WO2013021506A1 - Redox material for thermochemical water decomposition and method for producing hydrogen - Google Patents

Redox material for thermochemical water decomposition and method for producing hydrogen Download PDF

Info

Publication number
WO2013021506A1
WO2013021506A1 PCT/JP2011/068404 JP2011068404W WO2013021506A1 WO 2013021506 A1 WO2013021506 A1 WO 2013021506A1 JP 2011068404 W JP2011068404 W JP 2011068404W WO 2013021506 A1 WO2013021506 A1 WO 2013021506A1
Authority
WO
WIPO (PCT)
Prior art keywords
metal oxide
redox
redox material
support
porous silica
Prior art date
Application number
PCT/JP2011/068404
Other languages
French (fr)
Japanese (ja)
Inventor
竹島 伸一
Original Assignee
トヨタ自動車株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by トヨタ自動車株式会社 filed Critical トヨタ自動車株式会社
Priority to DE112011105502.1T priority Critical patent/DE112011105502B4/en
Priority to PCT/JP2011/068404 priority patent/WO2013021506A1/en
Priority to JP2011554294A priority patent/JP5459322B2/en
Priority to CN201180012472.3A priority patent/CN103038158B/en
Publication of WO2013021506A1 publication Critical patent/WO2013021506A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/02Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen
    • C01B3/06Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of inorganic compounds containing electro-positively bound hydrogen, e.g. water, acids, bases, ammonia, with inorganic reducing agents
    • C01B3/061Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of inorganic compounds containing electro-positively bound hydrogen, e.g. water, acids, bases, ammonia, with inorganic reducing agents by reaction of metal oxides with water
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/36Hydrogen production from non-carbon containing sources, e.g. by water electrolysis

