WO2013021678A1 - Gas-insulated switchgear - Google Patents

Gas-insulated switchgear Download PDF

Info

Publication number
WO2013021678A1
WO2013021678A1 PCT/JP2012/059183 JP2012059183W WO2013021678A1 WO 2013021678 A1 WO2013021678 A1 WO 2013021678A1 JP 2012059183 W JP2012059183 W JP 2012059183W WO 2013021678 A1 WO2013021678 A1 WO 2013021678A1
Authority
WO
WIPO (PCT)
Prior art keywords
horizontal
insulated switchgear
gas
panels
horizontal bus
Prior art date
Application number
PCT/JP2012/059183
Other languages
French (fr)
Japanese (ja)
Inventor
慎太郎 黒明
英二 森藤
孝年 大坪
由起勇 東川
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to JP2013527909A priority Critical patent/JP5484638B2/en
Priority to CN201280036591.7A priority patent/CN103703639B/en
Publication of WO2013021678A1 publication Critical patent/WO2013021678A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02BBOARDS, SUBSTATIONS OR SWITCHING ARRANGEMENTS FOR THE SUPPLY OR DISTRIBUTION OF ELECTRIC POWER
    • H02B13/00Arrangement of switchgear in which switches are enclosed in, or structurally associated with, a casing, e.g. cubicle
    • H02B13/005Electrical connection between switchgear cells
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02BBOARDS, SUBSTATIONS OR SWITCHING ARRANGEMENTS FOR THE SUPPLY OR DISTRIBUTION OF ELECTRIC POWER
    • H02B1/00Frameworks, boards, panels, desks, casings; Details of substations or switching arrangements
    • H02B1/20Bus-bar or other wiring layouts, e.g. in cubicles, in switchyards
    • H02B1/22Layouts for duplicate bus-bar selection

