissues.
  • FIG. 6 shows the results of real-time RT-PCR of mouse Cyp4a mRNAs from C57BL / 6J and db / db mice.
  • Figure 7 is the result of Western blot analysis of Cyp4a, Cyp2el and P0R in C57BL / 6J and db / db mice.
  • FIG. 9 shows intraperitoneal administration of lg / kg glucose to C57BL / 6J and db / db mice treated with 5 mg / kg / day of HET0016 or DMS0 for 2 weeks, and at the indicated time points with blood glucose with a blood glucose meter. The level was measured to show the results of IPGTT. The data is shown as mean ⁇ SEM.
  • FIG. 10 shows the result of preparing hepatotomy from C57BL / 6J and db / db mice treated with HET0016 or DMS0 and performing hematoxylin-eosin staining.
  • FIG. 12 measures expression of ER stress markers such as PERK, phospho-eIF2a, CHOP, phospho-JNK by Western blot of liver tissues from fasted db / db mice treated with HET0016 or DMS0. It is done. ER-localized proteins such as Cyp4a and PERK were analyzed from liver tissue and microsome fragments. HET0016 (5 mg / kg / day) was administered by intraperitoneal injection to db / db mice at 8 weeks of age for 2 weeks.
  • ER stress markers such as PERK, phospho-eIF2a, CHOP, phospho-JNK
  • FIG. 13 shows in vivo signaling of phosphorylation of insulin receptors (IR) and Akt and caspase-3 and caspase-delivered in liver tissues of HET0016 or DMS0 treated fasted c / (mouse) 9, It is a result of the examination of apoptosis by the expression of Bax and Bcl-2.
  • FIG. 14 shows the results of quantification of ER stress, insulin signaling, and apoptosis markers under the experimental conditions described in FIGS. 12 and 13. Data is shown as mean ⁇ SEM. * Db / db control mouse treated with ⁇ 0.05, large DMS0.
  • FIG. 15 measured 6-hour fasting blood glucose levels in control db / db and HET0016 treated db / db mice.
  • FIG. 16 shows the results of serum obtained from HET0016 or DMS0 treated C57BL / 6J and db / db mice, and insulin levels measured by enzyme-linked immunosorbent assay.
  • FIG. 17 shows the results of treatment of HepG2 liver cancer cells with 4 / g / ml tonicarmycin with or without 4 ⁇ HET0016.
  • FIG. 18 shows the results of treatment of HepG2 liver cancer cells with 4 // g / ml tonicarmycin with or without 4 ⁇ HET0016.
  • FIG. 19 shows the results of intraperitoneal injection of lg / kg glucose to C57BL / 6J mice treated with 5 mg / kg / day HET0016 or DMS0 for 2 weeks, and at the time indicated, blood glucose levels were measured. . Data are shown as mean ⁇ SEM.
  • FIG. 20 shows the results of serum from C57BL / 6J mice treated with HET0016 or DMS0, and insulin levels measured by enzyme-linked immunosorbent assay.
  • 21 shows the results of preparing hepatic resections from C57BL / 6J mice treated with HET0016 or DMS0 and performing hematoxylin-eosin staining.
  • Figure 22 shows hepatic resections from C57BL / 6J mice treated with HET0016 or DMS0. This is the result of preparing and measuring triglycerides.
  • mice Male C57BL / 6J and C57BL / KsJ-c / c mice were purchased from Japan SLC.
  • HET0016 (5 mg / kg / day) and clofibrate (400 mg / kg / day) were injected intraperitoneally into 8 week old mice for 2 weeks. LiUerrnate mouse controls for HET0016 were treated with DMS0 and litter mouse controls for clofibrate were treated with corn oil. After fasting overnight, an intraperitoneal glucose tolerance test (IPGTT) was performed by intraperitoneal injection of lg / kg glucose dissolved in PBS. Blood glucose levels were measured using a One Touch Ultra Glucometer (Li feScan, Inc. ') before (0 min) glucose injection and 15, 30, 60, 90 and 120 min after injection. Liver isolated from 10 week old mice was fixed in 10% neutral buffered formalin solution (Sigma) and paraffin ablation was stained with hema toxillin-eosin.
  • IPGTT intraperitoneal glucose tolerance test
  • HepG2 cells at 37 ° C., wet 5% CO 2 and 95 in low glucose Dulbecco's modified Eagle's medium (DMEM, Gibco) supplemented with heat-inactivated 10% fetal bovine serum (FBS) and antibiotics. Cultured in% air. Cells were plated at a density of 3 ⁇ 10 4 cells / cm 2 and maintained in cell culture medium for 24 hours prior to treatment. 4yg / ml of tunicamycin was treated for 6 hours without HET0016 or with 4 ⁇ HETO016. HepG2 cells were treated with DMS0 as a control.
  • DMEM low glucose Dulbecco's modified Eagle's medium
  • FBS fetal bovine serum
  • livers were homogenized and liver lysiss were dilated with pH 11.5, 100 mM sodium carbonate at 0 ° C. for 30 minutes. Suspension Centrifuged at 50,000 rpi for 1 hour at 4 ° C. The membrane pellet was rinsed with distilled water and dissolved in SDS for PAGE. For mass spectroscopy, 10 protein samples were separated by 12% SDS-PAGE. Gels were stained with Coomassie Brilliant Blue R-250 and fractionated into 6 portions depending on molecular weight. Each gel fragment was digested with trypsin (1.2yg) at 37 ° C.
  • the digested peptides were extracted with extraction solution (50 mM ammonium bicarbonate, 50% acetonitrile, and 5% trifluoroacetic acid) and then dissolved in a sample solution containing 0.02% formic acid and 0.5% acetic acid.
  • peptide samples were concentrated on an Easy-column TM (L 2 cm, ID ⁇ , 120 A, C18-A1) trapping column (PR0XE0N), then eluted from the column, and Easy -column TM (L 10 cm, ID 75 ⁇ , 120 A, C18-A2) was directed to a reverse phase column (PR0XE0N) at a flow rate of 200 nl / min.
  • Peptides were eluted for 120 minutes by a 0-65% acetonitrile gradient. All MS and MS / MS spectra in the LTQ-Velos ESI followed trap mass spectrometer (Thermo Scientific) were acquired in data-dependent mode.
  • MS / MS spectra were searched by MASCOT (Matrix Science) for protein identification. Human genome sequences were used as databases for protein identification. The mass resistance of the parent ions or fragment ions was 0.8 Da. Trypsinic peptides and various modifications were considered for carbamidomethylation of cysteine and oxidation of methionine in MS / MS analysis.
  • Liver microsomes were prepared from fresh mouse liver with a slight modification to the method described above.
  • the isolated liver was sparged with a 1.15% KC1 solution iced.
  • the liver was then homogenized using a 4-fold volume of homogenization buffer (0.1 M Tris-HCl, H 7.4; 0.1 M KC1; ImM EDTA, pH 7.5; 25 ⁇ butylated hydroxy toluene).
  • the homogenate was centrifuged at low centrifugal force (l, 000 ⁇ g, 15 min at 4 ° C.) to remove unbroken cells, nuclei and mitochondria.
  • Microsomes were precipitated from the supernatant at higher centrifugal force (100,000 ⁇ g, 60 min at 4 ° C.).
  • Tightly packed pellets of microsomes were resuspended in 3 ml iced pyrophosphate buffer (0.1 M potassium pyrophosphate; ImM EDTA, pH 7.5; 20 ⁇ butylated hydroxyluene) using a homogenizer and 60 min at 4 ° C. Centrifuge again at 100,000 ⁇ g. Washed mi The crosome pellets were finally suspended in 2 ml ice-cold microsome buffer (10 mM Tris-HCl, H 7.4; ImM EDTA, pH 7.5; 20% glycerol).
  • Proteins were denatured by boiling at 95%, separated by SDS-PAGE, and then blotted onto nitrocellulose (NC) or polyvinylidene fluoride (PVDF) membranes. After blocking in TBSTO is-buffered saline containing 0.1% Tween-20, containing 5% skim milk or 5% bovine serum albumin (BSA), the membrane was labeled with a labeled primary antigen. Incubated together. The membrane was then washed with TBST and further incubated with secondary antigens coupled with horseradish peroxidant. Protein blots were detected using the ECL kit and visualized using a luminescence imaging analyzer LAS-4000 mini system and software (FujiFilm).
  • mouse anti- ⁇ -liquid 3 ⁇ 4 (5 (:-47778), rabbit anti -CYP4A (sc-98988, Santa Cruz Biotechnology), mouse anti -ATF6 IMG-273, Imgenex), mouse anti -eIF2 a (ab5369), rabbit anti-phospho -eIF2 ⁇ Ser51 (ab32157), rabbit anti-11 1 ( ⁇ 37073, Abeam), rabbit anti -PERK (# 3192), rabbit anti-phospho -PERK Thr980 (# 3179 ), Rabbit anti-BiP (# 3177), mouse anti-CHOP (# 2895), rabbit anti-SAPK / JNK (# 9252), rabbit anti-phospho— SAPK / JNK Thr813 / Tyrl85 (# 9251), rabbit anti -Insulin receptor ⁇ (# 3025), rabbit anti-phospho-insulin receptor ⁇ Tyr 1150/1151 (# 3024), rabbit anti-Akt (# 4691), rabbit anti-phospho-Akt Ser473 (# 40)
  • mice liver tissues were treated with TRI reagent (Molecular).
  • Serum insulin concentrations were measured using an ELISA kit (Shibayagi Co., Ltd.) according to the manufacturer's instructions. Lipid peroxidation was measured by quantifying MDA (malondialdehyde), a natural by-product of lipid peroxidation in liver homogenates, using the OxiSelectTM TBARS Assay Kit (Cell Biolabs, Inc.). Triglyceride levels were measured in mouse liver using the Triglyceride Quantification Kit (Abcam).
  • Lorin acid products were measured by gas chromatography / mass spectroscopy (GC / MS) by liver microsomal extracts of control and db / db mice. Metabolites were generated by incubating 100 ⁇ chloric acid with control and (ib / db mice and 0.2 mg liver microsome extract in 0.5 ml volume of 100 mM potassium phosphate buffer (pH 7.4) at 37 ° C. for 30 minutes. , And metabolites were extracted using CH 2 C1 3 , and the organic solvent was removed under nitrogen flow . The residue was ⁇ , ⁇ -bis (trimethylsilyl) containing trimethylchlorosilane (1%, v / v).
  • liver tissues were isolated from 10 week old C57BL / 6J control and ⁇ ⁇ mice that developed obesity-induced T2DM.
  • the membrane proteins were then separated and confirmed by Fourier transform ion cyclotron resonance (FT-ICR) mass spectroscopy (FIG. 1).
  • FT-ICR Fourier transform ion cyclotron resonance
  • CYP2E1 and CYP4A complementaryly play a major role as microsomal catalysts of adipose peroxidases in hepatic steatosis, and we believe that CYP2E1 is the only electron donor for all CYP450s because P0R (NADPH cytokine P450 reducing agent) is the only electron donor for all CYP450s. Only the expression patterns of CYP4A and P0R are shown. Interestingly, the mouse Cyp4a isoforms Cyp4al0, 12 and 14 were up-regulated in ⁇ ⁇ mice compared to the controls, but the expression of C0R was decreased while the expression of P0R was similar. 2).
  • CYP4A is known to catalyze the ⁇ -hydroxylation of fatty acids, especially loric acid (LA) and arachidonic acid (AA), in mice.
  • LA loric acid
  • AA arachidonic acid
  • HET0016 ⁇ -hydroxy- ⁇ '-(4-butyl-2-methylphenyl) -formamidine (FIG. 5), a CYP4A-specific inhibitor.
  • HET0016 was administered by intraperitoneal injection (5 mg / kg / day) to 8-week-old db / db mice for two weeks.
  • HET0016 The intraperitoneal glucose tolerance test (IPGTT) showed that inhibition of Cyp4a activity with HETO016 markedly improved insulin resistance in diabetic rats (FIG. 9) and HET0016 in diabetic mice. Blood glucose levels were reduced by (Fig. 15) Serum insulin levels in db / db mice were significantly higher than insulin levels in C57BL6J control mice. The decrease in insulin resistance by HET0016 treatment was significantly reduced (FIG. 13). In addition, severe hepatic steatosis in db / db diabetic liver was rescued by HET0016 (FIG. 10).
  • CYP4A is an important regulator of ER stress-induced insulin resistance and aptosis in T2DM.
  • clofibrate a specific inducer of Cyp4a
  • injection of Cyp4a by clofibrate resulted in activation of PERK, eIF2 ⁇ and JNK and elevated CHOP expression in db / db mice.
  • insulin resistance and aptosis were also significantly regulated.
  • Cyp4a inhibition in normal mice can cause any side effects that may be a barrier to the use of CYP4A inhibition as a treatment option for the treatment of T2DM.
  • the same dose of HET0016 as injected in db / db mice into 8-week-old male wild-type C57BL / 6J mice was administered intraperitoneally.
  • IPCTT results demonstrated no change in insulin resistance (FIG. 19), and no differences were observed in serum insulin levels (FIG. 20) or liver physiology (FIG. 21), and triglycerides (FIG. 22). .
  • the CYP4A inhibitor according to the present invention is industrially useful because it suppresses vesicle stress, reduces blood insulin concentration, and inhibits apoptosis of liver cells, thereby preventing or treating diabetes or fatty liver. .

Landscapes

  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Animal Behavior & Ethology (AREA)
  • Veterinary Medicine (AREA)
  • Medicinal Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Epidemiology (AREA)
  • General Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Diabetes (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Endocrinology (AREA)
  • Hematology (AREA)
  • Obesity (AREA)
  • Emergency Medicine (AREA)
  • Gastroenterology & Hepatology (AREA)
  • Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)
  • Acyclic And Carbocyclic Compounds In Medicinal Compositions (AREA)

Abstract

본 발명은 당뇨병 또는 지방간의 예방 또는 치료용 약학적 조성물에 관한 것으로서, 보다 상세하게는 CYP4A(cytochrome P450A) 저해제를 유효성분으로 함유하는 당뇨병 또는 지방간의 예방 또는 치료용 약학적 조성물에 관한 것이다. 본 발명에 따르면 CYP4A 저해제는 소포체 스트레스를 억제하고, 혈중 인슐린 농도를 감소시키며,간 세포의 세포사멸을 억제함으로써 당뇨병 또는 지방간의 예방 또는 치료에 효과를 나타낸다.

Description

【명세서】
【발명와명칭]
C YP 4 A 저해제를 유효성분으로 함유하는 당뇨병 또는 지방간의 예방 또 는 치료용 약학적 조성물
【기술분야]
<ι> 본출원은 2011년 08월 11일에 출원된 대한민국 특허출원 제 10-2011-0080208 호를 우선권으로 주장하고, 상기 명세서 전체는 본 출원의 참고문헌이다.
<2>
<3> 본 발명은 당뇨병 또는 지방간의 예방또는 치료용 약학적 조성물쎄 관한 것 으로서, 보다 상세하게는 CYP4A( cytochrome P450 4A) 저해제를 유효성분으로 함유 하는 당뇨병 또는지방간와 예방또는 치료용 약학적 조성물에 관한 것이다.
<4>
【배경기술]
<5> 상승된 혈당 수준에 의해 특징되는 제 2형 진성 당뇨병 (T2DM)은 가장 만연하 고 심각한 대사 질환으로서 전 세계 인구의 6.4%에 영향을 미치고 있으며, 당뇨 환 자들의 90% 이상을 차지한다.
<6> 한편, 비만은 T2DM, 비알코올성 지방간염 (NASH) 및 심혈관 질환의 발생에 대 해 근간이 되는 주요한 병리이다. 인슐린 내성은 세포가 인슐린을 적절하게 이용하 지 못하는 상태이며, T2DM에서 비만은 근육, 지방 조직 및 간에서 인슐린 내성에 대한 중심 위험 인자이다.
<7> , 인슐린 내성의 근간 쩨커니즘은 불명확하지만, 소포체 (ER) 스트레스가 비만 인 개인에서 인슐린 내성의 발생에 대한 새로운 메커니즘인 것으로 제안되어 왔다.
ER 스트레스는 Ca2+ 항상성의 파괴, 단백질 /지질 생합성의 과부하, 및 산화적 스트 레스에 의해 일어나며, 이는 비폴딩된 (unfolded) 단백질 반응 경로로 언급되는 IRE1, ATF6 및 PERK와 같은 진화적으로 보존되어온 메커니즘을 촉발시킨다. 최근, ER 스트레스 및 UPR 경로가 당뇨병의 병인론에서 한 역할을 하는 것으로 나타났다. 그러나, UPR 경로를 직접 조절하는 정확한 메커니즘은 잘 이해되지 않고 있다.
<8> 포유동물의 간에서 시토크롬 P450 효소 군 (CYP450s)은 광범위한 종류의 외래 화학물질 및 내생의 화합물들의 산화 대사를 촉매하는 주로 ER 막에 편재화된 NADPH 모노옥시다아제들로서 작용한다. 비만 및 당뇨병의 상태 하에서 CYP450s의 발현 양상 (profiles)은 간조직에서 동적인 것으로 보고된다. CYP2E1은 특히 ER 샤 페론 단백질의 발현을 감소시키고, 이의 산화촉진제의 촉매 활성화를 통한 ER 단백 질 손상 및 스트레스를 유도하는 것으로 나타난다.
<9>
【발명의 상세한 설명】
[기술적 과제]
<ιο> 따라서 , CYP450S이 UPR시그널링 및 간 인슐린 내성을 조절하는 신규 성분들 로서 ER스트레스 및 T2DM의 발생에 관련될 수 있는 가능성이 있다.
<11>
<12> 본 발명에서 해결하고자 하는 과제는 소포체 스트레스와 관련된 CYP450S의 효소군들 중 CYP4A의 발현 조절이 당뇨병 또는 지방간의 예방 또는 치료에 유효하 다는 것을 확인하고, 상기 질환들의 예방 또는 치료용 약학적 조성물로서의 CYP4A 의 저해제를 제공하고자 하는 것이다.
<13>
【기술적 해결방법】
<14> 상기와 같은 과제를 해결하기 위하여, 본 발명은 CYP4A( cytochrome P450 4A) 저해제를 유효성분으로 함유하는 당뇨병 또는 지방간의 치료 또는 예방용 약학적 조성물을 제공한다.
<15>
<16> 상기 CYP4A 저해제는 N-히드록시 -N'-(4-부틸 -2-메틸페닐) -포름아미딘 또는 이의 유도체이다.
<17> 상기 당뇨병은 제 2형 당뇨병이다.
<18> 상기 당뇨병은 비만으로부터 유래될 수 있다.
<19> 상기 CYP4A 저해제는 소포체 스트레스를 억제한다.
<20> 상기 CYP4A 저해제는 혈중 인슐린 농도를 감소시킨다.
<2i> 상기 CYP4A 저해제는 간세포의 세포사멸 (apoptosis)을 억제시킨다.
<22>
<23> 이하, 본 발명을 상세하게 설명한다.
<24>
<25> 본 발명은 CYP4A(cytochrome P450 4A)의 저해가 소포체 스트레스 유도된 간 인슐린 내성 및 아톱토시스 (apoptosis )에 대한 유력한 (potent) 치료 타겟임을 확인 하였고, 이에 상기 효소의 저해제를 비만으로부터 유래한 당뇨병과 지방간의 예방 또는 치료용 약학적 조성물로 사용할 수 있음을 제안한다.
<26> 구체적으로, ER 스트레스는 당뇨병의 발생에 연루되며, ER 스트레스를 조절 하는 메커니즘들의 기초들을 이해하는 것이 본 발명에서 매우 중요하다. 따라서, 본 명세서에서 CYP4A의 특이적 저해제인 N-히드록시 -N'-(4-부틸 -2-메틸페닐) -포름 아미딘 (HET0016) 또는 그 유도체를 이용한 CYP4A의 생화학 및 생리학적 특성화를 검토함으로써 당뇨병에서의 차도 및 ER 스트레스-유도된 간 인슐린 내성 및 아톱토 시스에 있어서 CYP4A의 중요성을 밝히고자 하였다. 본 발명자들의 발견은 CYP4A 활 성꾀 감소가 당뇨병과 지방간에 대한 유력한 치료 타겟일 수 있음을 암시한다.
<27>
<28> 따라서, 본 발명은 CYP4A(cytochrome P450 4A) 저해제를 유효성분으로 함유하는 당 뇨병 또는 지방간의 치료 또는 예방용 약학적 조성물을 제공한다.
<29>
<30> CYP (cytochrome P450) 단백질은 NADPH-의존성 전자 전달 (NADPH-dependent electron transport)를 매개하여 스테로이드, 지방산, 생체이물 (xenobiotics)과 같 은 다양한 물질을 산화하는 효소이다. 특히 CYP4A는 간과 신장에서 발현하며 소포 체 (endoplasmic reticulum, ER) 막에 위치하면서 다양한 지방산의 대사과정에 중요 한 역할을 한다. CYP는 동일 기능을 하는 여러 스플라이성 변이체 (alternative splicing varients)가 존재한다. 본 발명에서 CYP4A는 Human Cyp4all (Gl: 158937241, NP_000769), Human Cyp4a22 (GI :62952505, NP_001010969 ) , Mouse Cyp4al0 (GI :227116293, NP_034141), Mouse Cyp4al2a (GI :86198311, NP_803125) , Mouse Cyp4al2b (GI :86198313, NP_758510)또는 Mouse Cyp4al4 (GI :164518936, NP_031848)에 기재된 서열일 수 있으며, 바람직하게는 Human Cyp4all (GI: 158937241, NP_000769, 서열번호 1) 또는 Human Cyp4a22 (GI :62952505, NP_001010969, 서열번호 2)일 수 있다.
