WO2013018682A1 - Solar heat high-reflection structure - Google Patents

Solar heat high-reflection structure Download PDF

Info

Publication number
WO2013018682A1
WO2013018682A1 PCT/JP2012/069115 JP2012069115W WO2013018682A1 WO 2013018682 A1 WO2013018682 A1 WO 2013018682A1 JP 2012069115 W JP2012069115 W JP 2012069115W WO 2013018682 A1 WO2013018682 A1 WO 2013018682A1
Authority
WO
WIPO (PCT)
Prior art keywords
solar heat
highly reflective
reflective structure
solar
paint
Prior art date
Application number
PCT/JP2012/069115
Other languages
French (fr)
Japanese (ja)
Inventor
平山 達郎
修 小玉
善次 藤森
宏明 筒井
津島 宏
Original Assignee
太平洋プレコン工業株式会社
日本ペイント株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 太平洋プレコン工業株式会社, 日本ペイント株式会社 filed Critical 太平洋プレコン工業株式会社
Priority to JP2013526874A priority Critical patent/JP6057434B2/en
Publication of WO2013018682A1 publication Critical patent/WO2013018682A1/en

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04BGENERAL BUILDING CONSTRUCTIONS; WALLS, e.g. PARTITIONS; ROOFS; FLOORS; CEILINGS; INSULATION OR OTHER PROTECTION OF BUILDINGS
    • E04B1/00Constructions in general; Structures which are not restricted either to walls, e.g. partitions, or floors or ceilings or roofs
    • E04B1/62Insulation or other protection; Elements or use of specified material therefor
    • E04B1/74Heat, sound or noise insulation, absorption, or reflection; Other building methods affording favourable thermal or acoustical conditions, e.g. accumulating of heat within walls
    • E04B1/76Heat, sound or noise insulation, absorption, or reflection; Other building methods affording favourable thermal or acoustical conditions, e.g. accumulating of heat within walls specifically with respect to heat only
    • E04B1/78Heat insulating elements
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04DROOF COVERINGS; SKY-LIGHTS; GUTTERS; ROOF-WORKING TOOLS
    • E04D7/00Roof covering exclusively consisting of sealing masses applied in situ; Gravelling of flat roofs
    • EFIXED CONSTRUCTIONS
    • E01CONSTRUCTION OF ROADS, RAILWAYS, OR BRIDGES
    • E01CCONSTRUCTION OF, OR SURFACES FOR, ROADS, SPORTS GROUNDS, OR THE LIKE; MACHINES OR AUXILIARY TOOLS FOR CONSTRUCTION OR REPAIR
    • E01C7/00Coherent pavings made in situ
    • E01C7/08Coherent pavings made in situ made of road-metal and binders
    • E01C7/35Toppings or surface dressings; Methods of mixing, impregnating, or spreading them
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04BGENERAL BUILDING CONSTRUCTIONS; WALLS, e.g. PARTITIONS; ROOFS; FLOORS; CEILINGS; INSULATION OR OTHER PROTECTION OF BUILDINGS
    • E04B1/00Constructions in general; Structures which are not restricted either to walls, e.g. partitions, or floors or ceilings or roofs
    • E04B1/62Insulation or other protection; Elements or use of specified material therefor
    • E04B1/74Heat, sound or noise insulation, absorption, or reflection; Other building methods affording favourable thermal or acoustical conditions, e.g. accumulating of heat within walls
    • E04B1/76Heat, sound or noise insulation, absorption, or reflection; Other building methods affording favourable thermal or acoustical conditions, e.g. accumulating of heat within walls specifically with respect to heat only
    • E04B2001/7691Heat reflecting layers or coatings
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24SSOLAR HEAT COLLECTORS; SOLAR HEAT SYSTEMS
    • F24S23/00Arrangements for concentrating solar-rays for solar heat collectors
    • F24S23/70Arrangements for concentrating solar-rays for solar heat collectors with reflectors
    • F24S23/82Arrangements for concentrating solar-rays for solar heat collectors with reflectors characterised by the material or the construction of the reflector
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/02Diffusing elements; Afocal elements
    • G02B5/0205Diffusing elements; Afocal elements characterised by the diffusing properties
    • G02B5/021Diffusing elements; Afocal elements characterised by the diffusing properties the diffusion taking place at the element's surface, e.g. by means of surface roughening or microprismatic structures
    • G02B5/0215Diffusing elements; Afocal elements characterised by the diffusing properties the diffusion taking place at the element's surface, e.g. by means of surface roughening or microprismatic structures the surface having a regular structure
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/02Diffusing elements; Afocal elements
    • G02B5/0273Diffusing elements; Afocal elements characterized by the use
    • G02B5/0284Diffusing elements; Afocal elements characterized by the use used in reflection

