WO2013021091A1 - Heat-storage module based on latent heat with high heat-transfer rates - Google Patents

Heat-storage module based on latent heat with high heat-transfer rates Download PDF

Info

Publication number
WO2013021091A1
WO2013021091A1 PCT/ES2012/070619 ES2012070619W WO2013021091A1 WO 2013021091 A1 WO2013021091 A1 WO 2013021091A1 ES 2012070619 W ES2012070619 W ES 2012070619W WO 2013021091 A1 WO2013021091 A1 WO 2013021091A1
Authority
WO
WIPO (PCT)
Prior art keywords
heat
channel
internal element
module according
container
Prior art date
Application number
PCT/ES2012/070619
Other languages
Spanish (es)
French (fr)
Inventor
Esther RIVAS RAMOS
M. Esther ROJAS BRAVO
M. del Rocio BAYÓN CABEZA
Original Assignee
Centro De Investigaciones Energéticas, Medioambientales Y Tecnológicas (Ciemat)
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Centro De Investigaciones Energéticas, Medioambientales Y Tecnológicas (Ciemat) filed Critical Centro De Investigaciones Energéticas, Medioambientales Y Tecnológicas (Ciemat)
Publication of WO2013021091A1 publication Critical patent/WO2013021091A1/en

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D20/00Heat storage plants or apparatus in general; Regenerative heat-exchange apparatus not covered by groups F28D17/00 or F28D19/00
    • F28D20/02Heat storage plants or apparatus in general; Regenerative heat-exchange apparatus not covered by groups F28D17/00 or F28D19/00 using latent heat
    • F28D20/021Heat storage plants or apparatus in general; Regenerative heat-exchange apparatus not covered by groups F28D17/00 or F28D19/00 using latent heat the latent heat storage material and the heat-exchanging means being enclosed in one container
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/14Thermal energy storage