<31> 서열번호 1:
Figure imgf000005_0001
VPG I GRELSTPVTFPDGRSLPKGIMVLLS I YGLHHNPKVWPNPEVFDPFRFAPGSAQHSHAFLPFSGGSRNC I GKQF
AMNEL VATALTLLRFELLPDPTRIPIPIARLVLKSKNGIHLRLRRLPNPCEDKDQL
<33> 서열번호 2:
<34> MSVSVLSPSRRLGGVSGILQVTSLLILLLLLIKAAQLYLHRQWLLKALQQFPCPPSHWLFGHIQEFQHDQELQRIQE RVKTFPSACPYWIWGGKVRVQLYDPD丽 VILGRSDPKSHGSYKFLAPRICT
LKPYVGLMADSVRVMLDKWEELLGQDSPLEVFQHVSLMTLDT I MKSAFSHQGS I QVDRNSQSY I QA I SDLNSLVFCC
MRNAFHETOTIYSLTSAGRWTHRACQLAHQHTDQVIQLI¾AQLQKEGELEKIKRKRHLDFLDIL
KDL EVDTFMFEGHD SGISWILYALATHPfflQERCREEmGLLG^
WGIGRELSTPVTFPDGRSLPKGIMVLLSIYGLH KVWPNLEWD^
AMQLKVARALTLLRFELLPDmiPIPMAI^VLKSKNGIHLRLRRLPNPCEDKDQL
<35>
<36> CYP4A저해제는 CYP4A의 효소학적 또는 생리학적 기능을 저해하는 물질로 이 러한 활성을 보이는 화합물, CYP4A에 대한 항체 또는 그 밖의 폴리펩티드일 수 있 다.
<37>
<38> 상기 화합물은 바람직하게는 N-히드록시 -N'-(4-부틸 -2—메틸페닐) -포름아미 딘, 디브로모도데세닐 메틸설포니미드 (dibromododecenyl methylsulfonimide, DDMS, American Journal of Pathology 2005, 166:615-624), 1-아미노벤조트리아졸 (1-aminobenzotriazole, ABT, Am J Physiol Renal Physiol 2003, 285:F295— F302) 또는 17-옥타데시노익산 (17-octadecynoic acid, 17— ODA, Am J Physiol Heart Circ Physiol- 2001, 280:H1840-H1845) , 미코나졸 (miconazole, 02002/036108) 또는 이들 의 유도체일 수 있으며, 상기에서 N-히드록시 -N'-(4-부틸 -2-메틸페닐) -포름아미딘 의 유도체는 공지된 N-히드록시 -N' -(4-부틸 -2-메틸페닐) -포름아미딘의 유도체 (M. Sato et al ,, Bioorg. Med. Chem. Lett. 11 (2001) 2993-2995, 표 1 참조)일 수 있 다.
<39>
<40> N-히드록시 " '-(4_부틸— 2-메틸페닐) -포름아미딘의 유도체는 하기 화학식에 기재된 것일 수 있다.
<41>
<42> 【화학식 1】
Figure imgf000006_0001
<43>
Figure imgf000007_0001
<45>
<46> 【화학식 2】
Figure imgf000007_0002
<48> 【화학식 3】
Figure imgf000007_0003
Figure imgf000008_0001
<55>
<56> 상기 화학식에서 약어는 다음과 같다: Me (메틸, methyl), Et (에틸, ethyl), i-Pr (이소프로필, isopropyl), Bu (부틸, butyl), s-Bu (sec-butyl, secondary butyl) , t—Bu (tert-butyl , tertiary butyl), PhCH2 (benzyl ) , PrO (propoxy)
<57> ' . ' '
<58> 한편, CYP4A의 저해제는 효소 자체의 저해제는 물론, CYP4A 생성을 억제하는 물질일 수 있다. CYP4A의 생성은 유전자 발현 등을 통해 세포내에서 CYP4A가 발현 되는 것을 의미하며 , CYP4A 생성을 억제하는 물질은 Cyp4a유전자에 대한 안티센스 RNA또는 siRNA (small interference RNA)일 수 있다.
<59>
<60> 본 발명의 CYP4A( cytochrome P450 4A) 저해제는 당뇨병 또는 지방간의 치료 또는 예방의 목적으로 유용하게 이용될 수 있다.
<61>
<62> 당뇨병은 인슐린 부족에 의한 대사 장애의 일종으로 유전적 원인 또는 비만, 감염, 임신 등의 후천적 원인에 의해서 발생되는 질환이다. 본 발명의 당뇨병은 제
2형 당뇨병일 수 있으며, 이는 비만으로부터 유래된 것일 수 있다.
<63>
<64> 지방간 (fatty liver)는 간에 지방, 특히 중성 지방이 비정상적으로 축적된 상태를 나타낸 것으로 알코을성 지방간, 과영양에 의한 지방간 또는 당뇨병성 지방 간 등이 있다.
<65>
<66> 본 발명의 CYP4A 저해제는 소포체 스트레스를 억제하고, 혈중 인슐린 농도를 감소시키며, 간 세포의 세포사멸 (apoptosis)을 억제시키는 메카니즘으로 작용한다.
<67>
<68> 한편, 본 발명은 CYP4A(cytochrome P450 4A) 저해제를 이를 필요로 하는 개 체에 유효량으로 투여하는 단계를 포함하는 당뇨병 또는 지방간의 치료방법을 제공 한다. 아울러, 본 발명은 당뇨병 또는 지방간의 치료제의 제조를 위한 CYP4A( cytochrome P4504A) 저해제의 용도를 제공한다.
<69>
<70> 본 발명에서 '유효량'이라 함은 본 발명의 조성물 또는 제제가 투여 대상인 개체 내에서 당뇨병 또는 지방간을 치료하는 효과를 나타내는 양을 말하며, 상기 ' 개체 (subject) '란 동물, 바람직하게는 포유동물, 특히 인간을 포함하는 동물일 수 있으며, 동물에서 유래한 세포, 조직, 기관 등일 수도 있다. 상기 개체는 치료가 필요한 환자 (patient)일 수 있다. '
<71>
<72> 본 발명의 조성물은 약학적 조성물일 수 있으며, 본 발명에 따른 약학적 조 성물은 상기 펩타이드, 약물 또는 약제, 표지물질 또는 이들의 조합의 순수한 형태 또는 약학적으로 허용되는 담체와 함께 적합한 형태로 제형화함으로써 제공될 수 있다. '약학적으로 허용되는'이란 생리학적으로 허용되고 인간에게 투여될 때 , 통 상적으로 위장 장애, 현기증 등과 같은 알레르기 반응 또는 이와 유사한 반응을 일 으키지 않는 비독성의 조성물을 말한다. 상기 담체로는 모든 종류의 용매, 분산매 질, 수중유 또는 유중수 에멀견, 수성 조성물, 리포좀, 마이크로비드 및 마이크로 좀, 생분해성 나노입자 등이 포함된다. 바람직하게는 본 발명에 따른 약학적 조성 물 0.001~99.999중량 % 및 약학적으로 허용되는 담체 99.999-0.001중량 %를 포함할 수 있다.
<73>
<74> 한편, 본 발명에 따른 약학적 조성물은 투여 경로에 따라 적합한 담체와 함 께 제형화될 수 있다 . 상기 본 발명에 따른 약학적 조성물의 투여 경로로는 이에 한정되지는 않으나 경구적 또는 비경구적으로 투여될 수 있다. 비경구적 투여 경로 로는 예를 들면, 경피, 비강, 복강, 근육, 피하 또는 정맥 등의 여러 경로가 포함 된다.
<75>
<76> 본 발명의 약학적 조성물을 경구 투여하는 경우 본 발명의 약학적 조성물은 적합한 경구투여용 담체와 함께 당 업계에 공지된 방법에 따라 분말, 과립, 정제, 환제, 당의정제, 캡슐제, 액제, 겔제, 시럽제, 현탁액, 웨이퍼 등의 형태로 제형화 될 수 있다. 적합한 담체의 예로는 락토즈, 덱스트로즈, 수크로즈, 솔비를, 만니 를, 자일리를, 에리스리를 및 말타를 등을 포함하는 당류와 옥수수 전분, 밀 전분, 쌀 전분 및 감자 전분 등을 포함하는 전분류, 샐를로즈, 메틸 셀를로즈, 나트륨 카 르복시메틸셀를로오즈 및 하아드록시프로필메틸-셀를로즈 등을 포함하는 셀를로즈 류, 젤라틴, 폴리비닐피를라돈 등과 같은 층전제가 포함될 수 있다. 또한, 경우에 따라 가교결합 폴리비닐피를리돈, 한천, 알긴산 또는 나트륨 알기네이트 등을 붕해 제로 첨가할 수 있다. 나아가, 상기 약학작 조성물은 항응집제, 윤활제, 습윤제, 향료, 유화제 및 방부제 등을 추가로 포함할 수 있다.