Definitions

  • This invention relates to a gas-insulated switchgear used on the power receiving side of a substation, and relates to the arrangement and connection configuration of a power receiving unit on the drawing side, a transformer unit on the load side, and an MOF that measures the received power.
  • Fig. 22 to Fig. 25 show gas insulation switchgears for power reception, which are 72 / 84kV class, as conventional examples.
  • (a) is a single-line connection diagram of the power receiving circuit
  • (b) is a single-line connection diagram showing the casing of the gas-insulated switchgear and the devices housed therein and their connections
  • (c) is the gas The row
  • the power receiving unit (A) 2 side, the transformer unit (B) 2 side, and the MOF unit are configured in 5 planes, and a horizontal bus bus tank is arranged at the bottom of the panel.
  • Fig. 23 shows the power supply to the transformer of 2 banks via the VCT by the line power reception.
  • FIG. 23 shows the power supply to the transformer of the 2 banks via the VCT with a bypass circuit. The power is supplied to the transformer in two banks via one of two VCTs connected in parallel.
  • FIG. 25 is a side sectional view of a gas insulated switchgear applied to the above configuration.
  • the gas-insulated switchgear shown in Patent Document 1 receives power through two lines and supplies power to a transformer in two banks via the MOF.
  • the device is provided on both sides of the VCT arranged in the center.
  • the bypass unit P is necessary in addition to the configuration of FIG. 24 requires auxiliary units Q to S in addition to the configuration of FIG. 23, and there is a problem that the installation area of the switchgear arranged in a row is further increased.
  • An object of the present invention is to obtain a gas-insulated switchgear in which the number of cases constituting a row board is reduced to reduce the installation area.
  • the gas insulated switchgear according to the present invention is a power-receiving gas insulated switchgear constituted by arranging a plurality of panels.
  • the gas insulated switchgear for receiving power four horizontal lines are arranged for connecting the panels, and the horizontal lines connecting the panels are connected.
  • the bus is arranged so as to pass through the arrangement space.
  • the arrangement space of the horizontal bus lines connecting the respective panels is provided for four lines, and the horizontal bus lines connecting the panels are routed through the arrangement space. It is possible to provide a gas insulated switchgear that can be configured compactly only with a predetermined standardized board in various arrangement patterns.
  • FIG. 4 is a rear view of FIG. 3.
  • FIG. 5 is a single-line diagram of a common standby 2-line VCT bypass 2-bank configuration.
  • FIG. 6 is a connection diagram of an arrangement pattern 1 of a casing and device arrangement in the single-line connection diagram of FIG. 5.
  • FIG. 6 is a connection diagram of an arrangement pattern 2 of housings and device arrangement in the single-line connection diagram of FIG. 5.
  • FIG. 6 is a connection diagram of an arrangement pattern 3 of housing and device arrangement in the single-line connection diagram of FIG.
  • FIG. 6 is a connection diagram of an arrangement pattern 4 of housings and device arrangement in the single-line connection diagram of FIG. 5.
  • FIG. 2 is a single-line diagram of a common standby 2-line 2-bank configuration. It is a connection diagram of the arrangement pattern 1 of a housing
  • FIG. 18 is a connection diagram of an arrangement pattern 1 of housings and device arrangement in the single-line connection diagram of FIG. 17. It is a connection diagram of the arrangement pattern 2 of a housing
  • FIG. 18 is a connection diagram of an arrangement pattern 3 of housing and device arrangement in the single-line connection diagram of FIG. 17.
  • FIG. 1 shows a side cross section of a gas insulated switchgear.
  • Reference numeral 1 denotes a housing, which includes a door 1a that can be opened and closed on the left side of the figure (the front side of the opening and closing device).
  • Reference numeral 2 denotes an open / close tank in which an insulating gas such as SF6 gas, N2 gas, CO2 gas, and dry air is enclosed.
  • the cable 5 drawn from the power supply side penetrates into the opening / closing part tank 2 via the cable head 5a, and is connected to the VCB 3 via the disconnector 4 with a grounding function.
  • an arrester 7 connected to the cable 5 side terminal 4a of the disconnector with grounding function 4 via the disconnector with grounding function 4 is disposed in the open / close tank 2.
  • disconnector 8 is a bus connection tank filled with an insulating gas such as SF6 gas, N2 gas, CO2 gas, and dry air, and includes disconnectors 9 and 10 with a grounding function and a disconnector 11, and a horizontal bus 12 , 13, 14 and 15 and the VCB 3 are connected and disconnected.
  • One terminal of the disconnector with grounding function 10 is connected to one terminal of the VCB 3 via a partition bushing 16 and a connection conductor 17 that hermetically partition between the switching tank 2 and the bus connection tank 8.
  • the disconnector 11 with a grounding function and the disconnector 11 are connected to the other terminal of the disconnector 9 with a grounding function and connected to the horizontal buses 12 to 15, and the disconnector 9 with a grounding function is connected to the horizontal disconnector 9.
  • Connect / disconnect the circuit between buses 12-15 an insulating gas such as SF6 gas, N2 gas, CO2 gas, and dry air
  • a front lower horizontal bus 12, a front upper horizontal bus 13, a rear lower horizontal bus 14, and a rear upper horizontal bus 15 are arranged.
  • the horizontal bus 13 includes three phase separated conductors 13a, 13b, and 13c arranged in the horizontal depth direction with a predetermined interphase distance. The same applies to the other horizontal buses 12, 14, and 15.
  • a bus connection bushing 18 is connected to both ends of the horizontal bus 12 and passes through the bus connection tank 8 and is connected to an internal disconnector 10 with a grounding function.
  • the bus connection bushing 19 is connected to both ends of the horizontal bus 13 and is connected to the disconnector 10 with a grounding function.
  • the bus connection bushing 20 is connected to both ends of the horizontal bus 14, and the bus connection bushing 21 is connected to both ends of the horizontal bus 15 and is connected to the disconnector 11 in the bus connection tank 8.
  • the bushings 19 and 21 for the upper horizontal buses 13 and 15 are taller than the bushings 18 and 20 for the lower horizontal buses 12 and 14.
  • FIG. 2 the bushings 19 and 21 for the upper horizontal buses 13 and 15 are taller than the bushings 18 and 20 for the lower horizontal buses 12 and 14.
  • each circuit branched downward from the horizontal buses 12 to 15 is composed of independent sealed tanks 2 and 8, and each sealed tank is stored in a casing, and these circuits are It is called a board. Arrangement of these panels in the horizontal direction to constitute an opening / closing device as a predetermined power receiving device is referred to as a row board.
  • FIG. 1 four sets of horizontal buses 12 to 15 are illustrated as being arranged in two rows in the front and rear, and two stages in the upper and lower sides, but this is a position (arrangement) passing through each set of horizontal buses 12 to 15. Space), and is actually selectively arranged appropriately.
  • VCT V
  • one power receiving unit (R) and one transformer unit (F) unit that feeds power to the transformer
  • one power receiving unit (R) and one transformer unit (F) (unit for feeding power to the transformer) are arranged on the right side.
  • the positions of the horizontal buses 12 to 15 are displayed in the upper left of FIG.
  • VCT VCT
  • F and R are displayed on the upper terminal of VCT (V), which indicates that F is a front terminal and R is a rear terminal.
  • the front lower (stage) horizontal bus 12 connects the left transformer unit (F) and the right transformer unit (F)
  • the front upper (stage) horizontal bus 13 is connected to the left side.
  • the power receiving unit (R) is connected to the right power receiving unit (R)
  • the rear lower (stage) horizontal bus 14 connects the left transformer unit (R) and the center VCT (V) to the right side. Shows a state where the transformer unit (F) and the power receiving unit (R) are connected, and the rear upper (stage) water bus 15 connects the left power receiving unit (R) and the center VCT (V). It is shown that
  • FIG. 3 a gas insulated switchgear according to Embodiment 2 of the present invention will be described with reference to FIGS.
  • the gas insulated switchgear shown in FIG. 3 has a configuration in which the device of FIG. 1 is turned upside down, and horizontal bus bars 12 to 15 are arranged at the lower part of the switchgear.
  • 4 is a rear view of the apparatus shown in FIG. 2 (viewed from the left to the right in the casing shown in FIG. 4). Arranging the horizontal buses 12 to 15 for four lines is the same as in the first embodiment, and the effect of reducing the installation area is also the same. Due to the configuration of the electric chamber, there is an effect in an electric chamber configuration in which the cable 5 is drawn from above.
  • FIG. 26 a gas insulated switchgear according to Embodiment 3 of the present invention will be described with reference to FIG.
  • the gas-insulated switchgear shown in FIG. 26 is similar to the device shown in FIG. 1, but the position in the depth direction of each phase bus arranged at a predetermined distance in the depth direction of the upper and lower horizontal buses 12 to 15 The upper and lower stages are shifted by a half of the interphase distance.
  • the bushing position of the upper horizontal bus can be set to an arbitrary position in the row direction regardless of the position of the lower horizontal bus (that is, without being conscious of straddling the lower horizontal bus).
  • the bus connection bushings 19 and 21 can be disposed.
  • FIG. 6 to 21 show various configuration patterns of the power receiving equipment and the connection states of the horizontal buses 12 to 15.
  • the layout space used by the horizontal buses 12 to 15 in each pattern and how to see the use state thereof. Is the same as described above with reference to FIG. 6 (the solid line portion of the horizontal bus position in each figure indicates the position where the horizontal bus lines 12 to 15 are present).

