WO2013021566A1 - 微生物数測定チップ、それを用いた微生物数測定装置 - Google Patents

微生物数測定チップ、それを用いた微生物数測定装置 Download PDF

Info

Publication number
WO2013021566A1
WO2013021566A1 PCT/JP2012/004761 JP2012004761W WO2013021566A1 WO 2013021566 A1 WO2013021566 A1 WO 2013021566A1 JP 2012004761 W JP2012004761 W JP 2012004761W WO 2013021566 A1 WO2013021566 A1 WO 2013021566A1
Authority
WO
WIPO (PCT)
Prior art keywords
electrode
chip
measurement
container
connection
Prior art date
Application number
PCT/JP2012/004761
Other languages
English (en)
French (fr)
Inventor
敏章 武下
純一 喜田
秀則 森田
一文 大内
Original Assignee
パナソニック株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニック株式会社 filed Critical パナソニック株式会社
Priority to EP12822097.7A priority Critical patent/EP2740789B1/en
Priority to CN201280029543.5A priority patent/CN103620017B/zh
Priority to JP2013527860A priority patent/JP5980209B2/ja
Priority to US14/233,251 priority patent/US9500613B2/en
Publication of WO2013021566A1 publication Critical patent/WO2013021566A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/483Physical analysis of biological material
    • G01N33/487Physical analysis of biological material of liquid biological material
    • G01N33/48707Physical analysis of biological material of liquid biological material by electrical means
    • G01N33/48735Investigating suspensions of cells, e.g. measuring microbe concentration
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/02Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M41/00Means for regulation, monitoring, measurement or control, e.g. flow regulation
    • C12M41/30Means for regulation, monitoring, measurement or control, e.g. flow regulation of concentration
    • C12M41/36Means for regulation, monitoring, measurement or control, e.g. flow regulation of concentration of biomass, e.g. colony counters or by turbidity measurements
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N15/00Investigating characteristics of particles; Investigating permeability, pore-volume or surface-area of porous materials
    • G01N15/06Investigating concentration of particle suspensions
    • G01N15/0656Investigating concentration of particle suspensions using electric, e.g. electrostatic methods or magnetic methods
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N15/00Investigating characteristics of particles; Investigating permeability, pore-volume or surface-area of porous materials
    • G01N15/01Investigating characteristics of particles; Investigating permeability, pore-volume or surface-area of porous materials specially adapted for biological cells, e.g. blood cells
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N35/00Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor
    • G01N2035/00465Separating and mixing arrangements
    • G01N2035/00495Centrifuges

Definitions

  • the present invention relates to a microorganism count measuring chip and a microorganism count measuring apparatus using the chip.
  • a conventional microorganism count measuring apparatus has the following configuration. That is, in the conventional microorganism count measuring apparatus, for example, microorganisms are collected from the oral cavity using a microorganism collecting tool such as a cotton swab, and the microorganism collecting tool is immersed in the container liquid from the upper surface opening of the container. Thereafter, the liquid in the container is stirred with a stirring body, and the number of microorganisms is measured with a measuring electrode provided in the container in that state (for example, Patent Document 1 below).
  • a microorganism collecting tool such as a cotton swab
  • the size of the apparatus itself can be extremely small.
  • a container used for performing such a measurement needs to have a measurement electrode integrated on its inner wall surface. Moreover, it is necessary to take measures for watertightness that does not cause liquid leakage from the measurement electrode to the outside of the container, and the production cost is high.
  • the microorganism count measuring chip of the present invention includes a long plate-shaped chip body, a measurement electrode, a connection electrode, a ground electrode, and a conductive pattern.
  • the measurement electrode is provided on the first end side in the longitudinal direction of the surface of the chip body, and is immersed in the measurement liquid.
  • the connection electrode is connected to the measurement electrode and is provided on the second end side opposite to the first end in the longitudinal direction of the surface of the chip body.
  • the ground electrode is provided on the second end side of the surface of the chip body.
  • the conductive pattern is connected to the ground electrode and is provided on the outer peripheral portion of the measurement electrode.
  • the microorganism count measuring apparatus of the present invention is a microorganism count measuring apparatus using the above-mentioned microorganism count measuring chip, and includes a container holding section, a rotation drive section, an electrode insertion section, and a measurement section.
  • the container holding unit holds a bottomed cylindrical container having an opening on the upper surface with the opening facing upward.
  • a rotation drive part rotates the container hold
  • the electrode insertion part is placed at a position closer to the inner wall surface than the central axis in the container through the opening of the container held in the container holding part, and the microbe count measuring chip is located at a predetermined distance from the inner wall surface. insert.
  • the measurement unit measures microorganisms at the measurement electrode of the microorganism count measurement chip inserted into the container by the electrode insertion unit.
  • the microorganism count measuring chip of the present invention includes a long plate-shaped chip body, a measuring electrode, a connecting electrode, a connecting portion, and a cover body.
  • the measurement electrode is provided on the lower end side of the surface of the chip body and is immersed in the measurement liquid, and has first and second measurement electrodes facing each other on the lower end side of the surface of the chip body.
  • the connection electrode is provided on the upper end side of the surface of the chip body, is connected to the measuring device, and has first and second connection electrodes.
  • the connecting portion connects the measurement electrode and the connection electrode on the surface of the chip body, and connects the first measurement electrode and the first connection electrode between the upper end and the lower end of the surface of the chip body.
  • the cover body is provided between the upper end and the lower end of the surface of the chip body so as to cover the surfaces of the first and second connection portions.
  • the measurer when measuring the microbe count, the measurer holds the microbe count chip with a finger and inserts it into the electrode insertion portion of the apparatus.
  • the measuring electrode of the number measuring chip When the measuring electrode of the number measuring chip is accidentally touched with a finger and inserted into the apparatus, the measuring electrode may be broken by static electricity of the measurer.
  • the microorganism count measuring chip of the present invention since the conductive pattern is provided around the measurement electrode, when the measurer accidentally touches the measurement electrode, the conductive pattern is also touched at the same time. Static electricity from the person flows to the device side through the conductive pattern. Therefore, the measurement electrode can be prevented from being destroyed by static electricity. As a result, the measurer does not have to worry about the position where the microbe count measurement chip is held (the position where the microbe count measurement chip is picked), so that the operability when handling the microbe count measurement chip can be improved.
  • the microorganism count measuring chip of the present invention when the measurement electrode is immersed in the measurement solution in order to measure the number of microorganisms, the lower portions of the first and second connection portions connected to the measurement electrode are also immersed in the measurement solution. Is done. For this reason, when a predetermined voltage is applied to the measurement electrode at the time of measurement, the voltage is also applied to the immersion part of the connection portion, and the immersion part has an impedance component. Furthermore, when the measurement liquid is rotated around the central axis of the container at the time of measurement, the liquid surface of the measurement liquid is shaken in the vertical direction, and the immersion part of the connection portion varies. Due to this variation, the impedance component at the immersion site varies, and the measurement value measured by the impedance change varies. For this reason, the measurement accuracy is low.
  • the first and second cover members are provided between the upper and lower ends of the surface of the chip body so as to cover the surfaces of the first and second connection portions.
  • the connecting portion does not touch the liquid surface of the measuring solution and the measuring solution, and the impedance component does not vary in the first and second connecting portions. As a result, the measurement value does not vary and the measurement accuracy can be improved.
  • the perspective view of the microorganisms number measuring apparatus which concerns on one Embodiment of this invention.
  • the perspective view which shows the operation state of the microorganisms number measuring apparatus of FIG. Sectional drawing which shows the operation state of the microorganisms number measuring apparatus of FIG.
  • the perspective view of the container of the microorganisms number measuring apparatus of FIG. (A)-(c) is a front view of the measuring chip of the microorganism count measuring apparatus of FIG. 1 and members constituting the measuring chip.
  • Sectional drawing which shows the operation state of the microorganisms number measuring apparatus of FIG.
  • the control block diagram of the microorganisms number measuring apparatus of FIG. The top view of the container of the microorganisms number measuring apparatus of FIG.
  • Sectional drawing which shows the liquid flow in the container of the microorganisms number measuring apparatus of FIG. (A),
  • (b) is a front view of the measurement chip at the time of operation
  • (b) is a block diagram of the connection terminal of the microorganisms number measuring apparatus of FIG. The figure which shows the connection relation of the microorganisms number measuring apparatus side of FIG. 1, and a measurement chip
  • the microorganism count measuring apparatus includes a box-shaped main body case 1 and a front cover 2 that is provided on the front upper side thereof so as to be freely opened and closed (see FIG. 2). .
  • a container holding portion 3 having an open top surface and holding the container 4.
  • the container 4 has a bottomed cylindrical shape having a circular opening on the upper surface, and is held by the container holding part 3 with the opening facing upward.
  • a cylindrical holding body 5 is formed on the bottom surface of the container 4.
  • three elution projections 6 are formed on the inner side surface of the holding body 5 at intervals of 120 degrees in the circumferential direction along a substantially vertical direction.
  • three elution grooves 7 penetrating from the inside to the outside are formed on the side surface of the holding body 5 at intervals of 120 degrees.
  • the container 4 stores pure water 8 (an example of a measurement liquid) for eluting the microorganism M (see FIG. 8).
  • the collection unit 10 provided at the lower end of the rod-shaped microorganism collection tool 9 is inserted into the holding body 5 of the container 4 from above, and the microorganism collection tool 9 is held by the holding body 5.
  • the collection unit 10 of the microorganism collection tool 9 is inserted into the oral cavity and collects the microorganism M by adhering saliva.
  • the upper end portion of the microorganism collecting tool 9 is pinched with, for example, the right hand, and the switch 11 of FIG. 2 is pushed with the left hand. Then, the container holding part 3 is rotated by the rotation of the motor 12.
  • the container 4 can be rotated.
  • the operation lamp 13 in FIG. 2 is turned on. In this state, the container 4 rotates for a preset timer time (for example, 10 seconds).
  • the plurality of elution protrusions 6 provided on the inner wall surface of the holding body 5 continuously come into contact with the collection unit 10 of the microorganism collection tool 9. For this reason, the microorganism M in the collection unit 10 is eluted into the pure water 8 in the container 4 through the elution groove 7.
  • the measurer picks the microorganism collection tool 9 upward from the container 4.
  • the measurer attaches the measurement chip 15 shown in FIG. 5C to the measurement chip holding part 14 provided on the inner surface of the front cover 2.
  • the measurement chip 15 in this embodiment includes a thin long plate-shaped chip body 15 ⁇ / b> A, a measurement electrode 16, a connection electrode 17, and a connection portion 18.
  • the measurement electrode 16 is provided on the lower end side (one end side in the longitudinal direction) of the surface of the chip body 15 ⁇ / b> A and is immersed in the pure water 8.
  • connection electrode 17 is provided on the upper end side (the other end side in the longitudinal direction) of the surface of the chip body 15A, and is connected to the measurement chip holding unit 14 of the measurement device.
  • the connection part 18 connects between the measurement electrode 16 and the connection electrode 17 on the surface of the chip body 15A.
  • palladium is sputtered onto PET (Poly-Ethylene-Terephthalate) used as the base material of the chip body 15A, and laser processing is performed on the palladium, so that the measurement electrode 16, the connection electrode 17, and the connection portion 18 are processed. Is forming.
  • a metal material such as an electrode sputtered on a substrate such as PET, in addition to palladium (Pd), aluminum (Al), silver (Ag), gold (Au), copper (Cu), etc.
  • the metal material may be used.
  • the detailed configuration of the measurement chip 15 will be described in detail later.
  • the measurer picks the middle of the measurement chip 15 in FIG. 5 and attaches the connection electrode 17 to the measurement chip holding portion 14, as shown in FIG. Electrical and mechanical connections are made between them. That is, in this embodiment, the electrode insertion part is comprised by the front cover 2, the measurement chip holding
  • the measurement chip 15 is held in the container held by the container holding unit 3 as shown in FIG. 6. 4 is inserted into the container 4 through the opening of the container 4 from above. At this time, the measurement electrode 16 of the measurement chip 15 is immersed in the pure water 8 of the container 4. Next, the measurer presses the measurement start switch 20 in FIG. 1 to start measurement. Then, for example, a voltage of 3 MHz is applied to the measurement electrode 16, and the microorganism M eluted in the container 4 is collected on the measurement electrode 16. At the same time, a voltage of, for example, 800 kHz is applied to the measurement electrode 16, and the change in impedance of the measurement electrode 16 is measured, whereby the number of microorganisms is measured.
  • the motor 12 rotates the container holding unit 3, the container 4, and the pure water 8, thereby increasing the chance that the microorganism M that has diffused widely in the container 4 approaches the measurement electrode 16. It is configured as follows.
  • a rod-shaped operating body is placed in the through hole 21 (see FIG. 5) provided in the middle of the measuring chip 15. 22 is inserted.
  • the operation body 22 is in a state of being retracted backward as shown in FIG. 3 until the measurement chip 15 is completely lowered into the container 4, but the measurement chip 15 is completely within the container 4.
  • a rod-shaped operating body is placed in the through hole 21 (see FIG. 5) provided in the middle of the measuring chip 15. 22 is inserted.
  • the operation body 22 is in a state of being retracted backward as shown in FIG. 3 until the measurement chip 15 is completely lowered into the container 4, but the measurement chip 15 is completely within the container 4.
  • the through hole 21 has a long hole shape that is long in the longitudinal direction of the measurement chip 15 (FIG. 5). Therefore, when the measurer opens the front cover 2 after the measurement, the lower end of the through hole 21 of the measurement chip 15 is engaged with a hook-shaped engagement portion (not shown) provided at the distal end portion of the operation body 22. . As a result, the measurement chip 15 is detached from the measurement chip holding unit 14. Further, when the operating body 22 is pulled rearward (on the right side in FIG. 6) in a state where the measuring chip 15 is detached from the measuring chip holding portion 14 when the front cover 2 is opened, the hook provided on the operating body 22 The tip end of the engagement portion (not shown) is extracted from the through hole 21 of the measurement chip 15.
  • the measurement chip 15 is pulled out from the measurement chip holding unit 14 and remains in the container 4 after the measurement. Therefore, the opening operation of the front cover 2 prevents the pure water 8 mixed with the microorganisms M adhering at the time of measurement from being inadvertently scattered or dripping down on the front surface or the lower surface of the front cover 2 in terms of hygiene. This is preferable.
  • FIG. 7 shows a control block diagram of the microorganism count measuring apparatus for performing the above operation.
  • the motor 12 is connected to a motor power supply unit 24 of the power supply unit 23.
  • the motor power supply unit 24 is connected to the motor power supply control unit 26 of the control unit 25.
  • the measurement electrode 16 is connected to an electrode power supply unit 27 of the power supply unit 23.
  • the electrode power supply unit 27 is connected to the electrode power supply control unit 28. As a result, the above-described voltages of 3 MHz and 800 kHz are applied from the electrode power supply unit 27 to the measurement electrode 16, and the number of microorganisms is simultaneously measured by the measurement unit 29 and the calculation unit 30 connected to the measurement electrode 16. . The measured value is displayed on the display unit 31 provided behind the front cover 2.
  • the operation unit 32 is a power operation unit. 2 are all connected to the control unit 25.
  • the measurement chip 15 is disposed at a position closer to the inner wall surface of the container 4 than the central axis in the cylindrical container 4 and close to the inner wall surface of the container 4 at the time of measurement.
  • the measurement electrode 16 of the measurement chip 15 is disposed so as to face the inner wall surface of the container 4.
  • the measurement chip 15 is disposed at a position close to the inner surface of the container 4, the portion surrounded by the measurement chip 15 and the inner wall surface of the container 4 has a surface tension as shown in FIG. 9. A raised portion of pure water 8 is formed. As a result, the measurement electrode 16 is reliably submerged in the pure water 8. Then, as shown in FIG. 8, the microorganism M contained in the pure water 8 is subjected to centrifugal force by the swirling flow in the container 4, and is applied to the inner wall surface of the container 4 while being urged by the inner wall surface of the container 4. Turn along. Thereby, the microorganisms M swirling along the inner wall surface of the container 4 can be captured by the measurement electrode 16 arranged to face the inner wall surface of the container 4.
  • the measurement chip 15 of the present embodiment includes the measurement electrode 16, the connection electrode 17, and the connection portion 18.
  • the measurement electrode 16 has two measurement electrodes 16A and 16B facing each other at a predetermined interval on the lower end side of the surface of the chip body 15A. Note that the measurement electrodes 16A and 16B are arranged to face each other with a predetermined interval therebetween, thereby forming a comb electrode portion 16C.
  • the connection electrode 17 has two connection electrodes 17A and 17B on the upper end side of the surface of the chip body 15A.
  • connection portion 18 includes a connection portion 18A connecting the measurement electrode 16A and the connection electrode 17A, and a connection portion 18B connecting the measurement electrode 16B and the connection electrode 17B between the upper end and the lower end of the surface of the chip body 15A.
  • the measurement chip 15 of the present embodiment has a cover body 33 (for covering the surfaces of the connecting portions 18A and 18B between the upper end and the lower end of the surface of the chip body 15A shown in FIG. 5B) is further provided.
  • the cover body 33 has a thin long plate shape and covers almost the entire surface of the connection portions 18A and 18B. Further, the cover body 33 is formed of PET as with the chip body 15A. The cover body 33 has the same thickness as the chip body 15A. Thereby, the measurement precision of the measurement chip
  • the measurement chip 15 is inserted into the container 4 from above the container 4 held in the container holding part 3 through the opening of the container 4 as shown in FIGS.
  • the measurement electrode 16 of the measurement chip 15 is immersed in the pure water 8 of the container 4.
  • the lower portion of the connection portion 18 connected to the measurement electrode 16 is also immersed in the measurement liquid. For this reason, when a voltage is applied to the measurement electrode 16 at the start of measurement, a voltage is also applied to the immersion part, and the immersion part has an impedance component.
  • the liquid surface of the pure water 8 is swung in the vertical direction by the swing width L1 and connected.