<77>
<78> 또한, 비경구적으로 투여하는 경우 본 발명의 약학적 조성물은 적합한 비경 구용 담체와 함께 주사제, 경피 투여제 및 비강 흡입제의 형태로 당 업계에 공지된 방법에 따라 제형화될 수 있다 . 상기 주사제의 경우에는 반드시 멸균되어야 하며 박테리아 및 진균과 같은 미생물의 오염으로부터 보호되어야 한다. 주사제의 경우 적합한 담체의 예로는 이에 한정되지는 않으나, 물, 에탄올, 폴리을 (예를 들어, 글 리세를, 프로필렌 글리콜 및 액체 폴리에틸렌 글리콜 등), 이들의 흔합물 및 /또는 식물유를 포함하는 용매 또는 분산매질일 수 있다. 보다 바람직하게는, 적합한 담 체로는 행크스 용액, 링거 용액, 트리에탄올 아민이 함유된 PBS(phosphate buffered saline) 또는 주사용 멸균수, 10% 에탄올, 40% 프로필렌 글리콜 및 5% 덱 스트로즈와 같은 등장 용액 등을 사용할 수 있다. 상기 주사제를 미생물 오염으로 부터 보호하기 위해서는 파라벤, 클로로부탄올, 페놀, 소르빈산, 티메로살 둥과 같 은 다양한 항균제 및 항진균제를 추가로 포함할 수 있다. 또한, 상기 주사제는 대 부분의 경우 당 또는 나트륨 클로라이드와 같은 등장화제를 추가로 포함할 수 있 다. 이들 제형은 제약 화학에 일반적으로 공지된 처방서인 문헌 (Remington's Pharmaceutical Science, 15th Edition, 1975, Mack Publishing Company, East on, Pennsylvania)에 기술되어 있다.
<79>
<80> 흡입 투여제의 경우, 본 발명에 따라 사용되는 화합물은 적합한 추진제 , 예 를 들면, 디클로로플루오로메탄, 트리클로로플루오로메탄, 디클로로테트라플루오로 에탄, 이산화탄소 또는 다른 적합한 기체를 사용하여, 가압 팩 또는 연무기로부터 에어로졸 스프레이 형태로 편리하게 전달 할 수 있다. 가압 에어로졸의 경우, 투약 단위는 계량된 양을 전달하는 밸브를 제공하여 결정할 수 있다. 예를 들면, 흡입기 또는 취입기에 사용되는 젤라틴 캡슐 및 카트리지는 화합물, 및 락토즈 또는 전분 과 같은 적합한 분말 기제의 분말 흔합물을 함유하도록 제형화할 수 있다.
<81>
<82> 그 밖의 약학적으로 허용되는 담체로는 다음의 문헌에 기재되어 있는 것을 참고로 할 ' 있다 (Remington ' s Pharmaceutical' Sciences, 19th ed. , Mack Publishing Company, East on, PA, 1995) .
<83>
<84> 또한, 본 발명에 따른 약학적 조성물은 하나 이상의 완층제 (예를 들어, 식염 수 또는 PBS), 카보하이트레이트 (예를 들어 /글루코스, 만노즈, 슈크로즈 또는 덱 스트란), 안정화제 (아황산수소나트륨, 아황산나트륨 또는 아스코르브산) 항산화제, 정균제, 킬레이트화제 (예를 들어, EDTA또는 글루타치온), 아쥬반트 (예를 들어, 알 루미늄 하이드록사이드), 현탁제, 농후쎄 및 /또는 보존제 (벤즈알코늄 클로라이드, 메틸- 또는 프로필-파라벤 및 클로로부탄을)를 추가로 포함할 수 있다.
<85>
<86> 또한, 본 발명의 약학적 조성물은 포유동물에 투여된 후 활성 성분의 신속, 지속 또는 지연된 방출을 제공할 수 있도록 당업계에 공지된 방법을 사용하여 제형 화될 수 있다.
<87>
<88> 상기와 같은 방법으로 제형화된 약학적 조성물은 유효량으로 경구, 경피, 피 하, 정맥 또는 근육을 포함한 여러 경로를 통해 투여될 수 있다. 상기에서 '유효 량' 이란 환자에게 투여하였을 때, 진단 또는 치료 효과의 추적을 가능하게 하는 화합물 또는 추출물의 양을 말한다. 본 발명에 따른 약학적 조성물의 투여량은 투 여 경로, 투여 대상, 대상 질환 및 이의 중증정도, 연령, 성별 체중, 개인차 및 질 병 상태에 따라 적절히 선택할 수 있다. 바람직하게는, 본 .발명의 펩타이드를 포함 하는 약학적 조성물은 질환의 정도에 따라 유효성분의 함량을 달리할 수 있으나, 통상적으로 성인을 기준으로 할 때 1회 투여시 10 내지 10 mg의 유효용량으로 하루에 수 차례 반복 투여될 수 있으며, 대상에 따라서 1일당 0.001-100 mg/kg (체 증) 로 투여할 수 있다.
<89>
<90> 참고로, 본 발명에서 언급한 뉴클레오타이드 및 단백질 작업에는 다음의 문 헌을 참조할 수 있다 (Maniatis et al . , Molecular Cloning: A Laboratory Manual , Cold Spring Harbor Laboratory, Cold Spring Harbor , N.Y. (1982); Sambrook et al . , Molecular Cloning: A Laboratory Manual , 2d Ed. , Cold Spring Harbor Laboratory Press(1989); Deutscher , M. , Guide to Protein Purification Methods Enzymology, vol . 182. Academic Press. Inc. , San Diego, CA(1990)) .
<91> 【유리 한 효과]
<92> 본 발명 에 따르면 CYP4A 저해제는 소포체 스트레스를 억제하고 , 혈중 인슬린 농도를 감소시키며 , 간 세포의 세포사멸을 억제함으로써 당뇨병 또는 지 방간의 예 방 또는 치료에 효과를 나타낸다 .
<93>
【도면의 간단한 설명】
<94> 도 1은 10주령 C57BL/6J 또는 c /db 마우스들의 간 조직으로부터 막 단백질 을 분리하고, 푸리에 변환 이은 사이클로트론 공명 (FT-ICR) 질량 분석 법을 이용하 여 단백질을 확인하는 과정을 모식 적으로 나타낸 것 이다 .
<95> 도 2는 C57BL/6J 및 db/db간의 CYP450 단백질의 상대적 발현 프로파일
(cto/c¾/C57BL6J)을 나타낸 것으로서, C57BL/6J 또는 db/db 중 어느 하나에서 배타 적으로 발현된 단백질을 마우스 계통명으로 나타내었다 .
<96> 도 3은 C57BL/6J 및 db/db 마우스로부터의 간 조직의 웨스턴 블롯팅 에 의해
ER 스트레스 마커 및 분자 샤페론의 발현을 결정하였다. ER-국소화된 단백질 예컨 대 ATF6 , IRE1 , PERK, PRP72 및 BiP를 간 조직들의 마이크로솜성 분획으로부터 분 석하였다.
<97> 도 4는 XBP1의 스플라이성 및 CHOP의 전사를 C57BL/6J 및 db/db 마우스의 간 조직으로부터의 RT-PCR에 의해 결정하였다 .
<98> 도 5는 HET0016의 화학구조이다.
<99> 도 6은 C57BL/6J 및 db/db 마우스의 마우스 Cyp4a mRNAs의 실시간 RT-PCR의 결과이다.
<ιοο> 도 7은 C57BL/6J 및 db/db 마우스에서 Cyp4a, Cyp2el 및 P0R의 웨스턴 블롯 분석의 결과이다 .
<ιοι> 도 8은 Cyp4a의 효소 활성 분석의 결과이다 .
<102> 도 9는 lg/kg 글루코오스를 2주 동안 5mg/kg/일의 HET0016 또는 DMS0로 처 리 된 C57BL/6J 및 db/db 마우스에 게 복강내 투여하고 , 표시된 시 점에서 혈당계로 혈 당 수준을 측정하여 IPGTT를 수행한 결과를 나타낸 것 이다. 데이터는 평균土 SEM으 로 나타내밌다.
<103> 도 10은 HET0016 또는 DMS0로 처 리 된 C57BL/6J 및 db/db 마우스로부터 간 절 제물을 준비하고 헤마톡실린-에오신 염색을 수행한 결과이다 .
<104> 도 11은 지 질 과산화의 척도인 MDA 형성을 HET0016 또는 DMS0로 처 리된
C57BL/6J 및 db/db 마우스의 간 조직들로부터 TBARS 분석 측정에 의하여 평가하였 다. 데이터는 평균士 SEM으로 나타내었다. 값들을 스튜던트 t-시험 (Student's t- test)로 결정하였다. *P<0.05 대 DMS0로 처리된 c /c 대조구 마우스를 나타낸다,
<105> 도 12는 HET0016 또는 DMS0로 처리된 금식시킨 db/db마우스로부터의 간 조 직들의 웨스턴 블롯에 의하여 ER 스트레스 마커, 예컨대 PERK, 포스포 -eIF2a, CHOP, 포스포 -JNK의 발현을 측정한 것이다 . ER-국소화된 단백질들, 예컨대 Cyp4a 및 PERK를 간 조직와 마이크로솜 단편으로부터 분석하였다. HET0016(5mg/kg/일)을 2주 동안 8주령의 db/db마우스들에게 복강내 주사로 투여하였다.
<106> 도 13은 생체 내 인슬린 시그널링을 인슐린 수용체 (IR) 및 Akt의 인산화의 조사 및 HET0016 또는 DMS0 처리된 금식시킨 c /( 마우스의 간 조직들에서 절달된 카스파제 -3 및 카스파제 -9, Bax 및 Bcl-2의 발현에 의한 아픕토시스를 조사한 결과 이다.
<107> 도 14는 도 12 및 도 13에 기재된 실험 조건들 하에서 ER 스트레스, 인슐린 시그널링 및 아픕토시스 마커들의 정량화 결과이다. 데이터는 평균土 SEM으로 나타 내었다. * <0.05, 대 DMS0로 처리된 db/db대조구 마우스.
<108> 도 15는 6시간 금식한 혈당수준을 대조구 db/db및 HET0016 처리된 db/db마 우스에서 측정하였다.
<109> 도 16은 HET0016 또는 DMS0 처리된 C57BL/6J 및 db/db마우스로부터 혈청을 수득하고, 효소 -결합 면역흡착 분석에 의해 인슐린 수준을측정한 결과이다.
<ιιο> 도 17은 HepG2 간암 세포를 4μΜ HET0016 없이 또는 이와 함께 4/g/ml 투니 카마이신으로 처리한 결과를 나타낸다. ER 스트레스 마커인 PERK의 발현은 세포 용 해물 및 나타낸 일차항체들을 사용하여 웨스탄블롯에 의해 결정하였다.
<ιιι> 도 18은 HepG2 간암 세포를 4μΜ HET0016 없이 또는 이와 함께 4//g/ml 투니 카마이신으로 처리한 결과를 나타낸다. ER 스트레스 마커인 p— JNK의 발현은 세포 용해물 및 나타낸 일차항체들을사용하여 웨스턴 블롯에 의해 결정하였다.
<ιΐ2> 도 19는 2주 동안 5mg/kg/일 HET0016 또는 DMS0로 처리된 C57BL/6J 마우스에 게 lg/kg 글루코오스를 복강내 주사하고, 나타낸 시점에서 혈당계로 혈당수준을측 정한 결과를 나타내었다. 데이터는 평균土 SEM으로서 나타내었다.
<ιΐ3> 도 20은 HET0016 또는 DMS0로 처리된 C57BL/6J 마우스로부터 혈청을 수득하 고, 효소—결합 면역흡착 분석에 의해 인슐린 수준을 측정한 결과이다.
<ιΐ4> 도 21은 HET0016 또는 DMS0로 처리된 C57BL/6J 마우스로부터 간 절제물들을 준비하 고, 헤마톡실린-에오신 염색을 수행한 결과이다.
<ιΐ5> 도 22는 HET0016 또는 DMS0로 처리된 C57BL/6J 마우스로부터 간 절제물들을 준비하고, 중성지방을 측정한 결과이다.
<116>
【발명의 실시를 위한 형태】
<117> 이하, 본 발명을 실시예에 의해 상세히 설명한다. '
<118> 단, 하기 실시예는 본 발명을 예시하는 것일 뿐, 본 발명의 내용이 하기 실 시예메 한정되는 것은 아니다.
<119>
<120> <실험방법>
<121> 1. 동물들 및 조직학실험
<122> 수컷 C57BL/6J 및 C57BL/KsJ-c /c 마우스를 Japan SLC로부터 구매하였다.
HET0016(5mg/kg/일) 및 클로피브레이트 (400mg/kg/일)를 8주령 마우스에게 2주동안 복강내 주사하였다. HET0016에 대한 같은배의 새끼 (liUerrnate) 마우스 대조구는 DMS0로 처리하고, 클로피브레이트에 대한 같은배의 새끼 마우스 대조구는 옥수수유 로 처리하였다. 하룻밤 동안 금식시킨 후, PBS 중에 용해시킨 lg/kg 글루코오스를 복강내 주사하므로써, 복강내 내당성 시험 (IPGTT)을 실시하였다. 글루코오스 주사 전 (0분) 및 주사 후 15, 30, 60, 90 및 120분에 One Touch Ultra 혈당계 (Li feScan, Inc.')를 이용하여 혈당 농도를 측정하였다. 10주령 마우스로부터 분리된 간을 10% 중성 버퍼화된 포르말린 용액 (Sigma) 중에서 고정시키고, 파라핀 절제물들을 헤마 톡실린—에오신으로 염색하였다.
<123>
<124> 2. 세포배양및 화학처리
<i25> HepG2 세포들을 열 -불활성화된 10% 우태아혈청 (FBS) 및 항생제들로 보충된 저글루코오스 둘베코 변형 이글배지 (DMEM, Gibco)중에서 37°C, 습윤된 5% C02 및 95% 공기 하에서 배양하였다. 세포들을 3 X104세포들 /cm2의 밀도로 플레이팅하고, 처리 전 24시간 동안 세포 배양 배지에서 유지하였다. 4yg/ml의 투니카마이신을 6시간 동안 HET0016 없이 또는 4μΜ HETO016으로 처리하였다. 대조구로서 HepG2 세포들을 DMS0로 처리하였다.
<126>
<127> 3. 막단백질들의 분리 및 질량분광법
<128> 이전에 기재된 것과 같이 , 탄산나트륨을 사용하여 C57B/6J 또는 db/db 마우 스의 간으로부터 막단백질을 분리하였다. 간략하게는, 마우스 간을 균질화하고, 간 용해들을 0°C에서 30분 동안 pH 11.5, lOOmM 탄산나트륨으로 회석시켰다. 현탁액을 50,000 rpi에서 4°C에서 1시간 동안 원심분리하였다. 막 펠렛을 증류수로 행구고, PAGE용 SDS에 용해시켰다. 질량 분광법을 위해, 10 의 단백질 샘플들을 12% SDS- PAGE로 분리하였다. 겔을 쿠마씨 브릴리언트 블루 (Coomassie Brilliant Blue) R- 250으로 염색하고, 분자량에 따라 6 부분으로 분획화하였다. 각 겔 단편을 그 단백 질의 시스테인들의 환원 및 알킬화 후, 37°C에서 16시간 동안 트립신 (1.2yg)으로 분해시켰다. 분해된 펩티드를 추출 용액 (50mM 중탄산암모늄, 50% 아세토니트릴, 및 5% 트리플루오로아세트산)으로 추출한 후, 0.02% 포름산 및 0.5% 아세트산을 포함 하는 샘플 용액 중에 용해시켰다. 질량 분광법에 적용하기 위하여, 펩티드 샘플을 Easy-col umn™(L 2cm, ID ΙΟΟμιτι, 120 A, C18-A1) 트랩핑 (trapping) 컬럼 (PR0XE0N) 상에서 농축시킨 후, 상기 컬럼으로부터 용리시키고, Easy-col umnTM(L 10cm, ID 75 μηι, 120 A, C18-A2) 역상 컬럼 (PR0XE0N)으로 200nl/분의 유속으로 향하도록 하였 다. 펩티드를 0~65% 아세토니트릴 구배에 의해 120분 동안 용리시켰다. LTQ-Velos ESI 이은 트랩 질량 분광계 (Thermo Scientific)에서의 모든 MS 및 MS/MS 스펙트럼 들은 데이터 -의존 모드로 획득되었다. 각각의 전체 MS(300 내지 2, 000의 m/z 범위) 스캔 후, 동적 배제를 가능하게 하여 MS 스펙트럼에서 가장 많은 전구체 아온들의 3회의 MS/MS 스캔을 수행하였다. 단백질 확인을 위하여 MASCOT (Matrix Science)로 MS/MS 스펙트럼을 검색하였다. 인간 게놈 서열을 단백질 확인용 데이터베이스로서 사용하였다. 부모 이온 또는 단편 이온의 질량 내성은 0.8Da이었다. 트립신성 펩티 드와 다양한 변경으로서 MS/MS 분석에서 시스테인의 카바미도메틸화 및 메티오닌의 산화를 고려하였다.
<129>
<130> 4. 마우스간으로부터의 마이크로솜의 제조
<131> 신선한 마우스 간으로부터 상기 설명된 방법을 약간 변경하여 간 마이크로솜 을 제조하였다. 분리된 간에 빙넁된 1.15% KC1 용액을 철저히 살포하였다. 그 후, 간을 4배 부피의 균질화 버퍼 (0.1 M Tris-HCl, H 7.4; 0.1M KC1; ImM EDTA, pH 7.5; 25μΜ 부틸화 히드록시 를루엔)를 이용하여 균질화하였다. 파괴되지 않은 세 포, 핵 및 미토콘드리아를 제거하기 위하여 상기 균질물을 저원심분리력 (l,000Xg, 4°C에서 15분 동안)에서 원심분리하였다. 상등액으로부터 보다 높은 원심분리력 (100,000Xg, 4°C에서 60분 동안)으로 마이크로솜들을 침전시켰다. 마이크로솜들의 단단하게 뭉쳐진 펠렛들을 균질화기를 이용하여 3ml 빙넁된 피로인산염 버퍼 (0.1M 칼륨 피로포스페이트; ImM EDTA, pH 7.5; 20μΜ 부틸화 히드록시 를루엔) 중에 재 현탁시키고, 4°C에서 60분 동안 100,000Xg에서 다시 원심분리시켰다. 세척된 마이 크로솜 펠렛을 최종적으로 2ml 빙냉된 마이크로솜 버퍼 (lOmM Tris-HCl, H 7.4; ImM EDTA, pH 7.5; 20%글리세를)에 현탁시켰다ᅳ