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Patch Boards (AREA)
  • Gas-Insulated Switchgears (AREA)

Abstract

The present invention reduces an area for installing a gas-insulated switchgear used as a power receiving equipment. This gas-insulated switchgear is constructed by installing multiple panels (1) side by side in line, each of said panels having the functions of an incoming panel (R), a transformer panel (F), and a VCT (V). The switchgear is provided with horizontal three-phase bus bars (12-15), which are used to connect the panels (1) together, for a maximum of four circuits. The space for installing the four circuits' worth of horizontal three-phase bus bars (12-15) is divided into two rows in the front-back direction and two stages in the vertical direction in the upper or the lower section of a case for the panels (1) in order to accommodate the maximum of four circuits, and the horizontal three-phase bus bars (12-15) for connecting the panels (1) together are arranged such that conductors of the respective phases are positioned horizontally in the front-back direction of the panels (1) at predetermined intervals. The horizontal three-phase bus bars (12-15) are provided with bushings (18-21) on both ends and arranged to run through the installation space, said bushings penetrating through a bus bar connection tank (8) from above or below the bus bar connection tank (8).

Description

ガス絶縁開閉装置Gas insulated switchgear
 この発明は、変電所の受電側に使用するガス絶縁開閉装置に関し、引込側の受電ユニット、負荷側に変圧器ユニット、及び受電電力の計測を行うMOFの配置と接続構成に関するものである。 This invention relates to a gas-insulated switchgear used on the power receiving side of a substation, and relates to the arrangement and connection configuration of a power receiving unit on the drawing side, a transformer unit on the load side, and an MOF that measures the received power.
 受電用のガス絶縁開閉装置であって、72/84kV級のものを従来例として図22~図25に示す。図において、(a)は受電回路の単線接続図を、(b)はガス絶縁開閉装置の筐体とその中に収納される機器とそれらの接続を示す単線接続図を、(c)はガス絶縁開閉装置の列盤構成を、それぞれ示している。この従来例では、受電ユニット(A)2面、変圧器ユニット(B)2面、及びMOFユニットを5面構成にし、盤の下部に水平母線の母線タンクを配置した構成とし、図22は2回線受電でVCTを経由して2バンクの変圧器に給電するもの、図23は2回線受電でバイパス回路付のVCTを経由して2バンクの変圧器に給電するもの、図24は2回線受電で並列接続された2台のVCTのいずれかを経由して2バンクの変圧器に給電するもの、である。また、図25には上記構成に適用したガス絶縁開閉装置の側断面図を示している。 Fig. 22 to Fig. 25 show gas insulation switchgears for power reception, which are 72 / 84kV class, as conventional examples. In the figure, (a) is a single-line connection diagram of the power receiving circuit, (b) is a single-line connection diagram showing the casing of the gas-insulated switchgear and the devices housed therein and their connections, and (c) is the gas The row | line | column structure of an insulated switchgear is each shown. In this conventional example, the power receiving unit (A) 2 side, the transformer unit (B) 2 side, and the MOF unit are configured in 5 planes, and a horizontal bus bus tank is arranged at the bottom of the panel. Fig. 23 shows the power supply to the transformer of 2 banks via the VCT by the line power reception. Fig. 23 shows the power supply to the transformer of the 2 banks via the VCT with a bypass circuit. The power is supplied to the transformer in two banks via one of two VCTs connected in parallel. FIG. 25 is a side sectional view of a gas insulated switchgear applied to the above configuration.
特開平11-127510号公報(第2~3頁、図1~図4)Japanese Patent Laid-Open No. 11-127510 (pages 2 to 3, FIGS. 1 to 4)
 上記特許文献1に示すガス絶縁開閉装置は、2回線で受電しMOFを経由して2バンクの変圧器に給電するものであるが、図22に示すものでは中央に配置したVCTの両側に装置の上下間を接続する母線を配置するための母線の立ち上がり空間が必要であり、列盤配置された開閉装置の設置面積が大きくなるという問題があった。また図23に示すものでは、図22の構成に加えてバイパスユニットPが必要であった。また図24に示すものでは、図23の構成に加えて補助ユニットQ~Sが必要であり、列盤配置された開閉装置の設置面積がさらに大きくなるという問題があった。
 この発明は、列盤を構成する筐体数を減らして設置面積を小さくしたガス絶縁開閉装置を得ることを目的とする。
The gas-insulated switchgear shown in Patent Document 1 receives power through two lines and supplies power to a transformer in two banks via the MOF. In the case shown in FIG. 22, the device is provided on both sides of the VCT arranged in the center. There is a problem that a space for raising the busbars for arranging the busbars connecting the upper and lower sides of the switchboards is necessary, and the installation area of the switchgears arranged in a row is increased. Further, in the configuration shown in FIG. 23, the bypass unit P is necessary in addition to the configuration of FIG. 24 requires auxiliary units Q to S in addition to the configuration of FIG. 23, and there is a problem that the installation area of the switchgear arranged in a row is further increased.
An object of the present invention is to obtain a gas-insulated switchgear in which the number of cases constituting a row board is reduced to reduce the installation area.
 この発明に係るガス絶縁開閉装置は、複数の盤を併置して構成した受電用ガス絶縁開閉装置において、各盤間を接続する水平母線の配置空間を4回線分設け、盤間を接続する水平母線を前記配置空間を経由するように配置したものである。 The gas insulated switchgear according to the present invention is a power-receiving gas insulated switchgear constituted by arranging a plurality of panels. In the gas insulated switchgear for receiving power, four horizontal lines are arranged for connecting the panels, and the horizontal lines connecting the panels are connected. The bus is arranged so as to pass through the arrangement space.