  • the immersion part of the part 18 varies. Due to this variation, variation occurs in the impedance component of the immersion site. Since the measurement electrode 16 performs the measurement by changing the impedance, the measurement value varies due to the variation of the impedance component of the connecting portion 18.
  • the cover body for covering the surfaces of the connecting portions 18A and 18B between the upper end and the lower end of the surface of the chip body 15A. 33 is provided.
  • the connecting portions 18A and 18B do not touch the liquid surface of the pure water 8 (that is, the fluctuation width L1 in the vertical direction of the liquid surface) and the pure water 8, so that the connecting portions 18A and 18B have impedance components. There is no. Therefore, there is no variation in impedance components in the connecting portions 18A and 18B.
  • the connecting portions 18A and 18B are visible below the center of the lower end of the cover body 33.
  • the visible portions are lower than the liquid level fluctuation width L1. ing. That is, the connecting portions 18A and 18B are portions that are always immersed in the pure water 8. Therefore, although this part is immersed and has an impedance component, since it is always immersed, the dispersion
  • the through hole 21 provided in the central portion of the chip body 15 ⁇ / b> A is located above the container 4 at the time of measurement, so that the liquid level does not reach the through hole 21. That is, the liquid level fluctuation width L1 is configured to occur on the connection portion 18 between the through hole 21 and the measurement electrode 16, as shown in FIG. Furthermore, in the present embodiment, as shown in FIG. 10A, the dimensions in the short direction (width direction) of the connecting portions 18A and 18B are substantially the same, and are approximately half the width of the chip body 15A.
  • the impedance component (series resistance component) of the connecting portion 18 can be reduced, and the measurement sensitivity can be increased in the measurement of the measurement electrode 16 that measures the number of microorganisms by a minute impedance change.
  • the impedance component (series resistance component) of the connection portion 18 in order to accurately capture the change in impedance (that is, the change in the number of microorganisms) in the measurement electrode 16, it is necessary to reduce the impedance component (series resistance component) of the connection portion 18.
  • the method (1) it is difficult to shorten the length of the connecting portion 18 beyond a certain level because the measuring electrode 16 needs to be immersed in the pure water 8.
  • the method (2) when the dimension of the connecting portion 18 in the short direction (width direction) is increased, the impedance component of the connecting portion 18 itself is reduced, but the connecting portion 18A and the connecting portion constituting the connecting portion 18 are reduced. 18B adjoins at a very short interval. For this reason, in the part immersed in the pure water 8 of the connection part 18, a new impedance component generate
  • the magnitude of this impedance component is inversely proportional to the adjacent distance between the connecting portion 18A and the connecting portion 18B.
  • the connecting portion 18 is increased in order to reduce the impedance component of the connecting portion 18, the adjacent interval between the connecting portions 18A and 18B is reduced. For this reason, the impedance component which generate
  • the cover body 33 that covers the surfaces of the connection portions 18A and 18B is provided. Accordingly, the connecting portions 18A and 18B are not immersed in the pure water 8, and no new impedance component is generated between the connecting portion 18A and the connecting portion 18B.
  • connection portions 18A and 18B are substantially the same, and the impedance component of the connection portion 18 is increased to about half of the short direction (width direction) of the chip body 15A. (Series resistance component) can be reduced. Therefore, the measurement sensitivity of the measurement electrode 16 can be increased. Furthermore, in the present embodiment, as shown in FIGS. 10 (a) and 10 (b), the measurement electrodes 16A and 16B form comb-tooth electrode portions 16C that face each other with a predetermined interval therebetween. Yes.
  • the comb electrode portion 16C has a rectangular shape that is long in the longitudinal direction of the chip body 15A, and is disposed at the center of the chip body 15A in the short side direction (width direction) on the lower end side of the surface of the chip body 15A. .
  • the area of the two parts 16a and 16b sandwiched between the comb electrode part 16C and the long side of the chip body 15A can be increased, and the impedance component (series resistance component) of the parts 16a and 16b can be reduced.
  • the cover body 33 has a long plate shape, and its lower end central portion is more than the comb electrode portion 16C of the measurement electrode 16 of the chip body 15A. It is arranged on the upper end side of the chip body 15A. Moreover, the lower end center part of the cover body 33 is arrange
  • extending portions 33A and 33B are formed by extending both side portions on the lower end side of the cover body 33 to the lower end of the chip body 15A.
  • the two extending portions 33 ⁇ / b> A and 33 ⁇ / b> B are in a non-covered state that does not cover the comb electrode portion 16 ⁇ / b> C of the measurement electrode 16 immersed in the pure water 8.
  • the comb electrode portion 16C of the measurement electrode 16 can be reliably brought into contact with the pure water 8, and the strength around the comb electrode portion 16C can be reinforced by the extending portions 33A and 33B. Accordingly, the rotation of the pure water 8 does not cause a problem such as the measurement electrode 16 provided on the thin plate-shaped chip body 15A swinging, and the comb electrode portion 16C of the measurement electrode 16 is in a stable state. Measurements can be made with As a result, the measurement accuracy can be increased also from this point.
  • an elongated through hole 21A is provided in the middle of the chip body 15A so as to be detached from the measuring instrument to which the chip body 15A is attached. It has been. Further, the cover body 33 is arranged such that the upper end of the cover body 33 is located on the upper end side of the chip body 15A from the through hole 21A of the chip body 15A as shown in FIG. 5B. Further, the cover body 33 is provided with a through hole 21B having the same shape as the through hole 21A at a portion corresponding to the through hole 21A of the chip body 15A. That is, the through hole 21 is formed by the through hole 21A and the through hole 21B as shown in FIG.
  • the convenience of the measurer can be improved. That is, when the measurement is completed, the measurer opens the front cover 2, but as described above, the measurement chip 15 is pulled out from the measurement chip holding unit 14 in conjunction with this opening operation and into the container 4.
  • a through hole 21 is provided for separation. As shown in FIG. 5, the through-hole 21 is formed in the center portion of the thin long plate-shaped measurement chip 15, and has a long hole shape that is long in the longitudinal direction of the measurement chip 15. For this reason, the peripheral part of the through-hole 21 is a weak part in the measurement chip 15. Therefore, the peripheral portion of the through hole 21 is reinforced by disposing the upper end of the cover body 33 closer to the upper end side of the chip body 15A than the through hole 21A of the chip body 15A.
  • the cover body 33 is made of PET like the chip body 15A, and has the same thickness as the chip body 15A. Therefore, the cover body 33 has substantially the same strength as the chip body 15A. Thereby, at the time of measurement, the measurer picks the middle of the measurement chip 15 and attaches the connection electrode 17 to the measurement chip holding part 14 (see FIG. 2). Since the peripheral portion is reinforced, the measurement chip 15 can have sufficient strength and can be stably connected.
  • ground electrodes 37A and 37B are provided on the outer peripheral side of the two connection electrodes 17A and 17B at the upper end of the measurement chip 15 in the present embodiment.
  • Conductive patterns 34A and 34B are provided from the ground electrodes 37A and 37B toward the measurement electrode 16 at the lower end.
  • the conductive patterns 34A and 34B are extended from the ground electrodes 37A and 37B along the outer peripheral portion in the longitudinal direction of the measurement chip 15, and are connected to the conductive pattern 34C.
  • the conductive patterns 34A and 34B are connected to the conductive pattern 34C in a state of being provided along the outer periphery of the measurement electrodes 16A and 16B through the outer peripheral sides of the connection portions 18A and 18B, respectively. .
  • the measurement electrode 16 is formed on the lower end side of the chip body 15A. The outer periphery of is surrounded.
  • the measurement chip 15 is used in a state where the cover body 33 shown in FIG. 5B is covered on the chip main body 15A shown in FIG.
  • the conductive pattern 34C is formed on the lower end of the comb electrode portion 16C of the measurement electrode 16 that is not covered with the cover body 33. It is provided along the outer periphery of the tooth electrode portion 16C.
  • FIG. 11A shows the configuration of the connection terminals 35 ⁇ / b> A and 35 ⁇ / b> B of the electrode insertion part provided in the measurement chip holding part 14.
  • the connection terminals 35A and 35B of the electrode insertion part provided in the measurement chip holding part 14 are connected to the connection electrodes 17A and 17B of the measurement chip 15, respectively.
  • the ground terminals 36A and 36B provided on both sides of the connection terminals 35A and 35B are connected to the ground electrodes 37A and 37B provided on the measurement chip 15.
  • the ground terminal 36B is provided to be longer than the other connection terminals 35A and 35B and the ground terminal 36A. For this reason, when the measurement chip 15 is attached to the connection terminals 35A and 35B of the electrode insertion portion, the ground terminal 36B is first attached to the ground electrode 37B of the measurement chip 15. For this reason, the ground electrodes 37 ⁇ / b> A and 37 ⁇ / b> B of the measurement chip 15 are connected to the ground potential on the apparatus side before the measurement electrode 16.
  • the measurement chip 15 when the measurement chip 15 is attached to the connection terminals 35A and 35B of the electrode insertion portion, it is possible to prevent the measurement electrode 16 of the measurement chip 15 from being broken by the static electricity of the measurer. That is, in the conventional configuration, when measuring the number of microorganisms, when the measurer holds the measurement chip with a finger and inserts it into the electrode insertion portion of the measurement chip holding portion of the apparatus, the measurer measures the measurement chip. If the comb electrode part of the electrode is accidentally touched with a finger, the comb electrode part of the measurement electrode may be broken due to static electricity of the measurer.
  • the conductive electrodes 34A, 34B, and 34C connected to the ground terminals 36A and 36B serving as the ground potential of the apparatus are provided at the lower end of the measurement electrode 16. (However, in the present embodiment, only the conductive pattern 34C is exposed from the cover body 33). Thereby, it can prevent that the comb-tooth electrode part 16C of the measurement electrode 16 is broken by static electricity of the measurer.
  • the conductive pattern 34C is configured to have a ground potential on the apparatus side before the measurement electrode 16. Thereby, when the measurer mistakenly touches the comb-tooth electrode portion 16C, the conductive pattern 34C is simultaneously touched. As a result, static electricity from the measurer flows to the apparatus side through the conductive patterns 34C, 34A, 34B. For this reason, it is possible to prevent the measurement electrode 16 from being broken by static electricity. As a result, the operability for handling the measuring chip 15 can be improved.
  • the measurement electrode 16 when the number of microorganisms is measured by a minute impedance change of the measurement electrode 16, the measurement electrode 16, the connection portion 18, and the connection electrode 17 are surrounded by the conductive patterns 34A, 34B, and 34C.
  • the conductive patterns 34A, 34B, and 34C serve as shields that reduce disturbance noise entering the measurement chip 15, and the measurement accuracy can be improved. (Use for temperature measurement of pure water)
  • the conductive patterns 34A, 34B, and 34C are connected to the ground terminals 36A and 36B to take measures against static electricity.
  • the conductive patterns 34A, 34B, and 34C are measured for temperature. It can also be used.
  • the ground terminal 36A shown in FIG. 11 is used as a voltage application terminal and the ground electrode 37A provided on the measurement chip 15 is used as a voltage application electrode accordingly, a direct current from the conductive pattern 34A to the conductive patterns 34B and 34C. Flows.
  • the temperature of the pure water 8 shown in FIG. 9 can be detected by monitoring the voltage of the ground terminal 36A. Therefore, the impedance between the measurement electrodes 16A and 16B to be measured can be corrected using the detected temperature.
  • the ground terminal 36B for setting the conductive patterns 34A, 34B, and 34C to the ground potential is formed longer than the ground terminal 36A that serves as a voltage application terminal and the connection terminals 35A and 35B. For this reason, when the measurement chip 15 is mounted, the ground terminal 36B is first connected to the conductive patterns 34A, 34B, and 34C, and the above-described electrostatic countermeasure effect can be maintained.
  • the conductive patterns 34A, 34B, and 34C in this case are conductive patterns having both the function of the conductive pattern and the function of the temperature measurement pattern.
  • the relationship between the lengths of the terminals is ground terminal 36B> connection terminal 35A> connection terminal 35B> ground terminal 36A.
  • a reference resistor is connected to the current upstream side, and the ground terminal 36A, the ground electrode 37A, and the conductive pattern 34A are connected to the reference resistor.
  • 34C, 34B and a ground terminal 36B are conductive patterns having both the function of the conductive pattern and the function of the temperature measurement pattern.
  • the relationship between the lengths of the terminals is ground terminal 36B> connection terminal 35A> connection terminal 35B> ground terminal 36A.
  • the resistance value of the conductive patterns 34A, 34C, and 34B changes with the temperature of the pure water 8, and as a result, the temperature of the pure water 8 is detected. can do.
  • the procedure for measuring the temperature of the pure water 8 by the measuring chip 15 of the present embodiment will be described in detail below.
  • the conductor 41 (conductive patterns 34 ⁇ / b> A, 34 ⁇ / b> B, 34 ⁇ / b> C) has a first terminal connected to the ground terminal 36 ⁇ / b> A and a second terminal connected to the resistance measuring unit 42.
  • the resistance measuring unit 42 is configured to measure the DC resistance in a state where a DC current flows through the conductive patterns 34A, 34B, and 34C.
  • the resistance measurement unit 42 includes a measurement resistor 43 and a power supply unit 23 connected to the measurement resistor 43.
  • the opposite terminal connected to the power source of the measuring resistor 43 is connected to the second ends of the conductive patterns 34A, 34B, and 34C.
  • the control unit 25 reads the value of the voltage at the second end of the conductive patterns 34A, 34B, and 34C, so that the value of the DC resistance of the conductive patterns 34A, 34B, and 34C can be detected.
  • the temperature of the specimen (pure water 8) can be measured based on the value of the DC resistance.
  • palladium is used as the metal material of the electrode sputtered on the base material such as PET.
  • the base material such as PET.
  • the microorganism count measuring apparatus of the present embodiment it is possible to determine whether or not the measurement chip 15 is correctly mounted on the front and back, or whether or not a regular product of the measurement chip 15 is used. That is, in the microorganism count measuring apparatus according to the present embodiment, the conductive patterns 34A, 34B, and 34C of the measuring chip 15 inserted in the microorganism count measuring apparatus (for example, direct current) are the same as the temperature detection of the pure water 8 described above. The state of resistance, etc.) is monitored on the device side.
  • whether or not the front and back of the measurement chip 15 are correctly inserted can be detected according to whether or not the detected value such as the detected resistance value is within a predetermined range.
  • the detected value such as the detected resistance value is within a predetermined range.
  • the control unit 25 the current value (resistance value) is detected by the control unit 25 on the apparatus side. Absent. Therefore, whether or not the front and back of the measurement chip 15 are correctly attached can be easily determined by whether or not the current value is detected by the control unit 25.
  • the control unit 25 displays a message such as “Please insert the chip correctly” on the display unit 31 provided on the front of the apparatus. It is possible to take measures such as displaying. Alternatively, a warning buzzer may be sounded to notify the measurer that the measurement chip 15 is inserted in the opposite direction. Moreover, in the microorganism count measuring apparatus of this embodiment, it can also detect whether the measurement chip
  • the measurement chip 15 is a genuine product is determined according to whether or not the current value read by the control unit 25 is within a predetermined range.
  • the control unit 25 displays an error on the display unit 31 provided on the front surface of the apparatus, and controls so that the number of microorganisms cannot be measured.
  • a warning buzzer may be sounded to notify the measurer that there is a possibility that measurement cannot be performed correctly because the measurement chip is not a regular product. Accordingly, it is possible to reliably perform highly accurate measurement by encouraging the use of the regular measuring chip 15.
  • the microorganism count measuring chip of the present invention is provided with an electrode insertion section for inserting the measurement chip into the container through the opening from above the container held by the container holding section.
  • the container may have a simple bottomed cylindrical shape having an opening on the upper surface, and as a result, the production cost of the container can be reduced and the measurement cost can be reduced. Since it has an effect, for example, it is expected to be widely used as a microorganism count measuring chip for measuring the number of microorganisms in the oral cavity or the number of microorganisms present in foods and a microorganism count measuring apparatus using the chip. It is.