<132>
<133> 5. 웨스턴 블롯분석
<134> 단백질들을 95%에서 비등시켜 변성시키고, SDS— PAGE로 분리하고, 이어서 니 트로셀를로스 (NC) 또는 폴리비닐리덴 플루오라이드 (PVDF) 막 상에서 전기블롯팅하 였다. 5% 무지방 우유 (skim milk) 또는 5% 소 혈청 알부민 (BSA)을 포함하는 TBSTO is-버퍼화 식염수, 0.1% Tween-20) 중에서 블록킹 (Mocking)한 후, 상기 막 을 표지된 일차 항원과 함께 인큐베이션시켰다. 그 후, 막을 TBST로 세척하고, 추 가로 고추냉이 과산화제와 커플링된 2차 항원과 인큐베이션시켰다. ECL 키트를 이 용하여 단백질 블롯을 검출하고, 발광 영상 분석기 LAS-4000 미니 시스템 및 소프 트웨어 (FujiFilm)를 이용하여 가시화하였다. 하기 항체들을 사용하였다: 마우스 항 -^-액¾(5(:-47778), 토끼 항 -CYP4A(sc-98988, Santa Cruz Biotechnology), 마우스 항 -ATF6 IMG-273, Imgenex), 마우스 항 -eIF2 a (ab5369), 토끼 항-포스포 -eIF2 α Ser51(ab32157), 토끼 항-11 1(^37073, Abeam) , 토끼 항 -PERK (#3192), 토끼 항-포 스포 -PERK Thr980(#3179), 토끼 항 -BiP(#3177), 마우스 항 -CHOP (#2895) , 토끼 항- SAPK/JNK(#9252), 토끼 항-포스포— SAPK/JNK Thr813/Tyrl85 (#9251), 토끼 항 -인술 린 수용체 β(#3025), 토끼 항-포스포-인슬린 수용체 β Tyr 1150/ 1151 (#3024), 토 끼 항 -Akt(#4691), 토끼 항-포스포 -Akt Ser473(#4060) , 토끼 항_띠-2(#2876), 토 끼 항 -Bax(#2772), 토끼 항-분할된 카스파제 -3(#9664), 토끼 항-분할된 카스파제- 9 (#9509) 토끼 항— Bax(#2772, Cell Signaling Technology), 토끼 항 -ERP72(Dr. O.Y. Kwon, Col lege of Medicine, Chungnam National University로부터 제공받음).
<135>
<i36> 6. 역전사및 실시간 R -PCR
<137> 총 RNA를 추출하기 위하여, 마우스 간 조직들을 TRI 시약 (Molecular
Research Center, Inc.)과 함께 균질화하고, 4°C에서 10분 동안 12,000rpm에서 원 심분리하였다. 상 분리를 위하여, 균질화에 사용된 TRI 시약 1ml 당 BCP(1—브로모- 3-클로로프로판, Molecular Research Center, Inc.) 0.1ml와 함께 상등액을 격렬하 게 흔합하였다 · 4°C에서 10분 동안 12,000rpm에서 원심분리한 후, 수상을 추가의 페놀 -클로로포름 추출에 사용한 후, 총 RNA를 RN나제가 없는 물 중에 침전 및 용해 시켰다. 추출된 RNA를 랜덤 6량체 프라이머들을 사용하여 Transcriptor First Strand cDNA Synthesis Kit(Roche)를 이용하므로써 역전사하였다. LightCycler 480 DNA SYBR Green I Master (Roche)를 이용하여 실시간 PCR을 수행하고, Real- Time PCR System(Roche)을 제조자 설명에 따라 이용하여 PCR 산물들을 검출하였다. 하기 프라이머들을 사용하였다: CPY4A10, 5'-AGCCACAAGGGCAGTGTTCAGG-3' (순방향) 및 5 ' -CCAAGCGGCCATTGGAAGAAAG-3 ' (역방향); CYP4A12, 5 ' -GCCTTATACGGAAATATGGCA- 3' (순방향) 및 5'-TGGMTCCTGGCCAACAATC-3' (역방향); CYP4A14, 5'- TGAATTGCTGCCAGATCCCACCAGGATC-3 ' (순방향) 및 5 ' -GTTCAGTGGCTGGTCAGA-3 ' (역방향 ); XBP1, 5'-3' (순방향) 및 5'—3' (역방향); CHOP, 5'ᅳ3' (순방향) 및 5'—3' (역방향).
<138>
<139> 7. 대사산물들의 측정
<140> 회생시킬 때 심장에 구멍을 내어 혈액을 채취하였다. 상업적 마우스 인술린
ELISA 키트 (Shibayagi Co., Ltd.)를 이용하여 제조자 설명에 따라 혈청 인술린 농 도를 측정하였다. OxiSelectTMTBARS Assay Kit (Cell Biolabs, Inc.)를 사용하여 간 균질화물 중에서 지질 과산화반응의 천연 부산물들인 MDA (말론디알데히드)를 정량 화하므로써 지질 과산화를 측정하였다. Triglyceride Quantification Kit(Abcam)를 사용하여 마우스 간에서 트리글리세리드 수준을 측정하였다.
<141>
<142> 8. Cyp4a효소활성 분석
<143> 대조구 및 db/db 마우스들의 간 마이크로솜 추출물에 의해 로린산 생성물들 을 기체 크로마토그래피 /질량 분광기 (GC/MS)로 측정하였다. 100 μΜ 로린산과 대조 구 및 (ib/db 마우스들와 0.2mg 간 마이크로솜 추출물을 37 °C에서 30분 동안 0.5ml 부피의 lOOmM 인산칼륨 버퍼 (pH 7.4) 중에 인큐베이션하므로써 대사산물들을 생성 시켰다. 인큐베이션 후, CH2C13을 이용하여 대사산물들을 추출하고, 유기용매를 질 소 흐름 .하에 제거하였다. 잔류물을 트리메틸클로로실란 (1%, v/v)을 포함하는 Ν,Ο- 비스 (트리메틸실릴) -트리플루오로아세트아미드 (BSTFA: 50μ1) 중에 용해시켰다. 용 액을 유리 바이알로 옮기고, 75°C에서 20분 동안 인큐베이션하여 트리메틸실릴화 생성물들을 산출하였다. 전자 -층격 이온화를 이용한 Shimadzu QP2010 (컬럼: 길이: 30cm, 내부 직경: 0.25ram, 필름 두께: Ο.ΐμηι) 상에서 GC/MS 분석을 실시하였다. GC 오븐 온도를 7CTC에서 1분 동안, 이어서, 하기 속도로 상승되도록 프로그램하였 다: 170°C까지 25°C/분, 200°C까지 5°C/분, 및 280°C까지 20°C/분. 오븐을 마지막 으로 280°C에서 5분 동안 유지시켰다. MS 소스 및 인터페이스는 250°C 및 280°C에 서 각각 유지되었으며, 4분의 용매 지연 (delay)을 이용하였다. 생성물들을 그들의 특징적인 질량 분획 패턴들에 의해 확인하였다. 생성물들의 분포는 가스 크로마토 그램의 상대적 피크 면적에 기초하였다.
<144>
<145> <실험결과>
<146> 먼저, ,본 발명자들은 정상의 간 및 2형 당뇨병 간에서 다르게 발현된 모든
CYP 단백질들을 확인하고자 시도하였다. 이를 달성하기 위하여, 비만-유도된 T2DM 이 발생된 10주령 C57BL/6J 대조구 및 ί Λ 마우스로부터 간 조직들을 분리하였 다. 그 후 막 단백질들을 분리하고, 푸리에 변환 이온 사이클로트론 공명 (FT-ICR) 질량 분광법 (도 1)에 의해 확인하였다. 그 결과, 본 발명자들은 정상의 간 및 db/db마우스의 간에서 동적 발현 패턴들을 나타내는 총 54개 CYP 단백질들을 확인 하였다 (도 2). CYP2E1 및 CYP4A는 상보적으로 간 지방증에서 지방 퍼옥시다아제들 의 마이크로솜성 (microsomal) 촉매들로서 주요 역할을 하고, P0R(NADPH 시토크름 P450 환원제)은 모든 CYP450s에 대한 유일한 전자 공여체이기 때문에 본 발명자들 은 CYP2E1, CYP4A 및 P0R의 발현 패턴들만을 나타내었다. 흥미롭게도, 대조구들에 비해 ί Λ 마우스에서 마우스 Cyp4a 이소품 (isoforms)인 Cyp4al0, 12 및 14는 상 향-조절되었지만 Cyp2el의 발현은 먁간 감소되는 한편, P0R의 발현은 유사함을 확 인하였다 (도 2). 프로테오믹스 (proteomics) 결과들을 입증하기 위하여, 실시간 RT- PCR 및 웨스턴 블롯 분석을 수행하였다. 질량 분광법에서 관찰된 바와 같이, Cyp4a 이소품들은 당뇨성 간에서 고도로 발현되었으며 (도 6 및 도 7), 마이크로솜성 Cyp4a의 효소적 활성도 상승되었다 (도 8). 그러나, Cyp2el 및 P0R의 발현은 상향- 조절되지 않아 (도 7), CYP2E1가 아닌 CYP4A가 간 T2DM 발생의 주요 조절제로서 작 용할 수 있음을 보여주었다.