 この発明のガス絶縁開閉装置によれば、各盤間を接続する水平母線の配置空間を4回線分設け、盤間を接続する水平母線を前記配置空間を経由するようにしたので、ユーザが望む各種の配列パターンにおいても所定の標準化した盤のみでコンパクトに構成できるガス絶縁開閉装置を提供することができる。 According to the gas-insulated switchgear of the present invention, the arrangement space of the horizontal bus lines connecting the respective panels is provided for four lines, and the horizontal bus lines connecting the panels are routed through the arrangement space. It is possible to provide a gas insulated switchgear that can be configured compactly only with a predetermined standardized board in various arrangement patterns.
この発明の実施の形態1のガス絶縁開閉装置の側断面図である。It is a sectional side view of the gas insulated switchgear of Embodiment 1 of this invention. 図1の右側から見た裏面図である。It is the reverse view seen from the right side of FIG. この発明の実施の形態2のガス絶縁開閉装置の側断面図である。It is a sectional side view of the gas insulated switchgear of Embodiment 2 of this invention. 図3の裏面図である。FIG. 4 is a rear view of FIG. 3. 常用予備2回線VCTバイパス2バンク構成の単線結線図である。FIG. 5 is a single-line diagram of a common standby 2-line VCT bypass 2-bank configuration. 図5の単線結線図における筐体と機器配置の配置パターン1の結線図である。FIG. 6 is a connection diagram of an arrangement pattern 1 of a casing and device arrangement in the single-line connection diagram of FIG. 5. 図5の単線結線図における筐体と機器配置の配置パターン2の結線図である。FIG. 6 is a connection diagram of an arrangement pattern 2 of housings and device arrangement in the single-line connection diagram of FIG. 5. 図5の単線結線図における筐体と機器配置の配置パターン3の結線図である。FIG. 6 is a connection diagram of an arrangement pattern 3 of housing and device arrangement in the single-line connection diagram of FIG. 5. 図5の単線結線図における筐体と機器配置の配置パターン4の結線図である。FIG. 6 is a connection diagram of an arrangement pattern 4 of housings and device arrangement in the single-line connection diagram of FIG. 5. 常用予備2回線2バンク構成の単線結線図である。FIG. 2 is a single-line diagram of a common standby 2-line 2-bank configuration. 図10の単線結線図における筐体と機器配置の配置パターン1の結線図である。It is a connection diagram of the arrangement pattern 1 of a housing | casing and apparatus arrangement | positioning in the single wire connection diagram of FIG. 図10の単線結線図における筐体と機器配置の配置パターン2の結線図である。It is a connection diagram of the arrangement pattern 2 of a housing | casing and apparatus arrangement | positioning in the single wire connection diagram of FIG. 図10の単線結線図における筐体と機器配置の配置パターン3の結線図である。It is a connection diagram of the arrangement pattern 3 of a housing | casing and apparatus arrangement | positioning in the single wire connection diagram of FIG. 図10の単線結線図における筐体と機器配置の配置パターン4の結線図である。It is a connection diagram of the arrangement pattern 4 of a housing | casing and apparatus arrangement | positioning in the single wire connection diagram of FIG. 図10の単線結線図における筐体と機器配置の配置パターン5の結線図である。It is a connection diagram of the arrangement pattern 5 of a housing | casing and apparatus arrangement | positioning in the single wire connection diagram of FIG. 図10の単線結線図における筐体と機器配置の配置パターン6の結線図である。It is a connection diagram of the arrangement pattern 6 of a housing | casing and apparatus arrangement | positioning in the single wire connection diagram of FIG. 2回線ループ受電VCTバイパス2バンク構成の単線結線図である。It is a single line connection diagram of 2 line | wire loop receiving VCT bypass 2 bank structure. 図17の単線結線図における筐体と機器配置の配置パターン1の結線図である。FIG. 18 is a connection diagram of an arrangement pattern 1 of housings and device arrangement in the single-line connection diagram of FIG. 17. 図17の単線結線図における筐体と機器配置の配置パターン2の結線図である。It is a connection diagram of the arrangement pattern 2 of a housing | casing and apparatus arrangement | positioning in the single wire connection diagram of FIG. 図17の単線結線図における筐体と機器配置の配置パターン3の結線図である。FIG. 18 is a connection diagram of an arrangement pattern 3 of housing and device arrangement in the single-line connection diagram of FIG. 17. 図17の単線結線図における筐体と機器配置の配置パターン4の結線図である。It is a connection diagram of the arrangement pattern 4 of a housing | casing and apparatus arrangement | positioning in the single wire connection diagram of FIG. 従来の1MOFタイプのガス絶縁開閉装置の単線結線図と筐体と機器配置である。It is the single wire connection diagram of the conventional 1MOF type gas insulated switchgear, a housing | casing, and apparatus arrangement | positioning. 従来のVCTバイパス2バンク構成の単線結線図である。It is a single line connection diagram of the conventional VCT bypass 2 bank structure. 従来の2VCT2バンク構成の単線結線図である。It is a single line connection diagram of the conventional 2VCT2 bank configuration. 従来のガス絶縁開閉装置の側断面図である。It is a sectional side view of the conventional gas insulated switchgear. この発明の実施の形態3のガス絶縁開閉装置の側断面図である。It is a sectional side view of the gas insulated switchgear of Embodiment 3 of this invention.
実施の形態1.
 以下、この発明の実施の形態1によるガス絶縁開閉装置を図に基づいて説明する。図1はガス絶縁開閉装置の側断面を示す。1は筐体であり、図の左側(開閉装置の正面側)に開閉可能な扉1aを備えている。2は内部にSF6ガス、N2ガス、CO2ガス、ドライエアなどの絶縁ガスを封入した開閉部タンクで、内部に真空遮断器(以下、VCBと称す)3、接地機能付断路器4を収納している。電源側から引き込んだケーブル5は、ケーブルヘッド5aを介して開閉部タンク2内に貫通し、接地機能付断路器4を介してVCB3と接続している。また、開閉部タンク2内には、接地機能付断路器6を介して接地機能付断路器4のケーブル5側端子4aに接続したアレスタ7を配置している。
Embodiment 1 FIG.
Hereinafter, a gas insulated switchgear according to Embodiment 1 of the present invention will be described with reference to the drawings. FIG. 1 shows a side cross section of a gas insulated switchgear. Reference numeral 1 denotes a housing, which includes a door 1a that can be opened and closed on the left side of the figure (the front side of the opening and closing device). Reference numeral 2 denotes an open / close tank in which an insulating gas such as SF6 gas, N2 gas, CO2 gas, and dry air is enclosed. Yes. The cable 5 drawn from the power supply side penetrates into the opening / closing part tank 2 via the cable head 5a, and is connected to the VCB 3 via the disconnector 4 with a grounding function. Further, an arrester 7 connected to the cable 5 side terminal 4a of the disconnector with grounding function 4 via the disconnector with grounding function 4 is disposed in the open / close tank 2.
 8は内部にSF6ガス、N2ガス、CO2ガス、ドライエアなどの絶縁ガスを封入した母線接続タンクであり、内部に接地機能付断路器9、10及び断路器11を内蔵しており、水平母線12、13、14、15と前記VCB3との間の回路の接続・断路を行う。接地機能付断路器10の一方の端子は、開閉部タンク2と母線接続タンク8との間を気密に区画する区画ブッシング16及び接続導体17を介してVCB3の一方の端子に接続している。
 また、接地機能付断路器11及び断路器11は、前記接地機能付断路器9の他方の端子と接続し、また前記水平母線12~15と接続し、前記接地機能付断路器9と前記水平母線12~15との間の回路を接続・断路する
8 is a bus connection tank filled with an insulating gas such as SF6 gas, N2 gas, CO2 gas, and dry air, and includes disconnectors 9 and 10 with a grounding function and a disconnector 11, and a horizontal bus 12 , 13, 14 and 15 and the VCB 3 are connected and disconnected. One terminal of the disconnector with grounding function 10 is connected to one terminal of the VCB 3 via a partition bushing 16 and a connection conductor 17 that hermetically partition between the switching tank 2 and the bus connection tank 8.
The disconnector 11 with a grounding function and the disconnector 11 are connected to the other terminal of the disconnector 9 with a grounding function and connected to the horizontal buses 12 to 15, and the disconnector 9 with a grounding function is connected to the horizontal disconnector 9. Connect / disconnect the circuit between buses 12-15
 前記母線接続タンク8の上部には、開閉装置の前面側(図1の左側)と後面側(図1の左側)の2列に、及び上下2段に配置される。前側下段の水平母線12、前側上段の水平母線13、後側下段の水平母線14、後側上段の水平母線15を配置する。なお、例えば前記水平母線13は3相の各相分離形導体13a、13b、13cを所定の相間距離をとって水平奥行き方向に配置している。他の水平母線12、14,15も同様である。
 18は前記水平母線12の両端に接続され、前記母線接続タンク8を貫通して内部の接地機能付断路器10に接続する母線接続ブッシングである。また、前記母線接続ブッシング18と同様に、母線接続ブッシング19は前記水平母線13の両端に接続されて、接地機能付断路器10に接続する。また、母線接続ブッシング20は前記水平母線14の両端に接続され、母線接続ブッシング21は前記水平母線15の両端に接続されて、それぞれ前記母線接続タンク8内の前記断路器11に接続する。 なお、図2に示すように前記上段水平母線13、15用のブッシング19,21は、前記下段水平母線12、14用の前記ブッシング18,20に比べて背を高くしている。但し、図1に示すように、前記母線接続タンク8内に貫通挿入した前記各母線接続ブッシングの下部は上段用、下段用とも同一形状としており、前記接続導体22を介して前記接地機能付断路器10に接続され、前記接続導体23を介して前記断路器11に接続されている。
 なお、上述したように、水平母線12~15から下方に分岐した各回路はそれぞれ独立した密閉形タンク2、8にて構成しており、各密閉形タンクはそれぞれ筐体に格納され、これらを盤と称する。これらの盤を横方向に並べて所定の受電装置としての開閉装置を構成することを列盤と称する。
In the upper part of the busbar connection tank 8, two rows are arranged on the front side (left side in FIG. 1) and the rear side (left side in FIG. 1) of the switchgear, and in two upper and lower stages. A front lower horizontal bus 12, a front upper horizontal bus 13, a rear lower horizontal bus 14, and a rear upper horizontal bus 15 are arranged. For example, the horizontal bus 13 includes three phase separated conductors 13a, 13b, and 13c arranged in the horizontal depth direction with a predetermined interphase distance. The same applies to the other horizontal buses 12, 14, and 15.
A bus connection bushing 18 is connected to both ends of the horizontal bus 12 and passes through the bus connection tank 8 and is connected to an internal disconnector 10 with a grounding function. Similarly to the bus connection bushing 18, the bus connection bushing 19 is connected to both ends of the horizontal bus 13 and is connected to the disconnector 10 with a grounding function. The bus connection bushing 20 is connected to both ends of the horizontal bus 14, and the bus connection bushing 21 is connected to both ends of the horizontal bus 15 and is connected to the disconnector 11 in the bus connection tank 8. As shown in FIG. 2, the bushings 19 and 21 for the upper horizontal buses 13 and 15 are taller than the bushings 18 and 20 for the lower horizontal buses 12 and 14. However, as shown in FIG. 1, the lower part of each bus connection bushing inserted through the bus connection tank 8 has the same shape for both the upper and lower stages, and the grounding function disconnection via the connection conductor 22 The disconnector 11 is connected to the disconnector 11 via the connection conductor 23.
As described above, each circuit branched downward from the horizontal buses 12 to 15 is composed of independent sealed tanks 2 and 8, and each sealed tank is stored in a casing, and these circuits are It is called a board. Arrangement of these panels in the horizontal direction to constitute an opening / closing device as a predetermined power receiving device is referred to as a row board.
 なお、図1では4組の水平母線12~15が前後2列、上下2段に全て配置されたように図示しているが、これは、各組の水平母線12~15を通る位置(配置空間)を示したものであり、実際は適宜に選択的に配置される。 例えば、図6に示す接続では、中央にVCT(V)を、左側に受電ユニット(R)と変圧器ユニット(F)(変圧器に給電するユニット)を各1台(1台が盤1台を示す)、右側に受電ユニット(R)と変圧器ユニット(F)(変圧器に給電するユニット)を各1台を配置したものである。水平母線12~15の位置を図6の左上に表示している。また、VCT(V)の上部の端子にF、Rの表示をしているが、これはFは前側(Front)の端子、Rは後ろ側(Rear)の端子であることを示している。
 上記の構成において、前下側(段)の水平母線12は左側の変圧器ユニット(F)と右側の変圧器ユニット(F)とを接続し、前上側(段)の水平母線13は左側の受電ユニット(R)と右側の受電ユニット(R)とを接続し、後下側(段)の水平母線14は、左側の変圧器ユニット(R)と中央のVCT(V)とを、また右側の変圧器ユニット(F)と受電ユニット(R)とを接続した状態を示し、さらに後上側(段)の水母線15は、左側の受電ユニット(R)と中央のVCT(V)とを接続したものであることを示している。
In FIG. 1, four sets of horizontal buses 12 to 15 are illustrated as being arranged in two rows in the front and rear, and two stages in the upper and lower sides, but this is a position (arrangement) passing through each set of horizontal buses 12 to 15. Space), and is actually selectively arranged appropriately. For example, in the connection shown in FIG. 6, VCT (V) is in the center, and one power receiving unit (R) and one transformer unit (F) (unit that feeds power to the transformer) are on the left side (one unit is one panel). ), And one power receiving unit (R) and one transformer unit (F) (unit for feeding power to the transformer) are arranged on the right side. The positions of the horizontal buses 12 to 15 are displayed in the upper left of FIG. Further, F and R are displayed on the upper terminal of VCT (V), which indicates that F is a front terminal and R is a rear terminal.
In the above configuration, the front lower (stage) horizontal bus 12 connects the left transformer unit (F) and the right transformer unit (F), and the front upper (stage) horizontal bus 13 is connected to the left side. The power receiving unit (R) is connected to the right power receiving unit (R), and the rear lower (stage) horizontal bus 14 connects the left transformer unit (R) and the center VCT (V) to the right side. Shows a state where the transformer unit (F) and the power receiving unit (R) are connected, and the rear upper (stage) water bus 15 connects the left power receiving unit (R) and the center VCT (V). It is shown that
 このような水平母線の配置空間を設けることにより、後述するような多種の配置パターンにおいても、標準的な盤の組合せのみでよく、従来技術のように盤間の接続用の追加ユニットを盤間に挿入することが不要となり、各盤の配列数を少なくできるため、据付面積を小さくすることができる。 By providing such an arrangement space for the horizontal bus, even in various arrangement patterns as will be described later, only a combination of standard boards is required, and an additional unit for connecting between boards as in the prior art is provided between boards. Therefore, the installation area can be reduced because the number of each board can be reduced.
実施の形態2.
 次に、この発明の実施の形態2によるガス絶縁開閉装置を図3、図4に基づいて説明する。図3に示すガス絶縁開閉装置は、図1の装置を上下さかさまにした構成であり、水平母線12~15を開閉装置の下部に配置したものである。図4は図2の装置の裏面図(図4の筐体内において左方から右方をみた図)である。4回線分の水平母線12~15を配置することは実施の形態1と同じであり、据付面積の縮小効果も同様である。電気室の構成上、ケーブル5を上方から引き込むタイプの電気室構成にて効果がある。
Embodiment 2. FIG.
Next, a gas insulated switchgear according to Embodiment 2 of the present invention will be described with reference to FIGS. The gas insulated switchgear shown in FIG. 3 has a configuration in which the device of FIG. 1 is turned upside down, and horizontal bus bars 12 to 15 are arranged at the lower part of the switchgear. 4 is a rear view of the apparatus shown in FIG. 2 (viewed from the left to the right in the casing shown in FIG. 4). Arranging the horizontal buses 12 to 15 for four lines is the same as in the first embodiment, and the effect of reducing the installation area is also the same. Due to the configuration of the electric chamber, there is an effect in an electric chamber configuration in which the cable 5 is drawn from above.
実施の形態3.
 次に、この発明の実施の形態3によるガス絶縁開閉装置を図26に基づいて説明する。図26に示すガス絶縁開閉装置は、図1の装置と類似しているが、上下段の水平母線12~15の奥行き方向に所定距離をとって配置した各相母線の奥行き方向の位置を、上段と下段で相間距離の1/2だけずらせたものである。このような構成にすることにより、上段の水平母線のブッシング位置を、下段の水平母線の位置に関係なく(すなわち下段の水平母線の跨ぎを意識することなく)、列盤方向の任意の位置に母線接続ブッシング19、21を配置することが可能となる。
Embodiment 3 FIG.
Next, a gas insulated switchgear according to Embodiment 3 of the present invention will be described with reference to FIG. The gas-insulated switchgear shown in FIG. 26 is similar to the device shown in FIG. 1, but the position in the depth direction of each phase bus arranged at a predetermined distance in the depth direction of the upper and lower horizontal buses 12 to 15 The upper and lower stages are shifted by a half of the interphase distance. By adopting such a configuration, the bushing position of the upper horizontal bus can be set to an arbitrary position in the row direction regardless of the position of the lower horizontal bus (that is, without being conscious of straddling the lower horizontal bus). The bus connection bushings 19 and 21 can be disposed.
 なお、図6~図21に受電設備の各種構成パターンとその水平母線12~15の接続状態を示しているが、各パターンにおける各水平母線12~15が使用する配置空間とその使用状態の見方は、上記図6の説明と同様である(各図の水平母線位置の実線部が水平母線12~15が存在する位置を示している)。 6 to 21 show various configuration patterns of the power receiving equipment and the connection states of the horizontal buses 12 to 15. The layout space used by the horizontal buses 12 to 15 in each pattern and how to see the use state thereof. Is the same as described above with reference to FIG. 6 (the solid line portion of the horizontal bus position in each figure indicates the position where the horizontal bus lines 12 to 15 are present).
1 筐体
1a 扉
2 開閉部タンク
3 遮断器(VCB)
4 接地機能付断路器
4a ケーブル側端子
5 ケーブル
5a ケーブルヘッド
6 接地機能付断路器
7 アレスタ
8 母線接続タンク
9 接地機能付断路器
10 接地機能付断路器
11 断路器
12 水平母線
12abc 各相母線
13 水平母線
14 水平母線
15 水平母線
16 区画ブッシング
17 接続導体
18 母線接続ブッシング
19 母線接続ブッシング
20 母線接続ブッシング
21 母線接続ブッシング
22 接続導体
23 接続導体
R 受電ユニット
F 変圧器ユニット
V VCT
1 Housing 1a Door 2 Open / close tank 3 Circuit breaker (VCB)
4 disconnector with grounding function 4a cable side terminal 5 cable 5a cable head 6 disconnector with grounding function 7 arrester 8 bus connection tank 9 disconnector with grounding function 10 disconnector with grounding function 11 disconnector 12 horizontal bus 12abc each phase bus 13 Horizontal bus 14 Horizontal bus 15 Horizontal bus 16 Compartment bushing 17 Connection conductor 18 Bus connection bushing 19 Bus connection bushing 20 Bus connection bushing 21 Bus connection bushing 22 Connection conductor 23 Connection conductor R Power receiving unit F Transformer unit V VCT

