WO2013022184A1 - Polymer-resin/aluminium bonded body and a production method therefor - Google Patents

Polymer-resin/aluminium bonded body and a production method therefor Download PDF

Info

Publication number
WO2013022184A1
WO2013022184A1 PCT/KR2012/004671 KR2012004671W WO2013022184A1 WO 2013022184 A1 WO2013022184 A1 WO 2013022184A1 KR 2012004671 W KR2012004671 W KR 2012004671W WO 2013022184 A1 WO2013022184 A1 WO 2013022184A1
Authority
WO
WIPO (PCT)
Prior art keywords
triazine
aluminum
dithiol
polymer resin
nickel
Prior art date
Application number
PCT/KR2012/004671
Other languages
French (fr)
Korean (ko)
Inventor
정의덕
한현주
장은경
진종성
하명규
김현규
홍태은
홍경수
김종필
배종성
정홍대
이수종
Original Assignee
주식회사 태성포리테크
한국기초과학지원연구원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 태성포리테크, 한국기초과학지원연구원 filed Critical 주식회사 태성포리테크
Publication of WO2013022184A1 publication Critical patent/WO2013022184A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C70/00Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts
    • B29C70/02Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts comprising combinations of reinforcements, e.g. non-specified reinforcements, fibrous reinforcing inserts and fillers, e.g. particulate fillers, incorporated in matrix material, forming one or more layers and with or without non-reinforced or non-filled layers
    • B29C70/021Combinations of fibrous reinforcement and non-fibrous material
    • B29C70/025Combinations of fibrous reinforcement and non-fibrous material with particular filler
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/30Coatings combining at least one metallic layer and at least one inorganic non-metallic layer
    • C23C28/32Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one pure metallic layer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D7/00Processes, other than flocking, specially adapted for applying liquids or other fluent materials to particular surfaces or for applying particular liquids or other fluent materials
    • B05D7/14Processes, other than flocking, specially adapted for applying liquids or other fluent materials to particular surfaces or for applying particular liquids or other fluent materials to metal, e.g. car bodies
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D2202/00Metallic substrate
    • B05D2202/20Metallic substrate based on light metals
    • B05D2202/25Metallic substrate based on light metals based on Al
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D2350/00Pretreatment of the substrate
    • B05D2350/60Adding a layer before coating
    • B05D2350/65Adding a layer before coating metal layer

Definitions

  • the present invention relates to a polymer resin-aluminum binder and a method of manufacturing the same, and more particularly, to a polymer resin-aluminum conjugate and a method for producing the polymer resin-aluminum binder having improved adhesion and tensile strength through polymerization of nickel oxide and organic additives formed on aluminum. It is about.
  • a method for attaching or adhering plastic to a metal surface may include coating a metal such as Si or Ti on a metal surface and bonding a thermoplastic resin to an aluminum, copper, magnesium and iron metal surface using a bonding force with oxygen.
  • Adhesives such as epoxy functional silane compound resins may be used.
  • Japanese Patent No. 193-51671 discloses an electrochemical surface treatment process for forming a coating film of triazine thiol on a metal surface through electrodeposition.
  • Japanese Patent No. 2001-200374 there is an example in which a triazine thiol metal salt is formed on a metal surface to maintain adsorption on the surface of the metal by adsorption or (-) charged reactions. This study did not have sufficient strength at the sufficient bonding interface between the aluminum and resin components.
  • the present invention is to provide a polymer resin-aluminum binder in which a nickel oxide bond is formed on the aluminum surface to improve adhesion and tensile strength between metal and resin, and maintain tensile strength even after thermal shock. The purpose.
  • the present invention provides a polymer resin-aluminum binder in which the nickel oxide bond is present not only on the nickel plated layer but also between aluminum and nickel metal, thereby improving adhesion and tensile strength between metal and resin, and maintaining tensile strength even after thermal shock. It provides a manufacturing method.
  • a polymer resin-aluminum binder comprising a polymer resin bonded after treatment with a triazine thiol derivative on the nickel;
  • Polymer resin wherein the intensity ratio of C / Ni, N / Ni, O / Ni and S / Ni is 1.0 ⁇ 10 ⁇ 4 to 5.0 ⁇ 10 ⁇ 6 at a depth of 1 to 7 ⁇ m- It provides an aluminum binder.
  • Polymer resin wherein the intensity ratio of C / Ni, N / Ni, O / Ni and S / Ni is 1.0 ⁇ 10 ⁇ 4 to 5.0 ⁇ 10 ⁇ 6 at a depth of 1 to 7 ⁇ m- Provided is a method for producing an aluminum binder.
  • the binder according to the present invention has the effect of improving the adhesive strength between the metal and the resin, the tensile strength, even after thermal shock tensile strength is maintained.
  • metal-resin composites having excellent bonding strength between metal and resin can be obtained by using methods such as pretreatment, appropriate surface roughness, heat treatment, and surface coating to increase the bonding strength between resins and nickel and triazine thiol derivatives. have.
  • FIG. 1 shows a design model for measuring the tensile strength produced according to an embodiment of the present invention.
  • FIGS. 2A and 2B show an aluminum rod photograph manufactured according to an embodiment of the present invention.
  • FIG. 3A and 3B show photographs after anodization prepared according to one embodiment of the invention, and FIG. 3C shows blasted surface photographs.
  • Figures 4a and 4b shows a picture of the parts combined aluminum-PPS prepared according to an embodiment of the present invention.
  • FIG. 5 shows cyclic voltammogram data for electrochemical film production according to one embodiment of the present invention.
  • 6A to 6D show the results of X-ray photoelectron spectroscopy analysis of a nickel-plated sample and a DB-coated sample prepared by the method of Example 1 of the present invention.
  • Figure 7 shows the results of secondary ion mass spectrometry (SIMS) analysis of the sample before Ni plating after anodization of aluminum prepared by the method of Example 2 of the present invention.
  • SIMS secondary ion mass spectrometry
  • FIG. 9A shows a secondary ion mass spectrometry (SIMS) analysis result of a sample coated with triazine thiol on an aluminum nickel plated layer after electroplating nickel on aluminum by the method of Example 3 according to the present invention
  • SIMS secondary ion mass spectrometry
  • FIGS. 10A is a photograph of a cross section in which aluminum and PPS are combined using a nano-ion mass spectrometer (Nano-SIMS), and FIGS. 10B to 10E are elemental image mappings for elements of carbon, nitrogen, aluminum, and sulfur, respectively. Show a picture.
  • Nano-SIMS nano-ion mass spectrometer
  • the present invention i) aluminum; ii) nickel formed on the aluminum; And iii) a polymer resin-aluminum binder comprising a polymer resin bonded after treatment with a triazine thiol derivative on the nickel, wherein the Ni and Al components are detected as a result of secondary ion mass spectrometry (SIMS) analysis of the binder, and C / Intensity ratio of each of Ni, N / Ni, O / Ni, and S / Ni is 1.0 ⁇ 10 ⁇ 4 to 5.0 ⁇ 10 ⁇ 6 at a depth of 1 to 7 ⁇ m.
  • SIMS secondary ion mass spectrometry
  • the binder of the polymer resin and aluminum is first formed with nickel on the aluminum substrate and then treated with a triazine thiol derivative.
  • a triazine thiol derivative Such triazine thiol derivatives are applied on top of aluminum and nickel metals, but the secondary ion mass spectrometry (SIMS) analysis results of the binder are also detected between nickel and aluminum.
  • SIMS secondary ion mass spectrometry
  • Ni appears up to 19.3 ⁇ m, after which the Al component begins to be detected.
  • the binder of the present invention coated with the triazine thiol derivative shows the form of a mixture in which S, N, and C are diffused on the nickel oxide layer.
  • the intensity ratio of C / Ni, N / Ni, O / Ni, and S / Ni is 1.0 ⁇ 10 ⁇ 4 to 5.0 ⁇ 10 ⁇ at a depth of 1 to 7 ⁇ m. 6 , which means that S, N, O, C are present in the appropriate numerical range even at significant depths of the conjugate.
  • the thickness at which Ni and Al have the same intensity is preferably 1 to 25 ⁇ m. This is because since the triazine thiol derivative is formed on the nickel-coated upper portion, it is preferable that the intensity ratio is greater in the shallow region than in the deep region.
  • the present invention i) aluminum; ii) nickel formed on the aluminum; And iii) a polymer resin-aluminum binder comprising a polymer resin bonded after treatment with a triazine thiol derivative on the nickel, and NiO in the total content including NiO and Ni 2 O 3 as a result of analysis of the X-ray photoelectron spectrometer of the binder; A polymer resin-aluminum binder having a content of 13% or more and a Ni 2 O 3 content of 87% or less is provided.
  • the polymer resin-aluminum conjugate of the present invention when the NiO content is less than 13% or the Ni 2 O 3 content is more than 87% in the total content of the X-ray photoelectron spectrometer, the polymer is insufficient because the nickel oxide content is insufficient.
  • the bonding force between the water surface and aluminum is weak, which is undesirable.
  • the presence of NiO and Ni 2 O 3 is present in the form in which Ni is combined with oxygen, which indicates a strong bonding force between the resin and the metal.
  • the step of securing the surface roughness through the degreasing process and blasting on the aluminum substrate Forming nickel on the aluminum; Applying a triazine thiol derivative to the nickel-coated aluminum; And injecting a polymer resin onto the surface of nickel aluminum to which the triazine thiol derivative is coated.
  • a method of preparing a polymer resin-aluminum binder wherein the secondary ion mass spectrometer (SIMS) analysis results indicate that the Ni and Al components are And the intensity ratio of each of C / Ni, N / Ni, O / Ni and S / Ni is 1.0 ⁇ 10 ⁇ 4 to 5.0 ⁇ 10 ⁇ 6 at a depth of 1 to 7 ⁇ m.
  • SIMS secondary ion mass spectrometer
  • an oxide film (preferably 50-1500 nm) may be made of aluminum anodic oxidation and then electroplated by nickel.
  • Nickel is coated or sandblasted on the aluminum surface in various ways to ensure proper surface roughness.
  • nickel (Ni), nickel-phosphorus or nickel-phosphorus-chromium is coated on the aluminum metal.
  • a coating method a film is prepared by electroplating, pulsed laser deposition (PLD), plasma coating, spray coating, immersion coating, flow coating, and spin coating.
  • the thickness of the coating is preferably 10 nm-5,000 nm.
  • the polymer resin may be adhered to the nickel-formed film as it is, or on the other hand, an additional blasting process may be further performed on the nickel-formed upper portion to secure appropriate roughness.
  • Alumina particle size can be performed from 5 seconds to 1 minute using 50-250 ⁇ m size for proper roughness on the plating surface during blasting.
  • Nickel may then be optionally heat treated to increase the likelihood of surface adhesion to the plated aluminum.
  • the heat treatment may be selectively used, not necessarily a process.
  • the temperature of the heat treatment can be performed at 100 to 500 ° C for 10 seconds to 30 minutes, and preferably the temperature of the heat treatment is 250 to 450 ° C. If the temperature of the heat treatment is less than 100 ° C., the oxidation state of nickel is less advanced, which is not preferable. If the temperature of the heat treatment is higher than 500 ° C., the thickness of the nickel oxide film is too thick, which is not preferable.
  • the triazine thiol derivative is preferably a compound represented by the following formula (1).
  • M is H, Na, Li, K, aliphatic primary, secondary, tertiary amine, quaternary ammonium,
  • R is -SM, -OR One , -SR One , -NHR One , -N (R One ) 2
  • R One Is an alkyl group, an alkenyl group, a phenyl group, a phenylalkyl group, an alkylphenyl group, and a cycloalkyl group. It is one selected from the group consisting of.
  • the triazine thiol derivative is not limited thereto, for example, 1,3,5-triazine-2,4,6-tritriol (TT), 1,3,5-triazine-2 , 4,6-Tritriol monosodium (TTN), 1,3,5-triazine-2,4,6-tritriol triethanol amine (FTEA), 6-anilino-1,3,5-triazine- 2,4-dithiol (AF), 6-anilino-1,3,5-triazine-2,4-dithiol monosodium (AFN), 6-dibutylamino-1,3,5-triazine -2,4-dithiol (DB), 6-dibutylamino-1,3,5-triazine-2,4-dithiol monosodium (DBN), 6-diarylamino-1,3,5- Triazine-2,4-dithiol (DA), 6-diarylamino-1,3,5-triazine
  • triazine thiol derivatives are dissolved in an organic solvent including water at a constant concentration and coated by spray coating, dip coating, flow coating, or spin coating.
  • Preferred thickness is 10 nm to 5 mu m.
  • Triazine thiols are also formed on top of nickel, but the preferred thickness referred here refers to the thickness of nickel top since it penetrates to the bottom of nickel and to the top of aluminum.
  • Electrochemical method is a cyclic voltametry (CV) -0.5V to 2.0V vs. It can be coated by several cycles in the SCE range, by a constant voltage method that applies between 3V and 50V, and by a constant current method that scans current densities from 0.05mA to 30mA.
  • Coating reagents other than triazine thiol derivatives include 2,5-dimercapto-1,3,4 thiadiazole, dithiopiperazine, 2,4-dithiopyrimidine, tetrathioethylenediamine, and polyethylene imine derivatives. And dimethyl ethylenediamine etc. are mentioned. These coating reagents can also be treated on the nickel surface at the same concentration and temperature as the triazine thiol based derivatives.
  • the organic-coated film is polymerized to add an initiator such as benzoyl peroxide (BPO) or azobisisobutyronitrile (AIBN) in an appropriate concentration in a solvent in order to facilitate the bonding with the resin, and UV irradiation, It can be treated by photo-curing, thermal, or electrochemical methods.
  • BPO benzoyl peroxide
  • AIBN azobisisobutyronitrile
  • polymer resin is injected into various desired parts at appropriate temperatures and pressures.
  • the polymer resin is not limited thereto, but is preferably polyphenylene sulfide (PPS), polybutylene terephthalate (PBT), polyimide (PI), liquid crystal polymer (LCP), polyether ether ketone (PEEK), poly Examples include ether ketone (PEK), ethylene propylene diemethylene rubber (EPDM), acrylic rubber (ACM), polypropylene and ethylene / propylene diemethylene rubber (PP + EPDM).
  • the resin is injected into a mold of various models at a suitable temperature and pressure to enable high-strength adhesion.
  • the aluminum (C1100) was first washed with acetone for 5 minutes in an ultrasonic cleaner, washed with distilled water, and then treated with distilled water for 1 minute in a 10% M NaOH solution, and washed for 1 minute at room temperature in 0.5MH 2 SO 4 solution. Treatment and surface activation.
  • Nickel electroplating is carried out to a thickness of 20 ⁇ m by degreasing aluminum electrical method. Nickel-plated aluminum is subjected to blasting for 30 seconds to perform a certain level of surface roughness, subjected to ultrasonic cleaning in distilled water, washed in ethanol solution, washed with distilled water and dried.
  • the film was prepared by dipping 6-dibutylene-1,3,5-triazine-2,4-dithiol (DB) for 5 minutes in a 0.1 M NaOH aqueous solution at a concentration of 1 minute by a wet method. Wash with distilled water and dry.
  • the membrane coated with the organic species is polymerized to dissolve 0.1 M benzoyl peroxide in a solvent for 10 seconds to dissolve in distilled water to facilitate bonding with the resin, and then washed with distilled water.
  • PPS SK chemical, Ecotran SPA 2130G NC or TORAY TORELINA
  • Aluminum (C1100) was first washed with acetone for 5 minutes in an ultrasonic cleaner and washed with distilled water. After 2 minutes in 10% NaOH solution is subjected to a degreasing process. The surface is then activated by treatment with 0.5MH 2 SO 4 solution.
  • the deactivated aluminum is made of 50-1500 nm oxide film by aluminum anodic oxidation (see SIMS analysis of FIG. 9A), and then subjected to nickel electroplating to a thickness of 20 ⁇ m by an electrical method.
  • Nickel plated aluminum was also blasted with alumina of 50 ⁇ m in size for 1 minute in order to increase the surface adhesion, and then washed for 5 minutes with an ultrasonic cleaner in ethanol solution, followed by secondary washing with distilled water.
  • the 6-dibutylene-1,3,5-triazine-2,4-dithiol (DB) membrane was prepared at a concentration of -0.5 V to 1.50 V vs. 1 mM in 0.1 M aqueous NaOH solution.
  • SCE and aluminum were circulated by circulating voltammetry 10 times with SUS 304 as a working electrode and a counter electrode to produce a membrane, washed with distilled water, and dried.
  • 5 shows a diagram of a cyclic voltammogram curve cycled five times. Referring to FIG. 5, a current density circulating while drawing a constant area according to voltage is shown.
  • the membrane coated with the organic species is polymerized and treated with 20wt% hydrogen peroxide for 5 minutes to facilitate bonding with the resin and then washed with distilled water.
  • PPS SK chemical, Ecotran SPA 2130G NC or TORAY TORELINA
  • resin was injected on the coating surface at a mold temperature of 180 ° C and an injection temperature of 300 ° C.
  • the 6-dibutylene-1,3,5-triazine-2,4-dithiol (DB) membrane was prepared at a concentration of -0.6 V to 2.0 V vs. 1 mM in 0.1 M aqueous NaOH solution.
  • SCE, aluminum is SUS 304 as the working electrode (working electrode) and the counter electrode (counter electrode) to circulate 10 times by cyclic voltammetry to prepare a membrane, washed with distilled water and dried.
  • PPS SK chemical, Ecotran SPA 2130G NC or TORAY TORELINA
  • resin was injected on the coating surface at a mold temperature of 180 ° C and an injection temperature of 300 ° C.
  • Aluminum (C1100) was treated with 0.1M HNO 3 solution for 3 minutes, washed with distilled water, and treated with an alkaline dipping agent for 5 minutes to undergo degreasing.
  • the degreased aluminum was electroplated aluminum to a thickness of 20 ⁇ m by an electrical method.
  • Nickel-plated aluminum was subjected to blasting for 30 seconds to perform a certain level of surface roughness, then subjected to ultrasonic cleaning in distilled water, washed in ethanol solution, washed with distilled water and dried.
  • the membrane coated with the organic material was polymerized to dissolve 0.1 M benzoyl peroxide in a solvent for 10 seconds to dissolve in distilled water to facilitate bonding with the resin and then washed with distilled water.
  • PPS SK chemical, Ecotran SPA 2130G NC or TORAY TORELINA
  • resin was injected on the coating surface at a mold temperature of 180 ° C and an injection temperature of 300 ° C.
  • Aluminum (C1100) was treated with wet sandpaper (# 1200), then washed with acetone and with distilled water. Thereafter, the solution was treated with 0.1 M HNO 3 solution for 3 minutes, washed with distilled water, and treated with alkaline dipping agent for 5 minutes to undergo degreasing. The degreased aluminum was blasted, washed with an ultrasonic cleaner in ethanol solution, and then washed twice with distilled water.
  • Figures 2a and 2b shows a picture of an aluminum rod prepared for use in the measurement of the tensile strength in accordance with an embodiment of the present invention.
  • 3A to 3C show electron micrographs of the surface blasted under different anodization conditions of Example 2.
  • FIG. Figure 4 shows a picture of the parts combined with aluminum-PPS used in the measurement of the tensile strength according to an embodiment of the present invention.
  • 6A to 6D show the results of X-ray photoelectron spectroscopy analysis in Example 1 of the present invention.
  • the instrument used Theta probe XPS from Themo Electronic Corporation of the United Kingdom.
  • Example 7 shows the results of secondary ion mass spectrometry (SIMS) analysis of Example 1 plated with nickel on aluminum of the present invention.
  • SIMS secondary ion mass spectrometry
  • CAMECA IMS-6f Magnetic Sector SIMS of France was used, and the analysis conditions were Cs + Gun, Impact Energy: 5.0keV, Current: 100nA, Raster Size: 200 ⁇ m x 200 ⁇ m, Analysis area 30 ⁇ m, Detected Ion: 133 Cs 12 C + , 133 Cs 14 N + , 133 Cs 16 O + , 133 Cs 27 Al + , 133 Cs 34 S +, 133 Cs 58 Ni + . It can be confirmed that Ni was formed to a thickness of 19.3um on the Al by electroplating.
  • SIMS secondary ion mass spectrometry
  • Figure 8 shows the secondary ion mass spectrometer (SIMS) analysis results of electroplating nickel on aluminum in Example 1 according to the present invention.
  • SIMS secondary ion mass spectrometer
  • FIG. 9a shows a secondary ion mass spectrometry (SIMS) analysis result of a sample coated with triazine dithiol on an aluminum nickel plating layer after electroplating nickel on aluminum in Example 3 according to the present invention.
  • SIMS secondary ion mass spectrometry
  • FIG. 9B is an enlarged view of the result of FIG. 9A, which shows only Ni and O.
  • FIG. 9B the thickness of the nickel component layer was confirmed to be 13 ⁇ m, and an oxide film of Ni—O having a thickness of 40 nm was formed on the surface of the Ni component layer to confirm that the nickel coating layer and the triazine thiol were smoothly bonded. It became.
  • Tensile strength was measured using the samples of Examples 1 to 3 and Comparative Examples 1 and 2.
  • 1 shows a design model for measuring the tensile strength according to an embodiment of the present invention.
  • Aluminum (2) and polymer resin (3) were bonded to each other, and the tensile strength at the bonding surface (1) was measured. It measured at the speed of 0.1 mm / min at 23 degreeC. The measurement results are shown in Table 3 below.
  • FIG. 10A a cross-section of aluminum and PPS is photographed by using a nano-ion mass spectrometer (Nano-SIMS), and the cross-section in which two components are coupled in the middle can be confirmed.
  • 10b to 10e show elemental image mappings for elements of carbon, nitrogen, aluminum and sulfur.
  • 10B to 10E other elements do not appear on the left side of the picture, which is an aluminum part, but black, and carbon and sulfur appear on the right part of the picture, which is a PPS part, and trace amounts of nitrogen are also identified.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Composite Materials (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Wood Science & Technology (AREA)
  • Laminated Bodies (AREA)
  • Other Surface Treatments For Metallic Materials (AREA)
  • Injection Moulding Of Plastics Or The Like (AREA)

Abstract

The present invention concerns a polymer-resin/aluminium bonded body comprising: i) aluminium; ii) nickel formed on the aluminium; and iii) a polymer resin which is bonded onto the nickel after having carried out triazine-thiol-derivative processing, and a feature of the disclosed polymer-resin/aluminium bonded body is that, in the results of secondary ion mass spectrometry (SIMS) of the bonded body, Ni and Al components are detected, and the respective intensity ratios of C/Ni, N/Ni, O/Ni and S/Ni at a depth of between 1 and 7 ㎛ are between 1.0 × 10-4 and 5.0 × 10-6. The bonded body according to the present invention has the effect of improving the adhesive force between the metal and the resin and of maintaining tensile strength, and tensile strength even after thermal shock. Also, the invention makes it possible to provide a metal/resin bonded body in which the bonding force between the metal and the resin is outstanding by making use of a method such as pre-processing, appropriate surface roughening, heat treatment and surface coating and by using the nickel and the triazine thiol derivative in order to increase the bonding force with the resin.

Description

고분자 수지-알루미늄 결합체 및 이의 제조방법Polymer resin-aluminum binder and preparation method thereof
본 발명은 고분자 수지-알루미늄 결합체 및 이의 제조방법에 관한 것으로서, 더욱 상세하게는 알루미늄 위에 형성된 니켈 산화물과 유기 첨가제의 고분자화를 통하여 점착력 및 인장강도가 개선된 고분자 수지-알루미늄 결합체 및 이의 제조방법에 관한 것이다.The present invention relates to a polymer resin-aluminum binder and a method of manufacturing the same, and more particularly, to a polymer resin-aluminum conjugate and a method for producing the polymer resin-aluminum binder having improved adhesion and tensile strength through polymerization of nickel oxide and organic additives formed on aluminum. It is about.
일반적으로, 금속표면에 플라스틱을 부착 또는 점착하기 위한 방법으로는 금속 표면에 Si, Ti 등의 금속을 코팅하고 산소와의 결합력을 이용하여 알루미늄, 구리, 마그네슘 및 철 금속 표면 위에 열가소성 수지계를 접착하거나 에폭시 기능성 실란화합물수지 같은 접착제를 사용하기도 한다.In general, a method for attaching or adhering plastic to a metal surface may include coating a metal such as Si or Ti on a metal surface and bonding a thermoplastic resin to an aluminum, copper, magnesium and iron metal surface using a bonding force with oxygen. Adhesives such as epoxy functional silane compound resins may be used.
일본특허번호 제1993-51671호에서는 전착(electrodeposition)을 통해 금속표면에 트리아진 티올의 코팅필름을 형성시키는 전기화학적 표면 처리과정을 개시하고 있다. 일본특허번호 제2001-200374호에서는 금속 표면 위에 트리아진 티올 금속염을 형성시켜 흡착되거나 또는 (-) charged 반응(reacts)으로 금속의 표면에 반응성을 유지시킨 예도 있다. 이러한 연구에서는 알루미늄 성분과 수지 성분 간에 충분한 결합 계면에 충분한 세기(strength)를 가지고 있지 못하였다. Japanese Patent No. 193-51671 discloses an electrochemical surface treatment process for forming a coating film of triazine thiol on a metal surface through electrodeposition. In Japanese Patent No. 2001-200374, there is an example in which a triazine thiol metal salt is formed on a metal surface to maintain adsorption on the surface of the metal by adsorption or (-) charged reactions. This study did not have sufficient strength at the sufficient bonding interface between the aluminum and resin components.
부식저해 또는 방지를 위해 금속 표면에 트리아진 티올 유도체를 도입하고 이를 열, 광화학적(photochemical), UV조사, 전기화학적 방법 등의 여러 방법으로 고분자화하는 연구 논문도 공지되어 있다(K. Mori et al., Langmuir, 7, 1161-1166, 1991년; H. Baba et al., Corrossion Science, 39, 3, 555-564, 1997년; Baba et al., Corrossion Science, 41, 1898-2000, 1999년). Research papers are also known in which triazine thiol derivatives are introduced to metal surfaces and polymerized by various methods such as thermal, photochemical, UV irradiation, and electrochemical methods to prevent or inhibit corrosion (K. Mori et. al., Langmuir, 7, 1161-1166, 1991; H. Baba et al., Corrossion Science, 39, 3, 555-564, 1997; Baba et al., Corrossion Science, 41, 1898-2000, 1999 year).
마그네슘 합금 표면에 트리아진 티올 유도체 효과도 공지되어 있고(K. Mori et al., Materials Science Forum, 350-351, 223-234, 2000년), 트리아진 티올 유도체를 코팅하여 PPS와 결합시킨 논문도 발표된 바 있다(Z. Kang et al, Surface & Coating Technology, 195, 162-167, 2005년).The effect of triazine thiol derivatives on the surface of magnesium alloys is also known (K. Mori et al., Materials Science Forum, 350-351, 223-234, 2000). Z. Kang et al, Surface & Coating Technology, 195, 162-167, 2005.
최근 공개된 미국공개특허 제2010-0279108호에는 알루미늄 성분과 수지 사이의 점착(adhesion)을 개선시키는 기술이 개시되어 있고, 상기 특허문헌에서는 anodic oxidation 코팅 두께를 70 내지 1500 nm로 또는 트리아진 티올을 포함한 anodic oxidation 두께를 70 내지 1500 nm로 수치적으로 한정하였으며, 이 anodic oxidation의 적외선 흡수 스펙트럼의 OH 세기를 0.0001 내지 0.16으로 한정하였다. Aluminium anodic oxidation(AAO) 자체에 대한 연구는 여러 가지 산화물을 나노튜브화 하는 부분이 진행되었다. 그러나 anodic oxidation 두께나 OH 세기를 조절하는 것만으로는 알루미늄과 수지의 결합력을 개선하는 데에는 한계가 있었다.Recently published U.S. Patent Application Publication No. 2010-0279108 discloses a technique for improving adhesion between an aluminum component and a resin, which discloses anodic oxidation coating thickness of 70 to 1500 nm or triazine thiol. The included anodic oxidation thickness was numerically limited to 70 to 1500 nm, and the OH intensity of the infrared absorption spectrum of this anodic oxidation was limited to 0.0001 to 0.16. The study of aluminum anodic oxidation (AAO) itself involved the nanotube-forming of various oxides. However, controlling the anodic oxidation thickness or OH strength alone has a limit in improving the bonding strength of aluminum and resin.
상기 문제점을 해결하기 위하여, 본 발명은 알루미늄 표면상에 니켈 산화물 형태의 결합이 형성되어 금속-수지 간의 점착력 및 인장강도가 개선되고, 열충격 후에도 인장강도가 유지되는 고분자 수지-알루미늄 결합체를 제공하는 것을 목적으로 한다. In order to solve the above problems, the present invention is to provide a polymer resin-aluminum binder in which a nickel oxide bond is formed on the aluminum surface to improve adhesion and tensile strength between metal and resin, and maintain tensile strength even after thermal shock. The purpose.
또한 본 발명은 상기 니켈 산화물 형태의 결합이 니켈 도금층 상부만이 아니라 알루미늄과 니켈 금속의 사이에도 존재하여 금속-수지 간의 점착력 및 인장강도가 개선되고 열충격 후에도 인장강도가 유지되는 고분자 수지-알루미늄 결합체의 제조방법을 제공한다.In addition, the present invention provides a polymer resin-aluminum binder in which the nickel oxide bond is present not only on the nickel plated layer but also between aluminum and nickel metal, thereby improving adhesion and tensile strength between metal and resin, and maintaining tensile strength even after thermal shock. It provides a manufacturing method.
상기 목적을 달성하기 위하여, 본 발명은In order to achieve the above object, the present invention
i) 알루미늄;i) aluminum;
ii) 상기 알루미늄 위에 형성된 니켈; 및ii) nickel formed on the aluminum; And
iii) 상기 니켈 상에 트리아진 티올계 유도체 처리 이후 결합된 고분자 수지를 포함하는 고분자 수지-알루미늄 결합체로서,iii) a polymer resin-aluminum binder comprising a polymer resin bonded after treatment with a triazine thiol derivative on the nickel;
상기 결합체의 이차이온질량분석기(SIMS) 분석결과 Ni 및 Al 성분이 검출되고,As a result of secondary ion mass spectrometry (SIMS) analysis of the conjugate, Ni and Al components are detected,
C/Ni, N/Ni, O/Ni 및 S/Ni 각각의 강도비(intensity ratio)가 1 내지 7㎛의 깊이에서 1.0 × 10-4 내지 5.0 × 10-6인 것을 특징으로 하는 고분자 수지-알루미늄 결합체를 제공한다.Polymer resin, wherein the intensity ratio of C / Ni, N / Ni, O / Ni and S / Ni is 1.0 × 10 −4 to 5.0 × 10 −6 at a depth of 1 to 7 μm- It provides an aluminum binder.
상기 다른 목적을 달성하기 위하여, 본 발명은In order to achieve the above another object, the present invention
알루미늄 기재에 탈지 공정 및 블라스팅을 통하여 표면 거칠기를 확보하는 단계;Securing a surface roughness through a degreasing process and blasting on the aluminum substrate;
상기 알루미늄 상에 니켈을 형성하는 단계;Forming nickel on the aluminum;
상기 니켈이 도포된 알루미늄에 트리아진 티올계 유도체를 도포하는 단계; 및Applying a triazine thiol derivative to the nickel-coated aluminum; And
상기 트리아진 티올계 유도체가 도포된 니켈 알루미늄 표면에 고분자 수지를 사출하는 단계를 포함하는 고분자 수지-알루미늄 결합체의 제조방법으로서,As a method of manufacturing a polymer resin-aluminum conjugate comprising the step of injecting a polymer resin on the surface of the nickel aluminum coated with the triazine thiol derivatives,
상기 결합체의 이차이온질량분석기(SIMS) 분석결과 Ni 및 Al 성분이 검출되고,As a result of secondary ion mass spectrometry (SIMS) analysis of the conjugate, Ni and Al components are detected,
C/Ni, N/Ni, O/Ni 및 S/Ni 각각의 강도비(intensity ratio)가 1 내지 7㎛의 깊이에서 1.0 × 10-4 내지 5.0 × 10-6인 것을 특징으로 하는 고분자 수지-알루미늄 결합체의 제조방법을 제공한다.Polymer resin, wherein the intensity ratio of C / Ni, N / Ni, O / Ni and S / Ni is 1.0 × 10 −4 to 5.0 × 10 −6 at a depth of 1 to 7 μm- Provided is a method for producing an aluminum binder.
본 발명에 따른 결합체는 금속과 수지 간의 점착력을 개선시키고, 인장강도, 열충격 후에도 인장강도가 유지되는 효과가 있다. 또한 수지와의 결합력을 증대시키기 위하여 전처리, 적절한 표면 거칠기, 열처리, 표면코팅 등의 방법을 사용하고 니켈과 트리아진 티올계 유도체를 이용함으로써 금속과 수지와의 결합력이 우수한 금속-수지 결합체를 얻을 수 있다.The binder according to the present invention has the effect of improving the adhesive strength between the metal and the resin, the tensile strength, even after thermal shock tensile strength is maintained. In addition, metal-resin composites having excellent bonding strength between metal and resin can be obtained by using methods such as pretreatment, appropriate surface roughness, heat treatment, and surface coating to increase the bonding strength between resins and nickel and triazine thiol derivatives. have.
도 1은 본 발명의 일실시예에 따라 제조된 인장강도 측정용 설계모형을 도시한다.1 shows a design model for measuring the tensile strength produced according to an embodiment of the present invention.
도 2a 및 도 2b는 본 발명의 일실시예에 따라 제조된 알루미늄막대 사진을 도시한다.2A and 2B show an aluminum rod photograph manufactured according to an embodiment of the present invention.
도 3a 및 도 3b는 본 발명의 일실시예에 따라 제조된 양극 산화 후 사진을 도시하고, 도 3C는 블라스팅한 표면 사진을 도시한다.3A and 3B show photographs after anodization prepared according to one embodiment of the invention, and FIG. 3C shows blasted surface photographs.
도 4a 및 도 4b는 본 발명의 일실시예에 따라 제조된 알루미늄-PPS가 결합된 부품 사진을 도시한다.Figures 4a and 4b shows a picture of the parts combined aluminum-PPS prepared according to an embodiment of the present invention.
도 5는 본 발명의 일실시예에 따라 전기화학적인 막 제조를 위한 순환전압전류 곡선 자료를 도시한다.5 shows cyclic voltammogram data for electrochemical film production according to one embodiment of the present invention.
도 6a 내지 도 6d는 본 발명 실시예 1의 방법으로 제조된 니켈이 도금된 시료와 DB를 코팅한 시료의 X-선 광전자 분광기 분석결과를 도시한다.6A to 6D show the results of X-ray photoelectron spectroscopy analysis of a nickel-plated sample and a DB-coated sample prepared by the method of Example 1 of the present invention.
도 7은 본 발명 실시예 2의 방법으로 제조된 알루미늄의 양극산화 후 Ni 도금 전 시료의 이차이온질량분석기(SIMS) 분석 결과를 도시한다.Figure 7 shows the results of secondary ion mass spectrometry (SIMS) analysis of the sample before Ni plating after anodization of aluminum prepared by the method of Example 2 of the present invention.
도 8은 본 발명에 따른 실시예 1의 방법으로 제조된 Ni 전해도금한 시료의 이차이온질량분석기(SIMS) 분석 결과를 도시한다.8 shows the results of secondary ion mass spectrometry (SIMS) analysis of Ni electroplated samples prepared by the method of Example 1 according to the present invention.
도 9a는 본 발명에 따른 실시예 3의 방법으로 알루미늄 위에 니켈을 전해도금한 후에 알루미늄 니켈 도금층 위에 트리아진 티올을 코팅한 시료의 이차이온질량분석기(SIMS) 분석 결과를 도시하고, 도 9b는 도 9a에 따른 결과를 좀 더 확대하면서 Ni, O의 결과만을 나타내어 Ni-O의 산화막이 형성된 것을 도시한다.FIG. 9A shows a secondary ion mass spectrometry (SIMS) analysis result of a sample coated with triazine thiol on an aluminum nickel plated layer after electroplating nickel on aluminum by the method of Example 3 according to the present invention, and FIG. It shows that the oxide film of Ni-O was formed by only showing the results of Ni and O while further expanding the result according to 9a.
도 10a는 나노 이차이온질량분석기(Nano-SIMS)를 사용하여 알루미늄과 PPS가 결합되어 있는 단면을 촬영한 사진이고, 도 10b 내지 도 10e는 각각 탄소, 질소, 알루미늄 및 황 원소에 대한 원소 이미지 맵핑 사진을 도시한다.10A is a photograph of a cross section in which aluminum and PPS are combined using a nano-ion mass spectrometer (Nano-SIMS), and FIGS. 10B to 10E are elemental image mappings for elements of carbon, nitrogen, aluminum, and sulfur, respectively. Show a picture.
본 발명은, i) 알루미늄; ii) 상기 알루미늄 위에 형성된 니켈; 및 iii) 상기 니켈 상에 트리아진 티올계 유도체 처리 이후 결합된 고분자 수지를 포함하는 고분자 수지-알루미늄 결합체로서, 상기 결합체의 이차이온질량분석기(SIMS) 분석결과 Ni 및 Al 성분이 검출되고, C/Ni, N/Ni, O/Ni 및 S/Ni 각각의 강도비(intensity ratio)가 1 내지 7㎛의 깊이에서 1.0 × 10-4 내지 5.0 × 10-6인 것을 특징으로 한다.The present invention, i) aluminum; ii) nickel formed on the aluminum; And iii) a polymer resin-aluminum binder comprising a polymer resin bonded after treatment with a triazine thiol derivative on the nickel, wherein the Ni and Al components are detected as a result of secondary ion mass spectrometry (SIMS) analysis of the binder, and C / Intensity ratio of each of Ni, N / Ni, O / Ni, and S / Ni is 1.0 × 10 −4 to 5.0 × 10 −6 at a depth of 1 to 7 μm.
고분자 수지와 알루미늄의 결합체는 먼저 알루미늄 기재에 니켈이 형성된 다음 트리아진 티올계 유도체가 처리된다. 이러한 트리아진 티올계 유도체는 알루미늄 및 니켈 금속의 상부에 도포되지만, 결합체의 이차이온질량분석기(SIMS) 분석결과를 살펴보면 니켈과 알루미늄의 사이에도 검출이 된다. 분석결과 Ni은 19.3 ㎛까지 나타나고, 그 이후로는 Al 성분이 검출되기 시작한다. 트리아진 티올 유도체를 도포한 본 발명의 결합체는 니켈 산화물층 위에 S, N, C가 확산된 혼합물의 형태를 나타내고 있다. 특히 이차이온질량분석기의 분석결과, C/Ni, N/Ni, O/Ni 및 S/Ni 각각의 강도비(intensity ratio)가 1 내지 7㎛의 깊이에서 1.0 × 10-4 내지 5.0 × 10-6를 나타내고, 이러한 수치는 결합체의 상당한 깊이(depth)에서도 S, N, O, C가 적절한 수치범위로 존재한다는 것을 의미한다.The binder of the polymer resin and aluminum is first formed with nickel on the aluminum substrate and then treated with a triazine thiol derivative. Such triazine thiol derivatives are applied on top of aluminum and nickel metals, but the secondary ion mass spectrometry (SIMS) analysis results of the binder are also detected between nickel and aluminum. As a result of analysis, Ni appears up to 19.3 μm, after which the Al component begins to be detected. The binder of the present invention coated with the triazine thiol derivative shows the form of a mixture in which S, N, and C are diffused on the nickel oxide layer. In particular, as a result of the analysis of the secondary ion mass spectrometer, the intensity ratio of C / Ni, N / Ni, O / Ni, and S / Ni is 1.0 × 10 −4 to 5.0 × 10 at a depth of 1 to 7 μm. 6 , which means that S, N, O, C are present in the appropriate numerical range even at significant depths of the conjugate.
일반적으로 Ni와 Al의 강도(intensity)가 동일해지는 두께는 1 내지 25㎛인 것이 바람직하다. 이는 니켈이 도포된 상부에 트리아진 티올 유도체가 형성되기 때문에 깊이가 깊은 곳보다는 얕은 곳에서 상기 강도비가 더 큰 값을 나타내는 것이 바람직하기 때문이다.In general, the thickness at which Ni and Al have the same intensity is preferably 1 to 25 µm. This is because since the triazine thiol derivative is formed on the nickel-coated upper portion, it is preferable that the intensity ratio is greater in the shallow region than in the deep region.
본 발명은, i) 알루미늄; ii) 상기 알루미늄 위에 형성된 니켈; 및 iii) 상기 니켈 상에 트리아진 티올계 유도체 처리 이후 결합된 고분자 수지를 포함하는 고분자 수지-알루미늄 결합체로서, 상기 결합체의 X선 광전자 분광기의 분석결과 NiO와 Ni2O3를 포함한 전체함량 중에서 NiO 함량이 13% 이상이고, Ni2O3 함량이 87% 이하인 고분자 수지-알루미늄 결합체를 제공한다.The present invention, i) aluminum; ii) nickel formed on the aluminum; And iii) a polymer resin-aluminum binder comprising a polymer resin bonded after treatment with a triazine thiol derivative on the nickel, and NiO in the total content including NiO and Ni 2 O 3 as a result of analysis of the X-ray photoelectron spectrometer of the binder; A polymer resin-aluminum binder having a content of 13% or more and a Ni 2 O 3 content of 87% or less is provided.
본 발명의 고분자 수지-알루미늄 간 결합체는 X선 광전자 분광기의 분석결과 전체함량 중에서 NiO 함량이 13 % 미만이거나, Ni2O3 함량이 87 %를 초과하는 경우에는 니켈산화물의 함량이 부족하기 때문에 고분자 수지면과 알루미늄 간의 결합력이 약하여 바람직하지 못하다. 여기서 NiO 및 Ni2O3가 존재하는 것은 Ni가 산소와 결합된 형태로 존재하고 이는 수지와 금속 간의 강한 결합력을 나타낸다고 볼 수 있다.In the polymer resin-aluminum conjugate of the present invention, when the NiO content is less than 13% or the Ni 2 O 3 content is more than 87% in the total content of the X-ray photoelectron spectrometer, the polymer is insufficient because the nickel oxide content is insufficient. The bonding force between the water surface and aluminum is weak, which is undesirable. Here, the presence of NiO and Ni 2 O 3 is present in the form in which Ni is combined with oxygen, which indicates a strong bonding force between the resin and the metal.
본 발명의 다른 일 구현예에 따르면, 알루미늄 기재에 탈지 공정 및 블라스팅을 통하여 표면 거칠기를 확보하는 단계; 상기 알루미늄 상에 니켈을 형성하는 단계; 상기 니켈이 도포된 알루미늄에 트리아진 티올계 유도체를 도포하는 단계; 및 상기 트리아진 티올계 유도체가 도포된 니켈 알루미늄 표면에 고분자 수지를 사출하는 단계를 포함하는 고분자 수지-알루미늄 결합체의 제조방법으로서, 상기 결합체의 이차이온질량분석기(SIMS) 분석결과 Ni 및 Al 성분이 검출되고, C/Ni, N/Ni, O/Ni 및 S/Ni 각각의 강도비(intensity ratio)가 1 내지 7㎛의 깊이에서 1.0 × 10-4 내지 5.0 × 10-6인 것을 특징으로 하는 고분자 수지-알루미늄 결합체의 제조방법을 제공한다.According to another embodiment of the invention, the step of securing the surface roughness through the degreasing process and blasting on the aluminum substrate; Forming nickel on the aluminum; Applying a triazine thiol derivative to the nickel-coated aluminum; And injecting a polymer resin onto the surface of nickel aluminum to which the triazine thiol derivative is coated. A method of preparing a polymer resin-aluminum binder, wherein the secondary ion mass spectrometer (SIMS) analysis results indicate that the Ni and Al components are And the intensity ratio of each of C / Ni, N / Ni, O / Ni and S / Ni is 1.0 × 10 −4 to 5.0 × 10 −6 at a depth of 1 to 7 μm. Provided is a method for preparing a polymer resin-aluminum binder.
알루미늄 금속 표면에 수지의 점착력(adhesion)을 높이기 위하여 먼저 산 염기처리를 통한 탈지 과정을 거친다. 구체적으로는 알루미늄을 초음파 세척기 속에서 아세톤 등으로 세척하고 증류수로 수세한 다음 수산화나트륨과 황산의 처리를 거쳐 표면활성화를 거친다. 다음으로 알루미늄 상에 니켈을 형성하기 위한 단계에서 알루미늄 양극 산화방법으로 (Aluminium anodic oxidation)으로 산화막(바람직하게는 50-1500nm)을 만든 후 전기적인 방법으로 니켈 전기도금 처리할 수 있다.In order to increase the adhesion of the resin on the surface of the aluminum metal, it is first subjected to a degreasing process through acid base treatment. Specifically, aluminum is washed with acetone in an ultrasonic cleaner, washed with distilled water, and then surface activated by treatment with sodium hydroxide and sulfuric acid. Next, in the step of forming nickel on aluminum, an oxide film (preferably 50-1500 nm) may be made of aluminum anodic oxidation and then electroplated by nickel.
알루미늄 표면 위에 니켈을 여러 방법으로 코팅하거나 샌드블라스팅(blasting)을 거친 후 적절한 표면 거칠기를 확보한다. 다음으로 알루미늄 금속 위에 니켈 (Ni), 니켈-인 또는 니켈-인-크롬을 코팅한다. 코팅방법으로는 도금 (electroplating), 펄스 레이저 증착법(PLD), 플라즈마 코팅, 스프레이 코팅, 딥 (immersion) 코팅, 플로우 코팅, 스핀코팅법으로 막을 제조한다. 코팅의 두께는 10nm - 5,000 nm인 것이 바람직하다. 니켈이 형성된 막에 고분자 수지를 그대로 점착할 수도 있고, 다른 한편으로는 니켈이 형성된 상부에 블라스팅 공정을 추가적으로 진행하여 적절한 거칠기를 확보할 수도 있다. 블라스팅시 도금 표면에 적절한 거칠기를 위해 알루미나 입자 크기는 50 내지 250㎛ 크기를 이용하고 5초에서 1분까지 실시할 수 있다.Nickel is coated or sandblasted on the aluminum surface in various ways to ensure proper surface roughness. Next, nickel (Ni), nickel-phosphorus or nickel-phosphorus-chromium is coated on the aluminum metal. As a coating method, a film is prepared by electroplating, pulsed laser deposition (PLD), plasma coating, spray coating, immersion coating, flow coating, and spin coating. The thickness of the coating is preferably 10 nm-5,000 nm. The polymer resin may be adhered to the nickel-formed film as it is, or on the other hand, an additional blasting process may be further performed on the nickel-formed upper portion to secure appropriate roughness. Alumina particle size can be performed from 5 seconds to 1 minute using 50-250 μm size for proper roughness on the plating surface during blasting.
이어서 니켈이 도금 처리된 알루미늄에 대하여 표면 점착 가능성을 높이기 위해 선택적으로 열처리할 수 있다. 여기서 열처리는 반드시 거쳐야 하는 공정이 아니라 선택적으로 이용될 수 있다. 열처리의 온도는 100 내지 500℃ 온도로 10초 내지 30분간 실시할 수 있고, 바람직하게는 열처리의 온도가 250 내지 450℃이다. 열처리의 온도가 100℃ 미만인 경우에는 니켈의 산화상태가 덜 진행되어 바람직하지 못하고, 500℃를 초과하는 경우에는 니켈 산화막의 두께가 너무 두꺼워져서 바람직하지 못하다.Nickel may then be optionally heat treated to increase the likelihood of surface adhesion to the plated aluminum. Here, the heat treatment may be selectively used, not necessarily a process. The temperature of the heat treatment can be performed at 100 to 500 ° C for 10 seconds to 30 minutes, and preferably the temperature of the heat treatment is 250 to 450 ° C. If the temperature of the heat treatment is less than 100 ° C., the oxidation state of nickel is less advanced, which is not preferable. If the temperature of the heat treatment is higher than 500 ° C., the thickness of the nickel oxide film is too thick, which is not preferable.
다음으로 알루미늄 상에 니켈이 처리된 금속 표면에 트리아진 티올(triazine thiol)계 유도체 등을 도포한다. 트리아진 티올계 유도체는 다음 화학식 1로 표시되는 화합물인 것이 바람직하다.Next, a triazine thiol derivative or the like is applied to the nickel-treated metal surface on aluminum. The triazine thiol derivative is preferably a compound represented by the following formula (1).
[화학식 1][Formula 1]
Figure PCTKR2012004671-appb-I000001
Figure PCTKR2012004671-appb-I000001
상기 식에서,Where
M은 H, Na, Li, K, 지방족 1차, 2차, 3차 아민, 4차 암모늄이고, M is H, Na, Li, K, aliphatic primary, secondary, tertiary amine, quaternary ammonium,
R은 -SM, -OR1, -SR1, -NHR1, -N(R1)2로서 R1은 알킬그룹, 알켄닐그룹, 페닐그룹, 페닐알킬그룹, 알킬페닐그룹, 및 시클로알킬그룹으로 이루어진 군에서 선택된 하나이다.R is -SM, -OROne, -SROne, -NHROne, -N (ROne)2As ROneIs an alkyl group, an alkenyl group, a phenyl group, a phenylalkyl group, an alkylphenyl group, and a cycloalkyl group. It is one selected from the group consisting of.
여기서, 상기 트리아진 티올계 유도체는 이에 한정되는 것은 아니지만, 예를 들어, 1,3,5-트리아진-2,4,6-트리티올(TT), 1,3,5-트리아진-2,4,6-트리티올 모노소듐 (TTN), 1,3,5-트리아진-2,4,6-트리티올 트리에탄올 아민(FTEA), 6-아닐리노-1,3,5-트리아진-2,4-디티올(AF), 6-아닐리노-1,3,5-트리아진-2,4-디티올 모노소듐(AFN), 6-디부틸아미노-1,3,5-트리아진-2,4-디티올(DB), 6-디부틸아미노-1,3,5-트리아진-2,4-디티올 모노소듐(DBN), 6-디아릴아미노-1,3,5-트리아진-2,4-디티올(DA), 6-디아릴아미노-1,3,5-트리아진-2,4-디티올 모노소듐(DAN), 1,3,5-트리아진-2,4,6-트리티올 디(테트라부틸 암모늄염)(F2A), 6-디부틸아미노-1,3,5-트리아진-2,4-디티올 테트라부틸 암모늄염(DBA), 6-디티오옥틸아미노-1,3,5-트리아진-2,4-디티올(DO), 6-디티오옥틸아미노-1,3,5-트리아진-2,4-디티올모노소듐(DON), 6-디라우릴아미노-1,3,5-트리아진-2,4-디티올(DL), 6-디라우릴아미노-1,3,5-트리아진-2,4-디티올 모노소듐(DLN), 6-스테아릴아미노-1,3,5-트리아진-2,4-디티올(ST), 6-스테아릴아미노-1,3,5-트리아진-2,4-디티올 모노포타슘(STK), 6-올레일아미노-1,3,5-트리아진-2,4-디티올(DL) 및 6-올레일아미노-1,3,5-트리아진-2,4-디티올모노포타슘(OLK)로 이루어진 군으로부터 선택된 하나 이상의 화합물이 바람직하다.Here, the triazine thiol derivative is not limited thereto, for example, 1,3,5-triazine-2,4,6-tritriol (TT), 1,3,5-triazine-2 , 4,6-Tritriol monosodium (TTN), 1,3,5-triazine-2,4,6-tritriol triethanol amine (FTEA), 6-anilino-1,3,5-triazine- 2,4-dithiol (AF), 6-anilino-1,3,5-triazine-2,4-dithiol monosodium (AFN), 6-dibutylamino-1,3,5-triazine -2,4-dithiol (DB), 6-dibutylamino-1,3,5-triazine-2,4-dithiol monosodium (DBN), 6-diarylamino-1,3,5- Triazine-2,4-dithiol (DA), 6-diarylamino-1,3,5-triazine-2,4-dithiol monosodium (DAN), 1,3,5-triazine-2 , 4,6-Tritriol di (tetrabutyl ammonium salt) (F2A), 6-dibutylamino-1,3,5-triazine-2,4-dithiol tetrabutyl ammonium salt (DBA), 6-dithiooctyl Amino-1,3,5-triazine-2,4-dithiol (DO), 6-dithiooctylamino-1,3,5-triazine-2,4-dithiol monosodium (DON), 6 Dilaurylamino-1, 3,5-triazine-2,4-dithiol (DL), 6-dilaurylamino-1,3,5-triazine-2,4-dithiol monosodium (DLN), 6-stearylamino- 1,3,5-triazine-2,4-dithiol (ST), 6-stearylamino-1,3,5-triazine-2,4-dithiol monopotassium (STK), 6-oleyl Group consisting of amino-1,3,5-triazine-2,4-dithiol (DL) and 6-oleylamino-1,3,5-triazine-2,4-dithiol monopotassium (OLK) Preference is given to one or more compounds selected from.
상기 트리아진 티올계 유도체를 이용하여 표면처리하는 방법은 화학적 방법과 전기화학적 방법으로 나눌 수 있다. Surface treatment using the triazine thiol derivatives may be divided into chemical and electrochemical methods.
화학적 방법은 트리아진 티올계 유도체들을 일정한 농도로 물을 포함한 유기 용매에 용해하여 스프레이 코팅, 딥코팅, 플로우 코팅, 스핀 코팅 등의 방법을 통하여 코팅한다. 바람직한 두께는 10nm 내지 5㎛이다. 트리아진 티올은 니켈의 상부에도 형성되지만, 니켈의 하부와 알루미늄의 상부까지 침투하기 때문에 여기서 언급되는 바람직한 두께는 니켈 상부의 두께를 의미하는 것이다. In the chemical method, triazine thiol derivatives are dissolved in an organic solvent including water at a constant concentration and coated by spray coating, dip coating, flow coating, or spin coating. Preferred thickness is 10 nm to 5 mu m. Triazine thiols are also formed on top of nickel, but the preferred thickness referred here refers to the thickness of nickel top since it penetrates to the bottom of nickel and to the top of aluminum.
전기화학적 방법은 순환전압전류법 (CV, cyclic voltametry)으로 -0.5V 내지 2.0V vs. SCE 범위로 여러 번 순환하는 방법, 3V 내지 50V 사이를 가해주는 정전압 방법, 0.05mA - 30mA의 전류밀도를 주사하는 정전류 방법 등으로 코팅할 수 있다.Electrochemical method is a cyclic voltametry (CV) -0.5V to 2.0V vs. It can be coated by several cycles in the SCE range, by a constant voltage method that applies between 3V and 50V, and by a constant current method that scans current densities from 0.05mA to 30mA.
트리아진 티올계 유도체 이외의 다른 코팅 시약으로는 2,5-디머캅토-1,3,4 티아디아졸, 디티오 피페라진, 2,4-디티오피리미딘, 테트라티오 에틸렌디아민, 폴리에틸렌 이민 유도체, 디메틸 에틸렌디아민 등을 예로 들 수 있다. 이러한 코팅 시약들도 트리아진 티올계 유도체와 동일한 수준의 농도 및 온도 하에서 니켈 표면 상에서 처리할 수 있다.Coating reagents other than triazine thiol derivatives include 2,5-dimercapto-1,3,4 thiadiazole, dithiopiperazine, 2,4-dithiopyrimidine, tetrathioethylenediamine, and polyethylene imine derivatives. And dimethyl ethylenediamine etc. are mentioned. These coating reagents can also be treated on the nickel surface at the same concentration and temperature as the triazine thiol based derivatives.
용매로서는 메탄올, 에탄올, 물 또는 다양한 다른 용매 시스템 및 혼합용매도 사용 가능하다. 유기물이 코팅된 막은 고분자화되어 수지와의 결합을 용이하게 하기 위하여 벤조일퍼옥사이드(BPO) 또는 아조비스이소부티로니트릴(AIBN)와 같은 개시제를 용매에 적절한 농도로 녹여 첨가하고, UV 조사, 광경화(photo-curing), 열적 (thermal), 전기화학적인 방법 등으로 처리할 수 있다.As the solvent, methanol, ethanol, water or various other solvent systems and mixed solvents can also be used. The organic-coated film is polymerized to add an initiator such as benzoyl peroxide (BPO) or azobisisobutyronitrile (AIBN) in an appropriate concentration in a solvent in order to facilitate the bonding with the resin, and UV irradiation, It can be treated by photo-curing, thermal, or electrochemical methods.
이 표면 위에 고분자 수지를 적절한 온도와 압력으로 원하는 여러 모형의 부품으로 금형 사출한다. 고분자 수지는 이에 한정되는 것은 아니지만, 바람직하게는 폴리페닐렌설파이드(PPS), 폴리부틸렌테레프탈레이트(PBT), 폴리이미드(PI), 액정폴리머(LCP), 폴리에테르에테르케톤(PEEK), 폴리에테르케톤(PEK), 에틸렌프로필렌 디엔메틸렌고무(EPDM), 아크릴고무(ACM), 폴리프로필렌과 에틸렌/프로필렌디엔메틸렌 고무(PP + EPDM)를 예로 들 수 있다. 상기 수지를 적절한 온도와 압력으로 원하는 여러 모형의 부품으로 금형 사출하여 고강도의 점착이 가능하게 된다.On this surface, polymer resin is injected into various desired parts at appropriate temperatures and pressures. The polymer resin is not limited thereto, but is preferably polyphenylene sulfide (PPS), polybutylene terephthalate (PBT), polyimide (PI), liquid crystal polymer (LCP), polyether ether ketone (PEEK), poly Examples include ether ketone (PEK), ethylene propylene diemethylene rubber (EPDM), acrylic rubber (ACM), polypropylene and ethylene / propylene diemethylene rubber (PP + EPDM). The resin is injected into a mold of various models at a suitable temperature and pressure to enable high-strength adhesion.
또한 수지와의 결합력을 증대시키기 위하여 전처리, 적절한 표면 거칠기, 열처리, 표면코팅 등의 방법을 사용함으로써 종래의 기술과 차별화하여 수지와의 결합력이 우수한 금속-수지 제조 방법으로 기존 방법을 대체할 수 있다.In addition, by using a method such as pretreatment, appropriate surface roughness, heat treatment, surface coating, etc. to increase the bonding strength with the resin, it is possible to replace the existing method with a metal-resin manufacturing method having excellent bonding strength with the resin, different from the conventional technology. .
이하에서 실시예를 들어 본 발명을 더욱 상세히 설명하나 본 발명의 범위가 이하의 실시예에 한정되는 것은 아니다.Hereinafter, the present invention will be described in more detail with reference to Examples, but the scope of the present invention is not limited to the following Examples.
실시예EXAMPLE
실시예 1Example 1
알루미늄 (C1100)을 초음파세척기 속에서 아세톤으로 5분간 1차 세척하고, 증류수로 수세한 다음, 10% M NaOH 용액 속에 1분간 처리 후 증류수로 세척하고, 0.5M H2SO4 용액 속에 1분간 상온에서 처리하여 표면 활성화 과정을 거친다. 탈지된 알루미늄 전기적인 방법으로 20 ㎛ 두께로 니켈 전기도금 처리를 한다. 니켈 도금 처리된 알루미늄은 블라스팅을 30초간 실시하여 일정 수준의 표면 거칠기를 시행하고 증류수속에서 초음파 세척을 거친 다음 에탄올 용액에서 세척하고 증류수로 세척 건조한다. The aluminum (C1100) was first washed with acetone for 5 minutes in an ultrasonic cleaner, washed with distilled water, and then treated with distilled water for 1 minute in a 10% M NaOH solution, and washed for 1 minute at room temperature in 0.5MH 2 SO 4 solution. Treatment and surface activation. Nickel electroplating is carried out to a thickness of 20 μm by degreasing aluminum electrical method. Nickel-plated aluminum is subjected to blasting for 30 seconds to perform a certain level of surface roughness, subjected to ultrasonic cleaning in distilled water, washed in ethanol solution, washed with distilled water and dried.
금속 표면 처리 후 0.1M NaOH 수용액 속에 1 mM 농도로 6-디부틸렌-1,3,5-트리아진-2,4-디티올(DB)을 습식법으로 5분간 디핑(dipping)하여 막을 제조하고 증류수로 세척 후 건조한다. 유기종이 코팅된 막은 고분자화 되어 수지와의 결합을 용이하게 하기 위해 0.1M 벤조일퍼옥사이드를 증류수를 용매로 녹여 10초간 처리한 다음 증류수로 세척한다. 수지와의 결합으로는 코팅 표면 위에 PPS (SK chemical, Ecotran SPA 2130G NC 혹은 TORAY TORELINA) 수지를 금형온도 180℃, 사출온도 300℃로 금형 사출하였다.After the metal surface treatment, the film was prepared by dipping 6-dibutylene-1,3,5-triazine-2,4-dithiol (DB) for 5 minutes in a 0.1 M NaOH aqueous solution at a concentration of 1 minute by a wet method. Wash with distilled water and dry. The membrane coated with the organic species is polymerized to dissolve 0.1 M benzoyl peroxide in a solvent for 10 seconds to dissolve in distilled water to facilitate bonding with the resin, and then washed with distilled water. In combination with the resin, PPS (SK chemical, Ecotran SPA 2130G NC or TORAY TORELINA) resin was injected on the coating surface at a mold temperature of 180 ° C and an injection temperature of 300 ° C.
실시예 2Example 2
알루미늄 (C1100)을 초음파세척기 속에서 아세톤으로 5분간 1차 세척하고, 증류수로 세척하였다. 그 후 10% NaOH 용액 속에 2분간 처리하여 탈지 과정을 거친다. 이 후 0.5M H2SO4 용액으로 처리하여 표면을 활성화한다. 탈지 활성화된 알루미늄은 알루미늄 양극 산화방법(Aluminium anodic oxidation)으로 50-1500nm의 산화막을 만든 후(도 9a의 SIMS 분석결과 참고), 전기적인 방법으로 20㎛ 두께로 니켈 전기도금 처리를 한다. 니켈 도금 처리된 알루미늄은 또한 표면 점착성을 높이기 위해 50 ㎛ 크기의 알루미나로 1분간 블라스팅 처리를 한 후 에탄올 용액 속에서 초음파 세척기로 5분간 세척한 후 증류수로 2차 세척을 하였다.Aluminum (C1100) was first washed with acetone for 5 minutes in an ultrasonic cleaner and washed with distilled water. After 2 minutes in 10% NaOH solution is subjected to a degreasing process. The surface is then activated by treatment with 0.5MH 2 SO 4 solution. The deactivated aluminum is made of 50-1500 nm oxide film by aluminum anodic oxidation (see SIMS analysis of FIG. 9A), and then subjected to nickel electroplating to a thickness of 20 μm by an electrical method. Nickel plated aluminum was also blasted with alumina of 50 μm in size for 1 minute in order to increase the surface adhesion, and then washed for 5 minutes with an ultrasonic cleaner in ethanol solution, followed by secondary washing with distilled water.
금속 표면 처리 후 0.1M NaOH 수용액 속에 1 mM 농도로 6-디부틸렌-1,3,5-트리아진-2,4-디티올(DB) 막을 전위범위 -0.5V 내지 1.50V vs. SCE, 알루미늄을 작업전극(working electrode)으로 SUS 304를 지시전극 (counter electrode) 하여 순환전압전류법으로 10회 순환하여 막을 제조하고 증류수로 세척 후 건조한다. 도 5는 5회 순환시킨 순환전압전류 곡선에 대한 그림을 도시한다. 도 5를 참조하면, 전압에 따라 일정한 면적을 그리면서 순환하는 전류밀도를 나타내고 있다.After the metal surface treatment, the 6-dibutylene-1,3,5-triazine-2,4-dithiol (DB) membrane was prepared at a concentration of -0.5 V to 1.50 V vs. 1 mM in 0.1 M aqueous NaOH solution. SCE and aluminum were circulated by circulating voltammetry 10 times with SUS 304 as a working electrode and a counter electrode to produce a membrane, washed with distilled water, and dried. 5 shows a diagram of a cyclic voltammogram curve cycled five times. Referring to FIG. 5, a current density circulating while drawing a constant area according to voltage is shown.
유기종이 코팅된 막은 고분자화되어 수지와의 결합을 용이하게 하기 위해 20wt% 과산화수소수에 5분간 처리한 다음 증류수로 세척한다. 수지와의 결합으로는 코팅 표면 위에 PPS (SK chemical, Ecotran SPA 2130G NC 혹은 TORAY TORELINA) 수지를 금형온도 180℃, 사출온도 300℃로 금형 사출하였다.The membrane coated with the organic species is polymerized and treated with 20wt% hydrogen peroxide for 5 minutes to facilitate bonding with the resin and then washed with distilled water. In combination with the resin, PPS (SK chemical, Ecotran SPA 2130G NC or TORAY TORELINA) resin was injected on the coating surface at a mold temperature of 180 ° C and an injection temperature of 300 ° C.
실시예 3Example 3
알루미늄 (C1100) 전해연마는 에탄올과 과염소산의 혼합용액에서 상온, 인가전압 30V, 공정시간 20분으로 알루미늄 기판 표면의 자연 산화막과 불순물을 제거하였다. 알루미늄 (C1100)을 초음파세척기 속에서 아세톤으로 5분간 1차 세척하고, 증류수로 세척하였다. 그 후 전해연마, 탈지 활성화된 알루미늄은 전기적인 방법으로 15 ㎛ 두께로 니켈 전기도금 처리를 한다. 니켈 도금 처리된 알루미늄은 또한 표면 점착성을 높이기 위해 50 ㎛ 크기의 알루미나로 1분간 블라스팅 처리를 한 후 에탄올 용액 속에서 초음파 세척기로 5분간 세척한 후 증류수로 2차 세척을 하였다. In electrolytic polishing of aluminum (C1100), the natural oxide film and impurities on the surface of the aluminum substrate were removed at a room temperature, an applied voltage of 30V, and a process time of 20 minutes in a mixed solution of ethanol and perchloric acid. Aluminum (C1100) was first washed with acetone for 5 minutes in an ultrasonic cleaner and washed with distilled water. The electropolishing and degreasing activated aluminum is then subjected to nickel electroplating with a thickness of 15 μm by an electrical method. Nickel plated aluminum was also blasted with alumina of 50 μm in size for 1 minute in order to increase the surface adhesion, and then washed for 5 minutes with an ultrasonic cleaner in ethanol solution, followed by secondary washing with distilled water.
금속 표면 처리 후 0.1M NaOH 수용액 속에 1 mM 농도로 6-디부틸렌-1,3,5-트리아진-2,4-디티올(DB) 막을 전위범위 -0.6V - 2.0V vs. SCE, 알루미늄을 작업전극(working electrode)으로 SUS 304를 지시전극 (counter electrode)하여 순환전압전류법으로 10회 순환하여 막을 제조하고 증류수로 세척 후 건조한다. 수지와의 결합으로는 코팅 표면 위에 PPS (SK chemical, Ecotran SPA 2130G NC 혹은 TORAY TORELINA) 수지를 금형온도 180℃, 사출온도 300℃로 금형 사출하였다. After the metal surface treatment, the 6-dibutylene-1,3,5-triazine-2,4-dithiol (DB) membrane was prepared at a concentration of -0.6 V to 2.0 V vs. 1 mM in 0.1 M aqueous NaOH solution. SCE, aluminum is SUS 304 as the working electrode (working electrode) and the counter electrode (counter electrode) to circulate 10 times by cyclic voltammetry to prepare a membrane, washed with distilled water and dried. In combination with the resin, PPS (SK chemical, Ecotran SPA 2130G NC or TORAY TORELINA) resin was injected on the coating surface at a mold temperature of 180 ° C and an injection temperature of 300 ° C.
비교예 1Comparative Example 1
알루미늄(C1100)을 0.1M HNO3 용액 속에 3분간 처리 후 증류수로 세척하고, 알카리 침지제에 5분간 처리하여 통한 탈지 과정을 거쳤다. 탈지된 알루미늄은 전기적인 방법으로 20㎛ 두께로 알루미늄 전기도금 처리하였다. 니켈 도금 처리된 알루미늄은 블라스팅을 30초간 실시하여 일정 수준의 표면 거칠기를 시행한 다음 증류수 속에서 초음파 세척을 거친 다음 에탄올 용액에서 세척하고 증류수로 세척 건조하였다.Aluminum (C1100) was treated with 0.1M HNO 3 solution for 3 minutes, washed with distilled water, and treated with an alkaline dipping agent for 5 minutes to undergo degreasing. The degreased aluminum was electroplated aluminum to a thickness of 20 μm by an electrical method. Nickel-plated aluminum was subjected to blasting for 30 seconds to perform a certain level of surface roughness, then subjected to ultrasonic cleaning in distilled water, washed in ethanol solution, washed with distilled water and dried.
유기물이 코팅된 막은 고분자화되어 수지와의 결합을 용이하게 하기 위해 0.1M 벤조일퍼옥사이드를 증류수를 용매로 녹여 10초간 처리한 다음 증류수로 세척하였다. 수지와의 결합으로는 코팅 표면 위에 PPS (SK chemical, Ecotran SPA 2130G NC 또는 TORAY TORELINA) 수지를 금형온도 180℃, 사출온도 300℃로 금형 사출하였다. The membrane coated with the organic material was polymerized to dissolve 0.1 M benzoyl peroxide in a solvent for 10 seconds to dissolve in distilled water to facilitate bonding with the resin and then washed with distilled water. In combination with the resin, PPS (SK chemical, Ecotran SPA 2130G NC or TORAY TORELINA) resin was injected on the coating surface at a mold temperature of 180 ° C and an injection temperature of 300 ° C.
비교예 2Comparative Example 2
알루미늄(C1100)을 젖은 사포(# 1200)로 처리한 다음, 아세톤으로 세척하고, 증류수로 세척하였다. 그 후 0.1M HNO3 용액 속에 3분간 처리 후 증류수로 세척하고, 알카리 침지제에 5분간 처리를 하여 탈지 과정을 거쳤다. 탈지된 알루미늄은 블라스팅 처리를 한 후 에탄올 용액 속에서 초음파 세척기로 세척한 후 증류수로 2차 세척을 하였다. Aluminum (C1100) was treated with wet sandpaper (# 1200), then washed with acetone and with distilled water. Thereafter, the solution was treated with 0.1 M HNO 3 solution for 3 minutes, washed with distilled water, and treated with alkaline dipping agent for 5 minutes to undergo degreasing. The degreased aluminum was blasted, washed with an ultrasonic cleaner in ethanol solution, and then washed twice with distilled water.
수지와의 결합을 용이하게 하기 위해 5wt% 과산화수소수에 5분간 처리한 다음 증류수로 세척하였다. 수지와의 결합으로는 코팅 표면 위에 PPS(SK chemical, Ecotran SPA 2130G NC 또는 TORAY TORELINA) 수지를 금형온도 180℃, 사출온도 300℃로 금형 사출하였다.To facilitate bonding with the resin, 5 wt% hydrogen peroxide was treated for 5 minutes and then washed with distilled water. As a combination with the resin, PPS (SK chemical, Ecotran SPA 2130G NC or TORAY TORELINA) resin was injected onto the coating surface at a mold temperature of 180 ° C and an injection temperature of 300 ° C.
도 2a 및 도 2b는 본 발명의 일실시예에 따라 인강강도 측정에 사용하기 위해 제조된 알루미늄 막대 사진을 나타낸다. 도 3A 내지 도 3C에는 실시예 2의 양극산화 조건을 달리하여 블라스팅한 표면의 전자현미경 사진을 나타낸다. 도 4는 본 발명의 일실시예에 따라 인강강도 측정에 사용된 알루미늄-PPS가 결합된 부품 사진을 나타낸다. Figures 2a and 2b shows a picture of an aluminum rod prepared for use in the measurement of the tensile strength in accordance with an embodiment of the present invention. 3A to 3C show electron micrographs of the surface blasted under different anodization conditions of Example 2. FIG. Figure 4 shows a picture of the parts combined with aluminum-PPS used in the measurement of the tensile strength according to an embodiment of the present invention.
이하에서는 실시예 1 ~ 3 및 비교예 1, 2에 따른 X-선 광전자 분광기 분석, 이차이온질량분석기(SIMS) 및 인장강도에 대한 분석 및 실험자료를 나타내고 그 특성을 살펴보고자 한다.Hereinafter, X-ray photoelectron spectroscopy analysis, secondary ion mass spectrometry (SIMS) and tensile strength analysis and experimental data according to Examples 1 to 3 and Comparative Examples 1 and 2 will be described and the characteristics thereof will be described.
X-선 광전자 분광기 분석결과X-ray photoelectron spectroscopy analysis
도 6a 내지 도 6d는 본 발명의 실시예 1에 있어서 X-선 광전자 분광기 (X-ray photoelectron spectroscopy) 분석 결과를 나타낸다. 이 분석을 위해서 장비는 영국의 Themo Electronic Corporation사의 Theta probe XPS를 사용하였다. X-선 소스는 AlKa(hv=1486.6eV)를 사용하였으며, X-선 에너지는 15 kV, 400 ㎛의 분석면적으로 분석하였다.6A to 6D show the results of X-ray photoelectron spectroscopy analysis in Example 1 of the present invention. For this analysis, the instrument used Theta probe XPS from Themo Electronic Corporation of the United Kingdom. As the X-ray source, AlKa (hv = 1486.6 eV) was used, and the X-ray energy was analyzed with an analysis area of 15 kV and 400 μm.
도 6a 내지 도 6d를 참조하면, 알루미늄에 니켈을 도금한 시료의 경우(도 6a) survey scan에서 Ni, C, O 가 검출되었으며, Ni의 피크 fitting 결과(도 6c) 산소와 결합하지 않은 Ni 금속 상이 69.5%, 산소와 결합한 NiO상이 10%, 그리고 Ni2O3 상이 21% 정도 나타난다. 니켈 도금층 위에 트리아진 디티올을 코팅한 시료의 분석의 경우(도 6b) survey scan에서 Ni, O, C, N, S, Na 이 검출되었으며, Ni의 피크 fitting 결과(도 6d) 산소와 결합한 NiO 상이 13.2%, 그리고 Ni2O3 상이 86.8%로 트리아진 디티올을 코팅하지 않은 것과는 확연한 차이를 나타내며, PPS와의 결합력이 우수한 NiO와 Ni2O3에 의해 결합력이 개선되는 것을 알 수 있었다.6A to 6D, in the case of nickel plated aluminum (FIG. 6A), Ni, C, and O were detected in a survey scan, and peak fitting results of Ni (FIG. 6C) were not combined with oxygen. 69.5% phase, 10% NiO phase combined with oxygen, and 21% Ni 2 O 3 phase. In the analysis of the sample coated with triazine dithiol on the nickel plated layer (FIG. 6b), Ni, O, C, N, S, and Na were detected in a survey scan, and the peak fitting result of Ni (FIG. 6d) was combined with oxygen. The phase was 13.2% and the Ni 2 O 3 phase was 86.8%, which is a significant difference from the non-triazine dithiol coating, and the binding strength was improved by NiO and Ni 2 O 3 having excellent binding force with PPS.
이차이온질량분석기(SIMS) 분석 결과Secondary ion mass spectrometry (SIMS) analysis results
도 7은 본 발명의 알루미늄 위에 니켈이 도금된 실시예 1의 이차이온질량분석기(SIMS) 분석 결과를 나타낸다. 이차이온질량분석장비는 프랑스의 CAMECA IMS-6f Magnetic Sector SIMS가 사용되었으며, 분석 조건은 Cs+ Gun, Impact Energy:5.0keV, Current: 100nA, Raster Size: 200㎛ x 200㎛, 분석 area 30㎛, Detected Ion: 133Cs12C+ , 133Cs14N+ , 133Cs16O+ , 133Cs27Al+ ,133Cs34S+ , 133Cs58Ni+ 이다. 전기도금에 의해서 Ni이 Al 상부에 19.3um 두께로 형성되었음을 확인할 수 있다.7 shows the results of secondary ion mass spectrometry (SIMS) analysis of Example 1 plated with nickel on aluminum of the present invention. For secondary ion mass spectrometer, CAMECA IMS-6f Magnetic Sector SIMS of France was used, and the analysis conditions were Cs + Gun, Impact Energy: 5.0keV, Current: 100nA, Raster Size: 200㎛ x 200㎛, Analysis area 30㎛, Detected Ion: 133 Cs 12 C + , 133 Cs 14 N + , 133 Cs 16 O + , 133 Cs 27 Al + , 133 Cs 34 S +, 133 Cs 58 Ni + . It can be confirmed that Ni was formed to a thickness of 19.3um on the Al by electroplating.
도 7을 참조하면, 본 발명의 실시예 2의 방법으로 제조된 알루미늄 양극산화방법(Aluminium anodic oxidation)으로 제조된 시료의 니켈 도금 전의 이차이온질량분석기(SIMS) 분석 결과를 나타내었다. SIMS 분석을 통해서 알루미늄 양극산화에 의해서 알루미늄의 표면에 1.48um의 알루미늄 산화층이 형성되었으며, DB와의 결합으로 탄소가 알루미늄 산화층으로 확산하여 430nm의 결합층이 형성된 것을 확인하였다. 도 7에서 430nm 결합층은 Carbon이 확산되어 AlOCx Film이 형성된 층을 의미하고 이것은 Carbon층이 높게 검출되는 두께를 의미한다. Referring to FIG. 7, secondary ion mass spectrometry (SIMS) analysis results of nickel prepared samples of aluminum anodic oxidation prepared by the method of Example 2 of the present invention are shown. SIMS analysis showed that an aluminum oxide layer of 1.48 um was formed on the surface of aluminum by aluminum anodization, and carbon was diffused into the aluminum oxide layer by bonding with DB to form a bonding layer of 430 nm. In FIG. 7, the 430 nm bonding layer refers to a layer in which carbon is diffused to form an AlOCx film, which means a thickness of which a carbon layer is detected to be high.
도 8은 본 발명에 따라 실시예 1로 알루미늄 위에 니켈을 전해도금한 이차이온질량분석기(SIMS) 분석 결과를 나타낸다. 도 8을 참조하면, 약 20 ㎛ 깊이까지 Ni 성분층이 분포하게 된다.Figure 8 shows the secondary ion mass spectrometer (SIMS) analysis results of electroplating nickel on aluminum in Example 1 according to the present invention. Referring to FIG. 8, the Ni component layer is distributed to a depth of about 20 μm.
도 9a는 본 발명에 따라 실시예 3으로 알루미늄 위에 니켈을 전해도금한 후 알루미늄 니켈 도금층 위에 트리아진 디티올을 코팅한 시료의 이차이온질량분석기(SIMS) 분석 결과를 나타내었다. 도 9a를 참조하면, 결합체의 이차이온질량분석기(SIMS) 분석결과 Ni 및 Al 성분이 검출되었고, C/Ni, N/Ni, O/Ni 및 S/Ni의 강도비(intensity ratio)가 1 내지 7㎛의 깊이에서 각각 1.33 × 10-4, 8.34 × 10-6, 4.39 × 10-5, 7.44 × 10-6인 것으로 나타났다.FIG. 9a shows a secondary ion mass spectrometry (SIMS) analysis result of a sample coated with triazine dithiol on an aluminum nickel plating layer after electroplating nickel on aluminum in Example 3 according to the present invention. Referring to FIG. 9A, as a result of secondary ion mass spectrometry (SIMS) analysis of the conjugate, Ni and Al components were detected, and intensity ratios of C / Ni, N / Ni, O / Ni, and S / Ni were 1 to 1. 1.33 × 10 each at a depth of 7 μm-4, 8.34 × 10-6, 4.39 × 10-5, 7.44 × 10-6Appeared to be.
도 9b는 도 9a에 따른 결과를 더욱 확대하여 나타낸 것으로서, Ni와 O만을 표시한 것이다. 도 9b를 참조하면, 니켈 성분층 두께는 13 ㎛인 것으로 확인되며, Ni 성분층의 표면에는 40nm 두께의 Ni-O의 산화막이 형성되어 니켈 코팅층과 트리아진 티올의 결합이 원활하게 되도록 하는 것으로 확인되었다.FIG. 9B is an enlarged view of the result of FIG. 9A, which shows only Ni and O. FIG. Referring to FIG. 9B, the thickness of the nickel component layer was confirmed to be 13 μm, and an oxide film of Ni—O having a thickness of 40 nm was formed on the surface of the Ni component layer to confirm that the nickel coating layer and the triazine thiol were smoothly bonded. It became.
인장강도 측정 및 결과Tensile Strength Measurement and Results
실시예 1 ~ 3, 비교예 1, 2의 시료를 이용하여 인장강도를 측정하였다. 도 1은 본 발명의 일 실시예에 따른 인장강도 측정용 설계모형을 도시한다. 알루미늄(2)과 고분자 수지(3)가 결합되어 있고, 접합면(1)에서의 인장강도를 측정하였다. 23℃에서 0.1mm/min의 속도로 측정하였다. 측정결과를 다음의 표 3에 도시하였다.Tensile strength was measured using the samples of Examples 1 to 3 and Comparative Examples 1 and 2. 1 shows a design model for measuring the tensile strength according to an embodiment of the present invention. Aluminum (2) and polymer resin (3) were bonded to each other, and the tensile strength at the bonding surface (1) was measured. It measured at the speed of 0.1 mm / min at 23 degreeC. The measurement results are shown in Table 3 below.
표 1
Maximum Load(N) nsile stress at Maximum Load(MPa)
실시예 1 890 25
실시예 2 1,350 38
실시예 3 1,330 37
비교예 1 665 16
비교예 2 238 6
Table 1
Maximum Load (N) nsile stress at Maximum Load (MPa)
Example 1 890 25
Example 2 1,350 38
Example 3 1,330 37
Comparative Example 1 665 16
Comparative Example 2 238 6
표 1을 참조하면, 인장강도의 실험결과 실시예 1 ~ 3은 비교예 1, 2에 비하여 인장강도가 우수하게 나타난다. 본 실시예 1의 습식법으로 5분간 디핑(dipping)하여 막을 제조한 경우보다 실시예 2에 따라 알루미늄 후 양극산화, 니켈 도금 및 블라스팅 처리를 하거나 실시예 3에 따라 니켈 도금 및 블라스팅 처리를 했을 경우가 인장강도가 더욱 우수한 특성을 나타내었다. 따라서 본 발명에 따른 고분자 수지-알루미늄 결합체는 종래기술에 비하여 인장강도가 개선되는 것을 확인할 수 있다.Referring to Table 1, Experimental Results of Tensile Strength Examples 1 to 3 show better tensile strength than Comparative Examples 1 and 2. When the film was prepared by dipping for 5 minutes by the wet method of Example 1, anodization, nickel plating and blasting after aluminum according to Example 2 or nickel plating and blasting according to Example 3 were performed. Tensile strength was more excellent. Therefore, the polymer resin-aluminum conjugate according to the present invention can be confirmed that the tensile strength is improved compared to the prior art.
도 10a에는 나노 이차이온질량분석기(Nano-SIMS)를 이용하여 알루미늄과 PPS가 결합되어 있는 단면을 촬영한 것으로서 중간에 두 성분이 결합되어 있는 단면을 확인할 수 있다. 도 10b 내지 도 10e에는 탄소, 질소, 알루미늄 및 황 원소에 대한 원소 이미지 맵핑을 나타낸 것이다. 도 10b 내지 도 10e를 참조하면, 알루미늄 부분인 사진 왼쪽에는 다른 원소가 나타나지 않고 검은색을 나타내며, PPS 부분인 사진 오른쪽 부분은 탄소와 황이 나타나고 있으며 미량의 질소도 확인되고 있다.In FIG. 10A, a cross-section of aluminum and PPS is photographed by using a nano-ion mass spectrometer (Nano-SIMS), and the cross-section in which two components are coupled in the middle can be confirmed. 10b to 10e show elemental image mappings for elements of carbon, nitrogen, aluminum and sulfur. 10B to 10E, other elements do not appear on the left side of the picture, which is an aluminum part, but black, and carbon and sulfur appear on the right part of the picture, which is a PPS part, and trace amounts of nitrogen are also identified.

Claims (13)

  1. i) 알루미늄;i) aluminum;
    ii) 상기 알루미늄 위에 형성된 니켈; 및ii) nickel formed on the aluminum; And
    iii) 상기 니켈 상에 트리아진 티올계 유도체 처리 이후 결합된 고분자 수지를 포함하는 고분자 수지-알루미늄 결합체로서,iii) a polymer resin-aluminum binder comprising a polymer resin bonded after treatment with a triazine thiol derivative on the nickel;
    상기 결합체의 이차이온질량분석기(SIMS) 분석결과 Ni 및 Al 성분이 검출되고,As a result of secondary ion mass spectrometry (SIMS) analysis of the conjugate, Ni and Al components are detected,
    C/Ni, N/Ni, O/Ni 및 S/Ni 각각의 강도비(intensity ratio)가 1 내지 7㎛의 깊이에서 1.0 × 10-4 내지 5.0 × 10-6인 것을 특징으로 하는 고분자 수지-알루미늄 결합체.Polymer resin, wherein the intensity ratio of C / Ni, N / Ni, O / Ni and S / Ni is 1.0 × 10 −4 to 5.0 × 10 −6 at a depth of 1 to 7 μm- Aluminum binder.
  2. 제1항에 있어서,The method of claim 1,
    상기 고분자 수지는 폴리페닐렌설파이드(PPS), 폴리뷰틸렌테레프탈레이트(PBT), 폴리이미드(PI), 액정폴리머(LCP), 폴리에테르에테르케톤(PEEK), 폴리에테르케톤(PEK), 에틸렌프로필렌 디엔메틸렌고무(EPDM), 아크릴고무(ACM), 폴리프로필렌과 에틸렌/프로필렌디엔메틸렌 고무(PP + EPDM)로 이루어진 군으로부터 선택된 하나 이상인 것을 특징으로 하는 고분자 수지-알루미늄 결합체.The polymer resin is polyphenylene sulfide (PPS), polybutylene terephthalate (PBT), polyimide (PI), liquid crystal polymer (LCP), polyether ether ketone (PEEK), polyether ketone (PEK), ethylene propylene Polymer resin-aluminum binder, characterized in that at least one selected from the group consisting of diemethylene rubber (EPDM), acrylic rubber (ACM), polypropylene and ethylene / propylene diemethylene rubber (PP + EPDM).
  3. 제1항에 있어서,The method of claim 1,
    상기 트리아진 티올계 유도체는 다음 화학식 1로 표시되는 화합물인 것을 특징으로 하는 고분자 수지-알루미늄 결합체.The triazine thiol derivative is a polymer resin-aluminum conjugate, characterized in that the compound represented by the following formula (1).
    [화학식 1][Formula 1]
    Figure PCTKR2012004671-appb-I000002
    Figure PCTKR2012004671-appb-I000002
    상기 식에서,Where
    M은 H, Na, Li, K, 지방족 1차, 2차, 3차 아민, 4차 암모늄이고, M is H, Na, Li, K, aliphatic primary, secondary, tertiary amine, quaternary ammonium,
    R은 -SM, -OR1, -SR1, -NHR1, -N(R1)2로서 R1은 알킬그룹, 알켄닐그룹, 페닐그룹, 페닐알킬그룹, 알킬페닐그룹, 및 시클로알킬그룹으로 이루어진 군에서 선택된 하나로 이루어진 군에서 선택된 하나이다.R is -SM, -OROne, -SROne, -NHROne, -N (ROne)2As ROneIs an alkyl group, an alkenyl group, a phenyl group, a phenylalkyl group, an alkylphenyl group, and a cycloalkyl group. One selected from the group consisting of It is one selected from the group consisting of.
  4. 제1항에 있어서,The method of claim 1,
    상기 트리아진 티올계 유도체는 1,3,5-트리아진-2,4,6-트리티올(TT), 1,3,5-트리아진-2,4,6-트리티올 모노소듐 (TTN), 1,3,5-트리아진-2,4,6-트리티올 트리에탄올 아민(FTEA), 6-아닐리노-1,3,5-트리아진-2,4-디티올(AF), 6-아닐리노-1,3,5-트리아진-2,4-디티올 모노소듐(AFN), 6-디부틸아미노-1,3,5-트리아진-2,4-디티올(DB), 6-디부틸아미노-1,3,5-트리아진-2,4-디티올 모노소듐(DBN), 6-디아릴아미노-1,3,5-트리아진-2,4-디티올(DA), 6-디아릴아미노-1,3,5-트리아진-2,4-디티올 모노소듐(DAN), 1,3,5-트리아진-2,4,6-트리티올 디(테트라부틸 암모늄염)(F2A), 6-디부틸아미노-1,3,5-트리아진-2,4-디티올 테트라부틸 암모늄염(DBA), 6-디티오옥틸아미노-1,3,5-트리아진-2,4-디티올(DO), 6-디티오옥틸아미노-1,3,5-트리아진-2,4-디티올모노소듐(DON), 6-디라우릴아미노-1,3,5-트리아진-2,4-디티올(DL), 6-디라우릴아미노-1,3,5-트리아진-2,4-디티올 모노소듐(DLN), 6-스테아릴아미노-1,3,5-트리아진-2,4-디티올(ST), 6-스테아릴아미노-1,3,5-트리아진-2,4-디티올 모노포타슘(STK), 6-올레일아미노-1,3,5-트리아진-2,4-디티올(DL) 및 6-올레일아미노-1,3,5-트리아진-2,4-디티올모노포타슘(OLK)로 이루어진 군으로부터 선택된 하나 이상의 화합물인 것을 특징으로 하는 고분자 수지-알루미늄 결합체.The triazine thiol derivatives include 1,3,5-triazine-2,4,6-tritriol (TT), 1,3,5-triazine-2,4,6-tritriol monosodium (TTN) , 1,3,5-triazine-2,4,6-tritriol triethanol amine (FTEA), 6-anilino-1,3,5-triazine-2,4-dithiol (AF), 6- Anilino-1,3,5-triazine-2,4-dithiol monosodium (AFN), 6-dibutylamino-1,3,5-triazine-2,4-dithiol (DB), 6 -Dibutylamino-1,3,5-triazine-2,4-dithiol monosodium (DBN), 6-diarylamino-1,3,5-triazine-2,4-dithiol (DA) , 6-diarylamino-1,3,5-triazine-2,4-dithiol monosodium (DAN), 1,3,5-triazine-2,4,6-tritriol di (tetrabutyl ammonium salt ) (F2A), 6-dibutylamino-1,3,5-triazine-2,4-dithiol tetrabutyl ammonium salt (DBA), 6-dithiooctylamino-1,3,5-triazine-2 , 4-dithiol (DO), 6-dithiooctylamino-1,3,5-triazine-2,4-dithiol monosodium (DON), 6-dilaurylamino-1,3,5-tri Azine-2,4-dithiol (DL), 6-dilaurylamino-1,3,5- Lysine-2,4-dithiol monosodium (DLN), 6-stearylamino-1,3,5-triazine-2,4-dithiol (ST), 6-stearylamino-1,3, 5-triazine-2,4-dithiol monopotassium (STK), 6-oleylamino-1,3,5-triazine-2,4-dithiol (DL) and 6-oleylamino-1, 3,5-triazine-2,4-dithiol monopotassium (OLK) is a polymer resin-aluminum conjugate, characterized in that at least one compound selected from the group consisting of.
  5. 제1항에 있어서,The method of claim 1,
    상기 Ni의 두께가 15㎛ 이하인 것을 특징으로 하는 고분자 수지-알루미늄 결합체.The polymer resin-aluminum binder, characterized in that the thickness of Ni is 15㎛ or less.
  6. 제1항에 있어서,The method of claim 1,
    상기 Ni와 Al의 강도(intensity)가 동일해지는 두께는 5 내지 25㎛인 것을 특징으로 하는 고분자 수지-알루미늄 결합체.The polymer resin-aluminum binder, characterized in that the thickness of the Ni and Al equal to the thickness is 5 to 25㎛.
  7. 알루미늄 기재에 탈지 공정 및 블라스팅을 통하여 표면 거칠기를 확보하는 단계;Securing a surface roughness through a degreasing process and blasting on the aluminum substrate;
    상기 알루미늄 상에 니켈을 형성하는 단계;Forming nickel on the aluminum;
    상기 니켈이 도포된 알루미늄에 트리아진 티올계 유도체를 도포하는 단계; 및Applying a triazine thiol derivative to the nickel-coated aluminum; And
    상기 트리아진 티올계 유도체가 도포된 니켈 알루미늄 표면에 고분자 수지를 사출하는 단계를 포함하는 고분자 수지-알루미늄 결합체의 제조방법으로서,As a method of manufacturing a polymer resin-aluminum conjugate comprising the step of injecting a polymer resin on the surface of the nickel aluminum coated with the triazine thiol derivatives,
    상기 결합체의 이차이온질량분석기(SIMS) 분석결과 Ni 및 Al 성분이 검출되고,As a result of secondary ion mass spectrometry (SIMS) analysis of the conjugate, Ni and Al components are detected,
    C/Ni, N/Ni, O/Ni 및 S/Ni 각각의 강도비(intensity ratio)가 1 내지 7㎛의 깊이에서 1.0 × 10-4 내지 5.0 × 10-6인 것을 특징으로 하는 고분자 수지-알루미늄 결합체의 제조방법.Polymer resin, wherein the intensity ratio of C / Ni, N / Ni, O / Ni and S / Ni is 1.0 × 10 −4 to 5.0 × 10 −6 at a depth of 1 to 7 μm- Method for producing aluminum binder.
  8. 제7항에 있어서,The method of claim 7, wherein
    상기 고분자 수지는 폴리페닐렌설파이드(PPS), 폴리뷰틸렌테레프탈레이트(PBT), 폴리이미드(PI), 액정폴리머(LCP), 폴리에테르에테르케톤(PEEK), 폴리에테르케톤(PEK), 에틸렌프로필렌 디엔메틸렌고무(EPDM), 아크릴고무(ACM), 폴리프로필렌과 에틸렌/프로필렌디엔메틸렌 고무(PP + EPDM)로 이루어진 군으로부터 선택된 하나 이상인 것을 특징으로 하는 고분자 수지-알루미늄 결합체의 제조방법.The polymer resin is polyphenylene sulfide (PPS), polybutylene terephthalate (PBT), polyimide (PI), liquid crystal polymer (LCP), polyether ether ketone (PEEK), polyether ketone (PEK), ethylene propylene Process for producing a polymer resin-aluminum binder, characterized in that at least one selected from the group consisting of diene methylene rubber (EPDM), acrylic rubber (ACM), polypropylene and ethylene / propylene diemethylene rubber (PP + EPDM).
  9. 제7항에 있어서,The method of claim 7, wherein
    상기 트리아진 티올계 유도체는 다음 화학식 1로 표시되는 화합물인 것을 특징으로 하는 고분자 수지-알루미늄 결합체의 제조방법.The triazine thiol derivative is a method for producing a polymer resin-aluminum conjugate, characterized in that the compound represented by the following formula (1).
    [화학식 1][Formula 1]
    Figure PCTKR2012004671-appb-I000003
    Figure PCTKR2012004671-appb-I000003
    상기 식에서,Where
    M은 H, Na, Li, K, 지방족 1 내지 3차 아민, 4차 암모늄이고,M is H, Na, Li, K, aliphatic 1-3 tertiary amine, quaternary ammonium,
    R은 -SM, -OR1, -SR1, -NHR1, -N(R1)2로서 R1은 알킬그룹, 알켄닐그룹, 페닐그룹, 페닐알킬그룹, 알킬페닐그룹, 및 시클로알킬그룹으로 이루어진 군에서 선택된 하나로 이루어진 군에서 선택된 하나이다.R is -SM, -OROne, -SROne, -NHROne, -N (ROne)2As ROneIs an alkyl group, an alkenyl group, a phenyl group, a phenylalkyl group, an alkylphenyl group, and a cycloalkyl group. One selected from the group consisting of It is one selected from the group consisting of.
  10. 제7항에 있어서,The method of claim 7, wherein
    상기 트리아진 티올계 유도체는 1,3,5-트리아진-2,4,6-트리티올(TT), 1,3,5-트리아진-2,4,6-트리티올 모노소듐 (TTN), 1,3,5-트리아진-2,4,6-트리티올 트리에탄올 아민(FTEA), 6-아닐리노-1,3,5-트리아진-2,4-디티올(AF), 6-아닐리노-1,3,5-트리아진-2,4-디티올 모노소듐(AFN), 6-디부틸아미노-1,3,5-트리아진-2,4-디티올(DB), 6-디부틸아미노-1,3,5-트리아진-2,4-디티올 모노소듐(DBN), 6-디아릴아미노-1,3,5-트리아진-2,4-디티올(DA), 6-디아릴아미노-1,3,5-트리아진-2,4-디티올 모노소듐(DAN), 1,3,5-트리아진-2,4,6-트리티올 디(테트라부틸 암모늄염)(F2A), 6-디부틸아미노-1,3,5-트리아진-2,4-디티올 테트라부틸 암모늄염(DBA), 6-디티오옥틸아미노-1,3,5-트리아진-2,4-디티올(DO), 6-디티오옥틸아미노-1,3,5-트리아진-2,4-디티올모노소듐(DON), 6-디라우릴아미노-1,3,5-트리아진-2,4-디티올(DL), 6-디라우릴아미노-1,3,5-트리아진-2,4-디티올 모노소듐(DLN), 6-스테아릴아미노-1,3,5-트리아진-2,4-디티올(ST), 6-스테아릴아미노-1,3,5-트리아진-2,4-디티올 모노포타슘(STK), 6-올레일아미노-1,3,5-트리아진-2,4-디티올(DL) 및 6-올레일아미노-1,3,5-트리아진-2,4-디티올모노포타슘(OLK)로 이루어진 군으로부터 선택된 하나 이상의 화합물인 것을 특징으로 하는 고분자 수지-알루미늄 결합체.The triazine thiol derivatives include 1,3,5-triazine-2,4,6-tritriol (TT), 1,3,5-triazine-2,4,6-tritriol monosodium (TTN) , 1,3,5-triazine-2,4,6-tritriol triethanol amine (FTEA), 6-anilino-1,3,5-triazine-2,4-dithiol (AF), 6- Anilino-1,3,5-triazine-2,4-dithiol monosodium (AFN), 6-dibutylamino-1,3,5-triazine-2,4-dithiol (DB), 6 -Dibutylamino-1,3,5-triazine-2,4-dithiol monosodium (DBN), 6-diarylamino-1,3,5-triazine-2,4-dithiol (DA) , 6-diarylamino-1,3,5-triazine-2,4-dithiol monosodium (DAN), 1,3,5-triazine-2,4,6-tritriol di (tetrabutyl ammonium salt ) (F2A), 6-dibutylamino-1,3,5-triazine-2,4-dithiol tetrabutyl ammonium salt (DBA), 6-dithiooctylamino-1,3,5-triazine-2 , 4-dithiol (DO), 6-dithiooctylamino-1,3,5-triazine-2,4-dithiol monosodium (DON), 6-dilaurylamino-1,3,5-tri Azine-2,4-dithiol (DL), 6-dilaurylamino-1,3,5- Lysine-2,4-dithiol monosodium (DLN), 6-stearylamino-1,3,5-triazine-2,4-dithiol (ST), 6-stearylamino-1,3, 5-triazine-2,4-dithiol monopotassium (STK), 6-oleylamino-1,3,5-triazine-2,4-dithiol (DL) and 6-oleylamino-1, 3,5-triazine-2,4-dithiol monopotassium (OLK) is a polymer resin-aluminum conjugate, characterized in that at least one compound selected from the group consisting of.
  11. 제7항에 있어서,The method of claim 7, wherein
    상기 니켈을 형성하는 단계에서 알루미늄 양극 산화방법으로 (Aluminium anodic oxidation)으로 50-1500nm의 산화막을 만든 후 전기적인 방법으로 니켈 전기도금 처리하는 것을 특징으로 하는 고분자 수지-알루미늄 결합체의 제조방법. The method of manufacturing a polymer resin-aluminum composite, characterized in that the nickel film is formed by an electrochemical method after forming an oxide film of 50-1500 nm by aluminum anodic oxidation in the step of forming nickel.
  12. 제7항에 있어서,The method of claim 7, wherein
    상기 니켈 형성된 알루미늄 표면을 블라스팅 처리하여 거칠기를 확보하는 단계를 더 포함하는 것을 특징으로 하는 고분자 수지-알루미늄 결합체의 제조방법.And blasting the nickel-formed aluminum surface to secure roughness.
  13. 제7항에 있어서,The method of claim 7, wherein
    상기 니켈을 형성한 다음 열처리하는 단계를 더 포함하는 것을 특징으로 하는 고분자 수지-알루미늄 결합체 제조방법.Forming the nickel and then heat-treating a method for producing a polymer resin-aluminum conjugate, characterized in that it further comprises.
PCT/KR2012/004671 2011-08-10 2012-06-13 Polymer-resin/aluminium bonded body and a production method therefor WO2013022184A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2011-0079725 2011-08-10
KR1020110079725A KR101134923B1 (en) 2011-08-10 2011-08-10 Polymer resin-alumium bonded component and method for preparing the same

Publications (1)

Publication Number Publication Date
WO2013022184A1 true WO2013022184A1 (en) 2013-02-14

Family

ID=46143473

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2012/004671 WO2013022184A1 (en) 2011-08-10 2012-06-13 Polymer-resin/aluminium bonded body and a production method therefor

Country Status (2)

Country Link
KR (1) KR101134923B1 (en)
WO (1) WO2013022184A1 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20010016207A (en) * 2000-11-22 2001-03-05 김쌍기 Material and structure for contact lens
KR101243901B1 (en) * 2012-03-21 2013-03-20 주식회사 태성포리테크 Aluminium-polymer resin bonded component and method of preparing the component
KR102573784B1 (en) * 2016-02-18 2023-09-04 삼성전자주식회사 Aluminium alloy-resin composite and method for producing the same

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006026914A (en) * 2004-07-12 2006-02-02 Mitsubishi Alum Co Ltd Resin coated aluminum material
JP2006305838A (en) * 2005-04-27 2006-11-09 Nissan Motor Co Ltd Resin composite and its manufacturing method
KR20110028306A (en) * 2008-06-24 2011-03-17 가부시키가이샤 신기쥬츠 켄큐쇼 Iron alloy article, iron alloy member, and method for producing the iron alloy article
JP2011052292A (en) * 2009-09-03 2011-03-17 Shingijutsu Kenkyusho:Kk Aluminum alloy article, aluminum alloy member, and method for producing the same

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006026914A (en) * 2004-07-12 2006-02-02 Mitsubishi Alum Co Ltd Resin coated aluminum material
JP2006305838A (en) * 2005-04-27 2006-11-09 Nissan Motor Co Ltd Resin composite and its manufacturing method
KR20110028306A (en) * 2008-06-24 2011-03-17 가부시키가이샤 신기쥬츠 켄큐쇼 Iron alloy article, iron alloy member, and method for producing the iron alloy article
JP2011052292A (en) * 2009-09-03 2011-03-17 Shingijutsu Kenkyusho:Kk Aluminum alloy article, aluminum alloy member, and method for producing the same

Also Published As

Publication number Publication date
KR101134923B1 (en) 2012-04-17

Similar Documents

Publication Publication Date Title
KR101243901B1 (en) Aluminium-polymer resin bonded component and method of preparing the component
US9683304B2 (en) Resin-metal bonded body and method for producing the same
EP1769041B1 (en) Method for treating and sticking work pieces made of metal or a metal alloy comprising a hydrated oxide and/or hydroxide layer
JP4541153B2 (en) Manufacturing method of composite material of aluminum material and synthetic resin molding and composite product thereof
KR100827916B1 (en) Composite of aluminum alloy and resin composition and process for producing the same
EP2322691B1 (en) Iron alloy article, iron alloy member, and method for producing the iron alloy article
US20110297549A1 (en) Aluminum alloy-and-resin composite and method for making the same
US20110305893A1 (en) Aluminum alloy-and-resin composite and method for making the same
WO2013022184A1 (en) Polymer-resin/aluminium bonded body and a production method therefor
JP6530492B2 (en) Metal-resin composite, method for producing the same, and shell of electronic product
CN112318814B (en) Metal plastic composite, preparation method and device
US20160160371A1 (en) Metal-and-resin composite and method for making the same
KR20150015434A (en) Shell, preparing method and application thereof in electronic product
KR101606567B1 (en) Aluminium-Polymer resin bonded component and method of preparing the component
CN101868563A (en) Base processing agent for metal material and method for processing base for metal material
JP2009302081A (en) Method for producing molded interconnect device
KR102330886B1 (en) Resin-metal bonded body and its manufacturing method
KR20200065334A (en) Heterojunction type resin-metal composite and manufacturing method thereof
WO2012165919A9 (en) Polymer resin-copper complex, and preparation method thereof
CN110843171A (en) Metal and plastic integrated manufacturing method
KR102171556B1 (en) Aluminum-thermoplastic polymer resin bonded body and manufacturing method thereof
KR101243282B1 (en) Copper-polymer resin bonded component and method of preparing the component
Chung et al. Adhesion of poly (phenylene sulfide) resin with polymeric film of triazine thiol on aluminum surface modified by anodic oxidation
JP2014128939A (en) Method for producing metal-resin composite
EP4122703A1 (en) Bonded body of metal and resin, and method for bonding metal and resin

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12821681

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12821681

Country of ref document: EP

Kind code of ref document: A1