Landscapes

  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Biomedical Technology (AREA)
  • Physics & Mathematics (AREA)
  • Analytical Chemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Biochemistry (AREA)
  • Pathology (AREA)
  • Immunology (AREA)
  • General Physics & Mathematics (AREA)
  • Zoology (AREA)
  • Wood Science & Technology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Organic Chemistry (AREA)
  • Food Science & Technology (AREA)
  • Urology & Nephrology (AREA)
  • Molecular Biology (AREA)
  • Hematology (AREA)
  • Dispersion Chemistry (AREA)
  • Medicinal Chemistry (AREA)
  • Biophysics (AREA)
  • Microbiology (AREA)
  • Sustainable Development (AREA)
  • General Engineering & Computer Science (AREA)
  • Genetics & Genomics (AREA)
  • Biotechnology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Investigating Or Analyzing Materials By The Use Of Electric Means (AREA)
  • Apparatus Associated With Microorganisms And Enzymes (AREA)

Abstract

 本微生物数測定装置は、長板形状のチップ本体(15A)と、チップ本体(15A)表面の長手方向における第1端側に設けられ、測定液に浸漬される測定電極(16)と、測定電極(16)に接続されるとともに、チップ本体(15A)表面の長手方向における第2端側に設けられた接続電極(17)と、を備えている。チップ本体(15A)表面の長手方向における第2端側には、接地電極(37A,37B)が設けられている。接地電極(37A,37B)には、測定電極(16)の外周部分に設けられた導電パターン(34A,34B,34C)が接続されている。