Claims (8)

  1.  複数の盤を併置して構成した受電用ガス絶縁開閉装置において、各盤間を接続する水平母線の配置空間を4回線分設け、盤間を接続する水平母線は前記配置空間を経由するように配置したガス絶縁開閉装置。 In the gas-insulated switchgear for receiving power constituted by arranging a plurality of panels, four horizontal bus arrangement spaces for connecting the panels are provided, and the horizontal buses connecting the panels are routed through the arrangement space. Arranged gas insulated switchgear.
  2.  前記1回線の水平母線は3相であることを特徴とする請求項1に記載のガス絶縁開閉装置。 The gas-insulated switchgear according to claim 1, wherein the one horizontal bus has three phases.
  3.  前記各回線の各相の水平母線は奥行き方向に間隔をとって互いに平行して配置したことを特徴とする請求項2に記載のガス絶縁開閉装置。 The gas insulated switchgear according to claim 2, wherein the horizontal buses of each phase of each line are arranged in parallel with each other in the depth direction.
  4.  前記水平母線4回線分の配置空間は、前記盤の前方から見て、上下方向に2段、奥行き方向に2列としたことを特徴とする請求項1乃至請求項3のいずれか1項に記載のガス絶縁開閉装置。 4. The arrangement space according to claim 1, wherein the arrangement space for the four horizontal bus lines is two rows in the vertical direction and two rows in the depth direction when viewed from the front of the panel. The gas insulated switchgear described.
  5.  前記水平母線を前記盤の上部に配置したことを特徴とする請求項1乃至請求項4のいずれか1項に記載のガス絶縁開閉装置。 The gas insulated switchgear according to any one of claims 1 to 4, wherein the horizontal bus bar is arranged at an upper portion of the panel.
  6.  前記水平母線を前記盤の下部に配置したことを特徴とする請求項1乃至請求項4のいずれか1項に記載のガス絶縁開閉装置。 The gas insulated switchgear according to any one of claims 1 to 4, wherein the horizontal bus bar is disposed at a lower portion of the panel.
  7.  上下2段の前記配置空間のうち上段に配置された上段水平母線は下段に配置された下段水平母線の鉛直方向上方に配置され前記下段水平母線を列盤の横方向に跨ぐ形で配置したこと特徴とする請求項4に記載のガス絶縁開閉装置。 The upper horizontal bus arranged in the upper stage in the upper and lower two stages of the arrangement space is arranged vertically above the lower horizontal bus arranged in the lower stage, and the lower horizontal bus is arranged so as to straddle the horizontal direction of the row board. The gas insulated switchgear according to claim 4, wherein
  8.  上下2段の前記配置空間のうち上段に配置された上段水平母線は下段に配置された下段水平母線の鉛直方向上方から相間距離の1/2だけ盤の前後方向にずらして配置したこと特徴とする請求項4に記載のガス絶縁開閉装置。 The upper horizontal bus arranged in the upper stage of the two upper and lower arrangement spaces is shifted from the upper vertical direction of the lower horizontal bus arranged in the lower stage by 1/2 of the interphase distance in the longitudinal direction of the panel. The gas insulated switchgear according to claim 4.
PCT/JP2012/059183 2011-08-05 2012-04-04 Gas-insulated switchgear WO2013021678A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2013527909A JP5484638B2 (en) 2011-08-05 2012-04-04 Gas insulated switchgear
CN201280036591.7A CN103703639B (en) 2011-08-05 2012-04-04 Gas-insulated switchgear device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011171734 2011-08-05
JP2011-171734 2011-08-05

Publications (1)

Publication Number Publication Date
WO2013021678A1 true WO2013021678A1 (en) 2013-02-14

Family

ID=47668208

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/059183 WO2013021678A1 (en) 2011-08-05 2012-04-04 Gas-insulated switchgear

Country Status (3)

Country Link
JP (1) JP5484638B2 (en)
CN (1) CN103703639B (en)
WO (1) WO2013021678A1 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014204650A (en) * 2013-04-10 2014-10-27 三菱電機株式会社 Power receiving and distributing facility
JP2015159676A (en) * 2014-02-25 2015-09-03 三菱電機株式会社 Power substation
US10158214B1 (en) * 2017-06-16 2018-12-18 Eaton Intelligent Power Limited Switchgear with modular bus configuration supporting individual and parallel feed arrangements
US10164412B1 (en) * 2017-06-16 2018-12-25 Eaton Intelligent Power Limited Switchgear with a two-high circuit interrupter configuration
EP3731356A4 (en) * 2017-12-22 2021-01-13 Mitsubishi Electric Corporation Gas-insulated open/close device
JP2021158759A (en) * 2020-03-26 2021-10-07 東京電力ホールディングス株式会社 Power receiving and transforming facility capable of changing reception voltage, transformer, and reception voltage changing method
US11289884B2 (en) 2017-06-16 2022-03-29 Eaton Intelligent Power Limited Isolating bus enclosure arrangements for switchgear
US11418015B2 (en) 2017-06-16 2022-08-16 Eaton Intelligent Power Limited Isolating gas-insulated bus arrangements for switchgear

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6082909U (en) * 1983-11-09 1985-06-08 株式会社東芝 closed switchboard
JPH04109809A (en) * 1990-08-30 1992-04-10 Toshiba Corp Collective enclosed switchgear
JPH04368404A (en) * 1991-06-17 1992-12-21 Toshiba Corp Gas insulated power receiving facility
JPH0580103U (en) * 1992-03-27 1993-10-29 日新電機株式会社 Switchgear row device
JPH1084607A (en) * 1996-07-18 1998-03-31 Toshiba Corp Gas-insulated safety enclosed switchgear
JPH11136817A (en) * 1997-10-24 1999-05-21 Meidensha Corp Gas insulation switchgear
JP2001204112A (en) * 2000-01-17 2001-07-27 Nissin Electric Co Ltd Power receiving unit for gas-insulated switchgear

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10041315A1 (en) * 2000-08-14 2002-03-07 Siemens Ag Gas-insulated switchgear with a three-phase busbar system
JP5419606B2 (en) * 2009-09-15 2014-02-19 三菱電機株式会社 Gas insulated switchgear

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6082909U (en) * 1983-11-09 1985-06-08 株式会社東芝 closed switchboard
JPH04109809A (en) * 1990-08-30 1992-04-10 Toshiba Corp Collective enclosed switchgear
JPH04368404A (en) * 1991-06-17 1992-12-21 Toshiba Corp Gas insulated power receiving facility
JPH0580103U (en) * 1992-03-27 1993-10-29 日新電機株式会社 Switchgear row device
JPH1084607A (en) * 1996-07-18 1998-03-31 Toshiba Corp Gas-insulated safety enclosed switchgear
JPH11136817A (en) * 1997-10-24 1999-05-21 Meidensha Corp Gas insulation switchgear
JP2001204112A (en) * 2000-01-17 2001-07-27 Nissin Electric Co Ltd Power receiving unit for gas-insulated switchgear

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014204650A (en) * 2013-04-10 2014-10-27 三菱電機株式会社 Power receiving and distributing facility
JP2015159676A (en) * 2014-02-25 2015-09-03 三菱電機株式会社 Power substation
US10158214B1 (en) * 2017-06-16 2018-12-18 Eaton Intelligent Power Limited Switchgear with modular bus configuration supporting individual and parallel feed arrangements
US10164412B1 (en) * 2017-06-16 2018-12-25 Eaton Intelligent Power Limited Switchgear with a two-high circuit interrupter configuration
US11289884B2 (en) 2017-06-16 2022-03-29 Eaton Intelligent Power Limited Isolating bus enclosure arrangements for switchgear
US11418015B2 (en) 2017-06-16 2022-08-16 Eaton Intelligent Power Limited Isolating gas-insulated bus arrangements for switchgear
EP3731356A4 (en) * 2017-12-22 2021-01-13 Mitsubishi Electric Corporation Gas-insulated open/close device
JP2021158759A (en) * 2020-03-26 2021-10-07 東京電力ホールディングス株式会社 Power receiving and transforming facility capable of changing reception voltage, transformer, and reception voltage changing method
JP7380377B2 (en) 2020-03-26 2023-11-15 東京電力ホールディングス株式会社 Power receiving and transforming equipment that can change the receiving voltage and how to change the receiving voltage

Also Published As

Publication number Publication date
CN103703639B (en) 2016-04-13
CN103703639A (en) 2014-04-02
JP5484638B2 (en) 2014-05-07
JPWO2013021678A1 (en) 2015-03-05

Similar Documents

Publication Publication Date Title
JP5484638B2 (en) Gas insulated switchgear
KR101286812B1 (en) Switch gear
JP5419606B2 (en) Gas insulated switchgear
JP4969657B2 (en) Gas insulated switchgear
JP4624230B2 (en) Gas insulated switchgear
KR100984143B1 (en) Multiple conductor connection apparatus and power distributor using the same
CN101540484A (en) Switchgear
US8228665B2 (en) Gas insulated switchgear
WO2018231357A1 (en) Switchgear with double bus configuration
KR101079984B1 (en) Switchgear with metal enclosure
WO2018231356A1 (en) Gas-insulated switchgear with vertically stacked interrupters
JP2004512794A (en) Hybrid high-voltage substation with buses placed opposite each other and a shielded break-off module for such a high-voltage substation
EP3731356B1 (en) Gas-insulated open/close device
WO2015107693A1 (en) Gas-insulated switching device
JP5306034B2 (en) Gas insulated switchgear
JP5081853B2 (en) switchboard
KR101546791B1 (en) Gas insulated switchgear
KR101070575B1 (en) switchgear
KR100729191B1 (en) Switch board for generator of marine
US5070428A (en) Encapsulated switching system with longitudinal coupling of bus bars, inner partitions, and coupling fields
JP3781978B2 (en) Switchboard for ship's generator
KR20130011477A (en) Switchgrar
JP6270552B2 (en) Metal closed switchgear
KR101580091B1 (en) bus section for swichgear
KR101580087B1 (en) bus section for swichgear

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12822543

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2013527909

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12822543

Country of ref document: EP

Kind code of ref document: A1