WO2013020516A1 - 一种多天线传输的方法及装置 - Google Patents

一种多天线传输的方法及装置 Download PDF

Info

Publication number
WO2013020516A1
WO2013020516A1 PCT/CN2012/079921 CN2012079921W WO2013020516A1 WO 2013020516 A1 WO2013020516 A1 WO 2013020516A1 CN 2012079921 W CN2012079921 W CN 2012079921W WO 2013020516 A1 WO2013020516 A1 WO 2013020516A1
Authority
WO
WIPO (PCT)
Prior art keywords
configuration
csi
enb
data
interference
Prior art date
Application number
PCT/CN2012/079921
Other languages
English (en)
French (fr)
Inventor
王建国
周永行
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to EP12822509.1A priority Critical patent/EP2744286B1/en
Publication of WO2013020516A1 publication Critical patent/WO2013020516A1/zh
Priority to US14/167,757 priority patent/US9571243B2/en

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0032Distributed allocation, i.e. involving a plurality of allocating devices, each making partial allocation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0613Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission
    • H04B7/0615Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal
    • H04B7/0619Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal using feedback from receiving side
    • H04B7/0621Feedback content
    • H04B7/0626Channel coefficients, e.g. channel state information [CSI]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/022Site diversity; Macro-diversity
    • H04B7/024Co-operative use of antennas of several sites, e.g. in co-ordinated multipoint or co-operative multiple-input multiple-output [MIMO] systems
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0613Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission
    • H04B7/0615Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal
    • H04B7/0619Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal using feedback from receiving side
    • H04B7/0621Feedback content
    • H04B7/063Parameters other than those covered in groups H04B7/0623 - H04B7/0634, e.g. channel matrix rank or transmit mode selection
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0613Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission
    • H04B7/0615Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal
    • H04B7/0619Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal using feedback from receiving side
    • H04B7/0621Feedback content
    • H04B7/0632Channel quality parameters, e.g. channel quality indicator [CQI]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0613Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission
    • H04B7/0615Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal
    • H04B7/0619Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal using feedback from receiving side
    • H04B7/0636Feedback format
    • H04B7/0639Using selective indices, e.g. of a codebook, e.g. pre-distortion matrix index [PMI] or for beam selection
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/0001Systems modifying transmission characteristics according to link quality, e.g. power backoff
    • H04L1/0023Systems modifying transmission characteristics according to link quality, e.g. power backoff characterised by the signalling
    • H04L1/0026Transmission of channel quality indication
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/004Arrangements for detecting or preventing errors in the information received by using forward error control
    • H04L1/0072Error control for data other than payload data, e.g. control data
    • H04L1/0073Special arrangements for feedback channel
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0032Distributed allocation, i.e. involving a plurality of allocating devices, each making partial allocation
    • H04L5/0035Resource allocation in a cooperative multipoint environment