Description

微生物数測定チップ、それを用いた微生物数測定装置
 本発明は、微生物数測定チップ、それを用いた微生物数測定装置に関するものである。
 従来の微生物数測定装置の構成は、以下のような構成となっていた。
 すなわち、従来の微生物数測定装置では、例えば、口腔内から綿棒などの微生物採取具を用いて微生物を採取し、この微生物採取具を容器の上面開口部から容器の液中に浸漬する。その後、容器内の液体を攪拌体で攪拌し、その状態で容器内に設けられた測定電極によって微生物数を測定する(例えば、下記特許文献1)。
特開2010-220507号公報
 上記従来の構成では、容器内で微生物の溶出および測定ができるため、装置自体の大きさを極めて小さなものとすることができるという点で評価されるものであった。
 しかしながら、このような測定を行うために用いられる容器は、その内壁面に測定電極を一体化して設ける必要がある。しかも、この測定電極から容器外への引き出し線は、液漏れのしない水密対策を講じる必要があり、生産コストが高価なものとなる。
 したがって、この容器を用いて行われる微生物数の測定は、測定コストが高価なものとなってしまう。
 そこで本発明は、測定コストの削減を図ることが可能な微生物数測定装置を提供することを目的とするものである。
 そして、この目的を達成するために本発明の微生物数測定チップは、長板形状のチップ本体と、測定電極と、接続電極と、接地電極と、導電パターンと、を備えている。測定電極は、チップ本体の表面の長手方向における第1端側に設けられ、測定液に浸漬される。接続電極は、測定電極に接続されるとともに、チップ本体の表面の長手方向における第1端とは反対側の第2端側に設けられている。接地電極は、チップ本体の表面の第2端側に設けられている。導電パターンは、接地電極に接続されており、測定電極の外周部分に設けられている。
 また、本発明の微生物数測定装置は、上記微生物数測定チップを用いた微生物数測定装置であって、容器保持部と、回転駆動部と、電極挿入部と、測定部と、を備えている。容器保持部は、上面に開口部を有する有底筒状の容器を、開口部を上向きにして保持する。回転駆動部は、容器保持部において保持された容器を、内部に貯留された液体とともに、略鉛直方向に沿った中心軸の周りに回転させる。電極挿入部は、容器保持部において保持された容器の開口部を介して、容器内における中心軸よりも内壁面側の位置であって、内壁面から所定間隔離れた位置に微生物数測定チップを挿入する。測定部は、電極挿入部によって容器内に挿入された微生物数測定チップの測定電極において微生物の測定を行う。
 さらに、本発明の微生物数測定チップは、長板形状のチップ本体と、測定電極と、接続電極と、接続部と、カバー体と、を備えている。測定電極は、チップ本体の表面の下端側に設けられ測定液に浸漬されるとともに、チップ本体の表面の下端側において、互いに対向する第1・第2の測定電極を有する。接続電極は、チップ本体の表面の上端側に設けられ測定機器に接続されるとともに、第1・第2の接続電極を有する。接続部は、チップ本体の表面において、測定電極と接続電極との間を接続するとともに、チップ本体の表面の上端と下端との間において第1の測定電極と第1の接続電極を接続した第1の接続部と、チップ本体の表面の上端と下端との間において第2の測定電極と第2の接続電極とを接続した第2の接続部と、を有する。カバー体は、チップ本体の表面の上端と下端との間において、第1・第2の接続部の表面を覆うように設けられている。
(発明の効果)
 本発明の微生物数測定チップによれば、容器として、上面に開口部を有する単なる有底筒状の形状を有する容器を用いることができるため、容器の生産コストを下げ、測定コストを低減することができる。
 さらに、従来の微生物数測定チップでは、微生物数を測定する際に、測定者が微生物数測定チップを指で保持して装置の電極挿入部に挿入するのであるが、この場合に測定者が微生物数測定チップの測定電極を誤って指で触れてしまい、装置に挿入する際には、測定者の静電気によって測定電極が壊れてしまう場合があった。
 本発明の微生物数測定チップによれば、測定電極の周辺に導電パターンが設けられているので、測定者が測定電極に誤って触れた場合には、同時に導電パターンにも触れることになり、測定者からの静電気は導電パターン介して装置側に流れる。よって、測定電極が静電気によって破壊されることを防止することができる。その結果、測定者は微生物数測定チップを保持する位置(微生物数測定チップを摘む位置)を気にしなくてもよくなるので、微生物数測定チップを取り扱う際の操作性を高めることができる。
 本発明の微生物数測定チップによれば、微生物数を測定するために測定電極を測定液に浸漬させた時には、測定電極に接続された第1・第2の接続部の下部も測定液に浸漬される。このため、測定時に測定電極に所定の電圧を印加すると、接続部の浸漬部位にも電圧が印加されて、浸漬部位がインピーダンス成分を持つ。さらに、測定時に測定液を容器の中心軸の周りに回転させると、測定液の液面が鉛直方向に揺れて、接続部の浸漬部位が変動する。この変動により、浸漬部位のインピーダンス成分にバラツキが発生し、インピーダンス変化で測定を行う測定値にバラツキが発生していた。そのため、測定精度が低くなっていた。
 そこで、本発明の微生物数測定チップでは、チップ本体の表面の上端と下端との間において、第1・第2の接続部の表面を覆うカバー体を設けたことで、第1・第2の接続部が測定液の液面および測定液に触れることはなく、第1・第2の接続部にインピーダンス成分のバラツキが発生することはない。その結果、測定値にバラツキが発生することはなく、測定精度を高めることができる。
本発明の一実施形態に係る微生物数測定装置の斜視図。 図1の微生物数測定装置の動作状態を示す斜視図。 図1の微生物数測定装置の動作状態を示す断面図。 図1の微生物数測定装置の容器の斜視図。 (a)~(c)は、図1の微生物数測定装置の測定チップおよびこれを構成する部材の正面図。 図1の微生物数測定装置の動作状態を示す断面図。 図1の微生物数測定装置の制御ブロック図。 図1の微生物数測定装置の容器の上面図。 図1の微生物数測定装置の容器内の液体流を示す断面図。 (a),(b)は、図1の微生物数測定装置の動作時の測定チップの正面図。 (a),(b)は、図1の微生物数測定装置の接続端子の構成図。 図1の微生物数測定装置側と測定チップとの接続関係を示す図。
 (実施形態1)
 以下、本発明の一実施形態に係る測定チップ(微生物数測定チップ)15および微生物数測定装置ついて、添付図面を用いて説明する。
 本実施形態の微生物数測定装置は、図1に示すように、箱状の本体ケース1と、その前方の上方に開閉自在(図2参照)に設けられた前面カバー2と、を備えている。
 本体ケース1の内側における前面カバー2の背面側には、図2に示すように、上面が開口しており容器4が保持される容器保持部3が設けられている。
 容器4は、図3、図4に示すように、上面に円形の開口部を有する有底円筒状の形状を有しており、開口部を上方にして容器保持部3に保持される。容器4の底面上には、筒状の保持体5が形成されている。また、保持体5の内部側面には、略鉛直方向に沿って溶出突起6が周方向に120度の間隔で3本形成されている。また、保持体5の側面には、内部から外部に貫通した溶出溝7が120度の間隔で3本形成されている。さらに、容器4内には、微生物M(図8参照)を溶出させるための純水8(測定液の一例)が貯留されている。
 容器4の保持体5には、図3に示すように、棒状の微生物採取具9の下端に設けられた採取部10が上方から挿入され、微生物採取具9は保持体5に保持される。微生物採取具9の採取部10は、例えば、口腔内に挿入されて、唾液を付着させることで微生物Mを採取する。
 この状態で、微生物採取具9の上端部分を、例えば、右手でつまんだ状態で、左手で図2のスイッチ11を押す。すると、モータ12の回転により容器保持部3が回転する。このとき、容器保持部3の駆動突起(図示せず)と容器4の係合突起(図示せず)とが係合しているため、容器4を回転させることができる。容器4が回転すると、図2の動作ランプ13が点灯する。この状態で、容器4は、予め設定されたタイマー時間(例えば、10秒)の間、回転する。
 この回転により、保持体5の内壁面に設けられた複数の溶出突起6が、微生物採取具9の採取部10に連続的に当接する。このため、採取部10内の微生物Mは、溶出溝7を介して容器4内の純水8へと溶出する。
 このような溶出動作が終了した時には、測定者は、微生物採取具9を容器4から上方へと摘み出す。
 次に、測定者は、前面カバー2の内面に設けられた測定チップ保持部14に、図5(c)に示す測定チップ15を装着する。
 本実施形態における測定チップ15は、図5(a)に示すように、薄い長板形状のチップ本体15Aと、測定電極16と、接続電極17と、接続部18とを有している。
 測定電極16は、チップ本体15Aの表面の下端側(長手方向の一端側)に設けられ純水8に浸漬される。
 接続電極17は、チップ本体15Aの表面の上端側(長手方向の他端側)に設けられ測定機器の測定チップ保持部14に接続される。
 接続部18は、チップ本体15Aの表面において、測定電極16と接続電極17との間を接続する。
 なお、本実施形態では、チップ本体15Aの基材として用いたPET(Poly-Ethylene-Terephthalate)上にパラジウムをスパッタリングし、パラジウムにレーザー加工を行って、測定電極16、接続電極17、接続部18を形成している。
 ここで、PET等の基材上にスパッタリングされる電極等の金属材料としては、パラジウム(Pd)以外に、アルミニウム(Al)、銀(Ag)、金(Au)、銅(Cu)等の他の金属材料を用いてもよい。
 測定チップ15の詳細な構成については、後段において詳細に説明する。
 次に、測定者が、測定者が図5の測定チップ15の中ほどを摘んで、接続電極17を測定チップ保持部14に装着すると、図3に示すように、測定チップ15と装置との間で電気的・機械的な接続が行われる。つまり、本実施形態では、前面カバー2、測定チップ保持部14などによって電極挿入部が構成されている。
 この状態から、取手19を持って前面カバー2を前方に回動させ、図1の状態まで回動させると、図6に示すように、測定チップ15は、容器保持部3で保持された容器4の上方から容器4の開口部を介して、容器4内に挿入される。このとき、測定チップ15の測定電極16は、容器4の純水8内に浸漬された状態となる。
 次に、測定者は、図1の測定開始スイッチ20を押して測定を開始する。すると、測定電極16に、例えば、3MHzの電圧が印加され、容器4内に溶出された微生物Mが測定電極16に集められる。また、これと同時に、測定電極16に、例えば、800kHzの電圧が印加され、測定電極16のインピーダンス変化が測定されることで、微生物数の測定が行われる。
 この測定方法については、すでに先行文献等でも知られていることであるので、説明の煩雑化をさけるために、説明は簡略化する。
 本実施形態では、この測定時において、モータ12によって容器保持部3、容器4、純水8を回転させることで、容器4内に広く拡散した微生物Mが測定電極16に接近する機会が多くなるように構成されている。
 ここで、測定チップ15によって微生物数の測定を行っている状態においては、図6に示すように、測定チップ15の中部に設けられた貫通孔21(図5参照)内に、棒状の操作体22が挿入されている。
 操作体22は、測定チップ15が容器4内に完全に下降するまでの間は、図3に示すように、後方に後退した状態となっているが、測定チップ15が容器4内に完全に下降する直前から、図6に示すように、前面カバー2方向に突出移動する。
 なお、貫通孔21は、測定チップ15の長手方向に長い、長穴形状を有している(図5)。
 したがって、測定後に測定者が前面カバー2を開放する時には、測定チップ15の貫通孔21の下端が操作体22の先端部に設けられた鈎状の係合部(図示せず)に係合する。その結果、測定チップ15は、測定チップ保持部14から離脱される。また、前面カバー2を開放する際に、測定チップ15が測定チップ保持部14から離脱した状態において、操作体22が後方(図6の右側)に引かれると、操作体22に設けられた鈎状の係合部(図示せず)の先端は、測定チップ15の貫通孔21から抜き出される。
 つまり、測定チップ15は、測定チップ保持部14から引き出され、測定後に容器4内に残されたままとなる。
 このため、前面カバー2の開放動作によって、測定時に付着した微生物Mが混入した純水8が、前面カバー2の前面や下面等に不用意に飛び散ったり、垂れ落ちたりすることはなく衛生面において好ましいものとなる。
 図7は、以上の動作を行わせるための、微生物数測定装置の制御ブロック図を示している。
 モータ12は、電源部23のモータ用電源部24に接続されている。
 モータ用電源部24は、制御部25のモータ用電源制御部26に接続されている。
 また、測定電極16には、電源部23の電極用電源部27が接続されている。
 電極用電源部27は、電極用電源制御部28に接続されている。これにより、電極用電源部27から測定電極16に対して、上述した3MHzと800kHzの電圧が印加され、同時に測定電極16に接続された測定部29、演算部30により微生物数の測定が行われる。そして、その測定値は、前面カバー2の後方に設けられた表示部31に表示される。
 なお、操作部32は、電源用の操作部である。また、図2に示すスイッチ11、動作ランプ13、図1の測定開始スイッチ20などは、いずれも制御部25に接続されている。
 すなわち、本実施形態の微生物数測定装置においては、容器保持部3で保持された容器4の上方から、容器4の開口部を介して、容器4内に測定チップ15を挿入する電極挿入部(前面カバー2、測定チップ保持部14等によって構成される)が設けられている。このため、容器4としては、上面に円形の開口部を有する単なる有底円筒状の形状のものを用いることができる。その結果、従来よりも容器4の生産コストを下げ、測定コストの低減を図ることができる。
 次に、微生物数を測定する時の測定チップ15と純水8との関係について説明する。
 測定チップ15は、図8に示すように、測定時には、円筒状の容器4内の中心軸よりも容器4の内壁面寄りの位置であって、容器4の内壁面に近接した位置に配置される。また、測定チップ15の測定電極16は、容器4の内壁面に対向配置されている。
 この状態で、円筒状の容器4が、円筒の中心軸周りに回転すると、図9に示すように、純水8には、鉛直方向に沿った中心軸の周りに渦巻き状の旋回流が発生し、その旋回流の外周部分は図中Aの位置まで立ち上がる。なお、この点に対する理解をしやすくするために、図9では、保持体5の表示を廃止している。また、容器4の非回転時には、純水8の液面は図中Bの位置にあるものとする。
 ここで、測定チップ15は、容器4の内面に近接した位置に配置されているため、測定チップ15と容器4の内壁面とで囲まれる部分には、図9に示すように、表面張力によって純水8の盛り上がり部分が形成される。これにより、測定電極16は、純水8内に確実に水没した状態となる。
 そして、図8に示すように、容器4内の旋回流によって、純水8中に含まれる微生物Mは遠心力を受け、容器4の内壁面に付勢された状態で容器4の内壁面に沿って旋回する。これにより、容器4の内壁面に沿って旋回する微生物Mを、容器4の内壁面に対向配置された測定電極16によって捕らえることができる。
 (測定電極16)
 次に、図5(a)~図5(c)を参照しながら、測定チップ15の構成について詳しく説明する。
 本実施形態の測定チップ15では、上述したように、測定電極16、接続電極17、および接続部18を備えている。
 測定電極16は、図5(a)に示すように、チップ本体15Aの表面の下端側において、所定間隔で対向する2つの測定電極16A,16Bを有している。なお、測定電極16A,16Bは、所定間隔を空けて対向配置され、櫛歯電極部16Cを形成している。
 接続電極17は、チップ本体15Aの表面の上端側において、2つの接続電極17A,17Bを有している。
 接続部18は、チップ本体15Aの表面の上端と下端との間において、測定電極16Aと接続電極17Aとを接続した接続部18Aと、測定電極16Bと接続電極17Bとを接続した接続部18Bとを有している。
 また、本実施形態の測定チップ15は、図5(a)に示すチップ本体15Aの表面の上端と下端との間において、接続部18A,18Bの表面を覆うために設けられたカバー体33(図5(b)参照)をさらに備えている。
 カバー体33は、図10(b)に示すように、薄い長板形状を有しており、接続部18A,18Bの表面のほぼ全体を覆っている。さらに、カバー体33は、チップ本体15Aと同じくPETによって形成されている。カバー体33の厚さは、チップ本体15Aと同じ厚さとしている。
 これにより、測定チップ15の測定精度を高めることができる。
 すなわち、測定チップ15は、図6、図9に示すように、容器保持部3において保持された容器4の上方から容器4の開口部を介して容器4内に挿入される。このとき、測定チップ15の測定電極16は、容器4の純水8内に浸漬された状態となる。また、このとき、測定電極16に接続された接続部18の下部も測定液に浸漬される。このため、測定開始時に測定電極16に電圧を印加すると、この浸漬部位にも電圧が印加されて、浸漬部位がインピーダンス成分を持つ。
 さらに、測定のため純水8を、容器4の中心軸の周りに回転させると、図10(a)に示すように、純水8の液面が鉛直方向に揺れ幅L1だけ揺れて、接続部18の浸漬部位が変動する。この変動により、この浸漬部位のインピーダンス成分にバラツキが発生する。
 測定電極16はインピーダンス変化で測定を行うため、接続部18のインピーダンス成分のバラツキにより、測定値にバラツキが発生する。
 そこで、本実施形態においては、上述したように、チップ本体15Aの表面の上端と下端との間において、図10(b)に示すように、接続部18A,18Bの表面を覆うためのカバー体33が設けられている。
 これにより、接続部18A,18Bが純水8の液面(つまり、液面の鉛直方向における揺れ幅L1)および純水8に触れることはないため、接続部18A,18Bがインピーダンス成分を持つことはない。したがって、接続部18A,18Bにインピーダンス成分のバラツキが発生することはない。
 その結果、測定値にバラツキが発生することはなく、測定精度を高めることができる。
 なお、図10(b)において、カバー体33の下端中央部よりも下に、接続部18A,18Bが見えているが、この見えている部位は、液面の揺れ幅L1よりも下部になっている。つまり、接続部18A,18Bは、純水8に常に浸漬された部位となる。したがって、この部位は、浸漬されてインピーダンス成分を持つが、常に浸漬されているためインピーダンス成分のバラツキが発生することはない。
 また、チップ本体15Aの中央部分に設けられた貫通孔21は、図6に示すように、測定時には、容器4の上方に位置するので、貫通孔21まで液面が到達することはない。つまり、液面の揺れ幅L1は、図10に示すように、貫通孔21と測定電極16間の接続部18上で生じるように構成されている。
 さらに、本実施形態においては、図10(a)に示すように、接続部18A,18Bの短手方向(幅方向)における寸法は、ほぼ同一とし、チップ本体15Aの幅のほぼ半分としている。
