WO2013018983A1 - 수술용 로봇의 마스터 암 구조 및 수술용 마스터 로봇의 제어방법 - Google Patents

수술용 로봇의 마스터 암 구조 및 수술용 마스터 로봇의 제어방법 Download PDF

Info

Publication number
WO2013018983A1
WO2013018983A1 PCT/KR2012/004091 KR2012004091W WO2013018983A1 WO 2013018983 A1 WO2013018983 A1 WO 2013018983A1 KR 2012004091 W KR2012004091 W KR 2012004091W WO 2013018983 A1 WO2013018983 A1 WO 2013018983A1
Authority
WO
WIPO (PCT)
Prior art keywords
handle
arm
master
brake
robot
Prior art date
Application number
PCT/KR2012/004091
Other languages
English (en)
French (fr)
Inventor
최승욱
이민규
원종석
Original Assignee
(주)미래컴퍼니
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by (주)미래컴퍼니 filed Critical (주)미래컴퍼니
Publication of WO2013018983A1 publication Critical patent/WO2013018983A1/ko

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J18/00Arms
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J13/00Controls for manipulators
    • B25J13/02Hand grip control means
    • B25J13/025Hand grip control means comprising haptic means
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B34/00Computer-aided surgery; Manipulators or robots specially adapted for use in surgery
    • A61B34/30Surgical robots
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B34/00Computer-aided surgery; Manipulators or robots specially adapted for use in surgery
    • A61B34/30Surgical robots
    • A61B34/37Master-slave robots
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B34/00Computer-aided surgery; Manipulators or robots specially adapted for use in surgery
    • A61B34/70Manipulators specially adapted for use in surgery
    • A61B34/77Manipulators with motion or force scaling
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J13/00Controls for manipulators
    • B25J13/08Controls for manipulators by means of sensing devices, e.g. viewing or touching devices
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J19/00Accessories fitted to manipulators, e.g. for monitoring, for viewing; Safety devices combined with or specially adapted for use in connection with manipulators
    • B25J19/02Sensing devices

Definitions

  • the present invention relates to a master arm structure of a surgical robot and a control method of the surgical master robot.
  • surgery refers to healing a disease by cutting, slitting, or manipulating skin, mucous membranes, or other tissues with a medical device.
  • open surgery which incise the skin of the surgical site and open, treat, shape, or remove the organs inside of the surgical site, has recently been performed using robots due to problems such as bleeding, side effects, patient pain, and scars. This alternative is in the spotlight.
  • Such a surgical robot may be classified into a master robot that generates and transmits a signal required by a doctor's operation, and a slave robot that receives a signal from an operation unit and directly applies a manipulation required to a patient.
  • the robot and the slave robot may be divided as each part of one surgical robot, or may be configured as separate devices and disposed in the operating room, respectively.
  • the surgical master robot is provided with a device for the doctor's operation.
  • the surgeon does not directly manipulate the instruments required for the operation, but operates various devices mounted on the robot by operating the aforementioned devices to perform operations required for the operation. Do it.
  • the master device installed in the master robot is composed of a handle that the doctor holds by the hand and moves, and a master arm that mediates the handle and the robot body. Arms in the form of articulated links connecting the robot body and the handle to support the movement of the robot.
  • the background art described above is technical information possessed by the inventors for the derivation of the present invention or acquired during the derivation process of the present invention, and is not necessarily a publicly known technique disclosed to the general public before the application of the present invention.
  • US Patent Publication No. US2007 / 0265731 discloses a technique related to a multi-joint robot with a brake installed in the joint portion.
  • the present invention provides a master arm structure of a surgical robot and a control method of the surgical master robot that can simplify the structure and reduce the overall volume while providing a haptic feedback function to the master arm of the surgical robot.
  • a master arm structure provided in the surgical master robot (master arm) structure, the handle is operated by the user, the master robot and the handle is connected, a plurality of arm members are connected by a joint The arm member is rotated with respect to the joint due to the user's manipulation of the handle, and is installed on the arm and the arm, which is operated to allow positioning of the handle.
  • a master arm structure of a surgical robot is provided.
  • the joint may be provided with a contact sensor, which outputs information about the degree of rotation of the arm member by rotating in conjunction with the rotation of the arm member, in which case the sensing unit includes a contact sensor, and the contact sensor includes an encoder ( encoder), a potentiometer, and the like.
  • a contact sensor which outputs information about the degree of rotation of the arm member by rotating in conjunction with the rotation of the arm member
  • the sensing unit includes a contact sensor
  • the contact sensor includes an encoder ( encoder), a potentiometer, and the like.
  • the sensing unit may include a non-contact sensor that outputs information on an operation state of at least one of the handle and the arm.
  • at least one of the handle and the arm is displayed with a marker, and the sensing unit includes an image related to the marker.
  • an optical tracker that outputs information about one or more of the movement and rotation of the marker, or a magnetic tracker that outputs information about the position of the handle or arm using a magnetic field.
  • the controller may control the brake to operate when the handle is manipulated to exceed a predetermined reference area so that haptic feedback is provided to a user who manipulates the handle.
  • the controller may control the operation of the brake in correspondence with the degree to which the manipulated state of the handle is close to the boundary of the reference area.
  • the brake is operated so that the magnitude of the restraining force is adjustable, and the control unit may control the operation of the brake so that the restraining force of the brake increases as the handle approaches the boundary.
  • the degree of proximity to the boundary of the handle and the magnitude of the restraint of the brake can be in a linear or nonlinear relationship with each other.
  • the controller may control the brake to be released when the handle is manipulated to enter the reference area.
  • the clutch provided separately, it may be controlled to release the operation of the brake.
  • a slave robot is connected to the master robot, and the slave robot is provided with a robot arm that is operated according to a user's operation of the handle.
  • the control unit is configured to control the operation degree of the handle according to a preset motion scaling factor value. The ratio between the degree of operation of the robot arm may be adjusted and the motion scale factor value may be reset in accordance with the information obtained from the sensing unit.
  • control unit may reset the motion scale factor value so that the operation degree of the robot arm is reduced compared to the operation degree on the handle when the handle is operated beyond the predetermined reference area, or the manipulated state of the handle. Corresponding to the degree of close to the boundary of the reference region, it is possible to increase or decrease the motion scale factor value.
  • the master arm made of a structure that is connected to the main body, the handle operated by the user, the main body and the handle and the plurality of arm members are connected by the joint, and installed in the joint
  • a method of controlling a surgical master robot that includes a brake that constrains rotation of an arm member comprising: (a) acquiring information about one or more of a state in which a handle is operated and a state in which a master arm is operated; b) determining whether the manipulated state of the handle is out of a predetermined reference region, and (c) controlling the operation of the brake according to the result of step (b).
  • a control method of is provided.
  • Step (b) may include determining the degree to which the manipulated state of the handle is close to the boundary of the reference area, and step (c) may include adjusting the magnitude of the restraining force of the brake corresponding to the degree of proximity.
  • a slave robot is connected to the master robot, and the slave robot is provided with a robot arm that operates according to a user's operation of the handle.
  • the ratio between the operation degree of the handle and the operation degree of the robot arm is a preset motion scaling factor. factor), and step (c) may comprise resetting the motion scale factor value according to the result of step (b).
  • Step (c) may include resetting the motion scale factor value such that when the handle is manipulated to deviate from the reference area, the degree of operation of the robot arm is reduced relative to the degree of manipulation to the handle.
  • Step (b) may include determining the degree to which the manipulated state of the handle is close to the boundary of the reference area, and step (c) may include increasing or decreasing the motion scale factor value corresponding to the degree of proximity.
  • a master robot a handle provided in the master robot and manipulated by a user, a slave robot connected to the master robot, and provided in the slave robot, corresponding to a user operation on the handle
  • a control unit for adjusting the ratio between the operation degree of the steering wheel and the operation degree of the robot arm according to a robot arm that is operated, a preset motion scaling factor value, and a sensing for obtaining information about a state in which the steering wheel is operated.
  • the control unit is provided with a surgical robot, characterized in that for resetting the motion scale factor value in accordance with the information obtained from the detection unit.
  • the controller may reset the motion scale factor value so that the operation degree of the robot arm is reduced compared to the operation degree with respect to the handle when the handle is manipulated to exceed the predetermined reference region.
  • the controller may increase or decrease the motion scale factor value corresponding to a degree in which the manipulated state of the handle is close to the boundary of the reference area.
  • the user after detecting the operation state of the master arm by operating the brakes installed in each joint to restrain the operation of the arm, the user feels the haptic feedback during the operation of the master arm structure of the master arm This will simplify and reduce the overall volume.
  • FIG. 1 is a conceptual diagram showing a master arm structure according to an embodiment of the present invention.
  • FIG. 2 is a conceptual diagram illustrating a sensor of an optical tracker method according to an embodiment of the present invention.
  • FIG. 3 is a flow chart showing a control method of a master robot according to an embodiment of the present invention.
  • first and second may be used to describe various components, but the components should not be limited by the terms. The terms are used only for the purpose of distinguishing one component from another.
  • FIG. 1 is a conceptual diagram showing a master arm structure according to an embodiment of the present invention
  • Figure 2 is a conceptual diagram showing a sensor of the optical tracker method according to an embodiment of the present invention. 1 and 2, the body 1, the handle 3, the arm 10, the arm member 12, the joint 14, the brake 16, the detector 20, and the marker 22.
  • the optical tracker 24 and the control unit 30 are shown.
  • the degree of operation of the master arm according to the result of the user operating the handle of the surgical robot is detected by using a separate sensing system such as an optical tracker, and as a result of detecting the preset reference region
  • a separate sensing system such as an optical tracker
  • the master arm structure according to the present embodiment is a structure provided in the surgical robot (particularly, the master robot) in order to receive a manipulation action necessary for surgery from a user, and includes a handle 3 and an arm part. , The brake 16, the sensing unit 20, and the control unit 30.
  • the handle 3 is a part that the user grasps and manipulates, and the handle 3 is operated in a predetermined position and direction in the three-dimensional space according to the intention of the user.
  • the positioning of the handle 3 in a three-dimensional space by moving (moving and / or rotating) to a specific position or direction to define the state (position and direction) is called 'positioning'. . That is, as the user moves and positions the handle 3, the state of the handle 3 changes.
  • To move the handle 3 means to move, rotate, or move and rotate the handle 3 in either direction.
  • Arm 10 is a component that connects the handle 3 and the robot body 1, as shown in Figures 1 and 2, so-called 'multi-joints' in which a plurality of arm members 12 are connected by a joint 14 (articulated) cancer 'form.
  • various link mechanisms such as a SCARA link and a parallel link may be applied.
  • the arm 10 Since the arm 10 has one end connected to the handle 3 and the other end connected to the robot body 1, when the user grasps the handle 3 and moves, the arm member 12 moves to the joint 14. The state changes as it rotates about. Conversely, the handle 3 operated by the user can be positioned by operating the arm 10 and changing its state.
  • the 'arm part actuated' means that each arm member is rotated with respect to each joint as described above to change the overall state of the arm part, and the 'operating state of the arm part' refers to the final result of the operation of the arm part.
  • Means status That is, when the user grasps the handle 3 and manipulates it, the arm 10 is operated by this, and when the handle 3 is positioned, the arm 10 is deformed to a predetermined operating state.
  • the master arm structure according to the present embodiment is characterized in that the brake 16 is installed on the arm 10, in particular the joint 14.
  • the brake 16 installed in the joint 14 is actuated, the arm member 12 cannot rotate with respect to the joint 14, and the movement (rotation) is constrained, and as a result, the arm 10 cannot operate as a whole.
  • the arm 10 is kept in a predetermined operating state.
  • the brake 16 may be configured in various ways, such as electronic, hydraulic, or pneumatic, depending on the operation thereof, and a detailed description thereof will be omitted herein.
  • the sensing unit 20 may provide information regarding a state in which the handle 3 is operated according to a user's operation (positioning state of the handle 3) and / or a state in which the arm unit 10 is operated due to the movement of the handle 3. Acquire.
  • a motor and an encoder connected to the motor are installed at each joint, and if necessary, the arm member is rotated to generate haptic feedback for the user's manipulation. Using the output information, it was possible to grasp how much the arm member was rotated by the user's operation.
  • an encoder or a potentiometer may be used as the sensing unit 20.
  • a motor is installed at each joint 14 of the arm 10, and the user manipulates the handle 3 to arm the arm member.
  • the motor rotates in conjunction with it, and in parallel or separately, an encoder or potentiometer is installed to provide information about how much the arm member 12 has rotated. Can be output.
  • a contact sensor (encoder, potentiometer, etc.) for outputting information on the degree of rotation of the arm member 12 by rotating in conjunction with the rotation of the arm member 12 is installed in the joint 14 and attached to the joint 14.
  • Information about the degree of rotation of the arm member 12 may be obtained from the installed encoder, etc.
  • the encoder may correspond to the sensing unit 20 according to the present embodiment.
  • the role of the motor here is to actively create a reaction force
  • the role of the encoder / potentiometer to grasp the degree of rotation of the joint, in the present embodiment to feel the resistance using the brake can be omitted the motor have.
  • an optical tracking technique may be applied to detect the movement of the master arm. That is, the optical marker 22 is displayed on the handle 3 or the arm 10, and the detector 22 recognizes the marker 22 in the optical tracker 24 disposed outside the robot. 20) can be configured.
  • the marker 22 When the user manipulates the handle 3 to move the handle 3 and the arm 10, the marker 22 also moves accordingly, and the optical tracker 24 analyzes the photographed image of the marker 22 to determine the marker ( It is possible to find out how much the 22 has moved, i. E. Information about the movement and / or rotation of the marker 22.
  • the optical tracking technique described as an example of a non-contact sensing method for outputting information on the operating state of the handle (3) and / or arm 10 a non-contact sensing method other than the optical tracker 24 (for example, a magnetic tracking technique for outputting information regarding the position of the handle 3 and / or the arm 10 using the magnetic field may be applied.
  • the marker is made of a material that reflects light
  • a sensing device such as an infrared camera included in the optical tracker detects the light reflected from the marker and tracks the position of the handle or the arm part.
  • a separate device for generating a magnetic field is provided on the outside and a magnetic field sensor is attached to the handle or the arm so that the information about the position of the handle or the arm can be output from the sensor. .
  • the controller 30 receives information on the degree of movement of the master arm from the sensing unit 20 such as the encoder or the optical tracker 24, and controls the operation of the brake 16 in response thereto. It may be implemented in a variety of ways, such as implemented in the form of a processor provided separately to perform only the function according to the present embodiment, implemented as a module of the main controller for controlling the surgical robot, or implemented as a function of the main controller. have.
  • the controller 30 uses the information on the operation state of the master arm from the sensing unit 20 to move over the predetermined reference area in which the handle 3 is preset when the user operates the handle 3. It serves to limit the manipulation.
  • the surgical instrument which is mounted on the surgical robot and inserted into the patient's body, moves as the doctor moves the handle on the master robot. For example, when the surgeon operates on the patient's stomach, the instrument moves around the stomach. You can move only to a certain boundary of, and limit it from moving beyond the boundary (even if the doctor manipulates the handle to cross the boundary). Accordingly, the robot can filter the mistakes or misoperation of the doctor to enable safer surgery.
  • the reference region may vary depending on the surgical situation, and may be set in various ways, such as predetermined designation according to the type of surgery or designation prior to the user performing the surgery.
  • the sensing unit 20 in a state in which the reference area in which the user can operate the handle 3 is set in advance, the sensing unit 20 according to the present embodiment has a state in which the state of the handle 3 (and / or the arm part 10) is the reference area. It is possible to determine whether the approach, the reference area, or beyond the reference area, the controller 30 controls the operation of the brake 16 in accordance with the result detected by the sensor 20, the user When the handle 3 is manipulated to move beyond the reference area, the master arm is restrained from moving, thereby implementing haptic feedback as if the reaction force is acting on the master arm, so that the user is manipulated to move the handle beyond the reference area. Make sure you know.
  • 'to cross the reference area does not necessarily mean whether the reference area has been crossed or not, and also means that the operation is performed in a direction crossing the boundary near the boundary of the reference area. This is to implement a more realistic haptic feedback by giving a restraint in advance even when the user is expected to go beyond the reference area in the manipulation of the handle 3.
  • control unit 30 not only controls to turn on / off the brake 16 depending on whether the handle 3 has crossed the boundary of the reference area, but also the state in which the handle 3 is operated. Control to operate the brakes 16 according to the degree of proximity to the boundary of the reference area, that is, the degree of proximity can also be performed.
  • the brake 16 is not limited to the ON / OFF method of operation, but a method in which the force (restraining force) to which the brake 16 restrains the rotation of the arm member 12 is adjusted. May also be applied.
  • the restraining force of the brake 16 can be adjusted by adjusting the current supplied to operate the brake 16.
  • the controller 30 may control the constraint force of the brake 16 to be adjusted according to the extent to which the handle 3 crosses the boundary of the reference area. For example, as the handle 3 is closer to the boundary, the greater the restraining force of the brake 16, the user feels a gradually increasing restraint in the process of operating the handle 3 beyond the reference area, thereby Doctors can experience haptic feedback that is more realistic (just like a doctor holding an instrument in his hand and performing a surgery on his own).
  • the brake 16 installed in the joint 14 portion is not only for restraining or releasing (ON / OFF) the rotation of the arm member 12, but also for the handle 3 to be operated.
  • the degree (restraining force) that the brake 16 restrains the master arm according to the degree the resistance to the operation of the master arm is adjusted, and there is also an object to make the user feel a realistic resistance.
  • the haptic feedback technique according to the present embodiment is characterized in that instead of driving the motor to generate reaction force as in the conventional master arm, the brake 16 is used to provide a feeling as if the reaction force is acting.
  • a motor for generating a haptic reaction force is installed, and when a user reaches a position where reaction force is required, such as a handle crossing a boundary of a reference area while the user manipulates the handle, a direction in which the force is applied by the motor in the motor By generating the driving force in the opposite direction, a method of making the user feel this reaction force has been applied.
  • the handle moves according to the user's operation (the handle is pushed out of the boundary of the reference area). The handle is brought back into the reference area.
  • This conventional method is referred to as an 'active haptic feedback' method for convenience.
  • the process of manipulating the handle 3 by the user as a way to use the brake 16 to make the master arm inoperative or difficult to operate.
  • the brake 16 is actuated to simply create a resistance to the force manipulated by a person and make the resistance feel like a haptic reaction. It is.
  • the brake 16 may be operated such that the brake 16 is suddenly operated at the moment when the handle 3 reaches the boundary as described above, and the handle 3 is in the direction of crossing the boundary near the boundary. As it is operated, the restraint force of the brake 16 may be increased so that the user may feel a repulsion similar to a real situation.
  • the haptic feedback implementation technique derives different results (feeling received by the user) by means different from the conventional active haptic feedback (detector 20 and brake 16), and is different from the conventional method. This may be referred to as passive haptic feedback.
  • the feeling of repulsion received by the user varies depending on how the handle 3 increases the constraint force of the brake 16 as the handle 3 approaches the boundary of the reference region.
  • the degree of proximity (input value) to the boundary of the handle 3 processed by the controller 30 according to the present embodiment and the magnitude of the restraining force (output value) of the brake 16 may form a linear or nonlinear relationship with each other. That is, when the proximity of the handle 3 is large (when the handle 3 is located close to the boundary), the restraint force of the brake 16 is increased, and when the proximity of the handle 3 is small (the handle 3 is bounded) Located remotely), it may be controlled to reduce the restraining force of the brake 16.
  • the degree of increase in the restraint force of the brake 16 may be inversely proportional to the distance value between the handle 3 and the boundary (linear relationship) or inversely proportional to the square of the distance value between the handle 3 and the boundary (nonlinear relationship). ) can do.
  • the brake 16 may be activated by the user's operation as soon as the handle 3 approaches the boundary of the reference area or crosses the boundary of the reference area so that the handle 3 can no longer be moved. As the handle 3 is closer to the reference region, it is also possible to adjust the motion scaling factor between the master handle 3 and the movement of the robot to give a restraint.
  • the scale factor between the movement of the handle 3 and the movement of the robot is normally 3: 1, that is, the robot arm and / or the instrument is set to move by 1 when the handle 3 is moved by 3, If the user manipulates the handle 3 and the handle 3 exceeds the reference area, the scale factor is changed to 10: 1 at that moment so that the robot arm may move even if the handle 3 is moved a lot (for example, 10). Instruments can also move a little (for example, 1).
  • the scale factor can be changed while giving resistance using the brake 16, and the safety during surgery can be improved by changing the scale factor at or near the boundary of the reference region.
  • the passive haptic feedback method unlike the conventional active method, when the user manipulates the handle 3 with a force enough to overcome the restraint force of the brake 16, the handle 3 is released. This does not come back within the reference area, but stands at the point where the force is subtracted.
  • control unit 30 when the user manipulates the handle 3 so that the handle 3 enters the reference area, the operation of the brake 3 is released by the brake 16 being released. It is possible to smoothly enter the reference area without the resistance by the brake 16.
  • the operation of a separate operation device such as a clutch causes the operation of the brake 16 to be released, so that the handle 3 is referenced in the state where the resistance force by the brake 16 is removed. It can also be brought in smoothly within the area.
  • the brake 16 In addition to being able to loosen, it is possible to install a separate clutch (not shown) so that the brake 16 can be released only when the user steps on the clutch. In other words, when the user presses the clutch and readjusts the position of the master handle 3 while the master handle 3 is braked, the brake 16 is released to bring the handle 3 back to normal operation. You may.
  • FIG. 3 is a flowchart illustrating a control method of a master robot according to an embodiment of the present invention. This embodiment is to control the surgical master robot equipped with the above-described master arm structure to provide a 'passive haptic feedback' to the user.
  • the operation state of the handle 3 and / or the operation state of the master arm according to the movement of the handle 3 by the user is grasped (S10).
  • the sensing unit 20 such as the encoder, the potentiometer, the optical tracker 24 and the like may be installed to determine the state of the handle 3 or the arm.
  • the brake 16 installed in the joint 14 of the master arm is operated to restrain the master arm from moving ( S30). Also in this step, as described above, not only the control for turning ON / OFF the brake 16 but also the control for adjusting the magnitude of the restraining force of the brake 16 so as to be proportional to the extent to which the handle 3 is close to the boundary (S32). By doing so, the user may be provided with haptic feedback close to reality.
  • the amount of restraint force of the brake 16 can be adjusted not only linearly (proportionally) with respect to the proximity of the handle 3 but also non-linearly.
  • the motion scale factor may be reset (S40) separately or in parallel with the actuation of the brake 16 depending on whether the handle 3 is close to the reference region.
  • the handle 3 Exceeds the reference area, the brake 16 is actuated to move the handle 3 stiff and at the same time reduce the operation of the robot arm relative to the degree of manipulation to the handle 3, i.e. the handle 3 Even if you move a lot), the robot arm or instrument can reset the motion scale factor value to move a little (S42).

Abstract

수술용 로봇의 마스터 암 구조 및 수술용 마스터 로봇의 제어방법이 개시된다. 수술용 마스터 로봇에 구비되는 마스터 암(master arm) 구조로서, 사용자에 의해 조작되는 핸들과, 마스터 로봇과 핸들을 연결하고, 복수의 암부재가 관절에 의해 연결되는 구조로 이루어지며, 핸들에 대한 사용자 조작으로 인하여 암부재가 관절에 대해 회전하여, 핸들의 포지셔닝(positioning)이 가능하도록 작동되는 암(arm)부와, 관절에 설치되며, 그 작동에 의해 암부재의 회전을 구속하는 브레이크와, 핸들이 조작된 상태 및 암부가 작동된 상태 중 하나 이상에 관한 정보를 획득하는 감지부와, 감지부로부터 획득된 정보를 이용하여 브레이크의 작동을 제어하는 제어부를 포함하는 수술용 로봇의 마스터 암 구조는, 마스터 암의 작동상태를 감지한 후 각 관절에 설치된 브레이크를 작동시켜 암의 작동을 구속함으로써, 사용자가 마스터 암의 조작 과정에서 햅틱 피드백을 느끼면서도 마스터 암의 구조를 간단히 하고 전체적인 부피를 줄일 수 있게 된다.

Description

수술용 로봇의 마스터 암 구조 및 수술용 마스터 로봇의 제어방법
본 발명은 수술용 로봇의 마스터 암 구조 및 수술용 마스터 로봇의 제어방법에 관한 것이다.
의학적으로 수술이란 피부나 점막, 기타 조직을 의료 기계를 사용하여 자르거나 째거나 조작을 가하여 병을 고치는 것을 말한다. 특히, 수술부위의 피부를 절개하여 열고 그 내부에 있는 기관 등을 치료, 성형하거나 제거하는 개복 수술 등은 출혈, 부작용, 환자의 고통, 흉터 등의 문제로 인하여 최근에는 로봇(robot)을 사용한 수술이 대안으로서 각광받고 있다.
이러한 수술용 로봇은 의사의 조작에 의해 필요한 신호를 생성하여 전송하는 마스터(master) 로봇과, 조작부로부터 신호를 받아 직접 환자에 수술에 필요한 조작을 가하는 슬레이브(slave) 로봇으로 구분될 수 있는데, 마스터 로봇과 슬레이브 로봇은 하나의 수술용 로봇의 각 부분으로서 구분되거나, 별도의 장치로 구성되어 수술실에 각각 배치될 수도 있다.
수술용 마스터 로봇에는 의사의 조작을 위한 디바이스가 설치되는데, 로봇 수술의 경우 집도의는 수술에 필요한 인스트루먼트를 직접 조작하는 것이 아니라, 전술한 디바이스를 조작하여 로봇에 장착된 각종 인스트루먼트가 수술에 필요한 동작을 수행하도록 한다.
통상 마스터 로봇에 설치되는 마스터 디바이스는 의사가 손으로 잡고 움직이는 핸들과, 핸들과 로봇 본체를 매개하는 마스터 암으로 이루어지는데, 마스터 암은 의사가 핸들을 잡고 이동, 회전 등의 조작행위를 할 때 핸들의 움직임을 서포트할 수 있도록 로봇 본체와 핸들을 연결하는 다관절 링크 형태의 암(arm)으로 구성된다.
한편, 로봇 수술 과정에서는 인스트루먼트가 수술이 수행되는 부위로부터 밖으로 벗어나도록 작동되는 등의 의료 사고를 미연에 방지하기 위해, 인스트루먼트가 작동되는 영역을 제한하는 경우가 많으며, 이를 위해 마스터 디바이스의 조작 범위를 미리 제한해 놓고 의사가 그 제한된 범위를 넘어가는 조작을 할 경우 마스터 디바이스의 움직임을 구속하는 방식이 적용되었다.
종래에는 마스터 암의 조작 범위를 제한하기 위해, 마스터 암의 각 관절 부위에 모터를 설치하고 사용자가 제한된 범위를 벗어나는 조작을 하여 암이 작동될 경우, 관절에 설치된 모터를 역방향으로 구동시켜 사용자가 햅틱 반력을 느끼도록 함으로써 마스터 암의 움직임을 구속하였다.
그러나, 종래의 마스터 암 구속 방식은, 각 관절마다 모터를 설치해야 하고, 암의 작동 상태가 제한 영역을 벗어났는지 여부를 감지하기 위해 각 모터마다 인코더를 부가해야 하며, 모터 및 인코더에 전원을 공급하고 신호를 전달하기 위해 암부재 내에 다량의 케이블을 매설해야 하므로, 마스터 암의 구조가 복잡해지고 전체 부피가 커진다는 문제가 있었다.
전술한 배경기술은 발명자가 본 발명의 도출을 위해 보유하고 있었거나, 본 발명의 도출 과정에서 습득한 기술 정보로서, 반드시 본 발명의 출원 전에 일반 공중에게 공개된 공지기술이라 할 수는 없다.
한편, 미국 공개특허공보 US2007/0265731호에는 조인트 부분에 브레이크가 설치된 다관절 로봇에 관한 기술이 개시되어 있다.
본 발명은, 수술용 로봇의 마스터 암에 햅틱 피드백 기능을 부여하면서도 그 구조를 간단하게 하고 전체적인 부피를 줄일 수 있는 수술용 로봇의 마스터 암 구조 및 수술용 마스터 로봇의 제어방법을 제공하는 것이다.
본 발명의 일 측면에 따르면, 수술용 마스터 로봇에 구비되는 마스터 암(master arm) 구조로서, 사용자에 의해 조작되는 핸들과, 마스터 로봇과 핸들을 연결하고, 복수의 암부재가 관절에 의해 연결되는 구조로 이루어지며, 핸들에 대한 사용자 조작으로 인하여 암부재가 관절에 대해 회전하여, 핸들의 포지셔닝(positioning)이 가능하도록 작동되는 암(arm)부와, 관절에 설치되며, 그 작동에 의해 암부재의 회전을 구속하는 브레이크와, 핸들이 조작된 상태 및 암부가 작동된 상태 중 하나 이상에 관한 정보를 획득하는 감지부와, 감지부로부터 획득된 정보를 이용하여 브레이크의 작동을 제어하는 제어부를 포함하는 수술용 로봇의 마스터 암 구조가 제공된다.
관절에는, 암부재의 회전에 연동하여 회전함으로써 암부재의 회전 정도에 관한 정보를 출력하는, 접촉식 센서가 설치될 수 있으며, 이 경우 감지부는 접촉식 센서를 포함하며, 접촉식 센서는 인코더(encoder), 포텐셔미터(potentiometer) 등을 포함할 수 있다.
감지부는 핸들 및 암부 중 하나 이상의 작동 상태에 관한 정보를 출력하는 비접촉식 센서를 포함할 수 있으며, 이 경우, 핸들 및 암부 중 하나 이상에는 마커(marker)가 표시되고, 감지부는, 마커에 관한 영상(映像)로부터 마커의 이동 및 회전 중 하나 이상에 관한 정보를 출력하는 옵티컬 트래커(optical tracker), 또는 자기장을 이용하여 핸들이나 암부의 위치에 관한 정보를 출력하는 마그네틱 트래커(magnetic tracker)를 포함할 수 있다.
제어부는, 핸들이 미리 설정된 소정의 기준 영역을 넘어가도록 조작될 경우 브레이크가 작동되도록 제어하여, 핸들을 조작하는 사용자에게 햅틱 피드백이 제공되도록 할 수 있다. 제어부는, 핸들의 조작된 상태가 기준 영역의 경계에 근접한 정도에 상응하여, 브레이크의 작동을 제어할 수 있다. 브레이크는 그 구속력의 크기가 조절가능하도록 작동되며, 제어부는 핸들이 경계에 근접할수록 브레이크의 구속력이 커지도록 브레이크의 작동을 제어할 수 있다. 핸들의 경계에 대한 근접 정도와 브레이크의 구속력의 크기는 서로 선형 또는 비선형 관계를 이룰 수 있다.
제어부는, 핸들이 기준 영역 이내로 들어오도록 조작될 경우 브레이크의 작동이 해제되도록 제어할 수 있다. 또한, 사용자가 별도로 구비된 클러치를 조작할 경우 브레이크의 작동이 해제되도록 제어할 수도 있다.
마스터 로봇에는 슬레이브 로봇이 연결되고, 슬레이브 로봇에는 상기 핸들에 대한 사용자 조작에 상응하여 작동되는 로봇 암이 구비되며, 제어부는, 미리 설정된 모션 스케일 팩터(motion scaling factor) 값에 따라 핸들의 조작 정도와 로봇 암의 작동 정도 간의 비율을 조정하고, 감지부로부터 획득된 정보에 상응하여 모션 스케일 팩터 값을 재설정할 수 있다.
이 경우, 제어부는, 핸들이 미리 설정된 소정의 기준 영역을 넘어가도록 조작될 경우 핸들에 대한 조작 정도에 비해 로봇 암의 작동 정도가 감소하도록 모션 스케일 팩터 값을 재설정하거나, 또는, 핸들의 조작된 상태가 기준 영역의 경계에 근접한 정도에 상응하여, 모션 스케일 팩터 값을 증감시킬 수 있다.
한편, 본 발명의 다른 측면에 따르면, 본체와, 사용자에 의해 조작되는 핸들과, 본체와 핸들을 연결하고 복수의 암부재가 관절에 의해 연결되는 구조로 이루어지는 마스터 암과, 관절에 설치되며 그 작동에 의해 암부재의 회전을 구속하는 브레이크를 포함하는 수술용 마스터 로봇을 제어하는 방법으로서, (a) 핸들이 조작된 상태 및 마스터 암이 작동된 상태 중 하나 이상에 관한 정보를 획득하는 단계, (b) 핸들의 조작된 상태가 미리 설정된 소정의 기준 영역을 벗어났는지 여부를 판단하는 단계, 및 (c) 단계 (b)의 결과에 따라, 브레이크의 작동을 제어하는 단계를 포함하는 수술용 마스터 로봇의 제어방법이 제공된다.
단계 (b)는 핸들의 조작된 상태가 기준 영역의 경계에 근접한 정도를 파악하는 단계를 포함하고, 단계 (c)는 근접 정도에 상응하여 브레이크의 구속력의 크기를 조절하는 단계를 포함할 수 있다.
마스터 로봇에는 슬레이브 로봇이 연결되고, 슬레이브 로봇에는 상기 핸들에 대한 사용자 조작에 상응하여 작동되는 로봇 암이 구비되며, 핸들의 조작 정도와 로봇 암의 작동 정도 간의 비율은 미리 설정된 모션 스케일 팩터(motion scaling factor) 값에 따라 조정되고, 단계 (c)는, 단계 (b)의 결과에 따라 모션 스케일 팩터 값을 재설정하는 단계를 포함할 수 있다.
단계 (c)는, 핸들이 기준 영역을 벗어나도록 조작될 경우, 핸들에 대한 조작 정도에 비해 로봇 암의 작동 정도가 감소하도록 모션 스케일 팩터 값을 재설정하는 단계를 포함할 수 있다.
단계 (b)는 핸들의 조작된 상태가 기준 영역의 경계에 근접한 정도를 파악하는 단계를 포함하고, 단계 (c)는 근접 정도에 상응하여 모션 스케일 팩터 값을 증감시키는 단계를 포함할 수 있다.
한편, 본 발명의 다른 측면에 따르면, 마스터 로봇과, 마스터 로봇에 구비되며 사용자에 의해 조작되는 핸들과, 마스터 로봇에 연결되는 슬레이브 로봇과, 슬레이브 로봇에 구비되며, 핸들에 대한 사용자 조작에 상응하여 작동되는 로봇 암과, 미리 설정된 모션 스케일 팩터(motion scaling factor) 값에 따라, 핸들의 조작 정도와 로봇 암의 작동 정도 간의 비율을 조정하는 제어부와, 핸들이 조작된 상태에 관한 정보를 획득하는 감지부를 포함하되, 제어부는, 감지부로부터 획득된 정보에 상응하여 모션 스케일 팩터 값을 재설정하는 것을 특징으로 하는 수술용 로봇이 제공된다.
제어부는, 핸들이 미리 설정된 소정의 기준 영역을 넘어가도록 조작될 경우, 핸들에 대한 조작 정도에 비해 로봇 암의 작동 정도가 감소하도록 모션 스케일 팩터 값을 재설정할 수 있다. 또한, 제어부는, 핸들의 조작된 상태가 기준 영역의 경계에 근접한 정도에 상응하여, 모션 스케일 팩터 값을 증감시킬 수 있다.
전술한 것 외의 다른 측면, 특징, 잇점이 이하의 도면, 특허청구범위 및 발명의 상세한 설명으로부터 명확해질 것이다.
본 발명의 바람직한 실시예에 따르면, 마스터 암의 작동상태를 감지한 후 각 관절에 설치된 브레이크를 작동시켜 암의 작동을 구속함으로써, 사용자가 마스터 암의 조작 과정에서 햅틱 피드백을 느끼면서도 마스터 암의 구조를 간단히 하고 전체적인 부피를 줄일 수 있게 된다.
도 1은 본 발명의 실시예에 따른 마스터 암 구조를 나타낸 개념도.
도 2는 본 발명의 실시예에 따른 옵티컬 트래커 방식의 감지부를 나타낸 개념도.
도 3은 본 발명의 실시예에 따른 마스터 로봇의 제어방법을 나타낸 순서도.
본 발명은 다양한 변환을 가할 수 있고 여러 가지 실시예를 가질 수 있는 바, 특정 실시예들을 도면에 예시하고 상세하게 설명하고자 한다. 그러나, 이는 본 발명을 특정한 실시 형태에 대해 한정하려는 것이 아니며, 본 발명의 사상 및 기술 범위에 포함되는 모든 변환, 균등물 내지 대체물을 포함하는 것으로 이해되어야 한다. 본 발명을 설명함에 있어서 관련된 공지 기술에 대한 구체적인 설명이 본 발명의 요지를 흐릴 수 있다고 판단되는 경우 그 상세한 설명을 생략한다.
제1, 제2 등의 용어는 다양한 구성요소들을 설명하는데 사용될 수 있지만, 상기 구성요소들은 상기 용어들에 의해 한정되어서는 안 된다. 상기 용어들은 하나의 구성요소를 다른 구성요소로부터 구별하는 목적으로만 사용된다.
본 출원에서 사용한 용어는 단지 특정한 실시예를 설명하기 위해 사용된 것으로, 본 발명을 한정하려는 의도가 아니다. 단수의 표현은 문맥상 명백하게 다르게 뜻하지 않는 한, 복수의 표현을 포함한다. 본 출원에서, "포함하다" 또는 "가지다" 등의 용어는 명세서상에 기재된 특징, 숫자, 단계, 동작, 구성요소, 부품 또는 이들을 조합한 것이 존재함을 지정하려는 것이지, 하나 또는 그 이상의 다른 특징들이나 숫자, 단계, 동작, 구성요소, 부품 또는 이들을 조합한 것들의 존재 또는 부가 가능성을 미리 배제하지 않는 것으로 이해되어야 한다.
이하, 본 발명의 실시예를 첨부한 도면들을 참조하여 상세히 설명하기로 하며, 첨부 도면을 참조하여 설명함에 있어, 동일하거나 대응하는 구성 요소는 동일한 도면번호를 부여하고 이에 대한 중복되는 설명은 생략하기로 한다.
도 1은 본 발명의 실시예에 따른 마스터 암 구조를 나타낸 개념도이고, 도 2는 본 발명의 실시예에 따른 옵티컬 트래커 방식의 감지부를 나타낸 개념도이다. 도 1 및 도 2를 참조하면, 본체(1), 핸들(3), 암부(10), 암부재(12), 관절(14), 브레이크(16), 감지부(20), 마커(22), 옵티컬 트래커(24), 제어부(30)가 도시되어 있다.
본 실시예는, 사용자가 수술용 로봇의 핸들을 조작한 결과에 따른 마스터 암의 작동된 정도는 옵티컬 트래커(optical tracker)와 같은 별도의 센싱 시스템을 이용하여 감지하고, 감지 결과 미리 설정된 기준 영역을 넘어가도록 마스터 암이 작동되는 경우에는 관절에 설치된 브레이크를 작동시켜 마스터 암이 더 이상 움직이지 않도록 제한하는 마스터 암 구조를 특징으로 한다.
이에 따라, 마스터 암의 작동을 제한하기 위해 종래에 설치되었던 모터, 인코더, 케이블 등의 복잡한 구성물들을 생략할 수 있어, 마스터 암을 간단하고 슬림한 구조로 제작할 수 있게 된다.
본 실시예에 따른 마스터 암(master arm) 구조는, 사용자로부터 수술에 필요한 조작 행위를 입력받기 위해 수술용 로봇(특히, 마스터 로봇)에 구비되는 구조물로서, 핸들(3), 암(arm)부, 브레이크(16), 감지부(20) 및 제어부(30)로 구성될 수 있다.
핸들(3)은 사용자가 잡고 조작하는 부분으로서, 사용자의 의도에 따라 3차원 공간상에서 소정의 위치 및 방향으로 조작된다. 본 실시예에서는, 이와 같이 핸들(3)을 3차원 공간상에서 특정 위치나 방향으로 움직여(이동 및/또는 회전시켜) 그 상태(위치 및 방향)를 규정하는 것을 '포지셔닝(positioning)'이라 명명한다. 즉, 사용자가 핸들(3)을 움직여 포지셔닝함에 따라 핸들(3)은 그 상태가 변경된다. 핸들(3)을 움직인다는 것은 핸들(3)을 어느 방향으로 이동시키거나, 회전시키거나, 이동 및 회전시키는 것을 의미한다.
암부(10)는 핸들(3)과 로봇 본체(1)를 연결하는 구성요소로서, 도 1 및 도 2에 도시된 것처럼 복수의 암부재(12)가 관절(14)에 의해 연결된 이른바 '다관절(articulated) 암' 형태로 구성될 수 있다. 암부(10)를 구성하는 구체적인 기구적(機構的) 구성으로는 스카라 링크(SCARA link), 패러랠 링크(parallel link) 등 다양한 링크 기구가 적용될 수 있다.
암부(10)는 그 일단부가 핸들(3)에 연결되어 있고 그 타단부는 로봇 본체(1)에 연결되어 있으므로, 사용자가 핸들(3)을 잡고 움직이면 그로 인하여 암부재(12)가 관절(14)에 대해 회전하면서 그 상태가 변경되게 된다. 거꾸로 말하면, 암부(10)가 작동되어 그 상태가 변경됨으로써 사용자에 의해 조작된 핸들(3)이 포지셔닝될 수 있는 것이다.
여기서, '암부가 작동된다'는 것은 전술한 것처럼 각 암부재가 각 관절에 대해 회전하여 암부의 전체적인 상태가 변경되는 것을 의미하며, '암부의 작동 상태'는 암부가 작동된 결과에 따른 최종적인 상태를 의미한다. 즉, 사용자가 핸들(3)을 잡고 조작하면 그로 인하여 암부(10)가 작동되고, 핸들(3)이 포지셔닝되면 암부(10)는 소정의 작동 상태로 변형된다.
본 실시예에 따른 마스터 암 구조는 암부(10), 특히 관절(14)에 브레이크(16)가 설치되는 것을 특징으로 한다. 관절(14)에 설치된 브레이크(16)가 작동되면 암부재(12)는 관절(14)에 대해 회전하지 못하게 되어, 그 움직임(회전)이 구속되며, 결과적으로 암부(10)가 전체적으로 작동하지 못하여 암부(10)가 소정의 작동 상태로 유지되게 된다.
브레이크(16)는 그 작동 방식에 따라 전자식, 유압식, 공압식 등 다양한 방식으로 구성할 수 있으며, 여기에서는 이에 대한 상세한 설명은 생략한다.
감지부(20)는 사용자 조작에 따라 핸들(3)이 조작된 상태(핸들(3)의 포지셔닝 상태) 및/또는 핸들(3)의 움직임으로 인하여 암부(10)가 작동된 상태에 관한 정보를 획득한다.
종래의 마스터 암 구조에는 사용자의 조작에 대한 햅틱 피드백(haptic feedback)을 구현하기 위해, 각 관절에 모터 및 모터에 연결된 인코더를 설치하고 필요한 경우 암부재를 회전시켜 반력을 생성, 제공하였으며, 인코더로부터 출력되는 정보를 이용하여 사용자 조작에 의해 암부재가 얼마나 회전하였는지도 파악할 수 있었다.
본 실시예에서도 감지부(20)로서 인코더(encoder)나 포텐셔미터(potentiometer)를 활용할 수 있는데, 암부(10)의 각 관절(14)에 모터를 설치하여 사용자가 핸들(3)을 조작하여 암부재(12)가 (관절(14)을 중심으로) 회전하면 그에 연동하여 모터가 회전하도록 하고, 이와 병행하여 또는 이와는 별도로 인코더나 포텐셔미터 등을 설치하여 암부재(12)가 얼마만큼 회전하였는지에 관한 정보가 출력되도록 할 수 있다.
즉, 암부재(12)의 회전에 연동하여 회전함으로써 암부재(12)의 회전 정도에 관한 정보를 출력하는 접촉식 센서(인코더, 포텐셔미터 등)를 관절(14)에 설치하고 관절(14)에 설치된 인코더 등으로부터 암부재(12)의 회전 정도에 관한 정보를 얻을 수 있으며, 이러한 점에서 인코더 등은 본 실시예에 따른 감지부(20)에 해당할 수 있다.
한편, 여기에서 모터의 역할은 능동적으로 반력을 만들어 내기 위한 것이고, 인코더/포텐셔미터의 역할은 관절의 회전 정도를 파악하기 위함이므로, 브레이크를 이용하여 저항감을 느끼게 하는 본 실시예의 경우 모터는 생략될 수 있다.
또는, 도 2에 도시된 것처럼, 옵티컬 트래킹(optical tracking) 기법을 적용하여 마스터 암의 움직임을 감지할 수도 있다. 즉, 핸들(3)이나 암부(10)에 옵티컬 마커(optical marker)(22)를 표시하고, 로봇 외부에 배치된 옵티컬 트래커(optical tracker)(24)에서 마커(22)를 인식하도록 감지부(20)를 구성할 수 있다.
사용자가 핸들(3)을 조작하여 핸들(3) 및 암부(10)가 움직이면 그에 따라 마커(22) 또한 움직이게 되며, 옵티컬 트래커(24)는 마커(22)에 대하여 촬영된 영상을 분석하여 마커(22)가 얼마만큼 움직였는지, 즉 마커(22)의 이동 및/또는 회전에 관한 정보를 알아낼 수 있다.
옵티컬 트래커(24)가 출력하는 마커(22)의 움직임에 관한 정보로부터, 결과적으로 마스터 암의 움직임에 대한 정보를 도출할 수 있으며, 이에 따라 사용자 조작에 의해 핸들(3)이 얼마나 움직였는지, 핸들(3)의 조작에 의해 암부(10)가 얼마나 작동되었는지를 알아낼 수 있다.
여기서, 옵티컬 트래킹 기법은 핸들(3) 및/또는 암부(10)의 작동 상태에 관한 정보를 출력하는 비접촉식 센싱 방법의 일례를 설명한 것으로, 옵티컬 트래커(24) 외에도 다른 방식의 비접촉식 센싱 방법(예를 들면, 자기장(磁氣場)을 이용하여 핸들(3) 및/또는 암부(10)의 위치에 관한 정보를 출력하는 마그네틱 트래킹(magnetic tracking) 기법 등)도 적용될 수 있음은 물론이다.
예를 들어, 옵티컬 트래커의 경우 마커는 빛을 반사하는 물질로 되어 있고 옵티컬 트래커에 포함되어 있는 적외선 카메라 등의 센싱 장치가 마커로부터 반사된 빛을 감지하여 핸들이나 암부의 위치를 추적하는 방식으로 작동될 수 있고, 마그네틱 트래커의 경우 외부에 자기장을 발생시키는 별도의 장치가 구비되고 핸들이나 암부에 자기장 센서가 부착되어 있어 센서로부터 핸들이나 암부의 위치에 관한 정보가 출력되도록 하는 방식으로 작동될 수 있다.
제어부(30)는 인코더나 옵티컬 트래커(24)와 같은 감지부(20)로부터 마스터 암이 움직인 정도에 관한 정보를 수신하고, 이에 대응하여 브레이크(16)의 작동을 제어하는 역할을 한다. 본 실시예에 따른 기능만을 수행하기 위해 별도로 구비되는 프로세서의 형태로 구현되거나, 수술용 로봇을 제어하는 메인 컨트롤러의 일 모듈로서 구현되거나, 메인 컨트롤러의 일 기능으로서 구현되는 등 다양한 방식으로 구성될 수 있다.
본 실시예에 따른 제어부(30)는 감지부(20)로부터 마스터 암의 작동 상태에 관한 정보를 이용하여 사용자가 핸들(3)을 조작할 때 핸들(3)이 미리 설정된 소정의 기준 영역을 넘어서 조작되는 것을 제한하는 역할을 한다.
수술용 로봇에 장착되며 환자의 체내에 삽입되는 수술용 인스트루먼트는 마스터 로봇에서 의사가 핸들을 잡고 움직이는 대로 따라 움직이게 되는데, 예를 들어 환자의 위(胃; stomach)를 수술한다고 할 때 인스트루먼트가 위 주변의 일정 경계까지만 움직이고 그 경계를 넘어서는 (설령 의사가 경계를 넘어서도록 핸들을 조작하더라도) 움직이지 않도록 제한할 수 있다. 이에 따라, 의사의 실수나 오조작을 로봇이 필터링하여 보다 안전한 수술이 가능하도록 할 수 있다.
기준 영역은 수술 상황에 따라 달라질 수 있으며, 수술의 종류에 따라 미리 지정되거나 사용자가 수술을 수행하기에 앞서 지정하는 등, 다양한 방식으로 설정될 수 있다.
이처럼, 사용자가 핸들(3)을 조작할 수 있는 기준 영역이 미리 설정된 상태에서, 본 실시예에 따른 감지부(20)는 핸들(3)(및/또는 암부(10))의 상태가 기준 영역에 접근하였는지, 기준 영역에 닿았는지, 기준 영역을 넘어가는지 등을 파악할 수 있으며, 제어부(30)는 감지부(20)에 의해 파악된 결과에 따라 브레이크(16)의 작동을 제어하여, 사용자가 기준 영역을 넘어가도록 핸들(3)을 조작할 경우에는 마스터 암이 움직이지 않도록 구속함으로써, 마치 마스터 암에 반력이 작용하는 것처럼 햅틱 피드백을 구현하여, 사용자가 '핸들이 기준 영역을 넘어가도록 조작됨'을 알 수 있도록 한다.
여기서, '기준 영역을 넘어가도록'은, 반드시 기준 영역의 경계를 넘었는지 아닌지만을 의미하는 것은 아니며, 기준 영역의 경계 근처에서 경계를 넘어가는 방향으로 조작되는 경우도 의미한다. 이는, 사용자가 핸들(3)을 조작함에 있어서, 기준 영역을 넘어갈 것으로 예상되는 경우에도 미리 구속감을 줘서, 보다 실제에 가까운 햅틱 피드백을 구현하기 위함이다.
이에 따라, 본 실시예에 따른 제어부(30)는 핸들(3)이 기준 영역의 경계를 넘어갔는지 아닌지에 따라서 브레이크(16)를 ON/OFF 시키는 제어만이 아니라, 핸들(3)이 조작된 상태가 기준 영역의 경계에 어느 정도 근접하였는지, 즉 근접 정도에 따라 브레이크(16)를 작동시키는 제어도 수행할 수 있다.
이를 위해, 본 실시예에 따른 브레이크(16)는 그 작동 방식이 ON/OFF 방식에 한정되는 것이 아니라, 브레이크(16)가 암부재(12)의 회전을 구속하는 힘(구속력)이 조절되는 방식도 적용될 수 있다. 예를 들어, 전자식, 공압식, 유압식 브레이크를 사용한다면 브레이크(16)를 작동시키기 위해 공급되는 전류를 조절하는 등의 방법으로 브레이크(16)의 구속력을 조절할 수 있다.
이에 따라, 본 실시예에 따른 제어부(30)는 핸들(3)이 기준 영역의 경계를 넘어가는 정도에 따라 브레이크(16)의 구속력이 조절되도록 제어할 수 있다. 예를 들면, 핸들(3)이 경계에 근접할수록 브레이크(16)의 구속력이 커지도록 함으로써, 사용자는 핸들(3)이 기준 영역을 넘어가도록 조작되는 과정에서 서서히 증가하는 구속감을 느끼게 되며, 이에 따라 의사는 보다 실제에 가까운(마치, 의사가 손으로 인스트루먼트를 잡고 직접 수술을 수행하는 것과 같은) 햅틱 피드백을 경험할 수 있다.
즉, 본 실시예에서 관절(14) 부분에 설치되는 브레이크(16)는 단순히 암부재(12)의 회전을 구속하거나 해제(ON/OFF)하기 위한 목적만이 아니라, 핸들(3)이 조작된 정도에 따라 브레이크(16)가 마스터 암을 구속하는 정도(구속력)를 조절함으로써 마스터 암의 작동에 대한 저항력이 조절되도록 하고, 나아가 사용자에게 실제와 비슷한 저항감이 느껴지도록 하기 위한 목적도 있다.
본 실시예에 따른 햅틱 피드백 기술은 종래의 마스터 암에서처럼 모터를 구동시켜 반력을 생성하는 대신, 브레이크(16)를 사용하여 마치 반력이 작용하는 것과 같은 느낌을 제공한다는 점에서 특징이 있다.
종래의 마스터 암에서는 햅틱 반력을 생성하기 위한 모터를 설치하고, 사용자가 핸들을 조작하는 과정에서 핸들이 기준 영역의 경계를 넘어가는 등 반력이 필요한 위치에 도달하면, 모터에서 사람이 힘을 주는 방향과 반대 방향으로 구동력을 생성함으로써, 사용자가 이 반력을 느끼도록 하는 방식이 적용되었다.
이 경우, 사용자가 모터에서 제공되는 반력을 이겨낼 정도의 힘으로 핸들을 조작하면 핸들은 사용자의 조작에 따라 움직이는데(핸들이 기준 영역의 경계 밖으로 밀려남), 사용자가 힘을 주지 않으면 모터의 반력에 의해 핸들은 다시 기준 영역 이내로 들어오게 된다.
이러한 종래의 방식을 편의상 '액티브(active) 햅틱 피드백' 방식이라 칭한다.
본 실시예에서는, 모터와 같이 구동력을 '생성'하는 구성요소 대신, 브레이크(16)를 사용하여 마스터 암이 작동되지 않도록, 또는 힘들게 작동되도록 한 방식으로서, 사용자가 핸들(3)을 조작하는 과정에서 핸들(3)이 기준 영역의 경계를 넘어가는 등 반작용이 필요한 위치에 도달하면, 브레이크(16)를 작동시켜 사람이 조작하는 힘에 대해 단순히 저항력이 생기게 하고, 이 저항력을 햅틱 반력처럼 느끼도록 한 것이다.
브레이크(16)를 작동시키는 방식으로는, 전술한 것처럼 핸들(3)이 경계에 도달하는 순간 브레이크(16)가 갑자기 작동되도록 할 수도 있고, 핸들(3)이 경계 부근에서 경계를 넘어가는 방향으로 조작될수록 브레이크(16)의 구속력을 증가시켜 사용자로 하여금 보다 실제 상황과 비슷한 반발감을 느끼도록 할 수도 있다.
이러한 본 실시예에 따른 햅틱 피드백 구현 기법은 종래의 액티브 햅틱 피드백과는 다른 수단(감지부(20), 브레이크(16))으로 다른 결과(사용자가 받는 느낌)를 도출한 것으로서, 종래 방식과 차별될 수 있도록 '패시브(passive) 햅틱 피드백이라 칭할 수 있다.
본 실시예에 따른 패시브 햅틱 피드백 기법에서는, 핸들(3)이 기준 영역의 경계에 근접함에 따라 브레이크(16)의 구속력을 어떻게 증가시킬 것인가에 따라 사용자가 받는 반발감의 느낌이 달라지게 된다.
따라서, 본 실시예에 따른 제어부(30)에서 처리되는 핸들(3)의 경계에 대한 근접 정도(입력값)와 브레이크(16)의 구속력의 크기(출력값)는 서로 선형 또는 비선형 관계를 이룰 수 있다. 즉, 핸들(3)의 근접 정도가 크면(핸들(3)이 경계에 가깝게 위치하면) 브레이크(16)의 구속력을 증가시키고, 핸들(3)의 근접 정도가 작으면(핸들(3)이 경계로부터 멀게 위치하면) 브레이크(16)의 구속력을 감소시키도록 제어할 수 있다.
예를 들어, 브레이크(16)의 구속력이 증가되는 정도는 핸들(3)과 경계 간의 거리값에 반비례하도록(선형 관계) 하거나, 핸들(3)과 경계 간의 거리값의 제곱에 반비례하도록(비선형 관계) 할 수 있다.
전술한 것처럼, 사용자 조작에 의해 핸들(3)이 기준 영역의 경계에 가까워지거나 기준 영역의 경계를 넘어가는 순간 브레이크(16)를 작동시켜 핸들(3)이 더 이상 움직이지 못하도록 할 수 있음은 물론, 핸들(3)이 기준 영역에 가까워짐에 따라 마스터 핸들(3)과 로봇의 움직임 간의 모션 스케일 팩터(motion scaling factor)를 조정하여 구속감을 주는 방식도 가능하다.
예를 들어, 평상시에는 핸들(3)의 움직임과 로봇의 움직임 간의 스케일 팩터가 3:1, 즉 핸들(3)을 3만큼 움직이면 로봇 암 및/또는 인스트루먼트가 1만큼 움직이도록 설정되어 있다고 할 때, 사용자가 핸들(3)을 조작하다가 핸들(3)이 기준 영역을 넘게 되면, 그 순간 스케일 팩터를 10:1로 변경하여 핸들(3)을 많이(예를 들면, 10만큼) 움직이더라도 로봇 암이나 인스트루먼트는 조금(예를 들면, 1만큼) 움직이도록 할 수도 있다.
또한, 핸들(3)의 기준 영역에 대한 근접 여부에 따라 스케일 팩터를 조정하는 것과 병행하여 전술한 브레이크(16)를 작동시키는 것도 가능한데, 이 경우 핸들(3)이 기준 영역을 넘게 되면 브레이크(16)가 작동되어 핸들(3)을 움직이는 것이 뻑뻑해지게 됨과 동시에 핸들(3)을 많이 움직이더라도 로봇 암이나 인스트루먼트는 조금 움직이게 된다.
즉, 브레이크(16)를 이용하여 저항감을 주면서 스케일 팩터도 같이 변하게 할 수 있으며, 핸들(3)이 기준영역의 경계면을 넘는 경우 또는 그 부근에서 스케일 팩터를 변화시킴으로써 수술시 안전성을 높일 수 있다.
한편, 본 실시예에 따른 패시브 햅틱 피드백 방식에서는, 종래의 액티브 방식과는 달리, 사용자가 브레이크(16)의 구속력을 이겨낼 정도의 힘으로 핸들(3)을 조작했다가 힘을 빼면 핸들(3)이 다시 기준 영역 이내로 들어오지 않고 그 힘을 뺀 지점에 서 있게 된다.
이에, 본 실시예에 따른 제어부(30)는, 사용자가 핸들(3)을 조작하여 핸들(3)이 기준 영역 이내로 들어오도록 할 경우, 브레이크(16)의 작동이 해제되도록 함으로써 핸들(3)이 브레이크(16)에 의한 저항력 없이 기준 영역 이내로 원활하게 들어오도록 할 수 있다. 또는, 핸들(3)을 조작하는 것 외에도, 클러치 등의 별도 조작장치를 조작하면 브레이크(16)의 작동이 해제되도록 하여, 브레이크(16)에 의한 저항력이 제거된 상태에서 핸들(3)이 기준 영역 이내로 원활하게 들어오도록 할 수도 있다.
즉, 기준 영역을 넘는 순간 브레이크(16)가 작동하여 마스터 핸들(3)이 뻑뻑해진 상태를 해제하는 방법으로서, 전술한 것처럼 기준 영역의 경계 이내로 들어오도록 핸들(3)을 움직이려고 할 때에 브레이크(16)가 풀리도록 할 수 있을 뿐만 아니라, 별도의 클러치(미도시)를 설치하여 사용자가 클러치를 밟아야만 브레이크(16)가 풀리도록 할 수 있다. 다시 말하면, 마스터 핸들(3)에 브레이크가 걸린 상태에서 사용자가 클러치를 밟고 마스터 핸들(3)의 위치를 재조정하면, 브레이크(16)가 풀려 핸들(3)을 다시 정상적으로 작동시킬 수 있는 상태가 되도록 할 수도 있다.
도 3은 본 발명의 실시예에 따른 마스터 로봇의 제어방법을 나타낸 순서도이다. 본 실시예는 전술한 마스터 암 구조가 구비된 수술용 마스터 로봇을 제어하여 사용자에게 '패시브 햅틱 피드백'을 제공하는 것이다.
본 실시예에 따라 마스터 로봇을 제어하기 위해서는, 먼저, 사용자에 의한 핸들(3)의 조작 상태 및/또는 핸들(3)의 움직임에 따른 마스터 암의 작동 상태를 파악한다(S10). 핸들(3)이나 암의 상태를 파악하기 위해 인코더, 포텐셔미터, 옵티컬 트래커(24) 등의 감지부(20)를 설치할 수 있음은 전술한 바와 같다.
다음으로, 파악된 결과로부터 사용자에 의해 조작된 핸들(3)이 미리 설정된 기준 영역 내에 있는지, 기준 영역을 벗어나도록 조작되는지 여부를 판단한다(S20). 이 단계에서는, 전술한 바와 같이, 기준 영역의 경계에 대해 핸들(3)의 벗어남 여부만을 판단하는 것이 아니라, 핸들(3)이 경계에 대해 어느 정도 근접하였는지도 판단할 수 있다(S22).
마지막으로, 핸들(3)이 기준 영역의 경계를 넘어가는 등 반작용이 필요한 위치인 것으로 판단되면, 마스터 암의 관절(14)에 설치된 브레이크(16)를 작동시켜 마스터 암이 움직이지 않도록 구속한다(S30). 이 단계에서도, 전술한 바와 같이, 브레이크(16)를 ON/OFF 시키는 제어만이 아니라, 핸들(3)이 경계에 근접한 정도에 비례하도록 브레이크(16)의 구속력 크기를 조절하는(S32) 제어를 통해, 사용자에게 실제에 가까운 햅틱 피드백이 제공되도록 할 수 있다.
또한, 브레이크(16)의 구속력의 크기를 핸들(3)의 근접 정도에 대해 선형적(비례)으로 조절할 수 있을 뿐만 아니라, 비선형적으로도 조절할 수 있음은 전술한 바와 같다.
한편, 전술한 바와 같이, 핸들(3)의 기준 영역에 대한 근접 여부에 따라 브레이크(16)를 작동시키는 것과 별도로 또는 이와 병행하여 모션 스케일 팩터를 재설정(S40)할 수도 있는데, 이 경우 핸들(3)이 기준 영역을 넘게 되면 브레이크(16)가 작동되어 핸들(3)을 움직이는 것이 뻑뻑해지게 됨과 동시에, 핸들(3)에 대한 조작 정도에 비해 로봇 암의 작동 정도가 감소하도록, 즉 핸들(3)을 많이 움직이더라도 로봇 암이나 인스트루먼트는 조금 움직이도록 모션 스케일 팩터 값을 재설정할 수 있다(S42).
아울러, 전술한 바와 같이, 기준 영역의 경계에 대해 핸들(3)의 벗어남 여부만을 판단하는 것이 아니라, 핸들(3)이 경계에 대해 어느 정도 근접하였는지도 판단할 수 있으며, 핸들(3)이 경계에 근접한 정도에 비례하도록 모션 스케일 팩터 값을 증가 또는 감소시켜(S44), 핸들이 경계에 가까워질수록 핸들을 많이 움직이더라도 로봇 암이나 인스트루먼트는 덜 움직이도록 제어할 수 있다.
상기에서는 본 발명의 바람직한 실시예를 참조하여 설명하였지만, 해당 기술분야에서 통상의 지식을 가진 자라면 하기의 특허청구범위에 기재된 본 발명의 사상 및 영역으로부터 벗어나지 않는 범위 내에서 본 발명을 다양하게 수정 및 변경시킬 수 있음을 이해할 수 있을 것이다.

Claims (10)

  1. 수술용 마스터 로봇에 구비되는 마스터 암(master arm) 구조로서,
    사용자에 의해 조작되는 핸들과;
    상기 마스터 로봇과 상기 핸들을 연결하고, 복수의 암부재가 관절에 의해 연결되는 구조로 이루어지며, 상기 핸들에 대한 사용자 조작으로 인하여 상기 암부재가 상기 관절에 대해 회전하여, 상기 핸들의 포지셔닝(positioning)이 가능하도록 작동되는 암(arm)부와;
    상기 관절에 설치되며, 그 작동에 의해 상기 암부재의 회전을 구속하는 브레이크와;
    상기 핸들이 조작된 상태 및 상기 암부가 작동된 상태 중 하나 이상에 관한 정보를 획득하는 감지부와;
    상기 감지부로부터 획득된 정보를 이용하여 상기 브레이크의 작동을 제어하는 제어부를 포함하는 수술용 로봇의 마스터 암 구조.
  2. 제1항에 있어서,
    상기 관절에는, 상기 암부재의 회전에 연동하여 회전함으로써 상기 암부재의 회전 정도에 관한 정보를 출력하는, 접촉식 센서가 설치되는 것을 특징으로 하는 수술용 로봇의 마스터 암 구조.
  3. 제2항에 있어서,
    상기 감지부는 상기 접촉식 센서를 포함하며, 상기 접촉식 센서는 인코더(encoder) 또는 포텐셔미터(potentiometer) 중 하나 이상을 포함하는 것을 특징으로 하는 수술용 로봇의 마스터 암 구조.
  4. 제1항에 있어서,
    상기 감지부는 상기 핸들 및 상기 암부 중 하나 이상의 작동 상태에 관한 정보를 출력하는 비접촉식 센서를 포함하는 것을 특징으로 하는 수술용 로봇의 마스터 암 구조.
  5. 제4항에 있어서,
    상기 핸들 및 상기 암부 중 하나 이상에는 마커(marker)가 표시되고,
    상기 감지부는, 상기 마커에 관한 영상 정보로부터 상기 마커의 이동 및 회전 중 하나 이상에 관한 정보를 출력하는 옵티컬 트래커(optical tracker)를 포함하는 것을 특징으로 하는 수술용 로봇의 마스터 암 구조.
  6. 제4항에 있어서,
    상기 감지부는, 자기장을 이용하여 상기 핸들 및 상기 암부 중 하나 이상의 위치에 관한 정보를 출력하는 마그네틱 트래커(magnetic tracker)를 포함하는 것을 특징으로 하는 수술용 로봇의 마스터 암 구조.
  7. 제1항에 있어서,
    상기 제어부는, 상기 핸들이 미리 설정된 소정의 기준 영역을 넘어가도록 조작될 경우 상기 브레이크가 작동되도록 제어하여, 상기 핸들을 조작하는 사용자에게 햅틱 피드백이 제공되도록 하는 것을 특징으로 하는 수술용 로봇의 마스터 암 구조.
  8. 제7항에 있어서,
    상기 제어부는, 상기 핸들의 조작된 상태가 상기 기준 영역의 경계에 근접한 정도에 상응하여, 상기 브레이크의 작동을 제어하는 것을 특징으로 하는 수술용 로봇의 마스터 암 구조.
  9. 제8항에 있어서,
    상기 브레이크는 그 구속력의 크기가 조절가능하도록 작동되며,
    상기 제어부는 상기 핸들이 상기 경계에 근접할수록 상기 브레이크의 구속력이 커지도록 상기 브레이크의 작동을 제어하는 것을 특징으로 하는 수술용 로봇의 마스터 암 구조.
  10. 제9항에 있어서,
    상기 핸들의 상기 경계에 대한 근접 정도와 상기 브레이크의 구속력의 크기는 서로 선형 또는 비선형 관계를 이루는 것을 특징으로 하는 수술용 로봇의 마스터 암 구조.
PCT/KR2012/004091 2011-08-03 2012-05-24 수술용 로봇의 마스터 암 구조 및 수술용 마스터 로봇의 제어방법 WO2013018983A1 (ko)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020110077430A KR101802464B1 (ko) 2011-08-03 2011-08-03 수술용 로봇의 마스터 암 구조 및 수술용 마스터 로봇의 제어방법
KR10-2011-0077430 2011-08-03

Publications (1)

Publication Number Publication Date
WO2013018983A1 true WO2013018983A1 (ko) 2013-02-07

Family

ID=47629473

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2012/004091 WO2013018983A1 (ko) 2011-08-03 2012-05-24 수술용 로봇의 마스터 암 구조 및 수술용 마스터 로봇의 제어방법

Country Status (2)

Country Link
KR (1) KR101802464B1 (ko)
WO (1) WO2013018983A1 (ko)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107970069A (zh) * 2017-12-27 2018-05-01 廖容 一种用于手术机器人的多自由度远程操作手柄
EP3200716A4 (en) * 2014-09-29 2018-05-16 Covidien LP Dynamic input scaling for controls of robotic surgical system
WO2018104252A1 (en) * 2016-12-07 2018-06-14 Koninklijke Philips N.V. Image guided motion scaling for robot control
CN108366835A (zh) * 2015-12-10 2018-08-03 柯惠Lp公司 具有独立的侧倾、俯仰和偏摆缩放的机器人外科手术系统
CN115607297A (zh) * 2022-10-19 2023-01-17 山东大学 一种震颤抑制的主从手术机器人控制系统及方法
US11583358B2 (en) 2017-09-06 2023-02-21 Covidien Lp Boundary scaling of surgical robots
RU2803231C1 (ru) * 2022-10-27 2023-09-11 Акционерное общество "Казанский электротехнический завод" Ведущий манипулятор роботохирургического комплекса

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102306959B1 (ko) * 2013-09-04 2021-10-01 삼성전자주식회사 수술 로봇 및 수술 로봇 제어 방법
CN114052918A (zh) * 2015-02-19 2022-02-18 柯惠Lp公司 机器人手术系统的输入装置的重定位方法
KR101703114B1 (ko) 2015-07-08 2017-02-06 한국기계연구원 중재시술용 마스터장치와 마스터장치의 제어방법 그리고 이것을 이용한 원격중재시술장치
KR101853867B1 (ko) 2016-10-18 2018-05-02 한국기계연구원 중재시술용 손잡이유닛과 이것을 이용한 중재시술용 마스터장치 그리고 이것을 이용한 원격중재시술시스템
US20210030498A1 (en) * 2018-02-02 2021-02-04 Covidien Lp Robotic surgical systems with user engagement monitoring
KR102206647B1 (ko) * 2018-06-12 2021-01-22 (주)미래컴퍼니 로봇 암 구조물 및 이를 포함하는 수술 로봇의 매니퓰레이터
US11478318B2 (en) 2018-12-28 2022-10-25 Verb Surgical Inc. Methods for actively engaging and disengaging teleoperation of a surgical robotic system
US11337767B2 (en) 2019-05-17 2022-05-24 Verb Surgical Inc. Interlock mechanisms to disengage and engage a teleoperation mode
US11204640B2 (en) 2019-05-17 2021-12-21 Verb Surgical Inc. Methods for determining if teleoperation should be disengaged based on the user's gaze
KR102225448B1 (ko) * 2019-05-24 2021-03-09 한국과학기술원 능동 조향 카테터를 조작하기 위한 마스터 장치 및 능동 조향 카테터와 마스터 장치의 양방향 제어가 가능한 카테터 시스템
US20220087763A1 (en) * 2020-09-23 2022-03-24 Verb Surgical Inc. Deep disengagement detection during telesurgery
KR102549111B1 (ko) * 2021-08-02 2023-06-29 주식회사 로엔서지컬 수술용 로봇의 제어 장치 및 제어 방법

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006043349A (ja) * 2004-08-09 2006-02-16 Hitachi Medical Corp 手術支援装置
JP4277964B2 (ja) * 1997-11-28 2009-06-10 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ フレームレス定位手術装置
KR20110004496A (ko) * 2009-07-08 2011-01-14 주식회사 이턴 수술용 로봇 및 그 세팅방법
JP2011125976A (ja) * 2009-12-18 2011-06-30 Denso Wave Inc ロボットの故障検出装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4277964B2 (ja) * 1997-11-28 2009-06-10 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ フレームレス定位手術装置
JP2006043349A (ja) * 2004-08-09 2006-02-16 Hitachi Medical Corp 手術支援装置
KR20110004496A (ko) * 2009-07-08 2011-01-14 주식회사 이턴 수술용 로봇 및 그 세팅방법
JP2011125976A (ja) * 2009-12-18 2011-06-30 Denso Wave Inc ロボットの故障検出装置

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3200716A4 (en) * 2014-09-29 2018-05-16 Covidien LP Dynamic input scaling for controls of robotic surgical system
US10893913B2 (en) 2015-12-10 2021-01-19 Covidien Lp Robotic surgical systems with independent roll, pitch, and yaw scaling
CN108366835A (zh) * 2015-12-10 2018-08-03 柯惠Lp公司 具有独立的侧倾、俯仰和偏摆缩放的机器人外科手术系统
EP3386421A4 (en) * 2015-12-10 2019-11-20 Covidien LP ROBOTIC SURGICAL SYSTEMS WITH INDEPENDENT ROLLING SCALES, TANGING, AND LACET
CN108366835B (zh) * 2015-12-10 2021-07-27 柯惠Lp公司 具有独立的侧倾、俯仰和偏摆缩放的机器人外科手术系统
US11547504B2 (en) 2015-12-10 2023-01-10 Covidien Lp Robotic surgical systems with independent roll, pitch, and yaw scaling
WO2018104252A1 (en) * 2016-12-07 2018-06-14 Koninklijke Philips N.V. Image guided motion scaling for robot control
US11213364B2 (en) 2016-12-07 2022-01-04 Koninklijke Philips N.V. Image guided motion scaling for robot control
US11583358B2 (en) 2017-09-06 2023-02-21 Covidien Lp Boundary scaling of surgical robots
CN107970069B (zh) * 2017-12-27 2019-10-18 曹学成 一种用于手术机器人的多自由度远程操作手柄
CN107970069A (zh) * 2017-12-27 2018-05-01 廖容 一种用于手术机器人的多自由度远程操作手柄
CN115607297A (zh) * 2022-10-19 2023-01-17 山东大学 一种震颤抑制的主从手术机器人控制系统及方法
CN115607297B (zh) * 2022-10-19 2024-04-30 山东大学 一种震颤抑制的主从手术机器人控制系统及方法
RU2803231C1 (ru) * 2022-10-27 2023-09-11 Акционерное общество "Казанский электротехнический завод" Ведущий манипулятор роботохирургического комплекса

Also Published As

Publication number Publication date
KR101802464B1 (ko) 2017-11-28
KR20130015437A (ko) 2013-02-14

Similar Documents

Publication Publication Date Title
WO2013018983A1 (ko) 수술용 로봇의 마스터 암 구조 및 수술용 마스터 로봇의 제어방법
US11648072B2 (en) System and method for patient-side instrument control
JP6487019B2 (ja) モードを区別する操作動作を用いたロボットシステム操作モードの使用者選択
CA2966837C (en) Intelligent holding arm for head surgery, with touch-sensitive operation
CN110448345B (zh) 检测不受控制的移动
JP7150413B2 (ja) 多関節アームにおける分離クラッチ操作のためのシステム及び方法
EP2928407B1 (en) Collision avoidance during controlled movement of image capturing device and manipulatable device movable arms
WO2011002215A2 (ko) 하이브리드 수술용 로봇 시스템 및 수술용 로봇 제어방법
KR20180097633A (ko) 의료 장치 재위치조정가능한 아암들에서의 동작 이탈의 신속한 정지와 복구를 위한 시스템 및 방법
WO2013018984A2 (ko) 수술용 로봇의 마스터 그립퍼 구조
WO2011118074A1 (ja) 医療用マニピュレータシステム
WO2010011011A1 (ko) 수술용 로봇
US20200046441A1 (en) Endoscope Manipulator and Method for Controlling the Same
US11880513B2 (en) System and method for motion mode management
US20210161606A1 (en) Controlling a surgical instrument
US11771461B2 (en) Passive holding device, modular surgical system and method for manipulating a trocar
WO2011102629A2 (ko) 로봇의 마스터 조작 디바이스 및 이를 이용한 수술용 로봇
WO2013018985A1 (ko) 수술용 로봇 시스템
EP4164541A1 (en) Techniques for selective joint floating in a computer-assisted system

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12820264

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12820264

Country of ref document: EP

Kind code of ref document: A1