Definitions

  • the present invention relates to an energy storage module in the form of latent heat, which is designed to obtain high rates of heat transfer between a two-phase heat transfer fluid and a storage medium that changes from solid phase to liquid phase, when There is no direct contact between them.
  • Plants which generate electricity from concentrated solar radiation. In them, the presence of a storage system allows them to be kept in operation also during the hours of absence of solar radiation.
  • Transfer Fluid or HTF is a single phase fluid.
  • the heat transfer fluid is a biphasic fluid, whose thermal potential is acquired mainly through evaporation. Therefore, to store and later recover this potential efficiently, it is It is advisable to use a substance that changes phase (Phase Change Material or PCM).
  • the working temperature range ie steam / water saturation temperature of 210 e C-310 e C
  • the pressure range in which the turbine and the hydraulic circuit can operate ie 20 bar -100 bar
  • the solid-liquid phase change temperature of a large number of anhydrous salts and eutectic mixtures is within this range, in addition, in general, they all have a low cost, so they can be good candidates for storage systems. But, its main drawback is the low thermal conductivity (less than 1 W / mK), which greatly limits the power of the storage system.
  • US Patent 2933885 describes a thermal storage system based on latent heat where the module is composed of a PCM container and a set of tubes embedded therein placed either vertically or in the form of downward spirals through which a heat transfer fluid circulates biphasic
  • the invention aims to alleviate the technical problems mentioned in the previous section.
  • a thermal storage module comprising a substantially cylindrical container with a longitudinal axis, upper and lower lids at its ends, at least three inlet and outlet holes located in the lids and in the body of the container, a material of phase change and an internal element surrounded by said container.
  • the internal element is formed by two spiral-shaped plates that together with the container delimit an outer channel and an inner channel and where said element, at its upper and lower ends, has a conical spiral geometry, the phase change material being found In the inner channel.
  • the module further comprises an interconnection piece provided with an opening adapted to cooperate with the internal element so that the phase change material does not invade the lower cover and the outer channel can pass through said piece.
  • the lower cover will preferably be conical, that is, in the same way as the piece.
  • the PCM is one or a eutectic mixture of the following compounds: nitrites, nitrates, chlorites, chlorates, fluorites, fluorates, hydroxides or alkali metal carbonates.
  • the module It comprises an insulating layer between the container and the outer channel and in the spaces between the upper and lower covers and the internal element.
  • An additional plate can also be provided attached to the upper end of the internal element that extends the internal channel vertically to the upper cover and supports within the internal channel perpendicular to the internal element plates.
  • Figure 1 shows an external front view of the module.
  • Figure 2 is a top view of the container.
  • Figure 3 is a cross section of the container along line I.
  • Figure 4 shows a cross section along line II.
  • Figure 5 It is an external front view of the internal element that forms a double spiral channel.
  • Figure 6 shows a mid-section cross section of the double spiral channel.
  • Figure 7 It is a longitudinal section of the thermal storage module through the center.
  • Figure 8 shows a cross section of the thermal storage module along line III.
  • Figure 9 Detailed view of the scratched areas at the top and bottom of the module of Figure 7.
  • Figure 10 shows the double unwound spiral channel and the positions of the structural supports.
  • the thermal storage module is designed so that, during the charging process, the latent heat from the condensation of HTF is stored by the PCM in the form of latent heat of fusion and, during the discharge process, the latent heat of solidification released by the PCM is absorbed by the HTF in the form of latent heat of vaporization.
  • the thermal storage module (figure 1) is formed by a container 1, an upper lid 2, a lower lid 3, an internal element 4 (figure 5) formed by two spiral-shaped plates that delimit an outer channel 5 and a channel interior 6 and, finally, an interconnection piece 7 (figure 4) provided with a spiral opening 8.
  • the outer channel 5, through which the HTF circulates, is completely closed at its upper and lower ends, as shown in Figure 9, forming a cavity with conical spiral geometry, both at the top and bottom, to favor the drain of the condensed flow and the suction of the non-condensed fluid during the loading and the discharge of the steam flow generated during the discharge.
  • the HTF is in indirect contact with the PCM (which is in the inner channel 6) always in the best possible conditions from the point of view of heat transfer.
  • the loading and unloading process once the module of the invention comes into operation, is as follows: under load, a certain saturated steam flow (heat transfer fluid) is injected into the thermal storage module whose saturation temperature should be slightly higher than the PCM melting temperature; In discharge, a certain saturated liquid flow is injected whose saturation temperature must be slightly lower than the solidification temperature of the PCM.
  • a certain saturated steam flow heat transfer fluid
  • the saturated steam that feeds the thermal storage module during charging condenses by giving latent heat to the PCM which, from solid to liquid state, stores energy in the form of latent heat of fusion.
  • the heat transfer fluid now in the form of a saturated liquid, evaporates, absorbing the latent heat that the PCM gives it when it passes from a liquid state to a solid state. It is therefore a module that works both ways.
  • figure 1 you can see the positions of the inlet and outlet ducts of the storage module 9, 10, 1 1.
  • the heat transfer fluid saturated steam
  • the conduit upper 1 1 acts as an outlet for the uncondensed steam flow during this process, giving the thermal storage module the character of separator between steam and condensate.
  • the heat transfer fluid saturated liquid
  • the steam flow resulting from the heat transfer of the PCM to this heat transfer fluid exits through 1 1 while maintaining 9 closed.
  • the internal element 4 must be accessible from the top and from the bottom to facilitate its assembly and future maintenance, hence the upper and lower covers 3 are preferably flanged.
  • Figure 3 indicates, in an indicative way, the way in which the thermal insulation 12 should be placed inside the module to minimize lateral thermal losses. Its asymmetric shape is due to the need to adapt it to the development of element 4 and to thermally reinforce the wall 13.
  • thermal insulation 12 also fills the upper dead spaces 13 and lower 14 to prevent thermal losses to the outside in these areas and to buffer thermal bridges that may exist in the lower part of the storage module.
  • the contours of 9, 10 and 1 1 must be adequately coated with thermal insulation 12 since they are crucial points from the point of view of heat losses.
  • Figure 4 represents a cross-section along the line II of Figure 1 of the interconnection piece 7 that is located between the lower cover 3 and the container 1.
  • this interconnection piece 7 a spiral opening 8 has been made, to allow the internal element 4 of Figure 5 to pass through it.
  • the internal element 4 and the interconnection piece 7 must be welded so that the inner channel 6 is closed at its bottom.
  • Figure 5 shows the asymmetry of the internal element 4 with respect to the main vertical axis. Because the internal element 4 is asymmetric with respect to the axis main, the entry holes 10 and 1 1 are not in the exact center of the container.
  • Figure 5 also shows the channels 5 and 6 of the internal element 4 before being placed inside the container 1 and being welded to the part 7.
  • the channels 5 and 6 form two equally spaced spirals, but these They could also have configurations with variable spacing.
  • the outer channel 5, through which the HTF circulates, is closed at its upper and lower ends, which have a conical spiral shape. In this way, both the drainage of the resulting condensate flow in the load and the suction of the resulting steam flow in the discharge is favored. Thus, the closed channel 5 performs, during the loading process, the separator mission.
  • This channel is delimited laterally by the plate that forms it, the outer channel plate 5 and by an additional plate 15 welded vertically to the latter, as shown in Figure 9.
  • the internal channel height 6 must be such that it allows changes in the volume of the PCM during thermal cycling and, in turn, prevents The dilated PCM overflows.
  • the maximum height of the inner channel 6 is a design parameter of the thermal storage module that will depend on the value "e”, the diameter "D” and the height ⁇ ", as well as the type of PCM used.
  • PCM materials that can be used to fill the inner channel 9 are: nitrites, nitrates, chlorites, chlorates, fluorites, fluorates, hydroxides or carbonates of alkali metals as well as eutectic mixtures thereof.
  • the internal element 4 preferably, must not be welded to the upper lid 2 of the container to allow free thermal expansion thereof and thus avoid possible torsion problems.
  • Figures 7 and 8 show the arrangement of the phase 16 change material inside the thermal storage module, noting how it occupies the interior of the inner channel 6, which is closed at the lower end thanks to the interconnection piece 7 of Figure 4. This optimizes the amount of PCM used, since the condensed fluid accumulates in the area between the interconnection piece 7 and the lower cover 3.
  • the height that the PCM reaches in the thermal storage module before its expansion (ie in solid state) must coincide with the position of 9, that is, with the height at which saturated steam is injected in charge (as is indicated in figure 7).
  • FIG 8 also shows that PCM 16 is always surrounded by heat transfer fluid 17, except in dead spaces 13, where thermal insulation 12 is reinforced. In turn, the channel through which the heat transfer fluid, 5, will always be surrounded by thermal insulation 12 that is necessary to prevent thermal losses to the outside.
  • the insulator 12 introduced in spaces 13 and 14 can be seen in more detail.
  • the inlet 9 of the heat transfer fluid 17 can be tangential to the lateral surface of the container 1 instead of perpendicular as indicated in the figures.
  • a certain number of supports 18 welded perpendicularly to the surface of the channel can also be placed inside the internal spiral channel 6 containing PCM 16, as shown by way of example in Figure 10, with a length equal to the spacing "e" and of the same material as element 4.
  • the calculation of the number of supports per unit area and the thickness of the same must be done according to the working conditions of the heat transfer fluid, the nature of the PCM and the type of structural material of element 4.

Abstract

Heat-storage module based on the transmission of heat from a heat-transfer fluid to a phase-exchange material in a channel delimited by metal plates in the form of a spiral which form an internal element of the module. The heat-transfer fluid is circulated via the channel outside the channel that contains the phase-change material. The internal element has a conical spiral longitudinal cross section in the upper and lower parts. This means that, once the fluid is running through the module from top to bottom, the condensate remains at the bottom, automatically separated out from the vapour, which may be recirculated.

Description

MODULO DE ALMACENAMIENTO TERMICO BASADO EN CALOR LATENTE THERMAL HEAT-BASED THERMAL STORAGE MODULE
CON ALTAS TASAS DE TRANSFERENCIA DE CALOR WITH HIGH HEAT TRANSFER RATES
D E S C R I P C I O N D E S C R I P C I O N
CAMPO DE LA INVENCIÓN FIELD OF THE INVENTION
La presente invención se refiere a un módulo de almacenamiento de energía en forma de calor latente, el cual está diseñado para obtener tasas altas de transferencia de calor entre un fluido caloportador bifásico y un medio de almacenamiento que cambia de fase sólida a fase líquida, cuando entre ambos no existe contacto directo. The present invention relates to an energy storage module in the form of latent heat, which is designed to obtain high rates of heat transfer between a two-phase heat transfer fluid and a storage medium that changes from solid phase to liquid phase, when There is no direct contact between them.
ANTECEDENTES DE LA INVENCIÓN En la actualidad existen gran cantidad de aplicaciones industriales donde se requiere aprovechar calor de proceso y en las que es muy común el uso de sistemas de almacenamiento que permiten la utilización del calor en momentos posteriores a su generación. BACKGROUND OF THE INVENTION There are currently a large number of industrial applications where it is necessary to take advantage of process heat and in which the use of storage systems that allow the use of heat at times after its generation is very common.
Un claro ejemplo de la importancia de los sistemas de almacenamiento térmico se encuentra en las plantas termosolares (en inglés Concentrating Solar Power-CSP- A clear example of the importance of thermal storage systems is in solar thermal plants (in English Concentrating Solar Power-CSP-
Plants), que generan electricidad a partir de la radiación solar concentrada. En ellas, la presencia de un sistema de almacenamiento permite mantenerlas en funcionamiento también durante las horas de ausencia de radiación solar. Plants), which generate electricity from concentrated solar radiation. In them, the presence of a storage system allows them to be kept in operation also during the hours of absence of solar radiation.
Por lo general, los sistemas de almacenamiento de las plantas CSP comerciales están basados en calor sensible ya que el fluido caloportador (en inglés, HeatIn general, the storage systems of commercial CSP plants are based on sensible heat since the heat transfer fluid (in English, Heat
Transfer Fluid o HTF) es un fluido monofásico. Transfer Fluid or HTF) is a single phase fluid.
Sin embargo, en las plantas con generación directa de vapor (en inglés Direct Steam Generation o DSG) el fluido caloportador es un fluido bifásico, cuyo potencial térmico se adquiere principalmente a través de su evaporación. Por eso, para almacenar y más tarde recuperar dicho potencial de forma eficiente, es recomendable utilizar una sustancia que cambie de fase (Phase Change Material o PCM). However, in plants with direct steam generation (in English Direct Steam Generation or DSG) the heat transfer fluid is a biphasic fluid, whose thermal potential is acquired mainly through evaporation. Therefore, to store and later recover this potential efficiently, it is It is advisable to use a substance that changes phase (Phase Change Material or PCM).
Para desarrollar un sistema de almacenamiento térmico basado en calor latente es fundamental que el PCM empleado se adecué bien a las condiciones de trabajo del HTF, especialmente en términos de temperatura. Además, es deseable que presente un buen comportamiento desde el punto de vista de la transferencia de calor y del almacenamiento térmico en dichas condiciones de trabajo, que sean seguros, duraderos tras los ciclados térmicos y económicos.  To develop a thermal storage system based on latent heat, it is essential that the PCM used is well suited to the working conditions of HTF, especially in terms of temperature. In addition, it is desirable that it presents a good behavior from the point of view of heat transfer and thermal storage under such working conditions, which are safe, durable after thermal and economic cycling.
En una planta DSG el intervalo de temperaturas de trabajo (i. e. temperatura de saturación de vapor/agua de 210e C-310e C) viene determinado por el intervalo de presiones en el que pueden operar la turbina y el circuito hidráulico (i. e. 20 bar-100 bar) In a DSG plant the working temperature range (ie steam / water saturation temperature of 210 e C-310 e C) is determined by the pressure range in which the turbine and the hydraulic circuit can operate (ie 20 bar -100 bar)
La temperatura de cambio de fase sólido-líquido de un gran número de sales anhidras y mezclas eutécticas se encuentra dentro de este intervalo, además, en general, todas tienen un bajo coste, por lo que pueden ser buenas candidatas para los sistemas de almacenamiento. Pero, su principal inconveniente es la baja conductividad térmica (inferior a 1 W/mK), que limita mucho la potencia del sistema de almacenamiento.  The solid-liquid phase change temperature of a large number of anhydrous salts and eutectic mixtures is within this range, in addition, in general, they all have a low cost, so they can be good candidates for storage systems. But, its main drawback is the low thermal conductivity (less than 1 W / mK), which greatly limits the power of the storage system.
Por este motivo, el desarrollo de un sistema de almacenamiento térmico basado en este tipo de materiales de cambio de fase debe enfocarse hacia conceptos que permitan compensar la limitación que impone su baja conductividad sobre las tasas de transferencia de calor.  For this reason, the development of a thermal storage system based on this type of phase change materials must focus on concepts that allow compensating for the limitation imposed by its low conductivity on heat transfer rates.
Desde esta perspectiva, existen dos líneas principales de actuación: bien sobre el propio PCM tratando de mejorar su conductividad térmica intrínseca, o bien sobre el diseño del sistema de almacenamiento térmico tratando de maximizar el área efectiva de transferencia de calor entre el HTF y el PCM.  From this perspective, there are two main lines of action: either on the PCM itself trying to improve its intrinsic thermal conductivity, or on the design of the thermal storage system trying to maximize the effective area of heat transfer between HTF and PCM .
La patente US 2933885 describe un sistema de almacenamiento térmico basado en calor latente donde el módulo está compuesto por un contenedor de PCM y un conjunto de tubos embebidos en el mismo colocados bien verticalmente o bien en forma de espirales descendentes por los que circula un fluido caloportador bifásico. US Patent 2933885 describes a thermal storage system based on latent heat where the module is composed of a PCM container and a set of tubes embedded therein placed either vertically or in the form of downward spirals through which a heat transfer fluid circulates biphasic
También, en el artículo publicado en Applied Thermal Engineering, 30 (2010) p. 2643-2651 , se describe un módulo de almacenamiento de calor latente constituido por tubos horizontales, por los que circula un fluido caloportador bifásico, y una masa de PCM (mezcla eutéctica NaN03/KN03). En él, la conductividad térmica se mejora mediante aletas de grafito adheridas a los tubos. Also, in the article published in Applied Thermal Engineering, 30 (2010) p. 2643-2651, a latent heat storage module consisting of horizontal tubes is described, through which a biphasic heat transfer fluid circulates, and a PCM mass (eutectic mixture NaN0 3 / KN0 3 ). In it, the thermal conductivity is improved by graphite fins attached to the tubes.
En ambos casos, durante la carga, el HTF se hace circular por los tubos desde la parte superior del módulo hacia la inferior, de manera que, en el transcurso de su recorrido la mayor parte del HTF condensa transfiriendo energía en forma de calor latente al PCM. Con estas configuraciones de tubos embebidos en el PCM se fuerza tanto al HTF condensado como al no condensado a fluir en la misma dirección, por lo que a la salida de dichos módulos se tiene aún un fluido bifásico. Este tipo de fluidos no deben ser recirculados ya que podrían dañar las bombas del circuito por fenómenos de cavitación. Por otro lado, el vapor en suspensión en el seno del condensado a la salida de tales módulos tampoco puede ser reutilizado, por lo que se desaprovecha su potencial térmico. Por eso estos módulos de almacenamiento térmico que no pueden separar el HTF condensado del no condensado, requieren un sistema de separación adicional. In both cases, during charging, the HTF is circulated through the tubes from the top of the module to the bottom, so that, during its course, most of the HTF condenses by transferring energy in the form of latent heat to the PCM With these configurations of tubes embedded in the PCM both the condensed and non-condensed HTF are forced to flow in the same direction, so that at the exit of said modules there is still a two-phase fluid. These types of fluids should not be recirculated as they could damage the circuit pumps due to cavitation phenomena. On the other hand, the vapor in suspension within the condensate at the exit of such modules cannot be reused, so its thermal potential is wasted. Therefore, these thermal storage modules that cannot separate the condensed HTF from the non-condensed require an additional separation system.
OBJETO DE LA INVENCIÓN OBJECT OF THE INVENTION
La invención tiene por objeto paliar los problemas técnicos citados en el apartado anterior. Para ello, propone un módulo de almacenamiento térmico que comprende un contenedor sustancialmente cilindrico con un eje longitudinal, tapas superior e inferior en sus extremos, al menos tres orificios de entrada y salida situados en las tapas y en el cuerpo del contenedor, un material de cambio de fase y un elemento interno rodeado por dicho contenedor. El elemento interno está formado por dos placas en forma de espiral que junto con el contenedor delimitan un canal exterior y un canal interior y donde dicho elemento, en sus extremos superior e inferior, tiene una geometría espiral cónica, encontrándose el material de cambio de fase en el canal interior. De preferencia, el módulo comprende además una pieza de interconexión provista de una abertura adaptada para cooperar con el elemento interno de manera que el material de cambio de fase no invada la tapa inferior y el canal exterior pueda atravesar dicha pieza. La tapa inferior será preferentemente cónica, es decir, de la misma forma que la pieza. El PCM es uno o una mezcla eutéctica de los siguientes compuestos: nitritos, nitratos, cloritos, cloratos, fluoritos, fluoratos, hidróxidos o carbonatos de metales alcalinos. Preferentemente, el módulo comprende una capa aislante entre el contenedor y el canal exterior y en los espacios entre las tapas superior e inferior y el elemento interno. También se puede disponer de una placa adicional unida al extremo superior del elemento interno que prolonga verticalmente el canal interno hasta la tapa superior y soportes dentro del canal interior perpendiculares a las placas del elemento interno. The invention aims to alleviate the technical problems mentioned in the previous section. To this end, it proposes a thermal storage module comprising a substantially cylindrical container with a longitudinal axis, upper and lower lids at its ends, at least three inlet and outlet holes located in the lids and in the body of the container, a material of phase change and an internal element surrounded by said container. The internal element is formed by two spiral-shaped plates that together with the container delimit an outer channel and an inner channel and where said element, at its upper and lower ends, has a conical spiral geometry, the phase change material being found In the inner channel. Preferably, the module further comprises an interconnection piece provided with an opening adapted to cooperate with the internal element so that the phase change material does not invade the lower cover and the outer channel can pass through said piece. The lower cover will preferably be conical, that is, in the same way as the piece. The PCM is one or a eutectic mixture of the following compounds: nitrites, nitrates, chlorites, chlorates, fluorites, fluorates, hydroxides or alkali metal carbonates. Preferably, the module It comprises an insulating layer between the container and the outer channel and in the spaces between the upper and lower covers and the internal element. An additional plate can also be provided attached to the upper end of the internal element that extends the internal channel vertically to the upper cover and supports within the internal channel perpendicular to the internal element plates.
BREVE DESCRIPCIÓN DE LAS FIGURAS Con objeto de ayudar a una mejor comprensión de las características de la invención de acuerdo con un ejemplo preferente de realización práctica de la misma, se acompaña la siguiente descripción de un juego de dibujos en donde con carácter ilustrativo se ha representado lo siguiente: Figura 1 : muestra una vista frontal externa del módulo. BRIEF DESCRIPTION OF THE FIGURES In order to help a better understanding of the features of the invention in accordance with a preferred example of practical implementation thereof, the following description of a set of drawings is attached where illustrative character has been represented the following: Figure 1: shows an external front view of the module.
Figura 2: es una vista superior del contenedor.  Figure 2: is a top view of the container.
Figura 3: es un corte transversal del contenedor a lo largo de la línea I.  Figure 3: is a cross section of the container along line I.
Figura 4: muestra un corte transversal a lo largo de la línea II.  Figure 4: shows a cross section along line II.
Figura 5: es una vista frontal externa del elemento interno que forma un doble canal en espiral.  Figure 5: It is an external front view of the internal element that forms a double spiral channel.
Figura 6: muestra un corte transversal a media altura del doble canal en espiral. Figure 6: shows a mid-section cross section of the double spiral channel.
Figura 7: es un corte longitudinal del módulo de almacenamiento térmico por el centro. Figure 7: It is a longitudinal section of the thermal storage module through the center.
Figura 8: muestra un corte transversal del módulo de almacenamiento térmico a lo largo de la línea III.  Figure 8: shows a cross section of the thermal storage module along line III.
Figura 9: vista en detalle de las zonas rayadas en la parte superior e inferior del módulo de la figura 7.  Figure 9: Detailed view of the scratched areas at the top and bottom of the module of Figure 7.
Figura 10: muestra el doble canal en espiral desenrollado y las posiciones de los soportes estructurales.  Figure 10: shows the double unwound spiral channel and the positions of the structural supports.
DESCRIPCIÓN DETALLADA DE LA INVENCIÓN El módulo de almacenamiento térmico está diseñado para que, durante el proceso de carga, el calor latente procedente de la condensación del HTF sea almacenado por el PCM en forma de calor latente de fusión y, durante el proceso de descarga, el calor latente de solidificación liberado por el PCM sea absorbido por el HTF en forma de calor latente de vaporización. DETAILED DESCRIPTION OF THE INVENTION The thermal storage module is designed so that, during the charging process, the latent heat from the condensation of HTF is stored by the PCM in the form of latent heat of fusion and, during the discharge process, the latent heat of solidification released by the PCM is absorbed by the HTF in the form of latent heat of vaporization.
El módulo de almacenamiento térmico (figura 1 ) está formado por un contenedor 1 , una tapa superior 2, otra inferior 3, un elemento interno 4 (figura 5) formado por dos placas en forma de espiral que delimitan un canal exterior 5 y un canal interior 6 y, finalmente, una pieza de interconexión 7 (figura 4) provista de una abertura en espiral 8.  The thermal storage module (figure 1) is formed by a container 1, an upper lid 2, a lower lid 3, an internal element 4 (figure 5) formed by two spiral-shaped plates that delimit an outer channel 5 and a channel interior 6 and, finally, an interconnection piece 7 (figure 4) provided with a spiral opening 8.
El canal exterior 5, por el que circula el HTF, está completamente cerrado por sus extremos superior e inferior, como se muestra en la figura 9, formando una cavidad con geometría espiral cónica, tanto en la parte superior como en la inferior, para favorecer el desagüe del caudal condensado y la succión del fluido no condensado durante la carga y la salida del caudal de vapor que se genere durante la descarga. De esta forma, el HTF está en contacto indirecto con el PCM (que se encuentra en el canal interior 6) siempre en las mejores condiciones posibles desde el punto de vista de la transferencia de calor.  The outer channel 5, through which the HTF circulates, is completely closed at its upper and lower ends, as shown in Figure 9, forming a cavity with conical spiral geometry, both at the top and bottom, to favor the drain of the condensed flow and the suction of the non-condensed fluid during the loading and the discharge of the steam flow generated during the discharge. In this way, the HTF is in indirect contact with the PCM (which is in the inner channel 6) always in the best possible conditions from the point of view of heat transfer.
El procedimiento de carga y descarga, una vez el módulo de la invención entra en funcionamiento, es el siguiente: en carga, se inyecta en el módulo de almacenamiento térmico un determinado flujo de vapor saturado (fluido caloportador) cuya temperatura de saturación debe ser ligeramente superior a la temperatura de fusión del PCM; en descarga, se inyecta un determinado flujo de líquido saturado cuya temperatura de saturación debe ser ligeramente inferior a la temperatura de solidificación del PCM.  The loading and unloading process, once the module of the invention comes into operation, is as follows: under load, a certain saturated steam flow (heat transfer fluid) is injected into the thermal storage module whose saturation temperature should be slightly higher than the PCM melting temperature; In discharge, a certain saturated liquid flow is injected whose saturation temperature must be slightly lower than the solidification temperature of the PCM.
De esta forma, el vapor saturado que alimenta el módulo de almacenamiento térmico durante la carga condensa cediendo calor latente al PCM el cual, pasa de estado sólido a estado líquido almacenando energía en forma de calor latente de fusión. En cambio, durante la descarga, el fluido caloportador, ahora en forma de líquido saturado, se evapora absorbiendo el calor latente que le cede el PCM al pasar de estado líquido a estado sólido. Se trata pues de un módulo que trabaja en ambos sentidos. En la figura 1 se pueden ver las posiciones de los conductos de entrada y salida del módulo de almacenamiento 9, 10, 1 1 . Durante el proceso de carga del módulo, el fluido caloportador (vapor saturado) es inyectado al interior a través del conducto 9 y el flujo condensado resultante de la cesión de calor de este vapor saturado al PCM sale a través del conducto inferior 10. El conducto superior 1 1 actúa como salida para el caudal de vapor no condensado durante este proceso, dando al módulo de almacenamiento térmico el carácter de separador entre el vapor y el condensado. In this way, the saturated steam that feeds the thermal storage module during charging condenses by giving latent heat to the PCM which, from solid to liquid state, stores energy in the form of latent heat of fusion. On the other hand, during the discharge, the heat transfer fluid, now in the form of a saturated liquid, evaporates, absorbing the latent heat that the PCM gives it when it passes from a liquid state to a solid state. It is therefore a module that works both ways. In figure 1 you can see the positions of the inlet and outlet ducts of the storage module 9, 10, 1 1. During the module loading process, the heat transfer fluid (saturated steam) is injected into the interior through the conduit 9 and the condensed flow resulting from the heat transfer of this saturated steam to the PCM exits through the lower conduit 10. The conduit upper 1 1 acts as an outlet for the uncondensed steam flow during this process, giving the thermal storage module the character of separator between steam and condensate.
Durante el proceso de descarga del módulo, el fluido caloportador (líquido saturado) es inyectado al interior a través de 10 y el flujo de vapor resultante de la cesión de calor del PCM a este fluido caloportador sale a través de 1 1 mientras se mantiene 9 cerrado.  During the module discharge process, the heat transfer fluid (saturated liquid) is injected into the interior through 10 and the steam flow resulting from the heat transfer of the PCM to this heat transfer fluid exits through 1 1 while maintaining 9 closed.
El elemento interno 4 debe poder ser accesible desde la parte superior y desde la parte inferior para facilitar su ensamblaje y su mantenimiento futuro, de ahí que las tapas superior 2 e inferior 3 vayan preferentemente embridadas.  The internal element 4 must be accessible from the top and from the bottom to facilitate its assembly and future maintenance, hence the upper and lower covers 3 are preferably flanged.
La figura 3 indica, de modo orientativo, la forma en la que se debería colocar el aislamiento térmico 12 en el interior del módulo para minimizar las pérdidas térmicas laterales. Su forma asimétrica se debe a la necesidad de adaptarlo al desarrollo de elemento 4 y para reforzar térmicamente la pared 13. Por otro lado, en la figura 7, se muestra como el aislamiento térmico 12 rellena también los espacios muertos superior 13 e inferior 14 para prevenir las pérdidas térmicas al exterior en estas zonas y para amortiguar los puentes térmicos que puedan existan en la parte inferior del módulo de almacenamiento. Así mismo, los contornos de 9, 10 y 1 1 han de revestirse adecuadamente con aislamiento térmico 12 ya que son puntos cruciales desde el punto de vista de las pérdidas de calor.  Figure 3 indicates, in an indicative way, the way in which the thermal insulation 12 should be placed inside the module to minimize lateral thermal losses. Its asymmetric shape is due to the need to adapt it to the development of element 4 and to thermally reinforce the wall 13. On the other hand, in figure 7, it is shown how thermal insulation 12 also fills the upper dead spaces 13 and lower 14 to prevent thermal losses to the outside in these areas and to buffer thermal bridges that may exist in the lower part of the storage module. Likewise, the contours of 9, 10 and 1 1 must be adequately coated with thermal insulation 12 since they are crucial points from the point of view of heat losses.
La figura 4 representa un corte transversal a lo largo de la línea II de la figura 1 de la pieza de interconexión 7 que se sitúa entre la tapa inferior 3 y el contenedor 1 . En esta pieza de interconexión 7 se ha realizado una abertura en espiral 8, para permitir que el elemento interno 4 de la figura 5 pueda pasar a su través. El elemento interno 4 y la pieza de interconexión 7 han de ir soldados de forma que el canal interior 6 quede cerrado en su parte inferior.  Figure 4 represents a cross-section along the line II of Figure 1 of the interconnection piece 7 that is located between the lower cover 3 and the container 1. In this interconnection piece 7 a spiral opening 8 has been made, to allow the internal element 4 of Figure 5 to pass through it. The internal element 4 and the interconnection piece 7 must be welded so that the inner channel 6 is closed at its bottom.
En la figura 5 se puede ver la asimetría del elemento interno 4 respecto al eje vertical principal. Debido a que el elemento interno 4 es asimétrico respecto al eje principal, los orificios de entrada 10 y 1 1 no están en el centro exacto del contenedor. Figure 5 shows the asymmetry of the internal element 4 with respect to the main vertical axis. Because the internal element 4 is asymmetric with respect to the axis main, the entry holes 10 and 1 1 are not in the exact center of the container.
En la figura 5 se muestran además los canales 5 y 6 del elemento interno 4 antes de ser colocado en el interior del contenedor 1 y de ser soldado a la pieza 7. En este caso los canales 5 y 6 forman dos espirales equiespaciadas, pero éstas podrían presentar igualmente configuraciones con espaciado variable.  Figure 5 also shows the channels 5 and 6 of the internal element 4 before being placed inside the container 1 and being welded to the part 7. In this case the channels 5 and 6 form two equally spaced spirals, but these They could also have configurations with variable spacing.
El canal exterior 5, por el que circula el HTF, está cerrado por sus extremos superior e inferior, los cuales tienen forma espiral cónica. De ese modo, se favorece tanto el desagüe del flujo de condensado resultante en carga como la succión del flujo de vapor resultante en descarga. Así, el canal cerrado 5 desempeña, durante el proceso de carga, la misión de separador. The outer channel 5, through which the HTF circulates, is closed at its upper and lower ends, which have a conical spiral shape. In this way, both the drainage of the resulting condensate flow in the load and the suction of the resulting steam flow in the discharge is favored. Thus, the closed channel 5 performs, during the loading process, the separator mission.
El canal interior 6, que alberga al PCM 16, está cerrado en su parte inferior por la pieza de interconexión 7 la cual está soldada al elemento interno 4. Este canal está delimitado lateralmente por la placa que lo conforma, la placa del canal exterior 5 y por una placa adicional 15 soldada verticalmente a esta última, tal y como se muestra en la figura 9. La altura canal interior 6 debe ser tal que permita los cambios de volumen del PCM durante los ciclados térmicos e impida, a su vez, que el PCM dilatado se desborde.  The inner channel 6, which houses the PCM 16, is closed in its lower part by the interconnection piece 7 which is welded to the internal element 4. This channel is delimited laterally by the plate that forms it, the outer channel plate 5 and by an additional plate 15 welded vertically to the latter, as shown in Figure 9. The internal channel height 6 must be such that it allows changes in the volume of the PCM during thermal cycling and, in turn, prevents The dilated PCM overflows.
Es importante resaltar que la altura máxima del canal interior 6 es un parámetro de diseño del módulo de almacenamiento térmico que dependerá del valor "e", del diámetro "D" y de la altura Ή", así como del tipo de PCM empleado. Ejemplos de materiales PCM que se pueden utilizar para llenar el canal interior 9 son: nitritos, nitratos, cloritos, cloratos, fluoritos, fluoratos, hidróxidos o carbonatos de metales alcalinos así como mezclas eutécticas de los mismos.  It is important to note that the maximum height of the inner channel 6 is a design parameter of the thermal storage module that will depend on the value "e", the diameter "D" and the height Ή ", as well as the type of PCM used. PCM materials that can be used to fill the inner channel 9 are: nitrites, nitrates, chlorites, chlorates, fluorites, fluorates, hydroxides or carbonates of alkali metals as well as eutectic mixtures thereof.
Es importante mencionar que el elemento interno 4, preferentemente, no ha de ir soldado a la tapa superior 2 del contenedor para permitir la libre expansión térmica del mismo y evitar así posibles problemas de torsión. It is important to mention that the internal element 4, preferably, must not be welded to the upper lid 2 of the container to allow free thermal expansion thereof and thus avoid possible torsion problems.
En las figuras 7 y 8 se muestra la disposición del material de cambio de fase 16 dentro del módulo de almacenamiento térmico, haciéndose notar como éste ocupa el interior del canal interior 6, el cual está cerrado en el extremo inferior gracias a la pieza de interconexión 7 de la figura 4. Con esto se optimiza la cantidad de PCM utilizado pues en la zona comprendida entre la pieza de interconexión 7 y la tapa inferior 3 se acumula el fluido ya condensado. La altura que alcanza el PCM en el módulo de almacenamiento térmico antes de su dilatación (i. e. en estado sólido) ha de coincidir con la posición de 9, es decir, con la altura a la que se inyecta el vapor saturado en carga (como se indica en la figura 7). Figures 7 and 8 show the arrangement of the phase 16 change material inside the thermal storage module, noting how it occupies the interior of the inner channel 6, which is closed at the lower end thanks to the interconnection piece 7 of Figure 4. This optimizes the amount of PCM used, since the condensed fluid accumulates in the area between the interconnection piece 7 and the lower cover 3. The height that the PCM reaches in the thermal storage module before its expansion (ie in solid state) must coincide with the position of 9, that is, with the height at which saturated steam is injected in charge (as is indicated in figure 7).
La figura 8 muestra también que el PCM 16 está siempre rodeado por el fluido caloportador 17, excepto en los espacios muertos 13, donde el aislamiento térmico 12 está reforzado. A su vez, el canal por el que circula el fluido caloportador, 5, estará siempre rodeado por el aislamiento térmico 12 que sea preciso para prevenir las pérdidas térmicas hacia el exterior. En la figura 9 se puede observar con más detalle el aislante 12 introducido en los espacios 13 y 14.  Figure 8 also shows that PCM 16 is always surrounded by heat transfer fluid 17, except in dead spaces 13, where thermal insulation 12 is reinforced. In turn, the channel through which the heat transfer fluid, 5, will always be surrounded by thermal insulation 12 that is necessary to prevent thermal losses to the outside. In figure 9 the insulator 12 introduced in spaces 13 and 14 can be seen in more detail.
Para evitar los daños estructurales del canal interior 6 cuando las presiones de trabajo del fluido caloportador sean elevadas, opcionalmente, la entrada 9 del fluido caloportador 17 puede ser tangencial a la superficie lateral del contenedor 1 en lugar de perpendicular como está indicado en las figuras.  To avoid structural damage to the inner channel 6 when the working pressures of the heat transfer fluid are raised, optionally, the inlet 9 of the heat transfer fluid 17 can be tangential to the lateral surface of the container 1 instead of perpendicular as indicated in the figures.
Por esto mismo también se pueden colocar dentro del canal en espiral interior 6 que contiene el PCM 16, cierto número de soportes 18 soldados perpendicularmente a la superficie del canal como se muestra a modo de ejemplo en la figura 10, con una longitud igual al equiespaciado "e" y del mismo material que el elemento 4. El cálculo del número de soportes por unidad de área y el grosor de los mismos deberá hacerse en función de las condiciones de trabajo del fluido caloportador, de la naturaleza del PCM y del tipo de material estructural del elemento 4.  For this reason, a certain number of supports 18 welded perpendicularly to the surface of the channel can also be placed inside the internal spiral channel 6 containing PCM 16, as shown by way of example in Figure 10, with a length equal to the spacing "e" and of the same material as element 4. The calculation of the number of supports per unit area and the thickness of the same must be done according to the working conditions of the heat transfer fluid, the nature of the PCM and the type of structural material of element 4.

Claims

REIVINDICACIONES
1 . Módulo de almacenamiento térmico que comprende un contenedor (1 ) sustancialmente cilindrico con un eje longitudinal, tapas superior (2) e inferior (3) en sus extremos, al menos tres orificios de entrada y salida (9, 10, 1 1 ) situados en las tapas y en el cuerpo del contenedor y un material de cambio de fase (PCM), caracterizado porque comprende además un elemento interno (4) rodeado por dicho contenedor (1 ), donde el elemento interno (4) está formado por dos placas en forma de espiral que junto con el contenedor (1 ) delimitan un canal exterior (5) y un canal interior (6) y donde dicho elemento, en sus extremos superior e inferior, tiene una geometría espiral cónica, encontrándose el material de cambio de fase en el canal interior (6). one . Thermal storage module comprising a substantially cylindrical container (1) with a longitudinal axis, upper (2) and lower (3) lids at its ends, at least three inlet and outlet holes (9, 10, 1 1) located in the lids and in the body of the container and a phase change material (PCM), characterized in that it further comprises an internal element (4) surrounded by said container (1), where the internal element (4) is formed by two plates in spiral shape that together with the container (1) delimit an outer channel (5) and an inner channel (6) and where said element, at its upper and lower ends, has a conical spiral geometry, the phase change material being found in the inner channel (6).
2. Módulo según la reivindicación 1 caracterizado porque comprende además una pieza de interconexión (7) provista de una abertura (8) adaptada para cooperar con el elemento interno (4) de manera que el material de cambio de fase no invada la tapa inferior (3) y el canal exterior pueda atravesar dicha pieza (7). 2. Module according to claim 1 characterized in that it further comprises an interconnection piece (7) provided with an opening (8) adapted to cooperate with the internal element (4) so that the phase change material does not invade the lower cover ( 3) and the outer channel can pass through said part (7).
3. Módulo según la reivindicaciones 1 o 2 caracterizado porque la tapa inferior (3) es cónica. 3. Module according to claims 1 or 2 characterized in that the lower cover (3) is conical.
4. Módulo según cualquiera de las reivindicaciones anteriores, caracterizado porque el PCM es uno o una mezcla eutéctica de los siguientes compuestos: nitritos, nitratos, cloritos, cloratos, fluoritos, fluoratos, hidróxidos o carbonatos de metales alcalinos. 4. Module according to any of the preceding claims, characterized in that the PCM is one or a eutectic mixture of the following compounds: nitrites, nitrates, chlorites, chlorates, fluorites, fluorates, hydroxides or alkali metal carbonates.
5. Módulo según cualquiera de las reivindicaciones anteriores caracterizado porque comprende una capa aislante (12) entre el contenedor (1 ) y el canal exterior (5).  5. Module according to any of the preceding claims characterized in that it comprises an insulating layer (12) between the container (1) and the outer channel (5).
6. Módulo según cualquiera de las reivindicaciones anteriores caracterizado porque los espacios (13, 14) entre las tapas superior e inferior y el elemento interno (4) están provistos de un aislante térmico (12). 6. Module according to any of the preceding claims characterized in that the spaces (13, 14) between the upper and lower covers and the internal element (4) are provided with a thermal insulator (12).
7. Módulo según cualquiera de las reivindicaciones anteriores caracterizado porque está provisto de una placa adicional (15) unida al extremo superior del elemento interno (4) que prolonga verticalmente el canal interno (6) hasta la tapa superior (2). 7. Module according to any of the preceding claims characterized in that it is provided with an additional plate (15) attached to the upper end of the internal element (4) that extends the internal channel (6) vertically to the upper cover (2).
8. Módulo según cualquiera de las reivindicaciones anteriores caracterizado porque comprende soportes (18) dentro del canal interior (6) perpendiculares a las placas del elemento interno (4). 8. Module according to any of the preceding claims characterized in that it comprises supports (18) within the inner channel (6) perpendicular to the plates of the internal element (4).
PCT/ES2012/070619 2011-08-11 2012-08-09 Heat-storage module based on latent heat with high heat-transfer rates WO2013021091A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
ESP201131378 2011-08-11
ES201131378A ES2414310B1 (en) 2011-08-11 2011-08-11 HOT HEAT-BASED THERMAL STORAGE MODULE WITH HIGH HEAT TRANSFER RATES

Publications (1)

Publication Number Publication Date
WO2013021091A1 true WO2013021091A1 (en) 2013-02-14

Family

ID=47667925

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/ES2012/070619 WO2013021091A1 (en) 2011-08-11 2012-08-09 Heat-storage module based on latent heat with high heat-transfer rates

Country Status (2)

Country Link
ES (1) ES2414310B1 (en)
WO (1) WO2013021091A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR3058209A1 (en) * 2016-10-27 2018-05-04 Commissariat A L'energie Atomique Et Aux Energies Alternatives THERMAL STORAGE SYSTEM WITH PHASE CHANGE MATERIAL
US20220026155A1 (en) * 2020-07-22 2022-01-27 Hamilton Sundstrand Corporation Spiral heat exchanger with monolithic phase change material chamber

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ES2565690B1 (en) * 2014-09-05 2017-01-20 Abengoa Solar New Technologies,S.A. Method and thermal storage system for solar steam generation plant and solar steam generation plant

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3303877A (en) * 1963-06-05 1967-02-14 Ramen Corp A B Heat exchanger
EP1426720A1 (en) * 2002-11-22 2004-06-09 HONDA MOTOR CO., Ltd. Heat storage apparatus
EP1431694A1 (en) * 2001-09-25 2004-06-23 Honda Giken Kogyo Kabushiki Kaisha Heat accumulation unit and method of manufacturing the unit
US20040194908A1 (en) * 2003-02-19 2004-10-07 Honda Motor Co., Ltd. Heat storing element and method for manufacturing heat storage apparatus using the element

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3303877A (en) * 1963-06-05 1967-02-14 Ramen Corp A B Heat exchanger
EP1431694A1 (en) * 2001-09-25 2004-06-23 Honda Giken Kogyo Kabushiki Kaisha Heat accumulation unit and method of manufacturing the unit
EP1426720A1 (en) * 2002-11-22 2004-06-09 HONDA MOTOR CO., Ltd. Heat storage apparatus
US20040194908A1 (en) * 2003-02-19 2004-10-07 Honda Motor Co., Ltd. Heat storing element and method for manufacturing heat storage apparatus using the element

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR3058209A1 (en) * 2016-10-27 2018-05-04 Commissariat A L'energie Atomique Et Aux Energies Alternatives THERMAL STORAGE SYSTEM WITH PHASE CHANGE MATERIAL
US20220026155A1 (en) * 2020-07-22 2022-01-27 Hamilton Sundstrand Corporation Spiral heat exchanger with monolithic phase change material chamber

Also Published As

Publication number Publication date
ES2414310A1 (en) 2013-07-18
ES2414310B1 (en) 2014-03-21

Similar Documents

Publication Publication Date Title
ES2806383T3 (en) Passive reactor cooling system
ES2689920T3 (en) System for storage and transportation of spent nuclear fuel
ES2392297B2 (en) SINGLE BITEMPERATURE THERMAL STORAGE TANK FOR APPLICATION ON THE SOLAR THERMAL PLANT.
ES2730250T3 (en) Management of spent fuel rods of a nuclear reactor
CN103377728B (en) A kind of Flooded-type containment complete passive after-heat removal system
JP6268714B2 (en) Geothermal power generation system
AR102873A1 (en) PASSIVE HEAT EVACUATION SYSTEM OF THE INTERNAL VOLUME OF THE CONTAINING AREA
ES2889759T3 (en) Modular refrigeration unit
ES2682197T3 (en) Apparatus for passively cooling a refrigerant tank of a nuclear power plant
ES2459241A1 (en) Heat storage system and method for the charging and discharging thereof
ES2659536T3 (en) Metallic heat storage device
WO2013021091A1 (en) Heat-storage module based on latent heat with high heat-transfer rates
ES2950416A2 (en) Novel flat heat absorber for solar tower power generation and system using same
ES2430646T3 (en) Procedure to generate heat
ES2802975T3 (en) Coolant loss accident reactor cooling system
JP2013122370A (en) Solar water heater
ES2921648T3 (en) Heat exchanger with heat transfer fluid with optimized assembly and a thermal energy storage device with phase change material comprising said exchanger
ES1207636U (en) SPECIFIC LOW CONSUMPTION DESALINATION DEVICE (Machine-translation by Google Translate, not legally binding)
ES2525196A1 (en) Thermally-insulated tubular-tower solar receiver comprising a system for harnessing energy losses
ES2734648T3 (en) Thermal energy accumulator based on solid-liquid phase change materials and unit manufacturing method
ES2370552B1 (en) NATURAL SHOT COOLING PROCEDURE OF A SOLAR CONCENTRATION PLANT.
ES2703205T3 (en) Cooling element for cooling the cooling liquid in a pool of fuel elements, corresponding system, pool of fuel elements and nuclear installation
ES2396078B2 (en) Device for capturing concentrated solar radiation, with drainage of heating fluid
WO2015086880A1 (en) Configuration of tower solar receivers and tower with said configuration
ES2473190B1 (en) Multi-Effect Distillation Device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12821542

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12821542

Country of ref document: EP

Kind code of ref document: A1