 このため、接続部18のインピーダンス成分(直列抵抗成分)を小さくすることができ、微細なインピーダンス変化により微生物数を測定する測定電極16の測定において、測定感度を高めることができる。
 この点について、もう少し詳しく説明する。
 すなわち、測定電極16においてインピーダンスの変化(つまり、微生物数の変化)を正確に捉えるためには、接続部18のインピーダンス成分(直列抵抗成分)を小さくする必要がある。
 接続部18のインピーダンス成分(直列抵抗成分)を小さくする方法としては、
(1)接続部18の長さを短くする
あるいは
(2)接続部18の短手方向(幅方向)における寸法を大きくする
等の方法がある。
 しかしながら、(1)の方法において、接続部18の長さは測定電極16を純水8に浸漬させる必要があるために、一定以上に短くすることは困難である。
 一方、(2)の方法において、接続部18の短手方向(幅方向)における寸法を大きくすると、接続部18自体のインピーダンス成分は小さくなるが、接続部18を構成する接続部18Aと接続部18Bとがごく短い間隔で隣接してしまう。このため、接続部18の純水8に浸漬した部分において、浸漬した接続部18Aと接続部18Bとの間に、新たなインピーダンス成分が発生する。このインピーダンス成分の大きさは、接続部18Aと接続部18Bとの隣接間隔に反比例する。
 つまり、接続部18のインピーダンス成分を小さくしようとして接続部18の短手方向(幅方向)における寸法を大きくすると、接続部18A,18Bの隣接間隔が小さくなる。このため、浸漬した接続部18Aと接続部18Bとの間で発生するインピーダンス成分が大きくなってしまう。
 しかしながら、本実施形態においては、上述したように、接続部18A,18Bの表面を覆うカバー体33が設けられている。したがって、接続部18A,18Bが純水8に浸漬されることはなく、接続部18Aと接続部18Bとの間に新たなインピーダンス成分は発生しない。
 このため、接続部18A,18Bの短手方向(幅方向)における寸法は、ほぼ同一とし、チップ本体15Aの短手方向(幅方向)のほぼ半分まで広くすることで、接続部18のインピーダンス成分(直列抵抗成分)を小さくすることができる。よって、測定電極16の測定感度を高めることができる。
 さらにまた、本実施形態においては、図10(a)および図10(b)に示すように、測定電極は16A,16Bは、所定間隔を介して互いに対向する櫛歯電極部16Cを形成している。櫛歯電極部16Cは、チップ本体15Aの長手方向に長い長方形状にするとともに、チップ本体15Aの表面の下端側において、チップ本体15Aの短手方向(幅方向)における中央部に配置されている。
 これは、チップ本体15Aの短手方向(幅方向)において、櫛歯電極部16Cから、櫛歯電極部16Cに対向するチップ本体15Aの長手辺までの距離を大きくするためである。これにより、櫛歯電極部16Cとチップ本体15Aの長手辺に挟まれた2つの部位16a,16bの面積を大きくし、部位16a,16bのインピーダンス成分(直列抵抗成分)を小さくすることができる。
 その結果、測定電極16の測定電極16A,16Bのインピーダンス成分(直列抵抗成分)を小さくすることができ、この点からも測定感度を高めることができる。
 さらに、本実施形態においては、カバー体33は、図10(b)に示すように、長板形状とし、その下端中央部は、チップ本体15Aの測定電極16の櫛歯電極部16Cよりも、チップ本体15Aの上端側に配置されている。また、カバー体33の下端中央部は、純水8を回転させることによる液面の鉛直方向における揺れ幅L1よりも下端側に配置されている。
 このため、カバー体33の下端中央部は、純水8に確実に浸漬された状態となる。したがって、カバー体33に覆われた接続部18A,18Bが純水8の液面および純水8に触れることはないので、接続部18A,18Bにインピーダンス成分のバラツキが発生することはない。その結果、測定精度を高めることができる。
 さらに、本実施形態においては、延伸部33A,33Bが、カバー体33の下端側の両側部をチップ本体15Aの下端にまで延伸させて形成されている。そして、2つの延伸部33A,33Bは、純水8に浸漬される測定電極16の櫛歯電極部16Cを覆わない非カバー状態としている。
 このため、測定電極16の櫛歯電極部16Cを純水8に確実に接触させることができるとともに、櫛歯電極部16Cの周辺の強度を、延伸部33A,33Bによって補強することができる。したがって、純水8の回転により、薄い長板形状のチップ本体15A上に設けられた測定電極16が振れてしまう等の問題も生じることなく、測定電極16の櫛歯電極部16Cは安定した状態で測定を行うことができる。その結果、この点からも、測定精度を高めることができる。
 さらに、本実施形態においては、図5(a)に示すように、チップ本体15Aの中部には、チップ本体15Aが装着される測定機器から離脱させるために、長穴形状の貫通孔21Aが設けられている。
 また、カバー体33は、カバー体33の上端は、図5(b)に示すように、チップ本体15Aの貫通孔21Aよりもチップ本体15Aの上端側に配置されている。さらに、カバー体33には、チップ本体15Aの貫通孔21Aに対応する部分に、貫通孔21Aと同形状の貫通孔21Bが設けられている。つまり、貫通孔21Aと貫通孔21Bとにより、図5(c)に示すように、貫通孔21を形成している。
 このため、測定者の使い勝手を向上させることができる。
 すなわち、測定が終了した時には、測定者が前面カバー2を開放するが、上述したように、この開放動作に連動して、測定チップ15が測定チップ保持部14から引き出されて、容器4内へ離脱させるために、貫通孔21が設けられている。
 貫通孔21は、図5に示すように、薄い長板形状の測定チップ15の中央部分に形成されており、測定チップ15の長手方向に長い長穴形状を有している。このため、貫通孔21の周辺部分は、測定チップ15の中でも弱い部分となっている。そこで、カバー体33の上端をチップ本体15Aの貫通孔21Aよりも、チップ本体15Aの上端側に配置することにより、貫通孔21の周辺部分を補強している。
 なお、カバー体33は、上述したように、チップ本体15Aと同様に、PETによって形成されており、チップ本体15Aと同じ厚さを有している。よって、カバー体33は、チップ本体15Aとほぼ同じ強度を持っている。
 これにより、測定時においては、測定者が、測定チップ15の中ほどを摘んで、接続電極17を測定チップ保持部14(図2参照)に装着するのであるが、カバー体33によって貫通孔21の周辺部分が補強されているため、測定チップ15に十分な強度を持たせることができ、安定して接続を行うことができる。
 その結果、測定者の使い勝手を向上させつつ、測定精度を高めることができる。
 <主な特徴>
  (導電パターン34A,34B,34C)
 以上の説明により本実施形態の基本的な構成および動作が理解された所で、以下、本実施形態における主要な特徴点について説明する。
 すなわち、図5(a)に示すように、本実施形態における測定チップ15の上端には、2つの接続電極17A,17Bの外周側に、接地電極37A,37Bが設けられている。
 そして、接地電極37A,37Bから下端の測定電極16に向けて、導電パターン34A,34Bが設けられている。
 導電パターン34A,34Bは、接地電極37A,37Bから測定チップ15の長手方向における外周部分に沿って延伸され、それぞれ導電パターン34Cに接続されている。
 つまり、導電パターン34A,34Bは、接続部18A,18Bの外周側をそれぞれ経由し、次に、測定電極16A,16Bの外周に沿って周設された状態で、導電パターン34Cに接続されている。
 その結果、図5(a)に示すように、長板形状のチップ本体15Aの外周に沿って導電パターン34A,34Bが設けられた状態となるため、チップ本体15Aの下端側において、測定電極16の外周が囲まれた状態となっている。
 測定チップ15は、上述したように、図5(a)に示すチップ本体15A上に、図5(b)に示すカバー体33を被せた状態で使用される。
 チップ本体15Aにカバー体33を被せた状態では、図5(c)に示すように、カバー体33に覆われていない測定電極16の櫛歯電極部16Cの下端には、導電パターン34Cが櫛歯電極部16Cの外周に沿って周設されている。
 上述したように、測定者が図5の測定チップ15を摘んで挿入し、接続電極17が測定チップ保持部14に装着されると、電気的・機械的な接続が行われる。測定チップ保持部14に設けられた電極挿入部の接続端子35A,35Bの構成を図11(a)に示す。
 図11(a)に示すように、測定チップ保持部14に設けられた電極挿入部の接続端子35A,35Bは、それぞれ測定チップ15の接続電極17A,17Bに接続される。また、これらの接続端子35A,35Bの両側に設けられた接地端子36A,36Bは、測定チップ15に設けられた接地電極37A,37Bに接続される。
 このうち、接地端子36Bについては、他の接続端子35A,35B、および接地端子36Aよりも長くなるように設けられている。
 このため、測定チップ15が電極挿入部の接続端子35A,35Bに装着される際には、先に、接地端子36Bが、測定チップ15の接地電極37Bに装着される。このため、測定チップ15の接地電極37A,37Bは、測定電極16よりも先に装置側の接地電位に接続される。
 したがって、測定チップ15を電極挿入部の接続端子35A,35Bに装着する際に、測定チップ15の測定電極16が測定者の静電気によって破壊されることを防止することができる。
 すなわち、従来の構成では、微生物数を測定する際に、測定者が測定チップを指で保持して、装置の測定チップ保持部の電極挿入部に挿入する場合に、測定者が測定チップの測定電極の櫛歯電極部を誤って指で触れてしまうと、測定者の静電気によって測定電極の櫛歯電極部が壊れてしまう場合があった。
 そこで、本実施形態の測定チップ15では、上述のように、測定電極16の下端には、装置の接地電位となる接地端子36A,36Bに接続される導電パターン34A,34B,34Cが設けられている(但し、本実施形態では、導電パターン34Cだけがカバー体33から露出した状態となっている。)。これにより、測定者の静電気によって測定電極16の櫛歯電極部16Cが壊れてしまうことを防止することができる。
 この点をさらに詳細に説明すると、本実施形態では、導電パターン34Cが、測定電極16よりも先に装置側の接地電位となるように構成されている。これにより、測定者が櫛歯電極部16Cに誤って触れた場合には、同時に導電パターン34Cにも触れるような構成となっている。その結果、測定者からの静電気は導電パターン34C,34A,34Bを介して装置側に流れる。このため、測定電極16が静電気で壊れることを防止することができる。その結果、測定チップ15の取り扱いに対して操作性を高めることができる。
 また、本装置は、測定電極16の微細なインピーダンス変化により微生物数を測定する際に、測定電極16、接続部18、および接続電極17が、導電パターン34A,34B,34Cによって囲まれているため、導電パターン34A,34B,34Cが、測定チップ15に入る外乱ノイズを低減する遮蔽体となり、測定精度を向上させることができる。
  (純水の温度測定への利用)
 なお、本実施形態では、導電パターン34A,34B,34Cを、接地端子36A,36Bに接続することで静電気対策をとる構造としたが、これ以外にもこれら導電パターン34A,34B,34Cを温度測定用とすることもできる。
 つまり、図11に示す接地端子36Aを電圧印加端子とし、また、それに合わせて測定チップ15に設けた接地電極37Aを電圧印加電極とすれば、導電パターン34Aから導電パターン34B,34Cへと直流電流が流れる。周知の通り、導電路は温度によって抵抗値が変化するので、接地端子36Aの電圧を監視することで、図9に示す純水8の温度を検出することができる。よって、この検出温度を用いて、測定される測定電極16A,16B間のインピーダンスを補正することもできる。
 すなわち、測定電極16A,16B間に捕獲される微生物の捕獲状況は、純水8の温度に影響を受けるので、純水8の温度を測定し、これによってインピーダンスを補正することで、より高精度な測定が可能となる。
 また、この場合でも、導電パターン34A,34B,34Cを接地電位にするための接地端子36Bは、電圧印加端子となる接地端子36Aや、接続端子35A,35Bよりも長く形成されている。このため、測定チップ15の装着時には、一番最初に接地端子36Bが導電パターン34A,34B,34Cに接続され、上述した静電対策効果を維持することができる。
 つまり、この場合における導電パターン34A,34B,34Cは、導電パターンの機能と、温度測定パターンの機能を併せ持つ導電パターンとなる。
 なお、本実施形態では、端子の長さの関係は、接地端子36B>接続端子35A>接続端子35B>接地端子36Aとなっている。
 また、上述したように、図11に示す接地端子36Aを電圧印加端子とする場合には、その電流上流側に基準抵抗を接続し、この基準抵抗から接地端子36A、接地電極37A、導電パターン34A,34C,34B、接地端子36Bへと直流電流を流す。
 そして、基準抵抗と接地端子36Aとの間の電圧値を測定すれば、導電パターン34A,34C,34Bの抵抗値が純水8の温度で変化することで、結論として純水8の温度を検出することができる。
 ここで、本実施形態の測定チップ15による純水8の温度を測定する手順について、以下で詳しく説明する。
 すなわち、導電体41(導電パターン34A,34B,34C)は、図7に示すように、その第1端が接地端子36A、第2端が抵抗測定部42に接続されている。
 抵抗測定部42では、導電パターン34A,34B,34Cに直流電流が流れた状態で、直流抵抗を測定できるように構成されている。
 具体的には、抵抗測定部42は、図12に示すように、測定用抵抗43と、この測定用抵抗43に接続された電源部23と、によって構成されている。
 測定用抵抗43の電源と接続される反対側の端子は、導電パターン34A,34B,34Cの第2端と接続されている。
 この構成においては、導電パターン34A,34B,34Cの第2端の電圧の値を、制御部25が読み取ることによって、導電パターン34A,34B,34Cの直流抵抗の値を検出することができる。そして、この直流抵抗の値に基づいて、検体(純水8)の温度を測定することができる。
 なお、本実施形態の測定チップ15では、上述したように、PET等の基材上にスパッタリングされる電極の金属材料として、パラジウムを用いている
 この理由としては、
・温度に対する抵抗の変化率や抵抗値の大きさが比較的大きいため測定し易い
・酸化等の経年変化の影響を受け難い
・製造上、成膜等の制御が容易であるため、抵抗値の誤差を小さくすることができる
等の利点があることから、パラジウムを用いている。
  (測定チップ15の適否判定)
 本実施形態の微生物数測定装置では、測定チップ15が表裏を正しく装着されているか、あるいは測定チップ15の正規品が使用されているか否かを判定することが可能である。
 すなわち、本実施形態の微生物数測定装置では、上述した純水8の温度検出と同様に、微生物数測定装置に挿入された測定チップ15の導電パターン34A,34B,34Cの導通状態(例えば、直流抵抗値等の状態)を装置側でモニタリングする。
 このとき、検出された抵抗値等の検出値が所定の範囲内であるか否かに応じて、測定チップ15の裏表が正しく挿入されているのか否かを検知することができる。
 例えば、測定チップ15が表裏逆転した状態で挿入されている場合には、裏面側に導電パターンは配置されていないため、装置側の制御部25において電流値(抵抗値)が検出されることはない。よって、測定チップ15の表裏が正しく装着されているか否かについては、制御部25において、電流値が検出されるか否かによって容易に判定することができる。
 ここで、挿入された測定チップ15が表裏逆であると判定された場合には、制御部25が装置前面に設けられた表示部31に、「チップを正しく挿入してください」等のメッセージを表示する等の対応を採ることができる。あるいは、警告ブザーを鳴らして、測定チップ15が表裏反対向きで挿入されていることを、測定者に報知してもよい。
 また、本実施形態の微生物数測定装置では、測定チップ15が正規品であるか否かについても検知することができる。
 すなわち、正規品ではない測定チップが挿入されている場合には、電極を形成する金属材料等の組成の違いや品質のバラつき等に起因して、所定の印加電圧に対して検出される電流値の値が、正規品の測定チップ15とは異なる可能性がある。
 よって、本実施形態では、制御部25において読み取られた電流値が、所定の範囲内であるか否かに応じて、測定チップ15が正規品であるか否かの判定を行う。
 ここで、正規品ではないと判定された場合には、制御部25が、装置前面に設けられた表示部31にエラー表示を行って、微生物数の測定を実施できないように制御する。あるいは、警告ブザーを鳴らして、測定チップが正規品ではないために、正しく測定できないおそれがあることを、測定者に報知してもよい。
 これにより、正規品の測定チップ15を使用することを促すことで、確実に高精度な測定を実施することができる。
 本発明の微生物数測定チップは、その測定に用いる微生物数測定装置は、容器保持部で保持された容器の上方から、開口部を介して容器内に測定チップを挿入する電極挿入部を設けたものとすることができ、容器としては、上面に開口部を有する単なる有底筒状の形状のもので良く、その結果として容器の生産コストを下げ、測定コストの低減化を図ることができるという効果を奏するものであることから、例えば、口腔内の微生物数や食品に存在する微生物数などを測定する微生物数測定チップと、それを用いた微生物数測定装置として、広く活用が期待されるものである。
 1   本体ケース
 2   前面カバー(電極挿入部)
 3   容器保持部
 4   容器
 5   保持体
 6   溶出突起
 7   溶出溝
 8   純水(液体)
 9   微生物採取具
10   採取部
11   スイッチ
12   モータ
13   動作ランプ
14   測定チップ保持部(電極挿入部)
15   測定チップ
15A  チップ本体
16   測定電極
16A,16B 測定電極
16a,16b 部位
16C  櫛歯電極部
17   接続電極
17A,17B 接続電極
18   接続部
18A,18B 接続部
19   取手
20   測定開始スイッチ
21   貫通孔
21A,21B 貫通孔
22   操作体
23   電源部
24   モータ用電源部
25   制御部
26   モータ用電源制御部
27   電極用電源部
28   電極用電源制御部
29   測定部
30   演算部
31   表示部
32   操作部
33   カバー体
33A,33B 延伸部
34,34A,34B,34C 導電パターン
35,35A,35B 接続端子
36A,36B 接地端子
37A,37B 接地電極
38   測定用抵抗
41   導電体(導電パターン)
42   抵抗測定部
43   測定用抵抗
L1   揺れ幅
 M   微生物

Claims (20)

  1.  長板形状のチップ本体と、
     前記チップ本体の表面の長手方向における第1端側に設けられ、測定液に浸漬される測定電極と、
     前記測定電極に接続されるとともに、前記チップ本体の表面の長手方向における前記第1端とは反対側の第2端側に設けられた接続電極と、
     前記チップ本体の表面の前記第2端側に設けられた接地電極と、
     前記接地電極に接続されており、前記測定電極の外周部分に設けられた導電パターンと、
    を備えている微生物数測定チップ。
  2.  前記導電パターンの第1端は、前記チップ本体の表面の長手方向における第2端側において接地電極に接続され、
     前記導電パターンの第2端は、前記チップ本体の表面の長手方向における第1端側において、前記測定電極の外周に沿って周設されているとともに、前記チップ本体の表面の長手方向における第2端側に延長されている、
    請求項1に記載の微生物数測定チップ。
  3.  前記導電パターンの第2端は、前記チップ本体の表面の長手方向における第1端側において、前記測定電極の外周に沿って周設されているとともに、前記チップ本体の表面の長手方向における第2端側に延長され、前記チップ本体の表面の長手方向における第2端側に設けられた前記接地電極に接続されている、
    請求項2に記載の微生物数測定チップ。
  4.  前記導電パターンの第2端は、前記チップ本体の表面の長手方向における第1端側において、前記測定電極の外周に沿って周設されているとともに、前記チップ本体の表面の長手方向における第2端側に延長され、前記チップ本体の表面の長手方向における第2端側に設けられた電圧印加電極に接続されている、
    請求項2に記載の微生物数測定チップ。
  5.  前記測定電極は、前記チップ本体の表面の長手方向における第1端側において、互いに対向する第1・第2の測定電極を有し、
     前記第1・第2の測定電極は、所定間隔で互いに対向する櫛歯電極部が形成されている、
    請求項1に記載の微生物数測定チップ。
  6.  前記チップ本体の表面の長手方向における第1端と第2端との間において、接続電極と測定電極を接続した接続パターンがカバー体によって覆われている、
    請求項1に記載の微生物数測定チップ。
  7.  請求項1に記載の微生物数測定チップを用いた微生物数測定装置であって、
     上面に開口部を有する有底筒状の容器を、前記開口部を上向きにして保持する容器保持部と、
     前記容器保持部において保持された前記容器の内部に貯留された液体を、略鉛直方向に沿った前記容器の中心軸の周りに回転させる回転駆動部と、
     前記容器保持部において保持された前記容器の前記開口部を介して、前記容器内における前記中心軸よりも内壁面側の位置であって、前記内壁面から所定間隔離れた位置に前記微生物数測定チップを挿入する電極挿入部と、
     前記電極挿入部によって前記容器内に挿入された前記微生物数測定チップの測定電極において微生物の測定を行う測定部と、
    を備えた微生物数測定装置。
  8.  請求項3に記載の微生物数測定チップを用いた微生物数測定装置であって、
     上面に開口部を有する有底筒状の容器を、前記開口部を上向きにして保持する容器保持部と、
     前記容器保持部において保持された前記容器の内部に貯留された液体を、略鉛直方向に沿った前記容器の中心軸の周りに回転させる回転駆動部と、
     前記容器保持部において保持された前記容器の前記開口部を介して、前記容器内における前記中心軸よりも内壁面側の位置であって、前記内壁面から所定間隔離れた位置に前記微生物数測定チップを挿入する電極挿入部と、
     前記電極挿入部によって前記容器内に挿入された前記微生物数測定チップの測定電極において微生物の測定を行う測定部と、
    を備え、
     前記電極挿入部は、
     微生物数測定チップの接続電極と接続される接続端子と、
     前記微生物数測定チップの接地電極と接続される接地端子と、
    を有しており、
     前記接地端子と前記接地電極の接続は、前記接続端子と前記接続電極の接続よりも先に接続される、
    微生物数測定装置。
  9.  前記電極挿入部の接地端子は、接続端子よりも長い、
    請求項8に記載の微生物数測定装置。
  10.  請求項4に記載の微生物数測定チップを用いた微生物数測定装置であって、
     上面に開口部を有する有底筒状の容器を、前記開口部を上向きにして保持する容器保持部と、
     前記容器保持部において保持された前記容器の内部に貯留された液体を、略鉛直方向に沿った前記容器の中心軸の周りに回転させる回転駆動部と、
     前記容器保持部において保持された前記容器の前記開口部を介して、前記容器内における前記中心軸よりも内壁面側の位置であって、前記内壁面から所定間隔離れた位置に前記微生物数測定チップを挿入する電極挿入部と、
     前記電極挿入部によって前記容器内に挿入された前記微生物数測定チップの測定電極において微生物の測定を行う測定部と、
    を備え、
     前記電極挿入部は、
     微生物数測定チップの接続電極と接続される接続端子と、
     前記微生物数測定チップの接地電極と接続される接地端子と、
     前記微生物数測定チップの電圧印加電極と接続される電圧印加端子と、
    を有しており、
     前記接地端子と前記接地電極の接続は、前記接続端子と前記接続電極の接続よりも先に接続される、
    微生物数測定装置。
  11.  前記接続端子と前記接続電極の接続は、前記電圧印加端子と前記電圧印加電極との接続よりも先に接続される、
    請求項10に記載の微生物数測定装置。
  12.  前記電極挿入部の接地端子は、前記接続端子よりも長く、前記接続端子は前記電圧印加端子よりも長い、
    請求項11に記載の微生物数測定装置。
  13.  長板形状のチップ本体と、
     前記チップ本体の表面の下端側に設けられ測定液に浸漬されるとともに、前記チップ本体の表面の下端側において、互いに対向する第1・第2の測定電極を有する測定電極と、
     前記チップ本体の表面の上端側に設けられ測定機器に接続されるとともに、第1・第2の接続電極を有する接続電極と、
     前記チップ本体の表面において、前記測定電極と前記接続電極間を接続するとともに、前記チップ本体の表面の上端と下端との間において、前記第1の測定電極と前記第1の接続電極を接続した第1の接続部と、前記チップ本体の表面の上端と下端との間において、前記第2の測定電極と前記第2の接続電極を接続した第2の接続部と、を有する接続部と、
     前記チップ本体の表面の上端と下端との間において、前記第1・第2の接続部の表面を覆うように設けられたカバー体と、
    を備えている微生物数測定チップ。
  14.  前記第1・第2の接続部の短手方向の幅は、ほぼ同一であって、前記チップ本体の短手方向の幅のほぼ半分である、
    請求項13に記載の微生物数測定チップ。
  15.  前記第1・第2の測定電極は、所定間隔で対向して櫛歯電極部を形成し、
     前記櫛歯電極部は、前記チップ本体の長手方向に長い長方形状にするとともに、前記チップ本体の表面の下端側において、前記チップ本体の短手方向の中央部に配置されている、
    請求項13または14に記載の微生物数測定チップ。
  16.  前記カバー体は長板形状とし、その下端中央部は、前記チップ本体の前記測定電極よりも前記チップ本体の上端側に配置されている、
    請求項15に記載の微生物数測定チップ。
  17.  前記カバー体の下端側の両側部は、を前記チップ本体の下端まで延伸しているとともに、
     前記両側部の延伸した部分は、測定液に浸漬される前記測定電極の前記櫛歯電極部を非カバー状態とした、
    請求項16に記載の微生物数測定チップ。
  18.  前記チップ本体の中部には、前記チップ本体が装着される測定機器から離脱させるための第1の貫通孔が設けられているとともに、
     前記カバー体は、その上端が前記チップ本体の前記第1の貫通孔よりも、このチップ本体の上端側に配置されている、
    請求項13から17のいずれか1項に記載の微生物数測定チップ。
  19.  請求項13から18のいずれか1項に記載の微生物数測定チップを用いた微生物数測定装置であって、
     上面に開口部を有する有底筒状の容器を、前記開口部を上向きにして保持する容器保持部と、
     前記容器保持部で保持された前記容器の内部に貯留された液体を、略鉛直方向に沿った前記容器の中心軸の周りに回転させる回転駆動部と、
     前記容器保持部において保持された前記容器の前記開口部を介して、前記容器内における前記中心軸よりも内壁面側の位置であって、前記内壁面から所定間隔離れた位置に前記微生物数測定チップを挿入する電極挿入部と、
     前記電極挿入部によって前記容器内に挿入された前記微生物数測定チップの測定電極において微生物の測定を行う測定部と、
    を備えた微生物数測定装置。
  20.  前記回転駆動部は、前記容器保持部において保持された前記容器を、前記中心軸の周りに回転させて、前記液体を前記容器内において回転させる、
    請求項19に記載の微生物数測定装置。
PCT/JP2012/004761 2011-08-05 2012-07-26 微生物数測定チップ、それを用いた微生物数測定装置 WO2013021566A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP12822097.7A EP2740789B1 (en) 2011-08-05 2012-07-26 Chip and apparatus for measuring number of microorganisms
CN201280029543.5A CN103620017B (zh) 2011-08-05 2012-07-26 微生物数测定芯片及使用了该微生物数测定芯片的微生物数测定装置
JP2013527860A JP5980209B2 (ja) 2011-08-05 2012-07-26 微生物数測定チップ、それを用いた微生物数測定装置
US14/233,251 US9500613B2 (en) 2011-08-05 2012-07-26 Chip for measuring number of microbe, and apparatus for measuring number of microbe using the same

