WO2013022136A1 - Method for manufacturing photosensitive inkjet ink for an electrode capable of forming an ultrahigh-density microcircuit pattern - Google Patents

Method for manufacturing photosensitive inkjet ink for an electrode capable of forming an ultrahigh-density microcircuit pattern Download PDF

Info

Publication number
WO2013022136A1
WO2013022136A1 PCT/KR2011/006232 KR2011006232W WO2013022136A1 WO 2013022136 A1 WO2013022136 A1 WO 2013022136A1 KR 2011006232 W KR2011006232 W KR 2011006232W WO 2013022136 A1 WO2013022136 A1 WO 2013022136A1
Authority
WO
WIPO (PCT)
Prior art keywords
piezoelectric
organic
ink
inorganic hybrid
particles
Prior art date
Application number
PCT/KR2011/006232
Other languages
French (fr)
Korean (ko)
Inventor
문동완
임현균
Original Assignee
주식회사 씨드
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 씨드 filed Critical 주식회사 씨드
Publication of WO2013022136A1 publication Critical patent/WO2013022136A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D11/00Inks
    • C09D11/02Printing inks
    • C09D11/10Printing inks based on artificial resins
    • C09D11/101Inks specially adapted for printing processes involving curing by wave energy or particle radiation, e.g. with UV-curing following the printing
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D11/00Inks
    • C09D11/30Inkjet printing inks
    • C09D11/32Inkjet printing inks characterised by colouring agents
    • C09D11/322Pigment inks
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D11/00Inks
    • C09D11/52Electrically conductive inks
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/20Conductive material dispersed in non-conductive organic material
    • H01B1/22Conductive material dispersed in non-conductive organic material the conductive material comprising metals or alloys
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/09Use of materials for the conductive, e.g. metallic pattern
    • H05K1/092Dispersed materials, e.g. conductive pastes or inks
    • H05K1/097Inks comprising nanoparticles and specially adapted for being sintered at low temperature
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/10Apparatus or processes for manufacturing printed circuits in which conductive material is applied to the insulating support in such a manner as to form the desired conductive pattern
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2201/00Indexing scheme relating to printed circuits covered by H05K1/00
    • H05K2201/01Dielectrics
    • H05K2201/0104Properties and characteristics in general
    • H05K2201/0108Transparent
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2203/00Indexing scheme relating to apparatus or processes for manufacturing printed circuits covered by H05K3/00
    • H05K2203/12Using specific substances
    • H05K2203/122Organic non-polymeric compounds, e.g. oil, wax, thiol

Definitions

  • the present invention relates to an inkjet ink for electrodes using an organic-inorganic hybridized superconducting piezoelectric electrode photocurable inkjet ink capable of multi-dimensional inkjet printing using a photocurable inkjet print system.
  • All electrical and electronic products have been composed of conventional transition metals or metals with scarcity.
  • it is composed of integrated circuits, and in the case of display materials, salts containing most of transition metals having the same transparency or rare metals classified as rare earths are mainly salts (Sulfonic, Choloride, Nitrate Acid).
  • Organic polymer materials such as polyethylene terephthalate (PET) and polypropylene (PP), which are optically transparent and mechanically secured by breaking away from the substrate (Substrate of Silicone Wafer (Single, Multiple Crystalline), Amorphous Silicon Wafer)
  • substrate composed of Substances such as transition metals (Titanium, Zinc, Indium, Tin, Antimony, Silver, Gold, Iron etc.) that have transparency when originally transparent or nanoparticles are formed by metal oxide chemical vapor deposition (MOCVD).
  • MOCVD metal oxide chemical vapor deposition
  • CNT Carbon Nano Tube, SWCNT, DWCNT, MWCNT
  • Nanowire Dendrimer, Graphene, Fullerene C60, 61, 70, 90, PEDOTPOSS / PSS (Poly Thiopene Group), Poly Acetylene, Poly Pyrrole, Poly Phenylene Vinylene, Poly Phenyl Sulfide, Poly Vinylene Carbazole, Poly Sprazole, Poly acene, Poly SP2 or SP3 with electrical conductivity including aniline, Poly Lglutamate, Phtalocyanin, Qinacridone, Tetracyanoquinodimethane (TCNQ), Tetrathiafulvalene (TCNQTTF), Transfer Metal Group, Alkali Metallic Salt, etc.
  • the material is deposited on an existing substrate or an organic polymer film substrate.
  • the above process method uses a conventional substrate and has a lower amount of process work and process temperature than a process using transition metals and alkaline earth metals, but it is possible to obtain flexible electric and electronic devices.
  • electron mobility or additional physicochemical factors can be obtained.
  • the conductive organic material has a characteristic that the electronic mobility is drastically reduced due to the inherent semiconducting properties of the organic material.
  • the conventional method described above is mainly used to overcome the contents of the MEMS (Micro Electro Mechanical System) method such as Nano Imprinting Lithography (NIL), Self Assembly Monolayer System (SAMs), Atomic Layard Deposition (ALD), etc.
  • MEMS Micro Electro Mechanical System
  • NIL Nano Imprinting Lithography
  • SAMs Self Assembly Monolayer System
  • ALD Atomic Layard Deposition
  • MEMS Micro Electro Mechanical System
  • NIL Nano Imprinting Lithography
  • SAMs Self Assembly Monolayer System
  • ALD Atom
  • the present invention induces a nucleophilic reaction by using transition metals or organic conductive polymers, which are inorganic components, in an organic molecular structure to form a transparent display or a transparent electrode or have superconductivity, secure partial transparency, and super piezoelectricity by heat or light.
  • the present invention provides a method for manufacturing an electrode which can be used for biological muscle tissue capable of integrated circuits and memory shapes on a display electrode ink capable of displaying complex transparent or translucent and various printable materials.
  • regulations are established by environmental agencies around the world, and by the World Health and Safety Organization, and hazardous chemicals (for air, water, human and animals: REACHver2006, 2008, 2010, RoHS, LoHAS, HAPs etc.) as set by international environmental standards. In order to eliminate the harmful chemicals generated by the chemicals, and to block the generation of electromagnetic waves generated in the manufacturing, production, testing of consumer electronics-related products, and to drive the operation of consumers, to provide.
  • the orbital in order to impart the conduction and piezoelectric ability of organic molecules, the orbital should have a molecular orbital of SP2 or SP3 structure and should be as linear as possible.
  • the conductive organic conductive molecule and the piezoelectric organic piezoelectric polymer have an ATRP (Atomic Transfer Polymerization) method using a Self Assembly Monolayer (SAM), a Self Organization Monolayer (SOM), and a Self Supermacromolecular Monolayer (SSM) method.
  • RAFT Receiveive Addition Fragmentation Polymerization
  • Suspension Polymerization method Cation and Anion method to inks into the aqueous and vegetable oils
  • syndiotatic or sectioning atatic method to achieve stereoregularity (HeadTail, HeadHead, HeadHeadTail, HeadTailHead).
  • metallocene substitution polymerization method of living ion polymerization method one of the Ionic Polymerization method, is used, and SuspensionEmulsion Heterogeneous Synchronized Polymerization method is used for external physicochemical changes.
  • Stable solid rule It has a structure that suppresses the rate of change of conductivity and piezoelectricity due to surface tension between the organic inorganic components.
  • additional functions such as highly transparent cured resins and insulats are designed by Ziegler-Natta reaction, ring opening ring reaction, and Danielelder catalysis for surface roughness and surface adhesion between substrate and electrode ink.
  • Flexible or rigid displays that require transparency, or electrodes used in the displays, have high transparency, low change rate of luminance and color difference, and organic inorganic hybrids that exhibit physicochemical stability and superconductivity and piezoelectricity at room temperature.
  • a method for producing an inkjet ink for electrodes capable of forming a fine circuit pattern of a transparent electrode or an integrated circuit comprising: selecting a photocurable piezoelectric chemical; Preparing conductive piezoelectric molecular particles and a base prepolymer using curing monomers such as ultraviolet (light), heat, and radiation; A process for producing an organic-inorganic hybrid piezoelectric molecular particle and a photocured dispersed master solution; An organic-inorganic hybrid piezoelectric molecular particle and a photocuring dispersed master stock solution manufacturing process step; An organic-inorganic hybrid piezoelectric molecular particle ink formular process step; And microfiltration step; and the like.
  • polythiophene, polyaniline, polypyrrole, polyacetylene, polyvinylcarbazole, poly L-glutamate, polyfluorotetracyanoquinodi It is characterized by grafting one or two or more additive materials selected from methane derivatives or inorganic substances.
  • the dispersion solution preferably comprises a mixed solvent of ultra pure water and vegetable oil.
  • a liquid crystal, light emitting, plasma, electrochromic, electroluminescent transmissive or reflective display, solar cell, secondary cell, fuel cell or bio using the inkjet ink prepared by the above method Provides one selected electronic component such as sensor and hologram.
  • the manufacturing method according to the present invention makes it possible to produce an ink composition that can be used for various types of heads that do not use harmful chemicals and do not emit harmful chemicals during material curing and product manufacture.
  • the manufactured ink composition does not emit harmful chemicals during the curing process, so it does not have a harmful effect on workers and the environment, and can be used for various types of heads instead of limited head types.
  • Extensive use of electronic devices and materials, ultra-lightweight, ultra-thin, and ultra-miniaturized to maximize power consumption or production efficiency, and the same or nearer than conventional silicon-based substrates for any kind of substrate Has the advantage of ensuring performance and efficiency.
  • 1 is an overall manufacturing process chart of the conductive-piezoelectric inkjet electrode ink of the present invention.
  • 3 is a polyanaline molecular structure.
  • 10 is a dendrimer and a polyoxysiloxane base structure.
  • FIG. 11 is a block diagram showing the overall hardware configuration of a multidimensional photocurable print system.
  • FIG. 12 shows a parallel processing flow of software by the multi-dimensional photocuring printing system shown in FIG.
  • 13 is an input-output flow chart of a light curing control system, a printer, and various sensors.
  • the present invention includes a granular manufacturing process method such as the following 1 to 12 steps.
  • a method of preparing a dispersion master stock solution of a photocurable organic-inorganic hybridized superconducting piezoelectric molecular inkjet ink comprising: selecting at least one conductive material and piezoelectric material in a blended ultra pure water and vegetable oil based solvent;
  • Halogenated rare metal catalysts (Ag, Au, Pd, Pt) using SigmaAldrich's photocurable amphoteric (water soluble and fat soluble) monomers of styrene, acrylate, methacrylate and imidazole groups
  • Molecular weight (Mn: 1,000 ⁇ 10,000) oligomer was prepared, and the solution of silver nitrate (0.05N) and bismuth oxide (0.01N) dissolved in nitric acid were used by ATRP and partial RAFT method.
  • Molecular weight (Mn: 20,000 ⁇ 80,000) Preparing a polymer;
  • PA (E) DOT Polyalkyl (ethylene) dioxy (dioctyl) thiophene
  • DOT Polyalkyl (ethylene) dioxy (dioctyl) thiophene
  • Highly transparent particles are prepared from dispersed particles having an average particle size (80 nm) dispersed in a vegetable oil based solvent.
  • Polypyrrole (PPy) 60 nm has an average particle size and the production method is the same as the production of PANi particles.
  • PA Polyacethylene
  • PA Polyacethylene
  • activated charcoal baked in a kiln of 1100 ⁇ 1200 °C in oak charcoal native to Gangwon-do in Korea is made of fine particles of 10-20mm level by a dry mill.
  • Cooling in the dry grinding process uses liquid nitrogen to cool the grinder and injects liquid helium into the grinding chamber to maintain oxygen supersaturation and superconductivity.
  • the speed of the grinding chamber should be kept below 1000 RPM during the dry grinding process.
  • the grinding time is maintained for 5 to 8 hours depending on the capacity of the chamber of each grinder.
  • inert nitrogen and helium are injected using a reactor, and a reactor equipped with a high speed stirring device is used.
  • Ultrapure water and vegetable oil-based solvent (vegetable oil: 20 ⁇ 60wt% of soybean oil, 20 ⁇ 40wt% of rapeseed oil, lactam 10 ⁇ 20wt%, lactone) for 10-40 wt% of grafted organic inorganic hybrid conductive material 20 to 40 wt%) preparing a grafted organic inorganic hybrid conducting material dispersion solution of 50 to 70 wt%;
  • the average particle size of the organic-inorganic hybrid conductive material grafted with 0.02 to 5 mm of zirconium silica carbide hafnium beads in a ultra-fine mill equipped with a centrifuge and grafted with rare metal conductive and piezoelectric polymers was 0.1-20 nm.
  • organic-inorganic hybrid conductive ink grafted with the rare metal conductive and piezoelectric polymer prepared by the above method does not emit volatile organic compounds during the curing process.
  • the present invention is a blended ultra pure water vegetable oil solvent based photocurable inkjet ink for inkjet electronic printing using at least one or more of conductive or piezoelectric polymers and as the base polymer polystyrene, acrylate, methyl methacrylate, Dispersion stock solution containing at least one or more of the unsaturated ester, silicone, fluorine photocurable polymer; Ultra pure water vegetable oil solvent; Potassium hydroxide pH buffer solution; Thickeners prepared on the basis of any one selected from the group consisting of an ethylene glycol group, a propylene glycol group, or 5 to 500 ultra pure water vegetable oil solvents thereof; Mixed diol solution in which any one or a mixture thereof selected from the group consisting of glycerin, butanediol, pentanediol, and hexadiol is mixed with normal methylpyrilidone, 2pyrrolidone, and polyvinylpyriridone in a blended ultra pure water vegetable oil
  • the present invention provides a lignin-based dispersant such as sulfonic lignin, acetonitrile, dimethyl sulfate, dimethanolamine, N, Ndimethylformamide, formaldehyde, hydrazine, methyl ethyl ketone, triethylamine, dimethyl sulfoxide in the curing process. It does not emit side, morpholine, sodium hydroxide, tetrahydrofuran or urea.
  • a lignin-based dispersant such as sulfonic lignin, acetonitrile, dimethyl sulfate, dimethanolamine, N, Ndimethylformamide, formaldehyde, hydrazine, methyl ethyl ketone, triethylamine, dimethyl sulfoxide in the curing process. It does not emit side, morpholine, sodium hydroxide, tetrahydrofuran or urea.
  • composition of the organic-inorganic hybrid conductive ink grafted to the outer surface of the rare metal conductive and piezoelectric polymer prepared in the present invention is an amphoteric (water-soluble, fat-soluble) polyacrylate / polymethyl methacrylate photopolymerization oligomer; Poly ethylpropyl oxide; Modified polysiloxane / floor organic / inorganic hybrid radical polymerization oligomers; Ethyl diacrylate, propyl diacrylate, butyl diacrylate, ethyl methacrylate, propyl methyl methacrylate, butyl methyl methacrylate, isopropyl acrylamide monomer; polyethyl methacrylate, polyethyl acrylate, unsaturated Polyester prepolymers, polyethylurea prepolymers, polyurethane prepolymers, polyurethane acrylate prepolymers; And benzoacephenone as a photo initiator; Azobi
  • the aqueous or mixed vegetable oil-based dispersion master stock solution is composed of any one or a mixture thereof selected from the group consisting of glycerin, butanediol, pentanediol, hexyldiol, ultrapure water or mixed vegetable oil, and the like as a diluent.
  • the present invention is characterized in that the dispersion master stock solution does not discharge volatile organic compounds in the manufacturing process and use process.
  • the present invention is an electromagnetic conductive rheology polymer polythiophene, polypyrrole, polyacene, polyanaline, polyacetylene, fullerene, carbon nanotubes, graphene, rare metal nanowires, dendrimers and radiation, electron beam (wave) absorption
  • the present invention provides a superconducting molecular inkjet ink capable of adding special materials such as boron and barium.
  • the present invention is characterized in that it can be ink by adding a biopolymer such as gelatin, chitosan, biocompatible polymer to the chemical sensor to be used in the DNA chip.
  • a biopolymer such as gelatin, chitosan, biocompatible polymer
  • the present invention is an organic-inorganic hybrid conducting dispersion master stock solution grafted to the outer surface of the particles with a rare metal conductive and piezoelectric polymer is 10 to 30 wt%;
  • the blended ultra pure vegetal fat is 40 to 70 wt%; pH buffer solution is 0.1 to 0.5 wt%; Viscosity modifiers from 20 to 40 wt%;
  • the surfactant is 0.1 to 1 wt%; Antifoaming agents from 0.1 to 1 wt%; Humectants 1-15 wt%; Photo-initiators, thermal initiators, free radical initiators and trapping agents, stabilizers from 0.1 to 1 wt%; 0.1-5 wt% of a sensitizer is added.
  • the ink composition of the present invention has a surface tension of 20 to 60 dyne / cm; Viscosity is 5.0 to 100 cPs; And pH 2-12 is preferable, More preferably, the surface tension is 30 to 50 dyne / cm; Viscosity is 10.0-40.0 cPs; And pH 4-10.
  • the preolimer described in the present invention is a compound having a weight average molecular weight of 1,000 or more and 100,000 or less.
  • the ink composition according to the present invention uses a chemical that is not harmful to the human body and is produced by increasing the purity of the raw material.
  • regulations set forth by environmental agencies around the world, and by the World Health and Safety Organization, and hazardous chemicals for air, water, human and animals: REACHver2006, 2008, 2010, RoHS, LoHAS, HAPs etc.
  • EMI, ESD electromagnetic shielding and generation
  • the ink composition according to the present invention prepared using the above-described chemicals to ensure that there is no harmful substances to the human body and the environment during the curing process, and to protect the operator and also the environment.
  • FIG. 1 is an overall manufacturing process diagram of the conductive-piezoelectric inkjet electrode ink of the present invention, specifically, the step of selecting a photocured piezoelectric chemical (S11); Preparing conductive piezoelectric molecular particles and a base prepolymer using curing monomers such as ultraviolet light, heat, and radiation (S12); Manufacturing process step (S13) of the organic-inorganic hybrid piezoelectric molecular particle and the photocured dispersed master solution; Organoinorganic hybrid piezoelectric molecular particles and photocuring dispersed master stock preparation process step (S14); An organic-inorganic hybrid piezoelectric molecular particle ink formular process step (S15); Microfiltration step (S16); And it may include a printing step (S17).
  • S11 photocured piezoelectric chemical
  • S12 Preparing conductive piezoelectric molecular particles and a base prepolymer using curing monomers such as ultraviolet light, heat, and radiation
  • Spherical polymer ink particles are formed. Preparation is carried out under standard conditions (atmospheric pressure 1 ATM, temperature 298.16 K) with amphoteric (water soluble, fat soluble) styrene, acrylate, methyl methacrylate, unsaturated polyester monomers of SigmaAldrich; DowCorning blends 20-40 wt% of monomers composed of modified silicone fluoride and unsaturated polyester with ultra pure water vegetable oil solvents (soybean oil 20-60 wt%, rapeseed oil 20-40wt%, lactam 10-20wt%, lactone 20-40wt %) Amphiphilic (water-soluble, fat-soluble) solvent 2pyrrolidone, N methylpyrilidone blend solution (1Kg basis, mixing ratio 50:50) 20-40
  • the monomers described above are converted into molecular weight (Mn: 20,000 ⁇ 80,000).
  • Mn molecular weight
  • azeotrope isopropyl alcohol / ethyl alcohol or pretanol volume mixing ratio 20:80
  • conductive molecular particles were prepared by blending Thiophene (Ethylenediocxyl thiophene, Hexylmethyl thiophene) monomer (2.86 wt%) with silver nitrate (0.5 to 1.5N) and silver chloride or gold (0.1 to 1N) catalyst.
  • Ultra Violet C (193nm: 37.5mW) was added to ultrafine water and vegetable oil-based solvents with the average particle size (80nm) dispersed in micelles.
  • PANi Polyaniline particles
  • lactone ANi 5 ⁇ 10 wt% in Lactone: SigmaAldrich
  • PA DOT (100nm)
  • the doping agent of PANi becomes four different kinds of PANi by 0.01N HCl, H2SO4, HNO3, H2PO3, and by doping time of Ntype (Polyaniline (emelradine salt), Polyaniline (leucoemelradine)) and Ptype ( Polyaniline (emelradine salt) Long (short) chain, graft lignin, Polyaniline (emelradine salt) Long (short) chain, graft lingosulfonate (lithium, potassium, sodium) salt) Organometallic semiconductors can be prepared.
  • Ntype Polyaniline (emelradine salt), Polyaniline (leucoemelradine)
  • Ptype Polyaniline (emelradine salt) Long (short) chain
  • graft lignin Polyaniline (emelradine salt) Long (short) chain
  • graft lingosulfonate lithium, potassium, sodium
  • Polypyrrole (PPy) (60 nm) has an average particle size and the production method is the same as that of PANi particles. However, PPy does not disperse in water and common organic solvents, so white charcoal and carbon black burned in kilns (1: 1, 1: 2, 2: 1, 1: 3, 3: 1, 1: 4, 4). The grafting was performed at a ratio of 1). In addition, when the Ziegler-Natta addition reaction of polyethyl oxide, propyl oxide, and butyl oxide, respectively, 2 moles, the following three types of organometallic semiconductors can be prepared.
  • Piezoelectric molecules PVK (Poly Vinyl Carbazole) and PLG (PolyLGlutamate), each swelled 20 mol% of 0.2V 2Vinyl Carbazole, 9Vinyl Carbazole and 0.1mole of 1Vinylnaphtalene and 2Vinylnaphtalene in pretanol and mixed with 10% by weight of LGlutamate in isopropyl alcohol. After 8 hours with Ultra Violet C (253nm: 50.5mW) was granulated.
  • TCNQ Tetracyanoquinodimethane
  • TCNQTTF Tetrathiafulvalene
  • Polyacethylene (PA) is used to prepare particles having an average particle size (200 nm) using an aldehyde ketone solvent.
  • dry activated white charcoal 1Kg and 0.5Kg of Sigmaaldrich's graphite 100mesh of oak charcoal grown in Gangwon-do in Korea in a kiln of 1100 ⁇ 1200 °C After pulverizing 10 ⁇ 20mm fine particles into powder and using a dry coarse crusher to find the diameter of 300 ⁇ 500 ⁇ m using 2mm zirconia silica carbide beads, dry fine crusher zirconia silica carbide beads 10 ⁇ It is finely found to 20 micrometers.
  • Cooling in the dry grinding process uses liquid nitrogen to cool the grinder and injects liquid helium into the grinding chamber to maintain oxygen supersaturation and superconductivity.
  • the speed of the grinding chamber should be kept below 1000 RPM during the dry grinding process.
  • the grinding time is maintained for 5 to 8 hours depending on the capacity of the chamber of each grinder.);
  • inert nitrogen and helium are injected using a reactor, and a reactor equipped with a high speed stirring device is used.
  • polysulfonic acid hydrated at 30 wt% in ultra pure water and vegetable oil-based solvent polysulfonic lithium acid hydrated at 40 wt%, polyaminosulphonic acid, polylignosulphonic acid sodium salt
  • One organic acid was selected as the reaction dispersion-charge dopant, and 5 wt% aqueous solution of spirazole, Eosin A, Eosin B, thioindigo and Dowcorning's modified silicone coacrylate copolymer and SigmaAldrich's Syndiotatic: 25wt%, Ataic: 20g cinnemate in 5wt% aqueous solution (25wt% in DI Water) and 25g, Titanium dioxide Rutile type: 90wt%, Anatage type: 10wt%, Silicon dioxide, Aluminum oxide Aluminum oxide, zinc oxide, indium tin oxide (ITO), and antimony oxide (15g) are used for each, and the rare metals Silver, Gold are 10g each, Platinum and Palla
  • the functional groups are prepared with Degassing using 99.999999999% nitrogen gas from Airproducts during the manufacturing time of each conductive molecular particle particle.
  • a dispersion master solution is prepared in the following ratio.
  • This master solution consists of Thiophene group, PANi group, Hypercube Organic Inorganic hybrid graphene, PPy group, PA group, PVK group and TCNQ group. It is a PWB (PCB: Printed Writing (Circuit) Board) electrode (wire). It is used as a substitute for the electrode lead of copper, silver, gold and platinum.
  • Thiophene group (at least one of the pre-made molecular particles): 8-20 wt%
  • PANi group (at least one of the pre-made molecular particles): 6-18 wt%
  • PPy group (at least one of the pre-made molecular particles): 2-10 wt%
  • PA group (at least one of the previous prepared molecular particles): 1-10 wt%
  • PVK group (at least one of the pre-made molecular particles): 1-10 wt%
  • TCNQ group (at least one or more of the previously produced molecular particles): 0.1 to 1 wt%
  • Hypercube OrganicInorganic hybrid graphene 30-40 wt%
  • Dynol604 Airproducts CO.: 0.1-0.5wt%
  • Retinol A (SigmaAldrich CO.): 0.01 ⁇ 2wt%
  • Solvent (ultra pure 40 wt%, vegetable oil solution 10 wt%, Prethanol 50 wt%): balanced.
  • Newtonian emulsified solutions with viscoelasticity are prepared with Degassing using 99.999999999% nitrogen gas from Airproducts for a manufacturing process time of 12-36hr.
  • the particle size of the organic-inorganic hybrid piezoelectric molecular particles and the piezoelectric molecular particles dispersed in the photocuring dispersion master solution is nuclear magnetically grown, so that the maximum size of the sub-nanoemulsion (10 ⁇ m) is ideally large and the inkjet nozzle Not suitable for spraying through Before going to the ultra-fine milling process, milling is carried out with pre-milling (rotational speeds of 500 to 3000 RPM) and fine milling (rotational speeds of 2000 to 10000 RPM) to form micronized or sub-nano-sized dispersions through micelle aggregation of particles.
  • zirconium silica carbide hafnium beads of 0.1 to 5 mm are placed in a milling machine to disperse so that the average particle size of the molecules is 1 to 10 nm for a processing time of 90 minutes at 1 kg. Through this dispersion process, a dispersion master stock solution excellent in dispersion is produced.
  • the ideal amount of the beads for dispersing is added in the range of 60 to 90% with respect to the total volume of the machine chamber, and the injected zirconium silica carbide hafnium beads are rotated at a high speed of 12,000 to 24,000 RPM.
  • a ultra-high precision grinding and dispersing system using a zirconium silica carbide hafnium bead is used in a pilot ultra-fast grinding and dispersing equipment such as a commercially available IKA T200.
  • the photocuring reaction chemical is added to the prepared organic-inorganic composite piezoelectric molecular particles and the photocuring dispersed master stock solution.
  • photoreactive chemicals are added to improve the stability, dispersion, or binding ability between ink particles of the ink composition.
  • the photoreactive chemicals to be added should take into account the improvement of ink properties such as surface tension, viscosity, pH and storage stability and at the same time be harmless to humans and the environment.
  • Photoreaction chemicals include, for example, potassium hydroxide pH buffer solutions; And a surface agent that is a surfactant.
  • Airproducts' amphoteric surfactants such as Surfynol CT211, 221, 231, Dynol 604, 607 Zetasperse 1200, 1400, 1600, 2100, 2300, 2500, 3100, 3400, 3700, Envirogem AD01, AE01, 02, 03, 360 Surfactants; Surfactants such as Tego 270, 280, 500, 505, Disperse 750, 760, which are amphoteric surfactants from Degussa; Surfactants such as BYK 023, 024, 027, 028, Disper, Disper 180, 184, 190, 192, 191, 193, which are amphoteric surfactants of BYK; Surfactants such as Solsperse 27000, 40000, 41000, 41090, 42000, 44000, 46000, 47000, which are amphoteric surfactants from Lubirazol; Room temperature moisture curable moisturizers such as 3M's amphoteric surfactants FC4430
  • moisturizer 0.5 to 10 wt% moisturizer
  • Ink constituent master stocks and photoreaction chemicals are blended in a mechanical stirrer and made with Degassing using 99.999999999% nitrogen and helium gas from Airproducts during the processing time in the blend situation.
  • a variable conditional Reaction & Storage Vessel which can be controlled by a commercially available IKA computer, can be used.
  • the manufactured ink composition is a process for removing impurities generated or mixed in the manufacturing process and filtering out particles having a predetermined size or more.
  • the filtration process is performed by ultrafiltration (less than 3 ⁇ m), microfiltration (less than 500nm), selective ultra-precision filtration (less than 100nm) using Millpore or General Electric's products, and reduced pressure (1 ATM) vacuum pump. It is filtered. Through the filtration process, the ink composition has an overall uniform and stable particle size.
  • a photocuring device may be configured to accelerate the curing speed of the photocuring ink.
  • SMP or MPP parallel processing
  • RISC-based processors 32/64/128/256/384 / 512bit microprocessors from ARM, Intel, AMD, VIA, IBM, Nvidia, Xillinx, Altera, etc.
  • the system has a sharpness of output. It also simulates the surface condition of the conductive ink according to the thickness required by the user, and adds simulation-emulation function according to the user's required configuration.
  • the dimensional printing system 100 includes a main board system including the first, second, and third mainboards 100, 100a, and 100b of the system, a color profiler 103, and photocuring.
  • a device 103, a storage device 102, a commercial inkjet printer 102, and a display device 102 are provided. Each configuration is interconnected to allow data communication.
  • the first motherboard 100 is a main operation system of the system, and a block diagram of the first motherboard module is shown in FIG.
  • the first motherboard 100 is a RISC-based 64-bit multicore-multithreaded processor to run an independent operating system.
  • the first motherboard 100 is capable of parallel processing and displays, prints, inputs, outputs, and stores.
  • the second and third burnt main boards 100a and 110b are auxiliary computing systems of the system, and a block diagram of the second and third mainboard modules is shown in FIG. 3.
  • the second and third motherboards 100a and 100b may run an independent operating system as a RISC-based multicore-multithreaded processor.
  • the 2nd and 3rd motherboards are capable of parallel processing and are responsible for display, input, output and high speed integer operation.
  • Mainboard No. 2 (100a) is a main processing system that can be processed in parallel with RISC-based ARM processors and handles input, output and high-speed floating-point operations.
  • the third main board 100b is an auxiliary processing system, and the third main board 100b is a RISC-based ARM SOC processor capable of high-speed digital operation control and can be driven by a kernel or a shell. . It also handles the input and output of photo-curing control and color management (profiling) control systems, as well as high-speed image and integer and floating point operations.
  • FIG. 12 shows a parallel processing flow of software by the multidimensional photocuring printing system shown in FIG.
  • each motherboard module in step S003 executes a computer parallel distributed processing operation program by transmitting various color matching profile information and photocuring control data to step S002 through a third motherboard in step S001. It is distributed to and processes.
  • step S004 If the operation processed in step S004 and the target value of the operation coincide, the parallel operation using the multi-core is processed by the multi-core of the first motherboard module, and if the target value does not match, the multi-processor of the second main board through the step S010
  • step S013 the data is parallelized and processed by the multi-core, and if it is larger than the target value in step S013, the feedback is moved to step S004, and the data is stored (S008) and displayed (S007) by the computer cluster language of steps S005 and S006, and in step S013. If it is lower than the target value, the controller moves to the fourth motherboard module (S018).
  • step S013 If the target value is the same as the target value in step S013, steps S015 and S016 are performed in turn, and feedback is sent from step S017 to step S003 to calculate. If the target value is low in step S013, the process moves to steps S018, S019, S020, S021, and S022, and then moves to step S010.
  • This structure is taken as a ring count method of a recursive feedback structure to form software capable of correcting the calculation by the high speed processing.
  • a method of preparing a photocurable polymer using monomers for blended ultra pure water vegetable oil solvent based photocurable inkjet inks is characterized by the use of spherical polymer ink particles having constant pores under solution of an electrically conductive monomer. Form.
  • the preparation was carried out under standard conditions (atmospheric pressure 1 ATM, temperature 298.16 K) with 10 g of amphoteric (water-soluble and fat-soluble) styrene of SigmaAldrich, 100 g of acrylate, 200 g of methyl methacrylate, 50 g of unsaturated polyester; DowCorning's modified silicone fluoride 10g, unsaturated polyester 10g 380g of monomer blended ultra pure water vegetable oil solvent and dimethyl sulfoxide as a cosolvent, dimethyl acetate blend solution 200g, tetrabutyl alcohol as a non-cosolvent 5g 2g of SigmaAldrich's rare metals (Ag, Au, Pt, Pd) using Wurtz Fitting Ulmann Reaction, a precise synthesis reaction, and 2g of Merck's Aluminum trioxide dicholoride, doping Gemanium Nitrate, and SigmaAldrich's Calcium hydrate, Lithium Induce the synthesis by ATRP by simultaneously induc
  • azeotrope isopropyl alcohol / ethyl alcohol or pretanol volume mixing ratio 20:80
  • 0.01 N HClH 2 SO 4 or HNO 3 H 2 PO 3 1000 ml and neutralized 0.01 N NaOHNH 3 1000 ml of OH or KOHLiOH
  • 1000 ml of 1N bisphosphocarbonate or disodium sulfonate, which is a redox agent was dropped to form a crystal
  • Ultraviolet C (193nm: 37.5mW) of micelle-based average particle size (80nm) size dispersed in super pure water and vegetable oil-based solvents has a deep blue color (PA ( E)
  • DOT Polyalkyl (ethylene) dioxy (dioctyl) thiophene
  • PANi Polyaniline
  • PA (E) DOT is used to form particles in ultra pure water and vegetable oil-based solvents, which are blended to (100 nm) size.
  • TCNQ Tetracyanoquinodimethane
  • TCNQTTF Tetrathiafulvalene
  • Polypyrrole (PPy) (60 nm) has an average particle size and the production method is the same as that of PANi particles. However, PPy does not disperse in water and common organic solvents, so white charcoal and carbon black burned in kilns (1: 1, 1: 2, 2: 1, 1: 3, 3: 1, 1: 4, 4). It was grafted in a ratio of 1). In addition, when Ziegler-Natta addition reaction of polyethyl oxide, propyl oxide, and butyl oxide, respectively, 2 moles, three types of organometallic semiconductors are prepared.
  • Piezoelectric molecules PVK Poly Vinyl Carbazole
  • PLG PolyLGlutamate
  • Polyacethylene (PA) is used to prepare particles having an average particle size (200 nm) using an aldehyde ketone solvent.
  • dry activated charcoal 1Kg baked in a kiln of 1100-1200 ° C and 0.5Kg of graphite 100mesh size of Sigmaaldrich's in Korea.
  • Cooling in the dry grinding process uses liquid nitrogen to cool the grinder and injects liquid helium into the grinding chamber to maintain oxygen supersaturation and superconductivity.
  • the speed of the grinding chamber should be kept below 1000 RPM during the dry grinding process.
  • the grinding time is maintained for 5 to 8 hours depending on the capacity of the chamber of each grinder.);
  • an inert gas, nitrogen and helium is injected using a reactor, and a reactor equipped with a high speed stirring device is used.
  • a dispersion master solution is prepared in the following ratio.
  • PT group (at least one of the preceding manufactured molecular particles): 80 g
  • PANi group (at least one of the preceding manufactured molecular particles): 120 g
  • PPy group (at least one of the pre-made molecular particles): 20 g
  • PA group (at least one of the preceding prepared molecular particles): 50 g
  • TCNQ group (at least one of the pre-made molecular particles): 0.5 g
  • RetinolA (SigmaAldrich CO.): 1 g
  • Solvent (ultra pure 40 wt%, vegetable oil solution 10 wt%, Prethanol 50 wt%): balanced.
  • Newtonianfluid emulsions with viscoelasticity are prepared with Degassing using 99.999999999% nitrogen gas from Airproducts for 12 to 36hrs during the manufacturing process.
  • the photocuring reaction chemicals are added and manufactured using the result of the prepared preparation 2.
  • RetinolA (SigmaAldrich CO.): 1 g
  • Ink constituent master stocks and photoreaction chemicals are blended in a mechanical stirrer and made with Degassing using 99.999999999% nitrogen and helium gas from Airproducts during the processing time in the blend situation.
  • the ink constituents according to the present invention were added to the prepared dispersion stocks with Degassing using 99.999999999% nitrogen and helium gas from Airproducts under process conditions in blend conditions.
  • RetinolA (SigmaAldrich CO.): 0.5 parts by weight
  • the prepared ink composition was filtered using a member filter.
  • the resulting ink had a surface tension of 25 dyne / cm; Viscosity 5.1 cPs; And pH 7.5.
  • the prepared ink was injected into a cartridge and subjected to a 30 m output test on output devices such as the Stylus Pro 7900 manufactured by Epson, Hewlett Packard Designer jet z3200, and Canon IPF 8000 manufactured by Canon.
  • output devices such as the Stylus Pro 7900 manufactured by Epson, Hewlett Packard Designer jet z3200, and Canon IPF 8000 manufactured by Canon.
  • general polyethylene terephthalate and polypropylene film were used for printing. No ejection of the nozzle occurred and the UV curing of the printed ink injected 99.999999999% argon gas from Airproducts as it passed through the curing machine to prevent oxygen deformation during surface curing.
  • the quality test of the cured ink the durability, sharpness, permeability and opt
  • the prepared petroleum dilution electronic inkjet printing electronic inks were tested on output devices such as Stylus Pro 7900 from Epson, Hewlett Packard Designer jet z3200, and Canon IPF 8000 from Canon.
  • output devices such as Stylus Pro 7900 from Epson, Hewlett Packard Designer jet z3200, and Canon IPF 8000 from Canon.
  • the printing was performed on the general polyethylene terephthalate and polypropylene film, and there were some nozzles missing, ink bleeding occurred, and the EVA nonwoven fabric of the ink support part of the ink head was dissolved. Increased inkjet head damage due to internal acid generation.
  • the rate of change of resistance to moisture in the quality test process was also severe.
  • Alfa Aesaer's electronic ink compositions for petroleum dilution electronic inkjet printing were compared.
  • the prepared petroleum dilution electronic inkjet printing electronic inks were tested on output devices such as Stylus Pro 7900 from Epson, Hewlett Packard Designer jet z3200, and Canon IPF 8000 from Canon.
  • the nozzle was printed on the general polyethylene terephthalate and polypropylene film, and some nozzles were missing, and ink bleeding occurred.
  • the EVA nonwoven fabric of the ink support part of the ink head was dissolved by Xylene, and harmful substances were discharged. Although not the same as in Example 1 after the hardening process quality change during the surface resistance change rate of the silver was much.
  • ITO isopropyl alcohol in 30 wt% solution 40 wt%;
  • the prepared petroleum dilution electronic inkjet printing electronic inks were tested on output devices such as Stylus Pro 7900 from Epson, Hewlett Packard Designer jet z3200, and Canon IPF 8000 from Canon. In the course of the test, it was printed on the general polyethylene terephthalate and polypropylene film, and there was no leaking of the nozzles, ink bleeding occurred, and the ink hazardous substances in the ink head were not discharged but went through the same curing process as in Example 1. Later, during the quality test, the rate of change of 3D resistance to bending and torsion was high.
  • the ink of Comparative Examples 1 to 3 should be similar to the experimental results of the present invention only by using an organic transparent ink on the ITO thin film to improve conductivity in order to use it as a flexible electronic ink.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Wood Science & Technology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Dispersion Chemistry (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Nanotechnology (AREA)
  • Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Manufacturing & Machinery (AREA)
  • Inks, Pencil-Leads, Or Crayons (AREA)
  • Record Information Processing For Printing (AREA)
  • Accessory Devices And Overall Control Thereof (AREA)

Abstract

The present invention relates to a method for manufacturing photosensitive inkjet ink for an electrode which is capable of forming a microcircuit pattern for a transparent electrode or an integrated circuit, wherein the method for manufacturing the inkjet ink for an electrode is characterized by comprising the steps of: selecting a photosensitive piezoelectric conductive compound; manufacturing conductive piezoelectric molecule particles and a base prepolymer using a UV (light)-, heat-, and radiation-curable monomer; manufacturing organic-inorganic hybrid piezoelectric conductive molecule particles and a photosensitive dispersion master solution; manufacturing the organic-inorganic hybrid piezoelectric conductive molecule particles and a photosensitive dispersion master undiluted solution; formulating organic-inorganic hybrid piezoelectric conductive molecule particle ink; and precisely filtering the organic-inorganic hybrid piezoelectric conductive molecule particle ink. Further, the present invention relates to organic- inorganic hybrid molecule inkjet ink, and to a method for applying same, for flexible or hard displays requiring transparency or for electrodes utilized in the displays, the ink having high transparency, low luminance and chrominance deviation, physicochemical stability, superconductivity at relatively high temperatures, and piezoelectric properties.

Description

초고밀도 미세 회로 패턴 형성이 가능한 전극용 광 경화 잉크젯 잉크의 제조 방법Manufacturing method of photocurable inkjet ink for electrodes which can form ultra high density microcircuit pattern
본 발명은 광 경화 잉크젯 프린트 시스템을 이용한 다차원 형상의 잉크젯 프린트가 가능한 유기무기 복합화한 초 전도 압전 전극용 광 경화 잉크젯 잉크를 사용한 전극용 잉크젯 잉크에 관한 것이다.The present invention relates to an inkjet ink for electrodes using an organic-inorganic hybridized superconducting piezoelectric electrode photocurable inkjet ink capable of multi-dimensional inkjet printing using a photocurable inkjet print system.
모든 전기 전자 제품은 기존의 전이 금속류 또는 희소성을 가지는 금속으로 구성되어 왔다. 특히나 Integrated Circuit로 구성되며 디스플레이 소재의 경우 같은 류의 투명성을 가지는 모든 전이 금속류나 희토류로 분류되는 희소 금속 성분을 대부분 포함하는 형태의 염류(Salts)로 주로 용매(Sulfonic, Choloride, Nitrate Acid)에 의한 Doping과정을 통해 화학적 기상 증착법(CVD: Chemical Vapor Deposition)또는 감압 진공 상태 하의 플라즈마 증강 화학적 기상 증착법(PECVD: Plasma Enhancement Chemical Vapor Deposition)로 진행하였으나 유연한 소재의 적용이 대두된 현재는 기존의 실리콘 서브스트레이트 방식(Substrate of Silicone Wafer(Single, Multiple Crystalline), Amorphous Silicon Wafer)을 탈피하여 광학적 투명성과 기계적 물성이 확보된 폴리 에틸렌 테레프탈레이트(PET: PolyethyleneTerephthalate), 폴리 프로필렌(PP: Polypropylene)등의 유기 고분자 물질로 구성된 서브스트레이트 등에 이용하기 위하여 메탈옥사이드화학적기상증착법(MOCVD: Metal Oxide Chemical Vapor Deposition)에 의한 원래 투명하거나 나노 입자화 되면 투명성을 갖는 전이 금속류(Titanium, Zinc, Indium, Tin, Antimony, Silver, Gold, Iron etc.)등의 물질을 알칼리 토금속(Lithium, Sodium, Potassium, Calcium etc.) 등과 염류화(Salts) 하여 화학적 기상증착법으로 유기 고분자 필름 상에 ThinFilm화 것을 주로 사용하거나 전도성을 가지는 CNT(Carbon Nano Tube, SWCNT, DWCNT, MWCNT), Nanowire, Dendrimer, Graphene, FullereneC60, 61, 70, 90, PEDOTPOSS/PSS(Poly Thiopene Group), Poly Acetylene, Poly Pyrrole, Poly Phenylene Vinylene, Poly Phenyl Sulfide, Poly Vinylene Carbazole, Poly Sprazole, Poly acene, Poly aniline, Poly Lglutamate, Phtalocyanin, Qinacridone, TCNQ(Tetracyanoquinodimethane), TCNQTTF(Tetrathiafulvalene), Transfer Metal Group, Alkali Metallic Salt등의 전기전도성을 가지며 광 또는 열 전도도 포함하는 SP2또는 SP3의 Molecular Orbital을 가지며 가전자 대역에서 페르미 준위가 1.6eV 이상의 전자 모빌리티를 물질로 구성되는 형태로 기존의 서브스트레이트 또는 유기 고분자 필름 서브스트레이트에서 증착되는 공정을 행하고 있다. 그러나 상기의 공정 방식으로는 기존의 서브스트레이트를 사용하며 전이 금속류와 알칼리 토금속을 사용하는 공정보다 공정 작업의 량과 공정온도가 낮으나 유연한 전기전자 소자를 얻을 수 있으나 전자 모빌리티나 부가적인 물리화학적인 요소에서는 부정적인 결과로 인하여 오히려 부가 성능을 얻기 위하여 유해하거나 치명적인 요소를 더 가지며 전도성을 가진 유기 물질이 유기 물질의 고유의 반도체적인 특성에 기인하여 전자 모빌리티가 급격하게 줄어드는 특성을 가지고 있다.All electrical and electronic products have been composed of conventional transition metals or metals with scarcity. In particular, it is composed of integrated circuits, and in the case of display materials, salts containing most of transition metals having the same transparency or rare metals classified as rare earths are mainly salts (Sulfonic, Choloride, Nitrate Acid). Chemical Doping Process (CVD) or Plasma Enhancement Chemical Vapor Deposition (PECVD) under reduced pressure, but the application of flexible materials has emerged. Organic polymer materials, such as polyethylene terephthalate (PET) and polypropylene (PP), which are optically transparent and mechanically secured by breaking away from the substrate (Substrate of Silicone Wafer (Single, Multiple Crystalline), Amorphous Silicon Wafer) For use in a substrate composed of Substances such as transition metals (Titanium, Zinc, Indium, Tin, Antimony, Silver, Gold, Iron etc.) that have transparency when originally transparent or nanoparticles are formed by metal oxide chemical vapor deposition (MOCVD). Is salted with alkaline earth metals (Lithium, Sodium, Potassium, Calcium etc.) and thin filmed on organic polymer film by chemical vapor deposition, or CNT (Carbon Nano Tube, SWCNT, DWCNT, MWCNT) ), Nanowire, Dendrimer, Graphene, Fullerene C60, 61, 70, 90, PEDOTPOSS / PSS (Poly Thiopene Group), Poly Acetylene, Poly Pyrrole, Poly Phenylene Vinylene, Poly Phenyl Sulfide, Poly Vinylene Carbazole, Poly Sprazole, Poly acene, Poly SP2 or SP3 with electrical conductivity including aniline, Poly Lglutamate, Phtalocyanin, Qinacridone, Tetracyanoquinodimethane (TCNQ), Tetrathiafulvalene (TCNQTTF), Transfer Metal Group, Alkali Metallic Salt, etc. In the form of a material having a molecular orbital and having a Fermi level of 1.6 eV or more in the valence band, the material is deposited on an existing substrate or an organic polymer film substrate. However, the above process method uses a conventional substrate and has a lower amount of process work and process temperature than a process using transition metals and alkaline earth metals, but it is possible to obtain flexible electric and electronic devices. However, electron mobility or additional physicochemical factors can be obtained. In addition, due to the negative result, in order to obtain additional performance, there are more harmful or deadly elements, and the conductive organic material has a characteristic that the electronic mobility is drastically reduced due to the inherent semiconducting properties of the organic material.
공정 측면에서 상기에 서술된 기존 방식의 공정은 주로 MEMS(Micro Electro Mechanical System)방법의 내용을 극복하기 위하여 NIL(Nano Imprinting Lithography)와 SAMs(Self Assembly Monolayer System), ALD(Atomic Layard Deposition)등의 방법이 있으나 근본적으로 미세 회로 선폭이나 대면적에 따른 부가적인 성능 하락의 요인을 제거하기 위하여 희소 금속류(Silver, Gold 등)나 Carbon 유도체(Graphene, FullereneC60, 61, 70, 90, CNT(Carbon Nano Tube, SWCNT, DWCNT, MWCNT 등)의 덴드리머나 나노와이어로 수직하거나 직교 하는 구조(부릴루앙 이나 사파이어 구조)로 전환 사용하여야 하는 공정 작업에 있어서 가장 어려우며 전환율도 많이 떨어지는 결과를 관련된 기술 특허(US 2011117329, JP2009286032, GB2463670, KR20100078779, KR20100075100, US2007262710, JP2007273990, CN101331625, US2004085014, JP2005081585, JP2005023099, JP2004074469, JP200326669) 및 학술 논문이나 각국의 정부 용역 연구 보고서에서도 나타나고 있다.In the process aspect, the conventional method described above is mainly used to overcome the contents of the MEMS (Micro Electro Mechanical System) method such as Nano Imprinting Lithography (NIL), Self Assembly Monolayer System (SAMs), Atomic Layard Deposition (ALD), etc. There is a method, but in order to eliminate the factors of additional performance degradation due to the fine circuit line width or large area, rare metals (Silver, Gold, etc.) or carbon derivatives (Graphene, Fullerene C60, 61, 70, 90, CNT (Carbon Nano Tube) , SWCNT, DWCNT, MWCNT, etc.) to the dendrimers or nanowires to convert to vertical or orthogonal structures (buriluan or sapphire structures). JP2009286032, GB2463670, KR20100078779, KR20100075100, US2007262710, JP2007273990, CN101331625, US2004085014, JP2005081585, JP2005023099, JP2004074469, JP200326669) It appears in government services research papers or reports of each country.
본 발명은 유기 분자 구조에 무기 성분인 전이 금속류나 유기 전도성 고분자를 이용하여 친핵성 반응을 유도하여 투명 디스플레이나 투명 전극을 형성 하거나 초 전도성을 가지며 부분적인 투명성을 확보하며 열이나 광에 의해 초 압전성을 띄는 복합적인 투명하거나 반투명이 가능한 디스플레이용 전극 잉크와 프린트가 가능한 다양한 소재에 집적회로 및 기억 형상이 가능한 생체 근육 조직에 이용 가능한 전극을 제조하는 방법을 제시한다. 또한 세계 각국의 환경 관련 기관 및 및 세계 보건 안전 기구, 국제 환경 기준이 정한 유해 화학물(대기, 수질, 인체, 동물에 대한: REACHver2006, 2008, 2010, RoHS, LoHAS, HAPs etc.)에서 정한 규정에 의한 유해 화학물의 생성, 배출을 없애며 더 나아가 전자전기 관련 제품의 제조, 생산, 테스트, 소비자의 운용 구동에서 생성되는 전자파를 차폐 및 생성을 원천적으로 봉쇄 하여 보다 안전한 사용을 하기 위해 본 발명 기술을 제공한다.The present invention induces a nucleophilic reaction by using transition metals or organic conductive polymers, which are inorganic components, in an organic molecular structure to form a transparent display or a transparent electrode or have superconductivity, secure partial transparency, and super piezoelectricity by heat or light. The present invention provides a method for manufacturing an electrode which can be used for biological muscle tissue capable of integrated circuits and memory shapes on a display electrode ink capable of displaying complex transparent or translucent and various printable materials. In addition, regulations are established by environmental agencies around the world, and by the World Health and Safety Organization, and hazardous chemicals (for air, water, human and animals: REACHver2006, 2008, 2010, RoHS, LoHAS, HAPs etc.) as set by international environmental standards. In order to eliminate the harmful chemicals generated by the chemicals, and to block the generation of electromagnetic waves generated in the manufacturing, production, testing of consumer electronics-related products, and to drive the operation of consumers, to provide.
본 발명의 핵심적인 특징으로서, 기본적으로 유기 분자들의 전도 및 압전 능력을 부여하기 위해서는 오비탈이 SP2 또는 SP3 구조의 분자 궤도를 가지며 되도록이면 선형 구조 이여야만 한다. 이러한 구조를 가지기 위해서 전도성을 가지는 유기 전도 분자와 압전성을 가지는 유기 압전 고분자를 SAM(Self Assembly Monolayer), SOM(Self Organization Monolayer), SSM(Self Supermacromolecular Monolayer)방법 등을 이용한 ATRP(Atomic Transfer Polymerization)방법의 RAFT(Receive Addition Fragmentation Polymerization)방법을 사용하며 수계 및 식물성 유지에 잉크화하기 위하여 Suspension Polymerization 방법인 Cation, Anion 방법을 사용 하여 Syndiotatic 또는 Sectioning atatic 방법으로 입체 규칙성(HeadTail, HeadHead, HeadHeadTail, HeadTailHead)을 보완하며 전이 금속이나 알칼리 토금속을 사용하기 위하여 Ionic Polymerization방법의 하나인 정밀 중합 방법인 리빙 이온 중합법 중 메탈로센 치환 중합 방법을 사용하고 SuspensionEmulsion Heterogeneous Synchronized Polymerization 방법을 사용하여 외부의 물리화학적 변화에 안정적인 입체 규칙성을 가지며 유기무기 성분의 간의 표면 장력에 의한 전도 및 압전성의 변화율을 되도록 억제를 하는 구조를 가진다. 또한 서브스트레이트와 전극 잉크 간의 표면의 거칠음 및 표면 부착 및 표면의 물리화학적 안정성을 위하여 고 투명 경화 수지 및 인슐레이트 등의 부가적인 기능을 지글러 나타 반응 및 링 오프닝 개환 반응, 다니엘엘더 촉매 반응으로 설계한다. 또한 물질간 계면, 잉크 입자간 계면, 입자와 용매간 계면, 잉크와 공기와의 계면, 잉크 입자와 용매 잔존 산소와 계면, 잉크와 잉크 카트리지간 계면, 잉크 공급 튜브와 계면, 잉크 댐핑잉크젯 헤드간 계면, 잉크와 서브스트레이간의 계면 등에서 생성되는 길거나 짧은 시간 내에서 생기는 양자 우물 현상을 최소화하며 또한 그 현상을 이용하여 보다 나은 잉크 시스템을 제공하기 위하여 양자 전기 역학:QED(Quantum Electron Dynamics)기반의 원리를 적용하였다.As a key feature of the present invention, in order to impart the conduction and piezoelectric ability of organic molecules, the orbital should have a molecular orbital of SP2 or SP3 structure and should be as linear as possible. In order to have such a structure, the conductive organic conductive molecule and the piezoelectric organic piezoelectric polymer have an ATRP (Atomic Transfer Polymerization) method using a Self Assembly Monolayer (SAM), a Self Organization Monolayer (SOM), and a Self Supermacromolecular Monolayer (SSM) method. It uses the RAFT (Receive Addition Fragmentation Polymerization) method and uses the Suspension Polymerization method, Cation and Anion method to inks into the aqueous and vegetable oils, and uses the syndiotatic or sectioning atatic method to achieve stereoregularity (HeadTail, HeadHead, HeadHeadTail, HeadTailHead). In order to use transition metal or alkaline earth metal, metallocene substitution polymerization method of living ion polymerization method, one of the Ionic Polymerization method, is used, and SuspensionEmulsion Heterogeneous Synchronized Polymerization method is used for external physicochemical changes. Stable solid rule It has a structure that suppresses the rate of change of conductivity and piezoelectricity due to surface tension between the organic inorganic components. In addition, additional functions such as highly transparent cured resins and insulats are designed by Ziegler-Natta reaction, ring opening ring reaction, and Danielelder catalysis for surface roughness and surface adhesion between substrate and electrode ink. . Also, the interface between materials, the interface between particles of ink, the interface between particles and solvent, the interface between ink and air, the interface between ink particles and solvent remaining oxygen, the interface between ink and ink cartridge, the interface between ink supply tube and interface, and ink damping inkjet head. In order to minimize the quantum well phenomenon occurring in the long time or short time generated at the interface, the interface between the ink and the substray, and to use this phenomenon to provide a better ink system, the principle based on quantum electrodynamics: QED (Quantum Electron Dynamics) Was applied.
투명성이 요구되는 유연하거나 강직한 디스플레이나 그 디스플레이에 활용되는 전극은 고 투명성을 가지며 휘도나 색차 변화율 등의 변화율이 적으며 물리화학적 안전성과 구동되는 상온에서의 초 전도, 압전성을 띄는 유기무기 하이브리드한 분자 잉크젯 잉크를 제조하는 기술 및 그 잉크의 응용 방법을 제공한다.Flexible or rigid displays that require transparency, or electrodes used in the displays, have high transparency, low change rate of luminance and color difference, and organic inorganic hybrids that exhibit physicochemical stability and superconductivity and piezoelectricity at room temperature. Provided are techniques for preparing molecular inkjet inks and application methods of the inks.
상기한 과제를 해결하기 위하여, 본 발명의 적절한 실시 형태에 따르면, 투명 전극 또는 직접 회로의 미세회로 패턴 형성이 가능한 전극용 잉크젯 잉크의 제조방법에 있어서, 광 경화 압전전도 화학물의 선택 단계 ; 자외선(광), 열, 방사선등의 경화 모노머를 이용 전도압전 분자 입자와 기저 프리올리머 제조하는 단계 ; 유기무기 하이브리드 압전전도 분자 입자 및 광 경화 분산 마스터 용액의 제조 공정 단계; 유기무기 하이브리드 압전전도 분자 입자 및 광 경화 분산 마스터 원액 제조 공정 단계; 유기무기 하이브리드 압전전도 분자 입자 잉크 포뮬레이터 공정 단계; 및 정밀 여과 단계;등을 포함할 수 있다. In order to solve the above problems, according to a preferred embodiment of the present invention, there is provided a method for producing an inkjet ink for electrodes capable of forming a fine circuit pattern of a transparent electrode or an integrated circuit, comprising: selecting a photocurable piezoelectric chemical; Preparing conductive piezoelectric molecular particles and a base prepolymer using curing monomers such as ultraviolet (light), heat, and radiation; A process for producing an organic-inorganic hybrid piezoelectric molecular particle and a photocured dispersed master solution; An organic-inorganic hybrid piezoelectric molecular particle and a photocuring dispersed master stock solution manufacturing process step; An organic-inorganic hybrid piezoelectric molecular particle ink formular process step; And microfiltration step; and the like.
본 발명의 다른 적절한 실시 형태에 따르면, 상기 하이브리드 압전전도 분자 입자인 주 재료에 폴리티오펜, 폴리아닐닌, 폴리피롤, 폴리아세틸렌, 폴리비닐카바졸, 폴리 L-글루타메이트, 폴리플루오르테트라시아노퀴노디메탄 유도체, 또는 무기물 중에서 선택된 1종 또는 2종이상의 부가재료를 그라프팅하는 것을 특징이다.According to another suitable embodiment of the present invention, polythiophene, polyaniline, polypyrrole, polyacetylene, polyvinylcarbazole, poly L-glutamate, polyfluorotetracyanoquinodi It is characterized by grafting one or two or more additive materials selected from methane derivatives or inorganic substances.
본 발명의 또 다른 적절한 실시 형태에 따르면, 상기 분산용액은 초 순수 물과 식물성 오일의 혼합 용매를 포함하는 것이 바람직하다.According to another suitable embodiment of the present invention, the dispersion solution preferably comprises a mixed solvent of ultra pure water and vegetable oil.
본 발명의 또 다른 적절한 실시 형태에 따르면, 상기 방법에 의해 제조된 잉크젯 잉크를 사용한 액정, 발광, 플라즈마, 전기변색, 전계발광의 투과형 또는 반사형 디스플레이, 태양전지, 2차 전지, 연료전지 또는 바이오센서, 홀로그램등 선택된 하나의 전자부품을 제공한다.According to another suitable embodiment of the present invention, a liquid crystal, light emitting, plasma, electrochromic, electroluminescent transmissive or reflective display, solar cell, secondary cell, fuel cell or bio using the inkjet ink prepared by the above method Provides one selected electronic component such as sensor and hologram.
본 발명에 따른 제조 방법은 유해한 화학 물질을 사용하지 않으며 물질 경화 과정 및 상품 제조 시에도 유해 화학 물이 배출이 되지 않는 다양한 방식의 헤드에 사용할 수 있는 잉크 구성물을 제조할 수 있도록 한다. 제조된 잉크 구성물은 경화 공정 과정에서 유해한 화학물질을 배출하지 않으므로 작업자 및 환경에 유해한 영향을 미치지 않으며 한정된 헤드의 종류가 아닌 다양한 방식의 헤드에 사용할 수 있다는 이점과 잉크젯 프린터 사용하여 기존의 초 정밀 나노 전자 소자 및 재료를 광범위하게 사용하며 초 경량화, 초 박막화, 초 미세화를 가짐으로써 전력 소비나 생산의 효율을 극대화하며 어떠한 종류의 서브스트레이트를 사용하여도 기존의 실리콘 계열의 서브스트레이트와 비교해 동일하거나 근접하는 성능과 효율을 보장할 수 있는 장점을 가진다.The manufacturing method according to the present invention makes it possible to produce an ink composition that can be used for various types of heads that do not use harmful chemicals and do not emit harmful chemicals during material curing and product manufacture. The manufactured ink composition does not emit harmful chemicals during the curing process, so it does not have a harmful effect on workers and the environment, and can be used for various types of heads instead of limited head types. Extensive use of electronic devices and materials, ultra-lightweight, ultra-thin, and ultra-miniaturized to maximize power consumption or production efficiency, and the same or nearer than conventional silicon-based substrates for any kind of substrate Has the advantage of ensuring performance and efficiency.
도 1은 본 발명 전도-압전 잉크젯 전극 잉크의 전체 제조 공정도이다.1 is an overall manufacturing process chart of the conductive-piezoelectric inkjet electrode ink of the present invention.
도 2는 폴리 티오펜 분자 구조이다.2 is a polythiophene molecular structure.
도 3은 폴리 아날린 분자 구조이다.3 is a polyanaline molecular structure.
도 4는 폴리 아날린 유도체 분자 구조이다.4 is a polyanaline derivative molecular structure.
도 5는 폴리 피롤 분자 구조이다.5 is a polypyrrole molecular structure.
도 6은 유기 전도체 분자 구조 #1이다.6 is organic conductor molecular structure # 1.
도 7은 유기 전도체 분자 구조 #2이다.7 is organic conductor molecular structure # 2.
도 8은 유기 전도체 분자 구조 #3이다.8 is organic conductor molecular structure # 3.
도 9는 카본 유도체 모식도이다.9 is a schematic diagram of carbon derivatives.
도 10은 덴드리머와 폴리옥시실록산 베이스 구조이다. 10 is a dendrimer and a polyoxysiloxane base structure.
도 11은 다차원 광 경화 프린트 시스템의 전체적인 하드웨어 구성을 도시한 블록도이다. 11 is a block diagram showing the overall hardware configuration of a multidimensional photocurable print system.
도 12는 도 11에 도시된 다차원 광경화 프린팅 시스템에 의한 소프트웨어의 병렬처리연산흐름을 도시한 것이다. FIG. 12 shows a parallel processing flow of software by the multi-dimensional photocuring printing system shown in FIG.
도13은 광 경화 제어시스템, 프린터, 각종 센서의 입력-출력 흐름도이다.13 is an input-output flow chart of a light curing control system, a printer, and various sensors.
본 발명은 하기 1 내지 12단계 등의 세분화된 제조 공정 방법을 포함하는 것이 바람직하다.It is preferable that the present invention includes a granular manufacturing process method such as the following 1 to 12 steps.
1. 광 경화 유기무기 하이브리드화한 초 전도 압전성 분자 잉크젯 잉크의 분산 마스터 원액의 제조 방법은 블랜드가 된 초 순수 물과 식물성 오일 기반의 용매에 적어도 하나 이상의 전도성 물질과 압전 물질을 선택하는 단계; 1. A method of preparing a dispersion master stock solution of a photocurable organic-inorganic hybridized superconducting piezoelectric molecular inkjet ink, comprising: selecting at least one conductive material and piezoelectric material in a blended ultra pure water and vegetable oil based solvent;
2. SigmaAldrich사의 광 경화 형 양쪽성을 가진 (수용성과 지용성)모노머 스티렌, 아크릴레이트, 메타아크릴레이트, 이미다졸 그룹의 모노머를 이용 할로겐화된 희소 금속 촉매(Ag, Au, Pd, Pt)를 사용하여 분자량(Mn: 1,000 ~ 10,000) 올리고머를 제조하고 ATRP및 부분적 RAFT 방법을 이용 중합 전자 촉매제인 질산은(0.05N)과 질산에 용해된 비스무스옥사이드(0.01N)용액을 사용 분자량 (Mn: 20,000 ~80,000) 폴리머를 제조하는 단계; 2. Halogenated rare metal catalysts (Ag, Au, Pd, Pt) using SigmaAldrich's photocurable amphoteric (water soluble and fat soluble) monomers of styrene, acrylate, methacrylate and imidazole groups Molecular weight (Mn: 1,000 ~ 10,000) oligomer was prepared, and the solution of silver nitrate (0.05N) and bismuth oxide (0.01N) dissolved in nitric acid were used by ATRP and partial RAFT method. Molecular weight (Mn: 20,000 ~ 80,000) Preparing a polymer;
3. 하기에 기재된 전도-압전성 화합물을 제조 단계;3. preparing a conducting-piezoelectric compound as described below;
1) PA(E)DOT(Polyalkyl(ethylene) dioxy(dioctyl) thiophene) 전도성 폴리머 입자를 제조하기 위하여 dioctyl thiophene 모노머에 질산은(1.5N)과 염화금(1N) 촉매를 사용하여 블랜드가 된 초 순수 물과 식물성 오일 기반의 용매에 분산된 평균 입자크기 (80nm)크기의 분산입자를 고 투명한 입자를 제조한다. 1) PA (E) DOT (Polyalkyl (ethylene) dioxy (dioctyl) thiophene) To prepare conductive polymer particles, ultra pure water blended with dioctyl thiophene monomer using silver nitrate (1.5N) and gold chloride (1N) catalyst Highly transparent particles are prepared from dispersed particles having an average particle size (80 nm) dispersed in a vegetable oil based solvent.
2) PANi(Polyaniline) 입자를 제조하기 위하여 락톤을 사용하여 완전 용해 한 후 PA(E)DOT와 동일한 희소 금속 촉매를 사용 하여 (100nm) 크기의 블랜드가 된 초 순수 물과 식물성 오일 기반의 용매에 입자를 형성한다. 2) Completely dissolved using lactone to produce PANi (Polyaniline) particles, and then mixed in ultra pure water and vegetable oil based solvents using (rarely metal catalyst) same as PA (E) DOT and blended (100nm) in size. To form particles.
3) PPy(Polypyrrole)은(60nm) 평균 입자 크기를 가지며 제조 방법은 PANi 입자 제조와 동일하다. 3) Polypyrrole (PPy) (60 nm) has an average particle size and the production method is the same as the production of PANi particles.
4) PA(Polyacethylene)은 알데히드 케톤 용매를 사용하여 평균 입자(200nm)크기를 가지는 입자를 제조한다. 4) PA (Polyacethylene) is used to prepare particles having an average particle size (200 nm) using an aldehyde ketone solvent.
5) 본 발명에 있어서 가장 중요한 기저 매트릭스로 사용하는 그라핀을 추출하기 위하여 우리나라에서 강원도에 자생하는 참나무 숯을 1100 ~ 1200℃의 가마에서 구운 활성 백탄을 건식 분쇄기로 10~20mm수준의 미립자로 만든 후 건식 조 분쇄기를 이용하여 지르코니아실리카카바이드 비드 지름 2mm를 사용하여 300 ~ 500㎛ 수준으로 파운더리 한 후 건식 미분쇄기 지르코니아실리카카바이드 비드 지름 0.5mm로 10 ~ 20㎛로 미세 파운더리 한다. 건식 분쇄 과정에서의 냉각은 액체 질소를 이용하여 분쇄기를 냉각하며 분쇄 챔버 내에는 액체 헬륨을 주입하여 산소 과포화 및 초전도를 유지한다. 건식 분쇄의 과정 중 분쇄 챔버의 속도는 1000RPM 이하로 유지되어야 한다. 분쇄 시간은 각 분쇄기의 챔버의 용량에 따라 5~8시간을 유지 한다. 미세 파운더리된 활성 백탄의 입자에 전도성 고분자를 브랜드 하거나 그라프팅 공정을 하기 위하여 반응기를 이용하여 불활성 질소와 헬륨이 주입되며 고속 교반 장치가 부착된 반응기를 사용한다. 5) In order to extract the graphene used as the most important base matrix in the present invention, activated charcoal baked in a kiln of 1100 ~ 1200 ℃ in oak charcoal native to Gangwon-do in Korea is made of fine particles of 10-20mm level by a dry mill. After using a dry coarse grinder using a zirconia silica carb bead diameter of 2mm to the foundation to 300 ~ 500㎛ level and dry fine grinding machine zirconia silica carbide bead fine diameter to 10 ~ 20㎛ with a diameter of 0.5mm. Cooling in the dry grinding process uses liquid nitrogen to cool the grinder and injects liquid helium into the grinding chamber to maintain oxygen supersaturation and superconductivity. The speed of the grinding chamber should be kept below 1000 RPM during the dry grinding process. The grinding time is maintained for 5 to 8 hours depending on the capacity of the chamber of each grinder. In order to brand or graf the conductive polymer to the particles of fine-found activated charcoal, inert nitrogen and helium are injected using a reactor, and a reactor equipped with a high speed stirring device is used.
4. 반응의 촉매를 사용하기 위하여 초 순수 물과 식물성 오일 기반의 용매에 30wt%로 수화된 폴리설포닉산, 40wt%로 수화된 폴리설포닉리튬산, 폴리아미노설포닉산, 폴리리그노설포닉산소디움염 중 하나의 유기산을 반응 분산-전하 도핑제로 선택하는 단계; 4. Polysulfonic acid hydrated at 30wt%, polysulphonic lithium acid, polyaminosulphonic acid, polylignosulphonic acid sodium hydrated at 30wt% in ultra pure water and vegetable oil based solvents to use the catalyst of reaction Selecting an organic acid of one of the salts as a reaction dispersion-charge dopant;
5. 희소 금속의 나노 막대화를 위하여 은, 금, 백금, 팔라디늄 중 적어도 두가지를 선택하는 단계; 5. selecting at least two of silver, gold, platinum and palladium for nanorodization of the rare metal;
6. 반응기를 통하여 제조된 그라프팅된 유기무기 하이브리드 전도물질을 습식 미 분쇄하는 단계; 6. Wet milling of the grafted organic-inorganic hybrid conductive material produced through the reactor;
7. 미 분쇄된 그라프팅된 유기무기 하이브리드 전도물질을 초미세 분쇄하는 단계; 7. ultrafine grinding of the unground grafted organic inorganic hybrid conducting material;
8. 그라프팅된 유기무기 하이브리드 전도물질을 10 내지 40 wt% 위하여 초 순수 물과 식물성 오일 기반의 용매 (식물성 오일: 콩기름 20~60wt%, 유채기름 20~40wt%, 락탐 10~20wt%, 락톤 20~40wt%) 50 내지 70 wt%인 그라프팅된 유기무기 하이브리드 전도물질 분산 용액을 제조하는 단계; 8. Ultrapure water and vegetable oil-based solvent (vegetable oil: 20 ~ 60wt% of soybean oil, 20 ~ 40wt% of rapeseed oil, lactam 10 ~ 20wt%, lactone) for 10-40 wt% of grafted organic inorganic hybrid conductive material 20 to 40 wt%) preparing a grafted organic inorganic hybrid conducting material dispersion solution of 50 to 70 wt%;
9. 원심 분리기가 장착된 초 미쇄기 내에 0.02 내지 5 mm의 지르코늄실리카바이드하프니움 비드(bead)를 넣어 희소 금속 전도 및 압전 고분자로 그라프팅된 유기무기 하이브리드 전도 물질의 평균 입도가 0.1 내지 20nm가 되는 잉크 조성물 원액을 제조하는 단계; 9. The average particle size of the organic-inorganic hybrid conductive material grafted with 0.02 to 5 mm of zirconium silica carbide hafnium beads in a ultra-fine mill equipped with a centrifuge and grafted with rare metal conductive and piezoelectric polymers was 0.1-20 nm. Preparing an ink composition stock solution;
10. 제조된 광경화 프리폴리머를 사용 0.8 내지 30nm크기의 압전전도 고분자 입자 원액을 제조하는 단계; 10. preparing a piezoelectric polymer particle stock solution of 0.8 to 30 nm in size using the prepared photocured prepolymer;
11. 잉크 반응 화학물질을 첨가하여 점도, 표면 장력 및 점도 등을 조절하여 잉크 구성물을 제조하는 단계; 및 11. Adding ink reaction chemicals to adjust the viscosity, surface tension, viscosity and the like to produce ink compositions; And
12. 제조된 잉크 구성물을 여과를 하는 단계 등12. Filtration of the manufactured ink composition, etc.
또한, 상기 방법에 의해 제조된 희소 금속 전도 및 압전 고분자로 그라프팅된 유기무기 하이브리드 전도 잉크는 경화 공정 과정에서 휘발성 유기 화합물을 배출하지 않는다. In addition, the organic-inorganic hybrid conductive ink grafted with the rare metal conductive and piezoelectric polymer prepared by the above method does not emit volatile organic compounds during the curing process.
또한, 본 발명은 잉크젯 전자 프린트 위한 블랜드된 초 순수 물 식물성 오일 용매 기반의 광 경화 잉크젯 잉크는 중 적어도 하나의 이상의 전도 또는 압전 고분자를 사용하며 및 기저 고분자로서 폴리스티렌, 아크릴레이트, 메틸메타아크릴레이트, 불포화에스터, 실리콘, 플루오르 중 적어도 하나 이상의 광 경화 폴리머 포함하는 분산 원액; 초 순수 물 식물성 오일 용매 ; 수산화칼륨 pH 버퍼 용액; 에틸렌글리콜 그룹, 프로필렌글리콜 그룹으로 구성된 그룹으로부터 선택된 어느 하나 또는 이들의 5 ~ 500개의 초 순수 물 식물성 오일 용매 기반으로 제조된 점증제; 글리세린, 부탄디올, 펜탄디올, 헥사디올로 구성된 그룹으로부터 선택된 어느 하나 또는 이들의 혼합물을 블랜드된 초 순수 물 식물성 오일 용매로 노멀메틸피리리돈, 2피롤리돈, 폴리비닐피리리돈과 혼합한 혼합 디올 용액으로 제조된 보습제를 포함한다. In addition, the present invention is a blended ultra pure water vegetable oil solvent based photocurable inkjet ink for inkjet electronic printing using at least one or more of conductive or piezoelectric polymers and as the base polymer polystyrene, acrylate, methyl methacrylate, Dispersion stock solution containing at least one or more of the unsaturated ester, silicone, fluorine photocurable polymer; Ultra pure water vegetable oil solvent; Potassium hydroxide pH buffer solution; Thickeners prepared on the basis of any one selected from the group consisting of an ethylene glycol group, a propylene glycol group, or 5 to 500 ultra pure water vegetable oil solvents thereof; Mixed diol solution in which any one or a mixture thereof selected from the group consisting of glycerin, butanediol, pentanediol, and hexadiol is mixed with normal methylpyrilidone, 2pyrrolidone, and polyvinylpyriridone in a blended ultra pure water vegetable oil solvent It includes a moisturizer prepared by.
또한, 본 발명은 경화 공정 과정에서 설포닉 리그닌과 같은 리그닌계 분산제, 아세토니트릴, 디메틸 설페이트, 디메탄올아민, N,N디메틸포름 아미드, 포름 알데히드, 히드라진, 메틸 에틸 케톤, 트리에틸아민, 디메틸 설폭사이드, 모르폴린, 소디움 하이드록사이드, 테트라하이드로푸란 또는 우레아를 배출하지 않는다. In addition, the present invention provides a lignin-based dispersant such as sulfonic lignin, acetonitrile, dimethyl sulfate, dimethanolamine, N, Ndimethylformamide, formaldehyde, hydrazine, methyl ethyl ketone, triethylamine, dimethyl sulfoxide in the curing process. It does not emit side, morpholine, sodium hydroxide, tetrahydrofuran or urea.
또한, 본 발명에서 제조된 상기의 희소 금속 전도 및 압전 고분자로 입자 외곽에 그라프팅된 유기무기 하이브리드 전도 잉크의 조성은 양쪽성(수용성, 지용성) 폴리아크릴레이트/폴리메틸메타아크릴레이트 광 중합 올리고머; 폴리 에틸프로필 옥사이드; 변성 폴리 실록산 / 플로오르 유/무기 혼성 라디칼 중합 올리고머; 에틸디아크릴레이트, 프로필디아크릴레이트, 부틸디아크릴레이트, 에틸메타아크릴레이트, 프로필메틸메타크릴레이트, 부틸메틸메타아크릴레이트, 이소프로필아크릴아마이드 모노머;폴리에틸메타아크릴레이트, 폴리에틸아크릴레이트, 불포화 폴리에스터 프리폴리머, 폴리에틸유레아 프리폴리머, 폴리우레탄 프리폴리머, 폴리우레탄아크릴레이트 프리폴리머; 및 광 개시제로서 벤조아세트페논; 열 라디칼 개시제로 아조비스메틸프로피아미딘디하이드로클로라이드(아조비스메틸니트릴); 자유 라디칼 개시제인 벤조퍼옥사이드; 안정제인 BASF(Ciba specialty.)사의 TINUV 5060, 5061; 포집제로 SigmaAldrich사의 하이드로퍼옥사이드; 증감제로는 폴리신나네메이트 등을 포함하는 분산 마스터 원액; 초 순수 물 또는 희석 혼합 식물성 오일(식물성 오일, 에테르, 락탐, 락톤); 수산화 칼륨 pH 버퍼 용액; 폴리에틸렌글리콜, 폴리프로필렌글리콜; 등으로 구성된 변성 그룹으로부터 선택된 어느 하나 또는 이들의 5 ~ 6,000개의 혼합물을 초 순수 물 희석 혼합 식물성 오일(식물성 오일, 에테르, 락탐, 락톤)과 혼합한 혼합폴리에틸렌글리콜(MW 400 ~ 12,000), 폴리프로필렌글리콜(MW 425 ~ 8,000), 에틸프로필 셀룰로오즈(MW 800 ~ 1,600,000), 젤라틴, 팩틴등의 용액으로 제조되는 점증제;를 사용한다.In addition, the composition of the organic-inorganic hybrid conductive ink grafted to the outer surface of the rare metal conductive and piezoelectric polymer prepared in the present invention is an amphoteric (water-soluble, fat-soluble) polyacrylate / polymethyl methacrylate photopolymerization oligomer; Poly ethylpropyl oxide; Modified polysiloxane / floor organic / inorganic hybrid radical polymerization oligomers; Ethyl diacrylate, propyl diacrylate, butyl diacrylate, ethyl methacrylate, propyl methyl methacrylate, butyl methyl methacrylate, isopropyl acrylamide monomer; polyethyl methacrylate, polyethyl acrylate, unsaturated Polyester prepolymers, polyethylurea prepolymers, polyurethane prepolymers, polyurethane acrylate prepolymers; And benzoacephenone as a photo initiator; Azobismethylpropiamidinedihydrochloride (azobismethylnitrile) as a thermal radical initiator; Benzoperoxides, which are free radical initiators; TINUV 5060, 5061 from BASF (Ciba specialty.) As a stabilizer; Hydroperoxide from SigmaAldrich as a collecting agent; As a sensitizer, dispersion master stock solution containing polycinnamate etc .; Ultra pure water or diluted mixed vegetable oils (vegetable oils, ethers, lactams, lactones); Potassium hydroxide pH buffer solution; Polyethylene glycol, polypropylene glycol; Mixed polyethylene glycol (M W 400-12,000), poly, mixed with ultra pure water dilution mixed vegetable oils (vegetable oils, ethers, lactams, lactones) with any one or a mixture of 5 to 6,000 selected from the modified group consisting of Propylene glycol (M W 425 ~ 8,000), ethyl propyl cellulose (M W 800 ~ 1,600,000), gelatin, pectin and the like is made of a thickener;
또한 본 발명에서 수성 또는 혼합 식물성 오일 기반 분산 마스터 원액은 글리세린, 부탄디올, 펜탄디올, 헥실디올로 구성된 그룹으로부터 선택된 어느 하나 또는 이들의 혼합물, 희석제로 초순수 물 또는 혼합 식물성 오일등으로 이루어진다.In the present invention, the aqueous or mixed vegetable oil-based dispersion master stock solution is composed of any one or a mixture thereof selected from the group consisting of glycerin, butanediol, pentanediol, hexyldiol, ultrapure water or mixed vegetable oil, and the like as a diluent.
또한 본 발명은 상기 분산 마스터 원액들은 제조 공정 및 사용 과정에서 휘발성 유기 화합물 배출하지 않는 것이 특징이다.In addition, the present invention is characterized in that the dispersion master stock solution does not discharge volatile organic compounds in the manufacturing process and use process.
또한, 본 발명은 전자기적 전도성 유변 고분자인 폴리티오펜, 폴리피롤, 폴리아센, 폴리아날린, 폴리아세티렌, 풀러렌, 탄소나노튜브, 그라핀, 희소 금속 나노 와이어, 덴드리머와 방사선, 전자선(파) 흡수할 수 있는 붕소, 바륨 등의 특수 재료를 첨가 할 수 있는 초 전도 분자 잉크젯 잉크를 제공한다.In addition, the present invention is an electromagnetic conductive rheology polymer polythiophene, polypyrrole, polyacene, polyanaline, polyacetylene, fullerene, carbon nanotubes, graphene, rare metal nanowires, dendrimers and radiation, electron beam (wave) absorption The present invention provides a superconducting molecular inkjet ink capable of adding special materials such as boron and barium.
또한 본 발명은 DNA칩 등에 사용될 화학 센서에 생체 적합성 고분자인 젤러틴, 키토산 등의 생체 고분자를 첨가하여 잉크화 할 수 있는 특징이 있다.In addition, the present invention is characterized in that it can be ink by adding a biopolymer such as gelatin, chitosan, biocompatible polymer to the chemical sensor to be used in the DNA chip.
또한, 본 발명은 희소 금속 전도 및 압전 고분자로 입자 외곽에 그라프트된 유기무기 하이브리드 전도 분산 마스터 원액은 10 내지 30 wt%; 블랜드된 초 순수 물식물성 유지는 40 내지 70 wt%; pH 버퍼 용액은 0.1 내지 0.5 wt%; 점도조절제는 20 내지 40 wt%; 계면 활성제는 0.1 내지 1 wt%; 소포제는 0.1 내지 1 wt%; 보습제는 1 내지 15 wt%; 광 개시제, 열 개시제, 자유 라디칼 개시제 및 포착제, 안정제는 0.1 내지 1wt%; 증감제 0.1~5wt% 첨가된다. In addition, the present invention is an organic-inorganic hybrid conducting dispersion master stock solution grafted to the outer surface of the particles with a rare metal conductive and piezoelectric polymer is 10 to 30 wt%; The blended ultra pure vegetal fat is 40 to 70 wt%; pH buffer solution is 0.1 to 0.5 wt%; Viscosity modifiers from 20 to 40 wt%; The surfactant is 0.1 to 1 wt%; Antifoaming agents from 0.1 to 1 wt%; Humectants 1-15 wt%; Photo-initiators, thermal initiators, free radical initiators and trapping agents, stabilizers from 0.1 to 1 wt%; 0.1-5 wt% of a sensitizer is added.
또한, 본 발명의 잉크 조성물은 표면 장력이 20 내지 60dyne/cm; 점도가 5.0 내지 100 cPs; 그리고 pH 2 내지 12이 바람직하며, 더욱 바람직하게는 표면 장력이 30 내지 50 dyne/cm; 점도가 10.0 내지 40.0 cPs; 그리고 pH 4 내지 10이다.In addition, the ink composition of the present invention has a surface tension of 20 to 60 dyne / cm; Viscosity is 5.0 to 100 cPs; And pH 2-12 is preferable, More preferably, the surface tension is 30 to 50 dyne / cm; Viscosity is 10.0-40.0 cPs; And pH 4-10.
본 발명에서 기재된 프리올리머란 중량 평균 분자랑이 1,000 이상이고 100,000 이하인 화합물이다.The preolimer described in the present invention is a compound having a weight average molecular weight of 1,000 or more and 100,000 or less.
본 발명에 따른 잉크 조성물은 인체에 유해하지 않은 화학 물질을 사용하고 그리고 원료의 순도를 높여 제조된다. 또한 세계 각국의 환경 관련 기관 및 및 세계 보건 안전 기구, 국제 환경 기준이 정한 유해 화학물(대기, 수질, 인체, 동물에 대한: REACHver2006, 2008, 2010, RoHS, LoHAS, HAPs etc.) 에서 정한 규정에 의한 유해 화학물의 생성, 배출을 없애며 더 나아가 전자전기 관련 제품의 제조, 생산, 테스트, 소비자의 운용 구동에서 생성되는 전자선 및 전자파의 차폐 및 생성(EMI, ESD)을 원천적으로 봉쇄하여 보다 안전한 사용을 하기 위해 상기 기술한 화학물질을 사용하여 제조된 본 발명에 따른 잉크 조성물은 경화 공정 과정에서 인체 및 환경에 유해한 물질이 없으며 작업자를 보호하고 아울러 환경을 보호할 있도록 한다.The ink composition according to the present invention uses a chemical that is not harmful to the human body and is produced by increasing the purity of the raw material. In addition, regulations set forth by environmental agencies around the world, and by the World Health and Safety Organization, and hazardous chemicals (for air, water, human and animals: REACHver2006, 2008, 2010, RoHS, LoHAS, HAPs etc.) as set by international environmental standards. Eliminates the generation and emission of hazardous chemicals and further safeguards the use of electromagnetic shielding and generation (EMI, ESD) in the manufacture, production, testing and operation of consumer electronics products. The ink composition according to the present invention prepared using the above-described chemicals to ensure that there is no harmful substances to the human body and the environment during the curing process, and to protect the operator and also the environment.
도 1. 본 발명 전도-압전 잉크젯 전극 잉크의 전체 제조 공정도이며, 구체적으로는, 광 경화 압전전도 화학물의 선택 단계 (S11); 자외선(광), 열, 방사선등의 경화 모노머를 이용 전도압전 분자 입자와 기저 프리올리머 제조 하는 단계 (S12); 유기무기 하이브리드 압전전도 분자 입자 및 광 경화 분산 마스터 용액의 제조 공정 단계(S13); 유기무기 하이브리드 압전전도 분자 입자 및 광 경화 분산 마스터 원액 제조 공정 단계 (S14); 유기무기 하이브리드 압전전도 분자 입자 잉크 포뮬레이터 공정 단계(S15); 정밀 여과 단계(S16); 및 프린팅 단계(S17)를 포함할 수 있다. 1 is an overall manufacturing process diagram of the conductive-piezoelectric inkjet electrode ink of the present invention, specifically, the step of selecting a photocured piezoelectric chemical (S11); Preparing conductive piezoelectric molecular particles and a base prepolymer using curing monomers such as ultraviolet light, heat, and radiation (S12); Manufacturing process step (S13) of the organic-inorganic hybrid piezoelectric molecular particle and the photocured dispersed master solution; Organoinorganic hybrid piezoelectric molecular particles and photocuring dispersed master stock preparation process step (S14); An organic-inorganic hybrid piezoelectric molecular particle ink formular process step (S15); Microfiltration step (S16); And it may include a printing step (S17).
1. 광 경화 압전전도 화학물의 선택 단계 1. Selection step of photocuring piezoelectric chemical
Fe, Cu, Ag, Au, ZnPhtalocyanine, Luminol, Carmine A, Carmine B, Luciferin, Polyazo Poly Phenol, Titanium dioxide(Rutile, Anatage), Zinc Oxide, Indium Tin Oxide, Tin Oxide, Antimony, Germanium, Carbon, Lithopone, Aluminum Oxide, Gold, Silver, Chopper, Fe2O3, Lithium, Magnesium, Barium sulfide, CNT(Carbon Nano Tube, DWCNT, SWCNT, MWCNT), Nanowire, Dendrimer, Graphene, FullereneC60, 61, 70, 74, 84, 90, Poly Thiophene Group(PEDOT, PEDOTPOSS/PSS, PADOT,PT, P3HT, F8T2), Poly Acetylene, Poly Pyrrole, Poly Phenylene Vinylene Group, Poly Vinylene Carbazole, Poly Spirazole, Poly acene, Poly aniline, Poly Lglutamate, Iridium, Hafnium, Poly imide, Poly Phenyl Sulfide, Fluorescein, Boric, Barium, TCNQ(Tetracyanoquinodimethane), TCNQTTF(Tetrathiafulvalene), Poly Imine, Poly N-iso amide(Nylon), Pentacene, Gallium등 위와 같은 압전전도 화학물 중 바람직하게는 알레르기의 발생이 없고 그리고 발암성이 없는 물질이 선택될 수 있다. Fe, Cu, Ag, Au, ZnPhtalocyanine, Luminol, Carmine A, Carmine B, Luciferin, Polyazo Poly Phenol, Titanium dioxide (Rutile, Anatage), Zinc Oxide, Indium Tin Oxide, Tin Oxide, Antimony, Germanium, Carbon, Lithopone, Aluminum Oxide, Gold, Silver, Chopper, Fe 2 O 3 , Lithium, Magnesium, Barium sulfide, CNT (Carbon Nano Tube, DWCNT, SWCNT, MWCNT), Nanowire, Dendrimer, Graphene, Fullerene C60, 61, 70, 74, 84, 90, Poly Thiophene Group (PEDOT, PEDOTPOSS / PSS, PADOT, PT, P3HT, F8T2), Poly Acetylene, Poly Pyrrole, Poly Phenylene Vinylene Group, Poly Vinylene Carbazole, Poly Spirazole, Poly acene, Poly aniline, Poly Lglutamate, Iridium, Preferably among piezoelectric chemicals such as Hafnium, Poly imide, Poly Phenyl Sulfide, Fluorescein, Boric, Barium, TCNQ (Tetracyanoquinodimethane), TCNQTTF (Tetrathiafulvalene), Poly Imine, Poly N-iso amide (Nylon), Pentacene, Gallium May be selected without the occurrence of allergies and non-carcinogenic.
2.2. 자외선(광), 열, 방사선등의 경화 모노머를 이용 전도압전 분자 입자와 기저 프리올리머 제조하는 단계Preparation of conductive piezoelectric molecular particles and base prepolymer using curing monomers such as ultraviolet (light), heat, and radiation
본 발명의 적절한 실시 형태에 따르면, 블랜드된 초 순수 물 식물성 오일 용매 기반 광 경화 잉크젯 잉크를 위한 모노머를 이용한 광 경화 폴리머 제조 방법을 구체적으로 설명하면 전도성 유기 단량체의 용액 상태하 일정 크기의 기공을 갖는 구형의 폴리머 잉크 입자를 형성한다. 제조 는 표준 상태 하(기압 1ATM, 온도 298.16K) ) SigmaAldrich사의 양쪽성(수용성, 지용성) 스티렌, 아크릴레이트, 메틸메타아크릴레이트, 불포화폴리에스터 모노머와; DowCorning사 변성 플르오르화 실리콘, 불포화 폴리에스터 구성된 모노머를 20 ~ 40wt%와 블랜드된 초 순수 물 식물성 오일 용매(콩기름 20~60wt%, 유채기름 20~40wt%, 락탐 10~20wt%, 락톤 20~40wt%)의 질소 분위기하 양쪽성(수용성, 지용성) 용매 2피롤리돈, N메틸피리리돈 블랜드 액(1Kg 기준, 혼합비 50:50) 20 ~ 40 wt% 과 공용매로는 디메틸설폭사이드, 디메틸아세테이트 블랜드 액(1Kg 기준 혼합비 50:50) 20 ~ 40 wt%, 비 공용매로는 테트라부틸알코올 5 ~ 15 wt%로 SigmaAldrich사의 희소 금속(Ag, Au, Pt, Pd) 중 적어도 하나의 촉매 1~2wt%를 사용 정밀 합성 반응인 Wurtz Fitting Ulmann Reaction과 2~3 wt%의 Merck사의 Aluminum trioxide dicholoride, doping Gemanium Nitrate와 SigmaAldrich사의 Calcium hydrate, Lithium hydrate, Potassiumchloride, Bromide, Iodine의 Ligand Reaction을 이용 ZieglerNatta Reaction을 동시에 작용 유도하여 ATRP에 의한 합성을 시키며 합성된 입자 부분적인 폴리머의 RAFT를 개시하여 중합 전자 촉매제인 질산은(0.05N)과 질산에 용해된 비스무스옥사이드(0.01N)용액을 사용 상기에 기술된 모노머를 분자량 (Mn: 20,000 ~80,000) 폴리머로 제조한다. 전도성 분자 입자 결정화를 유도하기 위하여 공비(이소프로필알콜/에틸알콜 또는 프레탄올 부피 혼합비 20:80)혼합물 1000ml에 적하하고 0.01N HClH2SO4 또는 HNO3H2PO3 1000ml와 이를 중화하는 0.01N NaOHNH3OH 또는 KOHLiOH 를 1000ml를 적하하며 산화환원제인 1N 비스포스포카보네이트 또는 디소디움설포네이트 1000ml를 적하 결정질(crystal)을 만들며 헬륨 분위기하에서 열과 광에 의한 Sigmaaldrich사의 Remind Water 75wt% in BPO(Benzoic peroxide) 0.1 ~ 1wt% 개시제에 의한 열, 광, 방사선, 마이크로웨이브에 의한 중합 반응을 이용 Merck사의 폴리에틸옥사이드 또는 프로필옥사이드, 부틸옥사이드, 펜탄옥사이드, 헥실옥사이드, 헵탄옥사이드, 옥틸옥사이드, 플루오르옥사이드 등의 가지가 선형이면서 분자 오비탈이 SP2또는SP3의 분자 오비탈을 가지는 3.75wt% in D. I. Water Solution에 Thiopene 계열의 전도성 물질을 제조하기 위하여 전도성 분자 입자를 제조는 Thiophene(Ethylenediocxyl thiophene, Hexylmethyl thiophene) monomer(2.86wt%)에 질산은(0.5 ~ 1.5N)과 염화은 또는 금(0.1 ~1N) 촉매를 사용하여 블랜드가 된 초 순수 물과 식물성 오일 기반의 용매에 미셀화 분산된 평균 입자크기 (80nm)크기의 분산 입자를 12 ~ 24시간 Ultra Violet C(193nm: 37.5mW) 가하여 진 푸른색을 가지는( PA(E)DOT(Polyalkyl(ethylene) dioxy(dioctyl) thiophene)계열의 기본 10가지의 종류(P3HT:Poly(3hexythiophene2,5diyl), P3OT:(Poly(3octylthiophene2,5diyl), P3DDT:Poly(3dodeecylthiophene2,5diyl), F8T2:Poly(9,9dioctylfluorenealtbithiophene), Poly(thiophene3(2ethoxy)ethoxy)2,5diyl, sulfonate, PE(P)DOTblockPEG(PPG): Poly(3,4ethyl(propyl)enedioxythiophene)blockPoly(ethylpropylene)glycol), PE(P)DOTPSS: Poly(3,4ethyl(propyl)enedioxythiophene)Poly(styrenesulfonate), PE(P)DOTPOSS: Poly(3,4ethyl(propyl)enedioxythiophene)Poly(octylstyrenesulfonate), PT:Poly(thipene2,5diyl) PDT:Poly(3decylthiophene2,5diyl), P3BT: Poly(3butylthiophene2,5diyl)의 Ptype의 유기 전도 입자를 제조한다. 또 다른 전도 분자인 PANi(Polyaniline) 입자를 제조하기 위하여 락톤을 사용하여 (ANi 5 ~ 10 wt% in Lactone: SigmaAldrich) 완전 용해 한 후 PA(E)DOT와 동일한 희소 금속 촉매를 사용하여 (100nm) 크기의 블랜드가 된 초 순수 물과 식물성 오일 기반의 용매에 입자를 형성한다. 이 때에 PANi의 doping agent는 0.01N의 HCl, H2SO4, HNO3, H2PO3에 의해 4가지의 다른 종류의 PANi가 되며 doping time에 의해 Ntype의(Polyaniline(emelradine salt), Polyaniline (leucoemelradine)) 과 Ptype의(Polyaniline(emelradine salt) Long(short) chain, graft lignin, Polyaniline(emelradine salt) Long(short) chain, graft lingosulfonate (lithium, potassium, sodium) salt) 유기 금속 반도체를 제조할 수 있다.According to a preferred embodiment of the present invention, a method for preparing a photocurable polymer using monomers for blended ultra pure water vegetable oil solvent based photocurable inkjet inks will be described in detail. Spherical polymer ink particles are formed. Preparation is carried out under standard conditions (atmospheric pressure 1 ATM, temperature 298.16 K) with amphoteric (water soluble, fat soluble) styrene, acrylate, methyl methacrylate, unsaturated polyester monomers of SigmaAldrich; DowCorning blends 20-40 wt% of monomers composed of modified silicone fluoride and unsaturated polyester with ultra pure water vegetable oil solvents (soybean oil 20-60 wt%, rapeseed oil 20-40wt%, lactam 10-20wt%, lactone 20-40wt %) Amphiphilic (water-soluble, fat-soluble) solvent 2pyrrolidone, N methylpyrilidone blend solution (1Kg basis, mixing ratio 50:50) 20-40 wt% and co-solvents dimethyl sulfoxide, dimethyl acetate 20 to 40 wt% of blend solution (50:50 based on 1Kg), 5 to 15 wt% of tetrabutyl alcohol as a non-cosolvent, at least one catalyst of at least one of rare metals (Ag, Au, Pt, Pd) of SigmaAldrich 2 wt% Zurg FittingNumann Reaction using precision synthesis reaction Wurtz Fitting Ulmann Reaction and 2 ~ 3 wt% Merck's Aluminum trioxide dicholoride, doping Gemanium Nitrate and SigmaAldrich's Calcium hydrate, Lithium hydrate, Potassiumchloride, Bromide and Iodine Ligand Reaction At the same time induced by ATRP Initiate the RAFT of the synthesized particle partial polymer and synthesize the silver electron nitrate (0.05N) and the bismuth oxide (0.01N) solution dissolved in nitric acid. The monomers described above are converted into molecular weight (Mn: 20,000 ~ 80,000). ) Made of polymer. To induce the crystallization of conductive molecular particles, it was added dropwise to 1000 ml of azeotrope (isopropyl alcohol / ethyl alcohol or pretanol volume mixing ratio 20:80), and 1000 ml of 0.01 N HClH2SO4 or HNO3H2PO3 and 0.01 N NaOHNH3OH or KOHLiOH neutralizing it were added dropwise. 1000 ml of redox 1N bisphosphocarbonate or disodium sulfonate was added dropwise to form a crystal, and heat was obtained by initiator of Sigmaaldrich's Remind Water 75wt% in Benzoic peroxide (BPO) 0.1 to 1wt% by heat and light under helium atmosphere. Merck polyethyl oxide or propyl oxide, butyl oxide, pentane oxide, hexyl oxide, heptane oxide, octyl oxide, fluoride oxide, etc. are linear and the molecular orbital is SP2 or SP3 Thiopene Series in 3.75wt% in DI Water Solution with Molecular Orbital In order to prepare the conductive material, conductive molecular particles were prepared by blending Thiophene (Ethylenediocxyl thiophene, Hexylmethyl thiophene) monomer (2.86 wt%) with silver nitrate (0.5 to 1.5N) and silver chloride or gold (0.1 to 1N) catalyst. Ultra Violet C (193nm: 37.5mW) was added to ultrafine water and vegetable oil-based solvents with the average particle size (80nm) dispersed in micelles. (10 types of polyalkyl (ethylene) dioxy (dioctyl) thiophene) (P3HT: Poly (3hexythiophene2,5diyl), P3OT: (Poly (3octylthiophene2,5diyl), P3DDT: Poly (3dodeecylthiophene2,5diyl), F8T2: Po8 (9,9dioctylfluorenealtbithiophene), Poly (thiophene3 (2ethoxy) ethoxy) 2,5diyl, sulfonate, PE (P) DOTblockPEG (PPG): Poly (3,4ethyl (propyl) enedioxythiophene) blockPoly (ethylpropylene) glycol), PE (P) DOTPSS: Poly (3,4ethyl (propyl) enedioxythiophene) Poly (styrenesulfonate), PE (P) DOTPOSS: Poly (3,4ethyl (propyl) enedioxythiophene) Poly (octylstyre nesulfonate), PT: Poly (thipene2,5diyl) PDT: Poly (3decylthiophene2,5diyl), P3BT: Poly (3butylthiophene2,5diyl) Ptype organic conductive particles were prepared. To prepare another conductive molecule, PANi (Polyaniline) particles, completely dissolved by using lactone (ANi 5 ~ 10 wt% in Lactone: SigmaAldrich) and using the same rare metal catalyst as PA (E) DOT (100nm) Forms particles in ultra pure water and vegetable oil based solvents that are blends of size. At this time, the doping agent of PANi becomes four different kinds of PANi by 0.01N HCl, H2SO4, HNO3, H2PO3, and by doping time of Ntype (Polyaniline (emelradine salt), Polyaniline (leucoemelradine)) and Ptype ( Polyaniline (emelradine salt) Long (short) chain, graft lignin, Polyaniline (emelradine salt) Long (short) chain, graft lingosulfonate (lithium, potassium, sodium) salt) Organometallic semiconductors can be prepared.
PPy(Polypyrrole)은(60nm) 평균 입자 크기를 가지며 제조 방법은 PANi 입자 제조와 동일하다. 그러나 PPy의 경우 물 및 일반적인 유기 용매에 분산되지 않기 때문에 가마에서 연소된 White Charcoal과 Carbon Black에 (1:1, 1:2, 2:1, 1:3, 3:1, 1:4, 4:1)비율로 각기 그라프팅 하였다. 또한 폴리에틸옥사이드 또는 프로필옥사이드, 부틸옥사이드 각기 2 mole의 지글러 나타 부가 반응을 하면 다음의 3가지 형태의 유기 금속 반도체를 제조할 수 있다. 3,4ethylenepyrrole, 1,2propylenepyrrole, 4,3butylenepyrrole 유기 금속 반도체에 희소 금속을 양 기능기의 끝단에 희소 금속(Ag, Au, Pt, Pd, Ti, Si, Sb, Sr, Fe etc)을 0.01mol로 그라프팅 하면 투명한 유기 금속 초전도체를 가진 하이퍼큐브 그라핀을 제조한다. 또한 제조된 하이퍼 큐브 그라핀을 응집제로 DMSO, DMF을 각기 1 mole의 용액에 분산 시키면 FullereneC60, 61, 70, 74, 84, 90, CNT(Carbon Nano Tube, DWCNT, SWCNT, MWCNT), Nanowire, Dendrimer, Graphene을 가지는 다차원 구조까지 제조 제어가 가능하다.Polypyrrole (PPy) (60 nm) has an average particle size and the production method is the same as that of PANi particles. However, PPy does not disperse in water and common organic solvents, so white charcoal and carbon black burned in kilns (1: 1, 1: 2, 2: 1, 1: 3, 3: 1, 1: 4, 4). The grafting was performed at a ratio of 1). In addition, when the Ziegler-Natta addition reaction of polyethyl oxide, propyl oxide, and butyl oxide, respectively, 2 moles, the following three types of organometallic semiconductors can be prepared. 3,4ethylenepyrrole, 1,2propylenepyrrole, 4,3butylenepyrrole Rare metals in organic metal semiconductors and rare metals (Ag, Au, Pt, Pd, Ti, Si, Sb, Sr, Fe etc) at the ends of both functional groups Grafting produces hypercube graphene with a transparent organometallic superconductor. In addition, when the prepared hypercube graphene is dispersed in 1 mole of DMSO and DMF as a coagulant, FullereneC60, 61, 70, 74, 84, 90, CNT (Carbon Nano Tube, DWCNT, SWCNT, MWCNT), Nanowire, Dendrimer In addition, it is possible to control manufacturing up to a multi-dimensional structure with graphene.
압전 분자인 PVK(Poly Vinyl Carbazole)과 PLG(PolyLGlutamate)는 각 0.2 mol의 2Vinyl Carbazole과 9Vinyl Carbazole과 0.1mole의 1Vinylnaphtalene과 2Vinylnaphtalene을 프레탄올에 20wt% 팽윤하여 이소프로필알코올에 10wt% 용해된 LGlutamate와 혼합하여 Ultra Violet C(253nm: 50.5mW)로 8시간을 가하여 입자화 시켰다.Piezoelectric molecules, PVK (Poly Vinyl Carbazole) and PLG (PolyLGlutamate), each swelled 20 mol% of 0.2V 2Vinyl Carbazole, 9Vinyl Carbazole and 0.1mole of 1Vinylnaphtalene and 2Vinylnaphtalene in pretanol and mixed with 10% by weight of LGlutamate in isopropyl alcohol. After 8 hours with Ultra Violet C (253nm: 50.5mW) was granulated.
초 전도를 위하여 TCNQ(Tetracyanoquinodimethane), TCNQTTF(Tetrathiafulvalene)를 각 1 mole씩, Nitromethane: isopropyl alcohol: 2butanol = 4: 4: 2또는 3:4:3 비율로 혼합된 1Kg 용액에 분산 팽윤하여 각기 반투명한 용액을 제조한다.For ultra conduction, TCNQ (Tetracyanoquinodimethane) and TCNQTTF (Tetrathiafulvalene) were dispersed and swelled in 1Kg solution mixed with Nitromethane: isopropyl alcohol: 2butanol = 4: 4: 2 or 3: 4: 3 at 1 mole each. Prepare a solution.
PA(Polyacethylene)은 알데히드 케톤 용매를 사용하여 평균 입자(200nm)크기를 가지는 입자를 제조한다. 본 발명에 있어서 가장 중요한 기저 매트릭스로 사용하는 다량의 그라핀을 추출 하기 위하여 우리나라에서 강원도에 자생하는 참나무 숯을 1100 ~ 1200℃의 가마에서 구운 활성 백탄 1Kg과 Sigmaaldrich사의 흑연 100mesh 크기의 0.5Kg을 건식 분쇄기로 10~20 mm수준의 미립자로 만든 후 건식 조 분쇄기를 이용하여 지르코니아실리카카바이드 비드 지름 2mm를 사용하여 300 ~ 500㎛ 수준으로 파운더리 한 후 건식 미분쇄기 지르코니아실리카카바이드 비드 지름 0.5mm로 10 ~ 20㎛로 미세 파운더리 한다. 건식 분쇄 과정에서의 냉각은 액체 질소를 이용하여 분쇄기를 냉각하며 분쇄 챔버 내에는 액체 헬륨을 주입하여 산소 과포화 및 초전도를 유지한다. 건식 분쇄의 과정 중 분쇄 챔버의 속도는 1000RPM 이하로 유지되어야 한다. 분쇄 시간은 각 분쇄기의 챔버의 용량에 따라 5~8시간을 유지 한다.); 미세 파운더리된 활성 백탄의 입자에 전도성 고분자를 브랜드 하거나 그라프팅 공정을 하기 위하여 반응기를 이용하여 불활성 질소와 헬륨이 주입되며 고속 교반 장치가 부착된 반응기를 사용한다. 반응의 촉매를 사용하기 위하여 초 순수 물과 식물성 오일 기반의 용매에 30wt%로 수화된 폴리설포닉산, 40wt%로 수화된 폴리설포닉리튬산, 폴리아미노설포닉산, 폴리리그노설포닉산소디움염 중 하나의 유기 산을 반응 분산-전하 도핑제로 선택하며 Tokyo Chemical Industry사의 5wt% 수용액의 스피라졸, 에오신A, 에오신B, 티오인디고와 Dowcorning사의 변성실리콘co아크릴레이트 공중합 폴리머와 광 증감제인 SigmaAldrich사의 Syndiotatic: 25wt%, Ataic: 5wt의 수용액(25wt% in D. I. Water) 상태의 cinnemate 20g과 (이산화티타늄(Titanium dioxide Rutile type: 90wt%, Anatage type: 10wt%) 25g, 이산화실리콘(Silicone dioxide), 산화알루미늄(Aluminum oxide), 산화아연(Zinc oxide), 인듐주석산화물(Indium Tin oxide, ITO), 안티몬옥사이드(Antimony Oxide) 각 15g을 사용하며 희소 금속인 Silver, Gold은 각 10g씩 Platinum, Palladium은 각 5g을 사용 1Kg 기준 72hr와 촉매 및 개시제의 비율에 따라 다양한 하이퍼큐브 유기 무기 그라프팅된 3차원 그라핀 입자를 합성하며 최종으로 그룹 말단의 활성단이 하이드록시 그룹의 유무에 따라서 수용성을 갖거나 지용성을 갖는 기능기를 형성한다. 각 전도 분자 입자 입자 제조 공정 시간 동안에서 Airproducts사의 99.999999999%의 질소 가스를 사용하여 Degassing과 함께 제조된다.Polyacethylene (PA) is used to prepare particles having an average particle size (200 nm) using an aldehyde ketone solvent. In order to extract a large amount of graphene that is used as the most important base matrix in the present invention, dry activated white charcoal 1Kg and 0.5Kg of Sigmaaldrich's graphite 100mesh of oak charcoal grown in Gangwon-do in Korea in a kiln of 1100 ~ 1200 ℃ After pulverizing 10 ~ 20mm fine particles into powder and using a dry coarse crusher to find the diameter of 300 ~ 500㎛ using 2mm zirconia silica carbide beads, dry fine crusher zirconia silica carbide beads 10 ~ It is finely found to 20 micrometers. Cooling in the dry grinding process uses liquid nitrogen to cool the grinder and injects liquid helium into the grinding chamber to maintain oxygen supersaturation and superconductivity. The speed of the grinding chamber should be kept below 1000 RPM during the dry grinding process. The grinding time is maintained for 5 to 8 hours depending on the capacity of the chamber of each grinder.); In order to brand or graf the conductive polymer to the particles of fine-found activated charcoal, inert nitrogen and helium are injected using a reactor, and a reactor equipped with a high speed stirring device is used. In order to use the reaction catalyst, polysulfonic acid hydrated at 30 wt% in ultra pure water and vegetable oil-based solvent, polysulfonic lithium acid hydrated at 40 wt%, polyaminosulphonic acid, polylignosulphonic acid sodium salt One organic acid was selected as the reaction dispersion-charge dopant, and 5 wt% aqueous solution of spirazole, Eosin A, Eosin B, thioindigo and Dowcorning's modified silicone coacrylate copolymer and SigmaAldrich's Syndiotatic: 25wt%, Ataic: 20g cinnemate in 5wt% aqueous solution (25wt% in DI Water) and 25g, Titanium dioxide Rutile type: 90wt%, Anatage type: 10wt%, Silicon dioxide, Aluminum oxide Aluminum oxide, zinc oxide, indium tin oxide (ITO), and antimony oxide (15g) are used for each, and the rare metals Silver, Gold are 10g each, Platinum and Palladium each 5g. g is used to synthesize various hypercube organic inorganic grafted three-dimensional graphene particles based on 72 hr based on 1 kg and the ratio of catalyst and initiator. Finally, the active end of the group has water solubility or fat soluble depending on the presence or absence of hydroxy group. The functional groups are prepared with Degassing using 99.999999999% nitrogen gas from Airproducts during the manufacturing time of each conductive molecular particle particle.
3. 유기무기 하이브리드 압전전도 분자 입자 및 광 경화 분산 마스터 용액의 제조3. Preparation of Organic Inorganic Hybrid Piezoelectric Molecular Particles and Photocurable Dispersion Master Solution
선행 단계에서 제조된 기저 프리올리머, 전도압전 분자 입자를 그라프트와 분산을 하기 위하여 분산 장비를 사용하기 전에 유화된 마스터 용액 제조하기 위하여 다음과 같은 비율로 분산 마스터 용액을 제조한다. 본 마스터 용액은 Thiophene group, PANi group, Hypercube OrganicInorganic hybrid graphene, PPy group, PA group, PVK group, TCNQ group의 성분은 기존의 PWB(PCB: Printed Writing(Circuit) Board)전극(도선: Wire)으로 주로 활용되는 구리나 은, 금, 백금의 전극 도선의 대체재로 사용된다.To prepare the emulsified master solution before using the dispersing equipment for grafting and dispersing the base pre-oliomer and conductive piezoelectric molecular particles prepared in the preceding step, a dispersion master solution is prepared in the following ratio. This master solution consists of Thiophene group, PANi group, Hypercube Organic Inorganic hybrid graphene, PPy group, PA group, PVK group and TCNQ group. It is a PWB (PCB: Printed Writing (Circuit) Board) electrode (wire). It is used as a substitute for the electrode lead of copper, silver, gold and platinum.
기저 프리올리머: 10 ~15wt%Basis prepolymer: 10 to 15 wt%
Thiophene group(선행 제조된 분자 입자 중 적어도 하나 이상): 8~20wt%Thiophene group (at least one of the pre-made molecular particles): 8-20 wt%
PANi group(선행 제조된 분자 입자 중 적어도 하나 이상): 6~18wt%PANi group (at least one of the pre-made molecular particles): 6-18 wt%
PPy group(선행 제조된 분자 입자 중 적어도 하나 이상): 2~10wt%PPy group (at least one of the pre-made molecular particles): 2-10 wt%
PA group(선행 제조된 분자 입자 중 적어도 하나 이상): 1~10wt%PA group (at least one of the previous prepared molecular particles): 1-10 wt%
PVK group(선행 제조된 분자 입자 중 적어도 하나 이상): 1~10wt%PVK group (at least one of the pre-made molecular particles): 1-10 wt%
TCNQ group(선행 제조된 분자 입자 중 적어도 하나 이상): 0.1~1wt%TCNQ group (at least one or more of the previously produced molecular particles): 0.1 to 1 wt%
Hypercube OrganicInorganic hybrid graphene: 30~40wt% Hypercube OrganicInorganic hybrid graphene: 30-40 wt%
Chage Control Agent(Clariant GmBH): 0.5~1wt%Chage Control Agent (Clariant GmBH): 0.5 ~ 1wt%
Dynol604(Airproducts CO.): 0.1 ~0.5wt%Dynol604 (Airproducts CO.): 0.1-0.5wt%
RetinolA(SigmaAldrich CO.): 0.01 ~ 2wt%Retinol A (SigmaAldrich CO.): 0.01 ~ 2wt%
Solvent(초 순수 40wt%, 식물성 오일 용액 10wt%, Prethanol 50wt%): balanced.Solvent (ultra pure 40 wt%, vegetable oil solution 10 wt%, Prethanol 50 wt%): balanced.
점성탄성을 가진 뉴턴니안 유화 용액을 제조 공정 시간 12 ~ 36hr동안 Airproducts사의 99.999999999%의 질소 가스를 사용하여 Degassing과 함께 제조된다.Newtonian emulsified solutions with viscoelasticity are prepared with Degassing using 99.999999999% nitrogen gas from Airproducts for a manufacturing process time of 12-36hr.
4. 유기무기 하이브리드 압전전도 분자 입자 및 광 경화 분산 마스터 원액 제조 공정4. Organic Inorganic Hybrid Piezoelectric Molecular Particles and Photocuring Dispersion Master Stock Solution
유기무기 하이브리드 압전전도 분자 입자 및 광 경화 분산 마스터 용액에 분산된 압전전도 분자 입자의 입자 크기는 핵자기 성장하여 최대 크기가 서브 나노 에뮬전 크기(10㎛)가 이상적으로 큰 상태가 되어 잉크젯 노즐을 통하여 분사되기에 적합하지 않다. 초미세 밀 공정으로 가기 전에 프리 밀링(500 내지 3000RPM의 회전 속도) 및 미세 밀(2000 내지 10000RPM의 회전 속도) 공정으로 밀링 되어 입자간의 미셀화 응집을 통해 좁은 의미의 나노 또는 서브 나노 크기의 분산액을 제조 하며 초미세 밀링 공정을 통하여 잉크젯 노즐을 통하여 분사되기에 적합한 크기가 되도록 분산이 되어야 한다. 분산을 위하여 밀링 기계 내에 0.1 내지 5 mm의 지르코늄실리카바이드하프니움 비드(bead)를 넣어 분자의 평균 입도가 1Kg 기준 90분의 공정 시간 동안 1 내지 10 nm가 되도록 분산을 한다. 이와 같은 분산 공정을 통하여 분산이 뛰어난 분산 마스터 원액이 제조된다. 분산을 위한 비드가 기계 챔버 전체 부피에 대하여 이상적인 양은 60 내지 90% 정도로 투입되며 투입된 지르코늄실리카바이드하프니움 비드는 12,000 내지 24,000RPM의 속도로 초고속 회전이 된다. 이와 같은 초미세 분산 작업을 위하여 상업적으로 구입 가능한 IKA사의 T200등과 같은 파일롯 초 고속 분쇄분산 장비에 지르코늄실리카바이드하프니움 비드(Bead)를 이용해서 초고속 정밀 분쇄분산 하는 구조를 가진 기계를 사용한다. The particle size of the organic-inorganic hybrid piezoelectric molecular particles and the piezoelectric molecular particles dispersed in the photocuring dispersion master solution is nuclear magnetically grown, so that the maximum size of the sub-nanoemulsion (10 μm) is ideally large and the inkjet nozzle Not suitable for spraying through Before going to the ultra-fine milling process, milling is carried out with pre-milling (rotational speeds of 500 to 3000 RPM) and fine milling (rotational speeds of 2000 to 10000 RPM) to form micronized or sub-nano-sized dispersions through micelle aggregation of particles. It must be manufactured and dispersed to a size suitable for jetting through an inkjet nozzle through an ultra-fine milling process. For dispersion, zirconium silica carbide hafnium beads of 0.1 to 5 mm are placed in a milling machine to disperse so that the average particle size of the molecules is 1 to 10 nm for a processing time of 90 minutes at 1 kg. Through this dispersion process, a dispersion master stock solution excellent in dispersion is produced. The ideal amount of the beads for dispersing is added in the range of 60 to 90% with respect to the total volume of the machine chamber, and the injected zirconium silica carbide hafnium beads are rotated at a high speed of 12,000 to 24,000 RPM. For this ultra-fine dispersion operation, a ultra-high precision grinding and dispersing system using a zirconium silica carbide hafnium bead is used in a pilot ultra-fast grinding and dispersing equipment such as a commercially available IKA T200.
5. 유기무기 하이브리드 압전전도 분자 입자 잉크 포뮬레이터 공정5. Organic Inorganic Hybrid Piezoelectric Molecular Particle Ink Formulator Process
제조된 유기무기 복합 압전전도 분자 입자 및 광 경화 분산 마스터 원액에 광 경화 반응 화학 물질이 첨가된다. 일반적으로 광 반응 화학 물질은 잉크 조성물의 안정, 분산 또는 잉크 입자간의 결착 능력을 향상시키기 위하여 첨가된다. 첨가되는 광 반응 화학 물질은 표면 장력, 점도, pH 및 저장 안정성과 같은 잉크 물성의 향상을 고려하고 동시에 인체 및 환경에 무해한 물질이 되어야 한다. 광 반응 화학 물질은 예를 들어 수산화 칼륨(potassium hydroxide) pH 버퍼 용액; 및 계면활성제인 Surface agent를 포함할 수 있다. 또한 Airproducts사의 양쪽성 계면 활성제인 Surfynol CT211, 221, 231, Dynol 604, 607 Zetasperse 1200, 1400, 1600, 2100, 2300, 2500, 3100, 3400, 3700, Envirogem AD01, AE01, 02, 03, 360와 같은 계면활성제; Degussa사의 양쪽성 계면 활성제인 Tego 270, 280, 500, 505, Disperse 750, 760와 같은 계면활성제; BYK사의 양쪽성 계면 활성제인 BYK 023, 024, 027, 028, Disper , Disper 180, 184, 190, 192, 191, 193 같은 계면활성제; Lubirazol사의 양쪽성 계면 활성제인 Solsperse 27000, 40000, 41000, 41090, 42000, 44000, 46000, 47000 같은 계면활성제; 3M사의 양쪽성 계면 활성제인 FC4430, 4432;및 폴리 디(메틸,에칠)실리콘co아크릴레이트alt(에틸,메틸,프로필) 셀룰로즈bis젤러틴 같은 상온 습기 경화형 보습제를 포함할 수 있다. The photocuring reaction chemical is added to the prepared organic-inorganic composite piezoelectric molecular particles and the photocuring dispersed master stock solution. Generally, photoreactive chemicals are added to improve the stability, dispersion, or binding ability between ink particles of the ink composition. The photoreactive chemicals to be added should take into account the improvement of ink properties such as surface tension, viscosity, pH and storage stability and at the same time be harmless to humans and the environment. Photoreaction chemicals include, for example, potassium hydroxide pH buffer solutions; And a surface agent that is a surfactant. In addition, Airproducts' amphoteric surfactants such as Surfynol CT211, 221, 231, Dynol 604, 607 Zetasperse 1200, 1400, 1600, 2100, 2300, 2500, 3100, 3400, 3700, Envirogem AD01, AE01, 02, 03, 360 Surfactants; Surfactants such as Tego 270, 280, 500, 505, Disperse 750, 760, which are amphoteric surfactants from Degussa; Surfactants such as BYK 023, 024, 027, 028, Disper, Disper 180, 184, 190, 192, 191, 193, which are amphoteric surfactants of BYK; Surfactants such as Solsperse 27000, 40000, 41000, 41090, 42000, 44000, 46000, 47000, which are amphoteric surfactants from Lubirazol; Room temperature moisture curable moisturizers such as 3M's amphoteric surfactants FC4430, 4432; and polydi (methyl, ethyl) siliconecoacrylatealt (ethyl, methyl, propyl) cellulosebisgelatin.
0.1 내지 1 wt%의 pH 버퍼 용액0.1 to 1 wt% pH buffer solution
10 내지 20 wt%의 광 경화 폴리머, 폴리머, 올리고머10 to 20 wt% photocured polymer, polymer, oligomer
20 내지 40 wt%의 광 경화 모노머20 to 40 wt% photocurable monomer
1.1내지 1 wt%의 표면 장력 조절제 1.1 to 1 wt% surface tension modifier
1.1내지 1 wt%의 광 개시제1.1 to 1 wt% photoinitiator
0.1 내지 1 wt%의 열 개시제0.1 to 1 wt% thermal initiator
1.1내지 1 wt%의 자유 라디칼 개시제1.1 to 1 wt% free radical initiator
0.1 내지 5 wt%의 증감제0.1 to 5 wt% sensitizer
1.1내지 1 wt%의 포집제1.1 to 1 wt% scavenger
0.1 내지 1 wt%의 안정제0.1 to 1 wt% stabilizer
0.1 내지 1 wt%의 소포제; 및 0.1 to 1 wt% antifoam; And
0.5 내지 10 wt%의 보습제0.5 to 10 wt% moisturizer
잉크 구성물 마스터 원액 및 광 반응 화학 물질은 메카닉 스티러에서 블랜드가 되고 블랜드 상황에서 공정 시간 동안에서 Airproducts사의 99.999999999%의 질소 및 헬륨 가스를 사용하여 Degassing과 함께 제조된다. 예를 들어 상업적으로 이용 가능한 IKA사의 컴퓨터에 의해 제어가 가능한 가변 조건형 Reaction & Storage Vessel이 사용될 수 있다. Ink constituent master stocks and photoreaction chemicals are blended in a mechanical stirrer and made with Degassing using 99.999999999% nitrogen and helium gas from Airproducts during the processing time in the blend situation. For example, a variable conditional Reaction & Storage Vessel, which can be controlled by a commercially available IKA computer, can be used.
7. 정밀 여과 7. Microfiltration
제조된 잉크 구성물은 제조 공정 과정에서 발생되거나 또는 혼합된 불순물을 제거하고 그리고 일정 수준 이상의 크기를 가지는 입자를 걸러내기 위한 공정이다. 여과 공정은 Millpore사 또는 General Electric사의 제품을 이용 한외여과(3㎛이하), 정밀여과(500㎚이하), 선택적 초 정밀 여과(100㎚이하)에 의하여 행하여지며 감압(1 ATM) 진공 펌프에 의해 여과 된다. 그리고 여과 공정을 통하여 잉크 구성물은 전체적으로 균일하며 안정된 입자 크기를 가지게 된다. The manufactured ink composition is a process for removing impurities generated or mixed in the manufacturing process and filtering out particles having a predetermined size or more. The filtration process is performed by ultrafiltration (less than 3㎛), microfiltration (less than 500nm), selective ultra-precision filtration (less than 100nm) using Millpore or General Electric's products, and reduced pressure (1 ATM) vacuum pump. It is filtered. Through the filtration process, the ink composition has an overall uniform and stable particle size.
8. 프린팅8. Printing
앞서 제조된 잉크의 프린트 시 광 경화 장치를 구성하여 광 경화하는 잉크의 경화 속도를 가속화 할 수 있다. RISC기반인 프로세서(ARM, Intel, AMD, VIA, IBM, Nvidia, Xillinx, Altera사 등의 32/64/128/256/384/512bit microprocessor)의 (SMP 또는 MPP)병렬 처리 연산으로 자동화되어 보다 빠르며 선예도가 뛰어난 출력이 가능한 시스템이 되도록 한다. 또한 사용자가 필요한 두께에 따른 전도 잉크의 표면 상태를 미리 시뮬레이션하며 사용자의 요구 구성에 따라 시뮬레이션 -에뮬레이션 기능이 추가된다.In the printing of the ink prepared previously, a photocuring device may be configured to accelerate the curing speed of the photocuring ink. Automated by parallel processing (SMP or MPP) of RISC-based processors (32/64/128/256/384 / 512bit microprocessors from ARM, Intel, AMD, VIA, IBM, Nvidia, Xillinx, Altera, etc.) The system has a sharpness of output. It also simulates the surface condition of the conductive ink according to the thickness required by the user, and adds simulation-emulation function according to the user's required configuration.
도 11은 다차원 광 경화 프린트 시스템의 전체적인 하드웨어 구성을 도시한 블록도이다. 도 11를 참조하면, 차원 프린팅 시스템(100)은 시스템의 제1, 제2, 제3 메인보드 (100, 100a, 100b)을 구비하는 메인보드 시스템과, 컬러 프로파일러(103)와, 광경화 장치(103)와, 저장장치(102)와, 상용의 잉크젯 프린터(102)와, 디스플레이 장치(102)을 구비한다. 각 구성은 상호 연결되어 데이터 통신이 가능하다. 제1 번 메인보드 (100)은 시스템의 주 연산 시스템으로서, 도 에는 제1 메인보드 모듈의 블록도가 도시되어 있다. 제1번 메인보드 (100)은 RISC 기반 64비트 멀티코어-멀티스레드의 프로세서로 독립 운영체제를 구동한다. 제1 번 메인보드 (100)은 병렬처리가 가능하며 디스플레이, 프린트, 입력, 출력, 저장을 한다. 제2, 제3 번메인보드 (100a, 110b)은 시스템의 보조 연산 시스템으로서, 도 3에는 제2, 제3 메인보드 모듈의 블록도가 도시되어 있다. 제2, 제3 번 메인보드(100a, 100b)은 RISC기반의 멀티코어-멀티스레드의 프로세서로 독립 운영체제를 구동할 수도 있다. 제2, 제3번 메인보드는 병렬처리가 가능하며 디스플레이, 입력, 출력과 고속의 정수연산을 담당한다. 2번 메인보드 (100a)은 주 프로세싱 시스템으로서, RISC 기반 ARM 프로세서로 병렬처리가 가능하며 입력, 출력과 고속의 부동소수점 연산 처리를 담당한다. 제3 메인보드 (100b)는 보조 프로세싱 시스템으로서, 제3번 메인보드 (100b)은 RISC 기반 ARM SOC 프로세서로 고속의 디지털 연산 제어가 가능하며 커널(kernel)이나 쉘(shell)로 구동이 가능하다. 또한 광 경화 제어 및 컬러 매니지먼트(프로파일링) 제어 시스템의 입력, 출력과 고속의 이미지 및 정수, 부동소수점 연산을 처리한다. 11 is a block diagram showing the overall hardware configuration of a multidimensional photocurable print system. Referring to FIG. 11, the dimensional printing system 100 includes a main board system including the first, second, and third mainboards 100, 100a, and 100b of the system, a color profiler 103, and photocuring. A device 103, a storage device 102, a commercial inkjet printer 102, and a display device 102 are provided. Each configuration is interconnected to allow data communication. The first motherboard 100 is a main operation system of the system, and a block diagram of the first motherboard module is shown in FIG. The first motherboard 100 is a RISC-based 64-bit multicore-multithreaded processor to run an independent operating system. The first motherboard 100 is capable of parallel processing and displays, prints, inputs, outputs, and stores. The second and third burnt main boards 100a and 110b are auxiliary computing systems of the system, and a block diagram of the second and third mainboard modules is shown in FIG. 3. The second and third motherboards 100a and 100b may run an independent operating system as a RISC-based multicore-multithreaded processor. The 2nd and 3rd motherboards are capable of parallel processing and are responsible for display, input, output and high speed integer operation. Mainboard No. 2 (100a) is a main processing system that can be processed in parallel with RISC-based ARM processors and handles input, output and high-speed floating-point operations. The third main board 100b is an auxiliary processing system, and the third main board 100b is a RISC-based ARM SOC processor capable of high-speed digital operation control and can be driven by a kernel or a shell. . It also handles the input and output of photo-curing control and color management (profiling) control systems, as well as high-speed image and integer and floating point operations.
도12은 도11 에 도시된 다차원 광경화 프린팅 시스템에 의한 소프트웨어의 병렬처리연산흐름을 도시한 것이다. 도 12에 도시된 바와 같이, S001 단계에서 제3 번 메인보드를 통해 각종 컬러매칭 프로파일 정보 및 광경화 제어 데이터를 S002 단계로 전송하여 컴퓨터 병렬분산 처리 연산 프로그램을 실행하는 S003 단계에서 각 메인보드 모듈에 분배되어 연산 처리한다. S004 단계에서 처리된 연산과 연산의 목적치가 일치하면 제1 번 메인보드 모듈의 멀티 코어에 의해 멀티 코어를 이용한 병렬 연산이 처리되며 목적치가 일치하지 않으면 S010 단계를 거쳐 제2번 메인보드의 멀티 프로세서, 멀티 코어에 의해 병렬화되어 처리하여 S013 단계에서 목적치 값보다 크면 피드백하여 S004 단계로 이동 확인하여 S005 단계와 S006 단계의 컴퓨터 클러스터 언어에 의해 데이터 저장(S008)과 디스플레이(S007)하며 S013 단계에서 목적치보다 낮으면 제4 메인보드 모듈로 이동하여 연산을 기다리며(S018) S013 단계에서 목적치와 동일하면 S015 단계와 S016 단계를 차례로 수행하고 S017 단계에서 S003 단계로 피드백 전송되어 연산한다. S013 단계에서 목적치가 낮으면 S018, S019, S020, S021, S022 단계로 차례로 이동 처리하며 S010 단계로 이동 연산된다. 이러한 구조를 재귀적 피드백 구조의 링 카운트 방식을 취하여 고속처리에 의한 연산을 보정할 수 있는 소프트웨어를 형성한다.FIG. 12 shows a parallel processing flow of software by the multidimensional photocuring printing system shown in FIG. As shown in FIG. 12, each motherboard module in step S003 executes a computer parallel distributed processing operation program by transmitting various color matching profile information and photocuring control data to step S002 through a third motherboard in step S001. It is distributed to and processes. If the operation processed in step S004 and the target value of the operation coincide, the parallel operation using the multi-core is processed by the multi-core of the first motherboard module, and if the target value does not match, the multi-processor of the second main board through the step S010 In step S013, the data is parallelized and processed by the multi-core, and if it is larger than the target value in step S013, the feedback is moved to step S004, and the data is stored (S008) and displayed (S007) by the computer cluster language of steps S005 and S006, and in step S013. If it is lower than the target value, the controller moves to the fourth motherboard module (S018). If the target value is the same as the target value in step S013, steps S015 and S016 are performed in turn, and feedback is sent from step S017 to step S003 to calculate. If the target value is low in step S013, the process moves to steps S018, S019, S020, S021, and S022, and then moves to step S010. This structure is taken as a ring count method of a recursive feedback structure to form software capable of correcting the calculation by the high speed processing.
하기 제조예 및 실시 예는 예시적인 것으로 이 분야에서 통상의 지식을 가진 자는 제시된 실시 예에 대한 다양한 변형 및 수정 발명을 만들 수 있을 것이다. The following Preparations and Examples are illustrative and can be made by those skilled in the art to various modifications and modifications to the examples presented.
제조예 1. 자외선(광), 열, 방사선등의 경화 모노머를 이용 전도성 분자 입자와 기저 프리올리머 제조하는 단계Preparation Example 1 Preparation of Conductive Molecular Particles and Base Prepolymer Using Curing Monomers Such as Ultraviolet Light, Heat, and Radiation
본 발명의 적절한 실시 형태에 따르면, 블랜드된 초 순수 물 식물성 오일 용매 기반 광 경화 잉크젯 잉크를 위한 모노머를 이용한 광 경화 폴리머 제조 방법은 전기 전도성 단량체의 용액 상태하 일정 기공을 갖는 구형의 폴리머 잉크 입자를 형성한다. 제조는 표준 상태 하(기압 1ATM, 온도 298.16K) ) SigmaAldrich사의 양쪽성(수용성, 지용성) 스티렌 10g, 아크릴레이트 100g, 메틸메타아크릴레이트 200g, 불포화폴리에스터 50g 모노머와; DowCorning사 변성 플르오르화 실리콘 10g, 불포화 폴리에스터 10g 구성된 모노머를 380g을 블랜드된 초 순수 물 식물성 오일 용매 320g 과 공용매로는 디메틸설폭사이드, 디메틸아세테이트 블랜드 액 200g, 비 공용매로는 테트라부틸알코올 5g로 SigmaAldrich사의 희소 금속(Ag, Au, Pt, Pd) 중 적어도 하나의 촉매 2g를 사용 정밀 합성 반응인 Wurtz Fitting Ulmann Reaction과 각2g 의 Merck사의 Aluminum trioxide dicholoride, doping Gemanium Nitrate와 SigmaAldrich사의 Calcium hydrate, Lithium hydrate, Potassiumchloride, Bromide, Iodine 의 Ligand Reaction을 이용 ZieglerNatta Reaction을 동시에 작용 유도하여 ATRP에 의한 합성을 시키며 합성된 입자 부분적인 폴리머의 RAFT를 개시하여 중합 전자 촉매제인 질산은(0.05N)과 질산에 용해된 비스무스옥사이드(0.01N)용액을 사용 상기에 기술된 모노머를 분자량 (Mn: 20,000 ~80,000) 폴리머로 제조한다. 전도성 분자 입자 결정화를 유도 하기 위하여 공비(이소프로필알콜/에틸알콜 또는 프레탄올 부피 혼합비 20:80)혼합물 1000ml에 적하 하고 0.01N HClH2SO4 또는 HNO3H2PO3 1000ml와 이를 중화하는 0.01N NaOHNH3OH 또는 KOHLiOH 를 1000ml를 적하하며 산화환원제인 1N 비스포스포카보네이트 또는 디소디움설포네이트 1000ml를 적하 결정질(crystal)을 만들며 헬륨 분위기하에서 열과 광에 의한 Sigmaaldrich사의 Remind Water 75wt% in BPO(Benzoic peroxide) 0.1g의 개시제에 의한 열, 광, 방사선, 마이크로웨이브에 의한 중합 반응을 이용 Merck사의 폴리에틸옥사이드 또는 프로필옥사이드, 부틸옥사이드, 펜탄옥사이드, 헥실옥사이드, 헵탄옥사이드, 옥틸옥사이드, 플루오르옥사이드 등의 가지가 선형이면서 SP2또는SP3의 분자 오비탈을 가지는 3.75wt% in D. I. Water Solution에 10g Thiopene 계열의 전도성 물질을 제조 하기 위하여 전도성 분자 입자를 제조는 Thiophene monomer 1.3g에 질산은(0, 0.5, 1.0, 1.5N)과 염화은 또는 금(0, 0.2, 0.4, 0.6, 0.8, 1N) 촉매를 각 0.5g 사용하여 블랜드가 된 초 순수 물과 식물성 오일 기반의 용매에 미셀화 분산된 평균 입자크기 (80nm)크기의 분산 입자를 12 ~ 24시간 Ultra Violet C(193nm: 37.5mW) 가하여 진 푸른색을 가지는(PA(E)DOT(Polyalkyl(ethylene) dioxy(dioctyl) thiophene)계열의 8가지의 종류의 Ptype 유기 전도 입자를 제조한다. 또 다른 전도 분자인 PANi(Polyaniline) 입자를 제조하기 위하여 Fluka사의 락톤 200g을 사용하여 (ANi 5 ~ 10 wt% in Lactone) 완전 용해 한 후 PA(E)DOT와 동일한 희소 금속 촉매를 사용 하여 (100nm) 크기의 블랜드가 된 초 순수 물과 식물성 오일 기반의 용매에 입자를 형성한다. According to a preferred embodiment of the present invention, a method of preparing a photocurable polymer using monomers for blended ultra pure water vegetable oil solvent based photocurable inkjet inks is characterized by the use of spherical polymer ink particles having constant pores under solution of an electrically conductive monomer. Form. The preparation was carried out under standard conditions (atmospheric pressure 1 ATM, temperature 298.16 K) with 10 g of amphoteric (water-soluble and fat-soluble) styrene of SigmaAldrich, 100 g of acrylate, 200 g of methyl methacrylate, 50 g of unsaturated polyester; DowCorning's modified silicone fluoride 10g, unsaturated polyester 10g 380g of monomer blended ultra pure water vegetable oil solvent and dimethyl sulfoxide as a cosolvent, dimethyl acetate blend solution 200g, tetrabutyl alcohol as a non-cosolvent 5g 2g of SigmaAldrich's rare metals (Ag, Au, Pt, Pd) using Wurtz Fitting Ulmann Reaction, a precise synthesis reaction, and 2g of Merck's Aluminum trioxide dicholoride, doping Gemanium Nitrate, and SigmaAldrich's Calcium hydrate, Lithium Induce the synthesis by ATRP by simultaneously inducing ZieglerNatta Reaction by using Ligand Reaction of hydrate, Potassium chloride, Bromide, and Iodine, and initiating RAFT of the synthesized particle partial polymer, and dissolved in silver nitrate (0.05N) and nitric acid Bismuth oxide (0.01N) solution was used to convert the monomer described above to molecular weight (Mn: 20,000 ~ 80,000) poly Prepared by. To induce conductive molecular particle crystallization, it was added dropwise to 1000 ml of azeotrope (isopropyl alcohol / ethyl alcohol or pretanol volume mixing ratio 20:80), and 0.01 N HClH 2 SO 4 or HNO 3 H 2 PO 3 1000 ml and neutralized 0.01 N NaOHNH 3 1000 ml of OH or KOHLiOH was added dropwise, and 1000 ml of 1N bisphosphocarbonate or disodium sulfonate, which is a redox agent, was dropped to form a crystal, and Sigmaaldrich's Remind Water 75wt% in Benzoic peroxide (BPO) 0.1 Linear branch of Merck polyethyl oxide or propyl oxide, butyl oxide, pentane oxide, hexyl oxide, heptane oxide, octyl oxide, fluorine oxide, etc. using polymerization reaction by heat, light, radiation, microwave by g initiator 10g Thiopene-based conductive water in a 3.75wt% in DI Water Solution with a molecular orbital of SP2 or SP3 To prepare the conductive molecular particles, 1.3g of Thiophene monomer was used for each 0.5g of silver nitrate (0, 0.5, 1.0, 1.5N) and silver chloride or gold (0, 0.2, 0.4, 0.6, 0.8, 1N) catalyst. Ultraviolet C (193nm: 37.5mW) of micelle-based average particle size (80nm) size dispersed in super pure water and vegetable oil-based solvents has a deep blue color (PA ( E) Prepare 8 types of Ptype organic conductive particles of DOT (Polyalkyl (ethylene) dioxy (dioctyl) thiophene) series.To prepare PANi (Polyaniline) particles, another conductive molecule, 200g of Fluka lactone is used. (ANi 5-10 wt% in Lactone) After complete dissolution, the same rare metal catalyst as PA (E) DOT is used to form particles in ultra pure water and vegetable oil-based solvents, which are blended to (100 nm) size.
초전도를 위하여 TCNQ(Tetracyanoquinodimethane), TCNQTTF(Tetrathiafulvalene)를 각 1 mole씩, Nitromethane: isopropyl alcohol: 2butanol = 4: 4: 2또는 3:4:3 비율로 혼합된 1Kg 용액에 분산 팽윤하여 각기 반투명한 용액을 제조한다.For superconductivity, TCNQ (Tetracyanoquinodimethane) and TCNQTTF (Tetrathiafulvalene) were dispersed in a 1Kg solution of Nitromethane: isopropyl alcohol: 2butanol = 4: 4: 2 or 3: 4: 3 at 1 mole each, each translucent solution To prepare.
PPy(Polypyrrole)은(60nm) 평균 입자 크기를 가지며 제조 방법은 PANi 입자 제조와 동일하다. 그러나 PPy의 경우 물 및 일반적인 유기 용매에 분산되지 않기 때문에 가마에서 연소된 White Charcoal과 Carbon Black에 (1:1, 1:2, 2:1, 1:3, 3:1, 1:4, 4:1)비율로 각기 그라프트 하였다. 또한 폴리에틸옥사이드 또는 프로필옥사이드, 부틸옥사이드 각기 2 mole의 지글러-나타 부가 반응을 하면 다음의 3가지 형태의 유기 금속 반도체를 제조한다. 3,4ethylenepyrrole, 1,2propylenepyrrole, 4,3butylenepyrrole 유기 금속 반도체에 희소 금속을 양 기능기의 끝단에 다니엘앨더 치환반응을 사용하여 희소 금속(Ag, Au, Pt, Pd, Ti, Si, Sb, Sr, Fe etc)을 0.01mole로 그라프팅 하면 투명한 유기 금속 초전도체를 가진 하이퍼큐브 그라핀을 제조 한다. 또한 제조된 하이퍼 큐브 그라핀을 응집제로 DMSO, DMF을 각기 1 mole의 초순수 용액에 분산 시키면 FullereneC60, 61, 70, 74, 84, 90, CNT(Carbon Nano Tube, DWCNT, SWCNT, MWCNT), Nanowire, Dendrimer, Graphene을 가지는 다차원 구조까지 제조 제어한다. Polypyrrole (PPy) (60 nm) has an average particle size and the production method is the same as that of PANi particles. However, PPy does not disperse in water and common organic solvents, so white charcoal and carbon black burned in kilns (1: 1, 1: 2, 2: 1, 1: 3, 3: 1, 1: 4, 4). It was grafted in a ratio of 1). In addition, when Ziegler-Natta addition reaction of polyethyl oxide, propyl oxide, and butyl oxide, respectively, 2 moles, three types of organometallic semiconductors are prepared. 3,4ethylenepyrrole, 1,2propylenepyrrole, 4,3butylenepyrrole Rare metals in organometallic semiconductors are replaced by rare metals (Ag, Au, Pt, Pd, Ti, Si, Sb, Sr, When grafting Fe etc. to 0.01 mole, a hypercube graphene having a transparent organometallic superconductor is prepared. In addition, disperse the prepared hypercube graphene as a flocculant in DMSO and DMF in 1 mole of ultrapure water solution, respectively, FullereneC60, 61, 70, 74, 84, 90, CNT (Carbon Nano Tube, DWCNT, SWCNT, MWCNT), Nanowire, Manufacturing control up to multi-dimensional structure with Dendrimer and Graphene
압전 분자인 PVK(Poly Vinyl Carbazole)과 PLG(PolyLGlutamate)는 9Vinyl Carbazoled 20g을 사용 프레탄올 100g에 팽윤하여 이소 프로필 알코올 100g에 10g 용해된 LGlutamate와 1:1 혼합하여 Ultra Violet C(253nm: 50.5mW)로 8시간을 가하여 입자(53nm)화 시켰다.Piezoelectric molecules PVK (Poly Vinyl Carbazole) and PLG (PolyLGlutamate) swell in 100g of pretanol with 20g of 9Vinyl Carbazoled and 1: 1 mixed with LGlutamate dissolved in 100g of isopropyl alcohol.Ultra Violet C (253nm: 50.5mW) 8 hours were added to form particles (53 nm).
PA(Polyacethylene)은 알데히드 케톤 용매를 사용하여 평균 입자(200nm)크기를 가지는 입자를 제조한다. 본 발명에 있어서 가장 중요한 기저 매트릭스로 사용하는 다량의 그라핀을 추출하기 위하여 우리나라에서 강원도에 자생하는 참나무 숯을 1100 ~ 1200℃의 가마에서 구운 활성 백탄 1Kg과 Sigmaaldrich사의 흑연 100mesh 크기의 0.5Kg을 건식 분쇄기로 10~20 mm수준의 미립자로 만든 후 건식 조 분쇄기를 이용하여 지르코니아실리카카바이드 비드 지름 2mm를 사용하여 300 ~ 500㎛ 수준으로 파운더리 한 후 건식 미분쇄기 지르코니아실리카카바이드 비드 지름 0.5mm로 10 ~ 20㎛로 미세 파운더리 한다. 건식 분쇄 과정에서의 냉각은 액체 질소를 이용 하여 분쇄기를 냉각 하며 분쇄 챔버 내에는 액체 헬륨을 주입하여 산소 과포화 및 초전도를 유지한다. 건식 분쇄의 과정 중 분쇄 챔버의 속도는 1000RPM 이하로 유지되어야 한다. 분쇄 시간은 각 분쇄기의 챔버의 용량에 따라 5~8시간을 유지 한다.); 미세 파운더리된 활성 백탄의 입자에 전도성 고분자를 블랜드 하거나 그라프팅 공정을 하기 위하여 반응기를 이용하여 불활성 기체인 질소와 헬륨이 주입되며 고속 교반 장치가 부착된 반응기를 사용한다. 반응의 촉매를 사용하기 위하여 초 순수 물과 식물성 오일 기반의 용매 100g에 30g로 수화된 폴리설포닉산, 40g로 수화된 폴리설포닉리튬산, 폴리아미노설포닉산, 폴리리그노설포닉산소디움염 중 하나의 유기 산을 반응 분산제로 선택 하며 Tokyo Chemical Industry사의 1mole의 농도로 수화된 블랜드된 수용액에 각 5g씩 포함된 스피라졸, 에오신A, 에오신B, 티오인디고와 Dowcorning사의 변성실리콘co아크릴레이트 공중합 폴리머와 광 증감제인 SigmaAldrich사의 Syndiotatic: 25g, Ataic: 5g의 수용액(25wt% in D. I. Water) 상태의 cinnemate 20g과 (이산화티타늄(Titanium dioxide Rutile type: 90wt%, Anatage type: 10wt%) 25g, 이산화실리콘(Silicone dioxide), 산화알루미늄(Aluminum oxide), 산화아연(Zinc oxide), 인듐주석산화물(Indium Tin oxide, ITO), 안티몬옥사이드(Antimony Oxide) 각 15g을 사용하며 희소 금속인 Silver, Gold은 각 10g씩 Platinum, Palladium은 각 5g을 사용 1Kg 기준 72hr와 촉매 및 개시제의 비율에 따라 다양한 하이퍼큐브 유기무기 하이브리드 그라프팅된 3차원 구조의 그라핀 입자를 합성하며 최종으로 그룹 말단의 활성단이 하이드록시 그룹의 유무에 따라서 수용성을 갖거나 지용성을 갖는 기능기를 형성한다. 각 전도 분자 입자 제조 공정 시간 동안에서 Airproducts사의 99.999999999%의 질소 가스를 사용하여 Degassing과 함께 제조된다.Polyacethylene (PA) is used to prepare particles having an average particle size (200 nm) using an aldehyde ketone solvent. In order to extract a large amount of graphene to be used as the most important base matrix in the present invention, dry activated charcoal 1Kg baked in a kiln of 1100-1200 ° C and 0.5Kg of graphite 100mesh size of Sigmaaldrich's in Korea. After pulverizing 10 ~ 20mm fine particles into powder and using a dry coarse crusher to find the diameter of 300 ~ 500㎛ using 2mm zirconia silica carbide beads, dry fine crusher zirconia silica carbide beads 10 ~ It is finely found to 20 micrometers. Cooling in the dry grinding process uses liquid nitrogen to cool the grinder and injects liquid helium into the grinding chamber to maintain oxygen supersaturation and superconductivity. The speed of the grinding chamber should be kept below 1000 RPM during the dry grinding process. The grinding time is maintained for 5 to 8 hours depending on the capacity of the chamber of each grinder.); In order to blend or graf the conductive polymer to the particles of fine-found activated charcoal, an inert gas, nitrogen and helium, is injected using a reactor, and a reactor equipped with a high speed stirring device is used. To use the catalyst of the reaction, one of the polysulphonic acid hydrated in 30 g of 100 g of ultra pure water and vegetable oil-based solvent, the polysulphonic lithium acid hydrated in 40 g, polyaminosulphonic acid, and polylignosulphonic acid sodium salt Is selected as a reaction dispersant, and 5 g each of spirazole, eosin A, eosin B, thioindigo and Dowcorning's modified silicone coacrylate copolymer polymer are contained in a blended aqueous solution hydrated at a concentration of 1 mole from Tokyo Chemical Industry. SigmaAldrich's Syndiotatic: 25g, Ataic: 5g, 20g cinnemate in aqueous solution (25wt% in DI Water), (Titanium dioxide Rutile type: 90wt%, Anatage type: 10wt%), 25g, Silicon dioxide 15g each of dioxide, aluminum oxide, zinc oxide, indium tin oxide (ITO), antimony oxide, and the rare metals Silver, Gold Each 10g of Platinum and Palladium use 5g each to synthesize 72hr of 1Kg, and to synthesize graphene particles with various hypercube organic-inorganic hybrid grafted three-dimensional structures according to the ratio of catalyst and initiator. Water-soluble or fat-soluble functional groups are formed depending on the presence or absence of a hydroxy group, prepared with Degassing using 99.999999999% nitrogen gas from Airproducts during each conductive molecular particle manufacturing process.
제조예 2. 유기무기 하이브리드 압전전도 분자 입자 광 경화 분산 마스터 용액의 제조Preparation Example 2 Preparation of Organic Inorganic Hybrid Piezoelectric Molecule Particle Photocuring Dispersion Master Solution
선행 단계에서 제조된 기저 프리올리머, 전도 분자 입자를 그라프팅과 분산을 하기 위하여 분산 장비를 사용하기 전에 유화된 마스터 용액 제조하기 위하여 다음과 같은 비율로 분산 마스터 용액을 제조한다.In order to prepare the emulsified master solution before using the dispersing equipment for grafting and dispersing the base pre-oliomer and conductive molecule particles prepared in the preceding step, a dispersion master solution is prepared in the following ratio.
기저 프리올리머: 120gBase pre-oliomer: 120 g
PT group(선행 제조된 분자 입자 중 적어도 하나 이상): 80gPT group (at least one of the preceding manufactured molecular particles): 80 g
PANi group(선행 제조된 분자 입자 중 적어도 하나 이상): 120gPANi group (at least one of the preceding manufactured molecular particles): 120 g
PPy group(선행 제조된 분자 입자 중 적어도 하나 이상): 20gPPy group (at least one of the pre-made molecular particles): 20 g
PA group(선행 제조된 분자 입자 중 적어도 하나 이상): 50gPA group (at least one of the preceding prepared molecular particles): 50 g
TCNQ group(선행 제조된 분자 입자 중 적어도 하나 이상): 0.5gTCNQ group (at least one of the pre-made molecular particles): 0.5 g
Hypercube OrganicInorganic hybrid Activation 3D graphene: 350gHypercube OrganicInorganic hybrid Activation 3D graphene: 350 g
Chage Control Agent (Clariant GmBH: NP101): 1gChage Control Agent (Clariant GmBH: NP101): 1g
Dynol604(Airproducts CO.): 1gDynol604 (Airproducts CO.): 1 g
RetinolA (SigmaAldrich CO.): 1gRetinolA (SigmaAldrich CO.): 1 g
Solvent(초 순수 40wt%, 식물성 오일 용액 10wt%, Prethanol 50wt%): balanced.Solvent (ultra pure 40 wt%, vegetable oil solution 10 wt%, Prethanol 50 wt%): balanced.
점성탄성을 가진 Newtonianfluid emulsion을 제조 공정 시간 12 ~ 36hr 동안에서 Airproducts사의 99.999999999%의 질소 가스를 사용하여 Degassing과 함께 제조된다.Newtonianfluid emulsions with viscoelasticity are prepared with Degassing using 99.999999999% nitrogen gas from Airproducts for 12 to 36hrs during the manufacturing process.
제조 예 3. 유기무기 하이브리드 압전전도 분자 잉크 제조Preparation Example 3 Preparation of Organic Inorganic Hybrid Piezoelectric Molecular Ink
제조된 제조 2의 결과를 이용 광 경화 반응 화학 물질을 첨가, 제조된다.The photocuring reaction chemicals are added and manufactured using the result of the prepared preparation 2.
유기무기 하이브리드 압전전도 분자 입자 마스터 분산 원액 280g;280 g of organic inorganic hybrid piezoelectric molecular particle master dispersion stock solution;
용매 625g;625 g of solvent;
폴리프로필메틸메타아크릴레이트 150g;150 g of polypropylmethylmethacrylate;
에틸프로필메타아크릴레이트 300g;300 g of ethylpropyl methacrylate;
1,6헥실렌디아크릴레이트 12.5g; 12.5 g of 1,6 hexylene diacrylate;
Potassium hydroixe 0.5gPotassium hydroixe 0.5 g
Dioctyl sulfosucinate, disodium salt 0.5gDioctyl sulfosucinate, disodium salt 0.5g
Dynol 604 0.5g; 0.5 g Dynol 604;
Benzoacetophenone 1g;1 g of Benzoacetophenone;
RetinolA (SigmaAldrich CO.): 1gRetinolA (SigmaAldrich CO.): 1 g
Benzo peroxide 1gBenzo peroxide 1g
2,2 Azobis(2methylpropion)dihydrodicholoride 0.1g;0.1 g of 2,2 Azobis (2methylpropion) dihydrodicholoride;
Poly cinnamate 0.5g; 0.5 g of Poly cinnamate;
Hydro peroxide 0.1g;0.1 g of Hydro peroxide;
TINUVIN 5060 0.1g;TINUVIN 5060 0.1 g;
잉크 구성물 마스터 원액 및 광 반응 화학 물질은 메카닉 스티러에서 블랜드가 되고 블랜드 상황에서 공정 시간 동안에서 Airproducts사의 99.999999999%의 질소 및 헬륨 가스를 사용하여 Degassing과 함께 제조된다.Ink constituent master stocks and photoreaction chemicals are blended in a mechanical stirrer and made with Degassing using 99.999999999% nitrogen and helium gas from Airproducts during the processing time in the blend situation.
실시 예 1Example 1
제조된 분산 원액에 아래와 같은 반응 화학 물질을 첨가하여 본 발명에 따른 잉크 구성물을 블랜드 상황에서 공정 시간 동안에서 Airproducts사의 99.999999999%의 질소 및 헬륨 가스를 사용하여 Degassing과 함께 제조하였다. The ink constituents according to the present invention were added to the prepared dispersion stocks with Degassing using 99.999999999% nitrogen and helium gas from Airproducts under process conditions in blend conditions.
용매 63 중량부63 parts by weight of solvent
폴리프로필메틸메타아크릴레이트 15 중량부15 parts by weight of polypropylmethylmethacrylate
에틸프로필메타아크릴레이트 25 중량부25 parts by weight of ethylpropyl methacrylate
1,6헥실렌디아크릴레이트 15 중량부 15 parts by weight of 1,6 hexylene diacrylate
Potassium hydroixe 0.5 중량부Potassium hydroixe 0.5 parts by weight
Dioctyl sulfosucinate, disodium salt 0.5 중량부Dioctyl sulfosucinate, disodium salt 0.5 parts by weight
Dynol 604 0.5 중량부Dynol 604 0.5 parts by weight
RetinolA (SigmaAldrich CO.): 0.5 중량부RetinolA (SigmaAldrich CO.): 0.5 parts by weight
Benzoacetophenone 0.5 중량부Benzoacetophenone 0.5 part by weight
Benzo peroxide 0.5 중량부Benzo peroxide 0.5 part by weight
2, 2Azobis(2methylpropion)dihydrodicholoride 0.5 중량부2,2Azobis (2methylpropion) dihydrodicholoride 0.5 parts by weight
Poly cinnamate 0.7 중량부 Poly cinnamate 0.7 parts by weight
Hydro peroxide 0.5 중량부0.5 parts by weight of hydro peroxide
TINUVIN 5060 0.5 중량부TINUVIN 5060 0.5 parts by weight
제조된 잉크 조성물은 멤버레인 필터를 사용하여 필터링이 되었다. 결과로서 얻어진 잉크는 표면장력 25 dyne/cm; 점도 5.1 cPs; 및 pH 7.5가 되었다. 제조된 잉크가 카트리지에 주입되어 자외선(광) 경화 장치가 부착된 Epson 사의 Stylus Pro 7900, Hewlett Packard Designer jet z3200, Canon사의 Canon IPF 8000 등의 출력 장비에서 30m출력 시험이 되었다. 시험 과정에서 일반적인 폴리에틸렌테레프탈레이트, 폴리프로필렌 필름을 사용 프린트를 하였다. 노즐의 빠짐이 발생하지 않았고 그리고 출력된 잉크의 자외선 경화는 경화기를 통과할 때 Airproducts사의 99.999999999% 아르곤 가스를 주입하여 표면 경화 시 산소에 의한 변형을 막았다. 경화된 잉크의 품질 테스트에서 내구성, 선예도, 투과도, 광학전기적인 특성이 테스트 결과에서 상대적으로 우수하다. 측정 결과를 표 1 내지 3에 나타내었다.The prepared ink composition was filtered using a member filter. The resulting ink had a surface tension of 25 dyne / cm; Viscosity 5.1 cPs; And pH 7.5. The prepared ink was injected into a cartridge and subjected to a 30 m output test on output devices such as the Stylus Pro 7900 manufactured by Epson, Hewlett Packard Designer jet z3200, and Canon IPF 8000 manufactured by Canon. In the test process, general polyethylene terephthalate and polypropylene film were used for printing. No ejection of the nozzle occurred and the UV curing of the printed ink injected 99.999999999% argon gas from Airproducts as it passed through the curing machine to prevent oxygen deformation during surface curing. In the quality test of the cured ink, the durability, sharpness, permeability and optoelectric characteristics are relatively excellent in the test results. The measurement results are shown in Tables 1-3.
비교 예 1Comparative Example 1
Clevios GmBH의 수계 희석 전자 잉크젯 프린트용 전자 잉크 구성물을 비교하였다. The electronic ink compositions for aqueous dilution electronic inkjet printing of Clevios GmBH were compared.
PEDOTpss 40 wt%;PEDOTpss 40 wt%;
Ethyl Alcohol 12wt%;Ethyl Alcohol 12wt%;
DMSO 5wt%;DMSO 5 wt%;
DMF: 2wt%DMF: 2 wt%
Dynol604 2wt%Dynol604 2wt%
D. I. Water Balanced.D. I. Water Balanced.
제조된 석유계 희석 전자 잉크젯 프린트용 전자 잉크에 대하여 Epson 사의 Stylus Pro 7900, Hewlett Packard Designer jet z3200, Canon사의 Canon IPF 8000 등의 출력장비에서 출력시험을 하였다. 시험 과정에서 일반 폴리에틸렌테레프탈레이트, 폴리프로필렌 필름 위에 출력하여 약간의 노즐이 빠짐은 있었고, 잉크의 번짐 현상도 일어났으며, 잉크 헤드의 잉크 서포트 부분의 EVA 부직포를 용해 하였으며 유해물질은 배출은 아니나 잉크 내부의 산 발생으로 인한 잉크젯 헤드 손상을 증가시켰다. 실시 예1과 동일한 경화과정을 거친 후에 품질 테스트 과정에서 습기에 대한 저항 변화율 또한 심각한 수준이였다.The prepared petroleum dilution electronic inkjet printing electronic inks were tested on output devices such as Stylus Pro 7900 from Epson, Hewlett Packard Designer jet z3200, and Canon IPF 8000 from Canon. During the test process, the printing was performed on the general polyethylene terephthalate and polypropylene film, and there were some nozzles missing, ink bleeding occurred, and the EVA nonwoven fabric of the ink support part of the ink head was dissolved. Increased inkjet head damage due to internal acid generation. After the same curing process as in Example 1, the rate of change of resistance to moisture in the quality test process was also severe.
비교 예 2Comparative Example 2
Alfa Aesaer의 석유계 희석 전자 잉크젯 프린트용 전자 잉크 구성물을 비교하였다. Alfa Aesaer's electronic ink compositions for petroleum dilution electronic inkjet printing were compared.
Silver solution 40 wt%;Silver solution 40 wt%;
Methyl Methacrylate 10wt%;Methyl Methacrylate 10 wt%;
DMF: 5wt%DMF: 5 wt%
Dynol604 2wt%Dynol604 2wt%
Xylene Balanced.Xylene Balanced.
제조된 석유계 희석 전자 잉크젯 프린트용 전자 잉크에 대하여 Epson 사의 Stylus Pro 7900, Hewlett Packard Designer jet z3200, Canon사의 Canon IPF 8000 등의 출력장비에서 출력시험을 하였다. 시험 과정에서 일반 폴리에틸렌테레프탈레이트, 폴리프로필렌 필름 위에 출력하여 약간의 노즐이 빠짐은 있었고, 잉크의 번짐 현상도 일어났으며, 잉크 헤드의 잉크 서포트 부분의 EVA 부직포를 Xylene에 의해 용해하였으며 유해물질은 배출은 아니나 실시예1과 동일한 경화과정을 거친 후에 품질 테스트 과정에서 은의 산화에 대한 면 저항 변화율이 많았다.The prepared petroleum dilution electronic inkjet printing electronic inks were tested on output devices such as Stylus Pro 7900 from Epson, Hewlett Packard Designer jet z3200, and Canon IPF 8000 from Canon. During the test, the nozzle was printed on the general polyethylene terephthalate and polypropylene film, and some nozzles were missing, and ink bleeding occurred. The EVA nonwoven fabric of the ink support part of the ink head was dissolved by Xylene, and harmful substances were discharged. Although not the same as in Example 1 after the hardening process quality change during the surface resistance change rate of the silver was much.
비교 예 3Comparative Example 3
Dow Chemicals의 석유계 희석 전자 잉크젯 프린트용 전자 잉크 구성물을 비교하였다. Dow Chemicals' electronic ink compositions for petroleum dilution electronic inkjet printing were compared.
ITO isopropyl alcohol in 30wt% solution 40 wt%;ITO isopropyl alcohol in 30 wt% solution 40 wt%;
Methyl Methacrylate 10wt%;Methyl Methacrylate 10 wt%;
DMF: 5wt%DMF: 5 wt%
Dynol604 2wt%Dynol604 2wt%
DMSO Balanced.DMSO Balanced.
제조된 석유계 희석 전자 잉크젯 프린트용 전자 잉크에 대하여 Epson 사의 Stylus Pro 7900, Hewlett Packard Designer jet z3200, Canon사의 Canon IPF 8000 등의 출력장비에서 출력시험을 하였다. 시험 과정에서 일반 폴리에틸렌테레프탈레이트, 폴리프로필렌 필름 위에 출력하여 약간의 노즐이 빠짐은 없었고, 잉크의 번짐 현상이 일어났으며, 잉크 헤드의 잉크 유해물질은 배출은 아니나 실시예1과 동일한 경화과정을 거친 후에 품질 테스트 과정에서 굴곡이나 비틀림에 대한 3D 저항 변화율이 많았다.The prepared petroleum dilution electronic inkjet printing electronic inks were tested on output devices such as Stylus Pro 7900 from Epson, Hewlett Packard Designer jet z3200, and Canon IPF 8000 from Canon. In the course of the test, it was printed on the general polyethylene terephthalate and polypropylene film, and there was no leaking of the nozzles, ink bleeding occurred, and the ink hazardous substances in the ink head were not discharged but went through the same curing process as in Example 1. Later, during the quality test, the rate of change of 3D resistance to bending and torsion was high.
상기 비교예 1 내지 3의 잉크는 플렉시블 전자 잉크로 사용하기 위하여 전도도 향상을 위해 ITO박막위에 유기 투명 잉크를 사용하여야 본 발명의 실험 결과물과 비슷한 조건을 가지는 것으로 판단된다.The ink of Comparative Examples 1 to 3 should be similar to the experimental results of the present invention only by using an organic transparent ink on the ITO thin film to improve conductivity in order to use it as a flexible electronic ink.
표 1
Temperature(℃) 비교예1(Ω/㎤) 비교예2(Ω/㎤) 비교예3(Ω/㎤) 실시예1(Ω/㎤)
-80 286 209 335 15
-60 258 192 316 28
-40 202 175 297 62
-20 172 135 247 102
0 150 122 232 131
20 163 133 227 149
40 184 150 220 159
60 191 160 210 167
80 200 185 299 175
Table 1
Temperature (℃) Comparative Example 1 (Ω / cm 3) Comparative Example 2 (Ω / cm 3) Comparative Example 3 (Ω / cm 3) Example 1 (Ω / cm 3)
-80 286 209 335 15
-60 258 192 316 28
-40 202 175 297 62
-20 172 135 247 102
0 150 122 232 131
20 163 133 227 149
40 184 150 220 159
60 191 160 210 167
80 200 185 299 175
온도변화에 따른 전극 잉크의 2-4축 입체 저항 측정표이다.2-4 axis resistance measurement table of electrode ink according to temperature change.
(습도 65%, 전압: 1.5V, 전류: 50mA, 프린팅 두께: 100㎛)(Humidity 65%, Voltage: 1.5V, Current: 50mA, Printing Thickness: 100㎛)
표 2
Bending and distorsion(Angle) 비교예1(Ω/㎤) 비교예2(Ω/㎤) 비교예3(Ω/㎤) 실시예1(Ω/㎤)
60 130 122 120 128
70 152 145 158 136
80 167 161 198 142
90 183 171 232 153
TABLE 2
Bending and distorsion (Angle) Comparative Example 1 (Ω / cm 3) Comparative Example 2 (Ω / cm 3) Comparative Example 3 (Ω / cm 3) Example 1 (Ω / cm 3)
60 130 122 120 128
70 152 145 158 136
80 167 161 198 142
90 183 171 232 153
굴곡이나 비틀림의 변화에 따른 전극 잉크의 2-4축 입체 저항 측정표이다.It is a measurement table of the 2-4 axis three-dimensional resistance of the electrode ink according to the change in bending and twisting.
(습도 65%, 전압: 1.5V, 전류: 50mA, 프린팅 두께: 100㎛)(Humidity 65%, Voltage: 1.5V, Current: 50mA, Printing Thickness: 100㎛)
표 3
Thickness(㎛) 비교예1(Ω/㎤) 비교예2(Ω/㎤) 비교예3(Ω/㎤) 실시예1(Ω/㎤)
100 156 138 110 142
200 143 127 109 136
400 137 120 111 129
800 120 118 107 123
TABLE 3
Thickness (㎛) Comparative Example 1 (Ω / cm 3) Comparative Example 2 (Ω / cm 3) Comparative Example 3 (Ω / cm 3) Example 1 (Ω / cm 3)
100 156 138 110 142
200 143 127 109 136
400 137 120 111 129
800 120 118 107 123
두께 변화에 따른 전극 잉크의 2-4축 입체 저항 측정 표이다.It is a measurement table of the 2-4 axis three-dimensional resistance of the electrode ink according to the thickness change.
(습도 65%, 전압: 1.5V, 전류: 50mA)(Humidity 65%, Voltage: 1.5V, Current: 50mA)
본 발명은 실시 예를 제시하여 상세하게 설명이 되었다. 제시된 실시 예는 예시적인 것으로 이 분야에서 통상의 지식을 가진 자는 본 발명의 기술적 사상을 벗어나지 아니하고 제시된 실시 예에 대한 다양한 변형 및 수정 발명을 만들 수 있을 것이다. 본 발명은 이러한 변형 및 수정 발명에 의하여 제한되지 아니하며 다만 아래에 첨부된 청구범위에 의하여 제한이 된다.The invention has been described in detail by presenting examples. The presented embodiments are illustrative and can be made by those skilled in the art to various modifications and modifications to the disclosed embodiments without departing from the spirit of the invention. The invention is not limited by the invention as such variations and modifications are limited only by the claims appended hereto.

Claims (4)

  1. 투명 전극 또는 직접 회로의 미세회로 패턴 형성이 가능한 전극용 잉크젯 잉크의 제조방법에 있어서, In the manufacturing method of the inkjet ink for electrodes which can form the microcircuit pattern of a transparent electrode or an integrated circuit,
    광 경화 압전전도 화합물의 선택 단계; 자외선(광), 열, 방사선등의 경화 모노머를 이용 전도압전 분자 입자와 기저 프리올리머 제조 하는 단계; 유기무기 하이브리드 압전전도 분자 입자 및 광 경화 분산 마스터 용액의 제조 공정 단계; 유기무기 하이브리드 압전전도 분자 입자 및 광 경화 분산 마스터 원액 제조 공정 단계; 유기무기 하이브리드 압전전도 분자 입자 잉크 포뮬레이터 공정 단계; 및 정밀 여과 단계 등을 포함하는 것을 특징으로 하는 전극용 잉크젯 잉크의 제조방법.Selecting a photocured piezoelectric compound; Preparing conductive piezoelectric molecular particles and a base prepolymer using curing monomers such as ultraviolet light, heat, and radiation; A process for producing an organic-inorganic hybrid piezoelectric molecular particle and a photocured dispersed master solution; An organic-inorganic hybrid piezoelectric molecular particle and a photocuring dispersed master stock solution manufacturing process step; An organic-inorganic hybrid piezoelectric molecular particle ink formular process step; And a fine filtration step.
  2. 청구항 1에 있어서, The method according to claim 1,
    상기 하이브리드 압전전도 분자 입자인 주 재료에 폴리티오펜, 폴리아닐닌, 폴리피롤, 폴리아세틸렌, 폴리비닐카바졸, 폴리 L-글루타메이트, 폴리플루오르테트라시아노퀴노디메탄 유도체, 또는 전도-압전 무기물 중에서 선택된 1종 또는 2종이상의 부가재료를 그라프팅하는 것을 특징으로 하는 전극용 잉크젯 잉크의 제조방법.The hybrid piezoelectric molecular particles are selected from polythiophene, polyaniline, polypyrrole, polyacetylene, polyvinylcarbazole, poly L-glutamate, polyfluorotetracyanoquinomimethane derivatives, or conductive piezoelectric inorganic materials. A method for producing an inkjet ink for electrodes, comprising grafting one kind or two or more kinds of additional materials.
  3. 청구항 1에 있어서, The method according to claim 1,
    상기 분산 마스터 용액은 초 순수 물- 식물성 오일의 혼합 용매를 포함하는 것을 특징으로 하는 광 경화 전극용 잉크젯 잉크의 제조방법.The dispersion master solution is a method of producing an inkjet ink for photocured electrodes, characterized in that it comprises a mixed solvent of ultra pure water-vegetable oil.
  4. 청구항 1 내지 청구항 3중 어느 한 항의 제조방법으로 제조된 잉크젯 잉크를 사용한 액정, 발광, 플라즈마, 전기변색, 전계발광의 투과형 또는 반사형 디스플레이, 홀로그램, 전지, 또는 센서 중 선택된 하나의 전기-전자부품.An electric-electronic component selected from liquid crystal, light emitting, plasma, electrochromic, electroluminescent transmissive or reflective display, hologram, battery, or sensor using the inkjet ink prepared by the method of any one of claims 1 to 3. .
PCT/KR2011/006232 2011-08-08 2011-08-23 Method for manufacturing photosensitive inkjet ink for an electrode capable of forming an ultrahigh-density microcircuit pattern WO2013022136A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020110078419A KR101272030B1 (en) 2011-08-08 2011-08-08 Process for preparing photo curable inkjet ink for electric-electron conduct part of ultra-high density and ultra-fine integrated circuit patterning formation
KR10-2011-0078419 2011-08-08

Publications (1)

Publication Number Publication Date
WO2013022136A1 true WO2013022136A1 (en) 2013-02-14

Family

ID=47668630

Family Applications (2)

Application Number Title Priority Date Filing Date
PCT/KR2011/006232 WO2013022136A1 (en) 2011-08-08 2011-08-23 Method for manufacturing photosensitive inkjet ink for an electrode capable of forming an ultrahigh-density microcircuit pattern
PCT/KR2011/006241 WO2013022138A1 (en) 2011-08-08 2011-08-24 High-performance analog-digital hybrid computer control-based multidimensional printer

Family Applications After (1)

Application Number Title Priority Date Filing Date
PCT/KR2011/006241 WO2013022138A1 (en) 2011-08-08 2011-08-24 High-performance analog-digital hybrid computer control-based multidimensional printer

Country Status (2)

Country Link
KR (1) KR101272030B1 (en)
WO (2) WO2013022136A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023246369A1 (en) * 2022-06-21 2023-12-28 京东方科技集团股份有限公司 Quantum dot ink, quantum dot layer patterning method and quantum dot optoelectronic device

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015167563A1 (en) * 2014-04-30 2015-11-05 Hewlett-Packard Development Company, L.P. Multi architecture manager
KR101642429B1 (en) * 2015-05-18 2016-07-25 울산과학기술원 Repair method of electronic device

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08165448A (en) * 1994-12-13 1996-06-25 Fujikura Kasei Co Ltd Ink composition for ink jet recording
JP2005060671A (en) * 2003-07-31 2005-03-10 Maruai:Kk Production of polyaniline electrically conductive ink
JP4023782B2 (en) * 2002-02-27 2007-12-19 トッパン・フォームズ株式会社 Sheet having conductive circuit using conductive ink-receiving layer forming ink
JP2009506187A (en) * 2005-08-31 2009-02-12 プリンター リミテッド UV curable hybrid curable inkjet ink composition and solder mask using the same
KR20090084057A (en) * 2008-01-31 2009-08-05 한국다이요잉크 주식회사 Ink composition for inkzet marking of pcb and manufacturing method and marking method of ink
KR20100009877A (en) * 2008-07-21 2010-01-29 (주)나눅스 Organic-inoganic hybrid ink and organic nano-silver sol solution and manufacturing methods thereof

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5962148A (en) * 1995-01-11 1999-10-05 Sekisui Chemical Co., Ltd. Electrically conductive paint composition
KR970058939A (en) * 1996-01-23 1997-08-12 김광호 The controller of the laser beam printer
JP2000135822A (en) * 1999-11-30 2000-05-16 Seiko Epson Corp Computer system
JP2011046034A (en) * 2009-08-26 2011-03-10 Ricoh Co Ltd Image processor, image processing method, image processing program, and recording medium

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08165448A (en) * 1994-12-13 1996-06-25 Fujikura Kasei Co Ltd Ink composition for ink jet recording
JP4023782B2 (en) * 2002-02-27 2007-12-19 トッパン・フォームズ株式会社 Sheet having conductive circuit using conductive ink-receiving layer forming ink
JP2005060671A (en) * 2003-07-31 2005-03-10 Maruai:Kk Production of polyaniline electrically conductive ink
JP2009506187A (en) * 2005-08-31 2009-02-12 プリンター リミテッド UV curable hybrid curable inkjet ink composition and solder mask using the same
KR20090084057A (en) * 2008-01-31 2009-08-05 한국다이요잉크 주식회사 Ink composition for inkzet marking of pcb and manufacturing method and marking method of ink
KR20100009877A (en) * 2008-07-21 2010-01-29 (주)나눅스 Organic-inoganic hybrid ink and organic nano-silver sol solution and manufacturing methods thereof

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023246369A1 (en) * 2022-06-21 2023-12-28 京东方科技集团股份有限公司 Quantum dot ink, quantum dot layer patterning method and quantum dot optoelectronic device

Also Published As

Publication number Publication date
KR20130016471A (en) 2013-02-18
WO2013022138A1 (en) 2013-02-14
KR101272030B1 (en) 2013-06-11

Similar Documents

Publication Publication Date Title
US9236162B2 (en) Transparent conductive ink and transparent conductive pattern forming method
Zi et al. Flexible perovskite solar cells based on green, continuous roll-to-roll printing technology
WO2014185756A1 (en) Method for manufacturing hybrid transparent electrode and hybrid transparent electrode
ES2607961T3 (en) Conductive coating composition and method for manufacturing a conductive layer using the same
WO2013024929A1 (en) Method for fabricating light-curable inkjet ink for a battery or capacitor using an ultra-high-molecular-weight polymer layer
WO2014171798A9 (en) Method of manufacturing transparent electrode film for display and transparent electrode film for display
WO2013169087A1 (en) Conductive polymeric ink composition and organic solar cell containing same
WO2015050320A1 (en) Electrode having excellent light transmittance, method for manufacturing same, and electronic element including same
KR20170076718A (en) Transparent films with control of light hue using nanoscale colorants
CN104205244B (en) The manufacture method of conductive composition, electroconductive component, electroconductive component, touch-screen and solar cell
WO2014204265A1 (en) Conductive ink composition, transparent conductive film including same, and method of manufacturing transparent conductive film
EP2651841A1 (en) Printable etchant compositions for etching silver nanowire-based transparent, conductive films
KR101272029B1 (en) Method for Preparing the Photo Curable Inkjet Ink Formulation Usable In 3D Inkjet Printing System for Electric or Electron Materials
WO2013022136A1 (en) Method for manufacturing photosensitive inkjet ink for an electrode capable of forming an ultrahigh-density microcircuit pattern
WO2009152146A1 (en) Improved cnt/topcoat processes for making a transplant conductor
WO2011073005A2 (en) Method for producing layers containing indium oxide, layers containing indium oxide produced according to said method and the use thereof
WO2013024928A1 (en) Method for fabricating light-curable inkjet ink for a display and for a dye-sensitized solar cell
WO2016148456A1 (en) Metal oxide thin film of three-dimensional nano ripple structure, method for preparing same, and organic photovoltaic cell comprising same
Hou et al. Highly conductive inkjet-printed PEDOT: PSS film under cyclic stretching
WO2022270704A1 (en) Antibacterial coating composition, and method for manufacturing optical film including antibacterial nanoparticles
WO2013022137A1 (en) Method for manufacturing photosensitive inkjet ink for a semiconductor capable of forming an ultrahigh-density microcircuit pattern
WO2021125695A1 (en) Curable composition for inkjet printing, and organic light-emitting display device comprising same
WO2014178640A1 (en) Method for forming darkening conductive pattern and darkening conductive ink composition
TWI683039B (en) Manufacturing method of transparent electrode and transparent electrode laminate
TW201439133A (en) Composition for forming conductive film and method for producing conductive film with the same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11870750

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11870750

Country of ref document: EP

Kind code of ref document: A1