Definitions

  • the present invention relates to the field of communications technologies, and in particular, to a method and apparatus for multi-antenna transmission.
  • Each of the RRHs is connected to the eNB (Evolved Node B, the evolved base station), and the macro base station is directly connected to the eNB.
  • the RRH or the macro base station sends data to the UE (User Equipment, User Equipment) through its respective TP (Transmission Point, Transmission Point).
  • TP Transmission Point, Transmission Point
  • CoMP Coordinatd Multi-Point Operation
  • the eNB notifies the UE of two CSI RS (Channel State Information Reference Signal) configurations, and the CSI RS configurations respectively correspond to two TPs.
  • two CSI RS configurations correspond to the macro base station and RRH1, respectively: CSI RS Config.0 and CSI RS Config.1; then the UE measures CSI (Channel State Information) according to the received two CSI RS configurations.
  • CSI RS Channel State Information Reference Signal
  • the CSI includes an RI (Rank Indicator) and/or a PMI (Precoding Matrix Indicator) and/or a CQI (Channel Quality Indicator) and
  • the phase adjustment information between the two CSI RSs carries the phase adjustment factor e.
  • the PMIs corresponding to CSI RS Config.0 and CSI RS Config.1 are PMI0 and PMI1, respectively, assuming PMI0 and PMI1 respectively indicate
  • the pre-coded data is VS, where S is to be sent.
  • y HVS+n
  • H [H 0 H 1 ]
  • H 0 and H 1 are UE to two
  • the channel matrix of TP, n is the received noise and interference, so that the transmitted data S can be obtained according to y.
  • the UE receives the signals transmitted by each TP that are geographically separated, and the received power from each TP is different.
  • the precoding matrix obtained according to the prior art does not apply to the power imbalanced channel matrix, and cannot effectively eliminate or suppress interference. As a result, the throughput of the system is reduced.
  • Embodiments of the present invention provide a method and apparatus for multi-antenna transmission, which can avoid power imbalance problems, effectively eliminate or suppress interference, and improve system throughput.
  • a method for multi-antenna transmission comprising:
  • the user equipment UE receives the reference signal RS configuration set sent by the evolved base station eNB, and acquires channel state information CSI corresponding to each RS configuration in the RS configuration set based on the RS configuration set, where the RS configuration set includes at least two RSs.
  • the CSI set Sending, by the UE, the CSI set to the eNB, where the CSI set includes the CSI corresponding to each RS configuration in the RS configuration set;
  • the UE receives a signal sent by the eNB according to the CSI set and performs data processing.
  • a method for multi-antenna transmission comprising:
  • the eNB sends an RS configuration set to the UE, so that the UE acquires CSI corresponding to each RS configuration in the RS configuration set according to the received RS configuration set, where the RS configuration set includes at least two RS configurations;
  • the CSI set sent by the UE, where the CSI set includes the The CSI corresponding to each RS configuration in the RS configuration set;
  • the eNB sends data to the UE according to the received CSI set.
  • a device for transmitting multiple antennas comprising:
  • a receiving measurement unit configured to receive a reference signal RS configuration set sent by the evolved base station eNB, and acquire, according to the RS configuration set, channel state information CSI corresponding to each RS configuration in the RS configuration set, where the RS configuration set is at least Contains two RS configurations;
  • a sending unit configured to send the CSI set to the eNB, where the CSI set includes channel state information CSI corresponding to each RS configuration in the RS configuration set;
  • a data processing unit configured to receive a signal sent by the eNB according to the CSI set and perform data processing.
  • a device for transmitting multiple antennas comprising:
  • a sending unit configured to send, to the UE, an RS configuration set, so that the UE acquires CSI corresponding to each RS configuration in the RS configuration set according to the received RS configuration set, where the RS configuration set includes at least two RS configurations ;
  • a receiving unit configured to receive the CSI set sent by the UE, where the CSI set includes the CSI corresponding to each RS configuration in the RS configuration set;
  • An embodiment of the present invention provides a method and a device for transmitting multiple antennas, by receiving a reference signal RS configuration set sent by an eNB, and acquiring, according to the RS configuration set, CSI corresponding to each RS configuration in the RS configuration set, and The eNB sends the CSI set, and then may receive a signal sent by the eNB according to the CSI set and perform data processing.
  • the UE receives the signal transmitted by each TP that is geographically separated, and the received power is different.
  • the precoding matrix obtained according to the prior art does not apply to the power imbalanced channel matrix, and cannot effectively eliminate or suppress interference, thereby reducing
  • the solution provided by the embodiment of the present invention can perform CSI feedback for the TPs with different receiving powers of the UE, thereby avoiding power imbalance and effectively eliminating or suppressing interference. Thereby effectively improving the throughput of the system.
  • Embodiment 1 is a flowchart of a method for multi-antenna transmission according to Embodiment 1 of the present invention
  • FIG. 2 is a flowchart of another method for multi-antenna transmission according to Embodiment 1 of the present invention
  • FIG. 3 is a block diagram of an apparatus for transmitting multiple antennas according to Embodiment 1 of the present invention
  • FIG. 4 is a block diagram of another apparatus for transmitting multiple antennas according to Embodiment 1 of the present invention.
  • FIG. 5 is a flowchart of a method for multi-antenna transmission according to Embodiment 2 of the present invention.
  • FIG. 6 is a flowchart of a method for transmitting a CSI set to an eNB by using a PUCCH according to Embodiment 2 of the present invention
  • FIG. 7 is a block diagram of an apparatus for multi-antenna transmission according to Embodiment 2 of the present invention.
  • FIG. 8 is a block diagram of a second sending module according to Embodiment 2 of the present invention.
  • FIG. 9 is a block diagram of another apparatus for multi-antenna transmission according to Embodiment 2 of the present invention.
  • the embodiment of the present invention provides a method for multi-antenna transmission.
  • the method includes: Step 101: A user equipment UE receives a reference signal RS configuration set sent by an evolved base station eNB. Obtaining, according to the RS configuration set, channel state information CSI corresponding to each RS configuration in the RS configuration set, where the RS configuration set includes at least two RS configurations;
  • Step 102 The UE sends the CSI set to the eNB, where the CSI set includes channel state information CS I corresponding to each RS configuration in the RS configuration set.
  • Step 103 The UE receives a signal sent by the eNB according to the CSI set and performs data processing.
  • the executor of the method is a UE (User Equipment), where the UE includes a user terminal, a mobile station, a relay for downlink data reception, and the like.
  • UE User Equipment
  • the embodiment of the present invention further provides a method for multi-antenna transmission.
  • the method includes: Step 201: An eNB sends an RS configuration set to a UE, so that the UE is according to the received
  • the RS configuration set acquires CSI corresponding to each RS configuration in the RS configuration set, where the RS configuration set includes at least two RS configurations;
  • Step 202 The eNB receives the CSI set sent by the UE, where the CSI set includes the CS I corresponding to each RS configuration in the RS configuration set.
  • Step 203 The eNB sends data to the UE according to the CSI set.
  • the executor of the method is an eNB (Evo lved Node B), and the eNB may also be referred to as an evolved Node B.
  • the eNB may include a base station, an RRH, and a relay for transmitting downlink data.
  • An embodiment of the present invention provides a method and an apparatus for transmitting multiple antennas, by receiving a reference signal RS configuration set sent by an eNB, and acquiring CSI corresponding to each RS configuration in the RS configuration set based on the RS configuration set, and The eNB sends the CSI set, and then may receive a signal sent by the eNB according to the CSI set and perform data processing.
  • the UE receives the signal transmitted by each TP that is geographically separated, and the received power from each TP is different.
  • the precoding matrix obtained according to the prior art does not apply to the power imbalanced channel matrix, and cannot be effectively eliminated or Suppressing interference, resulting in a decrease in the throughput of the system.
  • CSI feedback may be separately performed for the TPs with different receiving powers of the UE to avoid the power imbalance problem, and effectively eliminated or The interference is suppressed, thereby effectively improving the throughput of the system.
  • the embodiment of the present invention provides a device for transmitting multiple antennas, which may be a UE, corresponding to the method shown in FIG. 1.
  • the device includes: a receiving measurement unit 301, a sending unit 302, and a data processing unit. 303.
  • the receiving measurement unit 301 is configured to receive a reference signal RS configuration set sent by the base station eNB, and acquire, according to the RS configuration set, channel state information CSI corresponding to each RS configuration in the RS configuration set, where the RS configuration set includes at least two Each RS configuration in the CSI set corresponds to each RS configuration in the RS configuration set;
  • the sending unit 302 is configured to send the CS I set to the eNB, where the CS I set includes channel state information CS I corresponding to each RS configuration in the RS configuration set;
  • the data processing unit 303 is configured to receive a signal sent by the eNB according to the CSI set and perform data processing.
  • An embodiment of the present invention provides another apparatus for multi-antenna transmission, which may be an eNB, corresponding to the method shown in FIG. 2.
  • the apparatus includes: a sending unit 401, a receiving unit 402, and a data sending unit. 403.
  • the sending unit 401 is configured to send an RS configuration set to the UE, so that the UE acquires CSI corresponding to each RS configuration in the RS configuration set according to the received RS configuration set, where the RS configuration set includes at least two RSs.
  • the receiving unit 402 is configured to receive the CSI set sent by the UE, where the CSI set includes the CS I corresponding to each RS configuration in the RS configuration set;
  • the data sending unit 403 is configured to send data to the UE according to the CSI set.
  • An embodiment of the present invention provides a device for transmitting multiple antennas, and receiving, by a receiving measurement unit, a reference signal RS configuration set sent by an eNB, and acquiring, according to the RS configuration set, a CSI corresponding to each RS configuration in the RS configuration set. And transmitting, by the sending unit, the CSI set to the eNB, and then the data processing unit may receive the signal sent by the eNB according to the CSI set and perform data processing Reason.
  • the solution provided by the embodiment of the present invention can perform CS I feedback for the TPs with different receiving powers of the UE to avoid the power imbalance problem, and effectively eliminate or suppress the interference, thereby effectively improving the throughput of the system.
  • An embodiment of the present invention provides a method for transmitting multiple antennas. As shown in FIG. 5, the method includes: Step 501: An eNB sends an RS configuration set to a UE, so that the UE is configured according to the received
  • the RS configuration set acquires channel state information CS I corresponding to each RS configuration in the RS configuration set, where the RS configuration set includes at least two RS configurations;
  • the RS (Reference S i gna l) configuration set may include an RS configuration with the same cell identifier, and adopts an RS configuration with the same cell identifier, so that scheduling can be performed by one scheduler, which facilitates scheduling and management.
  • the resources occupied by the RS configurations with the same cell identity are orthogonal to each other.
  • the resources occupied by the RS configuration with the same cell identifier are orthogonal to each other including:
  • the RS configuration with the same cell identifier occupies different time resources
  • the RS configuration with the same cell identifier occupies different frequency resources
  • the RS configuration with the same cell identifier occupies different sequence resources
  • the RS configuration with the same cell identity occupies different scrambling resources.
  • the use of mutually orthogonal RS resources can reduce interference between different RSs, thereby improving the accuracy of channel estimation.
  • each RS configuration in the RS configuration set may have the same number of antenna ports, for example,
  • Each RS configuration in the RS configuration set may have one antenna port, or two antenna ports, or eight antenna ports.
  • the inherent structural characteristics of the RS may be configured.
  • the RS configuration may be utilized.
  • the nesting feature can simplify the signaling design of the RS configuration set to send notifications to the UE, and can also reduce the complexity of the UE channel estimation implementation.
  • each RS configuration in the RS configuration set corresponds to a different TP (Transmi ss ion) Po int, transmission point/transmission point), which can effectively distinguish TPs with different receiving powers, and facilitate separate processing of different TPs, so as to avoid performance loss caused by power-balanced antenna port processing of power imbalanced antenna ports.
  • TP Transmi ss ion
  • Step 502 The UE receives an RS configuration set sent by an eNB, and acquires, according to the RS configuration set, CSI corresponding to each RS configuration in the RS configuration set, where the RS configuration set includes at least two RS configurations.
  • the CS I includes at least one of a rank indication RI, a precoding matrix indication PMI, a channel quality indication CQI, a precoding type indication PTI, and other channel state information; and measuring each CSI in the CSI set may adopt the following Four ways:
  • the received RS configurations are Conf ig, Conf i gl and Conf ig 2 respectively , and the corresponding antenna ports are respectively N.
  • ⁇ and the corresponding CS I are respectively CSI.
  • CS Io including RI. and / or PMI. and / or CQI.
  • CSIi including and / or PMI ⁇ / or
  • CSI 2 including RI 2 and / or PMI 2 and / or CQI 2 ).
  • C y (rmk'pmi) represents a function of capacity or throughput with a rank of rank, a precoding matrix indicating that pmi is a system equation corresponding to ⁇ .
  • the equation corresponding to y can be as shown in (3) or (4)
  • CQI can assume that one or more transport block (or codeword) calculations are transmitted, so that one or more CQIs can be obtained.
  • the UE when the UE measures the RS configuration, the corresponding channel is obtained, and based on the adopted system equation (3) or (4), and the receiver used, the signal to noise ratio or the equivalent signal to noise ratio is obtained, and the signal to noise ratio is utilized.
  • CQI can be obtained by mapping with CQI.
  • the receiver can be a fixed SE (minimum mean square error) receiver.
  • one or more CQIs may also be calculated based on the plurality or all of the codes, wherein each CQI corresponds to one transport block (or codeword).
  • the CSI corresponding to each RS configuration in the CSI set may also be jointly calculated based on the RS configuration set;
  • the three RS configurations received by the UE are Configo, Confi gl ⁇ Conf ig 2 , corresponding days.
  • the number of line ports is N. , ⁇ and N 2 , thus obtaining the CSI as CSI. (including RI. and / or PMI. and / or CQIo), CSl! (including and / or PMI / or CQU and CSI 2 (including RI 2 and / or PMI 2 and / or CQI 2 ) three CSI as an example , based on capacity or throughput maximization criteria, calculate Rli and/or calculate as follows,
  • the UE obtains a corresponding channel when measuring the RS configuration, based on the adopted system equation (7) and the above obtained and/or corresponding precoding matrix, and the receiver used, such as MN (minimum mean square error)
  • the receiver obtains the signal-to-noise ratio or the equivalent signal-to-noise ratio, and uses the mapping relationship between the signal-to-noise ratio and the CQI to obtain each CQI.
  • the CSI corresponding to each RS configuration in the CSI set may also be based on the assumption that there is no interference from other part or all of the RS configuration corresponding antenna ports in the RS configuration set, or from other parts or all of the RS configuration set.
  • the interference of the RS configuration corresponding to the antenna port has been eliminated.
  • the assumptions made here can be explicitly indicated by the eNB, such as direct notification. It may also be implicitly indicated by the eNB. For example, in step 501, when the eNB sends the RS configuration set to the UE, the location order of each RS configuration in the RS configuration set is implicitly indicated, for example, CSI 2 assumes to eliminate CSI RS Config.
  • Interference corresponding to CSI RS Config.2; CSI shall cancel the interference corresponding to CSI RS Config.0 and there is interference corresponding to CSI RS Config.2; CSI. Assume that there is a pair of CSI RS Conf ig.0 and CSI RS Config.2 The interference should be reported to the eNB by the UE when making measurements.
  • the received RS configurations are respectively Conf ig. , Config ⁇ pConfig 2
  • the corresponding number of antenna ports is ⁇ . , ⁇ 2
  • the corresponding CSI is CSI. , CSl! ⁇ CSI 2 .
  • CSIo including RI. and / or PMI. and / or CQI.
  • ⁇ /or and CSI 2 may be based on interference from no corresponding portion or all of the RS configuration corresponding antenna ports in the RS configuration set or from the RS configuration The interference of other part or all of the RS configuration corresponding to the antenna port in the set has been eliminated.
  • the calculation of RI 2 and/or PMI 2 can be calculated as follows:
  • RI 2 arg max max g y ⁇ (r 2 , p 2 ) ( 8 )
  • PMI 2 arg max g y ⁇ ( U 2 , p 2 ) (9) where g y2 ( 1 ⁇ 2) represents capacity or throughput with the rank as the precoding matrix indicated as ⁇ and the equation corresponding to y 2 as the system equation The function of the quantity.
  • the equation corresponding to y 2 is as shown in (9)
  • g yi denotes a function of capacity or throughput with a rank
  • a precoding matrix indicated as A a precoding matrix indicated as A
  • an equation corresponding to yi as a system equation.
  • the equation corresponding to yi is as shown in (13)
  • CSI1 is further calculated based on CSI2.
  • g y . indicates that the rank is
  • the precoding matrix is indicated as and y.
  • the corresponding equation is a function of the system equation to obtain capacity or throughput.
  • the equation corresponding to y Q is as shown in (17)
  • contains the content from Config 2 corresponds to the interference of the antenna port.
  • Config for RS. CQI. It can be based on the above obtained / / Q and / or ⁇ . Calculation, CQI. Can be further based on the presence from Config 2 corresponds to the interference meter of the antenna port or further, y. The corresponding equation is shown as (18)
  • CSIO is further calculated based on CSI1 and CSI2.
  • Manner 4 The CSI corresponding to each RS configuration in the RS configuration set is obtained based on the RS configuration set, where the CSI corresponding to each RS configuration in the RS configuration set is obtained, based on other parts in the RS configuration set. Or the CSI corresponding to each RS configuration in the CSI calculation corresponding to all RS configurations. Further, the other part or all of the RS configurations corresponding to the CSI corresponding to the RS configuration in the RS configuration set are obtained based on the received indication sent by the eNB or are sent by the UE. The eNB.
  • the received indication sent by the eNB is obtained by the UE receiving the location order of each RS configuration in the RS configuration set sent by the eNB.
  • the received RS configurations are Configo, Config and Config 2 respectively
  • the above-mentioned Configo, Config and Conf ig 2 are respectively CSI RS Config.0, CSI RS Config.2 and CSI RS Conf ig.1
  • CSL is calculated based on CSI 2 ;
  • CSI. based on CSI 2 calculation.
  • the CSI calculation corresponding to the partial or full RS configuration described above may also be notified by the eNB or by the UE.
  • the interference can be further eliminated by assuming that the interference calculation CSI from some or all of the RS configuration corresponding antenna ports in the RS configuration set is eliminated, and the serial interference cancellation is performed at the receiving end; by specifying the order of interference cancellation,
  • the degree of interference cancellation can be further optimized, in particular to eliminate the influence of the received power imbalance, so that the accuracy of the CSI calculation can be improved by further assuming that the CSI calculation corresponding to other part or all of the RS configurations can be improved;
  • the CSI calculation order corresponding to all RS configurations can further optimize the CSI precision, especially the effect of adaptively eliminating the imbalance of the received power;