<i47> CYP4A는 마우스에서 지방산, 특히 로린산 (LA) 및 아라키돈산 (AA)의 ω-히드 록실화를 촉매하는 것으로 알려져 있다. 당뇨병에서 CYP4A의 역할을 연구하기 위하 여, 본 발명자들은 CYP4A-특이적 저해제인 HET0016 (Ν-히드록시 -Ν'-(4-부틸 -2-메틸 페닐) -포름아미딘 (도 5)을 사용하였으며, 이는 이들 지방산들에 대한 효소 활성을 저해한다. HET0016을 2주 동안 8주령 db/db 마우스들에게 복강내 주사 (5mg/kg/일) 로 투여하였다. 먼저, 본 발명자들은 당뇨병 생리학에 대한 HET0016의 영향을 검사 하였다. 복강내 내당성 시험 (IPGTT)은 HETO016을 이용한 Cyp4a 활성의 저해가 당뇨 병 쥐들에서의 인슐린 내성을 현저히 개선시켰음을 나타내었다 (도 9). 또한, 당뇨 병 마우스에서 HET0016에 의해 혈당 수준이 감소되었다 (도 15). C57BL6J 대조구 마 우스에서의 인슐린 수준보다 현저히 높았던 db/db 마우스에서 혈청 인슐린 수준은 HET0016 처리에 의한 인슐린 내성에서의 감소로 인해 현저하게 감소되었다 (도 13). 또한, db/db 당뇨병 간에서의 심각한 간 지방증이 HET0016에 의해 구제되었다 (도 10). 본 발명자들은 ER 스트레스와 관련되고 T2DM 환자들에서 상승되는 CYP4A와 간 과산화간의 관계도 측정하였다. 실제로, 간 지방 과산화는 정상의 C57BL/6J 마우스 들에 비해 ί Λ 마우스들에서 증가하였으며, 이러한 증가는 HET0016 처리에 의해 현저히 감소하였다 (도 11). 아울러 , 본 발명자들의 실험 데이터는 Cyp4a 활성의 간 저해가 db/db마우스들에서 Cyp4a 활성을 개선시킨다는 것을 강하게 보여준다.
<148>
<149> 다음으로, 본 발명자들은 HET0016에 의한 생체 내 당뇨병 생리학의 관찰된 개선이 비만-유도된 당뇨병들을 일으키는 ER 스트레스에 대한 영향으로 인한 것인 지의 여부를 평가하였다. UPR의 성분들은 생리학적 조건들 하에서는 유리한 조절제 들로서 작용하거나, 또는 만성 스트레스 상태에서는 세포 기능 부전 및 아품토시스 의 촉발제로서 작용하는 이중의 역할을 한다. 세포주 계통에서, ATF6, IRE1 및 PERK 시그널링의 조합된 초기 활성화는 세포보호 신호를 생성한다. 반면, PERK 활 성화의 유지와 연결된 ATF6 및 IRE1의 하향-조절은 아픕토시스성 세포 사멸을 유도 한다. 당뇨병 간에서 UPR 시그널링의 상태를 조사하기 위하여, 본 발명자들은 UPR 성분들의 발현을 시험하였다. db/db 마우스 간에서 ATF6 및 IRE1의 발현은 감소되 었으며 (도 3), XBP1의 스플라이싱 (splicing)은 억제되었다 (도 4). 또한, ERP72 및 ' BiP와 같은 분자 샤페론들의 발현 수준도
Figure imgf000019_0001
마우스들에서 감소되었다. 그러나,
PERK만이 상향조절되었으며, 그의 다운스트림 (downstream) 시그널링은 당뇨병 간에 서 활성화되어 (도 3), 당뇨병 마우스들의 간이 연장된 ER 스트레스로 인한 심한 아 폼토시스 상태에 있음을 나타내었다. 흥미롭게도, db/db 마우스에게 CYP4A 저해제 인 HET0016을 접종시 PERK의 발현이 감소되었으며, eIF2a의 인산화 상태 및 CHOP 의 발현 수준과 같은 PERK 다운스트림 시그널링 활성들도 저해되었다 (도 12 및 도 14). 또한, ER 스트레스 반응들의 중요한 성분인 JNK 활성화가 HET0016에 의해 현 저히 감소되었다. 그러나, Cyp4a의 발현은 HET0016에 의해 변화되지 않았다 (도 12 및 도 14).
<150>
<i5i> 최근의 보고들은 ER 스트레스-매개된 JNK 활성화가 인술린 활성을 방해하고, 간에서 아품토시스를 유도한다는 것을 증명하였다. 이들 보고들의 고려시 상기 발 견들은 본 발명자들이 인슬린 내성 및 아품토시스에 대한 HET0016의 영향에 대한 연구를 서두르도록 하였다. 흥미롭게도 db/db 마우스들에서 HET0016을 이용한 CyP4a 활성의 저해는 인슐린 수용체 (IR) 및 Akt의 인산화를 증가시켰으며, 이는 인 슐린 시그널링이 당뇨병 간에서 HET0016 처리에 와해 구제됨을 의미한다 (도 13 및 도 14). 또한, 당뇨병 간 조직의 아품토시스도 HET0016에 의해 저해되었다. 카스파 제 -3 및 카스파제 -9의 활성형태의 농도가 감소되었으며, 사멸 -선호 (pro-death) 단 백질인 Bax의 발현이 억제되었다. 반면, 항 -아픕토시스 조절제 Bcl-2의 발현은 증 가되었다 (도 13 및 도 14). 따라서, 이러한 결과들은 CYP4A가 T2DM에서 ER 스트레 스-유도된 인슐린 내성 및 아품토시스의 중요한 조절제임을 강하게 시사하는 것이 다ᅳ 이러한 아이디어의 뒷받침으로, 본 발명자들은 Cyp4a의 특이적 유도제인 클로 피브레이트 (clofibrate)에 의한 Cyp4a의 주사가 db/db 마우스들에서 PERK, eIF2 α 및 JNK의 활성화 및 CHOP 발현의 상승시키는 결과를 초래한다는 것도 발견하였다. 또한, 인슐린 내성 및 아픕토시스도 현저하게 조절되었다.
<152>
<153> 그 후, 본 발명자들은 HET0016에 의한 ER스트레스의 관찰된 생체 내 개선이
HET0016의 ER 스트레스에 대한 직접적인 세포-자발적인 효과로 인한 것인지 또는 다양한 경로들 중 복잡한 생체 내 상호작용의 간접적인 결과로 인한 것인지의 여부 를 결정하고자 하였다. 4 /ml의 투미카마이신에 의해 HepG2 간암 세포들에서 ER 스트레스가 유도된 경우, 예측된 바와 같이, PERK, 포스포 -eIF2a 및 포스포 -JNK 의 발현이 증가되었다. 4mM HET0016와의 병용 처리는 HepG2 세포들에서 3개의 모든 ER 스트레스 마커들의 발현을 현저하게 하향-조절하였으며 (도 17 및 도 18), 이는 HET0016가 세포성 ER스트레스를 직접적으로 개선시킴을 암시한다.
<154>
<155> 남은 문제들 중 하나는 정상의 마우스들에서꾀 Cyp4a 저해가 T2DM의 치료를 위한 치료 옵션으로서 CYP4A 저해의 이용에 대한 장애일 수 있는 어떤 부작용을 일 으킬 수 있는지의 여부이다. 이 목적을 위하여, 8주령의 수컷 야생형 C57BL/6J 마 우스에 db/db마우스에 주사한 것과 동일한 HET0016를 동일 투여량으로 복강 내 투 여하였다. IPCTT 결과는 인슐린 내성이 변경되지 않았으며 (도 19), 혈청 인슬린 수 준 (도 20) 또는 간 생리학 (도 21), 및 중성지방 (도 22)에서 어떤 차이도 관찰되지 않았음을 증명하였다.
<156>
<157> 결론적으로, 본 발명자들은 T2DM의 발생에서 마우스 모델을 이용하여 CYP4A 의 생리학적 및 기능성 중요성을 증명하였다. 이는 CYP4A가 ER 스트레스-유도된 간 인슐린 내성 및 아톱토시스를 조절하는 분자적 메커니즘을 나타내는 최초의 연구이 다. 또한, HET0016을 이용한 본 발명자들의 발견은 ER 스트레스를 감소시키고, 내 당성을 증진시키고, 간 지방증 및 아품토시스를 감소시킬 수 있는 CYP4A 활성을 효 과적으로 감소시키는 목적의 치료제의 개발을 위한 새로운 통찰을 제공하는 것이 다.
<158>
【산업상 이용가능성: I
<159> 본 발명에 따르 CYP4A 저해제는 소포체 스트레스를 억제하고, 혈중 인슐린 농도를 감소시키며, 간 세포의 세포사멸을 억제함으로써 당뇨병 또는 지방간의 예 방또는 치료에 효과를 나타내므로산업상 이용가능성이 있다.

