WO2013020407A1 - 高信噪比摆动式低相干干涉位移解调装置及其解调方法 - Google Patents

高信噪比摆动式低相干干涉位移解调装置及其解调方法 Download PDF

Info

Publication number
WO2013020407A1
WO2013020407A1 PCT/CN2012/076145 CN2012076145W WO2013020407A1 WO 2013020407 A1 WO2013020407 A1 WO 2013020407A1 CN 2012076145 W CN2012076145 W CN 2012076145W WO 2013020407 A1 WO2013020407 A1 WO 2013020407A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
lens
signal
wedge
scanning
Prior art date
Application number
PCT/CN2012/076145
Other languages
English (en)
French (fr)
Inventor
刘铁根
江俊峰
尹金德
刘琨
王少华
Original Assignee
天津大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 天津大学 filed Critical 天津大学
Priority to US13/880,730 priority Critical patent/US8958075B2/en
Publication of WO2013020407A1 publication Critical patent/WO2013020407A1/zh

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B9/00Measuring instruments characterised by the use of optical techniques
    • G01B9/02Interferometers
    • G01B9/0209Low-coherence interferometers
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B9/00Measuring instruments characterised by the use of optical techniques
    • G01B9/02Interferometers
    • G01B9/02055Reduction or prevention of errors; Testing; Calibration
    • G01B9/02056Passive reduction of errors
    • G01B9/02057Passive reduction of errors by using common path configuration, i.e. reference and object path almost entirely overlapping
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B9/00Measuring instruments characterised by the use of optical techniques
    • G01B9/02Interferometers
    • G01B9/02055Reduction or prevention of errors; Testing; Calibration
    • G01B9/02062Active error reduction, i.e. varying with time
    • G01B9/02064Active error reduction, i.e. varying with time by particular adjustment of coherence gate, i.e. adjusting position of zero path difference in low coherence interferometry
    • G01B9/02065Active error reduction, i.e. varying with time by particular adjustment of coherence gate, i.e. adjusting position of zero path difference in low coherence interferometry using a second interferometer before or after measuring interferometer
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/26Optical coupling means
    • G02B6/28Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals
    • G02B6/293Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals with wavelength selective means
    • G02B6/29302Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals with wavelength selective means based on birefringence or polarisation, e.g. wavelength dependent birefringence, polarisation interferometers
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/26Optical coupling means
    • G02B6/32Optical coupling means having lens focusing means positioned between opposed fibre ends
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B2207/00Coding scheme for general features or characteristics of optical elements and systems of subclass G02B, but not including elements and systems which would be classified in G02B6/00 and subgroups
    • G02B2207/117Adjustment of the optical path length
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/30Polarising elements
    • G02B5/3083Birefringent or phase retarding elements

Definitions

  • the invention relates to the field of displacement information demodulation, which can be used for displacement high-precision detection, or other demodulation of sensors such as strain, temperature, thickness, group refractive index and pressure which can be converted into displacement. Background technique
  • the low coherence interference technique used as the displacement demodulation method mainly has time scanning type and space scanning type.
  • Time scanning type such as Miho Song et al (Minho Song, Byoungho Lee, An effective optical evaluation technique using visible low-coherence interferometry, Optics and Lasers in Engineering, 1997, 27: 441-449) by performing one of the arms of the Michelson interferometer
  • the optical path difference is scanned to match the displacement to be measured.
  • the spatial scanning method linearly distributes the optical path difference in space, thereby receiving a spatial scan for realizing the optical path difference by using the linear array CCD.
  • Chen et al. Chen, S., et al, Study of electronically-scanned optical-fibre white-light Fizeau interferometer.
  • the time sweep type can measure a large range, but its long-term reliability and stability are poor, and the measurement accuracy is only on the order of micrometers.
  • the space scanning type uses a linear array CCD device for electrical scanning, and its long-term reliability is high. However, since the optical expansion beam covers the entire CCD photosensitive surface, the light energy is relatively dispersed, and the signal-to-noise ratio is poor. Summary of the invention
  • the object of the present invention is to overcome the above problems in the prior art and to provide a high SNR swing low-coherence interference displacement demodulation apparatus and a demodulation method thereof.
  • the demodulation method combines the advantages of the previous time scanning type and the space scanning type, and proposes two corresponding demodulating means.
  • the device uses the beamlet with high concentration of energy after collimation to scan the optical path difference along the narrow strip-shaped birefringent wedge, which can obtain high signal-to-noise ratio interference fringes and high measurement accuracy.
  • the first device of the high signal-to-noise ratio oscillating low-coherence interference displacement demodulation device comprises 12 parts: 1) a light source: a broadband light source having a wide spectrum, including an LED light source, an SLD light source and a halogen lamp;
  • Optical circulator It is used to transmit the light from the light source to the object to be detected and collect the reflected signal light.
  • the fiber coupler can be used instead;
  • Self-focusing collimating lens used to collimate the light beam sent by the optical circulator, and realize partial reflection of light through the plated reflective film;
  • fixed mirror fixed on the object to be detected, used to reflect the light signal output from the self-focusing collimator lens;
  • the fixed mirror is a reflective device, which may be a plane mirror or a corner cube;
  • collimating device collimating the reflected signal light collected by the optical circulator into a thin beam, and injecting the beam into the rotating mirror;
  • Rotating mirror The beamlet formed by the collimating device is reflected into the subsequent polarization interfering system, and the scanning of the mirror beam along the thickness variation direction of the wedge is realized by the rotation of the rotating mirror.
  • the scanning range covers the entire line array CCD image sensitive element.
  • f- ⁇ lens to realize the scanning of the thin beam parallel along the length direction of the narrow strip birefringent wedge, the light reflection point of the rotating mirror must coincide with the focus of the f- ⁇ lens;
  • Polarizer used to polarize the input signal light of the f- ⁇ lens at a 45-degree angle with the narrow-band strip birefringent wedge optical axis;
  • Birefringent wedge used to produce an optical path difference with linear linear distribution of the two orthogonal linearly polarized lights along the thickness of the wedge;
  • analyzer used to project interference between two linearly polarized lights that are orthogonal to each other through a birefringent wedge, the direction of polarization being the same or perpendicular to the polarizer;
  • Line array camera Use line array CCD or line array CMOS to collect the interference fringes generated after passing through the analyzer;
  • Processing unit It includes a general-purpose computer and an embedded computing system for processing the interference fringes received by the line camera and finally obtaining the displacement information.
  • the second device of the high signal-to-noise ratio oscillating low-coherence interference displacement demodulation device comprises 14 parts: 1) Light source: adopts a broadband light source with a wide spectrum, including an LED light source, an SLD light source and a halogen lamp;
  • Optical circulator It is used to transmit the light from the light source to the object to be detected and collect the reflected signal light.
  • the fiber coupler can be used instead;
  • Self-focusing collimating lens used to collimate the light beam sent by the optical circulator, and realize partial reflection of light through the plated reflective film;
  • fixed mirror fixed on the object to be detected, used to reflect the light signal output from the self-focusing collimator lens;
  • the fixed mirror is a reflective device, which may be a plane mirror or a corner cube;
  • collimating device collimating the reflected signal light collected by the optical circulator into a thin beam, and injecting the beam into the rotating mirror;
  • Rotating mirror The beamlet formed by the collimating device is reflected into the subsequent polarization interfering system, and the scanning of the mirror beam along the thickness variation direction of the wedge is realized by the rotation of the rotating mirror.
  • the scanning range covers the entire line array CCD image sensitive element.
  • f- ⁇ lens to realize the scanning of the thin beam parallel along the length direction of the narrow strip birefringent wedge, the light reflection point of the rotating mirror must coincide with the focus of the f- ⁇ lens;
  • Polarizer used to polarize the input signal light of the f- ⁇ lens at a 45-degree angle with the narrow-band strip birefringent wedge optical axis;
  • Birefringent wedge used to produce linear linearity between two orthogonal linearly polarized light directions along the thickness of the wedge. Distributed optical path difference;
  • analyzer used to project interference between two linearly polarized lights that are orthogonal to each other through a birefringent wedge, the direction of polarization being the same or perpendicular to the polarizer;
  • Linear array micro-hole array Used to define the beam sampling position when the beam is scanned.
  • Focusing lens Converges light through the array of micro-hole arrays into focus.
  • PIN detector Receives the light signal concentrated by the focusing lens and converts the optical signal into an electrical signal.
  • Processing unit It includes a general-purpose computer and an embedded computing system for processing the interference patterns received by the PIN detector and finally obtaining the displacement information.
  • the optics of the system described above can all be replaced by spatially optic counterparts.
  • the invention also provides a high signal-to-noise ratio oscillating low-coherence interference displacement demodulation method based on the above device, and the specific process of the method is as follows:
  • the light emitted by the broadband source passes through the optical circulator to the self-focusing collimating lens on the sensing side.
  • a part of the light is reflected by the reflecting surface of the end face of the self-focusing collimating lens, and another part of the light is incident through the self-focusing collimating lens.
  • Fixed on the fixed mirror on the object to be detected, after being reflected, the partially reflected light is coupled into the optical fiber again; the two parts of the reflected light have an optical path difference related to the displacement of the object to be detected, and d s is twice Focusing the distance between the collimating lens and the fixed mirror fixed on the object to be inspected;
  • the two reflected light are incident on the collimator through the circulator, and the thin beam of concentrated energy is emitted.
  • the beam is incident on a scanning device consisting of a rotating mirror and an f- ⁇ lens, and the light reflecting point of the rotating mirror always coincides with the focus of the f- ⁇ lens.
  • the mirror is swung at an angular velocity of ⁇ 0, the reflected beam will be scanned within ⁇ 20, and after passing through the f- ⁇ lens, the beam will become a parallel scan with a scan velocity of V.
  • the signal light is incident on the polarizer by the scanning device to form linearly polarized light, and then incident on the narrow strip birefringent wedge, and the polarization axis direction of the polarizer is placed at 45 degrees with the optical axis direction of the birefringent wedge.
  • the linearly polarized light is incident on the birefringent wedge, it is equally divided into two polarization components of the polarization direction along the birefringent wedge optical axis and perpendicular to the birefringent wedge optical axis, and the two components generate the optical path in the birefringent wedge. Poor, where is the extraordinary refractive index of a birefringent crystal,
  • the collimated thin beam is scanned along the length direction of the narrow strip birefringent wedge, and the birefringent wedge is used to sequentially scan the optical path difference, thereby matching the displacement information to be detected.
  • the light exiting the birefringent wedge then passes through an analyzer with a polarization direction placed at 45 degrees to the optical axis of the wedge, resulting in low coherent interference fringes. Since the beam energy after collimation is concentrated and limited by external noise, interference fringes with high signal-to-noise ratio can be obtained.
  • the fifth high-signal-to-noise ratio oscillating low-coherence interference displacement demodulation device uses a line camera (such as a linear CCD) to receive interference fringes, and the designed scanning range can cover the image sensitive elements of the entire line camera. And digital processing through a computer or embedded system. After the interference fringes are processed, the pixel position of the line camera appears through the peak of the interference fringe to determine the matching condition, and the displacement information is acquired.
  • the device is mainly used in applications where the broadband source is in the visible or near-infrared band.
  • the sixth high-signal-to-noise ratio oscillating low-coherence interference displacement demodulation device uses a PIN photodetector to receive an interference signal.
  • the beam emitted by the analyzer passes through a line array of micro-holes and passes through a focusing lens, which focuses all of the scanned beamlets at its focus.
  • the PIN photodetector is placed at the focus, so the PIN photodetector can receive all the scanning signal beams.
  • digital processing through a computer or embedded system. After the interference pattern is processed, the matching position is judged by the position of the corresponding micropore appearing at the peak of the interference fringe, and the displacement information is obtained.
  • the device is mainly used in the case where the source spectrum is in the near-infrared band which cannot be detected by a line camera.
  • the present invention performs low-coherence interference displacement demodulation by means of thin beam spatial scanning.
  • the beamlet is scanned along the length of the narrow strip birefringent wedge for optical path difference scanning, and the microscopy or line array camera maintains the spatial position of the spot to maintain the spatial position constant characteristics, so that the system can obtain high optical path difference resolution.
  • the concentration of the beamlet energy due to the concentration of the beamlet energy, the influence of external noise is relatively small, so that a high signal-to-noise ratio signal can be obtained.
  • the first device uses a line camera such as a line CCD and a line CMOS to receive interference signals.
  • This receiving method is suitable for the spectrum of a broadband source to be within the spectral range that the line camera can sense, such as the visible band or the optical band of less than llOOnm.
  • the second device utilizes a PIN photodetector to receive an interference signal, which has the advantage of being suitable for use in near-infrared broadband sources.
  • FIG. 1 is a schematic diagram of a first high-signal-to-noise ratio oscillating low-coherence interference displacement demodulation device according to the present invention
  • FIG. 2 is a schematic diagram of a second high-signal-to-noise ratio oscillating low-coherence interference displacement demodulation device according to the present invention
  • Figure 3 is a schematic view of the scanning device of the beamlet along the length direction of the strip birefringent wedge.
  • Figure 4 is a schematic diagram of the interference fringe received by the PIN photodetector.
  • 1 broadband light source 2 optical circulator, 3 self-focusing collimating lens, 4 fixed mirror, 5 collimating device, 6 rotating mirror, 7 f-6 lens, 8 polarizer, 9 narrow strip strip birefringence Wedge, 10 analyzer, 11 line camera, 12 computer, 13 line array micro hole array, 14 focusing lens, 15 PIN photodetector.
  • Embodiment 1 The first high SNR swing type low coherence interference displacement demodulation device
  • the light emitted by the broadband light source 1 passes through the optical circulator 2 to reach the self-focusing collimating lens 3 on the sensing side.
  • a part of the light is reflected by the end surface reflecting surface of the self-focusing collimating lens 3, and another part of the light is collimated by the self-focusing collimating lens 3 to the fixed mirror 4 fixed on the object to be detected, and the two parts of the light are reflected again.
  • Coupling into the fiber forms a beam of light.
  • Part of the reflected light is incident on the collimator 5 through the optical circulator 2, and then a beamlet is output, and the beamlet is incident on the mirror 6, and is reflected and incident on the f-theta lens 7.
  • the light reflection point of the mirror 6 is The focal points of the f- ⁇ lens 7 are coincident, and when the rotating mirror 6 is swung, the output light of the f- ⁇ lens 7 can be scanned along the length direction of the narrow strip birefringent wedge 9.
  • the outgoing light of the f- ⁇ lens 7 is incident on the polarizer 8 to form a linearly polarized light at an angle of 45 degrees with respect to the optical axis of the wedge, and the linearly polarized light passes through the narrow strip-shaped birefringent wedge 9 and is incident on the analyzer 10 for projection.
  • the line camera 11 receives the interference signal output from the analyzer 10 and inputs it to the computer 12.
  • Embodiment 2 Second high SNR swing type low coherence interference displacement demodulation device
  • the light emitted by the broadband light source 1 passes through the optical circulator 2 to reach the self-focusing collimating lens 3 on the sensing side, and a part of the light is reflected by the end surface reflecting surface of the self-focusing collimating lens 3, and another part of the light is self-contained.
  • the focusing collimating lens 3 is collimated to the fixed mirror 4 fixed on the object to be detected, and after being reflected, the two portions of light are coupled again into the optical fiber to form a beam of light.
  • the reflected two parts of the light are incident on the collimator 5 through the optical circulator 2, and then output a beam of light, which is incident on the rotating mirror 6, and is incident on the f-theta lens 7, and the light reflecting point of the rotating mirror 6 Coincident with the focus of the f- ⁇ lens 7, when the rotating mirror 6 is swung, the output light of the f- ⁇ lens 7 can be scanned along the length direction of the narrow strip birefringent wedge 9.
  • the outgoing light of the f- ⁇ lens 7 is incident on the polarizer 8 to form a linearly polarized light at an angle of 45 degrees with respect to the optical axis of the wedge, and the linearly polarized light passes through the narrow strip-shaped birefringent wedge 9 and is incident on the analyzer 10 for projection.
  • Interference, after outputting, the interference signal light is output from the analyzer 10, and the interference signal light is incident on the focus lens 14 through a line array micro-hole array 13, is focused by the focus lens 14 at the focus, and is located at the focus of the focus lens 14.
  • the PIN photodetector 15 receives and re-enters the computer 12.
  • a fiber coupler can be used instead of the optical circulator.
  • Embodiment 3 High signal-to-noise ratio oscillating low-coherence interference displacement demodulation method
  • the demodulation process of the low coherence interference displacement demodulation device in the above embodiment 1 is as follows:
  • the light of the broadband light source 1 in Fig. 1 passes through the optical circulator 2 to reach the self-focusing collimating lens 3 on the sensing side, a part of the light is reflected by the end surface reflecting surface of the self-focusing collimating lens 3, and another part of the light is collimated by self-focusing.
  • the lens 3 is collimated and emitted to the fixed mirror 4 of the object to be detected. After being reflected, the portion of the light is coupled into the optical fiber again.
  • the two portions of light have an optical path difference associated with the displacement of the object to be detected, and d s is twice.
  • the reflected two beams are incident on the collimator 5 through the circulator 2, and a thin beam of concentrated energy is emitted.
  • the beamlet is incident on a scanning device composed of a rotating mirror 6 and an f-theta lens 7, and the light reflecting point of the rotating mirror 6 is always coincident with the focus of the f-theta lens 7 (i.e., the focus coincides with the rotational axis).
  • the angular velocity of the mirror 6 is swung within ⁇ 0, the reflected beam will be scanned within a range of ⁇ 20.
  • the beamlets After passing through the f- ⁇ lens 7, the beamlets are scanned in parallel at a scanning speed V.
  • the scan width can be controlled by selecting the appropriate / and 0 so that the scan width covers the image sensor of the entire line camera or all the holes of the line array microwell array.
  • the light output from the f- ⁇ lens 7 is polarized by the polarizer 8, and the polarization axis direction of the polarizer is placed at 45 degrees with the optical axis direction of the narrow strip birefringent wedge, so that the polarized polarization
  • the light can be equally divided into two polarization components of the polarization direction along the optical axis of the birefringent crystal and perpendicular to the optical axis of the birefringent crystal.
  • the process of the optical path difference scanning is that when the rotating mirror is swung, the thin beam is gradually scanned from the end of the narrow strip-shaped birefringent wedge along the length direction of the wedge, that is, the direction in which the optical path difference changes linearly, to the other end, thereby realizing The scanning of the optical path difference.
  • the optical path difference information related to the measurement is present in the beamlet, so the optical path difference scanning is also a process of signal matching detection.
  • the beam energy is concentrated, the influence of external noise is limited, so that after the projection of the analyzer 10, a low coherent interference signal with a high signal to noise ratio can be obtained.
  • the two devices designed by the present invention have different acquisition methods for low coherence interference signals.
  • the first device in the above embodiment 1 uses a line camera 11 (such as a line CCD) to collect signals, and by setting the sampling frequency of the line camera 11, the time and light of one frame are scanned from the end of the wedge. The time to the other end is equal, that is, the point-by-point writing of the signal to the line camera 11 is realized after the scanning. Therefore, the interference signal of the entire one scan can be displayed in one frame of the line camera 11. Finally, the signals acquired by the line camera 11 are input to the computer 12 for digital processing, peaks are extracted, and the displacement distance is calculated.
  • a line camera 11 such as a line CCD
  • the second device of the above-described Embodiment 2 receives the interference signal by the PIN photodetector 15, and the interference signal is first transmitted through a line array micro-hole array 13 to the focus lens 14, and then focused to the PIN located at the focus of the focus lens 14.
  • Photodetector 15 is on.
  • the data collected by the PIN photodetector 15 is transmitted to the computer 12 for analysis and processing.
  • the PIN photodetector 15 receives a complete set of interference signals.
  • the relationship between the collected signal point and the micro-hole array can be established, and the position of the micro-hole array corresponding to the interference signal can be reflected by querying the occurrence time of the interference signal, thereby demodulating the displacement information.
  • the present demodulating device and the demodulating method can be used for the absolute cavity length demodulation of the fiber Fabry.
  • the fixed mirror 4 is fixed on the pressure diaphragm.
  • the self-focusing collimator lens 3 can be omitted, and the optical fiber can be directly replaced, that is, the fixed reflection
  • the mirror 4 and the fiber end face form a Faber cavity.
  • the demodulation device can match the current Fabry cavity length by optical path difference scanning, thereby sensing the deformation of the diaphragm, and then The formula or calibration factor calculates the pressure to be measured.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Instruments For Measurement Of Length By Optical Means (AREA)

Abstract

提出一种高信噪比摆动式低相干干涉位移解调方法和两种解调装置。位移传感方法是利用参考面反射光与待测物反射光形成一定光程差,当待测物存在位移时,光程差改变。解调方法是将反射光信号传到白光偏振干涉系统,白光偏振干涉系统中双折射光楔(9)可实现光程差空间分布,以匹配出反射信号光程差。扫描方式是将反射光信号准直后,入射到由转镜(6)和f-θ透镜(7)组成的时间扫描装置,实现细光束沿双折射光楔(9)长度方向扫描。两种解调装置接收干涉条紋方法不同,一种用线阵相机(11),另一种用微孔阵列和单个PIN光电探测器。由于扫描光束能量集中,所以低相干干涉信号信噪比非常高,同时利用线阵相机(11)和微孔阵列的保持光斑接收空间位置不变特性,获取高精度位置解调。

Description

高信噪比摆动式低相干干涉位移解调装置及其解调方法 技术领域
本发明涉及位移信息解调领域, 该位移传感解调方法可以用于位移高精度检测, 或者 其他可转化为位移的应变、 温度、 厚度、 群折射率和压力等传感器的解调。 背景技术
低相干干涉技术用作位移解调方式主要有时间扫描式和空间扫描式。 时间扫描式如 Miho Song等 (Minho Song, Byoungho Lee, An effective optical evaluation technique using visible low-coherence interferometry, Optics and Lasers in Engineering, 1997,27:441-449 ) 通过 对 Michelson干涉仪的其中一臂进行光程差扫描, 从而匹配出待测位移。 空间扫描式是将光 程差在空间作一线性分布,从而利用线阵 CCD接收实现光程差的空间扫描。如 Chen等(Chen, S., et al, Study of electronically-scanned optical-fibre white-light Fizeau interferometer. Electronics letters, 1991. 27(12): 1032-1034. ) 在 1991年提出 Fizeau干涉仪结构, 利用 Fizeau 干涉仪构成的光楔实现光程差空间分布, Marshall等 (Marshall, R., et al., A novel electronically scanned white-light interferometer using a Mach-Zehnder approach. Lightwave Technology, Journal of, 1996. 14(3): 397-402 )在 1996年提出采用 Mach-Zehnder干涉仪结构实 现光程差的空间分布。
时间扫描式可以测量很大的范围, 但其长期可靠性和稳定性较差, 测量精度只在微米 量级。 空间扫描式采用线阵 CCD器件进行电扫描, 其长期可靠性高, 但由于光扩束覆盖到 整个 CCD感光面, 光能量比较分散, 信噪比差。 发明内容
本发明目的是为了克服现有技术存在的上述问题, 提供一种高信噪比摆动式低相干干 涉位移解调装置及其解调方法。 该解调方法综合了以往时间扫描式和空间扫描式的优点, 并提出了两种相应的解调装置。 该装置利用准直后能量高度集中的细光束沿窄带条形双折 射光楔进行光程差扫描, 能够得到高信噪比的干涉条纹和高的测量精度。
本发明提供的高信噪比摆动式低相干干涉位移解调装置的第一种装置包括 12个部分: 1) 光源: 采用具有宽光谱的宽带光源, 包括 LED光源、 SLD光源和卤素灯;
2) 光环行器: 用来将光源发出的光传输到待检测物体并收集反射信号光, 当光源功率 较大时, 可采用光纤耦合器替代;
3) 自聚焦准直透镜: 用来将光环行器发送的光束进行准直输出, 并通过所镀反射膜实 现光的部分反射;
4) 固定反射镜: 固定在待检测物体上, 用来反射自聚焦准直透镜输出的光信号; 所述 的固定反射镜是具有反射作用的器件, 可以是平面镜或者角锥棱镜;
5) 准直装置: 将光环行器收集的反射信号光准直成细光束, 并将该细光束入射到转镜 上;
6) 转镜:将准直装置形成的细光束反射到后续偏振干涉系统中,并且通过转镜的转动, 实现细光束沿光楔厚度变化方向的扫描, 扫描范围覆盖整个线阵 CCD像敏元;
7) f-θ 透镜: 实现细光束平行沿窄带条形双折射光楔长度方向的扫描, 转镜的光反射 点必须与 f-θ透镜的焦点重合;
8) 起偏器: 用来对 f-θ透镜的输入信号光进行起偏, 偏振方向与窄带条形双折射光楔 光轴成 45度角;
9) 双折射光楔:用来对两束正交的线偏振光产生具有沿光楔厚度变化方向呈空间线性 分布的光程差;
10) 检偏器: 用来对经过双折射光楔相互正交的两个线偏振光进行投影产生干涉, 偏 振方向与起偏器相同或垂直;
11) 线阵相机: 采用线阵 CCD或者线阵 CMOS对经过检偏器后产生的干涉条纹进行 采集;
12) 处理单元: 包括通用计算机和嵌入式计算系统, 用于对线阵相机接收的干涉条纹 进行处理, 最终获取位移信息。 本发明提供的高信噪比摆动式低相干干涉位移解调装置的第二种装置包括 14个部分: 1) 光源: 采用具有宽光谱的宽带光源, 包括 LED光源、 SLD光源和卤素灯;
2) 光环行器: 用来将光源发出的光传输到待检测物体并收集反射信号光, 当光源功率 较大时, 可采用光纤耦合器替代;
3) 自聚焦准直透镜: 用来将光环行器发送的光束进行准直输出, 并通过所镀反射膜实 现光的部分反射;
4) 固定反射镜: 固定在待检测物体上, 用来反射自聚焦准直透镜输出的光信号; 所述 的固定反射镜是具有反射作用的器件, 可以是平面镜或者角锥棱镜;
5) 准直装置: 将光环行器收集的反射信号光准直成细光束, 并将该细光束入射到转镜 上;
6) 转镜:将准直装置形成的细光束反射到后续偏振干涉系统中,并且通过转镜的转动, 实现细光束沿光楔厚度变化方向的扫描, 扫描范围覆盖整个线阵 CCD像敏元;
7) f-θ透镜: 实现细光束平行沿窄带条形双折射光楔长度方向的扫描, 转镜的光反射 点必须与 f-θ透镜的焦点重合;
8) 起偏器: 用来对 f-θ透镜的输入信号光进行起偏, 偏振方向与窄带条形双折射光楔 光轴成 45度角;
9) 双折射光楔: 用来对两束正交的线偏振光产生具有沿光楔厚度变化方向呈空间线性 分布的光程差;
10) 检偏器: 用来对经过双折射光楔相互正交的两个线偏振光进行投影产生干涉, 偏 振方向与起偏器相同或垂直;
11) 线阵微孔阵列: 用来限定光束扫描时的光束采样位置。
12) 聚焦透镜: 将透过线阵微孔阵列的光会聚到焦点。
13) PIN探测器: 接收聚焦透镜会聚的光信号, 并将光信号转化为电信号。
14) 处理单元: 包括通用计算机和嵌入式计算系统, 用于对 PIN探测器接收的干涉条 纹进行处理, 最终获取位移信息。
上面所述系统的光学器件可以全部采用空间光学对应的器件来代替。 本发明同时提供了一种基于上述装置的高信噪比摆动式低相干干涉位移解调方法, 该 方法的具体过程如下:
第 1、 宽带光源发出的光通过光环行器到达传感一侧的自聚焦准直透镜, 一部分光被 自聚焦准直透镜端面的反射面反射, 另一部分光透过自聚焦准直透镜入射到固定在待检测 物体上的固定反射镜上, 被反射后这部分反射光再次耦合进入到光纤中; 两部分反射光具 有与待检测物体位移相关的一个光程差 , ds为两倍于自聚焦准直透镜和固定在待检测物 体上的固定反射镜之间的距离;
第 2、 反射的两束光通过环行器入射到准直装置, 形成能量集中的细光束出射。 该细 光束入射到由转镜和 f-θ透镜组成的扫描装置上,转镜的光反射点与 f-θ透镜的焦点始终保 持重合。 当转镜以《的角速度在 ±0范围内摆动时, 反射细光束将在 ±20的范围内扫描, 透 过 f-θ透镜后, 细光束变为扫描速度为 V的平行扫描。 扫描宽度为 = 2/ &^2 , 可以通 过选择 f-θ透镜的焦距 /和转镜的摆动角度 0来控制扫描宽度。
第 3、 信号光由扫描装置入射到起偏器, 形成线偏振光, 然后入射到窄带条形双折射 光楔, 起偏器的偏振轴方向与双折射光楔的光轴方向成 45 度放置, 线偏光入射到双折射 光楔后被均分为偏振方向沿双折射光楔光轴和垂直于双折射光楔光轴的两个偏振分量, 两 个分量在双折射光楔中产生光程差 , 其中 为双折射晶体的非常光折射率,
«。为双折射晶体的寻常光折射率, 光楔厚度 在空间呈线性分布, 即 (x) = x tan «, X为 入射光点离窄带条形双折射光楔顶点的横向距离, 《为楔角。
第 4、 准直后的细光束沿窄带条形双折射光楔的长度方向扫描, 配合双折射光楔实现 光程差的依次扫描, 从而匹配出待检测的位移信息。 从双折射光楔出射的光再通过偏振方 向与光楔光轴呈 45 度放置的检偏器后产生低相干干涉条纹。 由于准直后的细光束能量集 中, 受外界噪声的影响有限, 所以能够得到高信噪比的干涉条纹。 第 5、 第一种高信噪比摆动式低相干干涉位移解调装置采用线阵相机 (如线阵 CCD)接 收干涉条纹, 设计的扫描范围能够覆盖整个线阵相机的像敏元。 并通过计算机或嵌入式系 统进行数字处理。 在对干涉条纹进行处理后通过干涉条纹峰值出现在线阵相机的像元位置 来判断匹配情况, 并获取位移信息。 该装置主要应用于宽带光源为可见光或近红外波段的 场合。
第 6、 第二种高信噪比摆动式低相干干涉位移解调装置采用 PIN光电探测器接收干涉 信号。 检偏器出射的光束透过一个线阵微孔阵列后通过聚焦透镜, 聚焦透镜能够将所有的 扫描细光束会聚于其焦点处。 同时将 PIN光电探测器放置在聚焦透处, 所以 PIN光电探测 器能够接收所有的扫描信号光束。 并通过计算机或嵌入式系统进行数字处理。 在对干涉条 纹进行处理后通过干涉条纹峰值出现的对应的微孔位置来判断匹配情况, 并获取位移信 息。 该装置主要应用于光源光谱为线阵相机无法探测的近红外波段的场合。 本发明的优点和积极效果:
1、 本发明采用细光束空间扫描的方式进行低相干干涉位移解调。 将细光束沿窄带条 形双折射光楔长度方向进行光程差扫描, 利用微孔或线阵相机的保持光斑接收空间位置不 变特性, 使得系统能够获得高的光程差分辨率。 同时由于细光束能量集中, 外界噪声对其 影响相对小, 所以能够获得高信噪比信号。
2、 本发明中对干涉信号的接收方面提出了两种装置。 第一种装置是利用线阵相机, 例如线阵 CCD和线阵 CMOS, 接收干涉信号。 这种接收方法适合于宽带光源的光谱处于 线阵相机能够感应的光谱范围以内, 比如可见光波段或者小于 llOOnm的光波段。 第二种 装置是利用 PIN光电探测器接收干涉信号, 该装置的优点在于能够适用于近红外宽带光源 的场合。 附图说明
图 1是本发明中第一种高信噪比摆动式低相干干涉位移解调装置示意图;
图 2是本发明中第二种高信噪比摆动式低相干干涉位移解调装置示意图;
图 3是细光束沿条形双折射光楔长度方向扫描装置示意图。
图 4是 PIN光电探测器接收干涉条纹示意图。
图中, 1宽带光源, 2光环行器, 3自聚焦准直透镜, 4固定反射镜, 5准直装置, 6转镜, 7 f-6透镜, 8起偏器, 9窄带条形双折射光楔, 10检偏器, 11线阵相机, 12计算机, 13线阵 微孔阵列, 14聚焦透镜, 15 PIN光电探测器。 具体实施方式
实施例 1: 第一种高信噪比摆动式低相干干涉位移解调装置
如图 1所示,宽带光源 1发出的光经过光环行器 2到达传感一侧的自聚焦准直透镜 3, 一部分光被自聚焦准直透镜 3的端面反射面反射, 另外一部分光被自聚焦准直透镜 3准直 出射到固定在待检测物体上的固定反射镜 4上, 被反射后这两部分光再次耦合进入到光纤 中形成一束光。 反射的部分光通过光环行器 2入射到准直装置 5后输出一束细光束, 细光 束再入射到转镜 6, 经反射后入射到 f-θ透镜 7, 转镜 6的光反射点与 f-θ透镜 7的焦点重 合, 当转镜 6摆动时, 能够实现 f-θ透镜 7输出光沿着窄带条形双折射光楔 9长度方向扫 描。 f-θ透镜 7的出射光入射到起偏器 8形成与光楔光轴成 45度角的线偏光, 线偏光通过 窄带条形双折射光楔 9后, 再入射到检偏器 10进行投影干涉, 采用线阵相机 11接收检偏 器 10输出的干涉信号, 并输入到计算机 12中。
实施例 2: 第二种高信噪比摆动式低相干干涉位移解调装置
如图 2所示,宽带光源 1发出的光经过光环行器 2到达传感一侧的自聚焦准直透镜 3, 一部分光被自聚焦准直透镜 3的端面反射面反射, 另外一部分光被自聚焦准直透镜 3准直 出射到固定在待检测物体上的固定反射镜 4上, 被反射后这两部分光再次耦合进入到光纤 中形成一束光。 反射的两部分光通过光环行器 2入射到准直装置 5后输出一束细光束, 细 光束再入射到转镜 6, 经反射后入射到 f-θ透镜 7, 转镜 6的光反射点与 f-θ透镜 7的焦点 重合, 当转镜 6摆动时, 能够实现 f-θ透镜 7输出光沿着窄带条形双折射光楔 9长度方向 扫描。 f-θ透镜 7的出射光入射到起偏器 8形成与光楔光轴成 45度角的线偏光, 线偏光通 过窄带条形双折射光楔 9后, 再入射到检偏器 10进行投影干涉, 投影后从检偏器 10输出 干涉信号光, 干涉信号光透过一个线阵微孔阵列 13入射到聚焦透镜 14, 经聚焦透镜 14聚 焦于焦点处, 再由位于聚焦透镜 14焦点处的 PIN光电探测器 15接收, 再输入到计算机 12 中。
对于实施例 1和 2中的两种装置, 当光源功率较大时, 也可以采用光纤耦合器替代光 环行器。
实施例 3: 高信噪比摆动式低相干干涉位移解调方法
上述实施例 1中的低相干干涉位移解调装置的解调过程如下:
图 1中的宽带光源 1的光经过光环行器 2到达传感一侧的自聚焦准直透镜 3, 一部分 光被自聚焦准直透镜 3的端面反射面反射, 另外一部分光被自聚焦准直透镜 3准直出射到 待检测物体的固定反射镜 4上, 被反射后这部分光再次耦合进入到光纤中, 两部分光具有 与待检测物体位移相关的一个光程差 , ds为两倍于自聚焦准直透镜 3和待检测物体的固 定反射镜 4之间的距离。
如图 3所示, 反射的两束光通过环行器 2入射到准直装置 5, 形成能量集中的细光束 出射。 该细光束入射到由转镜 6和 f-θ透镜 7组成的扫描装置上, 转镜 6的光反射点与 f-θ 透镜 7的焦点始终保持重合 (即焦点与转动轴重合)。 当转镜 6以 的角速度在 ±0范围内 摆动时, 反射细光束将在 ±20的范围内扫描。透过 f-θ透镜 7后, 细光束变以扫描速度 V的 进行平行扫描。 扫描长度为 = 2/ 1 2 , 其中, /为 f-θ透镜 7的焦距, 0为转镜 6的 最大摆动角度。 可以通过选择合适的 /和 0来控制扫描宽度, 使扫描宽度覆盖整个线阵相 机的像敏元或者线阵微孔阵列的所有孔。
f-θ透镜 7输出的光经起偏器 8起偏成线偏振光,起偏器的偏振轴方向与窄带条形双折 射光楔的光轴方向成 45 度放置, 因此起偏后的偏振光可以均分为偏振方向沿双折射晶体 光轴和垂直于双折射晶体光轴的两个偏振分量, 两个分量在双折射晶体光程差为 dr = (ne -n0)d , 为双折射晶体的非常光折射率, 《。为双折射晶体的寻常光折射率, d 为双折射晶体沿光传输方向的几何距离。制作的窄带条形双折射光楔 9使 ^在空间呈线性 分布, 即 (x) = xtan , X为光点离光楔顶点的横向距离, 为楔角, 光楔的结构示意图 如图 3所示。
光程差扫描的过程是当转镜摆动时, 细光束从窄带条形双折射光楔的一端沿着光楔的 长度方向, 即光程差线性变化的方向, 逐渐扫描到另一端, 从而实现了光程差的扫描。 而 细光束中存在有与待测量相关的光程差信息, 所以光程差扫描也就是一个信号匹配检测的 过程。 同时由于细光束能量集中, 外界噪声影响有限, 所以再经过检偏器 10投影后, 能 够得到高信噪比的低相干干涉信号。
本发明所设计的两种装置对低相干干涉信号的采集方法不同。
上述实施例 1中的第一种装置是利用线阵相机 11(如线阵 CCD)对信号进行采集, 通过 设置线阵相机 11的采样频率,使得采集一帧的时间与光从光楔一端扫描到另一端的时间相 等, 即实现扫描后信号向线阵相机 11的逐点写入。 所以在线阵相机 11的一帧图像中能够 显示出整个一次扫描的干涉信号。 最后, 将线阵相机 11采集的信号输入到计算机 12中进 行数字处理, 提取峰值, 计算位移距离。
对上述实施例 2中的第二种装置利用 PIN光电探测器 15接收干涉信号,干涉信号首先 透射一个线阵微孔阵列 13入射到聚焦透镜 14上, 然后聚焦到位于聚焦透镜 14焦点处的 PIN光电探测器 15上。 PIN光电探测器 15采集的数据传输到计算机 12进行分析处理。 当 完成一次扫描时, PIN光电探测器 15接收一组完整的干涉信号。而通过控制扫描起止时刻, 则能够建立起采集信号点与微孔阵列一一对应的关系, 通过查询干涉信号出现的时刻能够 反映出干涉信号对应的微孔阵列位置, 从而解调出位移信息。
实施例 4: 应用举例
如果将自聚焦准直透镜 3和固定反射镜 4作为光纤法珀的两个反射面,则本解调装置 和解调方法可以用于光纤法珀的绝对腔长解调。 以光纤法珀压力传感器为例, 将固定反射 镜 4固定在压力膜片上, 当法珀腔腔长足够小时, 自聚焦准直透镜 3可以省掉, 直接采用 光纤替代即可, 即固定反射镜 4和光纤端面构成法珀腔。 当外界压力作用在膜片时, 膜片 发生变形, 带动反射镜 4轴向移动, 解调装置通过光程差扫描可匹配出当前法珀腔长, 从 而感知出膜片变形量, 进而可根据公式或标定系数计算出待测压力。

Claims

权 利 要 求
1、 一种高信噪比摆动式低相干干涉位移解调装置, 其特征在于该装置包括: 光源: 采用具有宽光谱的宽带光源, 包括 LED光源、 SLD光源和卤素灯;
光环行器: 用来将光源发出的光发送到待检测物体并收集反射信号光;
自聚焦准直透镜: 用来将光环行器发送的光束进行准直输出, 并通过端面所镀反射膜 实现光的部分反射;
固定反射镜: 固定在待检测物体上, 用来反射自聚焦准直透镜输出的光信号; 准直装置: 将光环行器收集的反射信号光准直成细光束, 并将该细光束入射到转镜上; 转镜: 将准直装置形成的细光束反射到后续偏振干涉系统中, 并且通过转镜的转动, 实现细光束沿光楔厚度变化方向的扫描, 扫描范围覆盖整个线阵 CCD像敏元;
f-θ透镜: 实现细光束平行沿窄带条形双折射光楔长度方向的扫描, 转镜的光反射点必 须与 f-θ透镜的焦点重合;
起偏器:用来对 f-θ透镜的输出信号光进行起偏,偏振方向与窄带条形双折射光楔光轴 成 45度角;
窄带条形双折射光楔: 用来将起偏器产生的线偏振光再产生两个正交的线偏振光, 并 且这两束正交的线偏振光具有沿光楔厚度变化方向呈线性分布的空间光程差;
检偏器: 用来对经过双折射光楔相互正交的两个线偏振光进行投影产生干涉, 偏振方 向与起偏器相同或垂直;
线阵相机:采用线阵 CCD或者线阵 CMOS对经过检偏器后产生的干涉条纹进行采集; 处理单元: 采用通用计算机或嵌入式计算系统, 用于对线阵相机接收的干涉条纹进行 处理, 最终获取位移信息。
2、根据权利要求 1所述的高信噪比摆动式低相干干涉位移解调装置, 其特征在于, 当 光源功率较大时, 采用光纤耦合器替代光环行器。
3、 一种高信噪比摆动式低相干干涉位移解调装置, 其特征在于该装置包括: 光源: 采用具有宽光谱的宽带光源, 包括 LED光源、 SLD光源和卤素灯;
光环行器: 用来将光源发出的光发送到待检测物体并收集反射信号光;
自聚焦准直透镜: 用来将光环行器发送的光束进行准直输出, 并通过所镀反射膜实现 光的部分反射;
固定反射镜: 固定在待检测物体上, 用来反射自聚焦准直透镜输出的光信号; 准直装置: 将光环行器收集的反射信号光准直成细光束, 并将该细光束入射到转镜上; 转镜: 将准直装置形成的细光束反射到后续偏振干涉系统中, 并且通过转镜的转动, 实现细光束沿光楔厚度变化方向的扫描, 扫描范围覆盖整个线阵 CCD像敏元;
f-θ透镜: 实现细光束平行沿窄带条形双折射光楔长度方向的扫描, 转镜的光反射点必 须与 f-θ透镜的焦点重合;
起偏器:用来对 f-θ透镜的输入信号光进行起偏,偏振方向与窄带条形双折射光楔光轴 成 45度角;
窄带条形双折射光楔: 用来将起偏器产生的线偏振光再产生两个正交的线偏振光, 并 且这两束正交的线偏振光具有沿光楔厚度变化方向呈线性分布的空间光程差;
检偏器: 用来对经过双折射光楔相互正交的两个线偏振光进行投影产生干涉, 偏振方 向与起偏器相同或垂直;
线阵微孔阵列: 用来限定光束扫描时的光束采样位置;
聚焦透镜: 将透过线阵微孔阵列的光会聚到焦点;
PIN探测器: 接收聚焦透镜会聚的光信号, 并将光信号转化为电信号;
处理单元: 采用通用计算机或嵌入式计算系统, 用于对 PIN探测器接收的干涉条纹进 行处理, 最终获取位移信息。
4、 根据权利要求 2所述的高信噪比摆动式低相干干涉位移解调装置, 其特征在于, 当 光源功率较大时, 采用光纤耦合器替代光环行器。
5、一种依据权利要求 1或 3所述装置的高精度大量程低相干干涉位移解调方法, 其特 征在于该方法的具体过程如下:
第 1、 宽带光源发出的光通过光环行器到达传感一侧的自聚焦准直透镜, 一部分光被 自聚焦准直透镜端面的反射面反射, 另一部分光透过自聚焦准直透镜入射到固定在待检测 物体上的固定反射镜上;
第 2、 由于自聚焦准直透镜和固定在待检测物体上的固定反射镜之间的位移使得两部 分反射光存在一个光程差, 上述的两部分反射光再次耦合到光纤中并通过环行器到达准直 装置, 形成细光束输出;
第 3、准直装置输出的细光束入射到由转镜和 f-θ透镜组成的扫描装置,转镜的光反射 点与 f-θ透镜的焦点始终保持重合; 当转镜以 ω的角速度在 ±0范围内摆动时, 反射细光束 将在 ±20的范围内扫描, 透过 f-θ透镜后, 细光束变为以扫描速度 V沿窄带条形双折射光楔 长度方向上的平行扫描; 扫描宽度为 = 2/ 1 (2 , 可以通过选择 f-θ透镜的焦距/和转 镜的摆动角度 0来控制扫描宽度; 由于细光束的能量非常集中, 所以在扫描后能够接收到 高信噪比的干涉条纹信号;
第 4、 f- θ 透镜出射的光经起偏器起偏成线偏振光, 然后入射到窄带条形双折射光楔, 起偏器的偏振轴方向与双折射光楔的光轴方向成 45 度放置, 起偏后的线偏振光入射到窄 带条形双折射光楔后, 均分为偏振方向沿双折射光楔光轴和垂直于双折射光楔光轴的两个 偏振分量, 即寻常光与非常光; 这两个分量在窄带条形双折射光楔中产生光程差 dr = (ne - n0)d , 为双折射晶体的非常光折射率, 《。为双折射晶体的寻常光折射率, 光 楔厚度 在空间呈线性分布, 即 i/ (x) = x taim, X为入射光点离双折射光楔顶点的横向距 离, 《为楔角, 配合细光束在空间的依次扫描, 实现光程差的空间扫描, 从而匹配出待检 测的位移信息; 第 5、最后经过与窄带条形双折射光楔的光轴方向成 45度放置的检偏器后产生干涉条 纹; 对权利要求 1所述第一种装置采用线阵相机接收干涉条纹, 再将线阵相机信号传输到 处理单元, 这种装置主要针对可见光波段的宽带光源产生的干涉条纹; 对权利要求 3所述 第二种装置首先让光透过一个线阵微孔阵列, 将从微孔中透过的光会聚到 PIN光电探测器 上, 最后将 PIN光电探测器信号传输到处理单元, 这种装置能够接收近红外宽带光源产生 的干涉条纹。
PCT/CN2012/076145 2011-08-09 2012-05-28 高信噪比摆动式低相干干涉位移解调装置及其解调方法 WO2013020407A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US13/880,730 US8958075B2 (en) 2011-08-09 2012-05-28 Swing-style and high signal-to-noise ratio demodulation devices and corresponding demodulation method for the measurement of low coherence interference displacement

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201110226963XA CN102322801B (zh) 2011-08-09 2011-08-09 高信噪比摆动式低相干干涉位移解调装置及其解调方法
CN201110226963.X 2011-08-09

Publications (1)

Publication Number Publication Date
WO2013020407A1 true WO2013020407A1 (zh) 2013-02-14

Family

ID=45450597

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2012/076145 WO2013020407A1 (zh) 2011-08-09 2012-05-28 高信噪比摆动式低相干干涉位移解调装置及其解调方法

Country Status (3)

Country Link
US (1) US8958075B2 (zh)
CN (1) CN102322801B (zh)
WO (1) WO2013020407A1 (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104730001A (zh) * 2015-04-16 2015-06-24 福州大学 一种高时间分辨率高精度的椭偏测量装置及其方法
CN114964157A (zh) * 2022-04-26 2022-08-30 深圳市深视智能科技有限公司 倾角测量探头及测量装置
CN115755424A (zh) * 2022-12-07 2023-03-07 中国科学院长春光学精密机械与物理研究所 基于光学增强腔模式匹配的光路准直装置及准直方法

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102322801B (zh) * 2011-08-09 2012-12-12 天津大学 高信噪比摆动式低相干干涉位移解调装置及其解调方法
CN102607614B (zh) * 2012-03-29 2014-10-29 天津大学 基于相位斜率定位中心波峰的低相干干涉解调方法
CN102980601B (zh) * 2012-12-07 2015-04-08 天津大学 基于低相干干涉的光纤杨氏干涉光程差解调装置及方法
CN105466621B (zh) * 2015-12-28 2018-02-13 天津大学 一种高分辨率偏振低相干干涉压力测量装置及方法
CN106017519B (zh) * 2016-05-05 2018-05-22 重庆大学 一种光纤法珀传感器解调系统及方法
CN105890679B (zh) * 2016-06-20 2019-11-22 天津大学 局部弯曲导流的光纤法珀式流量测试方法
CN106773154A (zh) * 2016-11-22 2017-05-31 福州大学 一种液晶指向矢快速测量装置及其实现方法
CN106646859B (zh) * 2016-12-01 2019-03-26 上海航天控制技术研究所 单电机驱动的双光楔光学扫描执行机构
US10463243B2 (en) * 2017-03-16 2019-11-05 Carestream Dental Technology Topco Limited Structured light generation for intraoral 3D camera using 1D MEMS scanning
CN108507597A (zh) * 2018-04-09 2018-09-07 西安工业大学 光纤法珀传感器解调装置及方法
CN108709506B (zh) * 2018-08-01 2023-11-10 天津博科光电科技有限公司 一种光纤位移传感探头及光纤位移传感系统
CN110618138B (zh) * 2019-10-30 2022-06-07 安徽工业大学 一种利用等厚干涉原理检测显示屏中缺陷的方法
CN112525328A (zh) * 2020-11-30 2021-03-19 北京遥测技术研究所 一种基于psd的光纤光栅振动传感器解调系统及方法
CN113176032B (zh) * 2021-04-23 2022-04-05 天津大学 基于正交相位快速解调和强度补偿的压力测量装置及方法
CN115900535B (zh) * 2023-01-04 2023-05-23 北京佰为深科技发展有限公司 干涉解调装置和干涉测量系统

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1381707A (zh) * 2000-07-26 2002-11-27 日本马克西斯株式会社 被测物的厚度测定方法及其装置
JP2004191176A (ja) * 2002-12-11 2004-07-08 Mitsubishi Electric Corp 段差の高さ測定方法および測定装置ならびに半導体装置の製造方法
CN2682437Y (zh) * 2003-11-03 2005-03-02 四川大学 光学相干断层成像系统中纵向扫描装置
CN1598640A (zh) * 2004-08-31 2005-03-23 东南大学 双折射正弦投影栅线发生器
CN101031830A (zh) * 2004-09-20 2007-09-05 奥普森斯公司 采用低相干的干涉测量法的光学传感器
JP2010122043A (ja) * 2008-11-19 2010-06-03 Nikon Corp 低コヒーレンス干渉計、低コヒーレンス干渉装置、及び低コヒーレンス干渉測定方法
CN102052902A (zh) * 2010-12-10 2011-05-11 天津大学 一种高精度大量程低相干干涉位移解调装置及其解调方法
CN102322801A (zh) * 2011-08-09 2012-01-18 天津大学 高信噪比摆动式低相干干涉位移解调装置及其解调方法

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20020195548A1 (en) * 2001-06-06 2002-12-26 Dowski Edward Raymond Wavefront coding interference contrast imaging systems
US7428053B2 (en) * 2005-07-08 2008-09-23 Imalux Corporation Common path frequency domain optical coherence reflectometry/tomography device
WO2007008788A2 (en) * 2005-07-08 2007-01-18 Imalux Corporation Common-path frequency-domain optical coherence reflectometer and optical coherence tomography device
JP5547402B2 (ja) * 2005-08-09 2014-07-16 ザ ジェネラル ホスピタル コーポレイション 光コヒーレンストモグラフィにおいて偏光に基づく直交復調を実行する装置、方法及び記憶媒体
JP5403972B2 (ja) * 2008-08-12 2014-01-29 株式会社東京精密 寸法測定装置

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1381707A (zh) * 2000-07-26 2002-11-27 日本马克西斯株式会社 被测物的厚度测定方法及其装置
JP2004191176A (ja) * 2002-12-11 2004-07-08 Mitsubishi Electric Corp 段差の高さ測定方法および測定装置ならびに半導体装置の製造方法
CN2682437Y (zh) * 2003-11-03 2005-03-02 四川大学 光学相干断层成像系统中纵向扫描装置
CN1598640A (zh) * 2004-08-31 2005-03-23 东南大学 双折射正弦投影栅线发生器
CN101031830A (zh) * 2004-09-20 2007-09-05 奥普森斯公司 采用低相干的干涉测量法的光学传感器
JP2010122043A (ja) * 2008-11-19 2010-06-03 Nikon Corp 低コヒーレンス干渉計、低コヒーレンス干渉装置、及び低コヒーレンス干渉測定方法
CN102052902A (zh) * 2010-12-10 2011-05-11 天津大学 一种高精度大量程低相干干涉位移解调装置及其解调方法
CN102322801A (zh) * 2011-08-09 2012-01-18 天津大学 高信噪比摆动式低相干干涉位移解调装置及其解调方法

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104730001A (zh) * 2015-04-16 2015-06-24 福州大学 一种高时间分辨率高精度的椭偏测量装置及其方法
CN114964157A (zh) * 2022-04-26 2022-08-30 深圳市深视智能科技有限公司 倾角测量探头及测量装置
CN114964157B (zh) * 2022-04-26 2023-11-17 深圳市深视智能科技有限公司 倾角测量探头及测量装置
CN115755424A (zh) * 2022-12-07 2023-03-07 中国科学院长春光学精密机械与物理研究所 基于光学增强腔模式匹配的光路准直装置及准直方法
CN115755424B (zh) * 2022-12-07 2024-03-08 中国科学院长春光学精密机械与物理研究所 基于光学增强腔模式匹配的光路准直装置及准直方法

Also Published As

Publication number Publication date
US8958075B2 (en) 2015-02-17
CN102322801A (zh) 2012-01-18
CN102322801B (zh) 2012-12-12
US20140176959A1 (en) 2014-06-26

Similar Documents

Publication Publication Date Title
WO2013020407A1 (zh) 高信噪比摆动式低相干干涉位移解调装置及其解调方法
JP5264172B2 (ja) 低コヒーレンス干渉法を使用する光センサ
CN102052902B (zh) 一种高精度大量程低相干干涉位移解调装置及其解调方法
JP2021520487A (ja) 静止面および回転面上において横揺れ角を測定するための光学分度器
CN104154869B (zh) 白光干涉透镜中心厚度测量系统及方法
CN103196361B (zh) 用于微球表面形貌快速检测的短相干瞬时移相干涉测量仪及测量方法
US11802757B2 (en) Heterodyne grating interferometric method and system for two-degree-of-freedom with high alignment tolerance
Thurner et al. Fabry-Pérot interferometry for long range displacement sensing
US8345258B2 (en) Synchronous frequency-shift mechanism in fizeau interferometer
US8441649B2 (en) Multi-beam interferometer displacement measuring system utilized in a large measuring range
US9518816B2 (en) Dual beam splitter interferometer measuring 3 degrees of freedom, system and method of use
US20240319619A1 (en) Phase measurement device for laser interference photolithography system, and method for using same
CN108106817B (zh) 一种提高y波导器件偏振性能测量准确性的方法
Wang et al. A novel integrated fiber-optic interferometer model and its application in micro-displacement measurement
US20070103694A1 (en) Interferometry system
JP5704150B2 (ja) 白色干渉装置及び白色干渉装置の位置及び変位測定方法
CN115900535B (zh) 干涉解调装置和干涉测量系统
CN104503079B (zh) 一种双光路集成在同一根光纤中的Michelson干涉仪型光程相关器
US8253943B2 (en) Interferometer
EP2336714B1 (en) Interferometer
TWI437208B (zh) Length measuring device
WO2016084195A1 (ja) 白色干渉装置及び白色干渉装置による位置及び変位測定方法
CN105841720B (zh) 使用两个平行反射面的光纤白光干涉解调仪
RU2334965C2 (ru) Волоконно-оптическая измерительная система (варианты)
GB2389896A (en) Interferometer for measurement of angular displacement

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12822738

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 13880730

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12822738

Country of ref document: EP

Kind code of ref document: A1