Definitions

  • the present invention relates to a solar heat highly reflective structure for forming a road surface such as a sidewalk or a wall of a building.
  • the heat island phenomenon has become serious in urban areas.
  • the heat island phenomenon is caused by the fact that concrete buildings and asphalt roads store solar energy during the daytime in the summer and release the stored energy at night, which increases the number of days in tropical nights. Is causing.
  • various techniques have been proposed in recent years.
  • Patent Document 1 a technique for applying a thermal barrier paint (solar heat highly reflective paint) to an asphalt pavement surface has been proposed (Patent Document 1).
  • This heat-shielding paint has a higher reflectance of light in the infrared region of sunlight and a smaller amount of sunlight energy absorption than conventional paints. Therefore, the amount of solar energy stored during the day is reduced, the amount of heat released at night is also reduced, and the heat island phenomenon can be suppressed.
  • this technology when sunlight incident on an asphalt pavement etc. hits a surrounding concrete building due to irregular reflection or specular reflection, the sunlight is reflected by the concrete building etc. Energy is stored, and the effect of suppressing the heat island phenomenon is reduced.
  • the present invention is a structure for forming pavements such as roads, walls of buildings, roofs, rooftops, etc., and the amount of retroreflection of sunlight can be reduced without using special objects such as glass beads.
  • An object of the present invention is to provide a structure that can increase the amount of specular reflection and irregular reflection of sunlight and, as a result, can suppress the heat island phenomenon.
  • Retroreflectance of 1.0 or more (Here, retroreflectance is the intensity of reflected light within a range of 30 ° ⁇ 10 ° when light having a wavelength of 900 nm is incident at an angle of 150 °. Is expressed as “S / R” when the reflected light intensity within the range of 150 ° ⁇ 10 ° is “S”.
  • the solar thermal reflection structure characterized by having the surface which has.
  • the unevenness processing is performed so as to form an unevenness having a depth larger than a particle size of a material constituting the solar thermal reflection structure and having regularity or uniformity.
  • the material forming the surface has a solar reflectance of 20% or more as a value specified in JIS K 5602, and a specular gloss of 60 degrees gloss specified in JIS K 5600.
  • the solar heat highly reflective structure according to [1] or [2] which has a value of 80% or less.
  • the solar heat highly reflective structure according to any one of the above [1] to [4], wherein the solar heat highly reflective structure includes a cementitious hardened body as a base material for applying unevenness to the surface.
  • the solar heat highly reflective structure is a hardened body of a precast block or a concrete or mortar cast in place.
  • the solar heat highly reflective structure of the present invention has a surface that has been subjected to uneven processing so as to exhibit a retroreflectance of 1.0 or more, sunlight can be used without using special objects such as glass beads. It is possible to increase the amount of retroreflected light and reduce the amount of specular and irregularly reflected light when irradiated, and as a result, the heat island phenomenon can be suppressed.
  • the solar heat highly reflective structure of the present invention can be made, for example, in the form of a precast block or a hardened body of concrete or mortar that is cast in place, and road pavement, parking lot pavement, open space pavement, building It can be applied to applications such as walls of buildings, roofs of buildings, and rooftops of buildings.
  • FIG. 1 It is a perspective view which shows an example of the solar thermal highly reflective structure of this invention. It is sectional drawing which shows an example of the unevenness
  • the solar heat highly reflective structure of the present invention (hereinafter also referred to as the structure of the present invention) has a surface that has been subjected to uneven processing so as to exhibit a retroreflectance of 1.0 or more.
  • the retroreflectance refers to the reflected light intensity within the range of 30 ° ⁇ 10 ° when the light having a wavelength of 900 nm is incident at an angle of 150 °, “R”, 150 ° ⁇ 10 °.
  • the reflected light intensity within the range is “S”, it is a value represented by “S / R”.
  • the retroreflectance is substantially the same value even if the wavelength of the incident light is changed.
  • the retroreflectance of the structure of the present invention is 1.0 or more, preferably 1.5 or more, more preferably 2.0 or more, and particularly preferably 2.5 or more.
  • the uneven processing has a depth larger than the particle size of the material constituting the structure of the present invention (for example, fine aggregate in the case of mortar) and forms unevenness having repeated regularity or uniformity. Is preferably applied.
  • the depth of the concavo-convex processing is set to the particle size (for example, a particle size selected within the range of 0.3 to 5 mm) of the material (for example, fine aggregate) constituting the structure of the present invention from the viewpoint of increasing the retroreflectance. On the other hand, it is 1 time or more, preferably 2 times or more, more preferably 3 times or more.
  • the upper limit of the depth is not particularly limited, but is preferably 100 times, more preferably 80 times, particularly preferably from the viewpoint of the case where it is difficult to obtain a high retroreflectance due to being too deep. 50 times.
  • the irregularities having repetitive regularity mean irregularities in which irregularities having a specific shape are regularly formed.
  • examples of irregularities having repetitive regularity include slit-like grooves, hemispherical concave portions or convex portions formed on a plane alternately at a certain distance in the vertical and horizontal directions, cubic concave portions or
  • the convex portions may be alternately formed vertically and horizontally at a predetermined distance.
  • the unevenness having uniformity refers to unevenness that is random but formed uniformly throughout. As an example of the unevenness
  • the material forming the surface of the structure of the present invention preferably has the following physical properties.
  • the solar reflectance is preferably 20% or more, more preferably 25% or more, and particularly preferably 30% or more as a value defined in JIS K 5602.
  • the solar reflectance is calculated from the spectral reflectance obtained in a specified wavelength range, and indicates the ratio of the reflected light beam from the coating film to the solar radiation incident on the coating film surface.
  • the solar reflectance is determined in the near-infrared wavelength region (wavelength: 780 to 2,500 nm) and the entire wavelength region (300 to 2,500 nm) according to JIS K 5602.
  • the specular gloss is preferably 80% or less, more preferably 70% or less, still more preferably 60% or less, and particularly preferably 50% or less as a 60 degree gloss value defined in JIS K 5600.
  • the surface of the structure of the present invention is preferably formed of a paint.
  • a paint By using a paint, it becomes easy to obtain preferable values for the solar reflectance and the specular gloss.
  • the paint used in the present invention include a solar heat highly reflective paint.
  • the solar heat highly reflective paint has a solar reflectance ( ⁇ ) value in the near-infrared wavelength region that is equal to or greater than the lightness value.
  • the lightness (L * ) of the coating film is 40.0 or less, it means that the value of solar reflectance ( ⁇ ) in the near-infrared wavelength region is 40.0% or more.
  • the solar heat highly reflective paint includes a pigment exhibiting a high reflectance with respect to light having a wavelength of at least an infrared region of sunlight, a vehicle, and a white pigment blended as necessary.
  • Commercially available solar thermal highly reflective coatings include ATTSU-9 (4F), ATTSU-9 (F), ATTSU-9 (Si), ATTSU-9 ROAD (W), ATTSU-9 ROAD (U) (above, Japan) Paint)).
  • the dry thickness of the paint layer 4 made of a solar heat highly reflective paint is preferably 10 to 1,000 ⁇ m, more preferably 20 to 700 ⁇ m, and particularly preferably 30 to 400 ⁇ m. If the thickness is less than 10 ⁇ m, it is difficult to form such a thin film uniformly. When the thickness exceeds 1,000 ⁇ m, there are problems such as an increase in the cost of the paint.
  • the method for applying the paint is not particularly limited, and examples thereof include spray, brush, roller, and dipping. Among these, spraying is preferable in that a coating layer having a uniform thickness can be formed in the unevenness.
  • the solar heat highly reflective structure 1 of the present invention is obtained by forming a paint layer 4 made of a solar heat highly reflective paint on the surface of a surface forming layer 3 formed on a base layer 2. On the surface of the surface forming layer 3, a large number of unevennesses (for example, slits) 5 are formed by unevenness processing.
  • the block (precast product) may be sufficient as the solar heat highly reflective structure of this invention, and the hardening body obtained by on-site strike may be sufficient as it.
  • a large number of irregularities (slits) 5 formed on the surface of the surface forming layer 3 in FIG. 1 can have various forms.
  • it can be formed as several types of groove-like slits 5 having different depths.
  • the slit 5 has, for example, a groove 5a having a depth of 1.0 to 1.4 mm and a width of 3 to 5 mm, a groove 5b having a depth of 1.8 to 2.2 mm and a width of 3 to 5 mm, and a depth of 2
  • a groove 5c having a width of 3 to 5 mm and a width of 3 to 5 mm between .8 to 3.2 mm, so that the width of the flat convex portion between the grooves is 3 to 6 mm, and a combination of these three grooves appears repeatedly.
  • the slit 5 can be formed as many groove-shaped slits 5 which have the same depth, for example, as shown in FIG.
  • the slit 5 is formed by forming a groove having a depth of 1.2 to 1.6 mm and a width of 2 to 4 mm so that a flat convex portion between the grooves has a width of 3 to 7 mm. it can.
  • corrugation (slit) 5 is groove shape, it is not limited to the form shown in FIG.2 and FIG.3, It can also have another form.
  • the recesses of the groove-like unevenness 5 are preferably 1 to 5 mm in depth and 2 to 8 mm in width from the viewpoint of reducing the amount of specular reflection and irregular reflection of sunlight.
  • the width of the convex portion between the concave portions is preferably 3 to 7 mm from the viewpoint of reducing the amount of specular reflection and irregular reflection of sunlight.
  • the depth of a recessed part or the height of a convex part is the specular reflection of sunlight, and From the viewpoint of reducing the amount of irregular reflection, it is preferably 1 to 5 mm.
  • the surface forming layer 3 is made of a porous cement-based cured body or a non-porous cement-based cured body.
  • the porous cement-based cured body is usually a porous mortar cured body or a porous concrete cured body.
  • the porous cement-based cured body forming the surface forming layer 3 is preferably 100 parts by weight of cement, 300 to 650 parts by weight of aggregate, 25 to 35 parts by weight of water, and 0 to 3 parts by weight of a water reducing agent (solid It is made of a cured product of a composition including As the cement, ordinary Portland cement, low heat Portland cement, intermediate heat Portland cement, eco-cement and the like can be used.
  • the aggregate preferably has a maximum particle size of 5 mm or less from the viewpoint of not affecting the shape of the irregularities 5 on the surface of the surface forming layer 3.
  • the maximum particle size is preferably 0.6 mm or more, more preferably 1.0 mm or more from the viewpoint of imparting water permeability.
  • the amount of the aggregate is preferably 300 to 650 parts by mass, more preferably 350 to 600 parts by mass, and particularly preferably 400 to 550 parts by mass from the viewpoint of ensuring water permeability.
  • the water reducing agent polycarboxylic acid-based, sulfonic acid-based water reducing agent, high performance water reducing agent, high performance AE water reducing agent, or the like can be used.
  • a water reducing agent By using a water reducing agent, the amount of water can be reduced and the strength of the porous cementitious hardened body can be increased.
  • the amount of the water reducing agent is, for example, 0.1 to 3 parts by mass in terms of solid content with respect to 100 parts by mass of cement.
  • use of a water reducing agent is not essential but arbitrary.
  • auxiliary materials such as a cement admixture can be used as necessary.
  • auxiliary materials include silica fume, blast furnace slag fine powder, limestone powder, and quartz powder.
  • the amount of the auxiliary material is preferably 0 to 50 parts by mass with respect to 100 parts by mass of cement.
  • the non-porous cement-based cured body for example, general-purpose concrete or mortar can be used.
  • the maximum particle size of the aggregate is preferably 5 mm or less from the viewpoint of not affecting the shape of the unevenness 5 on the surface of the surface forming layer 3.
  • the amount of the aggregate is preferably 0 to 600 parts by mass, more preferably 0 to 500 parts by mass, preferably 100 parts by mass with respect to 100 parts by mass of cement, from the viewpoint of the strength of the non-porous cement-based cured body. 0 to 400 parts by mass.
  • the thickness of the surface forming layer 3 is not particularly limited, but is usually 2 to 50 mm.
  • the base layer 2 is made of, for example, a cement-based cured body.
  • the cement-based cured body include a porous concrete cured body, a porous mortar cured body, a non-porous concrete cured body, and a non-porous mortar cured body.
  • the solar heat highly reflective structure 1 of the present invention is a structure that is susceptible to rain water such as road pavement, building roof, building rooftop, etc., as a suitable form example of the cement-based structure.
  • the thing which both 2 and the surface formation layer 3 are porous cement hardening bodies (porous concrete hardening body and / or porous mortar hardening body) is mentioned.
  • the water permeability of the base layer 2 is preferably larger than that of the surface forming layer 3.
  • the solar heat highly reflective structure 1 of the present invention is a structure that is unlikely to receive rainwater such as a wall of a building
  • suitable examples of the solar heat highly reflective structure include a base layer 2 and a surface forming layer 3.
  • the non-porous cement-based cured body for example, general-purpose concrete or mortar can be used.
  • the preferable numerical range of the maximum particle size and the blending amount of the aggregate is the same as the preferable numerical range in the non-porous cement-based cured body forming the surface forming layer.
  • retroreflected light B when sunlight A is incident on the solar thermal reflection structure 1 of the present invention at an angle of 150 degrees, retroreflected light B that is reflected at an angle of 150 degrees and a mirror surface that is reflected at an angle of 30 degrees
  • Three types of reflected light are generated: reflected light C and irregularly reflected light D that is reflected at other angles.
  • retroreflected light B among these three kinds of reflected light, retroreflected light B has the highest light intensity, and has the sharpest peak in the graph with the reflection angle on the horizontal axis and the light intensity on the vertical axis. . Therefore, as shown in FIG.
  • the solar heat reflective structure of the present invention is a pavement of roads such as sidewalks and roadways, pavements of parking lots, pavements of plazas in front of stations, shopping malls, schools, etc., walls of buildings such as buildings made of reinforced concrete, It can be applied to roofs of buildings such as public halls, gymnasiums and music halls made of reinforced concrete, and rooftops of buildings such as buildings made of reinforced concrete.
  • the surface forming layer is a porous cured body (cured body having water permeability) of a composition containing 100 parts by weight of ordinary Portland cement, 424 parts by weight of No. 3 silica sand (maximum particle size: 1.2 mm), and 30 parts by weight of water. is there.
  • the base layer is a porous hardened body of a composition comprising ordinary Portland cement 100 parts by mass, No. 7 crushed stone (maximum particle size: 5 mm) 556 parts by mass, crushed sand (maximum particle size: 2.5 mm) 59 parts by mass, and water 30 parts by mass. (A cured product having water permeability).
  • the uneven processing 1 is a groove 5a having a depth of 1.2 mm and a width of 4 mm, a groove 5c having a depth of 3.0 mm and a width of 4 mm, and a depth of 2.0 mm and a width of 4 mm.
  • the groove 5b is formed so that the width of the flat convex portion between the grooves is 4 mm, and the combination of these grooves 5a, 5c, and 5b appears repeatedly.
  • the concavo-convex process 2 is formed by forming a large number of grooves having a depth of 1.4 mm and a width of 3 mm so that the width of the flat convex portion between the grooves is 5 mm. is there.
  • Non-porous cured body test (1) Production of non-porous cured body A non-porous cured body comprising a surface forming layer and a base layer was produced.
  • the surface forming layer is a non-porous mortar cured product (a mortar cured product having no water permeability) of a composition containing 100 parts by weight of ordinary Portland cement, 365 parts by weight of crushed sand (maximum particle size: 2.5 mm), and 30 parts by weight of water. ).
  • the base layer is non-porous concrete of a composition comprising 100 parts by weight of eco-cement, 246 parts by weight of crushed sand (maximum particle size: 2.5 mm), 295 parts by weight of No.