Claims

【청구의 범위】
[청구항 1】
CYP4A( cytochrome P4504A) 저해제를 유효성분으로 함유하는 당뇨병 또는 지 방간의 치료 또는 예방용 약학적 조성물.
【청구항 2】
제 1항에 있어서, 상기 CYP4A 저해제는 N-히드록시 -N'-(4-부틸 -2-메틸페닐) - 포름아미딘, 디브로모도데세닐 메틸설포니미드 (dibromododecenyl methylsulfonimide), 1-아미노벤조트리아졸 (1-aminobenzotriazole) , 17—옥타데시 노익산 (17-octadecynoic acid), 미코나졸 (miconazole) 및 이들의 유도체로 이루어 진 군에서 선택된 어느 하나인 것을 특징으로 하는 약학적 조성물.
【청구항 3】
제 1항에 있어서, 상기 당뇨병은 계 2형 당뇨병인 것을 특징으로 하는 약학적 조성물.
【청구항 4】
제 1항에 있어서, 상기 당뇨병은 비만으로부터 유래된 것을 특징으로 하는 약학적 조성물.
【청구항 5】
제 1항에 있어서, 상기 CYP4A 저해제는 소포체 스트레스를 억제하는 것을 특 징으로 하는 약학적 조성물.
【청구항 6】
제 1항에 있어서, 상기 CYP4A 저해제는 혈중 인슐린 농도를 감소시키는 것을 특징으로 하는 약학적 조성물.
[청구항 7】
제 1항에 있어서, 상기 CYP4A저해제는 간 세포의 세포사멸 (apoptosis)을 억 제시키는 것을 특징으로 하는 약학적 조성물.
【청구항 8】
CYP4A( cytochrome P450 4A) 저해제를 이를 필요로 하는 개체에 유효량으로 투여하는 단계를 포함하는 당뇨병 또는 지 방간의 치료방법 .
[청구항 9】
당뇨병 또는 지 방간의 치료제의 제조를 위 한 CYP4A( cytochrome P450 4A) 저 해제의 용도 .
PCT/KR2012/006395 2011-08-11 2012-08-10 C y p 4 a 저해제를 유효성분으로 함유하는 당뇨병 또는 지방간의 예방 또는 치료용 약학적 조성물 WO2013022312A2 (ko)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2014525926A JP5901770B2 (ja) 2011-08-11 2012-08-10 Cyp4a阻害剤を有効成分として含有する糖尿病又は脂肪肝の予防又は治療用薬学的組成物。
US14/178,090 US9295667B2 (en) 2011-08-11 2014-02-11 Pharmaceutical composition for preventing or treating diabetes or fatty liver containing a CYP4A inhibitor as an active ingredient

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020110080208A KR101235811B1 (ko) 2011-08-11 2011-08-11 Cyp4a 저해제를 유효성분으로 함유하는 당뇨병의 치료 또는 예방용 약학적 조성물
KR10-2011-0080208 2011-08-11

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US14/178,090 Continuation US9295667B2 (en) 2011-08-11 2014-02-11 Pharmaceutical composition for preventing or treating diabetes or fatty liver containing a CYP4A inhibitor as an active ingredient

Publications (2)

Publication Number Publication Date
WO2013022312A2 true WO2013022312A2 (ko) 2013-02-14
WO2013022312A3 WO2013022312A3 (ko) 2013-06-13

Family

ID=47669111

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2012/006395 WO2013022312A2 (ko) 2011-08-11 2012-08-10 C y p 4 a 저해제를 유효성분으로 함유하는 당뇨병 또는 지방간의 예방 또는 치료용 약학적 조성물

Country Status (4)

Country Link
US (1) US9295667B2 (ko)
JP (1) JP5901770B2 (ko)
KR (1) KR101235811B1 (ko)
WO (1) WO2013022312A2 (ko)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101886118B1 (ko) 2017-05-22 2018-09-06 한국기초과학지원연구원 Cyp4a 저해 화합물을 유효성분으로 포함하는 당뇨병 및 지방간의 예방 또는 치료용 조성물
KR102068299B1 (ko) * 2018-12-21 2020-01-20 한국기초과학지원연구원 Cyp4a 저해 화합물을 유효성분으로 포함하는 대사질환의 예방 또는 치료용 조성물
KR20220152159A (ko) 2021-05-07 2022-11-15 엠비디 주식회사 신규한 헤테로사이클 화합물 및 이의 용도
KR20230159779A (ko) 2022-05-13 2023-11-22 싸이파마 주식회사 Cyp4a 저해 화합물을 유효성분으로 포함하는, 당뇨병과 지방간염을 포함한 대사 질환의 예방 또는 치료용 조성물

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008511566A (ja) * 2004-08-28 2008-04-17 ベーリンガー インゲルハイム インターナショナル ゲゼルシャフト ミット ベシュレンクテル ハフツング ショウガ画分の調製方法およびヒトcyp酵素を阻害するためのその使用

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7307101B2 (en) * 2000-11-03 2007-12-11 Mcw Research Foundation, Inc. Use of 20-HETE synthesizing enzyme inhibitors as therapy for cerebral vascular disease
US20050124618A1 (en) * 2003-11-14 2005-06-09 Roman Richard J. Methods of modulating angiogenesis and cancer cell proliferation

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008511566A (ja) * 2004-08-28 2008-04-17 ベーリンガー インゲルハイム インターナショナル ゲゼルシャフト ミット ベシュレンクテル ハフツング ショウガ画分の調製方法およびヒトcyp酵素を阻害するためのその使用

Non-Patent Citations (5)

* Cited by examiner, † Cited by third party
Title
ABBAVEKKE EBRUQYEZ ET AL.: 'Altered Expression of Hepatic SYP2E1 and CYP4A in Obese, Diabetic ob/ob Mice, and fa/fa Zucker Rats.' BIOCHEMICAL AND PIOPHYSICAL RESEARCH COMMUNICATIONS. vol. 255, no. 2, 16 February 1999, pages 300 - 306 *
ASSAAD A. EID ET AL.: 'Mechanisms ofPodocyte Injury in Diabetes.' DIABETES vol. 58, no. 5, May 2009, pages 1201 - 1211 *
DEANNA L. KROETZ ET AL.: 'Peroxisome proliferator-activated receptor alpha controls the hepatic CYP4A induction adaptive response to starvation and diabetes.' THE JOURNAL OF BIOLOGICAL CHEMISTRY vol. 273, no. 47, 20 November 1998, pages 31581 - 31589 *
TAKAYUKI SEKI ET AL.: 'Cytochrome P450 4A Isoform Inhibitory Profile of N-hydroxy-N' -(4-butyl-2-methylphenyl)-formamidine(HET00 16), a Selective Inhibitor of 20-HETE Synthesis.' BIOLOGICAL AND PHARMACEUTICAL BULLETIN. vol. 28, no. 9, September 2005, pages 1651 - 1654 *
ZHONGLI WANG ET AL.: 'Inhibition of 20-HETE attenuates diabetes-induced decreases in retinal hemodynamics.' EXPERIMENTAL EYE RESEARCH. vol. 93, no. 1, July 2011, pages 108 - 113, XP028380560 *

Also Published As

Publication number Publication date
JP2014521740A (ja) 2014-08-28
JP5901770B2 (ja) 2016-04-13
KR101235811B1 (ko) 2013-02-21
KR20130017643A (ko) 2013-02-20
WO2013022312A3 (ko) 2013-06-13
US20140275198A1 (en) 2014-09-18
US9295667B2 (en) 2016-03-29

Similar Documents

Publication Publication Date Title
Chen et al. Poricoic acid A enhances melatonin inhibition of AKI-to-CKD transition by regulating Gas6/AxlNFκB/Nrf2 axis
Chen et al. Nrf2 at the heart of oxidative stress and cardiac protection
Zhou et al. Iron overloaded polarizes macrophage to proinflammation phenotype through ROS/acetyl‐p53 pathway
Zhu et al. Irisin improves endothelial function in type 2 diabetes through reducing oxidative/nitrative stresses
Wang et al. Sestrin2: its potential role and regulatory mechanism in host immune response in diseases
Begum et al. NADPH oxidase family proteins: signaling dynamics to disease management
Chen et al. Berberine reduces ischemia/reperfusion-induced myocardial apoptosis via activating AMPK and PI3K–Akt signaling in diabetic rats
Mittal et al. Hypoxia-dependent regulation of nonphagocytic NADPH oxidase subunit NOX4 in the pulmonary vasculature
Rinella et al. Dysregulation of the unfolded protein response in db/db mice with diet‐induced steatohepatitis
Jian et al. Bauhinia championii flavone inhibits apoptosis and autophagy via the PI3K/Akt pathway in myocardial ischemia/reperfusion injury in rats
Chen et al. Hydrogen alleviates mitochondrial dysfunction and organ damage via autophagy‑mediated NLRP3 inflammasome inactivation in sepsis
Han et al. Schisandrin C targets Keap1 and attenuates oxidative stress by activating Nrf2 pathway in Ang II‐challenged vascular endothelium
Otto et al. 12 (S)-HETE mediates diabetes-induced endothelial dysfunction by activating intracellular endothelial cell TRPV1
Wang et al. Salidroside improves doxorubicin-induced cardiac dysfunction by suppression of excessive oxidative stress and cardiomyocyte apoptosis
Zhong et al. Energy stress modulation of AMPK/FoxO3 signaling inhibits mitochondria-associated ferroptosis
Zhang et al. Diallyl disulfide suppresses the lipopolysaccharide-driven inflammatory response of macrophages by activating the Nrf2 pathway
Haodang et al. HO-1 mediates the anti-inflammatory actions of Sulforaphane in monocytes stimulated with a mycoplasmal lipopeptide
Mo et al. Ginsenoside Rg1 ameliorates palmitic acid-induced insulin resistance in HepG2 cells in association with modulating Akt and JNK activity
Shan et al. Inhibition of epidermal growth factor receptor attenuates LPS-induced inflammation and acute lung injury in rats
Li et al. Discovery of a small molecule inhibitor of cullin neddylation that triggers ER stress to induce autophagy
Yu et al. Genipin ameliorates hypertension-induced renal damage via the angiotensin II-TLR/MyD88/MAPK pathway
WO2013022312A2 (ko) C y p 4 a 저해제를 유효성분으로 함유하는 당뇨병 또는 지방간의 예방 또는 치료용 약학적 조성물
Ma et al. Paeoniflorin alleviates ischemia/reperfusion induced acute kidney injury by inhibiting Slc7a11-mediated ferroptosis
EP3113767B1 (en) Mtor-independent activator of tfeb for autophagy enhancement and uses thereof
Zhou et al. Role of ferroptosis in fibrotic diseases

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12822002

Country of ref document: EP

Kind code of ref document: A2

ENP Entry into the national phase

Ref document number: 2014525926

Country of ref document: JP

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 12822002

Country of ref document: EP

Kind code of ref document: A2