Definitions

  • the present invention relates to a redox material for thermochemical water splitting. ⁇ Related technologies>
  • thermochemical water splitting method is a method in which water is split at a lower temperature than in the case of direct water splitting by combining chemical reactions.
  • water is decomposed into hydrogen and oxygen using a redox reaction between metal oxides having different oxidation states as follows (MO is a metal oxide): MO (high oxidation state) ⁇ MO (low oxidation state) + O 2 (endothermic reaction) MO (low oxidation state) + H 2 O ⁇ MO (high oxidation state) + H 2 (exothermic reaction) Total reaction H 2 O ⁇ H 2 + 1 / 2O 2
  • thermochemical water splitting method the temperature required for the reaction, in particular, the temperature required for the reaction of decomposing the highly oxidized metal oxide into the low oxidized metal oxide and oxygen is reduced. Has become an important issue.
  • Japanese Patent Application Laid-Open No. 2008-94636 can efficiently reduce a highly oxidized metal oxide to a low oxidized metal oxide at a relatively low temperature by using a heating rate higher than 80 ° C./min. It is said. Specifically, in this document, it is said that the reduction from a highly oxidized metal oxide to a low oxidized metal oxide can be efficiently performed at a temperature around 1500 ° C. by using such a large heating rate. .
  • alumina, porous silica or the like as a porous metal oxide carrier that supports a catalyst component such as a noble metal.
  • the exhaust gas purifying catalyst proposed in Japanese Patent Application Laid-Open No. 2008-12382 (corresponding to US Patent Application Publication US2009 / 286777A1) by the present inventor is a porous silica carrier composed of silica having an internal pore structure, and porous silica
  • the perovskite-type composite metal oxide particles supported in the internal pore structure of the support, and in the pore distribution of the porous silica support, a peak due to the gap between the primary particles of silica is 3 to It is in the range of 100 nm.
  • thermochemical water splitting an improved redox material for thermochemical water splitting that can be used for thermochemical water splitting, particularly improved thermochemical water that can be used for thermochemical water splitting at relatively low temperatures.
  • a redox material for decomposition is provided.
  • the redox material for thermochemical water splitting of the present invention has a redox metal oxide selected from the group consisting of perovskite type composite metal oxides, fluorite type composite metal oxides, and combinations thereof, and a metal oxide support.
  • the redox metal oxide is dispersed and supported on the metal oxide support.
  • “internal pore structure” of silica means regularly arranged molecular level pores formed by silicon atoms and oxygen atoms constituting silica.
  • the present invention provides a method for generating hydrogen by decomposing water using the redox material for thermochemical water splitting of the present invention.
  • This method of producing hydrogen by thermochemical water splitting comprises (a) heating the redox material of the present invention having a highly oxidized redox metal oxide to desorb oxygen from the highly oxidized redox metal oxide.
  • a redox material having a low oxidation state redox metal oxide, and oxygen and (b) contacting the redox material having a low oxidation state redox metal oxide with water to reduce the low oxidation state redox Oxidizing the metal oxide and reducing water, thereby obtaining a redox material having a highly oxidized redox metal oxide, and hydrogen.
  • FIG. 3 is a HAADF-STEM image of the redox material obtained in Example 3.
  • the redox material for thermochemical water splitting of the present invention has a redox metal oxide selected from the group consisting of perovskite type composite metal oxides, fluorite type composite metal oxides, and combinations thereof, and a metal oxide support.
  • the redox metal oxide is dispersed and supported on the metal oxide support.
  • a metal oxide that is oxidized and reduced for thermochemical water splitting is referred to as “redox oxide”.
  • a redox metal oxide such as a perovskite-type composite metal oxide is dispersed and supported on a metal oxide support, whereby the redox metal oxide exists alone.
  • the particle size of the redox metal oxide can be kept small.
  • such a relatively small particle size can be obtained at a relatively low temperature at redox metal oxide redox reactions for thermochemical water splitting, especially from high oxidation state redox metal oxides to low oxidation state. Enables reduction reaction to redox metal oxides.
  • Such a redox material of the present invention can be used not only by molding itself but also by coating a monolith substrate, for example, a ceramic honeycomb.
  • Metal oxide support Any metal oxide support can be used as the metal oxide support for supporting the redox metal oxide.
  • the metal oxide support is preferably a support that enables highly dispersed support of the redox metal oxide.
  • a porous silica support made of silica having an internal pore structure can be used, and a redox metal oxide can be supported in the internal pore structure of the porous silica support.
  • the redox metal oxide is fixed in the internal pore structure of the porous silica carrier, and the redox metal oxide moves and sinters at a high temperature state, thereby suppressing the particle size from increasing. it can.
  • the peak due to the internal pore structure of silica may be in the range of 1-5 nm in the pore distribution of the porous silica support.
  • a porous silica carrier having a peak due to a gap between primary particles of silica in a pore distribution in the range of 3 to 100 nm, particularly 5 to 50 nm can be used.
  • the peak due to the gap between the primary particles of silica is in the above range, that is, the porous silica support is relatively small in primary. Having particles is thought to increase the contact between the atmosphere and the redox metal oxide supported in the internal pore structure of the porous silica support, thereby promoting redox oxide redox. .
  • Such a porous silica support is prepared by, for example, self-aligning an alkylamine in an aqueous solvent, adding an alkoxysilane and an optional base to the solution, and using the self-aligned alkylamine as a template.
  • this method can use an aqueous ethanol solution as the aqueous solvent, hexadecylamine as the alkylamine, tetraethoxysilane as the alkoxysilane, and ammonia as an optional base.
  • the alkylamine and alkoxysilane used in the method for producing a porous silica support can be selected according to the intended primary particle diameter, pore distribution, etc. of the porous silica support. For example, if the length of the alkyl chain of the alkylamine used in the production of the porous silica support is increased, the pore diameter of the internal pore structure can be increased.
  • the pore size of the internal pore structure can be reduced to about 2.7 nm, and lauryl (ie, C 12 H 25 ).
  • the pore diameter of the internal pore structure can be about 2.0 nm, and when tetracosyl (ie, C 24 H 49 ) trimethylammonium chloride is used, the pore diameter of the internal pore structure is about 4 nm. .0 nm.
  • the redox metal oxide used in the redox material of the present invention is a perovskite type composite metal oxide, a fluorite type composite metal oxide, or a combination thereof.
  • the redox metal oxide may be dispersed and supported on the metal oxide support with an average particle size of 20 nm or less, 15 nm or less, 10 nm or less, or 5 nm or less, for example, an average particle size of 1.5 nm to 5 nm.
  • the amount of the redox metal oxide supported on the metal oxide support can be selected within a range in which the grain growth of the redox metal oxide can be suppressed and sufficient performance relating to thermochemical water splitting can be provided. Therefore, for example, the loading amount of the redox metal oxide is such that the number of moles of the transition metal in the redox metal oxide is 0.01 mol / g or more, or 0.05 mol / g or more with respect to the mass of the metal oxide support. And 100 mol / g or less, 10 mol / g or less, or 1 mol / g or less, or 0.5 mol / g or less.
  • the perovskite complex metal oxide may be a complex metal oxide of a rare earth and a transition metal.
  • the perovskite type composite metal oxide functions as a redox metal oxide by changing the oxidation number of the transition metal.
  • perovskite-type complex metal oxides containing manganese as a transition metal and part of this manganese substituted with iron are effectively reduced and reduced at relatively low temperatures. And is therefore particularly preferred with respect to thermochemical water splitting properties.
  • the fluorite-type composite metal oxide may be a composite metal oxide of a rare earth and a transition metal.
  • the fluorite-type composite metal oxide functions as a redox metal oxide by changing the oxidation number of the transition metal.
  • Min Ce a1 Mn a2 O 4; or Ce a Mn b-x Fe x O 4- ⁇
  • the fluorinated complex metal oxide that contains manganese as a transition metal and in which a part of this manganese is replaced by iron is effectively reduced and reduced at a relatively low temperature. And is therefore particularly preferred with respect to thermochemical water splitting properties.
  • the support of the redox metal oxide on the metal oxide support is achieved by impregnating the metal oxide support with a solution of a metal salt constituting the redox metal oxide, and drying and calcining the obtained metal oxide support.
  • a metal salt constituting the redox metal oxide include inorganic acid salts such as nitrates and hydrochlorides, and organic acid salts such as acetates.
  • the removal of the solvent from the salt solution and drying can be performed by any method and at any temperature. This can be accomplished, for example, by placing a metal oxide support impregnated with a salt solution in an oven at 120 ° C.
  • the redox material of the present invention can be obtained by firing the metal oxide support from which the solvent has been removed and dried in this manner. This calcination can be performed at a temperature generally used in the synthesis of a metal oxide, for example, a temperature of 500 to 1100 ° C.
  • thermochemical water splitting using the redox material of the present invention.
  • a redox material having a highly oxidized redox metal oxide is heated to produce oxygen from the highly oxidized redox metal oxide.
  • a redox material having a low oxidation state redox metal oxide and oxygen is heated to produce oxygen from the highly oxidized redox metal oxide.
  • a redox material having a low oxidation state redox metal oxide and oxygen and contacting the redox material of the present invention having a low oxidation state redox metal oxide with water. Oxidizing the low oxidation state redox metal oxide and reducing water, thereby obtaining a redox material having a high oxidation state redox metal oxide and hydrogen.
  • the redox material of the present invention by using the redox material of the present invention, desorption of oxygen from the highly oxidized redox metal oxide can be achieved at a relatively low temperature.
  • the redox metal oxide can be achieved at a temperature of 1300 ° C. or lower, 1200 ° C. or lower, 1100 ° C. or lower, or 1000 ° C. or lower.
  • this heating can be performed in an inert atmosphere, particularly a rare gas atmosphere such as a nitrogen atmosphere or an argon atmosphere, to promote oxygen desorption.
  • hydrogen can be generated by reacting a redox metal oxide in a low oxidation state with water at a relatively low temperature, for example, Redox metal oxides can be achieved at temperatures of 1100 ° C. or lower, 1000 ° C. or lower, 900 ° C. or lower, or 800 ° C. or lower.
  • Cetyltrimethylammonium chloride was dissolved in water at 0.5 mol / L. The resulting aqueous solution was stirred for 2 hours to self-align cetyltrimethylammonium chloride. Next, tetraethoxysilane and aqueous ammonia were added to a solution in which cetyltrimethylammonium chloride was self-aligned to bring the pH of the solution to 9.5.
  • tetraethoxysilane was hydrolyzed for 30 hours, and silica was deposited around the arranged cetyltrimethylammonium chloride to form secondary particles composed of primary particles having nano-sized pores.
  • silica was deposited around the arranged cetyltrimethylammonium chloride to form secondary particles composed of primary particles having nano-sized pores.
  • nitric acid was added to the aqueous solution to adjust the pH to 7, and the secondary particles were further aggregated and aged for 1 hour to obtain a porous silica carrier precursor.
  • the obtained porous silica carrier precursor was washed with ethanol water, filtered, dried, and calcined in air at 800 ° C. for 2 hours to obtain a porous silica carrier used in the present invention.
  • carrier was about 2.7 nm.
  • the obtained porous silica support had not only pores resulting from the internal pore structure of silica but also pores slightly over 10 nm resulting from the gaps between the primary particles of silica.
  • redox metal oxide As the redox metal oxide, a perovskite type composition of LaMnO 3 (Example 1), LaMn 0.8 Fe 0.2 O 3 (Example 2), and CeFeO 3 (Example 3), and CeMnO 4 (Example) 4) and CeMn 0.8 Fe 0.2 O 4- ⁇ (Example 5) were supported on a porous silica support.
  • the loading is such that the number of moles of transition metal in the redox metal oxide is 0.12 mol / 100 g-support, and the number of moles of all metals in the redox metal oxide is 0.24 mol / 100 g-support. It was done like that.
  • the loading of the redox metal oxide on the porous silica support was performed by a water absorption supporting method generally used in automobile catalysts.
  • Example 1 about 0.5 mol / L lanthanum nitrate, about 0.5 mol / L manganese nitrate, and about 1.2 mol / L citric acid as a stabilizer were added to distilled water. In addition, a solution was obtained and this solution was stored for 2 hours. Thereafter, the porous silica carrier in a dry state was added to this solution, and the mixture was stirred until no bubbles were generated from the porous silica carrier while providing ultrasonic waves.
  • the water-absorbed porous silica support is separated from the solution by filtration, dried at 250 ° C., and calcined at 800 ° C. for 2 hours to carry the perovskite type lanthanum-manganese composite metal oxide as a redox metal oxide.
  • a porous silica support was obtained.
  • the supported amounts of lanthanum and manganese were 0.12 mol / 100 g-support, respectively.
  • FIG. 1 shows a HAADF-STEM image of the redox material of Example 3 obtained by supporting a perovskite-type composite metal oxide on a porous silica carrier.
  • the portion corresponding to the internal pore structure of the porous silica support is shown in white, and therefore the perovskite-type composite metal oxide as the redox metal oxide is shown in the internal fine structure of the porous silica support. It is understood that it is carried within the pore structure.
  • FIG. 1 shows a HAADF-STEM image of the redox material of Example 3 obtained by supporting a perovskite-type composite metal oxide on a porous silica carrier.
  • the perovskite type composite metal oxide is supported in the internal pore structure of the porous silica support as particles having a size of about 2 to 3 nm.
  • HAADF-STEM forms an image by a phenomenon in which an electron beam is scattered in proportion to the square of the element mass.
  • each of the redox materials of Examples 1 to 5 was heated to 1000 ° C. in a nitrogen atmosphere to desorb oxygen, and then heated to 800 ° C. in a steam atmosphere to generate hydrogen.
  • the obtained results are shown in Table 1.
  • the oxygen desorption amount and the hydrogen generation amount are amounts ( ⁇ mol / g-redox metal oxide) with respect to the mass of the redox metal oxide such as a perovskite-type composite metal oxide.
  • a redox metal oxide As a redox metal oxide, a composite metal oxide having a composition of Ce 0.9 Fe 0.1 O 1.5 (Comparative Example 1) and a composition of Ce 0.9 Mn 0.1 O 2 (Comparative Example 1) A fluorite-type composite metal oxide was obtained by a coprecipitation method. The obtained redox metal oxide had a particle shape of about 2 to 3 nm.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Combustion & Propulsion (AREA)
  • Inorganic Chemistry (AREA)
  • Catalysts (AREA)
  • Oxygen, Ozone, And Oxides In General (AREA)

Abstract

The present invention provides: an improved redox material which can be used for thermochemical water decomposition; and a method for producing hydrogen using this redox material. A redox material for thermochemical water decomposition of the present invention comprises a redox metal oxide, which is selected from the group consisting of perovskite composite metal oxides, fluorite composite metal oxides and combinations of those oxides, and a metal oxide carrier. The redox metal oxide is dispersed in the metal oxide carrier, thereby being supported by the metal oxide carrier. In a method for producing hydrogen of the present invention, water is decomposed into hydrogen and oxygen by means of oxidation and reduction of the redox material of the present invention.

Description

熱化学水分解用レドックス材料及び水素製造方法Redox material for thermochemical water splitting and hydrogen production method
 本発明は、熱化学水分解のためのレドックス材料に関する。
〈関連技術〉
The present invention relates to a redox material for thermochemical water splitting.
<Related technologies>
 近年、クリーンエネルギーである水素をエネルギー源として用いることが多く提案されている。水素の製造のためには、炭化水素燃料を用いた水蒸気改質が一般的に行われている。また、近年では、水の分解、特に熱化学水分解によって、水から水素を得ることも考慮されている。 Recently, many proposals have been made to use hydrogen, which is clean energy, as an energy source. For the production of hydrogen, steam reforming using a hydrocarbon fuel is generally performed. In recent years, it has also been considered to obtain hydrogen from water by water decomposition, particularly thermochemical water decomposition.
 熱化学水分解法は、化学反応を組み合わせることによって水の直接熱分解の場合よりも低い温度で水の分解を行わせる方法である。具体的には例えば、熱化学水分解法では、下記のように酸化状態の異なる金属酸化物間の酸化還元反応を用いて、水を水素と酸素とに分解する(MOは金属酸化物):
 MO(高酸化状態)       → MO(低酸化状態) + O (吸熱反応)
 MO(低酸化状態) + HO → MO(高酸化状態) + H (発熱反応)
 全反応 HO→H+1/2O
The thermochemical water splitting method is a method in which water is split at a lower temperature than in the case of direct water splitting by combining chemical reactions. Specifically, for example, in the thermochemical water splitting method, water is decomposed into hydrogen and oxygen using a redox reaction between metal oxides having different oxidation states as follows (MO is a metal oxide):
MO (high oxidation state) → MO (low oxidation state) + O 2 (endothermic reaction)
MO (low oxidation state) + H 2 O → MO (high oxidation state) + H 2 (exothermic reaction)
Total reaction H 2 O → H 2 + 1 / 2O 2
 このような熱化学水分解法では、反応に必要とされる温度、特に高酸化状態の金属酸化物を低酸化状態の金属酸化物と酸素とに分解する反応に必要とされる温度を低下させることが重要な課題となっている。 In such a thermochemical water splitting method, the temperature required for the reaction, in particular, the temperature required for the reaction of decomposing the highly oxidized metal oxide into the low oxidized metal oxide and oxygen is reduced. Has become an important issue.
 これに関して例えば、”Reactive ceramics of CeO −MO (M=Mn, Fe, Ni, Cu) for H generation by two−step water splitting using concentrated solar thermal energy”、H. Kaneko等、Energy、Volume 32、Issue 5、May 2007、pp.656−663では、CeO−MO(MO=MnO、Fe、NiO、CuO)等の蛍石構造を有する複合金属酸化物が、熱化学水分解法のために良好に用いられるとしている。具体的には、この文献では、このような複合金属酸化物を用いる場合、1500℃前後の温度で高酸化状態の金属酸化物から低酸化状態の金属酸化物への還元を行えるとしている。 In this regard, for example, “Reactive ceramics of CeO 2 -MO x (M = Mn, Fe, Ni, Cu) for H 2 generation by two-water splitting using concentrated thermal energy.” Kaneko et al., Energy, Volume 32, Issue 5, May 2007, pp. In 656-663, a composite metal oxide having a fluorite structure such as CeO 2 —MO x (MO x = MnO, Fe 2 O 3 , NiO, CuO) is used favorably for the thermochemical water splitting method Yes. Specifically, in this document, when such a composite metal oxide is used, reduction from a highly oxidized metal oxide to a low oxidized metal oxide can be performed at a temperature of about 1500 ° C.
 また、特開2008−94636では、80℃/分よりも大きい加熱速度を用いることによって高酸化状態の金属酸化物から低酸化状態の金属酸化物への還元を比較的低い温度で効率的に行えるとしている。具体的には、この文献では、このような大きい加熱速度の使用によって、1500℃前後の温度で高酸化状態の金属酸化物から低酸化状態の金属酸化物への還元を効率的に行えるとしている。 Japanese Patent Application Laid-Open No. 2008-94636 can efficiently reduce a highly oxidized metal oxide to a low oxidized metal oxide at a relatively low temperature by using a heating rate higher than 80 ° C./min. It is said. Specifically, in this document, it is said that the reduction from a highly oxidized metal oxide to a low oxidized metal oxide can be efficiently performed at a temperature around 1500 ° C. by using such a large heating rate. .
 なお、自動車等の排ガス浄化の分野においては、貴金属等の触媒成分を担持する多孔質金属酸化物担体として、アルミナ、多孔質シリカ等を用いることが知られている。 In the field of exhaust gas purification for automobiles and the like, it is known to use alumina, porous silica or the like as a porous metal oxide carrier that supports a catalyst component such as a noble metal.
 例えば、本件発明者による特開2008−12382(米国特許出願公開US2009/286677A1に対応)で提案されている排ガス浄化触媒は、内部細孔構造を有するシリカからなる多孔質シリカ担体、及び多孔質シリカ担体の内部細孔構造内に担持されているペロフスカイト型複合金属酸化物の粒子を有し、且つ多孔質シリカ担体の細孔分布において、シリカの一次粒子間の間隙に起因するピークが、3~100nmの範囲にある。 For example, the exhaust gas purifying catalyst proposed in Japanese Patent Application Laid-Open No. 2008-12382 (corresponding to US Patent Application Publication US2009 / 286777A1) by the present inventor is a porous silica carrier composed of silica having an internal pore structure, and porous silica The perovskite-type composite metal oxide particles supported in the internal pore structure of the support, and in the pore distribution of the porous silica support, a peak due to the gap between the primary particles of silica is 3 to It is in the range of 100 nm.
 本発明では、熱化学水分解のために用いることができる改良された熱化学水分解用レドックス材料、特に比較的低い温度での熱化学水分解のために用いることができる改良された熱化学水分解用レドックス材料を提供する。 In the present invention, an improved redox material for thermochemical water splitting that can be used for thermochemical water splitting, particularly improved thermochemical water that can be used for thermochemical water splitting at relatively low temperatures. A redox material for decomposition is provided.
 本発明の熱化学水分解用レドックス材料は、ペロフスカイト型複合金属酸化物、蛍石型複合金属酸化物、及びそれらの組み合わせからなる群より選択されるレドックス金属酸化物、並びに金属酸化物担体を有し、且つレドックス金属酸化物が金属酸化物担体に分散して担持されている。なお、本発明に関してシリカの「内部細孔構造」とは、シリカを構成するケイ素原子及び酸素原子によって形成される規則的に配列した分子レベルの細孔を意味している。 The redox material for thermochemical water splitting of the present invention has a redox metal oxide selected from the group consisting of perovskite type composite metal oxides, fluorite type composite metal oxides, and combinations thereof, and a metal oxide support. In addition, the redox metal oxide is dispersed and supported on the metal oxide support. In the present invention, “internal pore structure” of silica means regularly arranged molecular level pores formed by silicon atoms and oxygen atoms constituting silica.
 また本発明では、本発明の熱化学水分解用レドックス材料を用いて水を分解して、水素を生成する方法を提供する。熱化学水分解によって水素を製造するこの方法は、(a)高酸化状態のレドックス金属酸化物を有する本発明のレドックス材料を加熱して、高酸化状態のレドックス金属酸化物から酸素を脱離させ、それによって低酸化状態のレドックス金属酸化物を有するレドックス材料、及び酸素を得ること、及び(b)低酸化状態のレドックス金属酸化物を有するレドックス材料に水を接触させて、低酸化状態のレドックス金属酸化物を酸化し且つ水を還元し、それによって高酸化状態のレドックス金属酸化物を有するレドックス材料、及び水素を得ることを含む。 Also, the present invention provides a method for generating hydrogen by decomposing water using the redox material for thermochemical water splitting of the present invention. This method of producing hydrogen by thermochemical water splitting comprises (a) heating the redox material of the present invention having a highly oxidized redox metal oxide to desorb oxygen from the highly oxidized redox metal oxide. A redox material having a low oxidation state redox metal oxide, and oxygen, and (b) contacting the redox material having a low oxidation state redox metal oxide with water to reduce the low oxidation state redox Oxidizing the metal oxide and reducing water, thereby obtaining a redox material having a highly oxidized redox metal oxide, and hydrogen.
実施例3で得たレドックス材料のHAADF−STEM像である。3 is a HAADF-STEM image of the redox material obtained in Example 3. FIG.
 〔熱化学水分解用レドックス材料〕
 本発明の熱化学水分解用レドックス材料は、ペロフスカイト型複合金属酸化物、蛍石型複合金属酸化物、及びそれらの組み合わせからなる群より選択されるレドックス金属酸化物、並び金属酸化物担体を有し、且つレドックス金属酸化物が金属酸化物担体に分散して担持されている。なお、本発明に関しては、熱化学水分解のために酸化・還元される金属酸化物を「レドックス酸化物」として言及する。
[Redox materials for thermochemical water splitting]
The redox material for thermochemical water splitting of the present invention has a redox metal oxide selected from the group consisting of perovskite type composite metal oxides, fluorite type composite metal oxides, and combinations thereof, and a metal oxide support. In addition, the redox metal oxide is dispersed and supported on the metal oxide support. In the present invention, a metal oxide that is oxidized and reduced for thermochemical water splitting is referred to as “redox oxide”.
 本発明の熱化学分解用レドックス材料では、ペロフスカイト型複合金属酸化物等のレドックス金属酸化物が金属酸化物担体に分散して担持されており、それによってレドックス金属酸化物が単独で存在する場合と比較して、レドックス金属酸化物の粒子径を小さく維持することができる。このような比較的小さい粒子径は、予想外に、比較的低い温度で、熱化学水分解のためのレドックス金属酸化物の酸化還元反応、特に高酸化状態のレドックス金属酸化物から低酸化状態のレドックス金属酸化物への還元反応を可能にする。 In the redox material for thermochemical decomposition of the present invention, a redox metal oxide such as a perovskite-type composite metal oxide is dispersed and supported on a metal oxide support, whereby the redox metal oxide exists alone. In comparison, the particle size of the redox metal oxide can be kept small. Unexpectedly, such a relatively small particle size can be obtained at a relatively low temperature at redox metal oxide redox reactions for thermochemical water splitting, especially from high oxidation state redox metal oxides to low oxidation state. Enables reduction reaction to redox metal oxides.
 理論に限定されるものではないが、比較的小さい粒子径を有するレドックス金属酸化物では、表面エネルギーが大きく、それによって高酸化状態のレドックス金属酸化物を加熱した際に酸素が不安定化しやすく、したがって比較的低温においても低酸化状態のレドックス金属酸化物への還元が行われるものと考えられる。 Although not limited to theory, in a redox metal oxide having a relatively small particle size, the surface energy is large, whereby oxygen is easily destabilized when heating a highly oxidized redox metal oxide, Therefore, it is considered that reduction to a redox metal oxide in a low oxidation state is performed even at a relatively low temperature.
 このような本発明のレドックス材料は、それ自体を成形して用いるだけでなく、モノリス基材、例えばセラミックハニカムにコートして用いることもできる。 Such a redox material of the present invention can be used not only by molding itself but also by coating a monolith substrate, for example, a ceramic honeycomb.
 (金属酸化物担体)
 レドックス金属酸化物を担持するための金属酸化物担体としては、任意の金属酸化物担体を用いることができる。ただし、金属酸化物担体は、レドックス金属酸化物の高分散担持を可能にする担体であることが好ましい。
(Metal oxide support)
Any metal oxide support can be used as the metal oxide support for supporting the redox metal oxide. However, the metal oxide support is preferably a support that enables highly dispersed support of the redox metal oxide.
 このような金属酸化物担体としては、内部細孔構造を有するシリカからなる多孔質シリカ担体を用い、且つレドックス金属酸化物を、多孔質シリカ担体の内部細孔構造内に担持することができる。この場合、レドックス金属酸化物が多孔質シリカ担体の内部細孔構造内で固定されることによって、高温状態においてレドックス金属酸化物が移動してシンタリングし、それによって粒子径が大きくなることを抑制できる。これに関して例えば、シリカの内部細孔構造に起因するピークは、多孔質シリカ担体の細孔分布において、1~5nmの範囲であってよい。 As such a metal oxide support, a porous silica support made of silica having an internal pore structure can be used, and a redox metal oxide can be supported in the internal pore structure of the porous silica support. In this case, the redox metal oxide is fixed in the internal pore structure of the porous silica carrier, and the redox metal oxide moves and sinters at a high temperature state, thereby suppressing the particle size from increasing. it can. In this regard, for example, the peak due to the internal pore structure of silica may be in the range of 1-5 nm in the pore distribution of the porous silica support.
 特にこのような多孔質シリカ担体としては、細孔分布におけるシリカの一次粒子間の間隙に起因するピークが3~100nm、特に5~50nmの範囲にある多孔質シリカ担体を用いることができる。 In particular, as such a porous silica carrier, a porous silica carrier having a peak due to a gap between primary particles of silica in a pore distribution in the range of 3 to 100 nm, particularly 5 to 50 nm can be used.
 このように、内部細孔構造を有する多孔質シリカ担体の細孔分布において、シリカの一次粒子間の間隙に起因するピークが、上記の範囲にあること、すなわち多孔質シリカ担体が比較的小さい一次粒子を有していることは、多孔質シリカ担体の内部細孔構造内に担持されているレドックス金属酸化物と雰囲気との接触を増加させ、それによってレドックス酸化物の酸化還元を促進すると考えられる。 Thus, in the pore distribution of the porous silica support having an internal pore structure, the peak due to the gap between the primary particles of silica is in the above range, that is, the porous silica support is relatively small in primary. Having particles is thought to increase the contact between the atmosphere and the redox metal oxide supported in the internal pore structure of the porous silica support, thereby promoting redox oxide redox. .
 このような多孔質シリカ担体は例えば、水性溶媒中において、アルキルアミンを自己配列させ、この溶液にアルコキシシラン及び随意の塩基を加えて、自己配列しているアルキルアミンをテンプレートとして用いて、その周囲で多孔質シリカ担体前駆体を析出させ、これを焼成することによって得ることができる。 Such a porous silica support is prepared by, for example, self-aligning an alkylamine in an aqueous solvent, adding an alkoxysilane and an optional base to the solution, and using the self-aligned alkylamine as a template. Can be obtained by precipitating a porous silica carrier precursor and firing it.
 したがって例えば、この方法では、水性溶媒としてエタノール水溶液を用い、アルキルアミンとしてヘキサデシルアミンを用い、アルコキシシランとしてテトラエトキシシランを用い、且つ随意の塩基としてアンモニアを用いることができる。 Thus, for example, this method can use an aqueous ethanol solution as the aqueous solvent, hexadecylamine as the alkylamine, tetraethoxysilane as the alkoxysilane, and ammonia as an optional base.
 多孔質シリカ担体の製造方法で用いるアルキルアミン及びアルコキシシランは、意図する多孔質シリカ担体の一次粒子径、細孔分布等に従って選択することができる。例えば、多孔質シリカ担体の製造において使用するアルキルアミンのアルキル鎖の長さを長くすると、内部細孔構造の細孔径を大きくすることができる。 The alkylamine and alkoxysilane used in the method for producing a porous silica support can be selected according to the intended primary particle diameter, pore distribution, etc. of the porous silica support. For example, if the length of the alkyl chain of the alkylamine used in the production of the porous silica support is increased, the pore diameter of the internal pore structure can be increased.
 具体的には、アルキルアミンとして、セチル(すなわちC1633)トリメチルアンモニウムクロリドを用いると、内部細孔構造の細孔径を約2.7nmにすることができ、ラウリル(すなわちC1225)トリメチルアンモニウムクロリドを用いると、内部細孔構造の細孔径を約2.0nmにすることができ、テトラコシル(すなわちC2449)トリメチルアンモニウムクロリドを用いると、内部細孔構造の細孔径を約4.0nmにすることができる。 Specifically, when cetyl (ie, C 16 H 33 ) trimethylammonium chloride is used as the alkylamine, the pore size of the internal pore structure can be reduced to about 2.7 nm, and lauryl (ie, C 12 H 25 ). When trimethylammonium chloride is used, the pore diameter of the internal pore structure can be about 2.0 nm, and when tetracosyl (ie, C 24 H 49 ) trimethylammonium chloride is used, the pore diameter of the internal pore structure is about 4 nm. .0 nm.
 (レドックス金属酸化物)
 本発明のレドックス材料において用いられるレドックス金属酸化物は、ペロフスカイト型複合金属酸化物、蛍石型複合金属酸化物、又はそれらの組み合わせである。
(Redox metal oxide)
The redox metal oxide used in the redox material of the present invention is a perovskite type composite metal oxide, a fluorite type composite metal oxide, or a combination thereof.
 レドックス金属酸化物は、20nm以下、15nm以下、10nm以下、又は5nm以下の平均粒子径、例えば1.5nm~5nmの平均粒子径で、金属酸化物担体に分散して担持されていてよい。 The redox metal oxide may be dispersed and supported on the metal oxide support with an average particle size of 20 nm or less, 15 nm or less, 10 nm or less, or 5 nm or less, for example, an average particle size of 1.5 nm to 5 nm.
 また、金属酸化物担体に対するレドックス金属酸化物の担持量は、レドックス金属酸化物の粒成長を抑制し、且つ熱化学水分解に関する十分な性能を提供できる範囲で選択することができる。したがって例えば、レドックス金属酸化物の担持量は、金属酸化物担体の質量に対して、レドックス金属酸化物における遷移金属のモル数が、0.01mol/g以上、又は0.05mol/g以上であって、100mol/g以下、10mol/g以下、又は1mol/g以下、又は0.5mol/g以下となるようにすることができる。 Further, the amount of the redox metal oxide supported on the metal oxide support can be selected within a range in which the grain growth of the redox metal oxide can be suppressed and sufficient performance relating to thermochemical water splitting can be provided. Therefore, for example, the loading amount of the redox metal oxide is such that the number of moles of the transition metal in the redox metal oxide is 0.01 mol / g or more, or 0.05 mol / g or more with respect to the mass of the metal oxide support. And 100 mol / g or less, 10 mol / g or less, or 1 mol / g or less, or 0.5 mol / g or less.
 具体的には、ペロフスカイト型複合金属酸化物は、希土類及び遷移金属の複合金属酸化物であってよい。この場合には、遷移金属の酸化数が変化することによって、ペロフスカイト型複合金属酸化物がレドックス金属酸化物として機能すると考えられる。より具体的には、ペロフスカイト型複合金属酸化物は、下記の式で表されるペロフスカイト型複合金属酸化物であってよい:
 A
 (Aは、希土類元素、特にランタンLa、ストロンチウムSr、セリウムCe、バリウムBa、カルシウムCa、及びこれらの組み合わせからなる群より選択され;
 Bは、遷移金属元素、特にコバルトCo、鉄Fe、ニッケルNi、クロムCr、マンガンMn、及びこれらの組み合わせからなる群より選択され;
 Oは酸素であり;
 a+b=2であり;且つ
 a:b=1.2:0.8~0.8~1.2、特に1.1:0.9~0.9:1.1である)。
Specifically, the perovskite complex metal oxide may be a complex metal oxide of a rare earth and a transition metal. In this case, it is considered that the perovskite type composite metal oxide functions as a redox metal oxide by changing the oxidation number of the transition metal. More specifically, the perovskite complex metal oxide may be a perovskite complex metal oxide represented by the following formula:
A a B b O 3
(A is selected from the group consisting of rare earth elements, particularly lanthanum La, strontium Sr, cerium Ce, barium Ba, calcium Ca, and combinations thereof;
B is selected from the group consisting of transition metal elements, particularly cobalt Co, iron Fe, nickel Ni, chromium Cr, manganese Mn, and combinations thereof;
O is oxygen;
a + b = 2; and a: b = 1.2: 0.8 to 0.8 to 1.2, especially 1.1: 0.9 to 0.9: 1.1).
 すなわち例えば、ペロフスカイト型複合金属酸化物は、下記の式で表される複合金属酸化物であってよい(x=0.1~0.4):
 LaMn;又は、
 LaMnb−xFe
That is, for example, the perovskite-type composite metal oxide may be a composite metal oxide represented by the following formula (x = 0.1 to 0.4):
La a Mn b O 3 ; or
La a Mn b-x Fe x O 3
 ここで、ランタンのような希土類と並んで、遷移金属としてのマンガンを含有し、このマンガンの一部が鉄によって置換されているペロフスカイト型複合金属酸化物は、比較的低温で効率的に酸化還元させることができ、したがって熱化学水分解特性に関して特に好ましい。 Here, along with rare earths such as lanthanum, perovskite-type complex metal oxides containing manganese as a transition metal and part of this manganese substituted with iron are effectively reduced and reduced at relatively low temperatures. And is therefore particularly preferred with respect to thermochemical water splitting properties.
 また具体的には、蛍石型複合金属酸化物は、希土類及び遷移金属の複合金属酸化物であってよい。この場合には、遷移金属の酸化数が変化することによって、蛍石型複合金属酸化物がレドックス金属酸化物として機能すると考えられる。より具体的には、蛍石型複合金属酸化物は、下記の式で表される蛍石型複合金属酸化物であってよい:
 A a1 a2
 (Aは、希土類元素、特にランタンLa、ストロンチウムSr、セリウムCe、バリウムBa、カルシウムCa、及びこれらの組み合わせからなる群より選択され;
 Aは、遷移金属元素、特にコバルトCo、鉄Fe、ニッケルNi、クロムCr、マンガンMn、及びこれらの組み合わせからなる群より選択され;
 Oは酸素であり;
 a1+a2=2であり;且つ
 a1:a2=1.3:0.7~0.7:1.3、特に1.2:0.8~0.8:1.2、より特に1.1:0.9~0.9:1.1である)。
Specifically, the fluorite-type composite metal oxide may be a composite metal oxide of a rare earth and a transition metal. In this case, it is considered that the fluorite-type composite metal oxide functions as a redox metal oxide by changing the oxidation number of the transition metal. More specifically, the fluorite-type composite metal oxide may be a fluorite-type composite metal oxide represented by the following formula:
A 1 a1 A 2 a2 O 4
(A 1 is a rare earth element, particularly, lanthanum La, strontium Sr, cerium Ce, barium Ba, calcium Ca, and is selected from the group consisting of;
A 2 is selected from the group consisting of transition metal elements, particularly cobalt Co, iron Fe, nickel Ni, chromium Cr, manganese Mn, and combinations thereof;
O is oxygen;
a1 + a2 = 2; and a1: a2 = 1.3: 0.7 to 0.7: 1.3, especially 1.2: 0.8 to 0.8: 1.2, more particularly 1.1: 0.9 to 0.9: 1.1).
 すなわち例えば、蛍石型複合金属酸化物は、下記の式で表される複合金属酸化物であってよい(x=0.1~0.4であり、且つδは、酸素欠陥による酸素の減少分):
 Cea1Mna2;又は
 CeMnb−xFe4−δ
That is, for example, the fluorite-type composite metal oxide may be a composite metal oxide represented by the following formula (x = 0.1 to 0.4, and δ is a decrease in oxygen due to oxygen defects. Min):
Ce a1 Mn a2 O 4; or Ce a Mn b-x Fe x O 4-δ
 ここで、セリウムのような希土類と並んで、遷移金属としてのマンガンを含有し、このマンガンの一部が鉄によって置換されている蛍型複合金属酸化物は、比較的低温で効率的に酸化還元させることができ、したがって熱化学水分解特性に関して特に好ましい。 Here, along with rare earth such as cerium, the fluorinated complex metal oxide that contains manganese as a transition metal and in which a part of this manganese is replaced by iron is effectively reduced and reduced at a relatively low temperature. And is therefore particularly preferred with respect to thermochemical water splitting properties.
 金属酸化物担体へのレドックス金属酸化物の担持は、レドックス金属酸化物を構成する金属の塩の溶液を金属酸化物担体に含浸させ、得られた金属酸化物担体を乾燥及び焼成することによって達成できる。レドックス金属酸化物を構成する金属の塩としては、硝酸塩、塩酸塩のような無機酸塩、酢酸塩のような有機酸塩を挙げることができる。 The support of the redox metal oxide on the metal oxide support is achieved by impregnating the metal oxide support with a solution of a metal salt constituting the redox metal oxide, and drying and calcining the obtained metal oxide support. it can. Examples of the metal salt constituting the redox metal oxide include inorganic acid salts such as nitrates and hydrochlorides, and organic acid salts such as acetates.
 この塩溶液からの溶媒の除去及び乾燥は、任意の方法及び任意の温度で行うことができる。これは例えば、塩溶液を含浸させた金属酸化物担体を120℃のオーブンに入れて達成できる。このようにして溶媒を除去及び乾燥した金属酸化物担体を焼成して、本発明のレドックス材料を得ることができる。この焼成は、金属酸化物の合成において一般的に用いられる温度、例えば500~1100℃の温度で行うことができる。 The removal of the solvent from the salt solution and drying can be performed by any method and at any temperature. This can be accomplished, for example, by placing a metal oxide support impregnated with a salt solution in an oven at 120 ° C. The redox material of the present invention can be obtained by firing the metal oxide support from which the solvent has been removed and dried in this manner. This calcination can be performed at a temperature generally used in the synthesis of a metal oxide, for example, a temperature of 500 to 1100 ° C.
 なお、上記のような多孔質シリカ担体、及びこのような多孔質シリカ担体へのレドックス金属酸化物の担持に関しては、特開2008−12382(米国特許出願公開US2009/286677A1に対応)の記載を参照することができる。この文献及び本明細書で引用している他の文献の記載は、ここで参照して本明細書の記載に含める。 Regarding the porous silica carrier as described above and the loading of the redox metal oxide on such a porous silica carrier, refer to the description of JP-A-2008-12382 (corresponding to US Patent Application Publication US2009 / 286777A1). can do. The description of this document and other documents cited herein are hereby incorporated herein by reference.
 〔本発明の水素製造方法〕
 本発明の水素製造方法では、本発明のレドックス材料を用いる熱化学水分解によって、水素を製造する。具体的には、熱化学水分解によって水素を製造する本発明の方法では、(a)高酸化状態のレドックス金属酸化物を有するレドックス材料を加熱して、高酸化状態のレドックス金属酸化物から酸素を脱離させ、それによって低酸化状態のレドックス金属酸化物を有するレドックス材料、及び酸素を得ること、及び(b)低酸化状態のレドックス金属酸化物を有する本発明のレドックス材料に水を接触させて、低酸化状態のレドックス金属酸化物を酸化し且つ水を還元し、それによって高酸化状態のレドックス金属酸化物を有するレドックス材料及び水素を得ることを含む。
[Method for producing hydrogen of the present invention]
In the hydrogen production method of the present invention, hydrogen is produced by thermochemical water splitting using the redox material of the present invention. Specifically, in the method of the present invention for producing hydrogen by thermochemical water splitting, (a) a redox material having a highly oxidized redox metal oxide is heated to produce oxygen from the highly oxidized redox metal oxide. To obtain a redox material having a low oxidation state redox metal oxide and oxygen, and (b) contacting the redox material of the present invention having a low oxidation state redox metal oxide with water. Oxidizing the low oxidation state redox metal oxide and reducing water, thereby obtaining a redox material having a high oxidation state redox metal oxide and hydrogen.
 また、本発明の水素製造方法では、本発明のレドックス材料を用いていることによって、比較的低い温度で高酸化状態のレドックス金属酸化物からの酸素の脱離を達成することができ、これは例えばレドックス金属酸化物を1300℃以下、1200℃以下、1100℃以下、又は1000℃以下の温度で達成することができる。ここで、この加熱は、不活性雰囲気、特に窒素雰囲気、又はアルゴン雰囲気のような希ガス雰囲気において行って、酸素の脱離を促進することができる。 Further, in the hydrogen production method of the present invention, by using the redox material of the present invention, desorption of oxygen from the highly oxidized redox metal oxide can be achieved at a relatively low temperature. For example, the redox metal oxide can be achieved at a temperature of 1300 ° C. or lower, 1200 ° C. or lower, 1100 ° C. or lower, or 1000 ° C. or lower. Here, this heating can be performed in an inert atmosphere, particularly a rare gas atmosphere such as a nitrogen atmosphere or an argon atmosphere, to promote oxygen desorption.
 本発明の水素製造方法では、本発明のレドックス材料を用いていることによって、比較的低い温度で低酸化状態のレドックス金属酸化物と水を反応させて水素を生成することができ、これは例えばレドックス金属酸化物を1100℃以下、1000℃以下、900℃以下、又は800℃以下の温度で達成することができる。 In the hydrogen production method of the present invention, by using the redox material of the present invention, hydrogen can be generated by reacting a redox metal oxide in a low oxidation state with water at a relatively low temperature, for example, Redox metal oxides can be achieved at temperatures of 1100 ° C. or lower, 1000 ° C. or lower, 900 ° C. or lower, or 800 ° C. or lower.
 以下、本発明を実施例に基づき更に説明するが、本発明はこれらに限定されるものではない。 Hereinafter, the present invention will be further described based on examples, but the present invention is not limited thereto.
 〔実施例1~5〕
 (多孔質シリカ担体の合成)
 金属酸化物担体としての多孔質シリカの合成は、下記のようにして行った。
[Examples 1 to 5]
(Synthesis of porous silica support)
The synthesis of porous silica as a metal oxide support was performed as follows.
 水に対して、セチルトリメチルアンモニウムクロリドを0.5mol/L溶解した。得られた水溶液を2時間にわたって撹拌して、セチルトリメチルアンモニウムクロリドを自己配列させた。次に、セチルトリメチルアンモニウムクロリドを自己配列させた溶液に、テトラエトキシシランとアンモニア水を添加して、溶液のpHを9.5にした。 Cetyltrimethylammonium chloride was dissolved in water at 0.5 mol / L. The resulting aqueous solution was stirred for 2 hours to self-align cetyltrimethylammonium chloride. Next, tetraethoxysilane and aqueous ammonia were added to a solution in which cetyltrimethylammonium chloride was self-aligned to bring the pH of the solution to 9.5.
 この溶液中において、テトラエトキシシランを30時間にわたって加水分解して、配列したセチルトリメチルアンモニウムクロリドの周りにシリカを析出させて、ナノサイズの細孔を有する一次粒子からなる二次粒子を形成した。次にこの水溶液に少量の硝酸を加えてpH7にし、1時間にわたって二次粒子を更に凝集及び熟成させて、多孔質シリカ担体前駆体を得た。 In this solution, tetraethoxysilane was hydrolyzed for 30 hours, and silica was deposited around the arranged cetyltrimethylammonium chloride to form secondary particles composed of primary particles having nano-sized pores. Next, a small amount of nitric acid was added to the aqueous solution to adjust the pH to 7, and the secondary particles were further aggregated and aged for 1 hour to obtain a porous silica carrier precursor.
 その後、得られた多孔質シリカ担体前駆体を、エタノール水で洗浄し、ろ過し、乾燥し、800℃の空気中で2時間にわたって焼成して、本発明において用いる多孔質シリカ担体を得た。なお、得られた多孔質シリカ担体におけるシリカの内部細孔構造に起因する細孔の径は、約2.7nmであった。また、得られた多孔質シリカ担体は、シリカの内部細孔構造に起因する細孔だけでなく、シリカの一次粒子間の間隙に起因する10nm強の細孔も有していた。 Thereafter, the obtained porous silica carrier precursor was washed with ethanol water, filtered, dried, and calcined in air at 800 ° C. for 2 hours to obtain a porous silica carrier used in the present invention. In addition, the diameter of the pore resulting from the internal pore structure of the silica in the obtained porous silica support | carrier was about 2.7 nm. Further, the obtained porous silica support had not only pores resulting from the internal pore structure of silica but also pores slightly over 10 nm resulting from the gaps between the primary particles of silica.
 (レドックス金属酸化物の担持)
 レドックス金属酸化物として、LaMnO(実施例1)、LaMn0.8Fe0.2(実施例2)、及びCeFeO(実施例3)の組成のペロフスカイト型、並びにCeMnO(実施例4)、及びCeMn0.8Fe0.24−δ(実施例5)の組成の蛍石構造複合金属酸化物を、多孔質シリカ担体に担持した。ここで、担持は、レドックス金属酸化物おける遷移金属のモル数が0.12mol/100g−担体であるようにして、レドックス金属酸化物おける全金属のモル数が0.24mol/100g−担体であるようにして行った。また、多孔質シリカ担体へのレドックス金属酸化物の担持は、自動車触媒において一般に行われている吸水担持法によって行った。
(Supporting redox metal oxide)
As the redox metal oxide, a perovskite type composition of LaMnO 3 (Example 1), LaMn 0.8 Fe 0.2 O 3 (Example 2), and CeFeO 3 (Example 3), and CeMnO 4 (Example) 4) and CeMn 0.8 Fe 0.2 O 4-δ (Example 5) were supported on a porous silica support. Here, the loading is such that the number of moles of transition metal in the redox metal oxide is 0.12 mol / 100 g-support, and the number of moles of all metals in the redox metal oxide is 0.24 mol / 100 g-support. It was done like that. In addition, the loading of the redox metal oxide on the porous silica support was performed by a water absorption supporting method generally used in automobile catalysts.
 具体的には、実施例1については、約0.5mol/Lの硝酸ランタン、約0.5mol/Lの硝酸マンガン、及び約1.2mol/Lの安定化剤としてのクエン酸を、蒸留水に加えて、溶液を得、この溶液を2時間にわたって保管した。その後、この溶液に、乾燥状態の多孔質シリカ担体を加え、超音波を提供しながら多孔質シリカ担体から泡が出なくなるまで撹拌した。 Specifically, for Example 1, about 0.5 mol / L lanthanum nitrate, about 0.5 mol / L manganese nitrate, and about 1.2 mol / L citric acid as a stabilizer were added to distilled water. In addition, a solution was obtained and this solution was stored for 2 hours. Thereafter, the porous silica carrier in a dry state was added to this solution, and the mixture was stirred until no bubbles were generated from the porous silica carrier while providing ultrasonic waves.
 吸水させた多孔質シリカ担体をろ過によって溶液から分離し、250℃で乾燥し、800℃で2時間にわたって焼成して、レドックス金属酸化物としてのペロフスカイト型ランタン−マンガン複合金属酸化物を担持している多孔質シリカ担体を得た。ここで、ランタン及びマンガンの担持量は、それぞれ0.12mol/100g−担体であった。 The water-absorbed porous silica support is separated from the solution by filtration, dried at 250 ° C., and calcined at 800 ° C. for 2 hours to carry the perovskite type lanthanum-manganese composite metal oxide as a redox metal oxide. A porous silica support was obtained. Here, the supported amounts of lanthanum and manganese were 0.12 mol / 100 g-support, respectively.
 (レドックス金属酸化物の担持状態の評価)
 ペロフスカイト型複合金属酸化物を多孔質シリカ担体に担持して得た実施例3のレドックス材料についてのHAADF−STEM像を図1に示す。図1のHAADF−STEM像では、多孔質シリカ担体の内部細孔構造に対応する部分が白く写っており、したがってレドックス金属酸化物としてのペロフスカイト型複合金属酸化物が、多孔質シリカ担体の内部細孔構造内に担持されたことが理解される。また、図1のHAADF−STEM像からは、ペロフスカイト型複合金属酸化物が、約2~3nmの大きさの粒子として、多孔質シリカ担体の内部細孔構造内に担持されていることが理解される。なお、HAADF−STEMは、元素質量の二乗に比例して電子線が散乱する現象により画像を形成するものである。
(Evaluation of loading state of redox metal oxide)
FIG. 1 shows a HAADF-STEM image of the redox material of Example 3 obtained by supporting a perovskite-type composite metal oxide on a porous silica carrier. In the HAADF-STEM image of FIG. 1, the portion corresponding to the internal pore structure of the porous silica support is shown in white, and therefore the perovskite-type composite metal oxide as the redox metal oxide is shown in the internal fine structure of the porous silica support. It is understood that it is carried within the pore structure. Further, from the HAADF-STEM image in FIG. 1, it is understood that the perovskite type composite metal oxide is supported in the internal pore structure of the porous silica support as particles having a size of about 2 to 3 nm. The Note that HAADF-STEM forms an image by a phenomenon in which an electron beam is scattered in proportion to the square of the element mass.
 (酸素脱離及び水素生成について特性評価)
 実施例1~5のレドックス材料について、それぞれ、窒素雰囲気において1000℃に加熱して酸素を脱離させ、そしてその後、水蒸気雰囲気において800℃に加熱して水素を生成させた。得られた結果を、表1に示す。なお、表1において、酸素脱離量及び水素生成量はそれぞれ、ペロフスカイト型複合金属酸化物等のレドックス金属酸化物の質量に対する量(μmol/g−レドックス金属酸化物)である。
(Characteristic evaluation of oxygen desorption and hydrogen generation)
Each of the redox materials of Examples 1 to 5 was heated to 1000 ° C. in a nitrogen atmosphere to desorb oxygen, and then heated to 800 ° C. in a steam atmosphere to generate hydrogen. The obtained results are shown in Table 1. In Table 1, the oxygen desorption amount and the hydrogen generation amount are amounts (μmol / g-redox metal oxide) with respect to the mass of the redox metal oxide such as a perovskite-type composite metal oxide.
 〔比較例1及び2〕
 レドックス金属酸化物としてのCe0.9Fe0.11.5(比較例1)の組成の複合金属酸化物、及びCe0.9Mn0.1(比較例1)の組成の蛍石型複合金属酸化物を、共沈法によって得た。得られたレドックス金属酸化物は、2~3nm程度の粒子状の形状であった。
[Comparative Examples 1 and 2]
As a redox metal oxide, a composite metal oxide having a composition of Ce 0.9 Fe 0.1 O 1.5 (Comparative Example 1) and a composition of Ce 0.9 Mn 0.1 O 2 (Comparative Example 1) A fluorite-type composite metal oxide was obtained by a coprecipitation method. The obtained redox metal oxide had a particle shape of about 2 to 3 nm.
 これらのレドックス金属酸化物について、実施例1と同様にして、酸素脱離反応及び水素生成反応を行わせた。ただし、比較例1及び2では、酸素脱離反応を1000℃で行い、且つ水素生成反応を800℃で行ったときには観察可能な程度に反応が進行しなかったので、酸素脱離反応を1400℃で行い、且つ水素生成反応を1000℃で行った。得られた結果を表1に示す。 These redox metal oxides were subjected to an oxygen desorption reaction and a hydrogen generation reaction in the same manner as in Example 1. However, in Comparative Examples 1 and 2, when the oxygen desorption reaction was performed at 1000 ° C. and the hydrogen generation reaction was performed at 800 ° C., the reaction did not proceed to an observable level. And the hydrogen production reaction was carried out at 1000 ° C. The obtained results are shown in Table 1.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 表1からは実施例1~5のレドックス材料は、比較例1及び2のレドックス材料と比較して低温においてさえも、優れた熱化学水分解特性を示すことが理解される。 From Table 1, it is understood that the redox materials of Examples 1 to 5 exhibit superior thermochemical water splitting properties even at low temperatures compared to the redox materials of Comparative Examples 1 and 2.

Claims (10)

  1.  ペロフスカイト型複合金属酸化物、蛍石型複合金属酸化物、及びそれらの組み合わせからなる群より選択されるレドックス金属酸化物、並びに金属酸化物担体を有し、且つ前記レドックス金属酸化物が前記金属酸化物担体に分散して担持されている、熱化学水分解用レドックス材料。 A redox metal oxide selected from the group consisting of perovskite-type composite metal oxides, fluorite-type composite metal oxides, and combinations thereof; and a metal oxide support, wherein the redox metal oxide is the metal oxide A redox material for thermochemical water splitting, dispersed and supported on a material carrier.
  2.  前記レドックス金属酸化物が、20nm以下の平均粒子径で、前記金属酸化物担体に分散して担持されている、請求項1に記載のレドックス材料。 The redox material according to claim 1, wherein the redox metal oxide has an average particle diameter of 20 nm or less and is dispersed and supported on the metal oxide support.
  3.  前記金属酸化物担体が、内部細孔構造を有するシリカからなる多孔質シリカ担体であり、前記レドックス金属酸化物が、前記多孔質シリカ担体の内部細孔構造内に担持されている、請求項1又は2に記載のレドックス材料。 The metal oxide support is a porous silica support made of silica having an internal pore structure, and the redox metal oxide is supported in the internal pore structure of the porous silica support. Or the redox material of 2.
  4.  前記多孔質シリカ担体の細孔分布において、シリカの一次粒子間の間隙に起因するピークが、3~100nmの範囲にある、請求項1~3のいずれかに記載のレドックス材料。 The redox material according to any one of claims 1 to 3, wherein in the pore distribution of the porous silica support, a peak due to a gap between primary particles of silica is in a range of 3 to 100 nm.
  5.  シリカの一次粒子間の間隙に起因する前記ピークが、5~50nmの範囲にある、請求項1~4のいずれかに記載のレドックス材料。 The redox material according to any one of claims 1 to 4, wherein the peak due to a gap between silica primary particles is in a range of 5 to 50 nm.
  6.  前記多孔質シリカ担体の細孔分布において、シリカの内部細孔構造に起因するピークが、1~5nmの範囲にある、請求項1~5のいずれかに記載のレドックス材料。 The redox material according to any one of claims 1 to 5, wherein in the pore distribution of the porous silica support, a peak due to an internal pore structure of silica is in a range of 1 to 5 nm.
  7.  前記ペロフスカイト型複合金属酸化物及び/又は蛍石型複合金属酸化物が、希土類及び遷移金属の複合金属酸化物である、請求項1~6のいずれかに記載のレドックス材料。 The redox material according to any one of claims 1 to 6, wherein the perovskite-type composite metal oxide and / or fluorite-type composite metal oxide is a composite metal oxide of a rare earth and a transition metal.
  8.  (a)高酸化状態の前記レドックス金属酸化物を有する請求項1~7のいずれかに記載の前記レドックス材料を加熱して、高酸化状態の前記レドックス金属酸化物から酸素を脱離させ、それによって低酸化状態の前記レドックス金属酸化物を有する前記レドックス材料、及び酸素を得ること、及び
     (b)低酸化状態の前記レドックス金属酸化物を有する前記レドックス材料に水を接触させて、低酸化状態の前記レドックス金属酸化物を酸化し且つ水を還元し、それによって高酸化状態の前記レドックス金属酸化物を有する前記レドックス材料、及び水素を得ること、
    を含む、熱化学水分解によって水素を製造する方法。
    (A) heating the redox material according to any one of claims 1 to 7 having the highly oxidized redox metal oxide to desorb oxygen from the highly oxidized redox metal oxide; Obtaining the redox material having the redox metal oxide in a low oxidation state and oxygen, and (b) bringing the redox material having the redox metal oxide in a low oxidation state into contact with water, thereby reducing the low oxidation state Oxidizing the redox metal oxide and reducing water, thereby obtaining the redox material having the redox metal oxide in a highly oxidized state, and hydrogen,
    A process for producing hydrogen by thermochemical water splitting.
  9.  前記工程(a)において、前記レドックス材料を1300℃以下の温度に加熱して、低酸化状態の前記レドックス金属酸化物を有する前記レドックス材料、及び酸素を得る、請求項8に記載の方法。 The method according to claim 8, wherein, in the step (a), the redox material is heated to a temperature of 1300 ° C or lower to obtain the redox material having the redox metal oxide in a low oxidation state and oxygen.
  10.  前記工程(b)において、前記レドックス材料を1100℃以下の温度で水と反応させて、高酸化状態の前記レドックス金属酸化物を有する前記レドックス材料、及び水素を得る、請求項8又は9に記載の方法。 The said redox material is made to react with water at the temperature of 1100 degrees C or less in the said process (b), The said redox material which has the said redox metal oxide of a highly oxidized state, and hydrogen are obtained. the method of.
PCT/JP2011/068404 2011-08-05 2011-08-05 Redox material for thermochemical water decomposition and method for producing hydrogen WO2013021506A1 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
DE112011105502.1T DE112011105502B4 (en) 2011-08-05 2011-08-05 Use of a redox material for producing hydrogen by thermochemical water splitting and methods for producing hydrogen
PCT/JP2011/068404 WO2013021506A1 (en) 2011-08-05 2011-08-05 Redox material for thermochemical water decomposition and method for producing hydrogen
JP2011554294A JP5459322B2 (en) 2011-08-05 2011-08-05 Redox material for thermochemical water splitting and hydrogen production method
CN201180012472.3A CN103038158B (en) 2011-08-05 2011-08-05 Thermochemistry water decomposition redox material and hydrogen production method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2011/068404 WO2013021506A1 (en) 2011-08-05 2011-08-05 Redox material for thermochemical water decomposition and method for producing hydrogen

Publications (1)

Publication Number Publication Date
WO2013021506A1 true WO2013021506A1 (en) 2013-02-14

Family

ID=47668051

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/068404 WO2013021506A1 (en) 2011-08-05 2011-08-05 Redox material for thermochemical water decomposition and method for producing hydrogen

Country Status (4)

Country Link
JP (1) JP5459322B2 (en)
CN (1) CN103038158B (en)
DE (1) DE112011105502B4 (en)
WO (1) WO2013021506A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015189787A3 (en) * 2014-06-13 2016-03-17 Sabic Global Technologies B.V. Syngas production from binary and ternary cerium-based oxides
JP2019127430A (en) * 2018-01-26 2019-08-01 国立大学法人 新潟大学 Method of producing hydrogen
JP2019178039A (en) * 2018-03-30 2019-10-17 学校法人関西学院 Method for producing oxygen gas

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104418298A (en) * 2013-09-02 2015-03-18 中国科学院大连化学物理研究所 Method for photothermal decomposition of H2O and/or CO2 of perovskite type active material containing trace precious metals
CN104418299B (en) * 2013-09-02 2017-02-15 中国科学院大连化学物理研究所 Method for carrying out solar thermal decomposition on H2O and/or CO2 employing perovskite dispersed by different carriers
EP3421443B1 (en) * 2016-02-25 2020-11-04 Kyocera Corporation Light-absorbing member, hydrogen production member, and hydrogen production device
CN108313978A (en) * 2018-02-06 2018-07-24 中国科学院上海高等研究院 A kind of Double Perovskite type hydrogen-storing material and its preparation method and application
KR20200101028A (en) * 2019-02-19 2020-08-27 현대자동차주식회사 A nanocomposite for hydrogen production of hydrogen which has improved longevity and the method of manufacture thereof

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07267601A (en) * 1994-03-29 1995-10-17 Daimler Benz Aerospace Ag Hydrogen generating method and device for its implementation
JP2001270701A (en) * 2000-03-28 2001-10-02 Yutaka Tamaura Decomposition method of water
JP2008012382A (en) * 2006-07-03 2008-01-24 Toyota Motor Corp Catalyst for purifying exhaust gas

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060166816A1 (en) 2004-06-23 2006-07-27 Catalytic Solutions, Inc. Catalysts and processes for selective hydrogenation of acetylene and dienes in light olefin feedstreams
US20080169449A1 (en) 2006-09-08 2008-07-17 Eltron Research Inc. Catalytic membrane reactor and method for production of synthesis gas
JP2008094636A (en) 2006-10-06 2008-04-24 Tokyo Institute Of Technology Hydrogen production method, hydrogen production apparatus and metal oxide
US8167961B2 (en) 2007-10-26 2012-05-01 California Institute Of Technology Thermochemical synthesis of fuels for storing thermal energy
EP2212662A4 (en) 2007-11-05 2015-11-18 Univ Colorado Regents Metal ferrite spinel energy storage devices and methods for making and using same
WO2010131363A1 (en) 2009-05-15 2010-11-18 富士通株式会社 Carbon monoxide gas generator and method of generating carbon monoxide gas

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07267601A (en) * 1994-03-29 1995-10-17 Daimler Benz Aerospace Ag Hydrogen generating method and device for its implementation
JP2001270701A (en) * 2000-03-28 2001-10-02 Yutaka Tamaura Decomposition method of water
JP2008012382A (en) * 2006-07-03 2008-01-24 Toyota Motor Corp Catalyst for purifying exhaust gas

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
H. KANEKO ET AL.: "Reactive ceramics of Ce02-MOx (M=Mn, Fe, Ni, Cu) for H2 generation by two-step water splitting using concentrated solar thermal energy", ENERGY, vol. 32, no. 5, March 2007 (2007-03-01), pages 656 - 663, XP005835820, DOI: doi:10.1016/j.energy.2006.05.002 *

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015189787A3 (en) * 2014-06-13 2016-03-17 Sabic Global Technologies B.V. Syngas production from binary and ternary cerium-based oxides
JP2019127430A (en) * 2018-01-26 2019-08-01 国立大学法人 新潟大学 Method of producing hydrogen
JP7037172B2 (en) 2018-01-26 2022-03-16 国立大学法人 新潟大学 Hydrogen production method
JP2019178039A (en) * 2018-03-30 2019-10-17 学校法人関西学院 Method for producing oxygen gas
JP7045665B2 (en) 2018-03-30 2022-04-01 学校法人関西学院 Oxygen gas manufacturing method

Also Published As

Publication number Publication date
JPWO2013021506A1 (en) 2015-03-05
JP5459322B2 (en) 2014-04-02
CN103038158A (en) 2013-04-10
CN103038158B (en) 2015-08-05
DE112011105502B4 (en) 2021-12-09
DE112011105502T5 (en) 2014-10-16

Similar Documents

Publication Publication Date Title
JP5459322B2 (en) Redox material for thermochemical water splitting and hydrogen production method
Mo et al. Gaseous CO and toluene co-oxidation over monolithic core–shell Co 3 O 4-based hetero-structured catalysts
JP4777670B2 (en) Ammonia synthesis catalyst and method for producing the same
Han et al. Synthesis and characterization of Mn3O4 and Mn2O3 nanocrystals on SBA-15: Novel combustion catalysts at low reaction temperatures
US8435486B2 (en) Redox material for thermochemical water splitting, and method for producing hydrogen
do Nascimento et al. Synthesis of reduced graphene oxide as a support for nano copper and palladium/copper catalysts for selective NO reduction by CO
De Lima et al. High specific surface area LaFeCo perovskites—Synthesis by nanocasting and catalytic behavior in the reduction of NO with CO
Feng et al. Hydrothermal synthesis and automotive exhaust catalytic performance of CeO 2 nanotube arrays
KR102129749B1 (en) Ternary catalyst and a method for producing the same
Lian et al. Ni supported on LaFeO 3 perovskites for methane steam reforming: on the promotional effects of plasma treatment in H 2–Ar atmosphere
Ma et al. Layered sphere-shaped TiO2 capped with gold nanoparticles on structural defects and their catalysis of formaldehyde oxidation
Peng et al. Double-shelled hollow LaNiO3 nanocage as nanoreactors with remarkable catalytic performance: Illustrating the special morphology and performance relationship
KR20200076404A (en) Ruthenium based zeolite based catalysts for ammonia dehydrogenation, method of forming the same and method of producing hydrogen gas from ammonia using the same
JP4119652B2 (en) Hydrocarbon cracking catalyst and process for producing the same
Shu et al. The enhanced performance of Ti doped MnOx for the removal of NO with NH3
WO2010060736A1 (en) Non-noble metals based catalysts for ammonia decomposition and their preparation
Li et al. Production of hydrogen by ammonia decomposition over supported Co3O4 catalysts
Ren et al. Catalytic behavior of manganese oxides for oxidative dehydrogenation of ethylbenzene with carbon dioxide
US10113119B2 (en) Thermally stable monolith catalyst for reforming reaction
Sastre et al. Effect of low-loading of Ni on the activity of La0. 9Sr0. 1FeO3 perovskites for chemical looping dry reforming of methane
Liu et al. Promotion effect of TiO2 on Ni/SiO2 catalysts prepared by hydrothermal method for CO2 methanation
JP6802524B2 (en) Methane catalyst carrier, methanation catalyst using it, and method for producing methane
CN108367278B (en) The method and apparatus strengthened for chemical technology
EP4378582A1 (en) Method for preparing catalyst for ammonia decomposition using cation-anion double hydrolysis
JP4715999B2 (en) Catalyst for water gas shift reaction and process for producing the same

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201180012472.3

Country of ref document: CN

ENP Entry into the national phase

Ref document number: 2011554294

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11870563

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 112011105502

Country of ref document: DE

Ref document number: 1120111055021

Country of ref document: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11870563

Country of ref document: EP

Kind code of ref document: A1