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
JP2011171578 2011-08-05
JP2011-171578 2011-08-05
JP2012-047635 2012-03-05
JP2012047635 2012-03-05
JP2012108262 2012-05-10
JP2012-108262 2012-05-10

Publications (1)

Publication Number Publication Date
WO2013021566A1 true WO2013021566A1 (ja) 2013-02-14

Family

ID=47668106

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/004761 WO2013021566A1 (ja) 2011-08-05 2012-07-26 微生物数測定チップ、それを用いた微生物数測定装置

Country Status (5)

Country Link
US (1) US9500613B2 (ja)
EP (1) EP2740789B1 (ja)
JP (1) JP5980209B2 (ja)
CN (1) CN103620017B (ja)
WO (1) WO2013021566A1 (ja)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2641963A4 (en) * 2010-11-17 2017-05-10 Panasonic Healthcare Holdings Co., Ltd. Device for measuring microbial count
US20170067840A1 (en) * 2015-09-03 2017-03-09 Telemedicine Up Close, Inc., dba DxUpClose Diagnostic device for evaluating microbial content of a sample
US10656118B2 (en) 2017-02-02 2020-05-19 Ika-Werke Gmbh & Co. Kg Closure for an electrochemical vessel, electrochemical vessel and laboratory device

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000125846A (ja) * 1998-10-27 2000-05-09 Matsushita Electric Ind Co Ltd 微生物数測定装置及び微生物数測定方法
JP2007006858A (ja) * 2005-07-04 2007-01-18 Matsushita Electric Ind Co Ltd 微生物検査チップおよび微生物検査方法
JP2010220507A (ja) * 2009-03-23 2010-10-07 Panasonic Corp 微生物数測定装置

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56118662A (en) * 1980-02-22 1981-09-17 Kyowa Hakko Kogyo Co Ltd Biological activity measuring method
EP0193015A3 (de) * 1985-02-26 1990-05-09 Novasina AG Sensor zur Messung der elektrischen Leitfähigkeit
US4833413A (en) * 1988-04-01 1989-05-23 Head Michael J Salinity measuring system
EP1136819A3 (en) * 1997-04-24 2001-11-28 Daikin Industries, Ltd. Microplate with a plurality of cells each cell having two electodes formed at the bottom thereof
US5989398A (en) * 1997-11-14 1999-11-23 Motorola, Inc. Calorimetric hydrocarbon gas sensor
US6365036B1 (en) * 2000-03-06 2002-04-02 Delphi Technologies, Inc. Electrode ink formulation for oxygen sensor
US6573734B2 (en) * 2001-05-08 2003-06-03 The Board Of Trustees Of The University Of Illinois Integrated thin film liquid conductivity sensor
US7204130B2 (en) 2002-12-03 2007-04-17 Ppg Industries Ohio, Inc. Windshield moisture detector
JP4252062B2 (ja) 2003-02-14 2009-04-08 アークレイ株式会社 摘み部を備えた分析用具
US7629127B2 (en) 2005-01-21 2009-12-08 Dexall Biomedical Labs, Inc. Method for the visual detection of specific antibodies by the use of lateral flow assays
JP2008532396A (ja) * 2005-03-03 2008-08-14 ディアベーテス.オンライン アーゲー 一体型測定装置を備える携帯電話
JP5196830B2 (ja) * 2007-04-04 2013-05-15 株式会社タニタ 生体測定装置
US20100193358A1 (en) 2007-09-18 2010-08-05 Panasonic Corporation Microparticle measuring apparatus and microparticle measuring method
KR101689890B1 (ko) 2009-10-26 2016-12-26 아크레이 인코퍼레이티드 센서 카트리지 및 계측 장치
EP2381250A4 (en) * 2009-12-15 2017-11-08 Panasonic Healthcare Holdings Co., Ltd. Device for measuring number of microbes

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000125846A (ja) * 1998-10-27 2000-05-09 Matsushita Electric Ind Co Ltd 微生物数測定装置及び微生物数測定方法
JP2007006858A (ja) * 2005-07-04 2007-01-18 Matsushita Electric Ind Co Ltd 微生物検査チップおよび微生物検査方法
JP2010220507A (ja) * 2009-03-23 2010-10-07 Panasonic Corp 微生物数測定装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2740789A4 *

Also Published As

Publication number Publication date
US20140150537A1 (en) 2014-06-05
JP5980209B2 (ja) 2016-08-31
JPWO2013021566A1 (ja) 2015-03-05
EP2740789A4 (en) 2015-01-21
EP2740789A1 (en) 2014-06-11
CN103620017B (zh) 2015-02-04
EP2740789B1 (en) 2017-07-12
CN103620017A (zh) 2014-03-05
US9500613B2 (en) 2016-11-22

Similar Documents

Publication Publication Date Title
EP3086689B1 (en) Position detection of an oral care implement
JP4859619B2 (ja) 生理液の測定方法
JP5980209B2 (ja) 微生物数測定チップ、それを用いた微生物数測定装置
BRPI0611515A2 (pt) metodo e sonda para medir a impedáncia de tecido corporal humano ou animal
US8459862B2 (en) Stirring device, microbe testing device, and microbe testing method
JP2001190513A5 (ja)
CN105849541A (zh) 确定分析测试条的可用性
JP2001046344A (ja) 皮膚性状測定プローブ
JP5695078B2 (ja) 微生物数測定装置
JP2010172543A (ja) 経皮水分蒸散量を推定する方法及び皮膚バリア機能評価装置
JP5132365B2 (ja) 細菌検査方法
CN106461637A (zh) 带有身体部位接近传感器模块的手持式测试仪
KR100829932B1 (ko) 혈액의 혈전형성율 측정장치 및 방법
JP5759442B2 (ja) 電気化学的分析方法、電気化学的分析装置及び試薬セット
EP2708881A1 (en) Biosensor calibration method
JP2016029364A (ja) コンタクト構造体、及び該コンタクト構造体を用いた生体試料用電気的測定装置
KR100829928B1 (ko) 혈액의 헤마토크리트 측정장치 및 방법
CN207650339U (zh) 一种新型电力测量仪器
JP5009197B2 (ja) 攪拌装置
JP4252972B2 (ja) 口腔内衛生状態検査装置及び口腔内プラーク量測定方法
JP2012002518A (ja) 測定用セルと、それを用いた微生物数測定装置
CN205809082U (zh) 血糖仪
US20130319879A1 (en) Silver Testing Apparatus
JPH0243370Y2 (ja)
JP2011106814A (ja) 検査装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12822097

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2013527860

Country of ref document: JP

Kind code of ref document: A

REEP Request for entry into the european phase

Ref document number: 2012822097

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 14233251

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE