WO2013018589A1 - Semiconductor integrated circuit device - Google Patents

Semiconductor integrated circuit device Download PDF

Info

Publication number
WO2013018589A1
WO2013018589A1 PCT/JP2012/068737 JP2012068737W WO2013018589A1 WO 2013018589 A1 WO2013018589 A1 WO 2013018589A1 JP 2012068737 W JP2012068737 W JP 2012068737W WO 2013018589 A1 WO2013018589 A1 WO 2013018589A1
Authority
WO
WIPO (PCT)
Prior art keywords
conductivity type
power supply
type well
conductivity
wiring
Prior art date
Application number
PCT/JP2012/068737
Other languages
French (fr)
Japanese (ja)
Inventor
石橋 孝一郎
Original Assignee
国立大学法人電気通信大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国立大学法人電気通信大学 filed Critical 国立大学法人電気通信大学
Publication of WO2013018589A1 publication Critical patent/WO2013018589A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
    • H01L27/12Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body
    • H01L27/1203Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body the substrate comprising an insulating body on a semiconductor body, e.g. SOI
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/52Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames
    • H01L23/522Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames including external interconnections consisting of a multilayer structure of conductive and insulating layers inseparably formed on the semiconductor body
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/0002Not covered by any one of groups H01L24/00, H01L24/00 and H01L2224/00

Definitions

  • the present invention relates to a semiconductor integrated circuit device having a CMOS structure.
  • CMOS Complementary Metal Oxide Semiconductor, hereinafter the same
  • LSI Large Scale Integration
  • Non-Patent Document 1 describes a microprocessor manufactured in a 0.2 ⁇ m CMOS technology for a MOSFET (Metal Oxide Semiconductor Field Effect Transistor, etc.) when the microprocessor is on standby. It is described that the leakage current during standby can be reduced by about three orders of magnitude by applying a substrate bias.
  • MOSFET Metal Oxide Semiconductor Field Effect Transistor
  • a standard cell composed of MOSFETs for applying a substrate bias a layout of a switch cell for controlling the application of the substrate bias (see FIG. 5), and a power source by arranging a collection of cells.
  • a layout showing the wiring of the substrate bias is described.
  • Non-Patent Document 1 since a metal wiring layer for applying a substrate bias is arranged in each standard cell, it is possible to reduce the impedance of the substrate bias and to apply a stable substrate bias. .
  • Patent Document 1 discloses that a well contact for applying a substrate bias is arranged in a place other than a standard cell, and metal wiring for applying the substrate bias to the standard cell is provided. Techniques that do not insert are described.
  • Non-Patent Document 1 has a problem that the occupied area becomes large when standard cells are arranged due to the following two factors.
  • the first factor is that since the power supply wiring and the substrate bias wiring in the standard cell are constituted by the first metal wiring layer (M1), each wiring requires a predetermined area.
  • the second factor is that the standard cells must be arranged between the switch cells arranged at intervals of 200 ⁇ m. Therefore, the standard cells having various widths cannot be arranged at the maximum between the switch cells. An area where the standard cell is not arranged is generated between the switch cells arranged in (1).
  • the present invention has been made in view of the above points, and an object thereof is to provide a semiconductor integrated circuit device capable of stably applying a substrate bias in a small area.
  • the semiconductor integrated circuit device is a semiconductor integrated circuit device having a CMOS structure including a first conductivity type MOSFET and a second conductivity type MOSFET, wherein a second conductivity type well and a drain and a source are formed in the second conductivity type well.
  • the first conductivity type MOSFET, the second conductivity type diffusion layer formed in the second conductivity type well, and the second conductivity type diffusion layer are provided on the first conductivity type MOSFET.
  • the second conductivity type The diffusion layer is a power supply layer for applying a substrate bias to the first conductivity type well and the second conductivity type well, respectively, and the first conductivity type diffusion layer and the second power supply line are interlayer insulating layers.
  • the second conductive type diffusion layer and the first power supply line are arranged in parallel with each other through an interlayer insulating layer. In addition, it is a requirement that at least a portion overlaps in plan view.
  • a semiconductor integrated circuit device capable of stably applying a substrate bias in a small area can be provided.
  • FIG. 1 is a circuit diagram illustrating a semiconductor integrated circuit device according to a first embodiment
  • 1 is a plan view illustrating a semiconductor integrated circuit device according to a first embodiment
  • It is sectional drawing which follows the AA line of FIG. 1B.
  • It is sectional drawing which follows the BB line of FIG. 1B.
  • FIG. 1C of 1st Embodiment in 2nd Embodiment.
  • FIG. 1D of 1st Embodiment in 2nd Embodiment.
  • FIG. 10 is a cross-sectional view illustrating a semiconductor integrated circuit device according to Modification 1 of the second embodiment.
  • FIG. 10 is a cross-sectional view illustrating a semiconductor integrated circuit device according to Modification 2 of the second embodiment.
  • FIG. 6 is a plan view illustrating a semiconductor integrated circuit device according to a third embodiment; FIG. It is sectional drawing which follows the CC line of FIG. 5A. It is sectional drawing which follows the DD line
  • inverter circuit logic inversion circuit
  • the present invention is not limited to this, and the present invention is applied to a semiconductor integrated circuit device having a CMOS structure other than the inverter circuit. Is also widely applicable.
  • FIG. 1A is a circuit diagram illustrating the semiconductor integrated circuit device according to the first embodiment.
  • a semiconductor integrated circuit device 1 is a semiconductor integrated circuit device having a CMOS structure including an N-type MOSFET 10 and a P-type MOSFET 20, and has a function as an inverter circuit.
  • the first conductivity type is N-type or P-type
  • the second conductivity type is P-type or N-type opposite to the first conductivity type.
  • the ground wiring 16 (Vss) is connected to the source S 1 of the N-type MOSFET 10 .
  • the substrate wiring 12 (Vbn) is a wiring for applying a substrate bias to the N-type MOSFET 10 and is connected to the back gate B 1 of the N-type MOSFET 10 .
  • the power supply wiring 26 (Vdd) is connected to the source S 2 of the P-type MOSFET 20 .
  • the substrate wiring 22 (Vbp) is a wiring for applying a substrate bias to the P-type MOSFET 20, and is connected to the back gate B 2 of the P-type MOSFET 20 .
  • the input terminal 31 is an input terminal of the inverter circuit, and is connected to the gate G 1 of the N-type MOSFET 10 and the gate G 2 of the P-type MOSFET 20 .
  • the output terminal 32 is an output terminal of the inverter circuit, and is connected to the drain D 1 of the N-type MOSFET 10 and the drain D 2 of the P-type MOSFET 20 .
  • the voltages applied to the ground wiring 16, the power supply wiring 26, the substrate wiring 12, and the substrate wiring 22 can be determined as appropriate. For example, 0 v, 0.5 to 1.0 v, +0.5 to ⁇ 3.3 v, and It can also be changed to be 0 to 3.8v.
  • FIG. 1B is a plan view illustrating the semiconductor integrated circuit device according to the first embodiment.
  • 1C is a cross-sectional view taken along the line AA in FIG. 1B.
  • 1D is a cross-sectional view taken along line BB in FIG. 1B.
  • the ground wiring 16, the power supply wiring 26, the input terminal 31, and the output terminal 32 are drawn transparently, and the lower layer is seen through.
  • the substrate wirings 12 and 22 are shown in a satin pattern.
  • the N-type MOSFET 10 and the P-type MOSFET 20 are arranged so as to be adjacent to each other in the YY direction in plan view (viewed from the ZZ direction in FIG. 1C or FIG. 1D). ing.
  • a source electrode 13 and a drain electrode 14 are arranged at predetermined intervals in the XX direction near the upper surface (surface on the gate electrode 15 side) of the P-type well 11 containing a low-concentration P-type impurity. It is installed.
  • An isolation layer 33 is formed on one side of each of the source electrode 13 and the drain electrode 14.
  • a gate electrode 15 is provided at a position overlapping a channel region sandwiched between the source electrode 13 and the drain electrode 14 via a gate insulating film (not shown).
  • the P-type well 11, the source electrode 13, the drain electrode 14, and the gate electrode 15 correspond to the back gate B 1 , the source electrode S 1 , the drain electrode D 1 , and the gate electrode G 1 shown in FIG. 1A, respectively.
  • substrate wiring 12 is provided in the XX direction on the side near the top surface of the P-type well 11 and not adjacent to the N-type well 21.
  • the substrate wiring 12 is formed of a P-type diffusion layer containing a P-type impurity having a concentration higher than that of the P-type well 11 in order to fix the potential of the P-type well 11. Further, a low resistance material such as metal silicide may be formed on the surface of the diffusion layer. That is, the substrate wiring 12 is a power feeding layer for applying a substrate bias to the P-type well 11.
  • a ground wiring 16 is provided in the XX direction via an interlayer insulating layer (not shown).
  • the ground wiring 16 extends to the source electrode 13 side (in the YY direction) and is connected to the source electrode 13 through a through wiring 16x that penetrates an interlayer insulating layer (not shown).
  • the ground wiring 16 and the through wiring 16x can be formed of a metal such as copper (Cu) or tungsten (W), for example.
  • the ground wiring 16 is an upper layer of the substrate wiring 12, and the substrate wiring 12 and the ground wiring 16 are arranged in parallel to each other through an interlayer insulating layer (not shown). In order to reduce the area of the semiconductor integrated circuit device 1, it is preferable that at least a part of the substrate wiring 12 and the ground wiring 16 overlap in plan view. More preferably, the substrate wiring 12 and the ground wiring 16 all overlap in plan view.
  • the substrate wiring 12 and the ground wiring 16 are each formed in a substantially linear shape in the XX direction, but either one or both may include a portion that is not linear. Further, the substrate wiring 12 and the ground wiring 16 may have the same width (YY direction) or different widths. For example, in order to stabilize the power supply, the width of the ground wiring 16 can be made larger than the width of the substrate wiring 12, and the substrate wiring 12 can be arranged at a position overlapping the ground wiring 16 in plan view.
  • parallel means approximately parallel and does not mean strictly parallel. Therefore, the semiconductor integrated circuit device according to the first embodiment may be deviated from parallelism within a range that does not substantially impair the predetermined effect.
  • a source electrode 23 and a drain electrode 24 are arranged in parallel at a predetermined interval in the XX direction near the upper surface (surface on the gate electrode 25 side) of the N-type well 21 containing a low-concentration N-type impurity. It is installed.
  • An isolation layer 33 is formed on one side of each of the source electrode 23 and the drain electrode 24.
  • a gate electrode 25 is provided at a position overlapping the channel region sandwiched between the source electrode 23 and the drain electrode 24 via a gate insulating film (not shown).
  • the N-type well 21, the source electrode 23, the drain electrode 24, and the gate electrode 25 correspond to the back gate B 2 , the source electrode S 2 , the drain electrode D 2 , and the gate electrode G 2 shown in FIG. 1A, respectively.
  • substrate wiring 22 is provided in the XX direction near the upper surface of the N-type well 21 and on the side not adjacent to the P-type well 11.
  • the substrate wiring 22 is formed of an N-type diffusion layer containing an N-type impurity at a concentration higher than that of the N-type well 21 in order to fix the potential of the N-type well 21. That is, the substrate wiring 22 is a power feeding layer for applying a substrate bias to the N-type well 21.
  • a power supply wiring 26 is provided in the XX direction via an interlayer insulating layer (not shown).
  • the power supply wiring 26 extends to the source electrode 23 side (in the YY direction) and is connected to the source electrode 23 through a through wiring 26x that penetrates an interlayer insulating layer (not shown).
  • the power supply wiring 26 and the through wiring 26x can be formed of a metal such as copper (Cu) or tungsten (W), for example.
  • the power supply wiring 26 is an upper layer of the substrate wiring 22, and the substrate wiring 22 and the power supply wiring 26 are arranged in parallel to each other through an interlayer insulating layer (not shown). In order to reduce the area of the semiconductor integrated circuit device 1, it is preferable that at least a part of the substrate wiring 22 and the power supply wiring 26 overlap in plan view. It is more preferable that the substrate wiring 22 and the power supply wiring 26 are all overlapped in plan view.
  • the substrate wiring 22 and the power supply wiring 26 are each formed in a substantially linear shape in the XX direction, but either one or both may include a portion that is not linear. Further, the substrate wiring 22 and the power supply wiring 26 may have the same width (YY direction) or different widths. For example, in order to stabilize power supply, the width of the power supply wiring 26 can be made larger than the width of the substrate wiring 22, and the substrate wiring 22 can be arranged at a position overlapping the power supply wiring 26 in plan view.
  • An input terminal 31 and an output terminal 32 are provided on the upper surfaces of the P-type well 11 and the N-type well 21 via an interlayer insulating layer (not shown).
  • the input terminal 31 is connected to the gate electrodes 15 and 25 through a through wiring 31x that passes through an interlayer insulating layer (not shown).
  • the output terminal 32 is connected to the drain electrodes 14 and 24 through a through wiring 32x that passes through an interlayer insulating layer (not shown).
  • the ground wiring 16 is a typical example of the first power supply line according to the present invention.
  • the substrate wiring 12 is a typical example of the second conductivity type diffusion layer according to the present invention.
  • the power supply wiring 26 is a typical example of the second power supply line according to the present invention.
  • the substrate wiring 22 is a typical example of the first conductivity type diffusion layer according to the present invention.
  • the substrate wiring 12 is formed by the P-type diffusion layer containing P-type impurities at a higher concentration than the P-type well 11 in the vicinity of the upper surface of the P-type well 11.
  • the ground wiring 16 is arranged in parallel to the substrate wiring 12 via an interlayer insulating layer (not shown).
  • a substrate wiring 22 is formed by an N-type diffusion layer containing an N-type impurity at a concentration higher than that of the N-type well 21 in the vicinity of the upper surface of the N-type well 21 and an interlayer insulating layer (not shown) is formed as the power supply wiring 26.
  • the substrate wiring 12 and the ground wiring 16 are at least partially overlapped in plan view, and the substrate wiring 22 and the power supply wiring 26 are at least partially overlapped in plan view.
  • the distance between the portion of the P-type well 11 below the gate electrode 15 and the substrate wiring 12 can be shortened. Further, in the P-type MOSFET 20, the distance between the portion of the N-type well 21 below the gate electrode 25 and the substrate wiring 22 can be shortened.
  • the respective impedances of the substrate wirings 12 and 22 can be reduced, and the N-type MOSFET 10 (the portion under the gate electrode 15 of the P-type well 11) and the P-type MOSFET 20 (the gate electrode 25 of the N-type well 21).
  • a substrate bias can be stably applied to each of the lower portions. Further, an extra wiring area for applying the substrate bias is not necessary, and the substrate bias can be applied in a small area. That is, a semiconductor integrated circuit device capable of stably applying a substrate bias in a small area can be provided.
  • FIG. 2A is a diagram corresponding to FIG. 1C of the first embodiment in the second embodiment.
  • FIG. 2B is a diagram corresponding to FIG. 1D of the first embodiment in the second embodiment. Since the circuit diagram and the plan view are the same as those in the first embodiment, the illustration is omitted.
  • the semiconductor integrated circuit according to the first embodiment is that the N-type MOSFET 10A and the P-type MOSFET 20A are formed on a thin film oxide film of SOI. This is different from the apparatus 1 (see FIGS. 1B to 1D).
  • the oxide film 17 is a thin insulating film constituting the SOI.
  • the oxide film 17 is provided at least between the P-type well 11 and the source and drain electrodes 13 and 14.
  • the oxide film 17 is not provided between the P-type well 11 and the substrate wiring 12.
  • the oxide film 27 is a thin insulating film constituting the SOI.
  • the oxide film 27 is provided at least between the N-type well 21 and the source electrode 23 and the drain electrode 24.
  • the oxide film 27 is not provided between the N-type well 21 and the substrate wiring 22.
  • the oxide films 17 and 27 can be made of SiO 2 , for example.
  • the thicknesses of the oxide films 17 and 27 are determined from the substrate wirings 12 and 22, respectively, by the N-type MOSFET 10A (the portion under the gate electrode 15 of the P-type well 11) and the P-type MOSFET 20A (the gate electrode 25 of the N-type well 21). Can be determined as appropriate within a range in which the substrate bias can be applied to the lower portion), but can be about 10 nm, for example.
  • the oxide film 17 is a typical example of the first insulating film according to the present invention.
  • the oxide film 27 is a typical example of the second insulating film according to the present invention.
  • the N-type MOSFET 10A and the P-type MOSFET 20A are formed on the SOI thin film substrate. Even in such a structure, the oxide films 17 and 27 of the P-type well 11 and the N-type well 21 are respectively reduced by sufficiently reducing the thicknesses of the oxide films 17 and 27 (for example, about 10 nm). By applying a substrate bias to the upper region via the substrate wirings 12 and 22, the characteristics of the N-type MOSFET 10A and the P-type MOSFET 20A can be controlled.
  • the threshold values of the MOSFET 10A and the P-type MOSFET 20A can be varied.
  • the oxide films 17 and 27 are each an insulating film, a leak current due to application of a substrate bias does not occur. Therefore, the power consumption of the semiconductor integrated circuit device 1A can be reduced.
  • the substrate wiring 12 made of the P-type diffusion layer and the substrate wiring 22 made of the N-type diffusion layer in the region where the oxide films 17 and 27 of the P-type well 11 and the N-type well 21 are not formed are provided.
  • Modification 1 of the second embodiment shows another example using an SOI substrate.
  • the description of the same components as those of the already described embodiment is omitted.
  • FIG. 3 is a cross-sectional view illustrating a semiconductor integrated circuit device according to Modification 1 of the second embodiment.
  • an N-type MOSFET 10A is formed on a P-type substrate 11A
  • an N-type well 21 is formed on a P-type substrate 11A.
  • the point that the P-type MOSFET 20A is formed in the N-type well 21 is different from the semiconductor integrated circuit device 1A (see FIGS. 2A and 2B).
  • the N-type MOSFET 10A is directly formed on the semiconductor substrate (P-type substrate 11A), and the same semiconductor substrate (P-type substrate 11A) is formed.
  • the P-type MOSFET 20A is formed via the N-type well 21, the same effects as those of the second embodiment can be obtained even in such a structure.
  • the second modification of the second embodiment shows an example in which a plurality of N-type MOSFETs and P-type MOSFETs are formed on an SOI substrate, and a substrate bias is individually applied to the MOSFETs.
  • the description of the same components as those of the already described embodiment is omitted.
  • FIG. 4 is a cross-sectional view illustrating a semiconductor integrated circuit device according to Modification 2 of the second embodiment.
  • an N-type MOSFET 10A is formed in the P-type well 11
  • a P-type MOSFET 20A is formed in the N-type well 21.
  • an N-type well 41 is provided below the P-type well 11 and the N-type well 21 (at a position deeper than the P-type well 11 and the N-type well 21). 49 is different from the semiconductor integrated circuit device 1A (see FIGS. 2A and 2B).
  • N-type well 21 1 is independent from the N-type well 21 3 (being insulated )
  • the N-type wells 21 1 and 21 2 are connected by an N-type well 41 1 .
  • the N-type well 21 1 and 21 3 which are independent, each individual substrate bias is applied It is possible.
  • the substrate wiring 12 1 and the substrate wiring 12 2, respectively separate substrate bias can be applied.
  • the substrate wiring 22 1 and the substrate wiring 22 2, respectively separate substrate bias can be applied.
  • the P-type well 11 1 in which the N-type MOSFET 10A is formed is formed at a deeper position than the P-type well 11 1 .
  • the N-type well 41 1 is electrically isolated from the P-type well 11 2 other N-type MOSFET10B is formed.
  • N-type well 21 1 P-type MOSFET20A is formed, N-type well 21 by N-type well 41 1 formed at a position deeper than 1, other N-type well P-type MOSFET20B are formed 21 2 And are electrically connected.
  • semiconductor integrated circuit device 1C according to the second modification of the second embodiment also has the same effect as the semiconductor integrated circuit device 1A according to the second embodiment.
  • the third embodiment shows an example in which a plurality of standard cells are arranged adjacent to each other.
  • the description of the same components as those of the already described embodiments is omitted.
  • FIG. 5A is a plan view illustrating a semiconductor integrated circuit device according to the third embodiment.
  • FIG. 5B is a cross-sectional view taken along the line CC of FIG. 5A.
  • FIG. 5C is a cross-sectional view taken along the line DD of FIG. 5A.
  • FIG. 5D is a cross-sectional view taken along line EE of FIG. 5A.
  • the P-type well 11 and the N-type well 21 are the S0 layer
  • the metal wiring layer disposed on the S0 layer via the interlayer insulating layer (not shown) is the M1 layer
  • the interlayer insulating layer is the interlayer insulating layer.
  • the metal wiring layer disposed on the M1 layer via the (not shown) is the M2 layer
  • the metal wiring layer disposed on the M2 layer via the interlayer insulating layer (not shown) is the M3 layer.
  • ... (M1) or the like, and the layers in which guided are formed are indicated.
  • FIG. 5A for convenience, the ground wiring 16, the power supply wiring 26, the input terminal 31, and the output terminal 32 are drawn transparently and the lower layer is seen through.
  • the substrate wirings 12 (S0) and 22 (S0) are shown in a satin pattern.
  • a plurality of standard cells are arranged adjacent to each other. Specifically, three inverter cells 51 are arranged adjacent to each other, and a high booster cell 52 is arranged adjacent to the inverter cells 51. A tap cell 53 is disposed adjacent to the high booster cell 52.
  • the inverter cell 51 and the high booster cell 52 having a width (XX direction) wider than the inverter cell 51 are arranged as the standard cells, but the present invention is not limited to this.
  • the N-type MOSFET 10 and the P-type MOSFET 20 are shown only in one inverter cell 51 as a representative, and the illustration of the other inverter cells 51 is omitted.
  • a set of N-type MOSFET and P-type MOSFET adjacent to each other in YY direction is changed to YY direction.
  • the substrate wirings 12 (S0) of the standard cells are arranged adjacent to each other, so that the substrate wirings 12 (S0) of the standard cells can be easily connected to each other. can do.
  • the substrate wirings 22 (S0) of the standard cells are arranged adjacent to each other, the substrate wirings 22 (S0) of the standard cells can be easily connected to each other.
  • a flip-flop cell, a NAND cell, an inverter cell with a wide gate width, or the like can be arranged in the high booster cell 52.
  • the substrate wiring 12 (M2), the ground wiring 16 (M2), the substrate wiring 22 (M2), and the power wiring 26 (M2), which are power supply trunk lines, are metal wiring layers M2, respectively. It is formed in the Y direction in the layer. These four power trunks can be formed on top of any standard cell. In the present embodiment, an example is shown in which four power supply trunks are formed above the high booster cell 52.
  • the ground wiring 16 (M2) which is one of the power supply trunk lines, is connected to the ground wiring 16 (M1) of the high booster cell 52 on the high booster cell 52 by the through wiring 54.
  • the power supply wiring 26 (M2) which is one of the power supply trunk lines is connected to the power supply wiring 26 (M1) of the high booster cell 52 on the high booster cell 52 by the through wiring 55.
  • the substrate wiring 12 (M2) which is one of the power supply trunk lines, includes the through wiring 56, the metal wiring 57 (M3), the through wiring 58 1 , the metal wiring 57 (M2), the through wiring 58 2 , and the metal wiring 57 (M1). ), and via the through wiring 58 3, and is connected to the P-type diffusion layer 59 containing a P-type impurity of high concentration of tap cell 53 (S0). Further, the P-type diffusion layer 59 (S0) is connected to the substrate wiring 12 (S0) in the tap cell 53.
  • the substrate wiring 22 (M2) which is one of the power supply trunk lines includes a through wiring 66, a metal wiring 67 (M3), a through wiring 68 1 , a metal wiring 67 (M2), a through wiring 68 2 , a metal wiring 67 ( M1), and via the through wiring 683 is connected to the N-type diffusion layer 69 containing N-type impurity of high concentration of tap cell 53 (S0). Further, the N-type diffusion layer 69 (S0) of the tap cell 53 is connected to the substrate wiring 22 (S0) in the tap cell 53.
  • the tap cell 53 can be inserted at any position between adjacent standard cells (any position between a plurality of sets of N-type MOSFET 10 and P-type MOSFET 20).
  • an M4 layer (metal wiring layer) is disposed on the M3 layer via an interlayer insulating layer (not shown), and the substrate wiring 12 (M2), the ground wiring 16 (M2), and the substrate wiring 22 ( M2) and all or part of the power supply wiring 26 (M2) may be formed in the Y direction in the M4 layer.
  • the ground wiring 16 (M2) is a typical example of the first power supply trunk line according to the present invention.
  • the substrate wiring 12 (M2) is a typical example of the first substrate bias trunk line according to the present invention.
  • the power supply wiring 26 (M2) is a typical example of the second power supply trunk line according to the present invention.
  • the substrate wiring 22 (M2) is a typical example of the second substrate bias trunk line according to the present invention.
  • FIG. 6 is a diagram showing an example in which a large number of cells having different sizes are arranged adjacent to each other in the semiconductor integrated circuit device according to the third embodiment. As shown in FIG. 6, by arranging the power supply trunk lines at a predetermined interval, a large number of cells having different sizes can be arranged adjacent to each other in the XX direction and the YY direction.
  • the connection from the substrate wirings 12 (M2) and 22 (M2), which are power supply trunk lines, to the tap cell 53 is performed through metal wirings 57 (M3) and 67 (M3) which are substantially orthogonal to the power supply trunk lines, respectively.
  • the tap cell 53 can be arranged at an arbitrary position rather than below the power supply trunk line.
  • standard cells a combination of an N-type MOSFET and a P-type MOSFET
  • the tap cell 53 can be arranged adjacent to the standard cell.
  • semiconductor integrated circuit device 1D according to the third embodiment also has the same effects as the semiconductor integrated circuit device 1 according to the first embodiment.
  • the effect of the present application will be described in more detail.
  • the area of the semiconductor integrated circuit device can be reduced.
  • the first effect of reducing the size of the standard cell itself for example, the first embodiment and the second embodiment
  • the case where cells of different sizes are arranged adjacent to each other
  • a second effect for example, the third embodiment
  • a case where the present application is applied to a technology having a minimum dimension of 65 nm will be described as an example with specific numerical examples.
  • the minimum dimension is applied to the gate length, but the metal wiring interval is usually about 0.2 ⁇ m minimum. That is, the design grid length is about 0.2 ⁇ m.
  • the standard cell height is typically 9 grids. Therefore, the height of the standard cell is 1.8 ⁇ m.
  • the substrate wiring (substrate wiring) for applying a substrate bias if a wiring (substrate wiring) for applying a substrate bias is to be drawn, the substrate wiring (substrate bias Vbp) of the P-type MOSFET and the N-type MOSFET for each substrate wiring (substrate bias Vbn), one extra wiring is required for each. Therefore, the height of the standard cell is 1.8 ⁇ m to 2.2 ⁇ m.
  • the height of the standard cell is 1.8 ⁇ m. That is, the area reduction effect of the standard cell size in the present application is about 18% (first effect).
  • tap cells for applying a substrate bias are installed every 200 ⁇ m in the 0.2 ⁇ m technology. If this is replaced with 65 nm technology, it is necessary to place tap cells about every 65 ⁇ m.
  • a standard cell having a large circuit scale such as a flip-flop with a scanning function may have a cell width of about 10 ⁇ m. For example, if cells having a cell width of 10 ⁇ m are arranged in a 65 ⁇ m area between adjacent tap cells, six cells are arranged to have a remainder of 5 ⁇ m, so this 5 ⁇ m area becomes a waste area where no cells are placed. Therefore, about 8% of the area is wasted in this example.
  • the standard cell is also arranged in an area overlapping with the area where the power supply trunk line is provided in plan view. Tap cells can be placed adjacent to standard cells. For this reason, in the present application, the above-described waste area does not occur, so that there is an area reduction effect of about 8% (second effect).
  • CMOS circuit In a CMOS circuit, generally, as the chip area increases, the wiring becomes longer, and as a result, the wiring capacity increases. When the wiring capacity increases, the charging / discharging current of the wiring increases or the operation speed of the circuit becomes slow. In the present application, there is an area reduction effect of about 26%, so that low power and high speed equivalent to that are expected. In addition, the reduction of the area increases the number of non-defective chips acquired per wafer and reduces the manufacturing cost per chip, which is very significant industrially.
  • the substrate bias can be stably applied in the present application. This effect will also be described with specific numerical examples.
  • the substrate of the P-type MOSFET is fixed to the power supply potential, and the substrate of the N-type MOSFET is fixed to the ground potential.
  • a tap cell method is used in which the substrate potential is not fixed for each standard cell, and the substrate potential is fixed at a certain interval. In the tap cell method, since it is not necessary to fix the substrate potential for each standard cell, the area of the diffusion layer for fixing the substrate potential can be saved.
  • the substrate potential is fixed through a well resistance having a sheet resistance of about 1 K ohm / ⁇ , and thus the variation in the substrate potential increases accordingly.
  • the substrate potential fluctuates by about 30% of the power supply voltage due to a change in the drain current of the CMOS.
  • the fluctuation in the substrate potential is expected to reduce the operating speed by about 8% to 9%.
  • each substrate wiring is formed of a P-type diffusion layer and an N-type diffusion layer. Since the sheet resistance of each of the P-type diffusion layer and the N-type diffusion layer is about 10 ohms / square or less, it is possible to reduce the fluctuation of the substrate potential by two orders of magnitude compared to the conventional one, and as a result, the operation speed is lowered. It can be almost eliminated. That is, according to the present application, the substrate bias can be applied more stably than in the prior art, and the operation speed can be increased by about 8% to 9% compared to the prior art.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Semiconductor Integrated Circuits (AREA)
  • Metal-Oxide And Bipolar Metal-Oxide Semiconductor Integrated Circuits (AREA)
  • Design And Manufacture Of Integrated Circuits (AREA)

Abstract

This semiconductor integrated circuit device has a CMOS structure that includes a first conductivity-type MOSFET and a second conductivity-type MOSFET. The semiconductor integrated circuit device has: a second conductivity-type well; the first conductivity-type MOSFET having a drain and a source formed on the second conductivity-type well; a second conductivity-type diffusion layer formed on the second conductivity-type well; a first power supply line, which is provided on an upper layer of the second conductivity-type diffusion layer, and supplies first potential to the first conductivity-type MOSFET; a first conductivity-type well; a second conductivity-type MOSFET having a drain and a source formed on the first conductivity-type well; a first conductivity-type diffusion layer formed on the first conductivity-type well; and a second power supply line, which is provided on an upper layer of the first conductivity-type diffusion layer, and supplies second potential to the first conductivity-type well. The first conductivity-type diffusion layer and the second conductivity-type diffusion layer are power supplying layers for respectively applying substrate bias to the first conductivity-type well and the second conductivity-type well, the first conductivity-type diffusion layer and the second power supply line are disposed parallel to each other by having an interlayer insulating layer therebetween, and have at least respective parts thereof overlap each other in planar view, and the second conductivity-type diffusion layer and the fist power supply line are disposed parallel to each other by having an interlayer insulating layer therebetween, and have at least respective parts thereof overlap in planar view.

Description

半導体集積回路装置Semiconductor integrated circuit device
 本発明は、CMOS構造の半導体集積回路装置に関する。 The present invention relates to a semiconductor integrated circuit device having a CMOS structure.
 近年、CMOS(Complementary Metal Oxide Semiconductor、以下同様)基板バイアス技術は、LSI(Large Scale Integration、以下同様)の高速低電力化を実現するための回路技術として知られている。 In recent years, CMOS (Complementary Metal Oxide Semiconductor, hereinafter the same) substrate bias technology is known as a circuit technology for realizing high speed and lower power consumption of LSI (Large Scale Integration, the same hereinafter).
 CMOS基板バイアス技術の一例を挙げると、非特許文献1には、0.2μmCMOS技術において製作されたマイクロプロセッサであって、マイクロプロセッサの待機時にMOSFET(Metal Oxide Semiconductor Field Effect Transistor、以下同様)に対して基板バイアスを印加することによって、待機時のリーク電流を約3桁低減できることが記載されている。 As an example of the CMOS substrate bias technology, Non-Patent Document 1 describes a microprocessor manufactured in a 0.2 μm CMOS technology for a MOSFET (Metal Oxide Semiconductor Field Effect Transistor, etc.) when the microprocessor is on standby. It is described that the leakage current during standby can be reduced by about three orders of magnitude by applying a substrate bias.
 具体的には、基板バイアスを印加するためのMOSFETから構成される標準セルと、基板バイアスの印加を制御するためのスイッチセルのレイアウト(Fig.5参照)や、セルの集合体を並べて電源と基板バイアスの配線を示したレイアウト(Fig.6参照)等が記載されている。 Specifically, a standard cell composed of MOSFETs for applying a substrate bias, a layout of a switch cell for controlling the application of the substrate bias (see FIG. 5), and a power source by arranging a collection of cells. A layout (see FIG. 6) showing the wiring of the substrate bias is described.
 非特許文献1に記載されたレイアウトでは、各標準セルに基板バイアス印加のための金属配線層が配置されているため、基板バイアスのインピーダンスを低くすることが可能となり、安定した基板バイアスを印加できる。 In the layout described in Non-Patent Document 1, since a metal wiring layer for applying a substrate bias is arranged in each standard cell, it is possible to reduce the impedance of the substrate bias and to apply a stable substrate bias. .
 CMOS基板バイアス技術の他の例を挙げると、特許文献1には、基板バイアスを印加するためのウェルコンタクトを標準セル以外の場所に配置し、標準セルに基板バイアスを印加するための金属配線を挿入しない技術が記載されている。 As another example of the CMOS substrate bias technology, Patent Document 1 discloses that a well contact for applying a substrate bias is arranged in a place other than a standard cell, and metal wiring for applying the substrate bias to the standard cell is provided. Techniques that do not insert are described.
特開2009-117858号公報JP 2009-117858 A
 しかしながら、非特許文献1の技術では、以下の2つの要因により、標準セルを並べた場合の占有面積が大きくなる問題があった。 However, the technique of Non-Patent Document 1 has a problem that the occupied area becomes large when standard cells are arranged due to the following two factors.
 第1の要因は、標準セル内の電源配線と基板バイアスの配線が第1層の金属配線層(M1)により構成されているため、それぞれの配線に所定の面積が必要になることである。第2の要因は、標準セルを200μm間隔で配置されたスイッチセルの間に配置しなければならないため、様々な幅が存在する標準セルをスイッチセルの間に最満に配置できず、200μm間隔で配置されたスイッチセルの間に標準セルが配置されない領域が発生することである。 The first factor is that since the power supply wiring and the substrate bias wiring in the standard cell are constituted by the first metal wiring layer (M1), each wiring requires a predetermined area. The second factor is that the standard cells must be arranged between the switch cells arranged at intervals of 200 μm. Therefore, the standard cells having various widths cannot be arranged at the maximum between the switch cells. An area where the standard cell is not arranged is generated between the switch cells arranged in (1).
 又、特許文献1の技術では、標準セル内のMOSFETのウェルとウェルコンタクトが離れてしまうために、基板バイアスのインピーダンスが高くなり、結果としてMOSFETの閾値電圧等の特性が変動して、MOSFETの遅延時間が安定しないという問題があった。すなわち、基板バイアスを安定的に印加できないという問題があった。 Further, in the technique of Patent Document 1, since the well and the contact of the MOSFET in the standard cell are separated from each other, the impedance of the substrate bias is increased, and as a result, the characteristics such as the threshold voltage of the MOSFET fluctuate, There was a problem that the delay time was not stable. That is, there is a problem that the substrate bias cannot be stably applied.
 本発明は、上記の点に鑑みてなされたものであり、基板バイアスを小面積で安定的に印加することが可能な半導体集積回路装置を提供することを課題とする。 The present invention has been made in view of the above points, and an object thereof is to provide a semiconductor integrated circuit device capable of stably applying a substrate bias in a small area.
 本半導体集積回路装置は、第1導電型MOSFET及び第2導電型MOSFETを含むCMOS構造の半導体集積回路装置であって、第2導電型ウェルと、前記第2導電型ウェルにドレイン及びソースが形成された前記第1導電型MOSFETと、前記第2導電型ウェルに形成された第2導電型拡散層と、前記第2導電型拡散層の上層に設けられ、前記第1導電型MOSFETに第1電位を供給する第1電源線と、第1導電型ウェルと、前記第1導電型ウェルにドレイン及びソースが形成された前記第2導電型MOSFETと、前記第1導電型ウェルに形成された第1導電型拡散層と、前記第1導電型拡散層の上層に設けられ、前記第1導電型ウェルに第2電位を供給する第2電源線と、を有し、前記第1導電型拡散層及び前記第2導電型拡散層は、それぞれ前記第1導電型ウェル及び前記第2導電型ウェルに基板バイアスを印加するための給電層であり、前記第1導電型拡散層と前記第2電源線とは、層間絶縁層を介して互いに平行に配置され、かつ、平面視において少なくとも一部が重複しており、前記第2導電型拡散層と前記第1電源線とは、層間絶縁層を介して互いに平行に配置され、かつ、平面視において少なくとも一部が重複していることを要件とする。 The semiconductor integrated circuit device is a semiconductor integrated circuit device having a CMOS structure including a first conductivity type MOSFET and a second conductivity type MOSFET, wherein a second conductivity type well and a drain and a source are formed in the second conductivity type well. The first conductivity type MOSFET, the second conductivity type diffusion layer formed in the second conductivity type well, and the second conductivity type diffusion layer are provided on the first conductivity type MOSFET. A first power supply line for supplying a potential; a first conductivity type well; the second conductivity type MOSFET having a drain and a source formed in the first conductivity type well; and a first conductivity type well formed in the first conductivity type well. A first conductivity type diffusion layer; and a second power supply line that is provided in an upper layer of the first conductivity type diffusion layer and supplies a second potential to the first conductivity type well. And the second conductivity type The diffusion layer is a power supply layer for applying a substrate bias to the first conductivity type well and the second conductivity type well, respectively, and the first conductivity type diffusion layer and the second power supply line are interlayer insulating layers. And the second conductive type diffusion layer and the first power supply line are arranged in parallel with each other through an interlayer insulating layer. In addition, it is a requirement that at least a portion overlaps in plan view.
 開示の技術によれば、基板バイアスを小面積で安定的に印加することが可能な半導体集積回路装置を提供できる。 According to the disclosed technique, a semiconductor integrated circuit device capable of stably applying a substrate bias in a small area can be provided.
第1の実施の形態に係る半導体集積回路装置を例示する回路図である。1 is a circuit diagram illustrating a semiconductor integrated circuit device according to a first embodiment; 第1の実施の形態に係る半導体集積回路装置を例示する平面図である。1 is a plan view illustrating a semiconductor integrated circuit device according to a first embodiment; 図1BのA-A線に沿う断面図である。It is sectional drawing which follows the AA line of FIG. 1B. 図1BのB-B線に沿う断面図である。It is sectional drawing which follows the BB line of FIG. 1B. 第2の実施の形態において第1の実施の形態の図1Cに相当する図である。It is a figure equivalent to FIG. 1C of 1st Embodiment in 2nd Embodiment. 第2の実施の形態において第1の実施の形態の図1Dに相当する図である。It is a figure equivalent to FIG. 1D of 1st Embodiment in 2nd Embodiment. 第2の実施の形態の変形例1に係る半導体集積回路装置を例示する断面図である。FIG. 10 is a cross-sectional view illustrating a semiconductor integrated circuit device according to Modification 1 of the second embodiment. 第2の実施の形態の変形例2に係る半導体集積回路装置を例示する断面図である。FIG. 10 is a cross-sectional view illustrating a semiconductor integrated circuit device according to Modification 2 of the second embodiment. 第3の実施の形態に係る半導体集積回路装置を例示する平面図である。6 is a plan view illustrating a semiconductor integrated circuit device according to a third embodiment; FIG. 図5AのC-C線に沿う断面図である。It is sectional drawing which follows the CC line of FIG. 5A. 図5AのD-D線に沿う断面図である。It is sectional drawing which follows the DD line | wire of FIG. 5A. 図5AのE-E線に沿う断面図である。It is sectional drawing which follows the EE line of FIG. 5A. 第3の実施の形態に係る半導体集積回路装置において大きさの異なる多数のセルを隣接して配置した例を示す図である。It is a figure which shows the example which has arrange | positioned many cells from which a magnitude | size differs adjacently in the semiconductor integrated circuit device which concerns on 3rd Embodiment.
 以下、図面を参照して発明を実施するための形態について説明する。各図面において、同一構成部分には同一符号を付し、重複した説明を省略する場合がある。なお、以降の各実施の形態及びその変形例ではインバータ回路(論理反転回路)を例示して説明するが、これには限定されず、本発明はインバータ回路以外のCMOS構造の半導体集積回路装置にも広く適用可能である。 Hereinafter, embodiments for carrying out the invention will be described with reference to the drawings. In the drawings, the same components are denoted by the same reference numerals, and redundant description may be omitted. In the following embodiments and modifications thereof, an inverter circuit (logic inversion circuit) will be described as an example. However, the present invention is not limited to this, and the present invention is applied to a semiconductor integrated circuit device having a CMOS structure other than the inverter circuit. Is also widely applicable.
 〈第1の実施の形態〉
 図1Aは、第1の実施の形態に係る半導体集積回路装置を例示する回路図である。図1Aを参照するに、半導体集積回路装置1は、N型MOSFET10と、P型MOSFET20とを含むCMOS構造の半導体集積回路装置であって、インバータ回路としての機能を有する。なお、本願において、第1導電型とはN型又はP型であり、第2導電型とは第1導電型とは逆導電型のP型又はN型である。
<First Embodiment>
FIG. 1A is a circuit diagram illustrating the semiconductor integrated circuit device according to the first embodiment. Referring to FIG. 1A, a semiconductor integrated circuit device 1 is a semiconductor integrated circuit device having a CMOS structure including an N-type MOSFET 10 and a P-type MOSFET 20, and has a function as an inverter circuit. In the present application, the first conductivity type is N-type or P-type, and the second conductivity type is P-type or N-type opposite to the first conductivity type.
 図1Aにおいて、接地配線16(Vss)は、N型MOSFET10のソースSと接続されている。基板配線12(Vbn)は、N型MOSFET10に基板バイアスを印加するための配線であり、N型MOSFET10のバックゲートBと接続されている。電源配線26(Vdd)は、P型MOSFET20のソースSと接続されている。基板配線22(Vbp)は、P型MOSFET20に基板バイアスを印加するための配線であり、P型MOSFET20のバックゲートBと接続されている。 In FIG. 1A, the ground wiring 16 (Vss) is connected to the source S 1 of the N-type MOSFET 10 . The substrate wiring 12 (Vbn) is a wiring for applying a substrate bias to the N-type MOSFET 10 and is connected to the back gate B 1 of the N-type MOSFET 10 . The power supply wiring 26 (Vdd) is connected to the source S 2 of the P-type MOSFET 20 . The substrate wiring 22 (Vbp) is a wiring for applying a substrate bias to the P-type MOSFET 20, and is connected to the back gate B 2 of the P-type MOSFET 20 .
 入力端子31(Vin)はインバータ回路の入力端子であり、N型MOSFET10のゲートG及びP型MOSFET20のゲートGと接続されている。出力端子32(Vout)はインバータ回路の出力端子であり、N型MOSFET10のドレインD及びP型MOSFET20のドレインDと接続されている。 The input terminal 31 (Vin) is an input terminal of the inverter circuit, and is connected to the gate G 1 of the N-type MOSFET 10 and the gate G 2 of the P-type MOSFET 20 . The output terminal 32 (Vout) is an output terminal of the inverter circuit, and is connected to the drain D 1 of the N-type MOSFET 10 and the drain D 2 of the P-type MOSFET 20 .
 接地配線16、電源配線26、基板配線12、及び基板配線22に印加される電圧は適宜決定できるが、例えば、それぞれ0v、0.5~1.0v、+0.5~-3.3v、及び0~3.8vとなるように変化させることもできる。 The voltages applied to the ground wiring 16, the power supply wiring 26, the substrate wiring 12, and the substrate wiring 22 can be determined as appropriate. For example, 0 v, 0.5 to 1.0 v, +0.5 to −3.3 v, and It can also be changed to be 0 to 3.8v.
 図1Bは、第1の実施の形態に係る半導体集積回路装置を例示する平面図である。図1Cは、図1BのA-A線に沿う断面図である。図1Dは、図1BのB-B線に沿う断面図である。なお、図1Bにおいて、便宜上、接地配線16、電源配線26、入力端子31、及び出力端子32を透明に描き、下層を透視している。又、便宜上、基板配線12及び22を梨地模様で示している。 FIG. 1B is a plan view illustrating the semiconductor integrated circuit device according to the first embodiment. 1C is a cross-sectional view taken along the line AA in FIG. 1B. 1D is a cross-sectional view taken along line BB in FIG. 1B. In FIG. 1B, for convenience, the ground wiring 16, the power supply wiring 26, the input terminal 31, and the output terminal 32 are drawn transparently, and the lower layer is seen through. For convenience, the substrate wirings 12 and 22 are shown in a satin pattern.
 図1B~図1Dを参照するに、N型MOSFET10とP型MOSFET20とは、平面視において(図1C又は図1DのZ-Z方向から視て)、Y-Y方向に隣接するように配置されている。 1B to 1D, the N-type MOSFET 10 and the P-type MOSFET 20 are arranged so as to be adjacent to each other in the YY direction in plan view (viewed from the ZZ direction in FIG. 1C or FIG. 1D). ing.
 N型MOSFET10において、低濃度のP型不純物を含有するP型ウェル11の上面(ゲート電極15側の面)近傍にはソース電極13とドレイン電極14とがX-X方向に所定の間隔で並設されている。ソース電極13及びドレイン電極14のそれぞれの一方の側にはアイソレーション層33が形成されている。ソース電極13とドレイン電極14とに挟持されたチャネル領域にオーバーラップする位置には、ゲート絶縁膜(図示せず)を介して、ゲート電極15が設けられている。 In the N-type MOSFET 10, a source electrode 13 and a drain electrode 14 are arranged at predetermined intervals in the XX direction near the upper surface (surface on the gate electrode 15 side) of the P-type well 11 containing a low-concentration P-type impurity. It is installed. An isolation layer 33 is formed on one side of each of the source electrode 13 and the drain electrode 14. A gate electrode 15 is provided at a position overlapping a channel region sandwiched between the source electrode 13 and the drain electrode 14 via a gate insulating film (not shown).
 なお、P型ウェル11、ソース電極13、ドレイン電極14、及びゲート電極15は、それぞれ図1Aに示すバックゲートB、ソース電極S、ドレイン電極D、及びゲート電極Gに対応する。 The P-type well 11, the source electrode 13, the drain electrode 14, and the gate electrode 15 correspond to the back gate B 1 , the source electrode S 1 , the drain electrode D 1 , and the gate electrode G 1 shown in FIG. 1A, respectively.
 平面視において、P型ウェル11の上面近傍の、N型ウェル21に隣接しない側には、X-X方向に基板配線12が設けられている。基板配線12は、P型ウェル11の電位を固定するために、P型ウェル11よりも高濃度のP型不純物を含有するP型拡散層により形成されている。又、この拡散層の表面には金属シリサイド等の低抵抗材料を形成してもよい。つまり、基板配線12は、P型ウェル11に基板バイアスを印加するための給電層である。 In plan view, substrate wiring 12 is provided in the XX direction on the side near the top surface of the P-type well 11 and not adjacent to the N-type well 21. The substrate wiring 12 is formed of a P-type diffusion layer containing a P-type impurity having a concentration higher than that of the P-type well 11 in order to fix the potential of the P-type well 11. Further, a low resistance material such as metal silicide may be formed on the surface of the diffusion layer. That is, the substrate wiring 12 is a power feeding layer for applying a substrate bias to the P-type well 11.
 P型ウェル11の上面には、層間絶縁層(図示せず)を介して、X-X方向に接地配線16が設けられている。接地配線16は、ソース電極13側に(Y-Y方向に)延在し、層間絶縁層(図示せず)を貫通する貫通配線16xを介して、ソース電極13と接続されている。接地配線16や貫通配線16xは、例えば銅(Cu)やタングステン(W)等の金属から形成することができる。 On the upper surface of the P-type well 11, a ground wiring 16 is provided in the XX direction via an interlayer insulating layer (not shown). The ground wiring 16 extends to the source electrode 13 side (in the YY direction) and is connected to the source electrode 13 through a through wiring 16x that penetrates an interlayer insulating layer (not shown). The ground wiring 16 and the through wiring 16x can be formed of a metal such as copper (Cu) or tungsten (W), for example.
 接地配線16は基板配線12の上層であり、基板配線12と接地配線16とは層間絶縁層(図示せず)を介して互いに平行に配置されている。半導体集積回路装置1を小面積化するためには、基板配線12と接地配線16とは、平面視において少なくとも一部が重複していることが好ましい。基板配線12と接地配線16とは、平面視において全部が重複していることがより好ましい。 The ground wiring 16 is an upper layer of the substrate wiring 12, and the substrate wiring 12 and the ground wiring 16 are arranged in parallel to each other through an interlayer insulating layer (not shown). In order to reduce the area of the semiconductor integrated circuit device 1, it is preferable that at least a part of the substrate wiring 12 and the ground wiring 16 overlap in plan view. More preferably, the substrate wiring 12 and the ground wiring 16 all overlap in plan view.
 図1Bの例では、基板配線12及び接地配線16は、それぞれX-X方向におおよそ直線状に形成されているが、何れか一方又は双方が直線状でない部分を含んでいてもよい。又、基板配線12及び接地配線16は、同一の幅(Y-Y方向)であっても、異なる幅であってもよい。例えば、電源供給を安定化させるために、接地配線16の幅を基板配線12の幅よりも太くし、平面視において接地配線16と重複する位置に基板配線12を配置することができる。 In the example of FIG. 1B, the substrate wiring 12 and the ground wiring 16 are each formed in a substantially linear shape in the XX direction, but either one or both may include a portion that is not linear. Further, the substrate wiring 12 and the ground wiring 16 may have the same width (YY direction) or different widths. For example, in order to stabilize the power supply, the width of the ground wiring 16 can be made larger than the width of the substrate wiring 12, and the substrate wiring 12 can be arranged at a position overlapping the ground wiring 16 in plan view.
 なお、本願において、平行とはおおよそ平行であることを意味し、厳密に平行であることを意味するものではない。従って、第1の実施の形態に係る半導体集積回路装置としての所定の効果を実質的に損なわない範囲で平行からずれていてもよい。 In the present application, “parallel” means approximately parallel and does not mean strictly parallel. Therefore, the semiconductor integrated circuit device according to the first embodiment may be deviated from parallelism within a range that does not substantially impair the predetermined effect.
 P型MOSFET20において、低濃度のN型不純物を含有するN型ウェル21の上面(ゲート電極25側の面)近傍にはソース電極23とドレイン電極24とがX-X方向に所定の間隔で並設されている。ソース電極23及びドレイン電極24のそれぞれの一方の側にはアイソレーション層33が形成されている。ソース電極23とドレイン電極24とに挟持されたチャネル領域にオーバーラップする位置には、ゲート絶縁膜(図示せず)を介して、ゲート電極25が設けられている。 In the P-type MOSFET 20, a source electrode 23 and a drain electrode 24 are arranged in parallel at a predetermined interval in the XX direction near the upper surface (surface on the gate electrode 25 side) of the N-type well 21 containing a low-concentration N-type impurity. It is installed. An isolation layer 33 is formed on one side of each of the source electrode 23 and the drain electrode 24. A gate electrode 25 is provided at a position overlapping the channel region sandwiched between the source electrode 23 and the drain electrode 24 via a gate insulating film (not shown).
 なお、N型ウェル21、ソース電極23、ドレイン電極24、及びゲート電極25は、それぞれ図1Aに示すバックゲートB、ソース電極S、ドレイン電極D、及びゲート電極Gに対応する。 Note that the N-type well 21, the source electrode 23, the drain electrode 24, and the gate electrode 25 correspond to the back gate B 2 , the source electrode S 2 , the drain electrode D 2 , and the gate electrode G 2 shown in FIG. 1A, respectively.
 平面視において、N型ウェル21の上面近傍の、P型ウェル11に隣接しない側には、X-X方向に基板配線22が設けられている。基板配線22は、N型ウェル21の電位を固定するために、N型ウェル21よりも高濃度のN型不純物を含有するN型拡散層により形成されている。つまり、基板配線22は、N型ウェル21に基板バイアスを印加するための給電層である。 In plan view, substrate wiring 22 is provided in the XX direction near the upper surface of the N-type well 21 and on the side not adjacent to the P-type well 11. The substrate wiring 22 is formed of an N-type diffusion layer containing an N-type impurity at a concentration higher than that of the N-type well 21 in order to fix the potential of the N-type well 21. That is, the substrate wiring 22 is a power feeding layer for applying a substrate bias to the N-type well 21.
 N型ウェル21の上面には、層間絶縁層(図示せず)を介して、X-X方向に電源配線26が設けられている。電源配線26は、ソース電極23側に(Y-Y方向に)延在し、層間絶縁層(図示せず)を貫通する貫通配線26xを介して、ソース電極23と接続されている。電源配線26や貫通配線26xは、例えば銅(Cu)やタングステン(W)等の金属から形成することができる。 On the upper surface of the N-type well 21, a power supply wiring 26 is provided in the XX direction via an interlayer insulating layer (not shown). The power supply wiring 26 extends to the source electrode 23 side (in the YY direction) and is connected to the source electrode 23 through a through wiring 26x that penetrates an interlayer insulating layer (not shown). The power supply wiring 26 and the through wiring 26x can be formed of a metal such as copper (Cu) or tungsten (W), for example.
 電源配線26は基板配線22の上層であり、基板配線22と電源配線26とは層間絶縁層(図示せず)を介して互いに平行に配置されている。半導体集積回路装置1を小面積化するためには、基板配線22と電源配線26とは、平面視において少なくとも一部が重複していることが好ましい。基板配線22と電源配線26とは、平面視において全部が重複していることがより好ましい。 The power supply wiring 26 is an upper layer of the substrate wiring 22, and the substrate wiring 22 and the power supply wiring 26 are arranged in parallel to each other through an interlayer insulating layer (not shown). In order to reduce the area of the semiconductor integrated circuit device 1, it is preferable that at least a part of the substrate wiring 22 and the power supply wiring 26 overlap in plan view. It is more preferable that the substrate wiring 22 and the power supply wiring 26 are all overlapped in plan view.
 図1Bの例では、基板配線22及び電源配線26は、それぞれX-X方向におおよそ直線状に形成されているが、何れか一方又は双方が直線状でない部分を含んでいてもよい。又、基板配線22及び電源配線26は、同一の幅(Y-Y方向)であっても、異なる幅であってもよい。例えば、電源供給を安定化させるために、電源配線26の幅を基板配線22の幅よりも太くし、平面視において電源配線26と重複する位置に基板配線22を配置することができる。 In the example of FIG. 1B, the substrate wiring 22 and the power supply wiring 26 are each formed in a substantially linear shape in the XX direction, but either one or both may include a portion that is not linear. Further, the substrate wiring 22 and the power supply wiring 26 may have the same width (YY direction) or different widths. For example, in order to stabilize power supply, the width of the power supply wiring 26 can be made larger than the width of the substrate wiring 22, and the substrate wiring 22 can be arranged at a position overlapping the power supply wiring 26 in plan view.
 P型ウェル11及びN型ウェル21の上面には、層間絶縁層(図示せず)を介して、入力端子31及び出力端子32が設けられている。入力端子31は、層間絶縁層(図示せず)を貫通する貫通配線31xを介して、ゲート電極15及び25と接続されている。出力端子32は、層間絶縁層(図示せず)を貫通する貫通配線32xを介して、ドレイン電極14及び24と接続されている。 An input terminal 31 and an output terminal 32 are provided on the upper surfaces of the P-type well 11 and the N-type well 21 via an interlayer insulating layer (not shown). The input terminal 31 is connected to the gate electrodes 15 and 25 through a through wiring 31x that passes through an interlayer insulating layer (not shown). The output terminal 32 is connected to the drain electrodes 14 and 24 through a through wiring 32x that passes through an interlayer insulating layer (not shown).
 なお、接地配線16は、本発明に係る第1電源線の代表的な一例である。又、基板配線12は、本発明に係る第2導電型拡散層の代表的な一例である。電源配線26は、本発明に係る第2電源線の代表的な一例である。又、基板配線22は、本発明に係る第1導電型拡散層の代表的な一例である。 The ground wiring 16 is a typical example of the first power supply line according to the present invention. The substrate wiring 12 is a typical example of the second conductivity type diffusion layer according to the present invention. The power supply wiring 26 is a typical example of the second power supply line according to the present invention. The substrate wiring 22 is a typical example of the first conductivity type diffusion layer according to the present invention.
 このように、第1の実施の形態に係る半導体集積回路装置1では、P型ウェル11の上面近傍にP型ウェル11よりも高濃度のP型不純物を含有するP型拡散層により基板配線12を形成し、接地配線16を層間絶縁層(図示せず)を介して基板配線12に平行に配置している。又、N型ウェル21の上面近傍にN型ウェル21よりも高濃度のN型不純物を含有するN型拡散層により基板配線22を形成し、電源配線26を層間絶縁層(図示せず)を介して基板配線22に平行に配置している。又、基板配線12と接地配線16とは、平面視において少なくとも一部が重複しており、基板配線22と電源配線26とは、平面視において少なくとも一部が重複している。 As described above, in the semiconductor integrated circuit device 1 according to the first embodiment, the substrate wiring 12 is formed by the P-type diffusion layer containing P-type impurities at a higher concentration than the P-type well 11 in the vicinity of the upper surface of the P-type well 11. The ground wiring 16 is arranged in parallel to the substrate wiring 12 via an interlayer insulating layer (not shown). Further, a substrate wiring 22 is formed by an N-type diffusion layer containing an N-type impurity at a concentration higher than that of the N-type well 21 in the vicinity of the upper surface of the N-type well 21 and an interlayer insulating layer (not shown) is formed as the power supply wiring 26. Are arranged in parallel to the substrate wiring 22. The substrate wiring 12 and the ground wiring 16 are at least partially overlapped in plan view, and the substrate wiring 22 and the power supply wiring 26 are at least partially overlapped in plan view.
 これにより、N型MOSFET10において、P型ウェル11のゲート電極15の下の部分と基板配線12との距離を短くできる。又、P型MOSFET20において、N型ウェル21のゲート電極25の下の部分と基板配線22との距離を短くできる。 Thereby, in the N-type MOSFET 10, the distance between the portion of the P-type well 11 below the gate electrode 15 and the substrate wiring 12 can be shortened. Further, in the P-type MOSFET 20, the distance between the portion of the N-type well 21 below the gate electrode 25 and the substrate wiring 22 can be shortened.
 その結果、基板配線12及び22のそれぞれのインピーダンスを低減することが可能となり、N型MOSFET10(P型ウェル11のゲート電極15の下の部分)及びP型MOSFET20(N型ウェル21のゲート電極25の下の部分)それぞれに基板バイアスを安定的に印加できる。又、基板バイアスを印加するための余計な配線領域が不要となり、小面積で基板バイアスを印加できる。つまり、基板バイアスを小面積で安定的に印加することが可能な半導体集積回路装置を提供できる。 As a result, the respective impedances of the substrate wirings 12 and 22 can be reduced, and the N-type MOSFET 10 (the portion under the gate electrode 15 of the P-type well 11) and the P-type MOSFET 20 (the gate electrode 25 of the N-type well 21). A substrate bias can be stably applied to each of the lower portions. Further, an extra wiring area for applying the substrate bias is not necessary, and the substrate bias can be applied in a small area. That is, a semiconductor integrated circuit device capable of stably applying a substrate bias in a small area can be provided.
 〈第2の実施の形態〉
 第2の実施の形態では、SOI(Silicon On Insulator、以下同様)基板上のMOSFETの基板バイアスを印加する場合の例を示す。なお、第2の実施の形態において、既に説明した実施の形態と同一構成部品についての説明は省略する。
<Second Embodiment>
In the second embodiment, an example of applying a substrate bias of a MOSFET on an SOI (Silicon On Insulator, hereinafter the same) substrate is shown. In the second embodiment, the description of the same components as those of the already described embodiments is omitted.
 図2Aは、第2の実施の形態において第1の実施の形態の図1Cに相当する図である。図2Bは、第2の実施の形態において第1の実施の形態の図1Dに相当する図である。なお、回路図及び平面図は第1の実施の形態と同様であるため、図示を省略する。 FIG. 2A is a diagram corresponding to FIG. 1C of the first embodiment in the second embodiment. FIG. 2B is a diagram corresponding to FIG. 1D of the first embodiment in the second embodiment. Since the circuit diagram and the plan view are the same as those in the first embodiment, the illustration is omitted.
 図2A及び図2Bを参照するに、半導体集積回路装置1Aにおいて、N型MOSFET10A及びP型MOSFET20AがSOIの薄膜酸化膜上に形成されている点が、第1の実施の形態に係る半導体集積回路装置1(図1B~図1D参照)と相違する。 2A and 2B, in the semiconductor integrated circuit device 1A, the semiconductor integrated circuit according to the first embodiment is that the N-type MOSFET 10A and the P-type MOSFET 20A are formed on a thin film oxide film of SOI. This is different from the apparatus 1 (see FIGS. 1B to 1D).
 図2Aにおいて、酸化膜17は、SOIを構成する薄い絶縁膜である。酸化膜17は、少なくともP型ウェル11とソース電極13及びドレイン電極14との間に設けられている。酸化膜17は、P型ウェル11と基板配線12との間には設けられていない。又、図2Bにおいて、酸化膜27は、SOIを構成する薄い絶縁膜である。酸化膜27は、少なくともN型ウェル21とソース電極23及びドレイン電極24との間に設けられている。酸化膜27は、N型ウェル21と基板配線22との間には設けられていない。 In FIG. 2A, the oxide film 17 is a thin insulating film constituting the SOI. The oxide film 17 is provided at least between the P-type well 11 and the source and drain electrodes 13 and 14. The oxide film 17 is not provided between the P-type well 11 and the substrate wiring 12. In FIG. 2B, the oxide film 27 is a thin insulating film constituting the SOI. The oxide film 27 is provided at least between the N-type well 21 and the source electrode 23 and the drain electrode 24. The oxide film 27 is not provided between the N-type well 21 and the substrate wiring 22.
 酸化膜17及び27は、例えば、それぞれSiOとすることができる。酸化膜17及び27のそれぞれの厚さは、基板配線12及び22から、それぞれN型MOSFET10A(P型ウェル11のゲート電極15の下の部分)及びP型MOSFET20A(N型ウェル21のゲート電極25の下の部分)に基板バイアスを印加可能な範囲で適宜決定できるが、例えば、10nm程度とすることができる。なお、酸化膜17は、本発明に係る第1絶縁膜の代表的な一例である。又、酸化膜27は、本発明に係る第2絶縁膜の代表的な一例である。 The oxide films 17 and 27 can be made of SiO 2 , for example. The thicknesses of the oxide films 17 and 27 are determined from the substrate wirings 12 and 22, respectively, by the N-type MOSFET 10A (the portion under the gate electrode 15 of the P-type well 11) and the P-type MOSFET 20A (the gate electrode 25 of the N-type well 21). Can be determined as appropriate within a range in which the substrate bias can be applied to the lower portion), but can be about 10 nm, for example. The oxide film 17 is a typical example of the first insulating film according to the present invention. The oxide film 27 is a typical example of the second insulating film according to the present invention.
 このように、第2の実施の形態に係る半導体集積回路装置1Aでは、SOIの薄膜基板にN型MOSFET10A及びP型MOSFET20Aを形成している。このような構造であっても、酸化膜17及び27のそれぞれの厚さを十分に薄くすることにより(例えば、10nm程度)、P型ウェル11及びN型ウェル21のそれぞれ酸化膜17及び27の上側に位置する領域に基板配線12及び22を介して基板バイアスを印加して、N型MOSFET10A及びP型MOSFET20Aのそれぞれの特性を制御できる。 As described above, in the semiconductor integrated circuit device 1A according to the second embodiment, the N-type MOSFET 10A and the P-type MOSFET 20A are formed on the SOI thin film substrate. Even in such a structure, the oxide films 17 and 27 of the P-type well 11 and the N-type well 21 are respectively reduced by sufficiently reducing the thicknesses of the oxide films 17 and 27 (for example, about 10 nm). By applying a substrate bias to the upper region via the substrate wirings 12 and 22, the characteristics of the N-type MOSFET 10A and the P-type MOSFET 20A can be controlled.
 具体的には、例えば、P型ウェル11及びN型ウェル21のそれぞれ酸化膜17及び27の上側に位置する領域に、それぞれ基板配線12及び22を介して基板バイアスを印加することにより、N型MOSFET10A及びP型MOSFET20Aの閾値を可変できる。この際、酸化膜17及び27は、それぞれ絶縁膜であるため、基板バイアスを印加することによるリーク電流が生じない。よって、半導体集積回路装置1Aの低消費電力化が可能となる。 Specifically, for example, by applying a substrate bias to the regions located above the oxide films 17 and 27 of the P-type well 11 and the N-type well 21 via the substrate wirings 12 and 22, respectively, The threshold values of the MOSFET 10A and the P-type MOSFET 20A can be varied. At this time, since the oxide films 17 and 27 are each an insulating film, a leak current due to application of a substrate bias does not occur. Therefore, the power consumption of the semiconductor integrated circuit device 1A can be reduced.
 又、P型ウェル11及びN型ウェル21の酸化膜17及び27が形成されていない領域に、P型拡散層よりなる基板配線12及びN型拡散層よりなる基板配線22を設けることにより、第1の実施の形態と同様の効果を奏する。 Further, by providing the substrate wiring 12 made of the P-type diffusion layer and the substrate wiring 22 made of the N-type diffusion layer in the region where the oxide films 17 and 27 of the P-type well 11 and the N-type well 21 are not formed, The same effects as those of the first embodiment are obtained.
 〈第2の実施の形態の変形例1〉
 第2の実施の形態の変形例1では、SOI基板を用いる他の例を示す。なお、第2の実施の形態の変形例1において、既に説明した実施の形態と同一構成部品についての説明は省略する。
<Modification Example 1 of Second Embodiment>
Modification 1 of the second embodiment shows another example using an SOI substrate. In the first modification of the second embodiment, the description of the same components as those of the already described embodiment is omitted.
 図3は、第2の実施の形態の変形例1に係る半導体集積回路装置を例示する断面図である。図3を参照するに、第2の実施の形態の変形例1に係る半導体集積回路装置1Bでは、P型基板11AにN型MOSFET10Aを形成し、P型基板11AにN型ウェル21を形成し、N型ウェル21にP型MOSFET20Aを形成している点が、半導体集積回路装置1A(図2A及び図2B参照)と相違する。 FIG. 3 is a cross-sectional view illustrating a semiconductor integrated circuit device according to Modification 1 of the second embodiment. Referring to FIG. 3, in a semiconductor integrated circuit device 1B according to Modification 1 of the second embodiment, an N-type MOSFET 10A is formed on a P-type substrate 11A, and an N-type well 21 is formed on a P-type substrate 11A. The point that the P-type MOSFET 20A is formed in the N-type well 21 is different from the semiconductor integrated circuit device 1A (see FIGS. 2A and 2B).
 このように、第2の実施の形態の変形例1に係る半導体集積回路装置1Bでは、半導体基板(P型基板11A)に直接N型MOSFET10Aを形成し、同じ半導体基板(P型基板11A)にN型ウェル21を介してP型MOSFET20Aを形成しているが、このような構造の場合にも第2の実施の形態と同様の効果を奏する。 As described above, in the semiconductor integrated circuit device 1B according to the first modification of the second embodiment, the N-type MOSFET 10A is directly formed on the semiconductor substrate (P-type substrate 11A), and the same semiconductor substrate (P-type substrate 11A) is formed. Although the P-type MOSFET 20A is formed via the N-type well 21, the same effects as those of the second embodiment can be obtained even in such a structure.
 〈第2の実施の形態の変形例2〉
 第2の実施の形態の変形例2では、SOI基板に複数のN型MOSFET及びP型MOSFETを形成し、MOSFETに基板バイアスを個別に印加する例を示す。なお、第2の実施の形態の変形例2において、既に説明した実施の形態と同一構成部品についての説明は省略する。
<Modification 2 of the second embodiment>
The second modification of the second embodiment shows an example in which a plurality of N-type MOSFETs and P-type MOSFETs are formed on an SOI substrate, and a substrate bias is individually applied to the MOSFETs. In the second modification of the second embodiment, the description of the same components as those of the already described embodiment is omitted.
 図4は、第2の実施の形態の変形例2に係る半導体集積回路装置を例示する断面図である。図4を参照するに、第2の実施の形態の変形例2に係る半導体集積回路装置1Cでは、P型ウェル11にN型MOSFET10Aを形成し、N型ウェル21にP型MOSFET20Aを形成している点では半導体集積回路装置1A(図2A及び図2B参照)と同様である。しかし、P型ウェル11及びN型ウェル21の下方に(P型ウェル11及びN型ウェル21よりも深い位置に)N型ウェル41を設け、N型ウェル41によりP型ウェル11をP型基板49から分離している点が半導体集積回路装置1A(図2A及び図2B参照)と相違する。 FIG. 4 is a cross-sectional view illustrating a semiconductor integrated circuit device according to Modification 2 of the second embodiment. Referring to FIG. 4, in the semiconductor integrated circuit device 1C according to the second modification of the second embodiment, an N-type MOSFET 10A is formed in the P-type well 11, and a P-type MOSFET 20A is formed in the N-type well 21. This is similar to the semiconductor integrated circuit device 1A (see FIGS. 2A and 2B). However, an N-type well 41 is provided below the P-type well 11 and the N-type well 21 (at a position deeper than the P-type well 11 and the N-type well 21). 49 is different from the semiconductor integrated circuit device 1A (see FIGS. 2A and 2B).
 半導体集積回路装置1Cにおいて、P型ウェル11はP型ウェル11から独立しており(絶縁されており)、N型ウェル21はN型ウェル21から独立している(絶縁されている)。又、N型ウェル21及び21は、N型ウェル41により接続されている。 In the semiconductor integrated circuit device 1C, P-type well 11 1 (being insulated) independently has a P-type well 11 2, N-type well 21 1 is independent from the N-type well 21 3 (being insulated ) The N- type wells 21 1 and 21 2 are connected by an N-type well 41 1 .
 独立しているP型ウェル11と11には、それぞれ個別の基板バイアスが印加可能とされており、独立しているN型ウェル21と21には、それぞれ個別の基板バイアスが印加可能とされている。なお、図4の場合には、基板配線12と基板配線12には、それぞれ個別の基板バイアスが印加可能である。又、基板配線22と基板配線22には、それぞれ個別の基板バイアスが印加可能である。 Independently to have P- type well 11 1 and 11 2 each are capable individual substrate bias is applied, the N- type well 21 1 and 21 3 which are independent, each individual substrate bias is applied It is possible. In the case of Figure 4, the substrate wiring 12 1 and the substrate wiring 12 2, respectively separate substrate bias can be applied. Further, the substrate wiring 22 1 and the substrate wiring 22 2, respectively separate substrate bias can be applied.
 このように、第2の実施の形態の変形例2に係る半導体集積回路装置1Cでは、N型MOSFET10Aが形成されたP型ウェル11は、P型ウェル11よりも深い位置に形成されたN型ウェル41により、他のN型MOSFET10Bが形成されたP型ウェル11から電気的に分離されている。又、P型MOSFET20Aが形成されたN型ウェル21は、N型ウェル21よりも深い位置に形成されたN型ウェル41により、他のP型MOSFET20Bが形成されたN型ウェル21と電気的に接続されている。 As described above, in the semiconductor integrated circuit device 1C according to the second modification of the second embodiment, the P-type well 11 1 in which the N-type MOSFET 10A is formed is formed at a deeper position than the P-type well 11 1 . the N-type well 41 1, is electrically isolated from the P-type well 11 2 other N-type MOSFET10B is formed. Further, N-type well 21 1 P-type MOSFET20A is formed, N-type well 21 by N-type well 41 1 formed at a position deeper than 1, other N-type well P-type MOSFET20B are formed 21 2 And are electrically connected.
 これにより、独立しているP型ウェル11(P型ウェル11と11)及びN型ウェル21(N型ウェル21と21)に、それぞれ個別の基板バイアスを印加可能となる。 Thereby, individual substrate biases can be applied to the independent P-type well 11 (P-type wells 11 1 and 11 2 ) and N-type well 21 (N-type wells 21 1 and 21 3 ), respectively.
 なお、第2の実施の形態の変形例2に係る半導体集積回路装置1Cは、第2の実施の形態に係る半導体集積回路装置1Aと同様の効果も奏する。 Note that the semiconductor integrated circuit device 1C according to the second modification of the second embodiment also has the same effect as the semiconductor integrated circuit device 1A according to the second embodiment.
 〈第3の実施の形態〉
 第3の実施の形態では、複数の標準セルを隣接して配置する例を示す。なお、第3の実施の形態において、既に説明した実施の形態と同一構成部品についての説明は省略する。
<Third Embodiment>
The third embodiment shows an example in which a plurality of standard cells are arranged adjacent to each other. In the third embodiment, the description of the same components as those of the already described embodiments is omitted.
 図5Aは、第3の実施の形態に係る半導体集積回路装置を例示する平面図である。図5Bは、図5AのC-C線に沿う断面図である。図5Cは、図5AのD-D線に沿う断面図である。図5Dは、図5AのE-E線に沿う断面図である。なお、図5A~図5Dでは、P型ウェル11及びN型ウェル21をS0層、層間絶縁層(図示せず)を介してS0層上に配置される金属配線層をM1層、層間絶縁層(図示せず)を介してM1層上に配置される金属配線層をM2層、層間絶縁層(図示せず)を介してM2層上に配置される金属配線層をM3層とし、例えば『・・・(M1)』等と表示して( )内に・・・が形成されている層を示している。又、図5Aにおいて、便宜上、接地配線16、電源配線26、入力端子31、及び出力端子32を透明に描き、下層を透視している。又、便宜上、基板配線12(S0)及び22(S0)を梨地模様で示している。 FIG. 5A is a plan view illustrating a semiconductor integrated circuit device according to the third embodiment. FIG. 5B is a cross-sectional view taken along the line CC of FIG. 5A. FIG. 5C is a cross-sectional view taken along the line DD of FIG. 5A. FIG. 5D is a cross-sectional view taken along line EE of FIG. 5A. 5A to 5D, the P-type well 11 and the N-type well 21 are the S0 layer, the metal wiring layer disposed on the S0 layer via the interlayer insulating layer (not shown) is the M1 layer, and the interlayer insulating layer. The metal wiring layer disposed on the M1 layer via the (not shown) is the M2 layer, and the metal wiring layer disposed on the M2 layer via the interlayer insulating layer (not shown) is the M3 layer. ... (M1) ”or the like, and the layers in which (...) are formed are indicated. In FIG. 5A, for convenience, the ground wiring 16, the power supply wiring 26, the input terminal 31, and the output terminal 32 are drawn transparently and the lower layer is seen through. For convenience, the substrate wirings 12 (S0) and 22 (S0) are shown in a satin pattern.
 図5A~図5Dを参照するに、半導体集積回路装置1Dでは、複数の標準セルを隣接して配置している。具体的には、3つのインバータセル51を隣接して配置し、更に、インバータセル51に隣接して高倍力セル52を配置している。又、高倍力セル52に隣接してタップセル53を配置している。 5A to 5D, in the semiconductor integrated circuit device 1D, a plurality of standard cells are arranged adjacent to each other. Specifically, three inverter cells 51 are arranged adjacent to each other, and a high booster cell 52 is arranged adjacent to the inverter cells 51. A tap cell 53 is disposed adjacent to the high booster cell 52.
 但し、本実施の形態では、標準セルとして、インバータセル51と、インバータセル51よりも幅(X-X方向)の広い高倍力セル52を配置しているが、これに限定されるものではない。なお、図5Aでは、代表として1つのインバータセル51のみにN型MOSFET10及びP型MOSFET20を図示し、他のインバータセル51では図示を省略している。 However, in the present embodiment, the inverter cell 51 and the high booster cell 52 having a width (XX direction) wider than the inverter cell 51 are arranged as the standard cells, but the present invention is not limited to this. . In FIG. 5A, the N-type MOSFET 10 and the P-type MOSFET 20 are shown only in one inverter cell 51 as a representative, and the illustration of the other inverter cells 51 is omitted.
 このように、複数の標準セル(インバータセル51及び高倍力セル52)を隣接して配置することにより(Y-Y方向に隣接するN型MOSFET及びP型MOSFETの組を、Y-Y方向と直交するX-X方向に複数組並設することにより)、各標準セルの基板配線12(S0)が隣接して配置されるため、各標準セルの基板配線12(S0)同士を容易に接続することができる。又、各標準セルの基板配線22(S0)が隣接して配置されるため、各標準セルの基板配線22(S0)同士を容易に接続することができる。なお、高倍力セル52には、例えば、フリップフロップセルやNANDセル、ゲート幅の広いインバータセル等を配置できる。 In this manner, by arranging a plurality of standard cells (inverter cell 51 and high booster cell 52) adjacent to each other, a set of N-type MOSFET and P-type MOSFET adjacent to each other in YY direction is changed to YY direction. By arranging a plurality of sets in parallel in the XX direction orthogonal to each other, the substrate wirings 12 (S0) of the standard cells are arranged adjacent to each other, so that the substrate wirings 12 (S0) of the standard cells can be easily connected to each other. can do. Further, since the substrate wirings 22 (S0) of the standard cells are arranged adjacent to each other, the substrate wirings 22 (S0) of the standard cells can be easily connected to each other. For example, a flip-flop cell, a NAND cell, an inverter cell with a wide gate width, or the like can be arranged in the high booster cell 52.
 又、半導体集積回路装置1Dでは、電源幹線である基板配線12(M2)、接地配線16(M2)、基板配線22(M2)、及び電源配線26(M2)は、それぞれ金属配線層であるM2層においてY方向に形成されている。これら4つの電源幹線は、何れかの標準セルの上部に形成できる。なお、本実施の形態では、4つの電源幹線を高倍力セル52の上部に形成する例を示している。 In the semiconductor integrated circuit device 1D, the substrate wiring 12 (M2), the ground wiring 16 (M2), the substrate wiring 22 (M2), and the power wiring 26 (M2), which are power supply trunk lines, are metal wiring layers M2, respectively. It is formed in the Y direction in the layer. These four power trunks can be formed on top of any standard cell. In the present embodiment, an example is shown in which four power supply trunks are formed above the high booster cell 52.
 電源幹線の1つである接地配線16(M2)は、貫通配線54により、高倍力セル52上で高倍力セル52の接地配線16(M1)に接続されている。同様に、電源幹線の1つである電源配線26(M2)は、貫通配線55により、高倍力セル52上で高倍力セル52の電源配線26(M1)に接続されている。 The ground wiring 16 (M2), which is one of the power supply trunk lines, is connected to the ground wiring 16 (M1) of the high booster cell 52 on the high booster cell 52 by the through wiring 54. Similarly, the power supply wiring 26 (M2) which is one of the power supply trunk lines is connected to the power supply wiring 26 (M1) of the high booster cell 52 on the high booster cell 52 by the through wiring 55.
 一方、電源幹線の1つである基板配線12(M2)は、貫通配線56、金属配線57(M3)、貫通配線58、金属配線57(M2)、貫通配線58、金属配線57(M1)、及び貫通配線58を介して、タップセル53の高濃度のP型不純物を含有するP型拡散層59(S0)に接続されている。更に、P型拡散層59(S0)は、タップセル53内で基板配線12(S0)に接続されている。 On the other hand, the substrate wiring 12 (M2), which is one of the power supply trunk lines, includes the through wiring 56, the metal wiring 57 (M3), the through wiring 58 1 , the metal wiring 57 (M2), the through wiring 58 2 , and the metal wiring 57 (M1). ), and via the through wiring 58 3, and is connected to the P-type diffusion layer 59 containing a P-type impurity of high concentration of tap cell 53 (S0). Further, the P-type diffusion layer 59 (S0) is connected to the substrate wiring 12 (S0) in the tap cell 53.
 同様に、電源幹線の1つである基板配線22(M2)は、貫通配線66、金属配線67(M3)、貫通配線68、金属配線67(M2)、貫通配線68、金属配線67(M1)、及び貫通配線68を介して、タップセル53の高濃度のN型不純物を含有するN型拡散層69(S0)に接続されている。更に、タップセル53のN型拡散層69(S0)は、タップセル53内で基板配線22(S0)に接続されている。タップセル53は、隣接して配置された標準セルの間の何れかの位置(複数組並設されたN型MOSFET10及びP型MOSFET20の間の何れかの位置)に挿入可能である。 Similarly, the substrate wiring 22 (M2) which is one of the power supply trunk lines includes a through wiring 66, a metal wiring 67 (M3), a through wiring 68 1 , a metal wiring 67 (M2), a through wiring 68 2 , a metal wiring 67 ( M1), and via the through wiring 683 is connected to the N-type diffusion layer 69 containing N-type impurity of high concentration of tap cell 53 (S0). Further, the N-type diffusion layer 69 (S0) of the tap cell 53 is connected to the substrate wiring 22 (S0) in the tap cell 53. The tap cell 53 can be inserted at any position between adjacent standard cells (any position between a plurality of sets of N-type MOSFET 10 and P-type MOSFET 20).
 但し、層間絶縁層(図示せず)を介してM3層上にM4層(金属配線層)を配置し、電源幹線である基板配線12(M2)、接地配線16(M2)、基板配線22(M2)、及び電源配線26(M2)の全部又は一部をM4層でY方向に形成してもよい。 However, an M4 layer (metal wiring layer) is disposed on the M3 layer via an interlayer insulating layer (not shown), and the substrate wiring 12 (M2), the ground wiring 16 (M2), and the substrate wiring 22 ( M2) and all or part of the power supply wiring 26 (M2) may be formed in the Y direction in the M4 layer.
 なお、接地配線16(M2)は、本発明に係る第1電源幹線の代表的な一例である。又、基板配線12(M2)は、本発明に係る第1基板バイアス幹線の代表的な一例である。電源配線26(M2)は、本発明に係る第2電源幹線の代表的な一例である。又、基板配線22(M2)は、本発明に係る第2基板バイアス幹線の代表的な一例である。 The ground wiring 16 (M2) is a typical example of the first power supply trunk line according to the present invention. The substrate wiring 12 (M2) is a typical example of the first substrate bias trunk line according to the present invention. The power supply wiring 26 (M2) is a typical example of the second power supply trunk line according to the present invention. The substrate wiring 22 (M2) is a typical example of the second substrate bias trunk line according to the present invention.
 図6は、第3の実施の形態に係る半導体集積回路装置において大きさの異なる多数のセルを隣接して配置した例を示す図である。図6に示すように、電源幹線を所定の間隔で配置することにより、大きさの異なる多数のセルをX-X方向及びY-Y方向に隣接して配置できる。 FIG. 6 is a diagram showing an example in which a large number of cells having different sizes are arranged adjacent to each other in the semiconductor integrated circuit device according to the third embodiment. As shown in FIG. 6, by arranging the power supply trunk lines at a predetermined interval, a large number of cells having different sizes can be arranged adjacent to each other in the XX direction and the YY direction.
 このように、第3の実施の形態に係る半導体集積回路装置1Dでは、電源幹線である基板配線12(M2)から基板配線12(S0)までの接続、及び電源幹線である基板配線22(M2)から基板配線22(S0)までの接続をタップセル53を介して行っている。又、電源幹線である基板配線12(M2)及び22(M2)からタップセル53までの接続は、それぞれ電源幹線に略直交する金属配線57(M3)及び67(M3)を介して行っている。これにより、電源幹線である基板配線12(M2)及び22(M2)からタップセル53まで距離が離れていても、両者を容易に接続することができる。 As described above, in the semiconductor integrated circuit device 1D according to the third embodiment, the connection from the substrate wiring 12 (M2) that is the power supply trunk line to the substrate wiring 12 (S0) and the substrate wiring 22 (M2 that is the power supply trunk line). ) To the substrate wiring 22 (S 0) through the tap cell 53. Further, the connection from the substrate wirings 12 (M2) and 22 (M2), which are power supply trunk lines, to the tap cell 53 is performed through metal wirings 57 (M3) and 67 (M3) which are substantially orthogonal to the power supply trunk lines, respectively. Thereby, even if the distance from the substrate wirings 12 (M2) and 22 (M2), which are power supply trunk lines, to the tap cell 53 is long, both can be easily connected.
 又、従来の半導体集積回路装置では、タップセルを電源幹線の下方に配置していたため、電源幹線の下方に標準セルを配置できず、半導体集積回路装置の小面積化を妨げていた。本実施の形態では、タップセル53を電源幹線の下方ではなく任意の位置に配置可能である。そのため、電源幹線が設けられた領域と平面視において重複する領域にも標準セル(N型MOSFET及びP型MOSFETの組)を配置し、その標準セルに隣接するようにタップセル53を配置できる。これにより、半導体集積回路装置1Dの小面積化が可能となる。 Further, in the conventional semiconductor integrated circuit device, since the tap cell is disposed below the power supply trunk line, the standard cell cannot be disposed below the power supply trunk line, which hinders the reduction of the area of the semiconductor integrated circuit device. In the present embodiment, the tap cell 53 can be arranged at an arbitrary position rather than below the power supply trunk line. For this reason, standard cells (a combination of an N-type MOSFET and a P-type MOSFET) can be arranged in a region overlapping the region where the power supply trunk line is provided in plan view, and the tap cell 53 can be arranged adjacent to the standard cell. Thereby, the area of the semiconductor integrated circuit device 1D can be reduced.
 なお、第3の実施の形態に係る半導体集積回路装置1Dは、第1の実施の形態に係る半導体集積回路装置1と同様の効果も奏する。 Note that the semiconductor integrated circuit device 1D according to the third embodiment also has the same effects as the semiconductor integrated circuit device 1 according to the first embodiment.
 ここで、本願の奏する効果について更に詳しく説明する。前述のように、本願では、半導体集積回路装置の小面積化が可能となる。これに関しては、標準セルそのものの大きさの低減という第1の効果(例えば、第1の実施の形態や第2の実施の形態等)と、大きさの異なるセルを隣接して配置した場合の無駄面積の低減という第2の効果(例えば、第3の実施の形態等)とがある。以下、本願を最小寸法65nmのテクノロジに適用した場合を例にとり、具体的な数値例を挙げて説明する。 Here, the effect of the present application will be described in more detail. As described above, in the present application, the area of the semiconductor integrated circuit device can be reduced. In this regard, the first effect of reducing the size of the standard cell itself (for example, the first embodiment and the second embodiment) and the case where cells of different sizes are arranged adjacent to each other There is a second effect (for example, the third embodiment) of reducing a useless area. Hereinafter, a case where the present application is applied to a technology having a minimum dimension of 65 nm will be described as an example with specific numerical examples.
 65nmのテクノロジにおいては、最小寸法はゲート長に適用されるが、メタル配線の配線間隔は通常最小0.2μm程度である。すなわち、設計グリッド長は0.2μm程度になる。又、標準セルの高さは標準的には9グリッドとなる。従って、標準セルの高さは1.8μmということになる。 In the 65 nm technology, the minimum dimension is applied to the gate length, but the metal wiring interval is usually about 0.2 μm minimum. That is, the design grid length is about 0.2 μm. The standard cell height is typically 9 grids. Therefore, the height of the standard cell is 1.8 μm.
 この時、従来技術(例えば、非特許文献1等)において、基板バイアスを印加するための配線(基板配線)を引こうとすると、P型MOSFETの基板配線(基板バイアスVbp)と、N型MOSFETの基板配線(基板バイアスVbn)のために、それぞれ1本ずつ余計な配線が必要となる。そのため、標準セルの高さは1.8μmから2.2μmとなる。 At this time, in the prior art (for example, Non-Patent Document 1, etc.), if a wiring (substrate wiring) for applying a substrate bias is to be drawn, the substrate wiring (substrate bias Vbp) of the P-type MOSFET and the N-type MOSFET For each substrate wiring (substrate bias Vbn), one extra wiring is required for each. Therefore, the height of the standard cell is 1.8 μm to 2.2 μm.
 一方、前述のように、本願では基板バイアスを印加するための余計な配線領域が不要であるため、標準セルの高さは1.8μmである。つまり、本願における標準セルの大きさの面積低減効果は約18%となる(第1の効果)。 On the other hand, as described above, an extra wiring area for applying the substrate bias is not necessary in the present application, and therefore the height of the standard cell is 1.8 μm. That is, the area reduction effect of the standard cell size in the present application is about 18% (first effect).
 又、従来技術(例えば、非特許文献1等)においては、0.2μmのテクノロジにおいて、基板バイアスを印加するためのタップセルを200μmおきに設置している。これを65nmのテクノロジに置き換えると、約65μmおきにタップセルを置く必要がある。65nmのテクノロジにおいては、スキャン機能付きのフリップフロップ等回路規模の大きな標準セルでは、セル幅が10μm程度になるものもある。例えば、セル幅が10μmのセルを隣接するタップセル間の65μmの領域に並べると、6個並べて5μmの余りができるので、この5μmの領域はセルの置かれない無駄領域になる。従って、この例では約8%の面積が無駄になる。 Further, in the prior art (for example, Non-Patent Document 1 etc.), tap cells for applying a substrate bias are installed every 200 μm in the 0.2 μm technology. If this is replaced with 65 nm technology, it is necessary to place tap cells about every 65 μm. In the 65 nm technology, a standard cell having a large circuit scale such as a flip-flop with a scanning function may have a cell width of about 10 μm. For example, if cells having a cell width of 10 μm are arranged in a 65 μm area between adjacent tap cells, six cells are arranged to have a remainder of 5 μm, so this 5 μm area becomes a waste area where no cells are placed. Therefore, about 8% of the area is wasted in this example.
 一方、前述のように、本願ではタップセルを電源幹線の下方ではなく任意の位置に配置可能であるため、電源幹線が設けられた領域と平面視において重複する領域にも標準セルを配置し、その標準セルに隣接するようにタップセルを配置できる。そのため、本願では上記のような無駄領域が生じないため、約8%の面積低減効果がある(第2の効果)。 On the other hand, as described above, since the tap cell can be arranged at an arbitrary position instead of below the power supply trunk line in the present application, the standard cell is also arranged in an area overlapping with the area where the power supply trunk line is provided in plan view. Tap cells can be placed adjacent to standard cells. For this reason, in the present application, the above-described waste area does not occur, so that there is an area reduction effect of about 8% (second effect).
 このように、上記第1の効果と第2の効果とを合わせると、本願によれば、65nmテクノロジの場合、合計で約26%の面積低減効果がある。テクノロジが更に進んだ場合においても、多少の変化があるのみで同様の効果を維持できると考えられる。 Thus, when the first effect and the second effect are combined, according to the present application, there is a total area reduction effect of about 26% in the case of 65 nm technology. Even if the technology advances further, it is thought that the same effect can be maintained with a slight change.
 なお、CMOS回路においては、一般的にチップ面積が増加すると配線が長くなり、その結果として、配線容量が増加する。配線容量が増加すると、配線の充放電電流が増加したり、回路の動作速度が遅くなったりする。本願では26%程度の面積低減効果があるため、それと同等程度の低電力化と高速化が見込まれる。又、面積低減により、ウェハあたりの良品チップ取得数が向上し、チップあたりの製造コストが小さくなる効果も得られ、産業的に大変大きな意義がある。 In a CMOS circuit, generally, as the chip area increases, the wiring becomes longer, and as a result, the wiring capacity increases. When the wiring capacity increases, the charging / discharging current of the wiring increases or the operation speed of the circuit becomes slow. In the present application, there is an area reduction effect of about 26%, so that low power and high speed equivalent to that are expected. In addition, the reduction of the area increases the number of non-defective chips acquired per wafer and reduces the manufacturing cost per chip, which is very significant industrially.
 又、前述のように、本願では、基板バイアスを安定的に印加できる。この効果に関しても具体的な数値例を挙げて説明する。 In addition, as described above, the substrate bias can be stably applied in the present application. This effect will also be described with specific numerical examples.
 基板バイアスを印加しない通常のCMOS回路においては、P型MOSFETの基板を電源電位に、N型MOSFETの基板を接地電位に固定する。この場合、標準セルのセル毎には基板電位を固定せず、ある一定の間隔で基板電位を固定するタップセル方式が用いられる。タップセル方式では、標準セル毎に基板電位を固定する必要がないために、基板電位を固定するための拡散層の領域を節約できる。 In a normal CMOS circuit in which no substrate bias is applied, the substrate of the P-type MOSFET is fixed to the power supply potential, and the substrate of the N-type MOSFET is fixed to the ground potential. In this case, a tap cell method is used in which the substrate potential is not fixed for each standard cell, and the substrate potential is fixed at a certain interval. In the tap cell method, since it is not necessary to fix the substrate potential for each standard cell, the area of the diffusion layer for fixing the substrate potential can be saved.
 しかしながら、タップセル方式は、シート抵抗が約1Kオーム/□程度のウェル抵抗を介して基板電位を固定するので、その分だけ基板電位の変動が大きくなる。発明者らの検討によれば、基板電位は、CMOSのドレイン電流変化により、電源電圧の30%程度も変動する。この基板電位の変動により、8%~9%程度の動作速度の低下が見込まれる。 However, in the tap cell method, the substrate potential is fixed through a well resistance having a sheet resistance of about 1 K ohm / □, and thus the variation in the substrate potential increases accordingly. According to studies by the inventors, the substrate potential fluctuates by about 30% of the power supply voltage due to a change in the drain current of the CMOS. The fluctuation in the substrate potential is expected to reduce the operating speed by about 8% to 9%.
 前述のように、本願ではP型拡散層及びN型拡散層により各基板配線を形成している。P型拡散層及びN型拡散層の各々のシート抵抗は10オーム/□程度以下であるため、基板電位の変動を従来より2桁低減することが可能になり、その結果として動作速度の低下をほぼ生じなくすることができる。つまり、本願によれば、従来よりも基板バイアスを安定的に印加できると共に、従来よりも8%~9%程度の動作速度の高速化を実現できる。 As described above, in the present application, each substrate wiring is formed of a P-type diffusion layer and an N-type diffusion layer. Since the sheet resistance of each of the P-type diffusion layer and the N-type diffusion layer is about 10 ohms / square or less, it is possible to reduce the fluctuation of the substrate potential by two orders of magnitude compared to the conventional one, and as a result, the operation speed is lowered. It can be almost eliminated. That is, according to the present application, the substrate bias can be applied more stably than in the prior art, and the operation speed can be increased by about 8% to 9% compared to the prior art.
 以上、好ましい実施の形態及びその変形例について詳説したが、上述した実施の形態及びその変形例に制限されることはなく、特許請求の範囲に記載された範囲を逸脱することなく、上述した実施の形態及びその変形例に種々の変形及び置換を加えることができる。 The preferred embodiment and its modification have been described in detail above, but the present invention is not limited to the above-described embodiment and its modification, and the above-described implementation is performed without departing from the scope described in the claims. Various modifications and substitutions can be added to the embodiment and its modifications.
 本国際出願は2011年8月1日に出願した日本国特許出願2011-168531号に基づく優先権を主張するものであり、日本国特許出願2011-168531号の全内容を本国際出願に援用する。 This international application claims priority based on Japanese Patent Application No. 2011-168531 filed on Aug. 1, 2011, and the entire contents of Japanese Patent Application No. 2011-168531 are incorporated herein by reference. .
 1、1A、1B、1C、1D 半導体集積回路装置
 10、10A、10B N型MOSFET
 11 P型ウェル
 11A、49 P型基板
 12、12、12(P型拡散層)、12(M2)、12(S0)、22、22、22(N型拡散層)、22(M2)、22(S0) 基板配線
 13、23 ソース電極
 14、24 ドレイン電極
 15、25 ゲート電極
 16、16(M1)、16(M2) 接地配線
 16x、26x、31x、32x、54、55、56、58、58、58、66、68、68、68 貫通配線
 17、27 酸化膜
 20、20A、20B P型MOSFET
 21、41 N型ウェル
 26、26(M1)、26(M2) 電源配線
 31 入力端子
 32 出力端子
 33 アイソレーション層
 51 インバータセル
 52 高倍力セル
 53 タップセル
 57(M1)、57(M2)、57(M3)、67(M1)、67(M2)、67(M3) 金属配線
 59(S0) P型拡散層
 69(S0) N型拡散層
 B、B バックゲート
 D、D ドレイン
 G、G ゲート
 S、S ソース
1, 1A, 1B, 1C, 1D Semiconductor integrated circuit device 10, 10A, 10B N-type MOSFET
11 P-type well 11A, 49 P- type substrate 12, 12 1 , 12 2 (P-type diffusion layer), 12 (M2), 12 (S0), 22, 22 1 , 22 2 (N-type diffusion layer), 22 ( M2), 22 (S0) Substrate wiring 13, 23 Source electrode 14, 24 Drain electrode 15, 25 Gate electrode 16, 16 (M1), 16 (M2) Ground wiring 16x, 26x, 31x, 32x, 54, 55, 56 , 58 1, 58 2, 58 3, 66, 68 1, 68 2, 68 3 through wiring 17, 27 oxide film 20, 20A, 20B P-type MOSFET
21, 41 N-type well 26, 26 (M1), 26 (M2) Power supply wiring 31 Input terminal 32 Output terminal 33 Isolation layer 51 Inverter cell 52 High boost cell 53 Tap cell 57 (M1), 57 (M2), 57 ( M3), 67 (M1), 67 (M2), 67 (M3) Metal wiring 59 (S0) P-type diffusion layer 69 (S0) N-type diffusion layer B 1 , B 2 Back gate D 1 , D 2 drain G 1 , G 2 gate S 1 , S 2 source

Claims (7)

  1.  第1導電型MOSFET及び第2導電型MOSFETを含むCMOS構造の半導体集積回路装置であって、
     第2導電型ウェルと、
     前記第2導電型ウェルにドレイン及びソースが形成された前記第1導電型MOSFETと、
     前記第2導電型ウェルに形成された第2導電型拡散層と、
     前記第2導電型拡散層の上層に設けられ、前記第1導電型MOSFETに第1電位を供給する第1電源線と、
     第1導電型ウェルと、
     前記第1導電型ウェルにドレイン及びソースが形成された前記第2導電型MOSFETと、
     前記第1導電型ウェルに形成された第1導電型拡散層と、
     前記第1導電型拡散層の上層に設けられ、前記第1導電型ウェルに第2電位を供給する第2電源線と、を有し、
     前記第1導電型拡散層及び前記第2導電型拡散層は、それぞれ前記第1導電型ウェル及び前記第2導電型ウェルに基板バイアスを印加するための給電層であり、
     前記第1導電型拡散層と前記第2電源線とは、層間絶縁層を介して互いに平行に配置され、かつ、平面視において少なくとも一部が重複しており、
     前記第2導電型拡散層と前記第1電源線とは、層間絶縁層を介して互いに平行に配置され、かつ、平面視において少なくとも一部が重複していることを特徴とする半導体集積回路装置。
    A semiconductor integrated circuit device having a CMOS structure including a first conductivity type MOSFET and a second conductivity type MOSFET,
    A second conductivity type well;
    The first conductivity type MOSFET having a drain and a source formed in the second conductivity type well;
    A second conductivity type diffusion layer formed in the second conductivity type well;
    A first power supply line provided on an upper layer of the second conductivity type diffusion layer and supplying a first potential to the first conductivity type MOSFET;
    A first conductivity type well;
    The second conductivity type MOSFET in which a drain and a source are formed in the first conductivity type well;
    A first conductivity type diffusion layer formed in the first conductivity type well;
    A second power supply line provided on an upper layer of the first conductivity type diffusion layer and supplying a second potential to the first conductivity type well;
    The first conductivity type diffusion layer and the second conductivity type diffusion layer are power supply layers for applying a substrate bias to the first conductivity type well and the second conductivity type well, respectively.
    The first conductivity type diffusion layer and the second power supply line are arranged in parallel with each other through an interlayer insulating layer, and at least a part thereof overlaps in plan view,
    The semiconductor integrated circuit device, wherein the second conductivity type diffusion layer and the first power supply line are arranged in parallel with each other through an interlayer insulating layer, and at least a part thereof overlaps in plan view .
  2.  前記第1導電型MOSFETにおいて、前記第2導電型ウェルと前記ドレイン及び前記ソースとの間に第1絶縁膜を設け、
     前記第2導電型MOSFETにおいて、前記第1導電型ウェルと前記ドレイン及び前記ソースとの間に第2絶縁膜を設けたことを特徴とする請求項1記載の半導体集積回路装置。
    In the first conductivity type MOSFET, a first insulating film is provided between the second conductivity type well and the drain and source.
    2. The semiconductor integrated circuit device according to claim 1, wherein a second insulating film is provided between the first conductivity type well and the drain and source in the second conductivity type MOSFET.
  3.  所定方向に隣接する前記第1導電型MOSFET及び前記第2導電型MOSFETの組を、前記所定方向と直交する方向に複数組並設し、
     並設された各第1導電型MOSFETが形成された前記第2導電型ウェルの前記第2導電型拡散層同士を接続し、
     並設された各第2導電型MOSFETが形成された前記第1導電型ウェルの前記第1導電型拡散層同士を接続したことを特徴とする請求項1記載の半導体集積回路装置。
    A plurality of sets of the first conductivity type MOSFET and the second conductivity type MOSFET adjacent in a predetermined direction are arranged in parallel in a direction orthogonal to the predetermined direction,
    Connecting the second conductivity type diffusion layers of the second conductivity type well in which the first conductivity type MOSFETs arranged in parallel are formed;
    2. The semiconductor integrated circuit device according to claim 1, wherein the first conductivity type diffusion layers of the first conductivity type well in which the second conductivity type MOSFETs arranged in parallel are formed are connected to each other.
  4.  前記第1電源線及び前記第2電源線よりも更に上層に、前記第1電源線及び前記第2電源線とそれぞれ接続される第1電源幹線及び第2電源幹線を設け、
     前記第1電源幹線及び前記第2電源幹線が設けられた領域と平面視において重複する領域にも前記第1導電型MOSFET及び前記第2導電型MOSFETの組が配置されていることを特徴とする請求項3記載の半導体集積回路装置。
    A first power supply trunk line and a second power supply trunk line connected to the first power supply line and the second power supply line, respectively, are provided in an upper layer than the first power supply line and the second power supply line,
    A set of the first conductivity type MOSFET and the second conductivity type MOSFET is also arranged in a region overlapping in a plan view with a region where the first power source trunk line and the second power source trunk line are provided. The semiconductor integrated circuit device according to claim 3.
  5.  前記第1電源線及び前記第2電源線と前記第1電源幹線及び前記第2電源幹線とは、それぞれ、層間絶縁層を貫通する貫通配線を介して接続されていることを特徴とする請求項4記載の半導体集積回路装置。 The first power supply line, the second power supply line, the first power supply trunk line, and the second power supply trunk line are connected to each other through a through wiring that penetrates an interlayer insulating layer. 5. The semiconductor integrated circuit device according to 4.
  6.  複数組並設された前記第1導電型MOSFET及び前記第2導電型MOSFETの何れかの組の間にタップセルを挿入し、
     前記第1電源線及び前記第2電源線よりも更に上層に、前記第2導電型拡散層及び前記第1導電型拡散層とそれぞれ接続される第1基板バイアス幹線及び第2基板バイアス幹線を設け、
     前記第1基板バイアス幹線及び前記第2基板バイアス幹線は、それぞれ前記タップセルを介して、前記第2導電型拡散層及び前記第1導電型拡散層と接続されていることを特徴とする請求項3記載の半導体集積回路装置。
    A tap cell is inserted between any set of the first conductivity type MOSFET and the second conductivity type MOSFET arranged in parallel.
    A first substrate bias trunk line and a second substrate bias trunk line connected to the second conductivity type diffusion layer and the first conductivity type diffusion layer are provided above the first power supply line and the second power supply line, respectively. ,
    4. The first substrate bias trunk line and the second substrate bias trunk line are respectively connected to the second conductivity type diffusion layer and the first conductivity type diffusion layer via the tap cell. The semiconductor integrated circuit device described.
  7.  複数組並設された前記第1導電型MOSFET及び前記第2導電型MOSFETは第2導電型半導体基板に形成されており、
     第1導電型MOSFETが形成された前記第2導電型ウェルは、前記第2導電型ウェルよりも深い位置に形成された第1導電型ウェルにより、前記第2導電型半導体基板から電気的に分離されていることを特徴とする請求項3記載の半導体集積回路装置。
    A plurality of sets of the first conductive type MOSFET and the second conductive type MOSFET are formed on a second conductive type semiconductor substrate,
    The second conductivity type well in which the first conductivity type MOSFET is formed is electrically separated from the second conductivity type semiconductor substrate by the first conductivity type well formed at a position deeper than the second conductivity type well. 4. The semiconductor integrated circuit device according to claim 3, wherein the semiconductor integrated circuit device is formed.
PCT/JP2012/068737 2011-08-01 2012-07-24 Semiconductor integrated circuit device WO2013018589A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011-168531 2011-08-01
JP2011168531 2011-08-01

Publications (1)

Publication Number Publication Date
WO2013018589A1 true WO2013018589A1 (en) 2013-02-07

Family

ID=47629116

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/068737 WO2013018589A1 (en) 2011-08-01 2012-07-24 Semiconductor integrated circuit device

Country Status (3)

Country Link
JP (1) JPWO2013018589A1 (en)
TW (1) TW201310620A (en)
WO (1) WO2013018589A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016115891A (en) * 2014-12-17 2016-06-23 ルネサスエレクトロニクス株式会社 Semiconductor integrated circuit device and wearable device
US20220335194A1 (en) * 2021-04-14 2022-10-20 Taiwan Semiconductor Manufacturing Company, Limited System and method for back side signal routing

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10154756A (en) * 1996-11-26 1998-06-09 Hitachi Ltd Cell library and semiconductor device
JP2001237328A (en) * 2000-02-24 2001-08-31 Matsushita Electric Ind Co Ltd Layout structure of semiconductor device and layout designing method
JP2006228954A (en) * 2005-02-17 2006-08-31 Matsushita Electric Ind Co Ltd Semiconductor device and method of designing layout thereof
JP2008160152A (en) * 2008-02-18 2008-07-10 Renesas Technology Corp Semiconductor integrated circuit device
JP2008182004A (en) * 2007-01-24 2008-08-07 Renesas Technology Corp Semiconductor integrated circuit
JP2008193070A (en) * 2007-01-12 2008-08-21 Matsushita Electric Ind Co Ltd Layout structure of semiconductor device
JP2009049370A (en) * 2007-07-25 2009-03-05 Renesas Technology Corp Semiconductor device

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4993318B2 (en) * 1997-08-21 2012-08-08 ルネサスエレクトロニクス株式会社 Semiconductor integrated circuit device
US7115460B2 (en) * 2003-09-04 2006-10-03 Taiwan Semiconductor Manufacturing Company, Ltd. Standard cell back bias architecture
JP4781040B2 (en) * 2005-08-05 2011-09-28 ルネサスエレクトロニクス株式会社 Semiconductor integrated circuit device
JP2007103863A (en) * 2005-10-07 2007-04-19 Nec Electronics Corp Semiconductor device
JP5049691B2 (en) * 2007-08-06 2012-10-17 株式会社日立製作所 Semiconductor integrated circuit
CN102687264B (en) * 2009-12-25 2014-08-06 松下电器产业株式会社 Semiconductor device

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10154756A (en) * 1996-11-26 1998-06-09 Hitachi Ltd Cell library and semiconductor device
JP2001237328A (en) * 2000-02-24 2001-08-31 Matsushita Electric Ind Co Ltd Layout structure of semiconductor device and layout designing method
JP2006228954A (en) * 2005-02-17 2006-08-31 Matsushita Electric Ind Co Ltd Semiconductor device and method of designing layout thereof
JP2008193070A (en) * 2007-01-12 2008-08-21 Matsushita Electric Ind Co Ltd Layout structure of semiconductor device
JP2008182004A (en) * 2007-01-24 2008-08-07 Renesas Technology Corp Semiconductor integrated circuit
JP2009049370A (en) * 2007-07-25 2009-03-05 Renesas Technology Corp Semiconductor device
JP2008160152A (en) * 2008-02-18 2008-07-10 Renesas Technology Corp Semiconductor integrated circuit device

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016115891A (en) * 2014-12-17 2016-06-23 ルネサスエレクトロニクス株式会社 Semiconductor integrated circuit device and wearable device
US20220335194A1 (en) * 2021-04-14 2022-10-20 Taiwan Semiconductor Manufacturing Company, Limited System and method for back side signal routing
US11748546B2 (en) * 2021-04-14 2023-09-05 Taiwan Semiconductor Manufacturing Company, Limited System and method for back side signal routing

Also Published As

Publication number Publication date
TW201310620A (en) 2013-03-01
JPWO2013018589A1 (en) 2015-03-05

Similar Documents

Publication Publication Date Title
JP5322441B2 (en) Layout structure of semiconductor device
US11688814B2 (en) Semiconductor integrated circuit device
US8063414B2 (en) Compact standard cell
US10483255B2 (en) Semiconductor device
CN101577277B (en) Semiconductor device
US10796994B2 (en) Semiconductor device and IO-cell
US20210305278A1 (en) Semiconductor integrated circuit device
TW201131740A (en) Semiconductor device
US10453840B2 (en) Semiconductor integrated circuit
WO1987000969A1 (en) Three-level interconnection scheme for integrated circuits
US11217604B2 (en) Semiconductor device
US20220336499A1 (en) Semiconductor integrated circuit device
US10032779B2 (en) Semiconductor device with plasma damage protecting elements
US9627496B2 (en) Semiconductor with a two-input NOR circuit
WO2013018589A1 (en) Semiconductor integrated circuit device
US8063416B2 (en) Semiconductor device
US6979870B2 (en) Semiconductor integrated circuit including CMOS logic gate
US8994098B2 (en) Semiconductor device including pillar transistors
CN114514604A (en) Semiconductor device with a plurality of semiconductor chips
US20230178557A1 (en) Semiconductor structure of logic cell with small cell delay
US10692808B2 (en) High performance cell design in a technology with high density metal routing
JPH0613589A (en) Master slice semiconductor device
JP2009158728A (en) Semiconductor device
JP2003303834A (en) Semiconductor device
JP2007027160A (en) Semiconductor integrated circuit

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12820436

Country of ref document: EP

Kind code of ref document: A1

DPE2 Request for preliminary examination filed before expiration of 19th month from priority date (pct application filed from 20040101)
ENP Entry into the national phase

Ref document number: 2013526827

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12820436

Country of ref document: EP

Kind code of ref document: A1