  • the number of antennas corresponding to the codebook used by the CSI corresponding to each RS configuration is the same as the number of antenna ports in the RS configuration.
  • the codebook corresponding to a single antenna port is composed of a scalar.
  • the CSI corresponding to a single antenna port may be composed only of CQI.
  • the CSI corresponding to each RS configuration in the RS configuration set may be calculated by transmitting one or more transport blocks (or code words) or layers when calculating the CQI, thereby obtaining one or more CQIs, where each CQI Calculated with transport block (or codeword) or layer.
  • Step 503 The UE sends the CSI set to the eNB, so that the eNB performs data transmission based on the received CSI set. It should be noted that at least one CSI is included in the CSI set, and each CSI in the CSI set corresponds to each RS configuration in the RS configuration set in step 501.
  • the CSI set may be sent to the eNB by using a PUSCH (Physical Uplink Shared Channel); or the CSI may be sent to the eNB by using a PUCCH (Physical Uplink Control Channel) Collection
  • PUSCH Physical Uplink Shared Channel
  • PUCCH Physical Uplink Control Channel
  • the UE sends a CSI set to the eNB through the PUCCH, and can encode some or all of the CSI bit sequences in the CSI set by using the dual RM code, and transmit through DFT-S-0FDM, as shown in FIG. 6. Specifically, the following steps are included:
  • Step 601 The CSI bit sequence in the CSI set to be transmitted is divided into two parts; wherein the first part includes ceil (N/2) bits, and the second part includes [N-ceil (N/2)] bits, Wherein, ⁇ is the total number of bits of the CSI bit sequence in the CSI set to be transmitted, and ceil (N/2) represents a minimum integer not less than N/2;
  • Step 602 The two partial CSI bit sequences are respectively encoded by using a (32, 0) RM code, respectively obtaining 32 bits, and respectively removing 8 bits of the last 32 bits to obtain 24 coded bits;
  • Step 603 Perform QPSK modulation on the obtained 24 coded bits, and obtain 12 QPSK modulation symbols respectively.
  • Step 604 The obtained two parts of the 12 QPSK modulation symbols are sequentially mapped to two time slots of the PUCCH and transmitted to the eNB.
  • the above-mentioned double RM code and transmitted by DFT-S-0FDM can transmit two at a time.
  • the RS configures the corresponding CSI, that is, transmits two CSIs at a time.
  • the CSI includes RI and/or PMI and/or CQI. The fewer elements included in the CSI, the more accurate the CSI set transmitted.
  • Step 504 The eNB receives the CSI set sent by the UE, where the CSI set includes at least two CSIs, and each CSI in the CSI set sequentially corresponds to each RS configuration in the RS configuration set.
  • Transmitting the precoded data to the UE that is, sending the PS to the UE, where S is the transmitted data.
  • the CSI received by the eNB receives three CSIs: CSI. (including RI. and / or PMI.
  • CSIi including and / or PMI ⁇ / or CQI and CSI 2 (including RI 2 and / or PMI 2 and / or CQI 2 ), with Rli and ⁇ ⁇
  • the precoding matrix has a block diagonal matrix structure, and each of the block matrices is from the existing LTE RIO (LTE Release 10, LTE version 10) codebook, which can simplify the codebook design and is more important.
  • the codebooks from each block matrix are based on a co-located antenna design that matches the antenna deployment of each transmit point/transmission point.
  • Step 506 The UE receives a signal sent by the eNB and performs data processing. Specifically, the UE receives a signal sent by the eNB;
  • the data sent by the eNB is sequentially acquired, and the other partial data or all other data refers to the current calculation. Some or all of the data outside the data;
  • the UE performs data detection on the received signal y transmitted by the eNB, and y is given by
  • H is a channel matrix
  • P is a precoding matrix
  • n is noise and interference other than interference of an antenna port corresponding to each RS configuration in the RS configuration set.
  • the UE may perform data detection by means of serial interference cancellation.
  • (19) can be written as
  • the s is first detected for the interference term. Then based on the detected s. , S1 is detected based on the following equation:
  • the interference of eliminating some or all of the data or the interference of the other all data may be obtained according to the received indication sent by the eNB or according to an implicit designation.
  • the method for multi-antenna transmission provided by the embodiment of the present invention is applicable not only to the case of CS I RS configuration, but also to the case of CRS configuration.
  • An embodiment of the present invention provides a method for transmitting multiple antennas by receiving a reference signal RS configuration set sent by an eNB, and measuring each CSI in a CSI set based on the RS configuration set, and transmitting the CSI set to an eNB, and then The eNB may receive a signal sent according to the CSI set and perform data processing.
  • the UE receives the signal transmitted by each TP that is geographically separated, and the received power is different.
  • the precoding matrix obtained according to the prior art does not apply to the power imbalanced channel matrix.
  • the solution provided by the embodiment of the present invention performs CSI feedback on the TPs with different receiving powers of the UE to avoid the power imbalance problem, and is effective, as compared with the solution provided by the embodiments of the present invention. Eliminating or suppressing interference can eliminate the effects of unbalanced receive power, thereby effectively increasing the throughput of the system.
  • the embodiment of the present invention provides a device for multi-day transmission, and the device may be a UE.
  • the device includes: a receiving measurement unit 701, a first receiving measurement module 702, a second receiving measurement module 703, and a third The receiving measurement module 704, the reporting unit 705, the fourth receiving measurement module 706, the sending unit 707, the first sending module 708, the second sending module 709, the data processing unit 710, the receiving module 711, and the detecting module 712.
  • the receiving measurement unit 701 is configured to receive a reference signal RS configuration set sent by the evolved base station eNB, and acquire, according to the RS configuration set, channel state information CSI corresponding to each RS configuration in the RS configuration set, where the RS configuration set is at least Contains two RS configurations;
  • the CSI includes at least one of a rank indication RI, a precoding matrix indication PMI, a channel quality indicator CQI, a precoding type indication PTI, and other channel state information;
  • the following four methods may be used:
  • the first receiving measurement module 702 is configured to separately acquire, according to the RS configuration set, CSI corresponding to each RS configuration in the RS configuration set.
  • the received RS configurations are Conf ig, Conf i gl and Config 2 respectively, and the corresponding number of antenna ports is N.
  • the CSI corresponding to 3 ⁇ 4 is CSI, respectively, and CSI. 2.
  • the receiving measurement unit 701 can then be used to receive the RS configurations of Configo, Confi gl ⁇ Conf ig 2 and calculate CSIo (including RI and/or PMI. and/or CQIo), respectively (including and/or PMI ⁇ ). / or CQI and CSI 2 (including RI 2 and / or PMI 2 and / or CQI 2 ).
  • the other RS configuration refers to an RS configuration other than the RS configuration corresponding to the currently calculated CSI in the RS configuration set.
  • Rli and/or can be calculated based on capacity or throughput maximization criteria as follows:
  • PMI;. Arg max C ( Rl ⁇ pmi) (23) where CB Ni, ra "k shown the rank of the rank N, the codebook antenna, ⁇ ⁇ precoding matrix indicator indicates a precoding matrix corresponding to pmi C y , cmk'pmi) represents a function of capacity or throughput with rank as rank, precoding matrix indicating pmi as y , and corresponding equation as system equation.
  • y the corresponding equation can be as
  • CQI can assume that one or more transport block (or codeword) calculations are transmitted, so that one or more CQIs can be obtained.
  • the UE measures the RS configuration
  • the corresponding channel is obtained, based on the adopted system equation (24). Or (25), and the receiver used, such as a solid-SE (least mean square error) receiver, obtains the signal-to-noise ratio or equivalent signal-to-noise ratio, and uses the mapping relationship between signal-to-noise ratio and CQI to obtain CQI.
  • the receiver used such as a solid-SE (least mean square error) receiver, obtains the signal-to-noise ratio or equivalent signal-to-noise ratio, and uses the mapping relationship between signal-to-noise ratio and CQI to obtain CQI.
  • the second receiving measurement module 703 is configured to jointly acquire, according to the RS configuration set, a CSI corresponding to each RS configuration in the RS configuration set.
  • the three RS configurations are respectively Config. , Confi gl and Config 2 , the corresponding number of antenna ports is N. , ⁇ and , can be jointly obtained separately for CSI. (including RI. and / or PMI. and / or CQIo), CSl! (including and / or PMI / or CQI and CSI 2 (including RI 2 and / or PMI 2 and / or CQI 2 ) three CSI.
  • CSI including RI. and / or PMI. and / or CQIo
  • CSl! including and / or PMI / or CQI and CSI 2 (including RI 2 and / or PMI 2 and / or CQI 2 ) three CSI.
  • the second receiving measurement unit module 703 can calculate Rli and/or PMIi based on capacity or throughput maximization criteria as follows
  • / y (r., A , / 2 ) means that the ranks are respectively r. , r ⁇ Pr 2 , the precoding matrix indicates p 0 , Pl and ⁇ ⁇ respectively and the equation corresponding to y is a system equation to obtain a function of capacity or throughput.
  • the equation corresponding to y is as shown in ( 28 )
  • the third receiving measurement module 704 is configured to: perform interference based on part or all of the RS configuration corresponding antenna ports in the RS configuration set or from some or all of the RS configurations. The interference corresponding to the antenna port is eliminated, and the CSI corresponding to each RS configuration in the RS configuration set is obtained. Further, the third receiving measurement module is further configured to: receive an indication sent by the eNB, to obtain no configuration from the RS. Some or all of the RS configurations in the set correspond to interference of the antenna port or information from which some or all of the RS configuration corresponding antenna ports have been eliminated.
  • the received indication sent by the foregoing eNB is obtained by using a location order of each RS configuration in the RS configuration set sent by the eNB.
  • the reporting unit 705 is further configured to: remove interference from some or all of the RS configuration corresponding antenna ports in the RS configuration set or interference from some or all of the RS configuration corresponding antenna ports. Information, reported to the eNB;
  • the UE receives three RS configurations as an example, and assumes that the received RS configurations are respectively Config. ,
  • CSI 2 assumes that CSI RS Config.0 and CSI RS Conf ig.2 correspond to the interference; CSI determines to eliminate the interference corresponding to CSI RS Config.0 and there is interference corresponding to CSI RS Config.2; CSI. It is assumed that there is a dry 4 corresponding to CSI RS Config.0 and CSI RS Config.2.
  • the RI 2 and/or PMI 2 calculations can be calculated based on capacity or throughput maximization criteria:
  • RI 2 arg max max y2 (f" 2 , p 2 ) (29)
  • W 2 argmax v (RI 2 , p 2 ) ( 30 )
  • g y2 (r 2 , / 2 ) represents a rank of r 2
  • the precoding matrix is indicated as p 2 and the equation corresponding to y 2 is a function of the system equation to obtain capacity or throughput.
  • the equation corresponding to y 2 is as shown in (31)
  • CQI 2 can be based on the above obtained / / 2 and / or ⁇ 7 2 Calculated, CQI 2 can be further based on the absence of Config.
  • the interference 1 ⁇ and/or corresponding to the antenna port of Confi gl is calculated as follows:
  • CSI1 is further calculated based on CSI2.
  • ⁇ 0 argmaxg y (RI 0 , p 0 ) ( 37 ) where g y A) indicates that the rank is a precoding matrix indicated as p. And with y.
  • the corresponding equation is a function of the system equation to obtain capacity or throughput. y.
  • the corresponding equation is as shown in (38) y 0 +n ( 38)
  • contains the interference from the corresponding antenna port of Config ⁇ Config 2 .
  • configure Config CQI for RS. Can be based on the above obtained /. And / or ⁇ 1 ⁇ 2 ⁇ .
  • the corresponding equation is shown in (39)
  • CSIO is further calculated based on CSI1 and CSI2.
  • the fourth receiving measurement module 706 is configured to obtain, according to a part of the RS configuration set, all the CSIs corresponding to the RS configuration, and obtain corresponding to each RS configuration in the RS configuration set.
  • the fourth receiving measurement module is further configured to: receive an indication sent by the eNB, to obtain part or all of the CSI corresponding to some or all of the RS configurations in the RS configuration set.
  • RS configuration
  • receiving the indication sent by the eNB is obtained by using a location order of each RS configuration in the RS configuration set sent by the eNB.
  • the reporting unit 705 is further configured to: configure the part or all of the RSs corresponding to the CSI corresponding to some or all of the RS configurations in the RS configuration set, and send the eNB;
  • the received RS configurations are Configo, Configi, and Config 2 , respectively.
  • Configi and Conf ig 2 and CSI RS Config.0, CSI RS Config.2 and CSI RS Config.1 respectively then according to the above ( 29-33 ), ( 35-37 ) ( 39 ), based on CSI 2 Calculation; CSI. based on CSI 2 calculation.
  • the CSI calculation corresponding to the other part or all of the RS configurations may also be notified by the eNB or by the UE.
  • the sending unit 707 is configured to send the CSI set to the eNB, so that the eNB performs data transmission based on the received CSI set;
  • the first sending module 708 is configured to send the CSI set to the eNB by using a physical uplink shared channel (PUSCH); or
  • the second sending module 709 is configured to send the CSI set to the eNB by using a physical uplink control channel PUCCH.
  • PUSCH physical uplink shared channel
  • PUCCH physical uplink control channel
  • the second sending module 709 When the second sending module 709 is used to send the CSI set to the eNB, as shown in FIG. 8, the second sending module 709 includes: a dividing submodule 801, an encoding submodule 802, and a modulation submodule 803.
  • the mapping sub-module 804 is mapped.
  • a dividing submodule 801 configured to divide a CSI bit sequence in the CSI set to be transmitted into two parts
  • the first part includes a ceil (N/2) bit
  • the second part includes a [N-ceil (N/2)] bit, where N is a total bit of a CSI bit sequence in the CSI set to be transmitted.
  • the number ceil (N/2) represents the smallest integer not less than N/2;
  • the encoding sub-module 802 is configured to encode the two-part CSI bit sequence by using a (32, 0) RM code, respectively obtain 32 bits, and respectively remove 8 bits of the last 32 bits to obtain 24 Coded bit
  • a modulation sub-module 803 configured to perform QPSK modulation on the obtained 24 coded bits, and obtain 12 QPSK modulation symbols respectively;
  • the mapping sending sub-module 804 is configured to sequentially map the obtained two 12 QPSK modulation symbols to the two slots of the PUCCH for transmission to the eNB.
  • the above-mentioned double RM code and transmitted by DFT-S-0FDM can transmit CSI corresponding to two RS configurations at a time, that is, two CSIs are transmitted each time.
  • the CSI includes RI and/or PMI and/or CQI. The fewer elements included in the CSI, the more accurate the CSI set transmitted.
  • the data processing unit 710 is configured to receive the signal sent by the eNB and perform data processing. Specifically, the receiving module 711 in the data processing unit 710 is configured to receive a signal sent by the eNB, and the detecting module 712 is configured to: Obtaining data transmitted by the eNB in sequence according to interference of eliminating other partial data or all other data or interference of all other data, the other partial data or all other data is other than the currently calculated data. Part or all Departmental data.
  • the interference of eliminating other partial data or all other data or the interference of all other data is obtained according to the received indication sent by the eNB or according to an implicit designation.
  • the item first detects s. Then based on the detected s. , S1 is detected based on the following equation:
  • the determination of the interference term is notified by the eNB to the UE, or is determined based on an implicit convention.
  • An embodiment of the present invention provides a multi-antenna transmission apparatus, which receives a reference signal RS configuration set sent by an eNB by using a receiving measurement unit, and acquires CS I corresponding to each RS configuration in the RS configuration set according to the RS configuration set, And sending, by the sending unit, the CS I set to the eNB, and then the data processing unit may receive the signal sent by the eNB according to the CS I set and perform data processing.
  • the UE receives a geographically separated signal transmitted by each TP, and the received power is different.
  • the precoding matrix obtained according to the prior art does not apply to the power imbalanced channel matrix, thereby causing interference and reducing system throughput.
  • the solution provided by the embodiment of the present invention performs CS I feedback for the TPs with different receiving powers of the UE to avoid power imbalance by separately processing different receiving points.
  • the problem, and effectively eliminate or suppress interference, can eliminate the impact of the receiver power imbalance, thereby effectively improving the throughput of the system.
  • the embodiment of the present invention further provides a device for transmitting multiple antennas, and the device may be an eNB.
  • the device includes: a sending unit 901, a receiving unit 902, a data sending unit 903, a precoding module 904, and a sending module. 905.
  • the sending unit 901 is configured to send an RS configuration set to the UE, so that the UE acquires CSI corresponding to each RS configuration in the RS configuration set according to the received RS configuration set, where the RS configuration set includes at least two RSs.
  • the RS configuration set includes an RS configuration with the same cell identifier, and the resources occupied by the RS configuration with the same cell identifier are orthogonal to each other; and the resources occupied by the RS configuration with the same cell identifier are orthogonal to each other:
  • the RS configuration with the same cell identifier occupies different time resources
  • the RS configuration with the same cell identifier occupies different frequency resources
  • the RS configuration with the same cell identifier occupies different sequence resources
  • the RS configuration with the same cell identity occupies different scrambling resources.
  • the UE After receiving the CSI in the CS I set, the UE sends the CSI to the eNB, where the receiving unit 902 is configured to receive the CSI set sent by the UE, where the CSI set includes each RS in the RS configuration set. Configuring the corresponding CS I;
  • the data sending unit 903 sends the data to the UE according to the received CSI set.
  • the pre-encoding module 904 in the sending unit 903 is configured to adopt Ppi ⁇ according to the CSI set.
  • the precoding matrix in CS I of i indicates that Ppi ⁇ is !3 ⁇ 411 ; the indicated precoding matrix;
  • the eNB receives the CSI reported by the UE and contains three CSIs: CSI. (package Includes RI. And / or PMI. And / or CQIo), CSl! (including and / or PMI / or CQI and CSI 2 (including RI 2 and / or PMI 2 and / or CQI 2 ), the precoding matrices corresponding to Rli and ⁇ ⁇ are
  • the precoding matrix can be
  • the precoding matrix has a block diagonal matrix structure, and each of the block matrices is from the existing LTE RI O (LTE Release 10, LTE version 10) codebook, which can simplify the codebook design and It is important that the codebooks from each of the block matrices are based on a co-located antenna design that matches the antenna deployment of each transmit point/transmission point.
  • LTE RI O LTE Release 10, LTE version 10
  • the sending module 905 is configured to send the precoded data to the UE.
  • the sending configuration unit sends an RS configuration set to the UE, so that the UE acquires a CSI set according to the received RS configuration set, and the receiving unit receives the sent by the UE.
  • the CS I set according to the CSI set, the data sending unit sends data to the UE.
  • the UE receives a geographically separated signal transmitted by each TP, and the received power is different.
  • the precoding matrix obtained according to the prior art does not apply to the power imbalanced channel matrix, thereby causing interference and reducing system throughput.
  • the solution provided by the embodiment of the present invention can separately perform CS I feedback for the TPs with different receiving powers of the UE by separately processing different receiving points, thereby avoiding the power imbalance problem, and effectively eliminating or suppressing interference, which can eliminate The impact of receiving power imbalance, thereby effectively improving the throughput of the system.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Physics & Mathematics (AREA)
  • Mathematical Physics (AREA)
  • Quality & Reliability (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本发明公开了一种多天线传输的方法及装置,涉及通信技术领域,可以降低干扰并且提高系统的吞吐量。本发明实施例提供的方案,通过接收eNB发送的参考信号RS配置集合,并基于所述RS配置集合获取所述RS配置集合中各个RS配置对应的CSI,并向eNB发送所述CSI集合,然后接收所述eNB根据所述CSI集合发送的信号并进行数据处理。本发明实施例提供的方案适合于多天线传输信号时采用。

Description

一种多天线传输的方法及装置
本申请要求于 2011 年 08 月 11 日提交中国专利局、 申请号为 201110230086.3、 发明名称为"一种多天线传输的方法及装置,,的中国专利申请 的优先权, 其全部内容通过引用结合在本申请中。
技术领域
本发明涉及通信技术领域, 尤其涉及一种多天线传输的方法及装置。
背景技术
目前, 对于地理上分开的分布式天线系统中, 低功率 RRH ( Remote Radio
Head, 远端射频头)均撒放在宏小区覆盖的范围内, 其中, 各个 RRH通过光纤 与 eNB (Evolved Node B, 演进型基站)连接, 宏基站直接与 eNB连接。 RRH 或者宏基站通过各自的 TP ( Transmission Point,发射点 /传输点)向 UE(User Equipment, 用户设备)发送数据, 在现有 CoMP ( Coordinated Multi-Point operation, 协作多点传输) 系统中, 可以通过多个 TP向 UE发送数据。
现以两个 TP 联合向 UE发送数据进行描述: eNB 通知 UE 两个 CSI RS ( Channel State Information Reference Signal , 信道状态信息参考信号) 配置, 所述 CSI RS配置分别与两个 TP对应。 例如, 两个 CSI RS配置分别与 宏基站和 RRH1对应: CSI RS Config.0和 CSI RS Config.1; 然后 UE才艮据接 收到的两个 CSI RS配置, 测量 CSI (Channel State Information , 信道状 态信息), 并向 eNB反馈测量的 CSI, 其中 CSI包括 RI (Rank Indicator, 秩 指示 )和 /或 PMI ( Precoding Matrix Indicator, 预编码矩阵指示 )和 /或 CQI (Channel Quality Indicator, 信道质量指示) 以及两个 CSI RS之间的相位 调整信息, 相位调整信息中携带相位调整因子 e , 例如, CSI RS Config.0 和 CSI RS Config.1对应的 PMI分别为 PMI0和 PMI1, 假设 PMI0和 PMI1分别 指示的预编码矩阵为 V0 和 VI, 则经过相位调整之后, 得到的预编码矩阵为 V= [VO, e^ Vl ] T, eNB接收到 UE反馈的 CS I后, 可以基于所接收的 CS I进行数据 传输, 例如, 经过预编码后的数据为 VS , 其中, S为待发送的调制符号构成的 矢量; UE接收到 eNB发送的信号 y, 根据 y检查传输的数据, 其中, y=HVS+n , H= [H 0 H 1 ], H 0和 H 1分别为 UE到两个 TP的信道矩阵, n为接收到的噪声和干扰, 这样, 根据 y即可获得传输的数据 S。
然而, UE接收地理上分开的每个 TP发射的信号, 接收到的来自各个 TP 的功率不同, 根据现有技术得到的预编码矩阵不适用功率不平衡的信道矩阵, 无法有效消除或者抑制干扰, 从而导致系统的吞吐量下降。
发明内容
本发明的实施例提供一种多天线传输的方法及装置,可以避免功率不平衡 问题, 并有效消除或者抑制干扰, 提高系统的吞吐量。
为达到上述目的, 本发明的实施例采用如下技术方案:
一种多天线传输的方法, 包括:
用户设备 UE接收演进型基站 eNB发送的参考信号 RS配置集合, 并基 于所述 RS配置集合获取所述 RS配置集合中各个 RS配置对应的信道状态信 息 CSI , 所述 RS配置集合至少包含两个 RS配置;
所述 UE向所述 eNB发送所述 CSI集合, 其中所述 CSI集合包含所述 RS配置集合中各个 RS配置对应的所述 CSI;
所述 UE接收所述 eNB根据所述 CSI集合发送的信号并进行数据处理。 一种多天线传输的方法, 包括:
eNB向 UE发送 RS配置集合, 以便所述 UE根据接收到的所述 RS配置 集合获取所述 RS配置集合中各个 RS配置对应的 CSI , 所述 RS配置集合包 括至少两个 RS配置;
所述 eNB接收所述 UE发送的所述 CSI集合, 所述 CSI集合包含所述 RS配置集合中各个 RS配置对应的所述 CSI;
所述 eNB根据接收到的所述 CSI集合, 将数据发送给所述 UE。
一种多天线传输的装置, 包括:
接收测量单元,用于接收演进型基站 eNB发送的参考信号 RS配置集合, 并基于所述 RS配置集合获取获取所述 RS配置集合中各个 RS配置对应的信 道状态信息 CSI , 所述 RS配置集合至少包含两个 RS配置;
发送单元, 用于向所述 eNB发送所述 CSI集合, 其中所述 CSI集合包含 所述 RS配置集合中各个 RS配置对应的信道状态信息 CSI;
数据处理单元, 用于接收所述 eNB根据所述 CSI集合发送的信号并进行 数据处理。
一种多天线传输的装置, 包括:
发送单元, 用于向 UE发送 RS配置集合, 以便所述 UE根据接收到的所 述 RS配置集合获取所述 RS配置集合中各个 RS配置对应的 CSI , 所述 RS 配置集合包括至少两个 RS配置;
接收单元, 用于接收所述 UE发送的所述 CSI集合, 所述 CSI集合包含 所述 RS配置集合中各个 RS配置对应的所述 CSI;
数据发送单元,用于根据接收到的所述 CSI集合,将数据发送给所述 UE。 本发明实施例提供了一种多天线传输的方法及装置, 通过接收 eNB发送 的参考信号 RS配置集合, 并基于所述 RS配置集合获取所述 RS配置集合中 各个 RS配置对应的 CSI , 并向 eNB发送所述 CSI集合, 然后可以接收所述 eNB根据所述 CSI集合发送的信号并进行数据处理。 与现有技术中 UE接收 地理上分开的每个 TP发射的信号, 接收的功率不同, 根据现有技术得到的预 编码矩阵不适用功率不平衡的信道矩阵, 无法有效消除或者抑制干扰,从而降 低系统的吞吐量相比,本发明实施例提供的方案可以针对 UE接收功率不同的 TP分别进行 CSI反馈,从而避免功率不平衡问题,并有效消除或者抑制干扰, 从而有效提高系统的吞吐量。
附图说明
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施 例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地, 下面描述 中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付 出创造性劳动性的前提下, 还可以根据这些附图获得其他的附图。
图 1为本发明实施例 1提供的一种多天线传输的方法的流程图;
图 2为本发明实施例 1提供的另一种多天线传输的方法的流程图; 图 3为本发明实施例 1提供的一种多天线传输的装置的框图;
图 4为本发明实施例 1提供的另一种多天线传输的装置的框图;
图 5为本发明实施例 2提供的一种多天线传输的方法的流程图;
图 6为本发明实施例 2提供的通过 PUCCH向 eNB发送 CSI集合的方法 的流程图;
图 7为本发明实施例 2提供的一种多天线传输的装置的框图;
图 8为本发明实施例 2提供的第二发送模块的框图;
图 9为本发明实施例 2提供的另一种多天线传输的装置的框图。
具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清 楚、 完整地描述, 显然, 所描述的实施例仅仅是本发明一部分实施例, 而不是 全部的实施例。基于本发明中的实施例, 本领域普通技术人员在没有作出创造 性劳动前提下所获得的所有其他实施例, 都属于本发明保护的范围。
实施例 1
本发明实施例提供一种多天线传输的方法, 如图 1所示, 该方法包括: 步骤 101 ,用户设备 UE接收演进型基站 eNB发送的参考信号 RS配置集合, 并基于所述 RS配置集合获取所述 RS配置集合中各个 RS配置对应的信道状态 信息 CSI , 所述 RS配置集合至少包含两个 RS配置;
步骤 102 , 所述 UE向所述 eNB发送所述 CSI集合, 其中所述 CSI集合包 含所述 RS配置集合中各个 RS配置对应的信道状态信息 CS I ;
步骤 103 , 所述 UE接收所述 eNB根据所述 CSI集合发送的信号并进行数 据处理。
该方法的执行主体为 UE ( User Equi pment , 用户设备), 其中 UE 包括用 户终端、 移动台、 下行数据接收的中继 (Relay )等。
本发明实施例还提供一种多天线传输的方法, 如图 2所示, 该方法包括: 步骤 201 , eNB向 UE发送 RS配置集合, 以便所述 UE根据接收到的所述
RS配置集合获取所述 RS配置集合中各个 RS配置对应的 CSI , 所述 RS配置集 合包括至少两个 RS配置;
步骤 202 , 所述 eNB接收所述 UE发送的所述 CSI集合, 所述 CSI集合包 含所述 RS配置集合中各个 RS配置对应的所述 CS I ;
步骤 203 , 所述 eNB根据所述 CSI集合, 将数据发送给所述 UE。
该方法的执行主体为 eNB ( Evo lved Node B, 演进型基站), eNB也可以称 为演进节点 B,该 eNB可以包括基站、 RRH、用于发送下行数据的中继( Relay )。
本发明实施例提供了一种多天线传输的方法及装置,通过接收 eNB发送的 参考信号 RS配置集合, 并基于所述 RS配置集合获取所述 RS配置集合中各个 RS配置对应的 CSI , 并向 eNB发送所述 CSI集合, 然后可以接收所述 eNB根据 所述 CSI集合发送的信号并进行数据处理。 与现有技术中 UE接收地理上分开 的每个 TP发射的信号,接收到的来自各个 TP的功率不同,根据现有技术得到 的预编码矩阵不适用功率不平衡的信道矩阵, 无法有效消除或者抑制干扰,从 而导致系统的吞吐量下降相比, 本发明实施例提供的方案, 可以针对 UE接收 功率不同的 TP分别进行 CSI反馈从而避免功率不平衡问题, 并有效消除或者 抑制干扰, 从而有效提高系统的吞吐量。
本发明实施例提供一种多天线传输的装置, 该装置可以为 UE, 对应附图 1 所示的方法, 如图 3所示, 该装置包括: 接收测量单元 301 , 发送单元 302 , 数据处理单元 303。
接收测量单元 301 , 用于接收基站 eNB发送的参考信号 RS配置集合, 并 基于所述 RS配置集合获取所述 RS配置集合中各个 RS配置对应的信道状态信 息 CSI , 所述 RS配置集合至少包含两个 RS配置, 所述 CSI集合中的各个 CS I 依次与所述 RS配置集合中的各个 RS配置相对应;
发送单元 302 , 用于向所述 eNB发送所述 CS I集合, 其中所述 CS I集合包 含所述 RS配置集合中各个 RS配置对应的信道状态信息 CS I ;
数据处理单元 303 , 用于接收所述 eNB根据所述 CSI集合发送的信号并进 行数据处理。
本发明实施例提供另一种多天线传输的装置, 该装置可以为 eNB, 对应附 图 2所示的方法, 如图 4所示, 该装置包括: 发送单元 401 , 接收单元 402 , 数据发送单元 403。
发送单元 401 , 用于向 UE发送 RS配置集合, 以便所述 UE根据接收到的 所述 RS配置集合获取所述 RS配置集合中各个 RS配置对应的 CSI , 所述 RS配 置集合包括至少两个 RS配置;
接收单元 402 , 用于接收所述 UE发送的所述 CSI集合, 所述 CSI集合包 含所述 RS配置集合中各个 RS配置对应的所述 CS I ;
数据发送单元 403 , 用于根据所述 CSI集合, 将数据发送给所述 UE。
本发明实施例提供了一种多天线传输的装置, 通过接收测量单元接收 eNB 发送的参考信号 RS配置集合, 并基于所述 RS配置集合获取获取所述 RS配置 集合中各个 RS配置对应的 CSI , 并由发送单元向 eNB发送所述 CSI集合, 然 后数据处理单元可以接收所述 eNB根据所述 CSI集合发送的信号并进行数据处 理。 与现有技术相比, 本发明实施例提供的方案可以针对 UE接收功率不同的 TP分别进行 CS I反馈从而避免功率不平衡问题, 并有效消除或者抑制干扰, 从而有效提高系统的吞吐量。
实施例 2
本发明实施例提供一种多天线传输的方法, 如图 5所示, 该方法包括: 步骤 501 , eNB向 UE发送 RS配置集合, 以便所述 UE根据接收到的所述
RS配置集合获取所述 RS配置集合中各个 RS配置对应的信道状态信息 CS I ,所 述 RS配置集合包括至少两个 RS配置;
所述 RS ( Reference S i gna l , 参考信号) 配置集合中可以包含具有相同 小区标识的 RS配置, 采用具有相同小区标识的 RS配置, 这样可以由一个调度 器进行调度, 方便调度和管理。
所述具有相同小区标识的 RS配置占用的资源相互正交。 所述具有相同小 区标识的 RS配置占用的资源相互正交包括:
所述具有相同小区标识的 RS配置占用不同的时间资源; 或者,
所述具有相同小区标识的 RS配置占用不同的频率资源; 或者,
所述具有相同小区标识的 RS配置占用不同的序列资源; 或者,
所述具有相同小区标识的 RS配置占用不同的扰码资源。
采用相互正交的 RS资源可以减少不同的 RS之间的干扰,从而提高信道估 计的精度。
进一步的, RS配置集合中各个 RS配置可以具有相同的天线口数, 例如,
RS配置集合中各个 RS配置可以具有 1个天线口, 或者具有 2个天线口, 或者 具有 8个天线口, 对于天线口的设置, 可以利用 RS配置内在的结构特性, 例 如, 可以利用 RS配置的嵌套特性, 这样, 可以简化 RS配置集合向 UE发送通 知的信令设计, 同时也可以降低 UE信道估计实现的复杂度。
需要说明的是, RS配置集合中各个 RS配置对应不同的 TP ( Transmi s s ion Po int , 发射点 /传输点), 这样, 可以有效区分接收功率不同的 TP, 便于对不 同的 TP单独处理, 从而避免功率不平衡的天线口采用功率平衡的天线口处理 带来的性能损失。
步骤 502 , 所述 UE接收 eNB发送的 RS配置集合, 并基于所述 RS配置集 合获取所述 RS配置集合中各个 RS配置对应的 CSI , 所述 RS配置集合包括至 少两个 RS配置;
具体的, 所述 CS I 包括秩指示 RI、 预编码矩阵指示 PMI、 信道质量指示 CQI、 预编码类型指示 PTI和其它信道状态信息中的至少一个; 测量所述 CSI 集合中的各个 CSI可以采用以下四种方式:
方式一: CSI集合中与各个 RS配置对应的 CSI , 可以基于 RS配置集合单 独计算:
以 UE接收到 3个 RS配置为例,假定接收的 RS配置分别为 Conf i g„, Conf igl 和 Conf ig2, 对应的天线口数分别为 N。, ^和 ,对应的 CS I分别为 CSI。, CS^ 和 CSI2。 则基于 UE接收到的 3个 RS配置, 可以分别获取 CS Io (包括 RI。和 / 或 PMI。和 /或 CQI。), CSIi (包括 和/或 PMI^/或 )和 CSI2 (包括 RI2 和 /或 PMI2和 /或 CQI2 )。
需要说明的是, 计算某个 CSI时, 可以考虑存在来自所述 RS配置集合中 其它部分或者全部 RS配置对应天线口的干扰, 其中, 其它 RS配置为除与当前 计算的 CSI对应的 RS配置之外的 RS配置; 也可以不考虑来自所述 RS配置集 合中其它部分或者全部 RS配置对应天线口的干扰,或者来自所述 RS配置集合 中部分或者全部 RS配置对应天线口的干扰已消除。 例如可以基于容量或者吞 吐量最大化准则, 计算 Rli和 /或 计算如下:
= arg max max C (rank, pmi)
i ( 1 )
PM = arg max (Rl^ pmi) ( 2 ) 其中, i=0, 1, N-l, N=3表示所述 CSI集合中 CSI的个数, 表示 秩为 rank的 N,天线的码本, Ppmi表示预编码矩阵指示 对应的预编码矩阵。
Cy (rmk'pmi)表示以秩为 rank、预编码矩阵指示为 pmi以 ^对应的方程为系统方 程而得到容量或者吞吐量的函数。 y对应的方程可以如(3)或者(4)所示
Figure imgf000010_0001
或者
y,=H,P ,s,+n, VpmeCBNi ank (4)
其中, H,表示 UE通过测量 RS 配置 Configi, i=0, 1, 2得到对应信道, s,表 示发射的数据或调制符号; n为噪声和除所述 RS配置集合中各个 RS配置对应 的天线口的干扰之外的干扰。 需要说明的是, (3)考虑来自部分 RS配置对应 天线口的干扰; (4)表示没有考虑来自部分 RS配置对应天线口的干扰。
基于所述 .和/或所述 ΡΜΙ,.计算 CQI,., 其中, CQI,.表示第 i个信道质量指 示。 进一步的, CQI,.可以假定传输一个或者多个传输块(或者码字)计算, 从 而可以获得一个或者多个 CQI,。
具体的, UE测量 RS配置时获得对应的信道, 基于所采用的系统方程( 3) 或者(4), 以及所采用的接收机, 获得信噪比或者等效信噪比, 并利用信噪比 与 CQI的映射关系,可以获得 CQI。这里,接收机可以为固 SE (最小均方误差) 接收机。
此外,也可以基于所述多个或者全部 1^.和/或所述 ΡΜΙ,.计算一个或者多个 CQI, 其中的每个 CQI与一个传输块(或者码字)对应。
方式二: CSI集合中与各个 RS配置对应的 CSI也可以基于 RS配置集合联 合计算;
以 UE接收到 3个 RS配置分别为 Configo, Configl^ Conf ig2, 对应的天 线口数分别为 N。, ^和 N2,从而获取 CSI分别为 CSI。 (包括 RI。和 /或 PMI。和 / 或 CQIo), CSl! (包括 和/或 PMI /或 CQU和 CSI2 (包括 RI2和 /或 PMI2 和 /或 CQI2)的三个 CSI为例, 可以基于容量或者吞吐量最大化准则, 计算 Rli 和 /或 计算如下,
(RI^RI^ ^ = arg max max { (r^r^r^ p0, Pl, p2) (5)
(PM0 , PM , PM2 ) - arg max f (RI0,RIl,RI2,p0,pl,p2) (6) 其中 / ,^^ ^/^/^表示以秩分别为^^和^、 预编码矩阵指示分别为 ρ0,Ρι和 Α并且以 y对应的方程为系统方程而得到容量或者吞吐量的函数。 y对 应的方程如(7) 所示
-∑HP,s +n' p CBNi,r',i = Q 2 (7) 对于每个 RS 配置 Config i = 0, 1, 2, 可以基于上述得到的 ?/,和 /或 ΡΛ ,计算。 具体地, UE测量 RS配置时获得对应的信道, 基于所采用的系统方 程(7) 以及上述得到的 和 /或 ,对应的预编码矩阵, 以及所采用的接收 机如丽 SE (最小均方误差)接收机, 获得信噪比或者等效信噪比, 并利用信 噪比与 CQI的映射关系, 可以获得各个 CQI。
方式三: CSI集合中与各个 RS配置对应的 CSI,也可以基于假设没有来自 所述 RS配置集合中其它部分或者全部 RS配置对应天线口的干扰,或者来自所 述 RS配置集合中其它部分或者全部 RS配置对应天线口的干扰已消除。这里所 作的假设, 可以由 eNB显式指示, 如直接通知。 也可以由 eNB隐式指示, 例如 即在步骤 501中, eNB向 UE发送 RS配置集合时, 由 RS配置集合中各个 RS配 置的位置次序隐式指示,例如, CSI2假定消除 CSI RS Config.0、CSI RS Config.2 对应的干扰; CSI 定消除 CSI RS Config.0 对应的干扰并存在 CSI RS Config.2对应的干扰; CSI。假定存在 CSI RS Conf ig.0和 CSI RS Config.2对 应的干扰; 也可以由 UE在进行测量时, 将所作的假设上报给 eNB。
以 UE接收到 3个 RS配置为例, 假定接收的 RS配置分别为 Conf ig。, Config^pConfig2,对应的天线口数分别为 Ν。,Ν^ΡΝ2,对应的 CSI分别为 CSI。, CSl!^ CSI2。 则 CSIo (包括 RI。和 /或 PMI。和 /或 CQI。), (包括 和/或
ΡΜΙ^Ρ/或 和 CSI2 (包括 RI2和 /或 PMI2和 /或 CQI2) 可以基于没有来自 所述 RS配置集合中其它部分或者全部 RS配置对应天线口的干扰或者来自所述 RS配置集合中其它部分或者全部 RS配置对应天线口的干扰已消除计算。 例如 可以基于容量或者吞吐量最大化准则, 计算 RI2和 /或 PMI2计算如下:
RI2 = arg max max gy^ (r2,p2) ( 8 )
PMI2 = arg max gy^ ( U2 , p2 ) (9) 其中 gy2( ½)表示以秩为 、预编码矩阵指示为 Λ并且以 y2对应的方程为 系统方程而得到容量或者吞吐量的函数。 y2对应的方程如(9) 所示
y2=H2Pp S2+n, P^ e ^ ( 10) 注意在上式(10) 中, 假定没有来自 Config。和 Conf 1§1对应天线口的干 扰。 此外, 对于 RS 配置 Config2, CQI2可以基于上述得到的 ?/2和/或 ^ 2计 算, CQI2可以进一步地基于不存在来自 Config。和 Conf igl对应天线口的干扰
1^和/或 计算如下:
Figure imgf000012_0001
W1=argmaxgv (RIx,px) ( 12 )
A 1
其中 gyi , 表示以秩为 、 预编码矩阵指示为 A并且以 yi对应的方程为 系统方程而得到容量或者吞吐量的函数。 yi对应的方程如(13 ) 所示
H,s, +n
( 13) 注意在上式(13) 中, 假定没有来自 Config。对应天线口的干扰, 仅包含 来自 Config2对应天线口的干扰。 此外, 对于 RS 配置 Configl, 。(^可以基于 上述得到的 ^和/或 ΡΛ^计算, 可以进一步地基于存在来自 Config2对应 天线口的干扰计算。 或者进一步地, yi对应的方程如(14)所示
>Ί = HlPp,Sl + H2P ikff2 S2 + 11 , Pi¾ff2 G CBN2,RI2 ( 14 ) 此时, CSI1进一步地基于 CSI2计算。
RI。和 /或 PMI。计算如下:
-argmaxmax (r0,p0) ( 15 )
/W0 = argmaxgy。 (RI0,p0) ( 16 )
Po
其中 gy。 , 表示以秩为 、 预编码矩阵指示为 并且以 y。对应的方程为 系统方程而得到容量或者吞吐量的函数。 yQ对应的方程如(17) 所示
1 1
y0 =!¥^0 +— o Hisi +-fr H2s2 +n (17) 注意在上式(17) 中, ^^定包含来自
Figure imgf000013_0001
Config2对应天线口的干 扰。 此外, 对于 RS 配置 Config。, CQI。可以基于上述得到的 ?/Q和 /或 ΡΛ 。计 算, CQI。可以进一步地基于存在来自
Figure imgf000013_0002
Config2对应天线口的干扰计 或者进一步地, y。对应的方程如(18)所示
o -H0Ppos0λνρΜ^ +H2PM2S2 +n , PMi CBNiKIi , 1,2 ( 18)
此时, CSIO进一步地基于 CSI1和 CSI2计算。
方式四: 基于所述 RS配置集合获取所述 RS配置集合中各个 RS配置对应 的 CSI, 其中, 所述获取所述 RS配置集合中各个 RS配置对应的 CSI时, 基于 RS配置集合中的其它部分或者全部 RS配置对应的 CSI计算 CSI集合中与各个 RS配置对应的 CSI。 进一步地, 所述 RS 配置集合中的其它部分或者全部 RS 配置对应的 CSI 对应的所述其它部分或者全部 RS配置, 基于接收到的所述 eNB发送的指示得 到或者由所述 UE上^艮给所述 eNB。
再者, 接收到的所述 eNB发送的指示通过所述 UE接收所述 eNB发送的所 述 RS配置集合中的各个 RS配置的位置次序获得。
例如:以 UE接收到 3个 RS配置为例,假定接收的 RS配置分别为 Configo, Config 和 Config2, 上述 Configo, Config 和 Conf ig2和分别为 CSI RS Config.0、 CSI RS Config.2和 CSI RS Conf ig.1, 则按上述(8-12)、 (14-16) ( 18 )处理, 则 CSL基于 CSI2计算; CSI。基于
Figure imgf000014_0001
CSI2计算。 上述基于部分 或者全部 RS配置对应的 CSI计算也可以是由 eNB通知或者由 UE上才艮。
需要说明的是, 通过假定消除来自所述 RS 配置集合中部分或者全部 RS 配置对应天线口的干扰计算 CSI, 并在接收端进行串行干扰消除, 可以进一步 消除干扰; 通过指定干扰消除的次序, 可以进一步优化干扰消除的程度, 特别 是消除接收功率不平衡造成的影响, 这样,通过进一步假定基于其它部分或者 全部 RS配置对应的 CSI计算可以提高 CSI计算的精度; 此外, 通过指定基于 其它部分或者全部 RS配置对应的 CSI计算次序, 可以进一步优化 CSI精度, 特别是自适应消除接收功率不平衡造成的影响;
此外, 需要说明的是, 在计算 CSI时, 与每个 RS配置相对应的 CSI使用 的码本对应的天线数与该 RS配置中天线口数相同。 单一天线口对应的码本由 标量构成, 例如, 单天线口对应的 CSI可以仅由 CQI组成。
进一步地, 与 RS配置集合中每个 RS配置对应的 CSI, 在计算 CQI时可 以按照传输一个或者多个传输块(或者码字)或者层计算, 从而得到一个或者 多个 CQI, 其中每个 CQI与传输块(或者码字)或者层计算。
步骤 503, 所述 UE向所述 eNB发送所述 CSI集合, 以便所述 eNB基于接 收到的所述 CSI集合进行数据传输; 需要说明的是, CSI集合中包括至少一个 CSI, 并且所述 CSI集合中的各 个 CSI与步骤 501中所述 RS配置集中的各个 RS配置相对应。
具体的, 可以通过 PUSCH (Physical Uplink Shared Channel, 物理上行 共享信道)向所述 eNB发送所述 CSI集合;或者,通过 PUCCH( Physical Uplink Control Channel, 物理上行控制信道) 向所述 eNB发送所述 CSI集合;
另外, UE通过 PUCCH向 eNB发送 CSI集合, 可以利用双 RM码对 CSI集合 中的部分或者全部 CSI比特序列进行编码, 并经过 DFT-S-0FDM传输, 如图 6 所示。 具体包括如下步骤:
步骤 601, 将待传输的所述 CSI集合中的 CSI比特序列分成两部分; 其中, 第一部分包括 ceil (N/2)比特, 第二部份包括 [N- ceil (N/2)]比 特,其中,Ν为待传输的所述 CSI集合中的 CSI比特序列的总比特数, ceil (N/2) 表示不小于 N/2的最小整数;
步骤 602, 将所述两部分 CSI比特序列分别采用 ( 32, 0) RM码进行编码, 分别获得 32个比特, 并分别将所述 32个比特中末尾 8个比特去掉获得 24个 编码比特;
步骤 603, 将获得的两部分所述 24个编码比特进行 QPSK调制, 分别获得 12个 QPSK调制符号;
步骤 604 ,将获得的两部分所述 12个 QPSK调制符号顺序映射到所述 PUCCH 的两个时隙上传输给所述 eNB。
进一步的, 上述利用双 RM码并经过 DFT-S-0FDM传输, 可以每次传输两个
RS配置对应的 CSI, 即每次传输两个 CSI。 需要说明的是, CSI包括 RI和 /或 PMI和 /或 CQI, 当 CSI中包括的元素越少时, 传输的 CSI集合越精确。
步骤 504, 所述 eNB接收所述 UE发送的所述 CSI集合, 所述 CSI集合包 括至少两个 CSI, 所述 CSI集合中的各个 CSI依次与所述 RS配置集合中的各 个 RS配置相对应; 步骤 505, 所述 eNB根据所述 CSI集合, 将数据发送给所述 UE; 具体的, 根据所述 CSI集合, 采用以 ΡΡΜΙι为子矩阵构成的分块对角化矩 阵为预编码矩阵对数据进行预编码, 其中, ί=0 ··· Ν-1 Ν为所述 CSI集合中 CSI的个数, PMI; 表示 CSI集合中标号为 i的 CSI中的预编码矩阵指示, PPMIi 为 PMIi指示的预编码矩阵;
将所述预编码的数据发送给所述 UE,即将 PS发送给 UE, S为发送的数据。 具体地,假定 eNB接收 UE上报的 CSI集中含有三个 CSI: 分别为 CSI。(包 括 RI。和 /或 PMI。和 /或 CQI。), CSIi (包括 和/或 PMI^/或 CQI 和 CSI2 (包括 RI2和 /或 PMI2和 /或 CQI2), 与 Rli和 ΡΜ^对应的预编码矩阵分别为 PPjW, eC ,^, = 0,l,2其中 C , ,表示 所在的码本,其天线数和秩分别为 N,和 U i = 0,1,2。 则 eNB 可以利用以 PP^, = 0,1,2构成的分块对角矩阵 P对数据 s进 行预编码。 例如预编码矩阵可以为
Figure imgf000016_0001
或者
需要说明的是,预编码矩阵具有分块对角矩阵结构, 其中的各个分块矩阵 来自现有 LTE RIO (LTE Release 10, LTE 版本 10) 的码本, 可以简化码本设 计, 更为重要的是, 各个分块矩阵来自的码本基于共址的天线设计, 匹配各个 发射点 /传输点的天线部署。 步骤 506 , 所述 UE接收所述 eNB发送的信号并进行数据处理。 具体的, 所述 UE接收所述 eNB发送的信号;
然后根据消除其它的部分数据或者其它的全部数据的干扰或者存在所述 其它的全部数据的干扰,依次获取所述 eNB发送的数据, 所述其它的部分数据 或者其它的全部数据指除当前计算的数据之外的部分或者全部数据;
UE对接收到的 eNB发射的信号 y进行数据检测, y由下式给出
y-HPs+n ( 19 )
其中, H为信道矩阵, P为预编码矩阵, n为噪声和除所述 RS配置集合中 各个 RS配置对应的天线口的干扰之外的干扰。
进一步地, UE 可以采用串行干扰消除的方式进行数据检测。 例如, 分两 组检测, (19 ) 式可以写为
把 Hp ls,作
Figure imgf000017_0001
为干扰项首先检测出 s。; 然后基于检测得到的 s。, 基于以下方程检测得到 Sl :
Figure imgf000017_0002
需要说明的是,所述消除部分或者全部数据的干扰或者存在所述其它的全 部数据的干扰, 根据接收的所述 eNB发送的指示获得或者根据隐式指定得到。
需要说明的是, 本发明实施例提供的一种多天线传输的方法, 不仅适用于 CS I RS配置的情况, 同样也适用于 CRS配置的情况。
本发明实施例提供了一种多天线传输的方法,通过接收 eNB发送的参考信 号 RS配置集合,并基于所述 RS配置集合测量 CSI集合中的各个 CSI ,并向 eNB 发送所述 CSI集合,然后可以接收所述 eNB根据所述 CSI集合发送的信号并进 行数据处理。 与现有技术中 UE接收地理上分开的每个 TP发射的信号,接收的 功率不同,根据现有技术得到的预编码矩阵不适用功率不平衡的信道矩阵,从 而会造成干扰并且降低系统的吞吐量相比, 本发明实施例提供的方案,通过对 不同接收点的单独处理,针对 UE接收功率不同的 TP分别进行 CSI反馈从而避 免功率不平衡问题, 并有效消除或者抑制干扰, 可以消除接收功率不平衡造成 的影响, 从而有效提高系统的吞吐量。
本发明实施例提供一种多天传输的装置, 该装置可以为 UE, 如图 7所示, 该装置包括: 接收测量单元 701, 第一接收测量模块 702, 第二接收测量模块 703, 第三接收测量模块 704, 上报单元 705, 第四接收测量模块 706, 发送单 元 707, 第一发送模块 708, 第二发送模块 709, 数据处理单元 710, 接收模块 711, 检测模块 712。
接收测量单元 701, 用于接收演进型基站 eNB发送的参考信号 RS配置集 合, 并基于所述 RS配置集合获取所述 RS配置集合中各个 RS配置对应的信道 状态信息 CSI, 所述 RS配置集合至少包含两个 RS配置;
所述 CSI包括秩指示 RI、 预编码矩阵指示 PMI、 信道质量指示 CQI、 预编 码类型指示 PTI和其它信道状态信息中的至少一个;
具体的, 基于所述 RS配置集合测量信道状态信息 CSI集合中的各个 CSI 时, 可以采用以下四种方式:
方式一: 第一接收测量模块 702, 用于基于所述 RS配置集合单独获取所 述 RS配置集合中各个 RS配置对应的 CSI ;
以 UE接收到 3个 RS配置为例,假定接收的 RS配置分别为 Conf i g„, Conf igl 和 Config2, 对应的天线口数分别为 N。, 和¾对应的 CSI分别为 CSI。, 和 CSI2。则接收测量单元 701可以用于接收分别为 Configo, Configl^ Conf ig2 的 RS配置并分别计算 CSIo (包括 RI。和 /或 PMI。和 /或 CQIo), (包括 和 /或 PMI^/或 CQI 和 CSI2 (包括 RI2和 /或 PMI2和 /或 CQI2)。 具体地, 计 算某个 CSI时,可以基于存在来自所述 RS配置集合中其它 RS配置对应天线口 的干扰,也可以基于没有来自所述 RS配置集合中其它 RS配置对应天线口的干 扰或者来自所述 RS配置集合中其它 RS配置对应天线口的干扰已消除,获取所 述 RS配置中各个 RS配置对应的 CSI。 这里, 其它 RS配置指 RS配置集合中除 与当前计算的 CSI相对应的 RS配置之外的 RS配置。
例如, 可以基于容量或者吞吐量最大化准则, 计算 Rli和 /或 计算如 下:
RIt = arg max max C (rank.pmi) ( 22 )
PMI; = arg max C (Rl^pmi) (23) 其中 CBNi,rak 示秩为 rank的 N,天线的码本, ΡΡΊ∞表示预编码矩阵指示 pmi 对应的预编码矩阵。 Cy, cmk'pmi)表示以秩为 rank、 预编码矩阵指示为 pmi以 y, 对应的方程为系统方程而得到容量或者吞吐量的函数。 y,对应的方程可以如
(24)或者 ( 25)所示 , ( 24 )
或者
« = Η,·Ρ Α· + n , Vpmi e CBNi,rank ( ^ ) 其中 H,表示 UE通过测量 RS 配置 Conf igi, i=0, 1, 2得到对应信道, s,表示 发射的数据或调制符号; n为噪声和来自别处的干扰(不包括来自上述 RS 配 置集中各个 RS配置对应的天线口的干扰)。 需要说明的是, 其中(24)基于存 在来自所述 RS配置集合中其它 RS配置对应天线口的干扰; ( 25 )基于不存在 来自所述 RS配置集合中其它 RS配置对应天线口的干扰;
基于所述 .和/或所述 ΡΜΙ,.计算 CQI,., 其中, CQI,.表示第 i个信道质量指 示。 进一步的, CQI,.可以假定传输一个或者多个传输块(或者码字)计算, 从 而可以获得一个或者多个 CQI,。
具体的, UE测量 RS配置时获得对应的信道,基于所采用的系统方程( 24 ) 或者( 25 ), 以及所采用的接收机如固 SE (最小均方误差)接收机, 获得信噪 比或者等效信噪比, 并利用信噪比与 CQI的映射关系, 可以获得 CQI。
方式二: 第二接收测量模块 703, 用于基于所述 RS配置集合联合获取所 述 RS配置集合中各个 RS配置对应的 CSI;
具体地,以 UE接收到 3个 RS配置为例, 3个 RS配置分别为 Config。,Configl 和 Config2, 对应的天线口数分别为 N。, ^和 ,可以联合获取分别为 CSI。(包 括 RI。和 /或 PMI。和 /或 CQIo), CSl! (包括 和/或 PMI /或 CQI 和 CSI2 (包括 RI2和 /或 PMI2和 /或 CQI2) 的三个 CSI。
具体地, 第二接收测量单元模块 703 可以基于容量或者吞吐量最大化准 则, 计算 Rli和 /或 PMIi计算如下
(RI^RI^RI^ = arg max max fy(r0,r r2,p0,Pl,p2) PM0, PM PM2 arg丽 fy ( U0, RI RI2, ρϋ, Pl, p2")
( 27 )
其中 /y(r。, A,/2)表示以秩分别为 r。,r^Pr2、 预编码矩阵指示分别为 p0,Pl和 ρΊ并且以 y对应的方程为系统方程而得到容量或者吞吐量的函数。 y对 应的方程如( 28 ) 所示
y =∑H,P„n, Vp CBNi,r',i = QX2 (28) 对于每个 RS 配置 Config i = 0, 1, 2, 可以基于上述得到的 ?/,和 /或 计算。 具体地, UE测量 RS配置时获得对应的信道, 基于所采用的系统方 程(28) 以及上述得到的 ?/,和 /或 对应的预编码矩阵, 以及所采用的接收 机如丽 SE (最小均方误差)接收机, 获得信噪比或者等效信噪比, 并利用信 噪比与 CQI的映射关系, 可以获得各个 CQI。
方式三: 第三接收测量模块 704, 用于基于没有来自 RS配置集合中的部 分或者全部所述 RS配置对应天线口的干扰或者来自部分或者全部所述 RS配置 对应天线口的干扰已消除, 获取所述 RS配置集合中各个 RS配置对应的 CSI; 进一步地, 所述第三接收测量模块还用于, 接收所述 eNB发送的指示, 以 获得没有来自 RS配置集合中的部分或者全部所述 RS配置对应天线口的干扰或 者来自部分或者全部所述 RS配置对应天线口的干扰已消除的信息。
更进一步地, 接收的上述 eNB发送的指示通过所述 eNB发送的所述 RS配 置集合中的各个 RS配置的位置次序获得。
其中, 所述上报单元 705还用于, 用于将没有来自 RS配置集合中的部分 或者全部所述 RS配置对应天线口的干扰或者来自部分或者全部所述 RS配置对 应天线口的干扰已消除的信息, 上报给所述 eNB;
例如,以 UE接收到 3个 RS配置为例,假定接收的 RS配置分别为 Config。,
Configi和 Config2, 上述 Config。, Configi和 Conf ig2和分别为 CSI RS Config.0、 CSI RS Config.2 和 CSI RS Config.1。 CSI2假定消除 CSI RS Config.0、 CSI RS Conf ig.2对应的干 4尤; CSI 叚定消除 CSI RS Config.0对 应的干扰并存在 CSI RS Config.2对应的干扰; CSI。假定存在 CSI RS Config.0 和 CSI RS Config.2对应的干 4尤。
具体地, 可以基于容量或者吞吐量最大化准则, 计算 RI2和 /或 PMI2计算 ^口下:
RI2 = arg max max y2 (f"2,p2) (29) W2 =argmax v (RI2,p2) ( 30 ) 其中 gy2(r2,/2)表示以秩为 r2、预编码矩阵指示为 p2并且以 y2对应的方程为 系统方程而得到容量或者吞吐量的函数。 y2对应的方程如(31 ) 所示
2 -H2Pp s2+n , Vp e CB^ ( 31 )
注意在上式(31 ) 中, 假定没有来自 Config。和 Conf 1§1对应天线口的干 扰。 此外, 对于 RS 配置 Config2, CQI2可以基于上述得到的 ?/2和/或 ^72计 算, CQI2可以进一步地基于不存在来自 Config。和 Configl对应天线口的干扰 1^和/或 计算如下:
RI{ - arg max max yi (^, ) ( 32 ) W1=argmaxgv (RI^p,) ( 33 )
A 1
其中 gyi ,A)表示以秩为 预编码矩阵指示为 A并且以 对应的方程为 系统方程而得到容量或者吞吐量的函数。 对应的方程如(34) 所示 y^H^s, =H2s2+n ( 34) 注意在上式(34) 中, 假定没有来自 Config。对应天线口的干扰, 仅包含 来自 Config2对应天线口的干扰。 此外, 对于 RS 配置 Configl, 。(^可以基于 上述得到的 ^和/或 计算, 可以进一步地基于存在来自 Config2对应 天线口的干扰计算。 或者进一步地, ^对应的方程如( 35)所示
Figure imgf000022_0001
此时, CSI1进一步地基于 CSI2计算。
RI。和 /或 PMI。计算如下:
RI0 - arg max max g (r0,p0) ( 36 )
ΡΜί0 = argmaxgy (RI0,p0) ( 37 ) 其中 gy A)表示以秩为 预编码矩阵指示为 p。并且以 y。对应的方程为 系统方程而得到容量或者吞吐量的函数。 y。对应的方程如(38) 所示 y0 +n ( 38)
Figure imgf000022_0002
注意在上式(38) 中, ^^定包含来自 Config^ Config2对应天线口的干 扰。 此外, 对于 RS 配置 Config CQI。可以基于上述得到的 ?/。和 /或 Λ½ζ。计 算, CQI。可以进一步地基于存在来自 Config^ Config2对应天线口的干扰计 或者进一步地, y。对应的方程如( 39)所示
o -H0Ppos0 +11^^ +H2PM2S2 +n , VPM CBN' , 1,2 ( 39)
此时, CSIO进一步地基于 CSI1和 CSI2计算。
方式四: 第四接收测量模块 706, 用于基于所述 RS配置集合中的部分或 者全部所述 RS配置对应的 CSI, 获取所述 RS配置集合中各个 RS配置对应的
CSI。
进一步地, 所述第四接收测量模块还用于, 接收所述 eNB发送的指示, 以 获得所述 RS配置集合中的部分或者全部所述 RS配置对应的 CSI对应的所述部 分或者全部所述 RS配置;
再者, 接收所述 eNB发送的指示通过所述 eNB发送的所述 RS配置集合中 的各个 RS配置的位置次序获得。
其中, 所述上报单元 705还用于, 用于将所述来自 RS配置集合中的部分 或者全部所述 RS配置对应的 CSI对应的所述部分或者全部所述 RS配置,上才艮 给所述 eNB;
例如:以 UE接收到 3个 RS配置为例,假定接收的 RS配置分别为 Configo, Configi和 Config2, 上述 Config。, Configi和 Conf ig2和分别为 CSI RS Config.0、 CSI RS Config.2和 CSI RS Config.1, 则按上述 ( 29-33 )、 ( 35-37 ) ( 39 )处理, 则 基于 CSI2计算; CSI。基于
Figure imgf000023_0001
CSI2计算。 上述基于其它 部分或者全部 RS配置对应的 CSI计算也可以是由 eNB通知或者由 UE上才艮。
在获得所述 CSI集合中的各个 CSI后,发送单元 707用于向所述 eNB发送 所述 CSI集合, 以便所述 eNB基于接收到的所述 CSI集合进行数据传输;
具体的 ,第一发送模块 708,用于通过物理上行共享信道 PUSCH向所述 eNB 发送所述 CSI集合; 或者, 第二发送模块 709,用于通过物理上行控制信道 PUCCH向所述 eNB发送所 述 CSI集合;
在采用所述第二发送模块 709 向所述 eNB发送所述 CSI集合时, 如图 8 所示, 所述第二发送模块 709包括: 划分子模块 801, 编码子模块 802, 调制 子模块 803, 映射发送子模块 804。
划分子模块 801, 用于将待传输的所述 CSI集合中的 CSI比特序列分成两 部分;
具体的, 第一部分包括 ceil (N/2)比特, 第二部份包括 [N- ceil (N/2)] 比特,其中, N 为待传输的所述 CSI 集合中的 CSI 比特序列的总比特数, ceil (N/2)表示不小于 N/2的最小整数;
编码子模块 802, 用于将所述两部分 CSI 比特序列分别采用 (32, 0) RM 码进行编码, 分别获得 32个比特, 并分别将所述 32个比特中末尾 8个比特去 掉获得 24个编码比特;
调制子模块 803,用于将获得的两部分所述 24个编码比特进行 QPSK调制 , 分别获得 12个 QPSK调制符号;
映射发送子模块 804, 用于将获得的两部分所述 12个 QPSK调制符号顺序 映射到所述 PUCCH的两个时隙上传输给所述 eNB。
进一步的, 上述利用双 RM码并经过 DFT-S-0FDM传输, 可以每次传输两个 RS配置对应的 CSI, 即每次传输两个 CSI。 需要说明的是, CSI包括 RI和 /或 PMI和 /或 CQI, 当 CSI中包括的元素越少时, 传输的 CSI集合越精确。
数据处理单元 710, 用于接收所述 eNB发送的信号并进行数据处理; 具体地, 所述数据处理单元 710中的接收模块 711, 用于接收所述 eNB发 送的信号; 检测模块 712, 用于根据消除其它的部分数据或者其它的全部数据 的干扰或者存在其它的全部数据的干扰,依次获取所述 eNB发送的数据, 所述 其它的部分数据或者其它的全部数据指除当前计算的数据之外的部分或者全 部数据。
进一步地,所述消除其它的部分数据或者其它的全部数据的干扰或者存在 所述其它的全部数据的干扰,根据接收的所述 eNB发送的指示获得或者根据隐 式指定得到。
例如, UE对接收到的 eNB发射的信号 y进行数据检测, 其中, y = HPS + n , n为噪声和除所述 RS 配置集合中各个 RS 配置对应的天线口的干扰之外的干 扰, UE可以测量出 n, p为预编码矩阵, H为信道矩阵, UE可以测量出 H , 这 样, y、 H、 P、 n为已知, 即可计算出 S , 获得 eNB发送的数据。
进一步地, UE 可以采用串行干扰消除的方式进行数据检测。 例如, 分两 组检测, y = HPS + n可以为
其中 [He 0 H : s .则可以首先基于上述方程把 Hp ,s,作为干扰
Figure imgf000025_0001
项首先检测出 s。; 然后基于检测得到的 s。, 基于以下方程检测得到 Sl :
需要说明的是, 所述干扰项的确定由所述 eNB通知所述 UE , 或者基于隐 式约定确定。
本发明实施例提供了一种多天线传输的装置, 通过接收测量单元接收 eNB 发送的参考信号 RS配置集合, 并基于所述 RS配置集合获取所述 RS配置集合 中各个 RS配置对应的 CS I , 并由发送单元向 eNB发送所述 CS I集合, 然后数 据处理单元可以接收所述 eNB根据所述 CS I集合发送的信号并进行数据处理。 与现有技术中 UE接收地理上分开的每个 TP发射的信号,接收的功率不同,根 据现有技术得到的预编码矩阵不适用功率不平衡的信道矩阵,从而会造成干扰 并且降低系统的吞吐量相比, 本发明实施例提供的方案,通过对不同接收点的 单独处理,针对 UE接收功率不同的 TP分别进行 CS I反馈从而避免功率不平衡 问题, 并有效消除或者抑制干扰, 可以消除接收功率不平衡造成的影响, 从而 有效提高系统的吞吐量。
本发明实施例还提供一种多天线传输的装置, 该装置可以为 eNB, 如图 9 所示, 该装置包括: 发送单元 901 , 接收单元 902 , 数据发送单元 903 , 预编 码模块 904 , 发送模块 905。
发送单元 901 , 用于向 UE发送 RS配置集合, 以便所述 UE根据接收到的 所述 RS配置集合获取所述 RS配置集合中各个 RS配置对应的 CSI , 所述 RS配 置集合包括至少两个 RS配置;
所述 RS配置集合中包括具有相同小区标识的 RS配置,所述具有相同小区 标识的 RS配置占用的资源相互正交;所述具有相同小区标识的 RS配置占用的 资源相互正交包括:
所述具有相同小区标识的 RS配置占用不同的时间资源; 或者,
所述具有相同小区标识的 RS配置占用不同的频率资源; 或者,
所述具有相同小区标识的 RS配置占用不同的序列资源; 或者,
所述具有相同小区标识的 RS配置占用不同的扰码资源。
所述 UE测量出所述 CS I集合中的各个 CSI后,发送给 eNB,接收单元 902 , 用于接收所述 UE发送的所述 CSI集合,所述 CSI集合包含所述 RS配置集合中 各个 RS配置对应的所述 CS I ;
根据接收到的所述 CSI集合, 数据发送单元 903 , 将数据发送给所述 UE; 具体的,所述发送单元 903中的预编码模块 904 ,用于根据所述 CSI集合, 采用以 Ppi^为子矩阵构成的分块对角化矩阵对数据进行预编码, 其中, ί = 0, ···,Ν-1 , N为所述 CSI集合中 CSI的个数, PMIi 表示 CS I集合中标号为 i 的 CS I中的预编码矩阵指示, Ppi ^为!¾11;指示的预编码矩阵;
具体地,假定 eNB接收 UE上报的 CSI集中含有三个 CSI : 分别为 CSI。(包 括 RI。和 /或 PMI。和 /或 CQIo ), CSl! (包括 和/或 PMI /或 CQI 和 CSI2 (包括 RI2和 /或 PMI2和 /或 CQI2 ), 与 Rli和 ΡΜ^对应的预编码矩阵分别为
Ρ CBN ^ · = 0, 1, 2其中 CBN M.表示 L PMi所在的码本,其天线数和秩分别为 N,和 i?/, , = 0,l,2。 则 eNB 可以利用以 ΡΡΛ , , = 0,1, 2构成的分块对角矩阵 P对数据 s进 行预编码。 例如预编码矩阵可以为
P
Ρ ΡΜ、
Figure imgf000027_0001
Ρ ΡΜΙ
或者, Ρ 或者 Ρ = Ρ,
0 Ρ 需要说明的是,预编码矩阵具有分块对角矩阵结构, 其中的各个分块矩阵 来自现有 LTE RI O ( LTE Release 10, LTE 版本 10 ) 的码本, 可以简化码本设 计, 更为重要的是, 各个分块矩阵来自的码本基于共址的天线设计, 匹配各个 发射点 /传输点的天线部署。
发送模块 905 , 用于将所述预编码的数据发送给所述 UE。
本发明实施例提供的一种多天线传输的方法, 通过发送单元向 UE发送 RS 配置集合, 以便所述 UE根据接收到的所述 RS配置集合获取 CSI集合,再接收 单元接收所述 UE发送的所述 CS I集合, 根据所述 CSI集合, 数据发送单元将 数据发送给所述 UE。 与现有技术中 UE接收地理上分开的每个 TP发射的信号, 接收的功率不同,根据现有技术得到的预编码矩阵不适用功率不平衡的信道矩 阵, 从而会造成干扰并且降低系统的吞吐量相比, 本发明实施例提供的方案, 可以通过对不同接收点的单独处理, 针对 UE接收功率不同的 TP分别进行 CS I 反馈从而避免功率不平衡问题, 并有效消除或者抑制干扰, 可以消除接收功率 不平衡造成的影响, 从而有效提高系统的吞吐量。
以上所述,仅为本发明的具体实施方式,但本发明的保护范围并不局限于 此,任何熟悉本技术领域的技术人员在本发明揭露的技术范围内, 可轻易想到 变化或替换, 都应涵盖在本发明的保护范围之内。 因此, 本发明的保护范围应 所述以权利要求的保护范围为准。

Claims

权 利 要 求
1、 一种多天线传输的方法, 其特征在于, 包括:
用户设备 UE接收演进型基站 eNB发送的参考信号 RS配置集合, 并基 于所述 RS配置集合获取所述 RS配置集合中各个 RS配置对应的信道状态信 息 CSI, 所述 RS配置集合至少包含两个 RS配置;
所述 UE向所述 eNB发送 CSI集合,其中所述 CSI集合包含所述 RS配置 集合中各个 RS配置对应的所述 CSI;
所述 UE接收所述 eNB根据所述 CSI集合发送的信号并进行数据处理。
2、 根据权利要求 1所述的多天线传输的方法, 其特征在于, 所述 CSI包 括秩指示 RI、预编码矩阵指示 PMI、信道质量指示 CQI和预编码类型指示 PTI 中的至少一个;
所述基于所述 RS配置集合获取所述 RS配置集合中各个 RS配置对应的 信道状态信息 CSI包括:
基于所述 RS配置集合单独获取所述 RS配置集合中各个 RS配置对应的 CSI; 或者,
基于所述 RS配置集合联合获取所述 RS配置集合中各个 RS配置对应的 CSI; 或者,
基于没有来自所述 RS配置集合中的部分或者全部所述 RS配置对应天线 口的干扰或者来自所述 RS配置集合中的部分或者全部所述 RS配置对应天线 口的干扰已消除, 获取所述 RS配置集合中各个 RS配置对应的 CSI; 或者, 基于所述 RS配置集合中的部分或者全部所述 RS配置对应的 CSI, 获取 所述 RS配置集合中各个 RS配置对应的 CSI。
3、 根据权利要求 2所述的多天线传输的方法, 其特征在于, 所述基于所 述 RS配置集合单独获取所述 RS配置集合中各个 RS配置对应的 CSI, 包括: 基于存在来自所述 RS配置集合中其它 RS配置对应天线口的干扰, 获取 所述 RS配置中各个 RS配置对应的 CSI,所述其它 RS配置指除与当前计算的 CSI对应的 RS配置之外的 RS配置; 或者
基于没有来自所述 RS配置集合中其它 RS配置对应天线口的干扰或者来 自所述 RS配置集合中其它 RS配置对应天线口的干扰已消除, 获取所述 RS 配置中各个 RS配置对应的 CSI。
4、 根据权利要求 2所述的多天线传输的方法, 其特征在于, 所述基于没 有来自 RS配置集合中的部分或者全部所述 RS配置对应天线口的干扰或者来 自部分或者全部所述 RS配置对应天线口的干扰已消除, 其中所述 RS配置集 合中的部分或者全部所述 RS配置,基于接收到的所述 eNB发送的指示得到或 者由所述 UE上报给所述 eNB。
5、 根据权利要求 4所述的多天线传输的方法, 其特征在于, 所述接收到 的所述 eNB发送的指示通过所述 UE接收所述 eNB发送的所述 RS配置集合 中的各个 RS配置的位置次序获得。
6、 根据权利要求 2所述的多天线传输的方法, 其特征在于, 所述基于所 述 RS配置集合中的部分或者全部所述 RS配置对应的 CSI,其中所述 RS配置 集合中的部分或者全部所述 RS配置,基于接收到的所述 eNB发送的指示得到 或者由所述 UE上报给所述 eNB。
7、 根据权利要求 6所述的多天线传输的方法, 其特征在于, 所述接收到 的所述 eNB发送的指示通过所述 UE接收所述 eNB发送的所述 RS配置集合 中的各个 RS配置的位置次序获得。
8、 根据权利要求 1所述的多天线传输的方法, 其特征在于, 所述向所述 eNB发送所述 CSI集合包括:
通过物理上行共享信道 PUSCH向所述 eNB发送所述 CSI集合;或者,通 过物理上行控制信道 PUCCH向所述 eNB发送所述 CSI集合。
9、 根据权利要求 8所述的多天线传输的方法, 其特征在于, 所述通过物 理上行控制信道 PUCCH向所述 eNB发送所述 CSI集合包括:
将待传输的所述 CSI集合中的 CSI比特序列分成两部分;
将所述两部分 CSI比特序列分别采用 (32,0 ) RM码进行编码, 分别获得
32个比特, 并分别将所述 32个比特中末尾 8个比特去掉获得 24个编码比特; 将获得的两部分所述 24个编码比特进行 QPSK调制,分别获得 12个 QPSK 调制符号;
将获得的两部分所述 12个 QPSK调制符号顺序映射到所述 PUCCH的两 个时隙上传输给所述 eNB。
10、 根据权利要求 1-9中任一项所述的多天线传输的方法, 其特征在于, 所述接收所述 eNB发送的信号并进行数据处理包括:
接收所述 eNB发送的信号;
根据消除其它的部分数据或者其它的全部数据的干扰或者存在所述其它 的全部数据的干扰, 依次获取所述 eNB发送的数据, 所述其它的部分数据或 者其它的全部数据指除当前计算的数据之外的部分或者全部数据。
11、 根据权利要求 10所述的多天线传输的方法, 其特征在于, 所述消除 其它的部分数据或者其它的全部数据的干扰或者存在所述其它的全部数据的 干扰, 根据接收的所述 eNB发送的指示获得或者根据隐式指定得到。
12、 一种多天线传输的方法, 其特征在于, 包括:
eNB向 UE发送 RS配置集合, 以便所述 UE根据接收到的所述 RS配置 集合获取所述 RS配置集合中各个 RS配置对应的 CSI,所述 RS配置集合包括 至少两个 RS配置;
所述 eNB接收所述 UE发送的所述 CSI集合, 所述 CSI集合包含所述 RS 配置集合中各个 RS配置对应的所述 CSI;
所述 eNB根据接收到的所述 CSI集合, 将数据发送给所述 UE。
13、 根据权利要求 12所述的多天线传输的方法, 其特征在于, 所述 RS 配置集合中包含具有相同小区标识的 RS配置, 所述具有相同小区标识的 RS 配置占用的资源相互正交。
14、 根据权利要求 13所述的多天线传输的方法, 其特征在于, 所述具有 相同小区标识的 RS配置占用的资源相互正交包括:
所述具有相同小区标识的 RS配置占用不同的时间资源; 或者,
所述具有相同小区标识的 RS配置占用不同的频率资源; 或者,
所述具有相同小区标识的 RS配置占用不同的序列资源; 或者,
所述具有相同小区标识的 RS配置占用不同的扰码资源。
15、 根据权利要求 12所述的多天线传输的方法, 其特征在于, 所述根据 接收到的所述 CSI集合, 将数据发送给所述 UE包括:
根据所述 csi集合,采用以 PPM Ii为子矩阵构成的分块对角化矩阵为预编 码矩阵对数据进行预编码, 其中, i=0,l,...,N-l , N为所述 CSI集合中 CSI的 个数, PMIi 表示所述 CSI集合中标号为 i的 CSI中的预编码矩阵指示, PP M II 为 PMIi指示的预编码矩阵;
将所述预编码的数据发送给所述 UE。
16、 一种多天线传输的装置, 其特征在于, 包括:
接收测量单元, 用于接收演进型基站 eNB发送的参考信号 RS配置集合, 并基于所述 RS配置集合获取所述 RS配置集合中各个 RS配置对应的信道状态 信息 CSI , 所述 RS配置集合至少包含两个 RS配置;
发送单元, 用于向所述 eNB发送 CSI集合, 其中所述 CSI集合包含所述
RS配置集合中各个 RS配置对应的信道状态信息 CSI ;
数据处理单元,用于接收所述 eNB根据所述 CSI集合发送的信号并进行数 据处理。
17、 根据权利要求 16所述的多天线传输的装置, 其特征在于, 所述 CSI 包括秩指示 RI、 预编码矩阵指示 PMI、 信道质量指示 CQI 和预编码类型指示 PTI中的至少一个;
所述接收测量单元包括:
第一接收测量模块, 用于基于所述 RS配置集合单独获取所述 RS配置集 合中各个 RS配置对应的 CSI;
第二接收测量模块, 用于基于所述 RS配置集合联合获取所述 RS配置集 合中各个 RS配置对应的 CSI;
第三接收测量模块, 用于基于没有来自 RS配置集合中的部分或者全部所 述 RS配置对应天线口的干扰或者来自部分或者全部所述 RS配置对应天线口 的干扰已消除, 获取所述 RS配置集合中各个 RS配置对应的 CSI;
第四接收测量模块, 用于基于所述 RS 配置集合中的部分或者全部所述 RS配置对应的 CSI, 获取所述 RS配置集合中各个 RS配置对应的 CSI。
18、 根据权利要求 17所述的多天线传输的装置, 其特征在于, 所述第一 接收测量模块具体用于, 基于存在来自所述 RS配置集合中其它 RS配置对应 天线口的干扰, 获取所述 RS配置中各个 RS配置对应的 CSI , 所述其它 RS配 置指除与当前计算的 CSI对应的 RS配置之外的 RS配置; 或者
所述第一接收测量模块具体用于, 基于没有来自所述 RS配置集合中其它 RS配置对应天线口的干扰或者来自所述 RS配置集合中其它 RS配置对应天线 口的干扰已消除, 获取所述 RS配置中各个 RS配置对应的 CSI。
19、 根据权利要求 17所述的多天线传输的装置, 其特征在于, 所述第三 接收测量模块还用于,接收所述 eNB发送的指示, 以获得没有来自 RS配置集 合中的部分或者全部所述 RS配置对应天线口的干扰或者来自部分或者全部所 述 RS配置对应天线口的干扰已消除的信息;
所述装置还包括: 上报单元, 用于将没有来自 RS配置集合中的部分或者 全部所述 RS配置对应天线口的干扰或者来自部分或者全部所述 RS配置对应 天线口的干扰已消除的信息, 上报给所述 eNB。
20、 根据权利要求 19所述的多天线传输的装置, 其特征在于, 所述第三 接收测量模块具体用于, 接收所述 eNB发送的指示通过所述 eNB发送的所述 RS配置集合中的各个 RS配置的位置次序获得。
21、 根据权利要求 17所述的多天线传输的装置, 其特征在于, 所述第四 接收测量模块还用于,接收所述 eNB发送的指示, 以获得所述 RS配置集合中 的部分或者全部所述 RS配置;
所述上报单元还用于, 将所述来自 RS 配置集合中的部分或者全部所述 RS配置, 上报给所述 eNB。
22、 根据权利要求 21所述的多天线传输的装置, 其特征在于, 所述第四 接收测量模块具体用于, 接收所述 eNB发送的指示通过所述 eNB发送的所述 RS配置集合中的各个 RS配置的位置次序获得。
23、 根据权利要求 16所述的多天线传输的装置, 其特征在于, 所述发送 单元包括:
第一发送模块,用于通过物理上行共享信道 PUSCH向所述 eNB发送所述
CSI集合; 或者,
第二发送模块, 用于通过物理上行控制信道 PUCCH向所述 eNB发送所 述 CSI集合。
24、 根据权利要求 23所述的多天线传输的装置, 其特征在于, 所述第二 发送模块包括:
划分子模块,用于将待传输的所述 CSI集合中的 CSI比特序列分成两部分; 编码子模块, 用于将所述两部分 CSI比特序列分别采用 (32,0 ) RM码进 行编码, 分别获得 32个比特, 并分别将所述 32个比特中末尾 8个比特去掉获 得 24个编码比特;
调制子模块, 用于将获得的两部分所述 24个编码比特进行 QPSK调制, 分别获得 12个 QPSK调制符号;
映射发送子模块, 用于将获得的两部分所述 12个 QPSK调制符号顺序映 射到所述 PUCCH的两个时隙上传输给所述 eNB。
25、根据权利要求 16-24中任一项所述的多天线传输的装置,其特征在于, 所述数据处理单元包括:
接收模块, 用于接收所述 eNB发送的信号;
检测模块,用于根据消除其它的部分数据或者其它的全部数据的干扰或者 存在其它的全部数据的干扰, 依次获取所述 eNB发送的数据, 所述其它的部 分数据或者其它的全部数据指除当前计算的数据之外的部分或者全部数据。
26、 根据权利要求 25所述的多天线传输的装置, 其特征在于, 所述消除 其它的部分数据或者其它的全部数据的干扰或者存在所述其它的全部数据的 干扰, 根据接收的所述 eNB发送的指示获得或者根据隐式指定得到。
27、 一种多天线传输的装置, 其特征在于, 包括:
发送单元, 用于向 UE发送 RS配置集合, 以便所述 UE根据接收到的所 述 RS配置集合获取所述 RS配置集合中各个 RS配置对应的 CSI, 所述 RS配 置集合包括至少两个 RS配置;
接收单元, 用于接收所述 UE发送的所述 CSI集合, 所述 CSI集合包含所 述 RS配置集合中各个 RS配置对应的所述 CSI;
数据发送单元,用于根据接收到的所述 CSI集合,将数据发送给所述 UE。
28、 根据权利要求 27所述的多天线传输的装置, 其特征在于, 所述 RS 配置集合中包含具有相同小区标识的 RS配置, 所述具有相同小区标识的 RS 配置占用的资源相互正交。
29、 根据权利要求 28所述的多天线传输的装置, 其特征在于, 所述具有 相同小区标识的 RS配置占用的资源相互正交包括:
所述具有相同小区标识的 RS配置占用不同的时间资源; 或者, 所述具有相同小区标识的 RS配置占用不同的频率资源; 或者, 所述具有相同小区标识的 RS配置占用不同的序列资源; 或者,
所述具有相同小区标识的 RS配置占用不同的扰码资源。
30、 根据权利要求 27所述的多天线传输的装置, 其特征在于, 所述数据 发送单元包括:
预编码模块, 用于根据所述 CSI集合, 采用以 P PMI _为子矩阵构成的分块 对角化矩阵对数据进行预编码,其中, i=0, 1, -, Ν-1 , Ν为所述 CSI集合中 CSI 的个数, PMIi 表示 CSI集合中标号为 i的 CSI中的预编码矩阵指示, PPMIi为 PMIi指示的预编码矩阵;
发送模块, 用于将所述预编码的数据发送给所述 UE。
PCT/CN2012/079921 2011-08-11 2012-08-10 一种多天线传输的方法及装置 WO2013020516A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP12822509.1A EP2744286B1 (en) 2011-08-11 2012-08-10 Multi-antenna transmission method and device
US14/167,757 US9571243B2 (en) 2011-08-11 2014-01-29 Multi-antenna transmission method and apparatus

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201110230086.3A CN102932112B (zh) 2011-08-11 2011-08-11 一种多天线传输的方法及装置
CN201110230086.3 2011-08-11

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US14/167,757 Continuation US9571243B2 (en) 2011-08-11 2014-01-29 Multi-antenna transmission method and apparatus

Publications (1)

Publication Number Publication Date
WO2013020516A1 true WO2013020516A1 (zh) 2013-02-14

Family

ID=47646829

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2012/079921 WO2013020516A1 (zh) 2011-08-11 2012-08-10 一种多天线传输的方法及装置

Country Status (4)

Country Link
US (1) US9571243B2 (zh)
EP (1) EP2744286B1 (zh)
CN (1) CN102932112B (zh)
WO (1) WO2013020516A1 (zh)

Families Citing this family (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2863570B1 (en) 2012-06-14 2019-09-18 Huawei Technologies Co., Ltd. Method, user equipment, and base station evolved node for determining precoding matrix indicator
CN104956613B (zh) 2013-03-15 2016-11-02 华为技术有限公司 一种发送设备和接收设备参数的调整方法及终端设备
CN104303431B (zh) * 2013-04-03 2018-05-11 华为技术有限公司 信道状态信息上报方法、接收方法及设备
CN110460361B (zh) 2013-05-10 2020-06-19 华为技术有限公司 确定预编码矩阵指示的方法、用户设备和基站
CN104184537B (zh) * 2013-05-21 2019-05-31 上海朗帛通信技术有限公司 一种移动通信系统中的信道信息反馈方法和装置
WO2015018030A1 (zh) 2013-08-08 2015-02-12 华为技术有限公司 确定预编码矩阵指示的方法、接收设备和发送设备
EP3096465B1 (en) * 2014-01-21 2020-03-04 Huawei Technologies Co., Ltd. Multi-input multi-output (mimo) transmission methods, system and device
US10819491B2 (en) * 2014-04-25 2020-10-27 Lg Electronics Inc. Method and device for channel state reporting
CN105099604B (zh) 2014-05-07 2018-11-20 中兴通讯股份有限公司 信道状态反馈信息反馈方法、终端、基站及通信系统
EP3654717B1 (en) * 2015-04-10 2021-07-14 Huawei Technologies Co., Ltd. Channel measurement method, base station, and ue
WO2017007240A1 (ko) * 2015-07-06 2017-01-12 삼성전자 주식회사 이동 통신 시스템에서 채널을 측정하는 방법 및 장치
WO2018023907A1 (zh) 2016-08-05 2018-02-08 华为技术有限公司 数据处理方法、传输控制设备和接收端
JP2019531624A (ja) * 2016-08-10 2019-10-31 アイディーエーシー ホールディングス インコーポレイテッド 次世代無線システムに対する空間変調
US10892801B2 (en) * 2016-08-12 2021-01-12 Lg Electronics Inc. Method for signaling for phase feedback, and device for same
CN110635835B (zh) * 2016-11-01 2022-11-25 极光技术咨询有限责任公司 一种用于多天线系统的ue、基站中的方法和装置
WO2019050159A1 (ko) * 2017-09-08 2019-03-14 엘지전자 주식회사 무선 통신 시스템에서 채널 상태 정보를 보고하기 위한 방법 및 이를 위한 장치
CN113556207B (zh) * 2020-04-23 2022-03-29 上海朗帛通信技术有限公司 一种被用于无线通信的节点中的方法和装置
CN112235785B (zh) * 2020-12-16 2021-04-13 展讯通信(上海)有限公司 通信方法、装置及设备
WO2023206556A1 (en) * 2022-04-29 2023-11-02 Nokia Shanghai Bell Co., Ltd. Method and apparatus for csi feedback

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101827053A (zh) * 2010-02-08 2010-09-08 清华大学 抑制小区间干扰的方法
WO2010106725A1 (ja) * 2009-03-16 2010-09-23 パナソニック株式会社 無線受信装置及び無線送信装置、並びに無線通信方法
CN101848499A (zh) * 2009-03-25 2010-09-29 上海贝尔股份有限公司 改进无线系统中的分级业务传输的方法、网络单元及系统
CN102013952A (zh) * 2009-09-07 2011-04-13 夏普株式会社 信道状态信息获取方法、基站及用户设备
WO2011079294A1 (en) * 2009-12-23 2011-06-30 Qualcomm Incorporated Cluster-specific reference signals for communication systems with multiple transmission points

Family Cites Families (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090280747A1 (en) * 2008-05-07 2009-11-12 Motorola, Inc. Method and Apparatus for Interference Cancellation in a Wireless Communication System
US8542640B2 (en) * 2008-08-28 2013-09-24 Ntt Docomo, Inc. Inter-cell approach to operating wireless beam-forming and user selection/scheduling in multi-cell environments based on limited signaling between patterns of subsets of cells
EP2228914B1 (en) * 2009-03-11 2020-09-02 Electronics and Telecommunications Research Institute Methods for controlling inter cell interference in cellular mobile system
CN101873629A (zh) * 2009-04-24 2010-10-27 北京三星通信技术研究有限公司 一种多点联合传输的方法和装置
US8755365B2 (en) * 2009-11-08 2014-06-17 Lg Electronics Inc. Method and a base station for transmitting a CSI-RS, and a method and user equipment for receiving the CSI-RS
KR101782645B1 (ko) * 2010-01-17 2017-09-28 엘지전자 주식회사 무선 통신 시스템에서 상향링크 제어 정보 전송 방법 및 장치
US8305987B2 (en) * 2010-02-12 2012-11-06 Research In Motion Limited Reference signal for a coordinated multi-point network implementation
US8989114B2 (en) * 2010-03-17 2015-03-24 Lg Electronics Inc. Method and apparatus for providing channel state information-reference signal (CSI-RS) configuration information in a wireless communication system supporting multiple antennas
US9136997B2 (en) * 2010-05-04 2015-09-15 Qualcomm Incorporated Methods and apparatuses for using channel state information reference signals
ES2567791T3 (es) * 2010-11-03 2016-04-26 Samsung Electronics Co., Ltd. Procedimiento y aparato de codificación de transmisión harq-ack en sistemas de tdd con agregación de portadora en enlace descendente
US9591499B2 (en) * 2010-11-05 2017-03-07 Interdigital Patent Holdings, Inc. WTRU measurements handling to mitigate in-device interference
JP5934235B2 (ja) * 2010-11-10 2016-06-15 インターデイジタル パテント ホールディングス インコーポレイテッド ヘテロジニアスネットワークにおける逐次キャンセルによる干渉軽減のための方法および装置
US9084153B2 (en) * 2010-12-23 2015-07-14 Lg Electronics Inc. Method for transmitting control information and device therefor
WO2012096532A2 (ko) * 2011-01-14 2012-07-19 엘지전자 주식회사 무선 통신 시스템에서 채널상태정보 측정 자원 설정 방법 및 장치
US9357405B2 (en) * 2011-01-20 2016-05-31 Lg Electronics Inc. Method of reducing intercell interference in wireless communication system and apparatus thereof
US8995400B2 (en) * 2011-02-11 2015-03-31 Qualcomm Incorporated Method and apparatus for enabling channel and interference estimations in macro/RRH system
US9544108B2 (en) * 2011-02-11 2017-01-10 Qualcomm Incorporated Method and apparatus for enabling channel and interference estimations in macro/RRH system
US8599711B2 (en) * 2011-04-08 2013-12-03 Nokia Siemens Networks Oy Reference signal port discovery involving transmission points
US20120281555A1 (en) * 2011-05-02 2012-11-08 Research In Motion Limited Systems and Methods of Wireless Communication with Remote Radio Heads
US9735844B2 (en) * 2011-05-09 2017-08-15 Texas Instruments Incorporated Channel feedback for coordinated multi-point transmissions
US9344299B2 (en) * 2011-05-13 2016-05-17 Lg Electronics Inc. CSI-RS based channel estimating method in a wireless communication system and device for same
CN103621155B (zh) * 2011-06-21 2018-09-28 瑞典爱立信有限公司 用于上行链路发送的发送功率控制的用户设备及其方法
KR20140036247A (ko) * 2011-06-29 2014-03-25 엘지전자 주식회사 채널상태정보 전송방법 및 사용자 기기, 그리고 채널상태정보 수신방법 및 기지국

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010106725A1 (ja) * 2009-03-16 2010-09-23 パナソニック株式会社 無線受信装置及び無線送信装置、並びに無線通信方法
CN101848499A (zh) * 2009-03-25 2010-09-29 上海贝尔股份有限公司 改进无线系统中的分级业务传输的方法、网络单元及系统
CN102013952A (zh) * 2009-09-07 2011-04-13 夏普株式会社 信道状态信息获取方法、基站及用户设备
WO2011079294A1 (en) * 2009-12-23 2011-06-30 Qualcomm Incorporated Cluster-specific reference signals for communication systems with multiple transmission points
CN101827053A (zh) * 2010-02-08 2010-09-08 清华大学 抑制小区间干扰的方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2744286A4 *

Also Published As

Publication number Publication date
EP2744286A4 (en) 2014-07-23
US20140146778A1 (en) 2014-05-29
EP2744286B1 (en) 2016-12-21
EP2744286A1 (en) 2014-06-18
CN102932112A (zh) 2013-02-13
CN102932112B (zh) 2015-11-25
US9571243B2 (en) 2017-02-14

Similar Documents

Publication Publication Date Title
WO2013020516A1 (zh) 一种多天线传输的方法及装置
CN107438957B (zh) 用于指示无线通信网络中的预编码器参数的方法和设备
JP5705843B2 (ja) 協調ビーム成形のためのアンテナ設定
US9935693B2 (en) Method for communicating in a MIMO network
CN109302220B (zh) 用于数据传输的方法、装置和系统
US8842763B2 (en) Precoding weight generation method, mobile station apparatus and base station apparatus
WO2015088419A1 (en) Wireless device, network node, methods therein, for respectively sending and receiving a report on quality of transmitted beams
WO2010121546A1 (en) System and method for precoding codebook adaptation with low feedback overhead
WO2016169235A1 (zh) 信道质量指示cqi数量的确定方法及装置
JP5744833B2 (ja) Mimoネットワークにおいて通信するための方法
WO2012041107A1 (zh) 信道状态信息反馈方法及终端
WO2010091647A1 (en) System and method for wireless communications using spatial multiplexing with incomplete channel information
WO2017194007A1 (zh) 一种二级预编码方法及装置
CN109391305B (zh) 一种通信处理方法及装置
WO2013000307A1 (zh) 开环传输预编码处理和检测方法、装置及开环传输系统
TW200913536A (en) A method for communicating in a MIMO context
WO2014023727A1 (en) Method and apparatus providing inter-transmission point phase relationship feedback for joint transmission comp
US20230291452A1 (en) Multiple-transmission-reception-point measurement and transmission in wireless communication system
CN108288987B (zh) 一种发射分集的方法、终端和基站
WO2016092429A1 (en) Su-mimo, mu-mimo and beamforming operations using synchronized wlan devices
WO2021023824A1 (en) Codebook subset restriction for frequency-parameterized linear combination codebooks
CN109981152B (zh) 一种功率分配方法及设备
WO2017167157A1 (zh) 信道信息的处理方法及装置
WO2023021482A1 (en) Channel state information omission for type ii channel state information
EP4338311A1 (en) Configuring channel state information (csi) feedback

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12822509

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

REEP Request for entry into the european phase

Ref document number: 2012822509

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2012822509

Country of ref document: EP