Abstract

Provided is a structure for paving roads and the like and forming the walls, roofs, rooftops, and the like of buildings, the structure achieving an increase in the amount of retroreflection of sunlight and a reduction in the amount of specular reflection and diffuse reflection of sunlight even if special objects such as glass beads are not arranged on the surface of a paint layer, and, as a result, enabling suppression of a heat island phenomenon. A solar heat high-reflection structure (1) has a surface that is subjected to roughening processing so that a retroreflectance of 1.0 or more (here, the retroreflectance is a value represented by "S/R" where "R" is the reflected light intensity within the range of 30°±10° and "S" is the reflected light intensity within the range of 150°±10° when light with a wavelength of 900 nm is incident at an angle of 150°) is exhibited. The surface is formed by placing a paint layer (4) produced from a solar heat high-reflection paint on a surface forming layer (3) having roughness (5).

Description

太陽熱高反射構造体Solar thermal reflection structure
 本発明は、歩道等の路面やビルの壁等を形成するための太陽熱高反射構造体に関する。 The present invention relates to a solar heat highly reflective structure for forming a road surface such as a sidewalk or a wall of a building.
 近年、都市部などにおいて、ヒートアイランド現象が深刻化している。ヒートアイランド現象とは、夏季に、コンクリート建築物やアスファルト道路が日中、太陽光のエネルギーを蓄熱し、その蓄熱したエネルギーを夜間に放出することなどによって生じるものであり、熱帯夜の日数の増大等を引き起こしている。
 このようなヒートアイランド現象を緩和するために、近年、種々の技術が提案されている。
In recent years, the heat island phenomenon has become serious in urban areas. The heat island phenomenon is caused by the fact that concrete buildings and asphalt roads store solar energy during the daytime in the summer and release the stored energy at night, which increases the number of days in tropical nights. Is causing.
In order to alleviate such a heat island phenomenon, various techniques have been proposed in recent years.
 一例として、アスファルト舗装面等に遮熱塗料(太陽熱高反射塗料)を塗布する技術が、提案されている(特許文献1)。この遮熱塗料は、従来の塗料に比べて、太陽光の赤外領域の光の反射率が高く、太陽光のエネルギーの吸収量が少ない。そのため、日中に蓄えられる太陽光のエネルギーの量が減少し、夜間における放熱量も減少して、ヒートアイランド現象を抑制することができる。
 しかし、この技術を用いた場合であっても、アスファルト舗装面等に入射した太陽光が、乱反射または鏡面反射によって、周囲のコンクリート建築物等に当たった場合、当該コンクリート建築物等によって、太陽光のエネルギーが蓄えられ、ヒートアイランド現象の抑制効果が小さくなるという問題があった。
As an example, a technique for applying a thermal barrier paint (solar heat highly reflective paint) to an asphalt pavement surface has been proposed (Patent Document 1). This heat-shielding paint has a higher reflectance of light in the infrared region of sunlight and a smaller amount of sunlight energy absorption than conventional paints. Therefore, the amount of solar energy stored during the day is reduced, the amount of heat released at night is also reduced, and the heat island phenomenon can be suppressed.
However, even when this technology is used, when sunlight incident on an asphalt pavement etc. hits a surrounding concrete building due to irregular reflection or specular reflection, the sunlight is reflected by the concrete building etc. Energy is stored, and the effect of suppressing the heat island phenomenon is reduced.
 そこで、太陽光の入射方向と同じ方向に反射させる再帰反射の機能を有する塗料層を、インターロッキングブロック等の表面に形成させる技術が、提案されている(特許文献2~3参照)。この技術は、塗料層の表面にガラスビーズを配列させることによって、太陽光を、入射方向と同じ方向に再帰反射させて、地表面付近の温度の上昇を抑制するものである。 Therefore, a technique has been proposed in which a coating layer having a retroreflection function for reflecting in the same direction as the incident direction of sunlight is formed on the surface of an interlocking block or the like (see Patent Documents 2 to 3). In this technology, sunlight is retroreflected in the same direction as the incident direction by arranging glass beads on the surface of the paint layer, thereby suppressing an increase in temperature near the ground surface.
特開2004-251108号公報JP 2004-251108 A 特開2009-127325号公報JP 2009-127325 A 特開2009-127326号公報JP 2009-127326 A
 上述の再帰反射の機能を有する塗料層を形成させる従来技術においては、太陽光を再帰反射させるために、塗料層の表面にガラスビーズを配列させている。そのため、塗料のみによって塗料層を形成させる場合に比べて、ガラスビーズの分だけ材料のコストが増大し、また、塗料層の形成後に該塗料層の表面にガラスビーズを配列させる工程が必要であるため、再帰反射の機能の付与に手間がかかるという問題があった。 In the conventional technology for forming the paint layer having the retroreflection function described above, glass beads are arranged on the surface of the paint layer in order to retroreflect sunlight. Therefore, compared with the case where the paint layer is formed only by the paint, the cost of the material is increased by the amount of the glass beads, and the process of arranging the glass beads on the surface of the paint layer after the formation of the paint layer is necessary. Therefore, there is a problem that it takes time to provide the function of retroreflection.
 本発明は、道路等の舗装や建造物の壁、屋根、屋上等を形成するための構造体であって、ガラスビーズ等の特殊な物体を用いなくても、太陽光の再帰反射の量を増大させ、かつ、太陽光の鏡面反射及び乱反射の量を減少させることができ、その結果、ヒートアイランド現象を抑制することのできる構造体を提供することを目的とする。 The present invention is a structure for forming pavements such as roads, walls of buildings, roofs, rooftops, etc., and the amount of retroreflection of sunlight can be reduced without using special objects such as glass beads. An object of the present invention is to provide a structure that can increase the amount of specular reflection and irregular reflection of sunlight and, as a result, can suppress the heat island phenomenon.
 本発明者は、上記課題を解決するために鋭意検討した結果、太陽光が照射される面である表面に、一定の値以上の再帰反射率を発現するように凹凸加工を施すことによって、前記の目的を達成しうることを見出し、本発明を完成した。
 すなわち、本発明は、以下の[1]~[6]を提供するものである。
[1] 1.0以上の再帰反射率(ここで、再帰反射率とは、150度の角度で900nmの波長の光を入射させた場合において、30度±10度の範囲内の反射光強度を「R」、150度±10度の範囲内の反射光強度を「S」としたときに、「S/R」で表される値をいう。)を発現するように凹凸加工を施されている表面を有することを特徴とする太陽熱高反射構造体。
[2] 上記凹凸加工が、上記太陽熱高反射構造体を構成する材料の粒度よりも大きな深さを有しかつ繰り返し規則性または均一性を有する凹凸を形成するように施されている前記[1]に記載の太陽熱高反射構造体。
[3] 上記表面を形成する材料は、日射反射率が、JIS K 5602に規定されている値として20%以上で、かつ、鏡面光沢度が、JIS K 5600に規定されている60度グロスの値として80%以下である前記[1]又は[2]に記載の太陽熱高反射構造体。
[4] 上記表面が、塗料によって形成されている前記[1]~[3]のいずれかに記載の太陽熱高反射構造体。
[5] 上記太陽熱高反射構造体が、上記表面に凹凸加工を施すための基材として、セメント質硬化体を含む前記[1]~[4]のいずれかに記載の太陽熱高反射構造体。
[6] 上記太陽熱高反射構造体が、プレキャストブロック、または、現場打ちのコンクリートもしくはモルタルの硬化体である前記[1]~[5]のいずれかに記載の太陽熱高反射構造体。
As a result of intensive studies to solve the above-mentioned problems, the present inventor performs uneven processing so as to express a retroreflectance of a certain value or more on the surface that is a surface irradiated with sunlight, As a result, the present invention has been completed.
That is, the present invention provides the following [1] to [6].
[1] Retroreflectance of 1.0 or more (Here, retroreflectance is the intensity of reflected light within a range of 30 ° ± 10 ° when light having a wavelength of 900 nm is incident at an angle of 150 °. Is expressed as “S / R” when the reflected light intensity within the range of 150 ° ± 10 ° is “S”. The solar thermal reflection structure characterized by having the surface which has.
[2] The unevenness processing is performed so as to form an unevenness having a depth larger than a particle size of a material constituting the solar thermal reflection structure and having regularity or uniformity. ] The solar-heat highly reflective structure of description.
[3] The material forming the surface has a solar reflectance of 20% or more as a value specified in JIS K 5602, and a specular gloss of 60 degrees gloss specified in JIS K 5600. The solar heat highly reflective structure according to [1] or [2], which has a value of 80% or less.
[4] The solar heat highly reflective structure according to any one of [1] to [3], wherein the surface is formed of a paint.
[5] The solar heat highly reflective structure according to any one of the above [1] to [4], wherein the solar heat highly reflective structure includes a cementitious hardened body as a base material for applying unevenness to the surface.
[6] The solar heat highly reflective structure according to any one of the above [1] to [5], wherein the solar heat highly reflective structure is a hardened body of a precast block or a concrete or mortar cast in place.
 本発明の太陽熱高反射構造体は、1.0以上の再帰反射率を発現するように凹凸加工を施されている表面を有するので、ガラスビーズ等の特殊な物体を用いなくても、太陽光が照射したときの再帰反射の光の量を増大させ、かつ鏡面反射及び乱反射の光の量を減少させることができ、その結果、ヒートアイランド現象を抑制することができる。
 本発明の太陽熱高反射構造体は、例えば、プレキャストブロック、または、現場打ちのコンクリートもしくはモルタルの硬化体の形態で作製することができ、道路の舗装、駐車場の舗装、広場の舗装、建造物の壁、建造物の屋根、建造物の屋上等の用途に適用することができる。
Since the solar heat highly reflective structure of the present invention has a surface that has been subjected to uneven processing so as to exhibit a retroreflectance of 1.0 or more, sunlight can be used without using special objects such as glass beads. It is possible to increase the amount of retroreflected light and reduce the amount of specular and irregularly reflected light when irradiated, and as a result, the heat island phenomenon can be suppressed.
The solar heat highly reflective structure of the present invention can be made, for example, in the form of a precast block or a hardened body of concrete or mortar that is cast in place, and road pavement, parking lot pavement, open space pavement, building It can be applied to applications such as walls of buildings, roofs of buildings, and rooftops of buildings.
本発明の太陽熱高反射構造体の一例を示す斜視図である。It is a perspective view which shows an example of the solar thermal highly reflective structure of this invention. 表面形成層の表面の凹凸の一例を示す断面図である。It is sectional drawing which shows an example of the unevenness | corrugation of the surface of a surface formation layer. 表面形成層の表面の凹凸の他の例を示す断面図である。It is sectional drawing which shows the other example of the unevenness | corrugation of the surface of a surface formation layer. 相対反射光強度の測定方法を説明するための図である。It is a figure for demonstrating the measuring method of relative reflected light intensity. ビルの壁面に太陽光が照射した場合における再帰反射及び鏡面反射の方向を説明するための図である。It is a figure for demonstrating the direction of retroreflection and specular reflection when sunlight is irradiated to the wall surface of a building.
 本発明の太陽熱高反射構造体(以下、本発明の構造体ともいう。)は、1.0以上の再帰反射率を発現するように凹凸加工を施されている表面を有するものである。
 本明細書中、再帰反射率とは、150度の角度で900nmの波長の光を入射させた場合において、30度±10度の範囲内の反射光強度を「R」、150度±10度の範囲内の反射光強度を「S」としたときに、「S/R」で表される値をいう。
 なお、再帰反射率は、入射させる光の波長を変えても、ほぼ同じ値となる。
 本発明の構造体の再帰反射率は、1.0以上、好ましくは1.5以上、より好ましくは2.0以上、特に好ましくは2.5以上である。
The solar heat highly reflective structure of the present invention (hereinafter also referred to as the structure of the present invention) has a surface that has been subjected to uneven processing so as to exhibit a retroreflectance of 1.0 or more.
In this specification, the retroreflectance refers to the reflected light intensity within the range of 30 ° ± 10 ° when the light having a wavelength of 900 nm is incident at an angle of 150 °, “R”, 150 ° ± 10 °. When the reflected light intensity within the range is “S”, it is a value represented by “S / R”.
The retroreflectance is substantially the same value even if the wavelength of the incident light is changed.
The retroreflectance of the structure of the present invention is 1.0 or more, preferably 1.5 or more, more preferably 2.0 or more, and particularly preferably 2.5 or more.
 前記の凹凸加工は、本発明の構造体を構成する材料(例えば、モルタルの場合、細骨材)の粒度よりも大きな深さを有しかつ繰り返し規則性または均一性を有する凹凸を形成するように施されていることが好ましい。
 凹凸加工の深さは、再帰反射率を高める観点から、本発明の構造体を構成する材料(例えば、細骨材)の粒度(例えば、0.3~5mmの範囲内で選ばれる粒度)に対して、1倍以上、好ましくは2倍以上、より好ましくは3倍以上である。該深さの上限は、特に限定されないが、深すぎて、高い再帰反射率が得難くなる場合がある観点から、前記粒度に対して、好ましくは100倍、より好ましくは80倍、特に好ましくは50倍である。
The uneven processing has a depth larger than the particle size of the material constituting the structure of the present invention (for example, fine aggregate in the case of mortar) and forms unevenness having repeated regularity or uniformity. Is preferably applied.
The depth of the concavo-convex processing is set to the particle size (for example, a particle size selected within the range of 0.3 to 5 mm) of the material (for example, fine aggregate) constituting the structure of the present invention from the viewpoint of increasing the retroreflectance. On the other hand, it is 1 time or more, preferably 2 times or more, more preferably 3 times or more. The upper limit of the depth is not particularly limited, but is preferably 100 times, more preferably 80 times, particularly preferably from the viewpoint of the case where it is difficult to obtain a high retroreflectance due to being too deep. 50 times.
 本明細書中、繰り返し規則性を有する凹凸とは、特定の形状を有する凹凸単位が繰り返し規則的に形成された凹凸をいう。
 繰り返し規則性を有する凹凸の例としては、スリット状の溝、平面上に半球状の凹部もしくは凸部を縦横に交互に一定の距離を隔てて形成させたもの、平面上に立方体状の凹部もしくは凸部を縦横に交互に一定の距離を隔てて形成させたもの等が挙げられる。
 本明細書中、均一性を有する凹凸とは、ランダムではあるが、全体に均一に形成された凹凸をいう。
 均一性を有する凹凸の例としては、凸部と凹部を交互に、深さ及び互いの距離をランダムに変化させながら形成させて、全体に均一な凹凸を形成させてなるもの等が挙げられる。
In the present specification, the irregularities having repetitive regularity mean irregularities in which irregularities having a specific shape are regularly formed.
Examples of irregularities having repetitive regularity include slit-like grooves, hemispherical concave portions or convex portions formed on a plane alternately at a certain distance in the vertical and horizontal directions, cubic concave portions or For example, the convex portions may be alternately formed vertically and horizontally at a predetermined distance.
In the present specification, the unevenness having uniformity refers to unevenness that is random but formed uniformly throughout.
As an example of the unevenness | corrugation which has uniformity, what forms the unevenness | corrugation in the whole etc. by forming a convex part and a recessed part alternately, changing depth and a mutual distance at random, etc. are mentioned.
 本発明の構造体の表面を形成する材料は、好ましくは、以下の物性を有するものである。
 日射反射率は、JIS K 5602に規定されている値として、好ましくは20%以上、より好ましくは25%以上、特に好ましくは30%以上である。
 なお、日射反射率とは、規定の波長域において求めた分光反射率から算出され、塗膜表面に入射する日射に対する塗膜からの反射光束の比率を指す。日射反射率は、JIS K 5602に従い、近赤外波長域(波長:780~2,500nm)および全波長域(300~2,500nm)において求められる。
 鏡面光沢度は、JIS K 5600に規定されている60度グロスの値として、好ましくは80%以下、より好ましくは70%以下、さらに好ましくは60%以下、特に好ましくは50%以下である。
The material forming the surface of the structure of the present invention preferably has the following physical properties.
The solar reflectance is preferably 20% or more, more preferably 25% or more, and particularly preferably 30% or more as a value defined in JIS K 5602.
The solar reflectance is calculated from the spectral reflectance obtained in a specified wavelength range, and indicates the ratio of the reflected light beam from the coating film to the solar radiation incident on the coating film surface. The solar reflectance is determined in the near-infrared wavelength region (wavelength: 780 to 2,500 nm) and the entire wavelength region (300 to 2,500 nm) according to JIS K 5602.
The specular gloss is preferably 80% or less, more preferably 70% or less, still more preferably 60% or less, and particularly preferably 50% or less as a 60 degree gloss value defined in JIS K 5600.
 本発明の構造体の表面は、塗料によって形成されていることが好ましい。塗料を用いることによって、前記の日射反射率及び鏡面光沢度について好ましい値を得ることが容易となる。
 本発明で用いる塗料としては、例えば、太陽熱高反射塗料が挙げられる。
 ここで、太陽熱高反射塗料とは、塗膜の明度(L)が40.0を超える場合は、近赤外波長域の日射反射率(ρ)の値が、当該明度の値以上であるものをいい、塗膜の明度(L)が40.0以下である場合は、近赤外波長域の日射反射率(ρ)の値が、40.0%以上であるものをいう。
The surface of the structure of the present invention is preferably formed of a paint. By using a paint, it becomes easy to obtain preferable values for the solar reflectance and the specular gloss.
Examples of the paint used in the present invention include a solar heat highly reflective paint.
Here, when the lightness (L * ) of the coating film exceeds 40.0, the solar heat highly reflective paint has a solar reflectance (ρ) value in the near-infrared wavelength region that is equal to or greater than the lightness value. When the lightness (L * ) of the coating film is 40.0 or less, it means that the value of solar reflectance (ρ) in the near-infrared wavelength region is 40.0% or more.
 太陽熱高反射塗料は、太陽光の少なくとも赤外領域の波長の光に対して高い反射率を示す顔料と、ビヒクルと、必要に応じて配合される白色顔料を含む。
 太陽熱高反射塗料の市販品としては、ATTSU-9(4F)、ATTSU-9(F)、ATTSU-9(Si)、ATTSU-9 ROAD(W)、ATTSU-9 ROAD(U)(以上、日本ペイント社製)等が挙げられる。
The solar heat highly reflective paint includes a pigment exhibiting a high reflectance with respect to light having a wavelength of at least an infrared region of sunlight, a vehicle, and a white pigment blended as necessary.
Commercially available solar thermal highly reflective coatings include ATTSU-9 (4F), ATTSU-9 (F), ATTSU-9 (Si), ATTSU-9 ROAD (W), ATTSU-9 ROAD (U) (above, Japan) Paint)).
 太陽熱高反射塗料からなる塗料層4の乾燥状態での厚さは、好ましくは10~1,000μm、より好ましくは20~700μm、特に好ましくは30~400μmである。該厚さが10μm未満では、このような薄膜を均一に形成させることが困難になる。該厚さが1,000μmを超えると、塗料のコストの増大などの問題がある。
 塗料の塗布方法としては、特に限定されないが、例えば、スプレー、刷毛、ローラー、ディッピング等が挙げられる。中でも、スプレーは、凹凸の中まで均一な厚みの塗料層を形成させることができる点で、好ましい。
The dry thickness of the paint layer 4 made of a solar heat highly reflective paint is preferably 10 to 1,000 μm, more preferably 20 to 700 μm, and particularly preferably 30 to 400 μm. If the thickness is less than 10 μm, it is difficult to form such a thin film uniformly. When the thickness exceeds 1,000 μm, there are problems such as an increase in the cost of the paint.
The method for applying the paint is not particularly limited, and examples thereof include spray, brush, roller, and dipping. Among these, spraying is preferable in that a coating layer having a uniform thickness can be formed in the unevenness.
 次に、図面を参照しつつ、本発明の太陽熱高反射構造体の実施形態例を説明する。なお、図中、同じ名称を有する各部は、同一の符号を付してある。
 本発明の太陽熱高反射構造体1は、基層2の上に形成された表面形成層3の表面に、太陽熱高反射塗料からなる塗料層4を形成させてなるものである。表面形成層3の表面には、凹凸加工によって、多数の凹凸(例えば、スリット)5が形成されている。
 なお、本発明の太陽熱高反射構造体は、ブロック(プレキャスト製品)でもよいし、現場打ちで得られる硬化体でもよい。
Next, embodiments of the solar thermal reflection structure of the present invention will be described with reference to the drawings. In addition, in the figure, each part which has the same name is attached | subjected the same code | symbol.
The solar heat highly reflective structure 1 of the present invention is obtained by forming a paint layer 4 made of a solar heat highly reflective paint on the surface of a surface forming layer 3 formed on a base layer 2. On the surface of the surface forming layer 3, a large number of unevennesses (for example, slits) 5 are formed by unevenness processing.
In addition, the block (precast product) may be sufficient as the solar heat highly reflective structure of this invention, and the hardening body obtained by on-site strike may be sufficient as it.
 図1中の表面形成層3の表面に形成される多数の凹凸(スリット)5は、種々の形態を有することができる。
 例えば、図2に示すように、深さの異なる数種類の溝状のスリット5として形成することができる。この場合、スリット5は、例えば、深さ1.0~1.4mmで幅3~5mmの溝5aと、深さ1.8~2.2mmで幅3~5mmの溝5bと、深さ2.8~3.2mmで幅3~5mmの溝5cを、溝同士の間の平坦な凸部の幅が3~6mmとなるように、かつ、これら3つの溝の組み合わせが繰り返し表れるように、形成させることができる。、
 また、スリット5は、例えば、図3に示すように、同一の深さを有する多数の溝状のスリット5として形成することができる。この場合、スリット5は、例えば、深さ1.2~1.6mmで幅2~4mmの溝を、溝同士の間の平坦な凸部の幅が3~7mmとなるように形成させることができる。
 なお、凹凸(スリット)5は、溝状である場合、図2及び図3に示す形態に限定されず、他の形態を有することもできる。ただし、溝状の凹凸5の凹部は、太陽光の鏡面反射及び乱反射の量を減少させる観点から、深さが1~5mmで、かつ、幅が2~8mmであることが好ましい。この場合、凹部同士の間の凸部の幅は、太陽光の鏡面反射及び乱反射の量を減少させる観点から、好ましくは3~7mmである。
 また、表面形成層3の表面に形成される多数の凹凸は、溝状以外の他の形態を有する場合であっても、凹部の深さまたは凸部の高さが、太陽光の鏡面反射及び乱反射の量を減少させる観点から、1~5mmであることが好ましい。
A large number of irregularities (slits) 5 formed on the surface of the surface forming layer 3 in FIG. 1 can have various forms.
For example, as shown in FIG. 2, it can be formed as several types of groove-like slits 5 having different depths. In this case, the slit 5 has, for example, a groove 5a having a depth of 1.0 to 1.4 mm and a width of 3 to 5 mm, a groove 5b having a depth of 1.8 to 2.2 mm and a width of 3 to 5 mm, and a depth of 2 A groove 5c having a width of 3 to 5 mm and a width of 3 to 5 mm between .8 to 3.2 mm, so that the width of the flat convex portion between the grooves is 3 to 6 mm, and a combination of these three grooves appears repeatedly. Can be formed. ,
Moreover, the slit 5 can be formed as many groove-shaped slits 5 which have the same depth, for example, as shown in FIG. In this case, for example, the slit 5 is formed by forming a groove having a depth of 1.2 to 1.6 mm and a width of 2 to 4 mm so that a flat convex portion between the grooves has a width of 3 to 7 mm. it can.
In addition, when the unevenness | corrugation (slit) 5 is groove shape, it is not limited to the form shown in FIG.2 and FIG.3, It can also have another form. However, the recesses of the groove-like unevenness 5 are preferably 1 to 5 mm in depth and 2 to 8 mm in width from the viewpoint of reducing the amount of specular reflection and irregular reflection of sunlight. In this case, the width of the convex portion between the concave portions is preferably 3 to 7 mm from the viewpoint of reducing the amount of specular reflection and irregular reflection of sunlight.
Moreover, even if the many unevenness | corrugations formed in the surface of the surface formation layer 3 have a form other than groove shape, the depth of a recessed part or the height of a convex part is the specular reflection of sunlight, and From the viewpoint of reducing the amount of irregular reflection, it is preferably 1 to 5 mm.
 表面形成層3は、多孔質セメント系硬化体または非多孔質セメント系硬化体からなる。
 多孔質セメント系硬化体は、通常、多孔質モルタル硬化体または多孔質コンクリート硬化体である。
 表面形成層3を形成する多孔質セメント系硬化体は、好ましくは、セメント100質量部と、骨材300~650質量部と、水25~35質量部と、減水剤0~3質量部(固形分換算)を含む組成物の硬化体からなる。
 セメントとしては、普通ポルトランドセメント、低熱ポルトランドセメント、中庸熱ポルトランドセメント、エコセメント等を用いることができる。
 骨材としては、表面形成層3の表面の凹凸5の形状に影響を与えない観点からは、最大粒径が5mm以下のものが好ましい。最大粒径は、透水性を付与する観点からは、好ましくは0.6mm以上、より好ましくは1.0mm以上である。
 骨材の配合量は、透水性を確保する観点から、好ましくは300~650質量部、より好ましくは350~600質量部、特に好ましくは400~550質量部である。
The surface forming layer 3 is made of a porous cement-based cured body or a non-porous cement-based cured body.
The porous cement-based cured body is usually a porous mortar cured body or a porous concrete cured body.
The porous cement-based cured body forming the surface forming layer 3 is preferably 100 parts by weight of cement, 300 to 650 parts by weight of aggregate, 25 to 35 parts by weight of water, and 0 to 3 parts by weight of a water reducing agent (solid It is made of a cured product of a composition including
As the cement, ordinary Portland cement, low heat Portland cement, intermediate heat Portland cement, eco-cement and the like can be used.
The aggregate preferably has a maximum particle size of 5 mm or less from the viewpoint of not affecting the shape of the irregularities 5 on the surface of the surface forming layer 3. The maximum particle size is preferably 0.6 mm or more, more preferably 1.0 mm or more from the viewpoint of imparting water permeability.
The amount of the aggregate is preferably 300 to 650 parts by mass, more preferably 350 to 600 parts by mass, and particularly preferably 400 to 550 parts by mass from the viewpoint of ensuring water permeability.
 減水剤としては、ポリカルボン酸系、スルホン酸系等の、減水剤、高性能減水剤もしくは高性能AE減水剤等を用いることができる。減水剤を用いることによって、水量を減少させて、多孔質セメント系硬化体の強度を高めることができる。
 減水剤を用いる場合、減水剤の量は、セメント100質量部に対して、例えば、固形分換算で0.1~3質量部である。なお、減水剤の使用は、必須ではなく、任意である。
 多孔質セメント系硬化体の材料として、必要に応じて、セメント混和材等の副原料を用いることもできる。副原料としては、シリカフューム、高炉スラグ微粉末、石灰石粉末、石英粉末等が挙げられる。副原料の配合量は、セメント100質量部に対して、好ましくは0~50質量部である。
 非多孔質セメント系硬化体としては、例えば、汎用のコンクリートまたはモルタルを用いることができる。この場合、骨材の最大粒径は、表面形成層3の表面の凹凸5の形状に影響を与えない観点から、好ましくは5mm以下である。また、骨材の配合量は、非多孔質セメント系硬化体の強度等の観点から、セメント100質量部に対して、好ましくは0~600質量部、より好ましくは0~500質量部、好ましくは0~400質量部である。
 表面形成層3の厚さは、特に限定されないが、通常、2~50mmである。
As the water reducing agent, polycarboxylic acid-based, sulfonic acid-based water reducing agent, high performance water reducing agent, high performance AE water reducing agent, or the like can be used. By using a water reducing agent, the amount of water can be reduced and the strength of the porous cementitious hardened body can be increased.
When a water reducing agent is used, the amount of the water reducing agent is, for example, 0.1 to 3 parts by mass in terms of solid content with respect to 100 parts by mass of cement. In addition, use of a water reducing agent is not essential but arbitrary.
As a material of the porous cement-based cured body, auxiliary materials such as a cement admixture can be used as necessary. Examples of auxiliary materials include silica fume, blast furnace slag fine powder, limestone powder, and quartz powder. The amount of the auxiliary material is preferably 0 to 50 parts by mass with respect to 100 parts by mass of cement.
As the non-porous cement-based cured body, for example, general-purpose concrete or mortar can be used. In this case, the maximum particle size of the aggregate is preferably 5 mm or less from the viewpoint of not affecting the shape of the unevenness 5 on the surface of the surface forming layer 3. The amount of the aggregate is preferably 0 to 600 parts by mass, more preferably 0 to 500 parts by mass, preferably 100 parts by mass with respect to 100 parts by mass of cement, from the viewpoint of the strength of the non-porous cement-based cured body. 0 to 400 parts by mass.
The thickness of the surface forming layer 3 is not particularly limited, but is usually 2 to 50 mm.
 基層2は、例えば、セメント系硬化体からなる。該セメント系硬化体としては、多孔質コンクリート硬化体、多孔質モルタル硬化体、非多孔質コンクリート硬化体、非多孔質モルタル硬化体等が挙げられる。
 本発明の太陽熱高反射構造体1が、道路の舗装、建造物の屋根、建造物の屋上等の雨水を受け易い構造体である場合、当該セメント系構造体の好適な形態例としては、基層2と表面形成層3の両方が、多孔質セメント系硬化体(多孔質コンクリート硬化体、及び/又は、多孔質モルタル硬化体)であるものが挙げられる。この場合、基層2の透水性は、好ましくは、表面形成層3の透水性よりも大きい。このように基層2の透水性を大きくすることによって、本発明の太陽熱高反射構造体の中に水が浸透し易くなるとともに、表面形成層3を通じて水が大気中に蒸散し易くなり、ヒートアイランド現象をさらに緩和することができる。
The base layer 2 is made of, for example, a cement-based cured body. Examples of the cement-based cured body include a porous concrete cured body, a porous mortar cured body, a non-porous concrete cured body, and a non-porous mortar cured body.
When the solar heat highly reflective structure 1 of the present invention is a structure that is susceptible to rain water such as road pavement, building roof, building rooftop, etc., as a suitable form example of the cement-based structure, The thing which both 2 and the surface formation layer 3 are porous cement hardening bodies (porous concrete hardening body and / or porous mortar hardening body) is mentioned. In this case, the water permeability of the base layer 2 is preferably larger than that of the surface forming layer 3. By increasing the water permeability of the base layer 2 in this way, water easily penetrates into the solar heat highly reflecting structure of the present invention, and water easily evaporates into the atmosphere through the surface forming layer 3, thereby causing a heat island phenomenon. Can be further relaxed.
 本発明の太陽熱高反射構造体1が、建造物の壁等の雨水を受け難い構造体である場合、当該太陽熱高反射構造体の好適な形態例としては、基層2と表面形成層3の二層に分けずに、単一の非多孔質コンクリート硬化体(非透水性コンクリート硬化体)または非多孔質モルタル硬化体(非透水性モルタル硬化体)として形成したものが挙げられる。
 この場合、非多孔質セメント系硬化体としては、例えば、汎用のコンクリートまたはモルタルを用いることができる。この場合、骨材の最大粒径及び配合量の好ましい数値範囲は、上述の表面形成層を形成する非多孔質セメント系硬化体における好ましい数値範囲と同様である。
When the solar heat highly reflective structure 1 of the present invention is a structure that is unlikely to receive rainwater such as a wall of a building, suitable examples of the solar heat highly reflective structure include a base layer 2 and a surface forming layer 3. What was formed as a single non-porous concrete hardening body (non-water-permeable concrete hardening body) or non-porous mortar hardening body (non-water-permeable mortar hardening body), without dividing into layers.
In this case, as the non-porous cement-based cured body, for example, general-purpose concrete or mortar can be used. In this case, the preferable numerical range of the maximum particle size and the blending amount of the aggregate is the same as the preferable numerical range in the non-porous cement-based cured body forming the surface forming layer.
 図4中、本発明の太陽熱高反射構造体1に対して太陽光Aが150度の角度で入射する場合、150度の角度で反射する再帰反射光Bと、30度の角度で反射する鏡面反射光Cと、それ以外の角度で反射する乱反射光Dの3種の反射光が生じる。本発明においては、これら3種の反射光のうち、再帰反射光Bは、光強度が最も大きく、かつ、反射角度を横軸にしかつ光強度を縦軸にしたグラフにおいて最も尖ったピークを有する。したがって、図5に示すように、本発明の太陽熱高反射構造体1によって外壁が形成されたビル6の当該外壁に、太陽光(入射光)が照射した場合、上方に反射される再帰反射光Bの光強度が最も大きく、下方に反射される鏡面反射光C等の光強度が小さいため、ビル6とビル7の間の空間内の気温の上昇を抑制することができる。
 本発明の太陽熱高反射構造体は、歩道、車道等の道路の舗装や、駐車場の舗装や、駅前、ショッピングモール、学校等の広場の舗装や、鉄筋コンクリートからなるビル等の建造物の壁や、鉄筋コンクリートからなる公会堂、体育館、音楽ホール等の建造物の屋根や、鉄筋コンクリートからなるビル等の建造物の屋上等に適用することができる。
In FIG. 4, when sunlight A is incident on the solar thermal reflection structure 1 of the present invention at an angle of 150 degrees, retroreflected light B that is reflected at an angle of 150 degrees and a mirror surface that is reflected at an angle of 30 degrees Three types of reflected light are generated: reflected light C and irregularly reflected light D that is reflected at other angles. In the present invention, among these three kinds of reflected light, retroreflected light B has the highest light intensity, and has the sharpest peak in the graph with the reflection angle on the horizontal axis and the light intensity on the vertical axis. . Therefore, as shown in FIG. 5, when sunlight (incident light) is irradiated on the outer wall of the building 6 on which the outer wall is formed by the solar thermal reflection structure 1 of the present invention, retroreflected light reflected upward. Since the light intensity of B is the highest and the light intensity of the specular reflection light C or the like reflected downward is small, an increase in the temperature in the space between the building 6 and the building 7 can be suppressed.
The solar heat reflective structure of the present invention is a pavement of roads such as sidewalks and roadways, pavements of parking lots, pavements of plazas in front of stations, shopping malls, schools, etc., walls of buildings such as buildings made of reinforced concrete, It can be applied to roofs of buildings such as public halls, gymnasiums and music halls made of reinforced concrete, and rooftops of buildings such as buildings made of reinforced concrete.
[A.塗料の用意]
 太陽熱高反射塗料である「ATTSU-9(4F)」(商品名;日本ペイント社製)で調色することによって、光沢および反射率を調整し、塗料No.1~16を用意した。
[A. Preparation of paint]
Gloss and reflectance are adjusted by toning with “ATTSU-9 (4F)” (trade name; manufactured by Nippon Paint Co., Ltd.), a solar thermal highly reflective paint. 1 to 16 were prepared.
[B.インターロッキングブロックの試験]
(1)インターロッキングブロックの作製
 表面形成層及び基層からなり、かつ平坦な上面を有するインターロッキングを作製した。
 表面形成層は、普通ポルトランドセメント100質量部、3号珪砂(最大粒度:1.2mm)424質量部、および水30質量部を含む組成物の多孔質硬化体(透水性を有する硬化体)である。
 基層は、普通ポルトランドセメント100質量部、7号砕石(最大粒度:5mm)556質量部、砕砂(最大粒度:2.5mm)59質量部、および水30質量部を含む組成物の多孔質硬化体(透水性を有する硬化体)である。
[B. Interlocking block test]
(1) Production of interlocking block An interlocking comprising a surface forming layer and a base layer and having a flat upper surface was produced.
The surface forming layer is a porous cured body (cured body having water permeability) of a composition containing 100 parts by weight of ordinary Portland cement, 424 parts by weight of No. 3 silica sand (maximum particle size: 1.2 mm), and 30 parts by weight of water. is there.
The base layer is a porous hardened body of a composition comprising ordinary Portland cement 100 parts by mass, No. 7 crushed stone (maximum particle size: 5 mm) 556 parts by mass, crushed sand (maximum particle size: 2.5 mm) 59 parts by mass, and water 30 parts by mass. (A cured product having water permeability).
(2)塗料の性能
 塗料No.1~8(実施例1~8)及び塗料No.9~14(比較例1~6)の各々について、日射反射率、金属の平滑なフラット面(表1中の「フラット面」)に塗布したときの鏡面光沢度(60度グロス)、前記のインターロッキングブロックの表面(表1中の「ILB面」)に塗布したときの鏡面光沢度(60度グロス)、の各物性を測定した。なお、鏡面光沢度は、光沢度計(BYK社製;製品名:マイクロトリグロス)を用いて測定した。
 なお、塗料の塗布は、エアスプレーによって、金属の平滑なフラット面またはインターロッキングブロックの表面に、50μmの厚さ(乾燥後の値)となるように均一に行なった。また、日射反射率および鏡面光沢度の測定は、室温(約20℃)で1週間、塗料層を乾燥させた後、行なった。
 結果を表1に示す。
(2) Paint performance Paint No. 1 to 8 (Examples 1 to 8) and paint Nos. For each of 9 to 14 (Comparative Examples 1 to 6), the solar reflectance, the specular gloss (60 degree gloss) when applied to a smooth flat surface of metal ("flat surface" in Table 1), Each physical property of the specular gloss (60 degree gloss) when applied to the surface of the interlocking block (“ILB surface” in Table 1) was measured. The specular gloss was measured using a gloss meter (manufactured by BYK; product name: Micro Trigloss).
The coating was uniformly performed by air spray so that the thickness was 50 μm (value after drying) on the flat surface of the metal or the surface of the interlocking block. The solar reflectance and specular gloss were measured after the paint layer was dried at room temperature (about 20 ° C.) for 1 week.
The results are shown in Table 1.
(3)再帰反射率の測定及び評価
 塗料No.1~16の各々について、(a)金属の平滑なフラット面(表1中の「フラット面」)、(b)前記インターロッキングブロックの平坦な面(表1中の「ILBの平坦面」)、(c)前記インターロッキングブロックの面に対して凹凸加工1を施した面(表1中の「凹凸加工1の面」)、(d)前記インターロッキングブロックの面に対して凹凸加工2を施した面(表1中の「凹凸加工2の面」)、の各面に塗料を50μmの厚さ(乾燥後の値)で塗布した場合における再帰反射率を測定した。
 なお、凹凸加工1とは、図2に示すように、深さ1.2mmで幅4mmの溝5aと、深さ3.0mmで幅4mmの溝5cと、深さ2.0mmで幅4mmの溝5bを、溝同士の間の平坦な凸部の幅が4mmとなるように、かつ、これらの溝5a、5c、5bの組み合わせが繰り返し表れるように、形成させてなるものである。
 凹凸加工2とは、図3に示すように、深さ1.4mmで幅3mmの溝を、溝同士の間の平坦な凸部の幅が5mmとなるように、多数形成させてなるものである。
 また、再帰反射率の測定値を次のように評価した。
  ◎:非常に良好(再帰反射率:2以上)
  ○:良好(再帰反射率:1以上、2未満)
  ×:不良(再帰反射率:1未満)
 結果を表1に示す。
(3) Measurement and evaluation of retroreflectance For each of 1 to 16, (a) smooth flat surface of metal ("flat surface" in Table 1), (b) flat surface of the interlocking block ("flat surface of ILB" in Table 1) (C) The surface of the interlocking block subjected to uneven processing 1 (“surface of uneven processing 1” in Table 1), (d) The uneven processing 2 of the surface of the interlocking block. The retroreflectance was measured when the coating was applied to each surface of the applied surface (“surface of unevenness processing 2” in Table 1) with a thickness of 50 μm (value after drying).
As shown in FIG. 2, the uneven processing 1 is a groove 5a having a depth of 1.2 mm and a width of 4 mm, a groove 5c having a depth of 3.0 mm and a width of 4 mm, and a depth of 2.0 mm and a width of 4 mm. The groove 5b is formed so that the width of the flat convex portion between the grooves is 4 mm, and the combination of these grooves 5a, 5c, and 5b appears repeatedly.
As shown in FIG. 3, the concavo-convex process 2 is formed by forming a large number of grooves having a depth of 1.4 mm and a width of 3 mm so that the width of the flat convex portion between the grooves is 5 mm. is there.
Moreover, the measured value of retroreflectance was evaluated as follows.
A: Very good (retroreflectance: 2 or more)
○: Good (Retroreflectance: 1 or more and less than 2)
X: Defect (retroreflectance: less than 1)
The results are shown in Table 1.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
[C.非多孔質硬化体の試験]
(1)非多孔質硬化体の作製
 表面形成層及び基層からなる非多孔質硬化体を作製した。
 表面形成層は、普通ポルトランドセメント100質量部、砕砂(最大粒度:2.5mm)365質量部、および水30質量部を含む組成物の非多孔質モルタル硬化体(透水性を有しないモルタル硬化体)である。
 基層は、エコセメント100質量部、砕砂(最大粒度:2.5mm)246質量部、7号砕石(最大粒径:5mm)295質量部、および水30質量部を含む組成物の非多孔質コンクリート硬化体(透水性を有しないコンクリート硬化体)である。
(2)塗料の性能
 塗料No.15~16(実施例9~10)について、日射反射率、金属の平滑なフラット面に塗布したときの鏡面光沢度(60度グロス)、の各物性を測定した。
 結果を表2に示す。
(3)再帰反射率の測定及び評価
 塗料No.15~16(実施例9~10)の各々について、(a)前記のモルタル硬化体の平滑な面(表2中の「モルタルの平滑面」)、(b)前記モルタル硬化体の面に対して、深さ1mm、幅3mmのスリット状の凹凸加工(凸部の幅:5mm)を施した面(表2中の「スリット状凹凸加工1」)、(c)前記モルタル硬化体の面に対して、深さ1.5mmのランダムな凹凸加工を施した面(表2中の「ランダム凹凸加工」)、(d)前記モルタル硬化体の面に対して、深さ1.5mm、幅3mmのスリット状の凹凸加工(凸部の幅:5mm)を施した面(表2中の「スリット状凹凸加工2」)、(e)前記モルタル硬化体の面に対して、深さ4mm、幅5~15mmのスリット状の凹凸加工(凸部の幅:5mm)を施した面(表2中の「スリット状凹凸加工3」)、の各面に塗料を50μmの厚さ(乾燥後の値)で塗布した場合における再帰反射率を測定した。
 また、再帰反射率の測定値を前記と同様にして評価した。
 結果を表2に示す。
[C. Non-porous cured body test]
(1) Production of non-porous cured body A non-porous cured body comprising a surface forming layer and a base layer was produced.
The surface forming layer is a non-porous mortar cured product (a mortar cured product having no water permeability) of a composition containing 100 parts by weight of ordinary Portland cement, 365 parts by weight of crushed sand (maximum particle size: 2.5 mm), and 30 parts by weight of water. ).
The base layer is non-porous concrete of a composition comprising 100 parts by weight of eco-cement, 246 parts by weight of crushed sand (maximum particle size: 2.5 mm), 295 parts by weight of No. 7 crushed stone (maximum particle size: 5 mm), and 30 parts by weight of water. It is a cured product (a concrete cured product having no water permeability).
(2) Paint performance Paint No. For 15 to 16 (Examples 9 to 10), the physical properties of solar reflectance and specular gloss (60 degree gloss) when applied to a smooth flat surface of metal were measured.
The results are shown in Table 2.
(3) Measurement and evaluation of retroreflectance For each of 15 to 16 (Examples 9 to 10), (a) the smooth surface of the mortar cured body (“smooth surface of mortar” in Table 2), (b) the surface of the mortar cured body A surface having a slit-like unevenness processing (width of convex part: 5 mm) having a depth of 1 mm and a width of 3 mm ("slit-like unevenness processing 1" in Table 2), (c) on the surface of the mortar cured body On the other hand, a surface with random unevenness processing having a depth of 1.5 mm ("random unevenness processing" in Table 2), (d) 1.5 mm depth and 3 mm width with respect to the surface of the mortar cured body (4) Depth 4 mm, width with respect to the surface of the mortar cured body (Slit-like unevenness processing 2 in Table 2) subjected to slit-like unevenness processing (projection width: 5 mm) Surface with 5-15mm slit-shaped unevenness (convex width: 5mm) ("Slit in Table 2" Roughened 3 ") was measured retroreflectivity when coated at a thickness of 50μm paint (values after drying) on each side of.
Moreover, the measured value of retroreflectance was evaluated in the same manner as described above.
The results are shown in Table 2.
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 1  本発明の太陽熱高反射構造体
 2  基層
 3  表面形成層
 4  塗料層
 5  凹凸(スリット)
 6,7  ビル
 A  入射光(太陽光)
 B  再帰反射光
 C  鏡面反射光
 D  乱反射光
DESCRIPTION OF SYMBOLS 1 Solar heat highly reflective structure of this invention 2 Base layer 3 Surface formation layer 4 Paint layer 5 Irregularity (slit)
6,7 Building A Incident light (sunlight)
B Retroreflected light C Specular reflected light D Diffuse reflected light

Claims (6)

  1.  1.0以上の再帰反射率(ここで、再帰反射率とは、150度の角度で900nmの波長の光を入射させた場合において、30度±10度の範囲内の反射光強度を「R」、150度±10度の範囲内の反射光強度を「S」としたときに、「S/R」で表される値をいう。)を発現するように凹凸加工を施されている表面を有することを特徴とする太陽熱高反射構造体。 Retroreflectance of 1.0 or more (Here, retroreflectance is the intensity of reflected light within a range of 30 ° ± 10 ° when light having a wavelength of 900 nm is incident at an angle of 150 ° “R”. ”, A surface that has been subjected to uneven processing so as to express“ S / R ”when the reflected light intensity within a range of 150 ° ± 10 ° is“ S ”. A solar thermal reflection structure characterized by comprising:
  2.  上記凹凸加工が、上記太陽熱高反射構造体を構成する材料の粒度よりも大きな深さを有しかつ繰り返し規則性または均一性を有する凹凸を形成するように施されている請求項1に記載の太陽熱高反射構造体。 The said uneven | corrugated process is given so that the unevenness | corrugation which has a depth larger than the particle size of the material which comprises the said solar-heat highly reflective structure, and has repetition regularity or uniformity may be performed. Solar heat reflective structure.
  3.  上記表面を形成する材料は、日射反射率が、JIS K 5602に規定されている値として20%以上で、かつ、鏡面光沢度が、JIS K 5600に規定されている60度グロスの値として80%以下である請求項1又は2に記載の太陽熱高反射構造体。 The material forming the surface has a solar reflectance of 20% or more as a value specified in JIS K 5602, and a specular gloss is 80 as a value of 60 degree gloss specified in JIS K 5600. The solar heat highly reflective structure according to claim 1 or 2, wherein the solar heat highly reflective structure is at most%.
  4.  上記表面が、塗料によって形成されている請求項1~3のいずれか1項に記載の太陽熱高反射構造体。 The solar heat highly reflective structure according to any one of claims 1 to 3, wherein the surface is formed of a paint.
  5.  上記太陽熱高反射構造体が、上記表面に凹凸加工を施すための基材として、セメント質硬化体を含む請求項1~4のいずれか1項に記載の太陽熱高反射構造体。 The solar heat highly reflective structure according to any one of claims 1 to 4, wherein the solar heat highly reflective structure includes a cementitious hardened body as a base material for applying unevenness to the surface.
  6.  上記太陽熱高反射構造体が、プレキャストブロック、または、現場打ちのコンクリートもしくはモルタルの硬化体である請求項1~5のいずれか1項に記載の太陽熱高反射構造体。 The solar heat highly reflective structure according to any one of claims 1 to 5, wherein the solar heat highly reflective structure is a precast block or a hardened body of concrete or mortar made in the field.
PCT/JP2012/069115 2011-07-29 2012-07-27 Solar heat high-reflection structure WO2013018682A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013526874A JP6057434B2 (en) 2011-07-29 2012-07-27 Solar thermal reflection structure

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011-166315 2011-07-29
JP2011166315 2011-07-29

Publications (1)

Publication Number Publication Date
WO2013018682A1 true WO2013018682A1 (en) 2013-02-07

Family

ID=47629206

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/069115 WO2013018682A1 (en) 2011-07-29 2012-07-27 Solar heat high-reflection structure

Country Status (2)

Country Link
JP (1) JP6057434B2 (en)
WO (1) WO2013018682A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014214557A (en) * 2013-04-26 2014-11-17 公立大学法人首都大学東京 Building surface structure and construction method thereof
US11608676B2 (en) 2018-05-09 2023-03-21 Yazaki Energy System Corporation Outer wall material and method for manufacturing same

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007192016A (en) * 2005-12-19 2007-08-02 Nagoya Institute Of Technology Sunlight reflecting civil engineering building material, shading material, and method of restraining heat island phenomenon

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59128258A (en) * 1983-01-07 1984-07-24 住友セメント株式会社 Interlocking block and manufacture
JPS62211403A (en) * 1986-03-11 1987-09-17 アトム化学塗料株式会社 All-weather type sheet material for marking road surface
JP4116829B2 (en) * 2002-03-28 2008-07-09 太平洋セメント株式会社 Permeable concrete block
JP2004251108A (en) * 2003-01-31 2004-09-09 Kajima Road Co Ltd Paving body for road
JP4828290B2 (en) * 2005-04-20 2011-11-30 株式会社Nttファシリティーズ Sunlight reflecting structure and equipment using the structure
JP2009102924A (en) * 2007-10-25 2009-05-14 Matsuoka Concrete Industry Co Ltd Concrete product
JP2011164491A (en) * 2010-02-12 2011-08-25 Nikon Corp Retroreflective member
JP2011197022A (en) * 2010-03-17 2011-10-06 Taisei Corp Method for manufacturing reflector
JP2012013801A (en) * 2010-06-29 2012-01-19 Nikon Corp Retroreflector

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007192016A (en) * 2005-12-19 2007-08-02 Nagoya Institute Of Technology Sunlight reflecting civil engineering building material, shading material, and method of restraining heat island phenomenon

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014214557A (en) * 2013-04-26 2014-11-17 公立大学法人首都大学東京 Building surface structure and construction method thereof
US11608676B2 (en) 2018-05-09 2023-03-21 Yazaki Energy System Corporation Outer wall material and method for manufacturing same

Also Published As

Publication number Publication date
JP6057434B2 (en) 2017-01-11
JPWO2013018682A1 (en) 2015-03-05

Similar Documents

Publication Publication Date Title
TWI740202B (en) Radiative cooling functional coating, method for manufacturing the same and application thereof, and selective radiative cooling functional coating and composite material
JP5595441B2 (en) Concrete or mortar
US10246363B2 (en) Textured glass for greenhouses
KR101848777B1 (en) Thermal Barrier Paint Composition for Reducing Heat Island and Construction Methods Using Thereof
JP6944757B2 (en) Combination of radiant heat insulation refractory paint and additives and painting method using it
ES2910156T3 (en) Method for producing a textured glass substrate coated with a sol-gel type anti-reflective coating
CN104684857A (en) Glass granule having zoned structure
JP6057434B2 (en) Solar thermal reflection structure
EP2674410B1 (en) Infrared reflective concrete product
KR20140014677A (en) Water permeable block having eco-friendly heat shield function and method for the same
KR102090542B1 (en) Heat Exchange Paint
JP2005061042A (en) Solar heat intercepting pavement body
JP2007192016A (en) Sunlight reflecting civil engineering building material, shading material, and method of restraining heat island phenomenon
KR101529683B1 (en) Composition for coloured high-reflectance block to prevent surface contamination and method of making block using the same thing
WO2011129022A1 (en) Paving block
JP2004224638A (en) Coating material and method of manufacturing the same
US20220049500A1 (en) Solar-Reflective Roofing Granules with Hollow Glass Spheres
JP6037754B2 (en) Structure application material, method of applying structure application material, and method of using structure application material
KR101529681B1 (en) Composition for block and method of making block using the same thing
ES2687713B2 (en) Asphalt pavements with high solar reflectance
JP6266895B2 (en) Surface structure of building and construction method thereof
JP2012229600A (en) Structure coating and structure coating construction method
KR102335734B1 (en) Composition of heat shielding paint for floor pavement having high infrared and solar heat reflection effect and method for forming a film
JP2011197022A (en) Method for manufacturing reflector
RU24848U1 (en) FACING PLATE

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12819774

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2013526874

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12819774

Country of ref document: EP

Kind code of ref document: A1