WO2013018763A1 - 太陽電池モジュール及びその製造方法 - Google Patents

太陽電池モジュール及びその製造方法 Download PDF

Info

Publication number
WO2013018763A1
WO2013018763A1 PCT/JP2012/069340 JP2012069340W WO2013018763A1 WO 2013018763 A1 WO2013018763 A1 WO 2013018763A1 JP 2012069340 W JP2012069340 W JP 2012069340W WO 2013018763 A1 WO2013018763 A1 WO 2013018763A1
Authority
WO
WIPO (PCT)
Prior art keywords
bus bar
bar electrode
solar cell
resin
conductive resin
Prior art date
Application number
PCT/JP2012/069340
Other languages
English (en)
French (fr)
Inventor
紀代 石丸
近藤 茂樹
村田 潔
靖 福田
Original Assignee
Jx日鉱日石エネルギー株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jx日鉱日石エネルギー株式会社 filed Critical Jx日鉱日石エネルギー株式会社
Priority to EP12819364.6A priority Critical patent/EP2728626A4/en
Publication of WO2013018763A1 publication Critical patent/WO2013018763A1/ja
Priority to US14/171,495 priority patent/US20140144482A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/042PV modules or arrays of single PV cells
    • H01L31/05Electrical interconnection means between PV cells inside the PV module, e.g. series connection of PV cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/042PV modules or arrays of single PV cells
    • H01L31/05Electrical interconnection means between PV cells inside the PV module, e.g. series connection of PV cells
    • H01L31/0504Electrical interconnection means between PV cells inside the PV module, e.g. series connection of PV cells specially adapted for series or parallel connection of solar cells in a module
    • H01L31/0512Electrical interconnection means between PV cells inside the PV module, e.g. series connection of PV cells specially adapted for series or parallel connection of solar cells in a module made of a particular material or composition of materials
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Definitions

  • the present invention relates to a solar cell module including a plurality of solar cells and a manufacturing method thereof.
  • a solar cell module is formed by arranging a plurality of solar cells in a matrix and electrically connecting adjacent solar cells in series by tab wires.
  • the solar battery cell has a large number of fine finger electrodes on the surface thereof and at least one (usually two or three) bus bar electrodes provided to be orthogonal to these finger electrodes. Yes. And the bus-bar electrode of one photovoltaic cell among the photovoltaic cells which adjoin is connected to the electrode of the back surface side of the other photovoltaic cell by the tab wire.
  • the bus bar electrode and the tab wire are connected by solder.
  • solder the amount of light received is prevented from decreasing by preventing the solder from protruding from the upper surface of the bus bar electrode.
  • CTM loss is an index representing the difference between cell efficiency and module efficiency, and is calculated by the following equation.
  • CTM loss (1-Output ratio A) x 100 (%)
  • Output ratio A [(module output) / (number of cells)] / [output during cell inspection]
  • the contact area between the bus bar electrode and the solder and / or the tab wire and the solder may be increased. This is because even if the bus bar electrode and the tab line are thinned, if the contact area can be increased or maintained, the light receiving area can be increased without increasing the electric resistance.
  • the temperature at which the solder is melted is high (about 200 to 300 ° C.), and if the solder is brought into direct contact with the cell, the cell may be damaged. Further, since the adhesive strength between the solder and the cell surface is extremely low, the advantage that the adhesive strength between the solder and the cell increases cannot be expected.
  • an object of the present invention is to increase a light receiving area of a solar battery cell, to reduce a CTM loss by reducing an electric resistance of a connection part, to improve an adhesive strength of the connection part, and the like.
  • the solar cell module according to the present invention includes a plurality of solar cells, and each solar cell has a bus bar electrode on the surface side. And the bus-bar electrode of one photovoltaic cell and the electrode of the back surface side of the other photovoltaic cell among adjacent photovoltaic cells are connected via a tab wire.
  • the bus bar electrode and the tab wire are bonded via a light-transmitting conductive resin, and the conductive resin is configured to cover at least a part of the side surface of the bus bar electrode.
  • a conductive resin having light transmittance in a tape shape wider than the bus bar electrode is placed on the bus bar electrode. Then, by placing the tab wires and pressing them while heating, the conductive resin is melted to bond the bus bar electrode and the tab wire, and at the same time, the conductive resin is at least one of the side surfaces of the bus bar electrode. Cover the part.
  • the conductive resin for bonding is provided so as to cover not only the upper surface of the bus bar electrode but also at least a part of the side surface, the bonding area with the bus bar electrode increases, and the bonding strength can be improved. At the same time, the electrical resistance can be reduced and the CTM loss can be reduced.
  • the width of the tab line can be increased to improve the adhesive strength between the tab line and the conductive resin and to reduce the electrical resistance.
  • the melting temperature of the conductive resin is lower than that of solder, and the thermal load on the cell can be reduced.
  • the top view of the solar cell module shown as embodiment of this invention AA sectional view of FIG. Top view of solar cells Front view of solar cells Plan view showing the connection between solar cells Front view showing the connection between solar cells Sectional drawing of the tab line connection part to the bus-bar electrode equivalent to the BB cross section of FIG. 6 shown as 1st Embodiment of this invention
  • Sectional drawing of the tab line connection part to the bus-bar electrode equivalent to the BB cross section of FIG. 6 shown as 2nd Embodiment of this invention The figure which shows the manufacture process of 2nd Embodiment same as the above.
  • FIG. 1 is a plan view of a solar cell module shown as an embodiment of the present invention
  • FIG. 2 is a cross-sectional view taken along line AA in FIG.
  • the solar cell module 1 includes a rectangular frame 2 made of metal (for example, aluminum) and a PV (Photovoltaic) panel 3 fitted in the upper portion of the frame 2.
  • a rectangular frame 2 made of metal (for example, aluminum) and a PV (Photovoltaic) panel 3 fitted in the upper portion of the frame 2.
  • the PV panel 3 is arranged in a matrix between a transparent front side cover 4 such as white plate tempered glass, a weather resistant back side cover 5 made of a resin film, and the front side cover 4 and the back side cover 5.
  • a transparent front side cover 4 such as white plate tempered glass
  • a weather resistant back side cover 5 made of a resin film
  • a plurality of solar cells 6 that are electrically connected in series, and a filling adhesive that is filled between the front surface side cover 4 and the back surface side cover 5 to form the cover 4, 5 and the solar cells 6 into a panel.
  • an agent 7 an agent 7.
  • the surface side cover 4 is required to have sunlight permeability, insulation, weather resistance, heat resistance, moisture resistance, antifouling property, and light resistance, and is excellent in chemical strength, toughness, and long-term durability. In order to ensure the properties, it is necessary to have excellent scratch resistance, shock absorption and the like. For this reason, a transparent glass substrate is widely used, and in particular, a white plate tempered glass having a thickness of 4.0 mm that is excellent in light transmittance and impact strength is used. Soda lime glass is preferably used as the material. The thickness may be 0.1 to 10 mm.
  • polyamide-type resin (various nylon), polyester-type resin, cyclic polyolefin-type resin, polystyrene-type resin, fluorine-type resin, polyethylene-type resin, for example Films or sheets of various resins such as (meth) acrylic resins, polycarbonate resins, acetal resins, cellulose resins, and the like can be used.
  • a resin-coated metal sheet having a thickness of about 0.1 mm in which both surfaces of an aluminum sheet are coated with a polyvinyl fluoride film (fluorine film) having excellent insulating properties is preferably used.
  • polystyrene resins such as polyethylene resins, polypropylene resins, cyclic polyolefin resins, syndiotactic polystyrene resins, acrylonitrile-styrene copolymers (AS resins), acrylonitrile-butadiene-styrene copolymers (ABS resins), Fluorine resin such as polyvinyl chloride resin, polyvinylidene fluoride, poly (meth) acrylic resin, polycarbonate resin, polyester resin such as polyethylene terephthalate (PET) or polyethylene naphthalate (PEN), various nylons, etc.
  • AS resins acrylonitrile-styrene copolymers
  • ABS resins acrylonitrile-butadiene-styrene copolymers
  • Fluorine resin such as polyvinyl chloride resin, polyvinylidene fluoride, poly (meth) acrylic resin, polycarbonate resin, polyester resin such as polyethylene
  • Polyamide resin Polyamide resin, polyimide resin, polybutylene terephthalate resin, polyamideimide resin, polyaryl phthalate resin, polycyclohexanedimethanol-terephthalate resin, silicon resin, poly Rufon resin, polyphenylene sulfide resin, polyethersulfone resin, polyurethane resin, acetal resin, cellulose resin, polyester resin made of polyester such as PET-G which is a copolymer of PET and PEN, etc.
  • Various resin films or sheets, ceramic, glass, stainless steel, etc. can be used.
  • These films or sheets may be transparent, or may be a base material in which a white pigment or a black pigment is kneaded. Films composed of these resins are subjected to corona discharge treatment, ozone treatment, plasma treatment using oxygen gas or nitrogen gas, glow discharge treatment, chemicals, etc. in order to ensure the adhesive strength with the filling adhesive. An oxidation treatment or the like that is used for the treatment can also be performed. Moreover, a base layer can be provided in advance on the film surface to ensure the adhesive strength with the filling adhesive. For example, a primer coat agent layer, an undercoat agent layer, an anchor coat agent layer, an adhesive layer, a vapor deposition anchor coat agent layer, or the like can be arbitrarily formed to form a base layer.
  • the solar battery cell 6 may be any of single crystal silicon, thin film silicon, polycrystalline silicon, amorphous silicon, and a compound semiconductor type cell.
  • a general crystalline silicon solar battery cell 6 includes an n-type diffusion layer (n-type silicon layer) on a light incident surface (a surface on which light is incident upon power generation) of a p-type crystalline silicon substrate. Form. More specifically, it is manufactured through the following texture process, pn junction process, reflective film forming process, and front and back collector electrode forming process.
  • an uneven structure is formed on the surface by etching the surface of the substrate using an acid or alkali solution or reactive plasma before forming a pn junction on the substrate.
  • the method of forming the pn junction is not particularly limited.
  • the pn junction can be formed by diffusing an n-type impurity on the light receiving surface side of the p-type silicon substrate.
  • the diffusion of n-type impurities can be performed by placing the substrate in a high-temperature gas containing a material containing n-type impurities (for example, POC 13), for example.
  • an antireflection film is formed on the light receiving surface side of the substrate.
  • the SiN film can be formed by plasma CVD.
  • finger electrodes and bus bar electrodes are formed on the surface of the solar battery cell 6, and a back electrode is formed on the back surface.
  • the filling adhesive 7 it is necessary to have translucency and adhesiveness with the front surface side cover and the back surface side cover. Furthermore, from the viewpoint of protecting the solar cell, it is necessary to have excellent light resistance, heat resistance, water resistance, scratch resistance, impact absorption, and the like.
  • a film made of an ethylene-vinyl acetate copolymer containing an organic peroxide such as an EVA (ethylene vinyl acetate) film having excellent moisture resistance is generally used.
  • ionomer resin polyvinyl butyral resin, silicon resin, epoxy resin, (meth) acrylic resin, fluorine resin, ethylene-acrylic acid, or methacrylic acid copolymer, polyethylene resin, polypropylene resin,
  • a mixture of one or more of acid-modified polyolefin resins obtained by modifying polyolefin resins such as polyethylene or polypropylene with unsaturated carboxylic acids such as acrylic acid, itaconic acid, maleic acid, and fumaric acid, and other resins Can be used.
  • an ethylene-vinyl acetate resin is particularly desirable.
  • the thickness of the filling adhesive 7 is about 100 to 1000 ⁇ m, preferably about 300 to 500 ⁇ m.
  • FIG. 3 is a plan view of the solar battery cell
  • FIG. 4 is a front view of the solar battery cell.
  • the solar battery cell 6 has a light receiving surface 10 on the surface side, and a plurality of finger electrodes 11 are provided thereon.
  • the finger electrodes 11 are formed so as to be as thin as possible so as not to interfere with the incidence of light.
  • Each finger electrode 11 extends in a predetermined direction and is arranged in parallel at a predetermined interval in a direction orthogonal to the extending direction.
  • a relatively thick bus bar electrode 12 for taking out electric power is provided on the finger electrode 11 so as to be orthogonal to the finger electrode 11. Accordingly, the bus bar electrode 12 extends in the juxtaposition direction of the finger electrodes 11 and connects the plurality of finger electrodes 11. For example, about 90 finger electrodes 11 having a width of about 0.05 mm are formed, and at least one bus bar electrode 12 has a width of about 0.5 to 3 mm (1 to 4, generally, for example). 2 or 3).
  • the back electrode 13 is provided on the entire back surface of the solar battery cell 1. Although not shown, a bus bar electrode for connecting a tab line is also provided on the back electrode 13.
  • Examples of the material of the collecting electrode include known materials that can obtain electrical continuity. For example, metals such as Ag, Ni, Cu, Sn, Au, V, Al, and Pt, or of these metals Of these, alloys or mixtures of two or more metals can be applied. Moreover, what laminated
  • ITO transparent conductive material
  • conductive paste printing is generally used.
  • the conductive paste is formed by general silver-containing glass paste, silver paste in which various conductive particles are dispersed in adhesive resin, gold paste, carbon paste, nickel paste and aluminum paste, and baking or vapor deposition. ITO etc. are mentioned.
  • a glass paste containing silver is preferably used from the viewpoints of heat resistance, conductivity, stability, and cost.
  • sputtering using a mask pattern, resistance heating, a CVD method, a photo CVD method, a plating method, and the like can be given.
  • the formation method of the finger electrode 11 and the bus bar electrode 12 is not particularly limited, but in general, a glass paste containing silver is used, and this is formed by coating, drying, and baking by screen printing. it can.
  • the formation method of the back electrode 13 is not particularly limited, but in general, it can be formed by, for example, applying, drying and baking an aluminum paste. Incidentally, the drying and baking on the front surface side and the drying and baking on the back surface side may be performed separately or simultaneously.
  • the conductive paste When firing in forming the surface collector electrode, the conductive paste can fire through the antireflection film, so that the surface collector electrode can be in contact with the n-type diffusion layer.
  • the fire-through is a phenomenon in which a glass frit or the like contained in a conductive paste penetrates an antireflection film that is an insulating film, and makes the surface collector electrode and the n-type diffusion layer conductive.
  • FIG. 5 is a plan view showing a connection state between solar cells
  • FIG. 6 is a front view showing a connection state between solar cells.
  • Adjacent solar cells 6, 6 are electrically connected in series via tab wires 20. That is, for adjacent solar cells 6 and 6, the bus bar electrode 12 on the front surface side of one solar cell 6 and the back surface electrode 13 on the back surface side of the other solar cell 6 are connected by the tab wire 20. In other words, one end of the tab wire 20 is connected to the bus bar electrode 12 on the front surface side of one solar cell 6 via the conductive adhesive medium, and the other end of the tab wire 20 is connected to the back surface side of the other solar cell 6. The back electrode 13 is connected via a conductive adhesive medium. Therefore, the tab wire 20 bends between the solar cells 6 and 6, and connects the front and back.
  • the tab wire 20 is required to have high connection strength with respect to the conductive adhesive medium used when the collector electrode on the cell surface and the tab wire are bonded while ensuring conductivity and mechanical strength.
  • One or more metals selected from the group consisting of Cu, Ag, Au, Fe, Ni, Pb, Zn, Co, Ti, and Mg, from the viewpoint of more reliably obtaining conductivity between solar cells. It is preferable that it contains an element.
  • a general tab wire is composed of a copper foil as a core material and a plating layer having a thickness of several tens of ⁇ m on the surface of the core material.
  • a flat conductor made of pure copper such as tough pitch copper or oxygen-free copper is generally used as a core, and Sn—Pb eutectic solder is used as a plating layer on the surface thereof.
  • Sn—Ag, Sn—Bi, Sn—Cu, or the like is also used.
  • a light-transmitting conductive resin is used as the conductive adhesive medium for connecting the tab wire 20, particularly the conductive adhesive medium on the surface side.
  • a conductive resin is required to have excellent moisture resistance and heat resistance in order to maintain adhesion with the collector electrode on the cell surface, conductivity, and reliability.
  • the material used as the conductive resin examples include polycarbonate, triacetyl cellulose, polyethylene terephthalate, polyvinyl alcohol, polyvinyl butyral, polyetherimide, polyester, ethylene-vinyl acetate copolymer, polyvinyl chloride, polyimide, polyamide, polyurethane, polyethylene, Fluorine resins such as polypropylene, polystyrene, polyacrylonitrile, butyral resin, acrylonitrile-butadiene-styrene copolymer (ABS resin), ethylene-tetrafluoroethylene copolymer, polyvinyl fluoride, epoxy resin, acrylic resin, phenol resin, urethane resin, silicone resin Maleimide resins, bismaleimide resins, triazine-bismaleimide resins and phenolic resins, Aneto resins polyvinyl acetate, rubber, resins such as urethane and the like, at least one selected from these, or mixtures of these resin
  • thermosetting property or UV curable property it is preferable to impart thermosetting property or UV curable property to these resins.
  • the conductive resin may contain fine particles. By including the fine particles in the resin, the fine particles come into contact with each other in the thermocompression bonding process, so that higher conductivity can be expressed after the thermocompression bonding.
  • conductive particles are used as the fine particles, at least one metal particle selected from silver, copper, platinum, nickel, gold, tin, aluminum, bismuth, indium, palladium, zinc, cobalt, etc., or an alloy thereof Mixing etc. can be applied. Further, it may be a carbon material or a composite material of carbon particles and metal.
  • it may be one in which at least one inorganic oxide selected from alumina, silica, ceramics, titanium oxide, glass and the like is subjected to metal coating, epoxy resin, acrylic resin, polyimide resin, phenol resin, urethane resin.
  • at least one selected from silicon resins and the like, or a mixture or copolymer of these resins may be provided with a metal coating.
  • the size of the fine particles is 2 to 30 ⁇ m ⁇ , preferably about 10 ⁇ m in average particle size.
  • the conductive resin preferably has high light transmittance. Specifically, a transparent resin having a light transmittance of 80% or more with respect to the total energy in the wavelength region of 400 to 1000 nm is preferable.
  • FIG. 7 is a cross-sectional view of the tab line connecting portion to the bus bar electrode shown as the first embodiment of the present invention, and corresponds to the BB cross section of FIG.
  • a tab wire 20 is bonded onto the bus bar electrode 12 on the front surface side of the solar battery cell 6 via a light-transmitting conductive resin 22, and the conductive resin 22 extends from the upper surface of the bus bar electrode 12 to both side surfaces. Provided to cover both side surfaces of the bus bar electrode 12.
  • the conductive resin 22 may cover at least a part of the side surface of the bus bar electrode 12, but in this embodiment, the conductive resin 22 covers all the side surfaces of the bus bar electrode 12 and reaches the surface of the solar battery cell 6. Yes.
  • FIG. 8 is a diagram showing a manufacturing process of the first embodiment.
  • the tab wire 20 is placed and heated ( Press the crimping head at about 140 to 200 ° C. Thereby, the conductive resin 22 is melted to bond the bus bar electrode 12 and the tab wire 20, and at the same time, the conductive resin 22 covers both side surfaces of the bus bar electrode 12.
  • the width of the tab wire 20 is substantially equal to the width of the tape-like conductive resin 22 before heating, and is larger than the width of the bus bar electrode 12.
  • the following effects can be obtained. Since the conductive resin 22 as the conductive adhesive medium is provided so as to cover not only the upper surface of the bus bar electrode 12 but also at least a part of the side surface, the bonding area with the bus bar electrode 12 increases, and the width of the bus bar electrode 12 is increased. Even if it is narrowed, the adhesive strength can be improved, the electrical resistance can be reduced, and the CTM loss can be reduced.
  • the width of the tab wire 20 can be made larger than the width of the bus bar electrode 12 to improve the adhesive strength between the tab wire 20 and the conductive resin 22.
  • the width of the tab line 20 by increasing the width of the tab line 20, the shadowed portion of the tab line 20 increases, but by using the conductive resin 22 having light transmittance, the tab light 20 can be transmitted by oblique light. A decrease in the amount of received light due to the widening of the line 20 can be suppressed.
  • the conductive resin 22 covers the side surface of the bus bar electrode 12 and reaches the surface of the solar battery cell 6, and the adhesion between the conductive resin 22 and the cell surface is good. Therefore, it can be said that this also greatly improves the adhesive strength.
  • the heating temperature at the time of bonding of the conductive resin 22 is about 140 to 200 ° C., which is lower than the heating temperature at the time of bonding by solder (200 to 300 ° C.). Almost no problem.
  • the width can be easily managed in the manufacturing process. There is an advantage that it is easy to reliably cover the side surface of the, or to control the degree of covering.
  • FIG. 9 is a cross-sectional view of the tab line connecting portion to the bus bar electrode shown as the second embodiment of the present invention, and corresponds to the BB cross section of FIG.
  • a tab wire 20 is bonded onto the bus bar electrode 12 on the front surface side of the solar battery cell 6 via a light-transmitting conductive resin 22, and the conductive resin 22 extends from the upper surface of the bus bar electrode 12 to both side surfaces. Provided to cover both side surfaces of the bus bar electrode 12.
  • the width of the tab wire 20 is smaller than the width of the conductive resin 22 and further the width of the bus bar electrode 12. A part of the tab wire 20 bites into the conductive resin 22 by crimping.
  • FIG. 10 is a diagram showing a manufacturing process of the second embodiment.
  • the tab wire 20 is placed and heated ( Press the crimping head at about 150 ° C. Thereby, the conductive resin 22 is melted to bond the bus bar electrode 12 and the tab wire 20, and at the same time, the conductive resin 22 covers both side surfaces of the bus bar electrode 12.
  • the width of the tab wire 20 is smaller than the width of the tape-like conductive resin 22 before heating, and further the width of the bus bar electrode 12. Therefore, a part of the tab wire 20 bites into the conductive resin 22 by pressure bonding.
  • the tab line 20 since the width of the tab line 20 is smaller than the width of the bus bar electrode 12, the tab line 20 does not become a shadow, and the tab line 20 does not block light. In other words, since the portion where there is no bus bar electrode 12 on the cell surface is the light receiving area, the light receiving area is determined by the width of the bus bar electrode 12, and the reduction of the light receiving area due to the tab line 20 can be avoided.
  • the width of the tab wire 20 is narrowed, the contact area between the tab wire 20 and the conductive resin 22 can be secured by biting into the layer of the conductive resin 22, and sufficient adhesive strength can be obtained. Resistance can be reduced.
  • abnormal cross section refers to a rectangular shape that is a standard cross-sectional shape of a bus bar electrode (however, due to printing or the like, it is not a strict rectangular shape but has rounded corners).
  • corrugation and parting part on the outline is not a strict rectangular shape but has rounded corners.
  • FIG. 11 shows a first modification.
  • irregularities concave grooves and ridges along the extending direction of the electrode 12
  • the adhesive surface area is increased, and the adhesive strength and conductivity are increased. I try to improve.
  • the unevenness may not be a triangular shape as shown, but may be an arc shape, a rectangular shape, or the like.
  • FIG. 12 shows a second modification in which a number of fine irregularities are formed on the upper surface of the bus bar electrode 12.
  • FIG. 13 shows a third modification example.
  • the adhesive surface area is increased by the divided parts, thereby improving the adhesive strength and conductivity.
  • the cross-sectional shape of each divided body is not limited to a rectangle as shown in the figure, and may be a circle, a triangle, or the like.
  • FIG. 14 shows a fourth modification in which corner portions of a normal rectangular cross section of the bus bar electrode 12 are cut out to increase the corner portions. Although the adhesive surface area has not increased, it is thought that the adhesive strength increases as the corners increase.
  • the bus bar electrode had four widths of 0.8 mm, 1.0 mm, 1.2 mm, and 1.5 mm.
  • the width of the conductive resin tape was five types of 0.8 mm, 1.0 mm, 1.2 mm, 1.5 mm, and 1.8 mm.
  • the width of the tab line was set to four types of 0.8 mm, 1.0 mm, 1.2 mm, and 1.5 mm. And it combined as Table 1 of an after-mentioned.
  • a conductive resin tape and a tab wire were set on the back surface bus bar electrode arranged at the same position as the front surface on the back surface side as well, and pressure was applied from the same pressure as the surface and in the opposite direction. Since the same pressure is applied to the cell surface from the top and bottom by simultaneous thermocompression bonding on the cell surface and the back surface, pressure is not applied in one direction, so the cell is distorted in one direction. It did not crack.
  • the thermosetting treatment can be performed, for example, by heating and pressing at 140 to 200 ° C. and 0.5 to 20 MPa for 5 to 100 seconds.
  • a solar cell was set on a structure having a top and bottom thermocompression bonding head heated to 170 ° C. and capable of applying a constant pressure from above and below in a direction perpendicular to the cell surface. .
  • the solar battery cell was sandwiched at a pressure of 5 MPa, and heating for a time required for curing the conductive adhesive, for example, 40 seconds was performed.
  • thermosetting adhesive resin when a thermosetting adhesive resin is heated, the viscosity decreases once, and then the curing is accelerated by the curing agent to complete the curing.
  • the conductive resin becomes a fluidized state around the bus bar electrode, and is placed in a state along the shape of the bus bar electrode, and then thermally cured. Therefore, the tab wire and the bus bar electrode are joined in a state where the bus bar electrode is embedded in the conductive resin.
  • the second solar cell was placed on the tab wire and lightly crimped, and bonded in the same manner as described above, and the desired number of connected solar cells were joined.
  • the cells may be thermocompression bonded one by one, or a plurality of cells may be thermocompression bonded simultaneously.
  • the materials used are as follows. Solar cell: 125mm x 125mm, thickness 300 ⁇ m ⁇ Bus bar electrode: Silver glass paste, length 125mm -Front side cover: glass substrate, 30 mm x 30 mm, thickness 3.2 mm ⁇ Tab wire: Sn-Ag-Cu lead-free solder dip-plated on both sides of a 0.15mm thick Cu wire with a predetermined width ⁇ Electroconductive resin tape: Tape in which Cu particles are dispersed in epoxy resin ⁇ Filling adhesive: 30 mm ⁇ 30 mm ⁇ 0.5 mm sealing resin sheet made of ethylene-vinyl acetate copolymer sheet / Back side cover: Back side protective sheet made of polyethylene terephthalate film (200 ⁇ m thickness)
  • the solar cell module was produced as follows. After connecting the cells, place the glass substrate on the heating stage of the decompression laminator, place the sealing resin sheet on the surface, place two sets of the connected two cells on both sides, and then seal another sheet. A resin sheet for stopping was placed, and a back protective sheet was stacked thereon. While maintaining the stage at 150 ° C., a solar cell module was produced by performing a vacuum laminating process for 5 minutes so that a pressure of 0.1 MPa was applied to the laminate.
  • solder is applied to a bus bar electrode having a width of 1.2 mm so as not to protrude from the bus bar electrode, a tab wire having a width of 1.5 mm is placed thereon, and heated to 250 ° C. to melt the solder.
  • Adjacent cells were connected by joining tab wires and bus bar electrodes.
  • place the glass substrate on the heating stage of the decompression laminator place the sealing resin sheet on the surface, place the two connected cells on both sides, and separate one The sealing resin sheet was placed, and the back surface protective sheet was stacked thereon.
  • the solar cell module was produced by performing a vacuum lamination process for 5 minutes so that the pressure of 0.1 Mpa might be added to a laminated body, maintaining a stage at 150 degreeC.
  • the output at the time of cell inspection and the module output were measured, and the CTM loss was calculated to be 7.5%.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Photovoltaic Devices (AREA)
  • Manufacturing & Machinery (AREA)

Abstract

 太陽電池セル6の表面側のバスバー電極12にタブ線20を接続する際に、受光量を減少させることなく、接続部の接着強度の向上と電気抵抗の低減とを図る。 バスバー電極12とタブ線20とは、光透過性を有する導電性樹脂22を介して接着する。この導電性樹脂22は、バスバー電極12の側面の少なくとも一部を覆い、好ましくは太陽電池セル6の表面に達している。タブ線20の幅は、バスバー電極12の幅より小さくしてもよい。

Description

太陽電池モジュール及びその製造方法
 本発明は、複数の太陽電池セルを含んで構成される太陽電池モジュール及びその製造方法に関する。
 太陽電池モジュールは、複数の太陽電池セルをマトリクス状に配列し、隣合う太陽電池セルをタブ線により電気的に直列に接続してなる。
 太陽電池セルは、その表面側に、多数の細線状のフィンガー電極と、これらのフィンガー電極と直交するように設けられた少なくとも1本(通常2本もしくは3本)のバスバー電極とを有している。そして、隣合う太陽電池セルのうち、一方の太陽電池セルのバスバー電極と、他方の太陽電池セルの裏面側の電極とをタブ線により接続している。
 ここにおいて、バスバー電極とタブ線とは、特許文献1、2に示されるように、ハンダにより接続している。尚、ハンダを用いる場合、ハンダがバスバー電極の上面からはみ出さないようにして、受光量が低下するのを防止している。
日本国公開特許公報:特開2004-204256 日本国公開特許公報:特開2005-050780
 ところで、太陽電池セルの受光面積を増大させて変換効率を向上させるために、バスバー電極の線幅を細くして、バスバー電極による遮光部分を低減する手法が考えられる。
 しかし、このようにすると、バスバー電極とハンダとの接触面積が小さくなってしまう。接触面積が小さくなると、バスバー電極とタブ線との間の電気抵抗が増大するため、CTMロスの増大につながるという問題があった。
 CTM(Cell To Module)ロスとは、セル効率とモジュール効率との差を表す指標であり、下記の式により算出される。
 CTMロス=(1-出力比A)×100(%)
 出力比A=〔(モジュール出力)/(セル枚数)〕/〔セル検査時の出力〕
 一方、バスバー電極とタブ線との間の電気抵抗を低減するためには、バスバー電極とハンダ、及び/又は、タブ線とハンダの接触面積を増大させるとよい。バスバー電極やタブ線を細くしたとしても、接触面積を増大若しくは維持できるならば、電気抵抗を増大することなく、受光面積を増大させることが可能となるからである。
 そこで、ハンダでバスバー電極の上面及び側面を覆うようにすることが考えられた。
 しかし、このようにすると、ハンダで覆った部分は全く光を通さないため、完全に遮光され、バスバー電極を細くしても受光面積は増大されない結果となる。
 また、ハンダを溶融する際の温度は、高温(約200~300℃)であり、ハンダが直接セルと接触するようにすると、セルにダメージを与える可能性がある。
 また、ハンダとセル表面との接着強度は極めて低いため、ハンダとセル間の接着強度が上がるというメリットも期待できない。
 本発明は、このような実状に鑑み、太陽電池セルの受光面積の増大、接続部の電気抵抗低減によるCTMロスの低減、接続部の接着強度の向上等を図ることを課題とする。
 本発明に係る太陽電池モジュールは、複数の太陽電池セルを含んで構成され、各太陽電池セルは、表面側にバスバー電極を有する。そして、隣合う太陽電池セルのうち、一方の太陽電池セルのバスバー電極と他方の太陽電池セルの裏面側の電極とがタブ線を介して接続される。
 ここにおいて、バスバー電極とタブ線とは、光透過性を有する導電性樹脂を介して接着され、この導電性樹脂は、バスバー電極の側面の少なくとも一部を覆うように構成される。
 また、本発明に係る太陽電池モジュールの製造方法では、バスバー電極とタブ線とを接着するに際し、バスバー電極の上に、バスバー電極より広幅のテープ状で光透過性を有する導電性樹脂を載置してから、タブ線を載置し、これらを加熱しつつ圧着することにより、導電性樹脂を溶融させてバスバー電極とタブ線とを接着すると同時に、導電性樹脂がバスバー電極の側面の少なくとも一部を覆うようにする。
 本発明によれば、接着のための導電性樹脂がバスバー電極の上面だけでなく、側面の少なくとも一部を覆うように設けられるので、バスバー電極との接着面積が増大し、接着強度を向上できると共に、電気抵抗を低減することができ、CTMロスを低減することができる。
 また、光透過性を有する導電性樹脂を使用することで、バスバー電極の側面を覆ったとしても、斜めの光を透過させることでき、受光量を増大もしくは維持できる。しかも、斜めの光を透過させることができることから、タブ線の幅を太くして、タブ線と導電性樹脂との接着強度の向上及び電気抵抗の低減を図ることも可能となる。
 また、導電性樹脂の溶融温度はハンダに比べ低温であり、セルに対する熱負荷を軽減することができる。
本発明の実施形態として示す太陽電池モジュールの平面図 図1のA-A断面図 太陽電池セルの平面図 太陽電池セルの正面図 太陽電池セル間の接続状態を示す平面図 太陽電池セル間の接続状態を示す正面図 本発明の第1実施形態として示す図6のB-B断面に相当するバスバー電極へのタブ線接続部の断面図 同上第1実施形態の製造過程を示す図 本発明の第2実施形態として示す図6のB-B断面に相当するバスバー電極へのタブ線接続部の断面図 同上第2実施形態の製造過程を示す図 異形断面を有するバスバー電極と組み合わせた変形例1を示す図 異形断面を有するバスバー電極と組み合わせた変形例2を示す図 異形断面を有するバスバー電極と組み合わせた変形例3を示す図 異形断面を有するバスバー電極と組み合わせた変形例4を示す図
 以下、本発明の実施の形態について、詳細に説明する。
 図1は本発明の一実施形態として示す太陽電池モジュールの平面図、図2は図1のA-A断面図である。
 太陽電池モジュール1は、金属(例えばアルミ)製の矩形のフレーム2と、該フレーム2内の上部に嵌め込まれたPV(Photovoltaic)パネル3と、を含んで構成される。
 PVパネル3は、白板強化ガラス等の透明な表面側カバー4と、樹脂フィルムからなる耐候性の裏面側カバー5と、表面側カバー4と裏面側カバー5との間にマトリクス状に配置されて電気的には直列に接続される複数の太陽電池セル6と、表面側カバー4と裏面側カバー5との間に充填されて該カバー4、5と太陽電池セル6とをパネル化する充填接着剤7と、を含んで構成される。
 表面側カバー4としては、太陽光の透過性、絶縁性、耐候性、耐熱性、防湿性、防汚性、耐光性が求められ、更に、化学的強度性、強靱性等に優れ、長期耐久性を確保するためにも耐スクラッチ性、衝撃吸収性等に優れていることが必要である。
 このため、広く透明ガラス基板が使用されており、特に光透過率や耐衝撃強度に優れる厚さ4.0mmの白板強化ガラスが使用されている。材質としてソーダライムガラスが好適に用いられる。尚、厚さは0.1~10mmであればよい。
 また、表面側カバー4としては、公知のガラス板等は勿論のこと、例えば、ポリアミド系樹脂(各種のナイロン)、ポリエステル系樹脂、環状ポリオレフィン系樹脂、ポリスチレン系樹脂、フッ素系樹脂、ポリエチレン系樹脂、(メタ)アクリル系樹脂、ポリカーボネート系樹脂、アセタール系樹脂、セルロース系樹脂、その他等の各種の樹脂のフィルムないしシートを使用することができる。
 裏面側カバー5としては、例えば、アルミシートの両面を絶縁性の優れたポリフッ化ビニルフィルム(フッ素フィルム)で被覆した厚さ約0.1mmの樹脂被覆メタルシートが好適に用いられる。
 例えば、ポリエチレン系樹脂、ポリプロピレン系樹脂、環状ポリオレフィン系樹脂、シンジオタクチックポリスチレン樹脂等のポリスチレン系樹脂、アクリロニトリル-スチレン共重合体(AS樹脂)、アクリロニトリル-ブタジエン-スチレン共重合体(ABS樹脂)、ポリ塩化ビニル系樹脂、ポリフッ化ビニリデン等のフッ素系樹脂、ポリ(メタ)アクリル系樹脂、ポリカーボネート系樹脂、ポリエチレンテレフタレート(PET)又はポリエチレンナフタレート(PEN)等のポリエステル系樹脂、各種のナイロン等のポリアミド系樹脂、ポリイミド系樹脂、ポリブチレンテレフタレート樹脂、ポリアミドイミド系樹脂、ポリアリールフタレート系樹脂、ポリシクロヘキサンジメタノール-テレフタレート樹脂、シリコン系樹脂、ポリスルホン系樹脂、ポリフェニレンスルフィド系樹脂、ポリエーテルスルホン系樹脂、ポリウレタン系樹脂、アセタール系樹脂、セルロース系樹脂、PETとPENの共重合体であるPET-G等のポリエステルからなるポリエステル樹脂、その他等の各種の樹脂のフィルムないしシ-ト、更にセラミック、ガラス、ステンレス等を使用することができる。
 これらフィルムないしシートは、透明であってもよいし、白顔料又は黒顔料が練り込まれた基材であってもよい。
 これらの樹脂で構成されるフィルムは、その充填接着剤との接着強度を確保するために、コロナ放電処理、オゾン処理、酸素ガスもしくは窒素ガスを用いたプラズマ処理、グロー放電処理、化学薬品等を用いて処理する酸化処理等を施すこともできる。
 また、予め、フィルム表面に下地層を設けて充填接着剤との接着強度を確保することもできる。例えば、プライマーコート剤層、アンダーコート剤層、アンカーコート剤層、接着剤層、あるいは、蒸着アンカーコート剤層等を任意に形成して、下地層とすることもできる。
 太陽電池セル6としては、単結晶シリコン、薄膜シリコン、多結晶シリコン、アモルファスシリコン、化合物半導体型セルのいずれであっても構わない。
 一例として、一般的な結晶系シリコンの太陽電池セル6は、p型結晶系シリコン基板の光入射面(発電する際に光が入射する側の表面)にn型拡散層(n型シリコン層)を形成する。より詳しくは、下記のテクスチャ工程、pn接合工程、反射膜形成工程、表裏面集電極形成工程を経て製造する。
 テクスチャ形成工程では、基板にpn接合を形成する前に、酸やアルカリの溶液や反応性プラズマを用いて基板の表面をエッチングすることにより、表面に凹凸構造(テクスチャ構造)を形成する。
 pn接合形成工程では、pn接合の形成方法は特に限定されないが、例えば、p型シリコン基板の受光面側にn型不純物を拡散させることによってpn接合を形成することができる。n型不純物の拡散は、例えばn型不純物を含む材料(例えばPOC13)を含む高温気体中に基板を置くことによって行うことができる。
 反射防止膜形成工程では、基板の受光面側に反射防止膜を形成する。例えば、プラズマCVD法によってSiN膜を形成することができる。
 表裏面集電極形成工程では、後述のように、太陽電池セル6の表面にフィンガー電極及びバスバー電極を形成し、裏面に裏面電極を形成する。
 充填接着剤7としては、透光性、表面側カバー及び裏面側カバーとの接着性を有することが必要である。さらに、太陽電池の保護という観点から、耐光性、耐熱性、耐水性、耐スクラッチ性、衝撃吸収性等に優れていることも必要である。充填接着剤7には、一般に耐湿性に優れたEVA(エチレンビニルアセテート)フィルム等の有機過酸化物を含有するエチレン-酢酸ビニル共重合体からなるフィルムが用いられる。
 その他にも、例えば、アイオノマー樹脂、ポリビニルブチラール樹脂、シリコン樹脂、エポキシ系樹脂、(メタ)アクリル系樹脂、フッ素系樹脂、エチレン-アクリル酸、又は、メタクリル酸共重合体、ポリエチレン樹脂、ポリプロピレン樹脂、ポリエチレンあるいはポリプロピレン等のポリオレフィン系樹脂をアクリル酸、イタコン酸、マレイン酸、フマ-ル酸等の不飽和カルボン酸で変性した酸変性ポリオレフィン系樹脂、その他等の樹脂の1種ないし2種以上の混合物を使用することができる。
 尚、耐光性、耐熱性、耐水性等の観点から、エチレン-酢酸ビニル系樹脂が特に望ましい。
 上記の充填接着剤7の厚さとしては、100~1000μm位、好ましくは、300~500μm位が望ましい。
 次に太陽電池セル6の集電極構造について説明する。
 図3は太陽電池セルの平面図、図4は太陽電池セルの正面図である。
 太陽電池セル6は、表面側が受光面10をなし、その上に、複数のフィンガー電極11が設けられる。フィンガー電極11は、光の入射をできるだけ妨げないように細く形成されて、それぞれ所定の一方向に延在し、延在方向と直交する方向に所定の間隔で並設されている。
 また、太陽電池セル6の表面(受光面10)側には、フィンガー電極11の上に、フィンガー電極11と直交するように、電力を取出すための比較的太いバスバー電極12が設けられる。従って、バスバー電極12は、フィンガー電極11の並設方向に延在して、複数のフィンガー電極11をつないでいる。尚、フィンガー電極11は、例えば0.05mm程度の幅で90本程度形成され、バスバー電極12は、例えば0.5~3mm程度の幅で少なくとも1本(1~4本で、一般的には2本もしくは3本)設けられる。
 太陽電池セル1の裏面側には、全面にわたって裏面電極13が設けられる。また、図示は省略するが、裏面電極13上にもタブ線を接続するためのバスバー電極が設けられる。
 集電極の材料としては、電気的導通を得ることができる公知の材質のものが挙げられ、例えば、Ag、Ni、Cu、Sn、Au、V、Al、Ptなどの金属、あるいはこれらの金属のうち2種以上の金属の合金、混合物などが適用できる。また、これらの金属を複数積層したものでもよい。また、カーボン材料や透明導電材料(ITO)単独もしくはこれらの材料と上記金属の複合体等でもよい。但し、太陽電池で発電した電流を流すときに抵抗とならないことが必要である(5~10Ωcm-1程度)。
 集電極の形成方法としては、一般に導電性ペースト印刷が用いられる。導電性ペーストとしては、一般的な銀を含有したガラスペーストや接着剤樹脂に各種導電性粒子を分散した銀ペースト、金ペースト、カーボンペースト、ニッケルペースト及びアルミニウムペースト、並びに、焼成や蒸着によって形成されるITOなどが挙げられる。これらの中でも、耐熱性、導電性、安定性及びコストの観点から、銀を含有したガラスペーストが好適に用いられる。その他に、マスクパターンを用いたスパッタリング、抵抗加熱、CVD法、光CVD法、メッキ法などが挙げられる。
 フィンガー電極11及びバスバー電極12については、その形成方法は特に限定されないものの、一般的には、銀を含有したガラスペーストを用い、これをスクリーン印刷よる塗布、乾燥、焼成することによって形成することができる。
 裏面電極13については、その形成方法は特に限定されないものの、一般的には、例えば、アルミニウムペーストを塗布、乾燥、焼成することによって形成することができる。尚、表面側の乾燥及び焼成と、裏面側の乾燥及び焼成は、別々に行ってもよく、同時に行ってもよい。
 表面集電極形成における焼成の際、導電性ペーストが反射防止膜をファイアースルーすることによって、表面集電極がn型拡散層に接触するように形成することができる。尚、ファイアースルーとは、絶縁膜である反射防止膜を導電性ペーストに含まれるガラスフリット等が貫通し、表面集電極とn型拡散層とを導通させる現象である。
 次に太陽電池セル6、6間の電気的接続構造について説明する。
 図5は太陽電池セル間の接続状態を示す平面図、図6は太陽電池セル間の接続状態を示す正面図である。
 隣合う太陽電池セル6、6は、相互にタブ線20により電気的に直列接続されている。すなわち、隣合う太陽電池セル6、6について、一方の太陽電池セル6の表面側のバスバー電極12と、他方の太陽電池セル6の裏面側の裏面電極13とを、タブ線20により接続する。言い換えれば、タブ線20の一端を一方の太陽電池セル6の表面側のバスバー電極12に導電性接着媒体を介して接続し、タブ線20の他端を他方の太陽電池セル6の裏面側の裏面電極13に導電性接着媒体を介して接続する。従って、タブ線20は、太陽電池セル6、6間で折れ曲がり、表と裏とをつなぐ。
 タブ線20は、導電性や機械的強度等を保証しつつ、セル表面の集電極とタブ線とを接着させる際に用いられる導電性接着媒体に対して高い接続強度が必要とされる。太陽電池セル間の導通性をより確実に得る観点から、タブ線が、Cu、Ag、Au、Fe、Ni、Pb、Zn、Co、Ti及びMgからなる群より選択される1種以上の金属元素を含むものであることが好ましい。
 一般的なタブ線は、芯材としての銅箔と、芯材表面上に錫を厚さ数十μm程度のメッキ層から成る。例えば、タフピッチ銅や無酸素銅などの純銅製の平角導体を芯材とし、その表面のメッキ層として、Sn-Pb共晶ハンダを用いたものが一般的である。表面のメッキ層として、Sn-Ag系、Sn-Bi系、あるいはSn-Cu系等も用いられる。
 本実施形態では、タブ線20接続用の上記の導電性接着媒体、特に表面側の導電性接着媒体として、光透過性を有する導電性樹脂を使用する。
 かかる導電性樹脂としては、セル表面の集電極との接着性、導電性、更には、信頼性を維持するため耐湿性や耐熱性に優れていることが要求される。
 導電性樹脂として用いられる材料は、例えば、ポリカーボネート、トリアセチルセルロース、ポリエチレンテレフタレート、ポリビニルアルコール、ポリビニルブチラール、ポリエーテルイミド、ポリエステル、エチレン-ビニルアセテートコポリマー、ポリ塩化ビニル、ポリイミド、ポリアミド、ポリウレタン、ポリエチレン、ポリプロピレン、ポリスチレン、ポリアクリロニトリル、ブチラール樹脂、アクリロニトリル-ブタジエン-スチレンコポリマー(ABS樹脂)、エチレン-テトラフルオロエチレンコポリマー、ポリフッ化ビニルなどのフッ素樹脂、エポキシ樹脂、アクリル樹脂、フェノール樹脂、ウレタン樹脂、シリコン樹脂、マレイミド樹脂、ビスマレイミド樹脂、トリアジン-ビスマレイミド樹脂及びフェノール樹脂、シアネート樹脂ポリビニルアセテート、ゴム、ウレタン等の樹脂などが挙げられ、これらから選ばれる少なくとも1種、あるいは、これらの樹脂の混合、共重合などを用いることが好ましい。また、これらの樹脂に熱硬化性あるいはUV硬化性を付与することが好ましい。また、樹脂中に紫外線吸収剤、光安定化剤、酸化防止剤、シランカップリング剤を適宜添加してもよい。また、低温かつ短時間で硬化できるという点から、エポキシ樹脂やアクリル樹脂を用いることが、製造上、より好ましい。
 また、導電性樹脂は、微粒子を含んでもよい。微粒子を樹脂中に含むことにより、熱圧着過程において微粒子同士が接触するため、加熱圧着後により高い導電性を発現することができる。
 微粒子として、導電性粒子を用いる場合には、銀、銅、白金、ニッケル、金、錫、アルミニウム、ビスマス、インジウム、パラジウム、亜鉛、コバルトなどから選ばれる少なくとも1種の金属粒子、あるいはこれらの合金、混合などが適用できる。また、カーボン材料であってもよく、カーボン粒子と金属の複合材料でもよい。また、アルミナ、シリカ、セラミックス、酸化チタン、ガラスなどから選ばれる少なくとも1種の無機酸化物に金属コーティングを施したものであってもよく、エポキシ樹脂、アクリル樹脂、ポリイミド樹脂、フェノール樹脂、ウレタン樹脂、シリコン樹脂などから選ばれる少なくとも1種、あるいは、これらの樹脂の混合体、共重合体などに金属コーティングを施したものであってもよい。微粒子の大きさについては、2~30μmφ、好ましくは、平均粒径10μm程度の大きさがよい。
 更に、導電性樹脂は、高い光透過性を有することが好ましい。具体的には、波長400~1000nmの波長領域において全エネルギーに対する光透過率が80%以上の透明な樹脂が好ましい。
 次に太陽電池セル6の表面側のバスバー電極12へのタブ線20の接続構造について説明する。
 図7は本発明の第1実施形態として示すバスバー電極へのタブ線接続部の断面図であり、図6のB-B断面に相当する。
 太陽電池セル6の表面側のバスバー電極12上に、光透過性を有する導電性樹脂22を介してタブ線20が接着され、導電性樹脂22は、バスバー電極12の上面から、両側面に跨って設けられ、バスバー電極12の両側面を覆っている。
 尚、導電性樹脂22は、バスバー電極12の側面の少なくとも一部を覆うようにすればよいが、本実施形態では、バスバー電極12の側面をすべて覆って、太陽電池セル6の表面に達している。
 図8は同上第1実施形態の製造過程を示す図である。
 太陽電池セル6の表面側のバスバー電極12上に、バスバー電極12より広幅のテープ状で光透過性を有する導電性樹脂22を載置してから、タブ線20を載置し、加熱状態(140~200℃程度)の圧着ヘッドを押付ける。これにより、導電性樹脂22を溶融させて、バスバー電極12とタブ線20とを接着すると同時に、導電性樹脂22がバスバー電極12の両側面を覆うようにする。
 本実施形態の場合、タブ線20の幅は、加熱前のテープ状の導電性樹脂22の幅とほぼ等しくし、バスバー電極12の幅より大きくしてある。
 本実施形態によれば、次のような効果を得ることができる。
 導電性接着媒体としての導電性樹脂22がバスバー電極12の上面だけでなく、側面の少なくとも一部を覆うように設けられるので、バスバー電極12との接着面積が増大し、バスバー電極12の幅を狭くしても、接着強度を向上できると共に、電気抵抗を低減することができ、CTMロスを低減することができる。
 また、光透過性を有する導電性樹脂22を使用することで、バスバー電極12の側面を覆ったとしても、斜めの光を透過させることでき、受光量を増大もしくは維持することができる。
 また、本実施形態によれば、タブ線20の幅をバスバー電極12の幅より大きくして、タブ線20と導電性樹脂22との接着強度を向上することができる。その一方、タブ線20の幅を大きくすることで、タブ線20により影となる部分は増大するが、光透過性を有する導電性樹脂22の使用により、斜めの光を透過させることで、タブ線20の広幅化による受光量の減少を抑制することができる。
 また、本実施形態によれば、導電性樹脂22は、バスバー電極12の側面を覆って、太陽電池セル6の表面に達しており、導電性樹脂22とセル表面との接着性は良好であるので、これによっても接着強度は大幅に向上すると言える。しかも、導電性樹脂22の接着時の加熱温度は140~200℃程度であり、ハンダによる接着時の加熱温度(200~300℃)と比べ、低温であるので、セル表面への熱負荷についてはほとんど問題とならない。
 また、本実施形態によれば、導電性樹脂22として、バスバー電極12より広幅のテープ状に成形されたものを使用することにより、製造工程において、幅を管理しやすくなり、これによってバスバー電極12の側面を確実に覆うこと、あるいは覆う度合いを制御することが容易となるという利点がある。
 図9は本発明の第2実施形態として示すバスバー電極へのタブ線接続部の断面図であり、図6のB-B断面に相当する。
 太陽電池セル6の表面側のバスバー電極12上に、光透過性を有する導電性樹脂22を介してタブ線20が接着され、導電性樹脂22は、バスバー電極12の上面から、両側面に跨って設けられ、バスバー電極12の両側面を覆っている。
 本実施形態では、タブ線20の幅は、導電性樹脂22の幅、更にはバスバー電極12の幅より小さく形成されている。そして、圧着により、タブ線20は、その一部が導電性樹脂22の中に食い込んでいる。
 図10は同上第2実施形態の製造過程を示す図である。
 太陽電池セル6の表面側のバスバー電極12上に、バスバー電極12より広幅のテープ状で光透過性を有する導電性樹脂22を載置してから、タブ線20を載置し、加熱状態(150℃程度)の圧着ヘッドを押付ける。これにより、導電性樹脂22を溶融させて、バスバー電極12とタブ線20とを接着すると同時に、導電性樹脂22がバスバー電極12の両側面を覆うようにする。
 本実施形態の場合、タブ線20の幅は、加熱前のテープ状の導電性樹脂22の幅、更にはバスバー電極12の幅より小さくしてある。従って、タブ線20は、圧着により、その一部が導電性樹脂22の中に食い込むようになる。
 本実施形態によれば、タブ線20の幅がバスバー電極12の幅より小さいので、タブ線20が影となることがなくなり、タブ線20による遮光が起こらない。言い換えれば、セル表面のバスバー電極12がない部分がすべて受光面積となるので、受光面積はバスバー電極12の幅により決定され、タブ線20により受光面積が減少するのを回避できる。
 また、タブ線20の幅が狭くなるが、導電性樹脂22の層内に食い込むことで、タブ線20と導電性樹脂22との接触面積を確保でき、十分な接着強度が得られると共に、電気抵抗を低減することできる。
 次に、前記第1又は第2実施形態と組み合わせて実施する実施形態、具体的には、バスバー電極12を異形断面とすることにより接着強度を向上させるようにした実施形態(変形例)について、説明する。ここにいう「異形断面」とは、バスバー電極の標準的な断面形状である矩形形状(但し、印刷等によるため、厳密な矩形形状ではなく、角部に丸みを有したりしている)に対し、その外形線上に意図的な凹凸や分断部を有している形状をいう。
 図11は変形例1を示し、バスバー電極12の上面に凹凸(電極12の延在方向に沿う凹溝及び凸条)を形成することにより、接着表面積を増大させて、接着強度及び導電性を向上させるようにしている。尚、凹凸は、図示のような三角形状でなくてもよく、円弧状、矩形状などであってもよい。
 図12は変形例2を示し、バスバー電極12の上面に更に多数の細かな凹凸を形成するようにしたものである。
 図13は変形例3を示し、バスバー電極12を複数に分断(分割)することにより、分断部の分、接着表面積を増大させて、接着強度及び導電性を向上させるようにしている。尚、各分割体の断面形状は、図示のような矩形に限らず、円形、三角形などであってもよい。
 図14は、変形例4を示し、バスバー電極12の通常の矩形断面の角部を切り欠いて、角部を増やしたものである。接着表面積は増えていないが、角部が増えることで接着強度が増大すると考えられる。
 尚、図11~図14は前記第1実施形態と組み合わせたのであるが、前記第2実施形態(タブ線20の幅をバスバー電極12の幅より小さくした実施形態)と組み合わせてもよいことは言うまでもない。
 次に実施結果について説明する。
 バスバー電極の幅は、0.8mm、1.0mm、1.2mm、1.5mmの4種類とした。導電性樹脂テープの幅は、0.8mm、1.0mm、1.2mm、1.5mm、1.8mmの5種類とした。タブ線の幅は、0.8mm、1.0mm、1.2mm、1.5mmの4種類とした。そして、後掲の表1のように組み合わせた。
 バスバー電極に対し導電性樹脂を介してタブ線を接合する際は、次のように行った。
 バスバー電極を覆うように導電性樹脂テープを配置した。そして、その上にタブ線を重ね置いて、軽く圧着した。そして、タブ線上部から太陽電池セルの方向へ圧力をかけながら、当該太陽電池セルを加熱した。
 この際、裏面側についても表面と同じ位置に配置された裏面バスバー電極上に、表面と同様に導電性樹脂テープ及びタブ線をセットし、表面と同じ圧力かつ対向する方向から圧力を付与した。セル表面・裏面同時に加熱圧着することにより、セル面に対して上下方向から同じ圧力が付与されることになるので、一方向に圧力が付与されることはなく、そのため、セルが一方向に歪曲し割れることはなかった。
 熱硬化処理は、例えば、140~200℃、0.5~20MPaで、5~100秒間加熱加圧することにより行うことができる。ここでは、170℃に加熱された加熱圧着ヘッドを上下に有する構造で、且つセル面に対して垂直方向に上下から一定の圧力を加えることのできる装置を用い、これに太陽電池セルをセットした。そして、圧力5MPaで太陽電池セルを挟み、導電性接着剤の硬化に必要な時間、例えば、40秒の加熱を行った。
 一般的に、熱硬化性の接着用の樹脂を加熱していくと、一度粘度が下がり、その後に硬化剤により架橋が促進されて硬化が完了する。上述したような手法により加熱圧着することで、導電性樹脂がバスバー電極周辺部において流動状態となり、バスバー電極の形状に沿った状態に配置された後、熱硬化される。そのため、バスバー電極が導電性樹脂に埋め込まれた状態でタブ線とバスバー電極とが接合される。
 同様にして、2枚目の太陽電池セルをタブ線上に重ね置いて軽く圧着し、上述した同様の手順で接着を行い、所望する枚数が連結された太陽電池セルを接合していった。尚、セルは1枚ずつ加熱圧着してもよいし、同時に複数枚を加熱圧着してもよい。
 使用材料は、以下の通りである。
・太陽電池セル:125mm×125mm、厚さ300μm
・バスバー電極:銀ガラスペースト、長さ125mm
・表面側カバー:ガラス基板、30mm×30mm、厚さ3.2mm
・タブ線:所定幅で厚さ0.15mmのCu線の両面にSn-Ag-Cu鉛フリーハンダを20μm厚にディップメッキしたもの
・導電性樹脂テープ:エポキシ樹脂にCu粒子を分散したテープ
・充填接着剤:30mm×30mm×0.5mmのエチレン-酢酸ビニル共重合体シートからなる封止用樹脂シート
・裏面側カバー:ポリエチレンテレフタレートフィルム(200μm厚)からなる裏面保護シート
 太陽電池モジュールは次のように作製した。
 セルを連結した後、減圧ラミネーターの加熱ステージ上に、ガラス基板を置き、その表面に封止用樹脂シートを置き、連結した2セルを2セット両隣りに配置し、更にもう一枚別の封止用樹脂シートを置き、その上に裏面保護シートを重ねた。
 ステージを150℃に維持しながら、0.1MPaの圧力が積層体に付加されるように真空ラミネート処理を5分間行うことにより、太陽電池モジュールを作製した。
 CTMロスは次のように測定した。
 セル検査時の出力(W)と、モジュール出力(W)とを測定し、次式により、出力比及びCTMロスを計算した。
 出力比A=〔(モジュール出力)/(セル枚数)〕/〔セル検査時の出力〕
 CTMロス=(1-出力比A)×100(%)
 この結果は、表1に示される通りである。
 実施例1~4(導電性樹脂テープの幅をバスバー電極の幅より大きくして導電性樹脂がバスバー電極を覆うようにしたもの)では、CTMロスを6%台に抑えることができた。
 これに対し、比較例1、2では、導電性樹脂テープの幅がバスバー電極の幅より小さいため、CTMロスは7%台となった。
 
Figure JPOXMLDOC01-appb-T000001
   
 
 また、従来例(ハンダの場合)についても測定を行った。
 従来例としては、1.2mm幅のバスバー電極上に、バスバー電極からはみ出さないようにハンダを塗布し、その上から1.5mm幅のタブ線を置き、250℃に加熱しハンダを溶融させ、タブ線とバスバー電極とを接合して隣接するセルを連結した。
 そして、セルを連結した後、減圧ラミネーターの加熱ステージ上に、ガラス基板を置き、その表面に封止用樹脂シートを置き、連結した2セルを2セット両隣りに配置し、更にもう一枚別の封止用樹脂シートを置き、その上に裏面保護シートを重ねた。
 そして、ステージを150℃に維持しながら、0.1MPaの圧力が積層体に付加されるように真空ラミネート処理を5分間行うことにより、太陽電池モジュールを作製した。
 かかる従来例について、セル検査時の出力とモジュール出力とを測定し、CTMロスを算出したところ、7.5%であった。
 尚、以上の実施形態はあくまで本発明を例示するものであり、本発明は、説明した実施形態により直接的に示されるものに加え、特許請求の範囲内で当業者によりなされる各種の改良・変更を包含するものであることは言うまでもない。
 1 太陽電池モジュール
 2 フレーム
 3 PVパネル
 4 表面側カバー
 6 裏面側カバー
 7 充填接着剤
10 受光面
11 フィンガー電極
12 バスバー電極
13 裏面電極
20 タブ線
22 光透過性を有する導電性樹脂

Claims (6)

  1.  複数の太陽電池セルを含んで構成され、
     各太陽電池セルは、表面側にバスバー電極を有し、
     隣合う太陽電池セルのうち、一方の太陽電池セルの前記バスバー電極と他方の太陽電池セルの裏面側の電極とがタブ線を介して接続される、太陽電池モジュールであって、
     前記バスバー電極と前記タブ線とは、光透過性を有する導電性樹脂を介して接着され、
     前記導電性樹脂は、前記バスバー電極の側面の少なくとも一部を覆うことを特徴とする、太陽電池モジュール。
  2.  前記導電性樹脂は、前記バスバー電極の側面を覆って、太陽電池セルの表面に達していることを特徴とする、請求項1記載の太陽電池モジュール。
  3.  前記タブ線の幅は、前記バスバー電極の幅より小さくすることを特徴とする、請求項1記載の太陽電池モジュール。
  4.  前記導電性樹脂は、前記バスバー電極より広幅のテープ状に成形されており、加熱により溶融して前記バスバー電極の側面の少なくとも一部を覆うことを特徴とする、請求項1記載の太陽電池モジュール。
  5.  前記バスバー電極は、異形断面を有することを特徴とする、請求項1記載の太陽電池モジュール。
  6.  複数の太陽電池セルを含んで構成され、
     各太陽電池セルは、表面側にバスバー電極を有し、
     隣合う太陽電池セルのうち、一方の太陽電池セルの前記バスバー電極と他方の太陽電池セルの裏面側の電極とがタブ線を介して接続される、太陽電池モジュールの製造方法であって、
     前記バスバー電極と前記タブ線とを接着するに際し、
     前記バスバー電極の上に、前記バスバー電極より広幅のテープ状で光透過性を有する導電性樹脂を載置してから、前記タブ線を載置し、
     これらを加熱しつつ圧着することにより、前記導電性樹脂を溶融させて前記バスバー電極と前記タブ線とを接着すると同時に、前記導電性樹脂が前記バスバー電極の側面の少なくとも一部を覆うようにしたことを特徴とする、太陽電池モジュールの製造方法。
PCT/JP2012/069340 2011-08-01 2012-07-30 太陽電池モジュール及びその製造方法 WO2013018763A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP12819364.6A EP2728626A4 (en) 2011-08-01 2012-07-30 SOLAR CELL MODULE AND METHOD FOR MANUFACTURING THE SAME
US14/171,495 US20140144482A1 (en) 2011-08-01 2014-02-03 Photovoltaic module and method for manufacturing same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011168541A JP2013033819A (ja) 2011-08-01 2011-08-01 太陽電池モジュール及びその製造方法
JP2011-168541 2011-08-01

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US14/171,495 Continuation US20140144482A1 (en) 2011-08-01 2014-02-03 Photovoltaic module and method for manufacturing same

Publications (1)

Publication Number Publication Date
WO2013018763A1 true WO2013018763A1 (ja) 2013-02-07

Family

ID=47629285

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/069340 WO2013018763A1 (ja) 2011-08-01 2012-07-30 太陽電池モジュール及びその製造方法

Country Status (4)

Country Link
US (1) US20140144482A1 (ja)
EP (1) EP2728626A4 (ja)
JP (1) JP2013033819A (ja)
WO (1) WO2013018763A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014232864A (ja) * 2013-04-30 2014-12-11 日立化成株式会社 太陽電池モジュールの製造方法
JP2017050540A (ja) * 2015-09-04 2017-03-09 エルジー エレクトロニクス インコーポレイティド 太陽電池モジュール

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015233096A (ja) * 2014-06-10 2015-12-24 日立化成株式会社 太陽電池ユニット及び太陽電池ユニットの製造方法
JP2015233095A (ja) * 2014-06-10 2015-12-24 日立化成株式会社 太陽電池ユニット及び太陽電池ユニットの製造方法
KR101604067B1 (ko) * 2015-07-17 2016-03-16 에스엠소프트웨어 주식회사 염전용 수중 태양광 모듈 및 그 제조 방법 및 제어 방법
US10566469B2 (en) * 2016-03-29 2020-02-18 Panasonic Intellectual Property Management Co., Ltd. Method of manufacturing solar cell module
WO2018062158A1 (ja) * 2016-09-28 2018-04-05 京セラ株式会社 太陽電池素子
EP3358630B1 (en) * 2017-02-06 2020-04-15 IMEC vzw Partially translucent photovoltaic modules and methods for manufacturing
JP2024122155A (ja) 2023-02-28 2024-09-09 パナソニックホールディングス株式会社 太陽電池モジュールおよび太陽電池システム

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008053681A (ja) * 2006-03-27 2008-03-06 Kyocera Corp 太陽電池モジュール及びその製造方法
JP2008135654A (ja) * 2006-11-29 2008-06-12 Sanyo Electric Co Ltd 太陽電池モジュール
JP2011049349A (ja) * 2009-08-27 2011-03-10 Sanyo Electric Co Ltd 太陽電池ストリング及びそれを用いた太陽電池モジュール

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070235077A1 (en) * 2006-03-27 2007-10-11 Kyocera Corporation Solar Cell Module and Manufacturing Process Thereof
JP5230089B2 (ja) * 2006-09-28 2013-07-10 三洋電機株式会社 太陽電池モジュール
JP4463297B2 (ja) * 2007-08-07 2010-05-19 三洋電機株式会社 太陽電池モジュール
JP5602498B2 (ja) * 2009-07-30 2014-10-08 三洋電機株式会社 太陽電池モジュール
EP2790230A3 (en) * 2009-08-27 2015-01-14 National Institute of Advanced Industrial Science and Technology Integrated multi-junction photovoltaic device, and processes for producing same

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008053681A (ja) * 2006-03-27 2008-03-06 Kyocera Corp 太陽電池モジュール及びその製造方法
JP2008135654A (ja) * 2006-11-29 2008-06-12 Sanyo Electric Co Ltd 太陽電池モジュール
JP2011049349A (ja) * 2009-08-27 2011-03-10 Sanyo Electric Co Ltd 太陽電池ストリング及びそれを用いた太陽電池モジュール

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2728626A4 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014232864A (ja) * 2013-04-30 2014-12-11 日立化成株式会社 太陽電池モジュールの製造方法
JP2017050540A (ja) * 2015-09-04 2017-03-09 エルジー エレクトロニクス インコーポレイティド 太陽電池モジュール

Also Published As

Publication number Publication date
JP2013033819A (ja) 2013-02-14
EP2728626A1 (en) 2014-05-07
EP2728626A4 (en) 2015-04-01
US20140144482A1 (en) 2014-05-29

Similar Documents

Publication Publication Date Title
WO2013018763A1 (ja) 太陽電池モジュール及びその製造方法
US10056504B2 (en) Photovoltaic module
US9748413B2 (en) Solar cell module
KR101732633B1 (ko) 태양전지 모듈
US20150206995A1 (en) Solar cell, solar cell module and solar cell system
WO2015064696A1 (ja) 太陽電池セルおよび太陽電池モジュール
EP2535950B1 (en) Solar cell module
KR20120044540A (ko) 태양전지 패널 및 이의 제조 방법
JP2013033848A (ja) 太陽電池モジュール及びその製造方法
KR20130056338A (ko) 태양전지 모듈, 태양전지 모듈의 제조 방법, 태양전지 셀 및 탭선의 접속 방법
EP2579324B1 (en) Solar cell module and method for manufacturing same
US20140238462A1 (en) Solar cell module
EP2533295B1 (en) Solar cell module
WO2019202958A1 (ja) 太陽電池デバイスおよび太陽電池デバイスの製造方法
WO2014010486A1 (ja) 太陽電池モジュール及びその製造方法
CN102376794B (zh) 太阳能电池板
WO2013125673A1 (ja) 太陽電池モジュール
KR20120044541A (ko) 도전성 접착 필름, 상기 필름을 구비한 태양전지 패널 및 상기 패널의 제조 방법
JP5496413B2 (ja) 太陽電池装置の製造方法
WO2020031574A1 (ja) 太陽電池モジュール
JP2015233096A (ja) 太陽電池ユニット及び太陽電池ユニットの製造方法
JP6455099B2 (ja) 太陽電池ユニット及び太陽電池ユニットの製造方法
CN219246698U (zh) 一种用于光伏组件的导电带、连接结构及光伏组件
KR101642154B1 (ko) 태양전지 패널 및 이의 제조 방법
KR20120138020A (ko) 태양전지 모듈

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12819364

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2012819364

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE