WO2013017443A2 - Installation et procédé de charge pour batterie électrique - Google Patents

Installation et procédé de charge pour batterie électrique Download PDF

Info

Publication number
WO2013017443A2
WO2013017443A2 PCT/EP2012/064314 EP2012064314W WO2013017443A2 WO 2013017443 A2 WO2013017443 A2 WO 2013017443A2 EP 2012064314 W EP2012064314 W EP 2012064314W WO 2013017443 A2 WO2013017443 A2 WO 2013017443A2
Authority
WO
WIPO (PCT)
Prior art keywords
charging
power
source
delivered
battery
Prior art date
Application number
PCT/EP2012/064314
Other languages
English (en)
Other versions
WO2013017443A3 (fr
Inventor
Eric Stempin
Original Assignee
Evtronic
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Evtronic filed Critical Evtronic
Priority to KR1020147004950A priority Critical patent/KR20140114330A/ko
Priority to MX2014001177A priority patent/MX2014001177A/es
Priority to SG2014006688A priority patent/SG2014006688A/en
Priority to CA2844356A priority patent/CA2844356C/fr
Priority to EP12735914.9A priority patent/EP2736757A2/fr
Priority to US14/235,760 priority patent/US9676287B2/en
Priority to BR112014002236A priority patent/BR112014002236A2/pt
Priority to CN201280047828.1A priority patent/CN104093590A/zh
Publication of WO2013017443A2 publication Critical patent/WO2013017443A2/fr
Publication of WO2013017443A3 publication Critical patent/WO2013017443A3/fr
Priority to ZA2014/01399A priority patent/ZA201401399B/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L53/00Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
    • B60L53/10Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles characterised by the energy transfer between the charging station and the vehicle
    • B60L53/14Conductive energy transfer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L50/00Electric propulsion with power supplied within the vehicle
    • B60L50/50Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L53/00Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
    • B60L53/20Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles characterised by converters located in the vehicle
    • B60L53/22Constructional details or arrangements of charging converters specially adapted for charging electric vehicles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L53/00Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
    • B60L53/30Constructional details of charging stations
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L53/00Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
    • B60L53/30Constructional details of charging stations
    • B60L53/302Cooling of charging equipment
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L53/00Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
    • B60L53/30Constructional details of charging stations
    • B60L53/305Communication interfaces
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L53/00Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
    • B60L53/50Charging stations characterised by energy-storage or power-generation means
    • B60L53/53Batteries
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L53/00Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
    • B60L53/60Monitoring or controlling charging stations
    • B60L53/63Monitoring or controlling charging stations in response to network capacity
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/7072Electromobility specific charging systems or methods for batteries, ultracapacitors, supercapacitors or double-layer capacitors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/10Technologies relating to charging of electric vehicles
    • Y02T90/12Electric charging stations
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/10Technologies relating to charging of electric vehicles
    • Y02T90/14Plug-in electric vehicles
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/10Technologies relating to charging of electric vehicles
    • Y02T90/16Information or communication technologies improving the operation of electric vehicles
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y04INFORMATION OR COMMUNICATION TECHNOLOGIES HAVING AN IMPACT ON OTHER TECHNOLOGY AREAS
    • Y04SSYSTEMS INTEGRATING TECHNOLOGIES RELATED TO POWER NETWORK OPERATION, COMMUNICATION OR INFORMATION TECHNOLOGIES FOR IMPROVING THE ELECTRICAL POWER GENERATION, TRANSMISSION, DISTRIBUTION, MANAGEMENT OR USAGE, i.e. SMART GRIDS
    • Y04S10/00Systems supporting electrical power generation, transmission or distribution
    • Y04S10/12Monitoring or controlling equipment for energy generation units, e.g. distributed energy generation [DER] or load-side generation
    • Y04S10/126Monitoring or controlling equipment for energy generation units, e.g. distributed energy generation [DER] or load-side generation the energy generation units being or involving electric vehicles [EV] or hybrid vehicles [HEV], i.e. power aggregation of EV or HEV, vehicle to grid arrangements [V2G]

Definitions

  • the present invention relates to an installation and charging method for electric battery, and more particularly to a fast charge terminal for vehicles equipped with at least one electric battery and an on-board computer.
  • the simplest recharging is done using a direct connection, on a so-called normal socket, delivering a current of 16 A at 220 to 240 V, or about 3.7 kVA.
  • the alternating current is converted into direct current by the on-board charger of the car. A full recharge takes place in 6 to 10 hours.
  • This type of load which can be performed from a conventional home outlet, lies in the absence of the need for any new infrastructure, at least for individuals with a garage or a parking space.
  • This type of load also has the advantage of offering the possibility of recharging the vehicle at night during hours, when energy consumption is lowest.
  • Charging by fast direct connection requires a dedicated charging terminal, delivering a direct current of a hundred amps, at a voltage currently between 20 and 500 V, directly applied to the batteries of the electric vehicle.
  • the installed power is of the order of 50 kVA.
  • This type of charging provides, in principle, a range of 3 to 5 km per minute of charge, provided that the batteries are able to absorb high currents without damage. Co-management of the load by intelligent elements present, on the one hand on the electric vehicle and on the other hand, on the fast charging terminal is necessary.
  • the fast charging station has a charger-rectifier powered by a three-phase network.
  • the amount of energy consumed by the electric car depends mainly on its performance and the distance it travels. Designed for an average of 40 km per day, the electric car requires between 4 and 25 kWh per 24 hours, which gives an annual consumption of between 1,500 and 9,000 kWh. According to the various sources given by GI FAM (Inter-professional group of manufacturers of household equipment) and INSEE, in France, the average domestic consumption of potential users of the electric car would be 8,000 kWh and this consumption would be 1 000 kWh in the United States.
  • GI FAM Inter-professional group of manufacturers of household equipment
  • INSEE in France
  • the electric car could increase family consumption by 20 to 50%. If most people recharge their cars during the day, the installed power of the power plants will grow beyond reasonable.
  • night charging would require a power of about 3 kW (recharge for 6 to 10 hours), easily supported by existing installations.
  • the charging terminals for electric vehicles are all currently powered by a single source of energy: generally the electrical distribution network.
  • the present invention aims to overcome these various disadvantages by proposing an installation and a charging method, simple in their design and in their operating mode, to ensure the charging of an electric battery quickly and economically.
  • Another object of the present invention is such an installation and such a charging method making it possible to reduce the impact of the electricity demand on the network by reducing the power demands on the electrical distribution network. They will have the effect:
  • the object of the invention is to reduce the power of the connection point to the power distribution network without reducing the performance of the fast charging terminal.
  • the subject of the present invention is an installation for charging an electric battery for a vehicle, said installation comprising a main power supply source capable of delivering a charging power Pci and a first circuit for converting the current. or the supply voltage supplied by said main source in a charging current or voltage for said electric battery.
  • this installation comprises
  • At least one auxiliary source of power supply capable of delivering a charge power Pc 2 ,
  • At least one second circuit for converting the current or the supply voltage delivered by said auxiliary source into a charging current or voltage for said electric battery, said at least one second circuit being connected in parallel with said first circuit,
  • a management system controlling said at least one auxiliary source so as to activate at least one of said auxiliary sources when the charging power Pc required for charging said battery is greater than the charging power Pci likely to be delivered by said main source .
  • Vehicle means a motorized vehicle of the terrestrial, nautical or air type, that is to say, and for purely illustrative purposes, a boat, an aircraft, an automobile, a truck, a bus or a quadricycle. .
  • the object of the invention is to reduce the impact of electricity demand on the network by reducing the power demand on the electrical distribution network. It will have the effect of:
  • the main source of power supply is the power supply network delivering a mains voltage or a sector current
  • said at least one auxiliary source comprises a power supply unit chosen from the group comprising a battery, a supercapacitor, a flywheel, a fuel cell, a generator, photovoltaic solar panels and combinations of these. items
  • said vehicle comprising an on-board computer controlling said battery to be charged
  • said installation comprises a communication system for enabling the real-time transfer of information between said installation and said on-board computer, said information comprising at least one setpoint value of load provided by said onboard computer.
  • This charge reference value is a value of charging current and / or charging voltage.
  • the management system then comprises a calculation unit for determining the charging power Pc corresponding to the charging current and / or charge voltage values required by said on-board computer.
  • the charging power Pci likely to be delivered by said main source of power supply being variable as a function of time
  • said installation comprises a unit of measurement in real time of said charging power Pc-i, said unit of measurement sending information to said computing unit.
  • the installation comprises programmable means for limiting the charging power delivered by said main source so that
  • Pci Pc max , where Pc ma x is the maximum load power that can be delivered by said main power source,
  • said first circuit for converting the supply current or voltage delivered by said main source into a charging current or voltage for said electric battery comprises a control circuit of a current supply switch to a primary winding of a transformer, said control circuit operating in isolated switching mode at a high frequency or at a low frequency,
  • said installation comprises a circuit for charging said at least one auxiliary source, connected to said main source of power supply for recharging said at least one auxiliary source,
  • this installation comprising several auxiliary sources connected to said load circuit by switches, said management system controls the charge level of each of said auxiliary sources and controls said switches to independently recharge each of said auxiliary sources.
  • the present invention also relates to a method for charging an electric vehicle battery, in which a main power supply source capable of delivering a charging power Pci and at least one auxiliary source of power supply is implemented. capable of delivering a charging power Pc 2 so that the sum of the charging powers delivered by said sources to the electric battery is equal to a charging power Pc.
  • each of said auxiliary power supply sources is implemented with a circuit for converting the supply current or voltage delivered by said corresponding auxiliary source into a charging current or voltage for said electric battery, said circuit being placed between said corresponding auxiliary source and the connection node of the different power supply sources.
  • Such a circuit for converting the current or the supply voltage delivered by said at least one auxiliary power supply source therefore allows greater flexibility in the selection and sizing of this auxiliary source, and allows, for example to overcome the disadvantages associated with the implementation of a battery (voltage that changes depending on the state of charge, ).
  • this paralleling of the circuits for converting the supply current or voltage advantageously makes it possible to upgrade an existing system by adding modules without compromising the first equipment deployed in the charging installation.
  • the load power delivered by said main source of power supply is measured in real time and a maximum power value Pc max to be outputted from said main source is defined.
  • the charging power Pci likely to be delivered by said main source of power supply being variable as a function of time, said charging power Pc-i is measured. It is advantageously determined from the value Pc max or Pc-i, the load power Pc 2 that must provide said at least one auxiliary power supply source to ensure the charging of said battery.
  • This embodiment thus makes it possible to recharge the auxiliary source of power supply simultaneously with the charging of the electric battery. It is thus possible to be able to directly charge another electric battery after completing the charging of the first electric battery.
  • said vehicle comprising an on-board computer and the charging power Pc delivered to said battery to be charged being less than a desired charging power value, said onboard computer communicating said charge value Pc,
  • each of said batteries is charged during a charging time T less than the charging time required to charge an electric battery at one time.
  • the present invention further relates to a method of charging an electric vehicle battery, said vehicle comprising an on-board computer, wherein:
  • the load power Pc to be delivered to the electric battery of said vehicle during a DC voltage charge of said battery is determined with respect to a charging instruction requested at a time t by said on-board computer
  • this load power is compared with the load power Pci that can be delivered by a main source of power supply,
  • Pc> Pc-i is implemented in addition to said main source, at least one auxiliary power supply source capable of delivering a charging power Pc 2 so that the sum of the load powers delivered by said sources equal to the required charging power Pc.
  • This charging setpoint is a value of charging current and / or charging voltage.
  • said main source of power supply is the power supply network delivering a mains voltage.
  • the value of the load power is determined.
  • the charging power Pci likely to be delivered by said main source of power supply being variable as a function of time, it is advantageous to measure, in real time, said charging power Pc-i.
  • the load power Pc required being strictly lower than Pc-i said battery is simultaneously charged with said at least one auxiliary power supply source with a charging power Pc 4 such that Pc 4 ⁇ Pc at least one auxiliary power supply source with a charging power Pc 4 such that Pc 4 ⁇ Pc Pc.
  • FIG. 1 is a schematic representation of an electrical charge installation of a battery according to a particular embodiment of the invention
  • FIG. 2 diagrammatically shows the circuits for converting the supply voltage delivered by the primary source and the voltage or current delivered by the secondary source of the installation of FIG. 1, in a charging current or voltage for an electric battery;
  • FIG. 3 diagrammatically shows the circuits for converting the supply voltages or currents delivered by main and auxiliary sources of an electric charging installation into a charging current or voltage for a battery according to another embodiment
  • FIG. 4 is a comparison of the power consumed on the main source between a charging terminal of the state of the art (in black solid line) and an installation (solid gray line) according to a mode of implementation of FIG. the present invention, this main source being the supply network electrical, the x-axis representing the time and the y-axis representing the power consumed in kVA;
  • FIGS 1 and 2 show an electric charger 1 for battery including an electric vehicle 2 according to a preferred embodiment of the invention.
  • This charger 1 is adapted to quickly charge such a battery, for example in about 30 minutes.
  • the present battery charger 1 comprises a frame connected to the power supply network 3 delivering a mains voltage V s .
  • This power supply network 3 constitutes a primary energy source for this terminal 2 in order to recharge the battery of the electric vehicle 2.
  • the charging power Pci delivered by the electrical network 3 is here equal to 36 kW, it is that is, a standard connection point.
  • the frame comprises a first conversion circuit 4 for converting the mains voltage delivered by the power supply network 3 into a charge current or voltage for the electric battery to be charged.
  • This first conversion electric circuit 4 comprises a control circuit of a current supply switch to a primary winding of a transformer, said control circuit operating in an isolated switching mode at a high frequency, typically 80,000 Hz.
  • the electric vehicle 2 comprising an on-board computer 5 controlling the battery to be charged
  • the charging terminal 1 comprises a communication system 6 to enable the real-time transfer of information between this charging terminal 1 and the on-board computer 5 of the car 2.
  • this communication system which comprises here is a wired communication 7 such as a Controller Area Network (CAN) bus, a line carrier (CPL) or a pilot wire communication (ISO 61851 SAE J1772) or a line K / L (ISO 9141), either a radio link such as Zigbee, Wifi, or Bluetooth, allows the charging terminal 1 to receive from the on-board computer 5 the charging setpoint (current and / or charging voltage ) required to charge the battery, this charging setpoint being variable in time.
  • CAN Controller Area Network
  • CPL line carrier
  • ISO 61851 SAE J1772 pilot wire communication
  • ISO 9141 line K / L
  • a charging phase called “BOOST”: restitution of a maximum of the battery capacity, generally from 0% to 50% of the state of charge of the battery, in a minimum of time, generally 10 minutes,
  • an equalization phase also called “ABSORPTION"
  • ABSSORPTION an equalization phase, also called "ABSORPTION"
  • This phase is generally of the order of 30 minutes.
  • the frame also comprises a secondary source 8 of internal power supply capable of delivering a charge power Pc 2 .
  • This secondary source is here an electrochemical battery.
  • This secondary source 8 is performed to ensure the first phase of the charge of the battery, called "BOOST", when the charging power Pc required by the on-board computer 5 of the electric car to charge its battery is greater than the load power Pci likely to be supplied by the electricity network 3.
  • the useful energy supplied by the secondary source is 5 to 10 kW.h, the charging power Pc 2 being 20 kW.
  • This dimensioning can of course be increased as needed, for example, to ensure one or more loads successively without having to recharge the secondary source.
  • the frame comprises a second circuit 9 for converting the current or the supply voltage delivered by said auxiliary source 8 into a charging current or voltage for said electric battery, said at least one second circuit being connected in parallel with said first circuit 4
  • the first and second conversion circuits 4, 9 are connected in parallel so as to provide the charging setpoint (current and / or charging voltage) required by the onboard computer 5 of the electric car to charge the battery.
  • the charging terminal 1 comprises a management system 10 controlling the secondary supply source 8 so as to activate it when the charging power Pc required for charging said battery is greater than the charging power Pci that can be delivered. by the primary energy source 3.
  • phase of "Boost" is provided by the energy source secondary.
  • the energy delivered to the vehicle decreases in time.
  • the energy delivered to the vehicle 2 comes from the main energy source 3 and the secondary energy source 8 as Pc> Pc-i.
  • Pc ⁇ Pc-i the energy delivered to the vehicle 2 comes exclusively from the primary energy source 3 while the secondary energy source 8 is recharged by the primary energy source 3.
  • the secondary energy source 8 If, however, at the end of the second phase of the vehicle charge, the secondary energy source 8 is not fully recharged, it can be recharged by the primary energy source 3.
  • the charging terminal 1 can provide a load by providing a power that does not exceed the power supplied by the power supply network 3 alone, for example 36 kW .
  • the charging terminal 1 accordingly comprises a charging circuit
  • This charging circuit 1 1 here comprises a filter 12, a converter 13 and a power factor correction device 14.
  • the battery charger 1 also includes cooling means for lowering the temperature of its electrical circuits and electronic components, thus preventing the charger from becoming too hot during the rapid charging of a battery.
  • These cooling means here comprise one or more fans (not shown) as well as heat exchange structures such as cooling fins (not shown).
  • FIG. 3 schematically shows the circuits for converting the supply currents or voltages delivered by main source 3 and auxiliary source 8 of an electric charging installation into a charging current or voltage for a battery according to another embodiment. .
  • the first circuit 4 for converting the supply current or voltage delivered by the main source into a charging current or voltage for the electric battery comprises a control circuit of a current supply switch to a primary winding of a transformer, this control circuit operating in isolated switching mode at a low frequency, typically 20,000 Hz.
  • the load circuit 1 5 of the auxiliary source reuses the input stage of the first circuit 4, this input stage comprising a filter 1 6 and a power factor correction device 1 7.
  • the charging circuit 1 5 comprises after this stage, a converter 1 8.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)

Abstract

L'invention concerne une installation et un procédé de charge de batterie électrique pour véhicule électrique, ledit véhicule électrique comprenant un ordinateur de bord, ladite installation comprenant une source principale (3) d'alimentation en énergie apte à délivrer une puissance de charge Pc1. Selon ce procédé de charge, on réalise les étapes suivantes: on détermine la puissance de charge Pc à délivrer à la batterie électrique dudit véhicule par rapport à une consigne en courant et/ou en tension de charge, demandée à un instant t par ledit ordinateur de bord, on compare cette puissance de charge par rapport à la puissance de charge Pc1 susceptible d'être délivrée par une source principale (3) d'alimentation en énergie, si Pc > Pc1, on met en œuvre en plus de ladite source principale (3), au moins une source auxiliaire (8) d'alimentation en énergie apte à délivrer une puissance de charge Pc2 de sorte que la somme des puissances de charge délivrée par lesdites sources soit égale à la puissance de charge Pc requise.

Description

Installation et procédé de charge pour batterie électrique
La présente invention concerne une installation et un procédé de charge pour batterie électrique, et plus particulièrement une borne de charge rapide pour véhicules équipés d'au moins une batterie électrique et d'un ordinateur de bord embarqué.
La voiture électrique étant essentiellement urbaine, la recharge de sa ou ses batteries électriques passe par des prises d'énergie existantes ou/et par une infrastructure nouvelle (bornes de recharge), à installer sur la voie publique ou dans des endroits facilement accessibles (parkings, lieux de travail, ...).
On envisage actuellement deux modes de recharge :
• par connexion directe (recharge normale ou rapide),
• sans contact.
La recharge la plus simple s'opère à l'aide d'une connexion directe, sur une prise dite normale, délivrant un courant alternatif de 16 A sous 220 à 240 V, soit environ 3,7 kVA. Le courant alternatif est transformé en courant continu par le chargeur embarqué de la voiture. Une recharge complète s'effectue en 6 à 10 h.
L'avantage de ce type de charge, qui peut être effectuée à partir d'une prise domestique classique, réside dans l'absence de la nécessité de toute infrastructure nouvelle, tout au moins pour des particuliers possédant un garage ou une place de parking. Ce type de charge a également pour avantage d'offrir la possibilité de recharger le véhicule la nuit pendant plusieurs heures, au moment où la consommation d'énergie est la moins forte.
La recharge par connexion directe rapide nécessite une borne de charge spécialisée, délivrant un courant continu d'une centaine d'ampères, à une tension comprise actuellement entre 20 et 500 V, directement appliquée aux batteries du véhicule électrique. La puissance installée est de l'ordre de 50 kVA.
Ce type de recharge fournit, en principe, une autonomie de 3 à 5 km par minute de charge, à condition que les batteries soient capables d'absorber sans dommage des courants élevés. Une cogestion de la charge par des éléments intelligents présents, d'une part sur le véhicule électrique et d'autre part, sur la borne de charge rapide est nécessaire.
La borne de recharge rapide comporte un chargeur-redresseur alimenté par un réseau triphasé.
En ce qui concerne la recharge sans contact, deux procédés de charge différents font l'objet d'intenses recherches :
• transfert d'énergie par micro-ondes,
• couplage par induction.
Dans ce dernier procédé, l'énergie transite d'un enroulement primaire, généralement au sol, vers un enroulement secondaire monté sur le véhicule.
Avec ces dispositifs, l'utilisateur n'a plus de connexions à effectuer.
L'augmentation du nombre de voitures électriques posera forcément un problème de gestion de l'énergie électrique disponible pour la charge à court terme.
La quantité d'énergie consommée par la voiture électrique dépend principalement de son rendement et de la distance qu'elle parcourt. Conçue pour une moyenne de 40 km par jour, la voiture électrique demande entre 4 et 25 kWh par 24 h, ce qui donne une consommation annuelle comprise entre 1 500 et 9 000 kWh. Selon les différentes sources données par le GI FAM (Groupement interprofessionnel des fabricants d'appareils d'équipement ménager) et l'INSEE, en France, la consommation moyenne domestique des utilisateurs potentiels de la voiture électrique s'élèverait à 8 000 kWh et cette consommation s'élèverait à 1 0 000 kWh aux États-Unis.
Ainsi, la voiture électrique pourrait augmenter la consommation familiale de 20 à 50 %. Si la plupart des usagers rechargent leur voiture le jour, la puissance installée des centrales électriques va croître au-delà du raisonnable.
Par ailleurs, la recharge rapide, nécessitant généralement 50 kVA, pendant des dizaines de minutes, conduira non seulement à un surdimensionnement des centrales électriques, mais également à une modification des lignes électriques.
En revanche, la recharge nocturne demanderait une puissance d'environ 3 kW (recharge pendant 6 à 10 h), facilement supportée par les installations existantes.
Or, on constate que les bornes de charge rapide pour véhicules électriques sont toutes actuellement alimentées par une seule source d'énergie : généralement le réseau de distribution électrique.
L'énergie consommée et la puissance demandée par la recharge simultanée d'un grand nombre de batteries électriques pourraient conduire non seulement à un surdimensionnement des centrales électriques, mais également à une modification des lignes électriques.
Cette demande additionnelle d'électricité aura en conséquence des impacts négatifs sur :
- le contenu en CO2 du kWh électrique (selon le mode de production de l'électricité : nucléaire, hydraulique, thermique...) ;
- la gestion, l'architecture et le pilotage des réseaux de distribution d'électricité ;
- la gestion de la pointe de consommation électrique et notamment l'impact de la recharge rapide ;
- le renforcement local du réseau électrique.
La présente invention vise à palier ces divers inconvénients en proposant une installation et un procédé de charge, simple dans leur conception et dans leur mode opératoire, permettant d'assurer la recharge d'une batterie électrique de manière rapide et économique.
Un autre objet de la présente invention est une telle installation et un tel procédé de charge permettant de diminuer l'impact de la demande d'électricité sur le réseau en réduisant les appels de puissance sur le réseau de distribution électrique. Ils auront pour effet :
- de diminuer le contenu en CO2 du kWh électrique nécessaire pour la recharge des véhicules électriques ; - lisser la consommation d'énergie électrique et donc d'en faciliter la prévision de production
- offrir la possibilité de connecter une borne de charge rapide sur plus de point de raccordement au réseau de distribution électrique qu'elle n'aurait pu l'être du fait que la puissance de connexion au réseau s'en trouve diminuée.
L'objectif de l'invention a pour but de diminuer la puissance du point de raccordement au réseau de distribution électrique sans pour autant diminuer les performances de la borne de charge rapide.
A cet effet, la présente invention a pour objet une installation de charge d'une batterie électrique pour un véhicule, ladite installation comprenant une source principale d'alimentation en énergie apte à délivrer une puissance de charge Pci et un premier circuit pour convertir le courant ou la tension d'alimentation délivrée par ladite source principale en un courant ou une tension de charge pour ladite batterie électrique.
Selon l'invention, cette installation comprend
- au moins une source auxiliaire d'alimentation en énergie apte à délivrer une puissance de charge Pc2,
- au moins un deuxième circuit pour convertir le courant ou la tension d'alimentation délivrée par ladite source auxiliaire en un courant ou une tension de charge pour ladite batterie électrique, ledit au moins un deuxième circuit étant relié en parallèle audit premier circuit,
- un système de gestion contrôlant ladite au moins une source auxiliaire de manière à activer au moins une desdites sources auxiliaires lorsque la puissance de charge Pc requise pour charger ladite batterie est supérieure à la puissance de charge Pci susceptible d'être délivrée par ladite source principale.
On entend par "véhicule", un véhicule motorisé du type terrestre, nautique ou aérien, c'est-à-dire, et à titre purement illustratif, un bateau, un aéronef, une automobile, un camion, un autobus ou encore un quadricycle.
Le but de l'invention est de diminuer l'impact de la demande d'électricité sur le réseau en réduisant les appels de puissance sur le réseau de distribution électrique. Elle aura, pour effet, de:
- lisser la consommation d'énergie électrique ; - faciliter la prévision de production d'énergie électrique car la consommation d'énergie électrique est lissée dans le temps ;
- diminuer le contenu en C02 du kWh électrique nécessaire pour la recharge des véhicules électriques car la consommation d'énergie électrique est lissée dans le temps ;
- ne pas nécessiter le renforcement local du réseau électrique car la puissance consommée sur le réseau électrique est moindre ;
- diminuer le coût global de l'utilisation d'une station de charge rapide car le coût de raccordement au réseau et de l'abonnement s'en trouve réduit ;
- offrir la possibilité de connecter une borne de charge rapide sur plus de point de charge qu'elle n'aurait pu l'être du fait que la puissance de connexion au réseau s'en trouve diminuée (facilité d'installation) ;
- maintenir les performances de charge du véhicule électrique.
Dans différents modes de réalisation particuliers de cette installation de charge, chacun ayant ses avantages particuliers et susceptibles de nombreuses combinaisons techniques possibles:
- la source principale d'alimentation en énergie est le réseau d'alimentation électrique délivrant une tension secteur ou un courant de secteur,
- ladite au moins une source auxiliaire comprend une unité d'alimentation en énergie choisie dans le groupe comprenant une batterie, un supercondensateur, un volant d'inertie, une pile à combustible, un groupe électrogène, des panneaux solaires photovoltaïques et des combinaisons de ces éléments,
- ledit véhicule comprenant un ordinateur de bord contrôlant ladite batterie à charger, ladite installation comprend un système de communication pour permettre le transfert en temps réel d'informations entre ladite installation et ledit ordinateur de bord, lesdites informations comprenant au moins une valeur de consigne de charge fournie par ledit ordinateur de bord.
Cette valeur de consigne de charge est une valeur de courant de charge et/ou de tension de charge.
De préférence, le système de gestion comporte alors une unité de calcul pour déterminer la puissance de charge Pc correspondant aux valeurs de courant de charge et/ou de tension de charge requis par ledit ordinateur de bord. Avantageusement, la puissance de charge Pci susceptible d'être délivrée par ladite source principale d'alimentation en énergie étant variable en fonction du temps, ladite installation comporte une unité de mesure en temps réel de ladite puissance de charge Pc-i , ladite unité de mesure envoyant des informations à ladite unité de calcul.
Ce peut être notamment le cas lorsque dans le courant de la journée, plusieurs usagers consomment de l'énergie en étant reliés sur un même point de raccordement.
- l'installation comprend des moyens programmable pour limiter la puissance de charge délivrée par ladite source principale de sorte que
Pci<Pcmax, où Pcmax est la puissance de charge maximale susceptible d'être délivrée par ladite source principale d'alimentation,
- ledit premier circuit pour convertir le courant ou la tension d'alimentation délivrée par ladite source principale en un courant ou une tension de charge pour ladite batterie électrique comprend un circuit de commande d'un interrupteur de fourniture de courant à un enroulement primaire d'un transformateur, ledit circuit de commande opérant en mode à découpage isolée à une haute fréquence ou à une basse fréquence,
- ladite installation comprend un circuit de charge de ladite au moins une source auxiliaire, relié à ladite source principale d'alimentation en énergie pour recharger ladite au moins une source auxiliaire,
De préférence, cette installation comprenant plusieurs sources auxiliaires reliées audit circuit de charge par des commutateurs, ledit système de gestion contrôle le niveau de charge de chacune desdites sources auxiliaires et commande lesdits commutateurs pour recharger indépendamment chacune desdites sources auxiliaires.
La présente invention concerne encore un procédé de charge d'une batterie électrique pour véhicule, dans lequel on met en œuvre une source principale d'alimentation en énergie susceptible de délivrer une puissance de charge Pci et au moins une source auxiliaire d'alimentation en énergie apte à délivrer une puissance de charge Pc2 de sorte que la somme des puissances de charge délivrées par lesdites sources à la batterie électrique soit égale à une puissance de charge Pc.
Selon l'invention, - on met en œuvre pour chacune desdites sources auxiliaires d'alimentation en énergie, un circuit pour convertir le courant ou la tension d'alimentation délivrée par ladite source auxiliaire correspondante en un courant ou une tension de charge pour ladite batterie électrique, ledit circuit étant placé entre ladite source auxiliaire correspondante et le nœud de raccordement des différentes sources d'alimentation en énergie.
On s'affranchit ainsi avantageusement de la tension délivrée par chaque source auxiliaire, ce qui permet de raccorder n'importe quelle source auxiliaire d'alimentation en énergie à l'installation de charge sans avoir à connaître sa tension.
Un tel circuit pour convertir le courant ou la tension d'alimentation délivré par ladite au moins une source auxiliaire d'alimentation en énergie autorise, par conséquent, une plus grande souplesse dans le choix et le dimensionnement de cette source auxiliaire, et permet par exemple de s'affranchir des inconvénients liés à la mise en œuvre d'une batterie (tension qui évolue en fonction de l'état de charge, ...).
En outre, cette mise en parallèle des circuits pour convertir le courant ou la tension d'alimentation permet avantageusement de pouvoir faire évoluer un système existant en ajoutant des modules sans remettre en cause les premiers équipements déployés dans l'installation de charge.
Dans différents modes de réalisation particuliers de ce procédé de charge, chacun ayant ses avantages particuliers et susceptibles de nombreuses combinaisons techniques possibles:
- on mesure en temps réel la puissance de charge délivrée par ladite source principale d'alimentation en énergie et on définit une valeur de puissance maximale Pcmax à débiter de ladite source principale.
On peut ainsi contrôler de manière continue la puissance de charge issue de ladite source principale de sorte que celle-ci ne dépasse pas une valeur de consigne déterminée, le complément en puissance de charge pour charger la batterie électrique étant obtenu par ladite au moins une source auxiliaire d'alimentation en énergie.
- la puissance de charge Pci susceptible d'être délivrée par ladite source principale d'alimentation en énergie étant variable en fonction du temps, on mesure ladite puissance de charge Pc-i . On détermine avantageusement à partir de la valeur Pcmax ou Pc-i, la puissance de charge Pc2 que doit fournir ladite au moins une source auxiliaire d'alimentation en énergie pour assurer la charge de ladite batterie électrique.
- ladite puissance de charge Pc requise étant inférieure strictement à Pc-i , on charge simultanément à ladite batterie électrique, ladite au moins une source auxiliaire d'alimentation en énergie avec une puissance de charge Pc4 telle que Pc4 < Pc Pc.
Ce mode de réalisation permet ainsi de recharger la source auxiliaire d'alimentation en énergie simultanément à la charge de la batterie électrique. II est ainsi possible de pouvoir charger directement une autre batterie électrique après avoir achevé la charge de la première batterie électrique.
- ledit véhicule comportant un ordinateur de bord et la puissance de charge Pc délivrée à ladite batterie à charger étant inférieure à une valeur de puissance de charge souhaitée, on communique audit ordinateur de bord ladite valeur de charge Pc,
- chargeant une seule batterie électrique à la fois, on charge de manière séquentielle plusieurs batteries électriques.
De préférence, on charge chacune desdites batteries pendant un temps de charge T inférieur au temps de charge nécessaire pour charger une batterie électrique en une seule fois.
La présente invention concerne encore un procédé de charge d'une batterie électrique pour véhicule, ledit véhicule comprenant un ordinateur de bord, dans lequel :
- on détermine la puissance de charge Pc à délivrer à la batterie électrique dudit véhicule, lors d'une charge en tension continue de ladite batterie, par rapport à une consigne de charge demandée à un instant t par ledit ordinateur de bord,
- on compare cette puissance de charge par rapport à la puissance de charge Pci susceptible d'être délivrée par une source principale d'alimentation en énergie,
- si Pc > Pc-i, on met en œuvre en plus de ladite source principale, au moins une source auxiliaire d'alimentation en énergie apte à délivrer une puissance de charge Pc2 de sorte que la somme des puissances de charge délivrée par lesdites sources soit égale à la puissance de charge Pc requise. Cette consigne de charge est une valeur de courant de charge et/ou de tension de charge.
De préférence, ladite source principale d'alimentation en énergie est le réseau d'alimentation électrique délivrant une tension secteur.
Avantageusement, on détermine la valeur de la puissance de charge
Pci par rapport à une puissance de charge maximale Pcmax susceptible d'être délivrée par la source principale d'alimentation en énergie.
De préférence, la puissance de charge Pci susceptible d'être délivrée par ladite source principale d'alimentation en énergie étant variable en fonction du temps, on mesure, avantageusement en temps réel, ladite puissance de charge Pc-i .
De manière avantageuse, la puissance de charge Pc requise étant inférieure strictement à Pc-i, on charge simultanément à ladite batterie électrique, ladite au moins une source auxiliaire d'alimentation en énergie avec une puissance de charge Pc4 telle que Pc4 < Pc-i-Pc ladite au moins une source auxiliaire d'alimentation en énergie avec une puissance de charge Pc4 telle que Pc4 < Pc Pc.
L'invention sera décrite plus en détail en référence aux dessins annexés dans lesquels:
- la figure 1 est une représentation schématique d'une installation de charge électrique d'une batterie selon un mode de réalisation particulier de l'invention;
- la figure 2 montre schématiquement les circuits pour convertir la tension d'alimentation délivrée par la source primaire et la tension ou le courant délivré par la source secondaire de l'installation de la fig. 1 , en un courant ou une tension de charge pour une batterie électrique;
- la figure 3 montre schématiquement les circuits pour convertir les tensions ou courants d'alimentation délivrées par des sources principale et auxiliaire d'une installation de charge électrique en un courant ou une tension de charge pour une batterie selon un autre mode de réalisation ;
- la figure 4 est une comparaison de la puissance consommée sur la source principale entre une borne de charge de l'état de l'art (en trait plein noir) et une installation (trait plein gris) selon un mode de mise en œuvre de la présente invention, cette source principale étant le réseau d'alimentation électrique, l'axe des x représentant le temps et l'axe des y représentant la puissance consommée en kVA;
Les figures 1 et 2 montrent un chargeur électrique 1 pour batterie notamment d'un véhicule électrique 2 selon un mode de réalisation préféré de l'invention. Ce chargeur 1 est adapté pour charger rapidement une telle batterie, par exemple en 30 minutes environs.
Le présent chargeur de batterie 1 comporte un bâti relié au réseau d'alimentation électrique 3 délivrant une tension secteur Vs. Ce réseau d'alimentation électrique 3 constitue une source d'énergie primaire pour cette borne 2 en vue de recharger la batterie du véhicule électrique 2. La puissance de charge Pci délivrée par le réseau électrique 3 est ici égale à 36 kW, c'est- à-dire qu'il s'agit d'un point de raccordement standard.
Le bâti comporte un premier circuit électrique 4 de conversion permettant de convertir la tension secteur délivrée par le réseau d'alimentation électrique 3 en un courant ou une tension de charge pour la batterie électrique à charger.
Ce premier circuit électrique 4 de conversion comprend un circuit de commande d'un interrupteur de fourniture de courant à un enroulement primaire d'un transformateur, ledit circuit de commande opérant en mode à découpage isolée à une haute fréquence, typiquement 80 000 Hz.
Le véhicule électrique 2 comprenant un ordinateur de bord 5 contrôlant la batterie à charger, la borne de charge 1 comprend un système de communication 6 pour permettre le transfert en temps réel d'informations entre cette borne de charge 1 et l'ordinateur de bord 5 de la voiture 2.
En particulier, ce système ce communication qui comprend ici soit une communication filaire 7 telle qu'un bus Controller Area Network (CAN), un courant porteur de ligne (CPL) ou une communication fil pilote (ISO 61851 SAE J1772) ou encore une ligne K/L (ISO 9141 ), soit une liaison radio telle que Zigbee, Wifi, ou Bluetooth, permet à la borne de charge 1 de recevoir de l'ordinateur de bord 5, la consigne de charge (courant et/ou tension de charge) requise pour charger la batterie, cette consigne de charge étant variable dans le temps.
Notamment, on distingue deux phases de charge: - une phase de charge dite "BOOST": restitution d'un maximum de la capacité batterie, généralement de 0% à 50% de l'état de charge de la batterie, en un minimum de temps, généralement 10 minutes,
- une phase d'égalisation encore appelée "ABSORPTION" durant laquelle est réalisé un complément de la charge progressif jusqu' à 100 % de la capacité batterie. Cette phase est généralement de l'ordre de 30 minutes.
Le bâti comporte également une source secondaire 8 d'alimentation en énergie interne apte à délivrer une puissance de charge Pc2. Cette source secondaire est ici une batterie électrochimique.
Le dimensionnement de cette source secondaire 8 est réalisé pour assurer la première phase de la charge de la batterie, dite de "BOOST", lorsque la puissance de charge Pc requise par l'ordinateur de bord 5 de la voiture électrique pour charger sa batterie est supérieure à la puissance de charge Pci susceptible d'être fournie par le réseau électrique 3.
A titre illustratif, l'énergie utile fournie par la source secondaire est de 5 à 10 kW.h, la puissance de charge Pc2 étant de 20 kW. Ce dimensionnement peut bien entendu être augmenté selon les besoins, à titre d'exemple, pour assurer une ou plusieurs charges successivement sans avoir à recharger la source secondaire.
Le bâti comporte un deuxième circuit 9 pour convertir le courant ou la tension d'alimentation délivrée par ladite source auxiliaire 8 en un courant ou une tension de charge pour ladite batterie électrique, ledit au moins un deuxième circuit étant relié en parallèle audit premier circuit 4. Les premier et deuxième circuits 4, 9 de conversion sont reliés en parallèle de manière à fournir la consigne de charge (courant et/ou la tension de charge) requise par l'ordinateur de bord 5 de la voiture électrique pour charger la batterie.
La borne de charge 1 comprend un système de gestion 10 contrôlant la source secondaire 8 d'alimentation de manière à activer celle-ci lorsque la puissance de charge Pc requise pour charger ladite batterie est supérieure à la puissance de charge Pci susceptible d'être délivrée par la source d'énergie primaire 3.
Ainsi, et alors que la puissance consommée sur le réseau électrique est quasi constant pendant toute la charge du véhicule (de 0% à 100% d'état de charge - SOC), le complément d'énergie nécessaire pendant la première phase de la charge, dite phase de "Boost" est fourni par la source d'énergie secondaire. Pendant la deuxième phase de charge, dite "Absorption", l'énergie délivrée au véhicule va en décroissant dans le temps. L'énergie délivrée au véhicule 2 provient de la source d'énergie principale 3 et de la source d'énergie secondaire 8 tant que Pc > Pc-i . Dés que Pc < Pc-i , L'énergie délivrée au véhicule 2 provient exclusivement de la source d'énergie primaire 3 tandis que la source d'énergie secondaire 8 est rechargée par la source d'énergie primaire 3.
Si toutefois, à l'issue de la seconde phase de la charge du véhicule, la source d'énergie secondaire 8 n'est pas totalement rechargée, elle a la possibilité d'être rechargée par la source d'énergie primaire 3.
Lorsque la source secondaire 8 est épuisée et qu'une charge est demandée, la borne de charge 1 peut assurer une charge en fournissant une puissance qui n'excède pas la puissance fournie par le réseau d'alimentation électrique 3 seul, par exemple 36 kW.
La borne de charge 1 comprend en conséquence un circuit de charge
1 1 dédié de la source secondaire 8, ce circuit de charge 1 1 étant relié directement au réseau d'alimentation électrique 3. Ce circuit de charge 1 1 comprend ici un filtre 12, un convertisseur 13 et un dispositif de correction du facteur de puissance 14.
Le chargeur de batterie 1 comporte également des moyens de refroidissement pour abaisser la température de ses circuits électriques et composants électroniques, évitant ainsi que le chargeur ne devienne trop chaud lors de la charge rapide d'une batterie. Ces moyens de refroidissement comprennent ici un ou plusieurs ventilateurs (non représentés) ainsi que des structures d'échange de chaleur telles que des ailettes de refroidissement (non représentées).
La Figure 3 montre schématiquement les circuits pour convertir les courants ou les tensions d'alimentation délivrées par des source principale 3 et auxiliaire 8 d'une installation de charge électrique en un courant ou une tension de charge pour une batterie selon un autre mode de réalisation.
Le premier circuit 4 pour convertir le courant ou la tension d'alimentation délivrée par la source principale en un courant ou une tension de charge pour la batterie électrique comprend un circuit de commande d'un interrupteur de fourniture de courant à un enroulement primaire d'un transformateur, ce circuit de commande opérant en mode à découpage isolée à une basse fréquence, typiquement 20 000 Hz.
Le circuit de charge 1 5 de la source auxiliaire réutilise l'étage d'entrée du premier circuit 4, cet étage d'entrée comprenant un filtre 1 6 et un dispositif de correction du facteur de puissance 1 7. Le circuit de charge 1 5 comporte après cet étage, un convertisseur 1 8.

Claims

REVENDICATIONS
1 . Installation de charge d'une batterie électrique pour un véhicule, ladite installation comprenant une source principale (3) d'alimentation en énergie apte à délivrer une puissance de charge Pci et un premier circuit (4) pour convertir le courant ou la tension d'alimentation délivrée par ladite source principale (3) en un courant ou une tension de charge pour ladite batterie électrique, caractérisée en ce qu'elle comprend
- au moins une source auxiliaire (8) d'alimentation en énergie apte à délivrer une puissance de charge Pc2,
- au moins un deuxième circuit (9) pour convertir le courant ou la tension d'alimentation délivrée par ladite source auxiliaire (8) en un courant ou une tension de charge pour ladite batterie électrique, ledit au moins un deuxième circuit (9) étant relié en parallèle audit premier circuit (4),
- un système de gestion (10) contrôlant ladite au moins une source auxiliaire (8) de manière à activer au moins une desdites sources auxiliaires lorsque la puissance de charge Pc requise pour charger ladite batterie est supérieure à la puissance de charge Pci susceptible d'être délivrée par ladite source principale (3).
2. Installation selon la revendication 1 , caractérisée en ce que ladite source principale (3) d'alimentation en énergie est le réseau d'alimentation électrique délivrant une tension secteur ou un courant de secteur.
3. Installation selon la revendication 1 ou 2, caractérisée en ce que ladite au moins une source auxiliaire (8) comprend une unité d'alimentation en énergie choisie dans le groupe comprenant une batterie, un supercondensateur, un volant d'inertie, une pile à combustible, un groupe électrogène, des panneaux solaires photovoltaïques et des combinaisons de ces éléments.
4. Installation selon l'une quelconque des revendications 1 à 3, caractérisée en ce que ledit véhicule (2) comprenant un ordinateur de bord (5) contrôlant ladite batterie à charger, ladite installation comprend un système de communication (7) pour permettre le transfert en temps réel d'informations entre ladite installation et ledit ordinateur de bord (5), lesdites informations comprenant au moins une valeur de consigne de charge fournie par ledit ordinateur de bord.
5. Installation selon la revendication 4, caractérisée en ce que ledit système de gestion (10) comporte une unité de calcul pour déterminer la puissance de charge Pc correspondant aux valeurs de courant de charge et/ou de tension de charge requis par ledit ordinateur de bord (5).
6. Installation selon la revendication 5, caractérisée en ce que la puissance de charge Pci susceptible d'être délivrée par ladite source principale (3) d'alimentation en énergie étant variable en fonction du temps, ladite installation comporte une unité de mesure en temps réel de ladite puissance de charge Pc-i, ladite unité de mesure envoyant des informations à ladite unité de calcul.
7. Installation selon l'une quelconque des revendications 1 à 6, caractérisée en ce qu'elle comprend des moyens programmables pour limiter la puissance de charge délivrée par ladite source principale (3) de sorte que Pci<Pcmax, où Pcmax est la puissance de charge maximale susceptible d'être délivrée par ladite source principale (3) d'alimentation.
8. Installation selon l'une quelconque des revendications 1 à 7, caractérisée en ce que ledit premier circuit (4) pour convertir le courant ou la tension d'alimentation délivrée par ladite source principale (3) en un courant ou une tension de charge pour ladite batterie électrique comprend un circuit de commande d'un interrupteur de fourniture de courant à un enroulement primaire d'un transformateur, ledit circuit de commande opérant en mode à découpage isolée à une haute fréquence ou à une basse fréquence.
9. Installation selon l'une quelconque des revendications 1 à 8, caractérisée en ce que ladite installation comprend un circuit de charge (1 1 , 15) de ladite au moins une source auxiliaire (8), relié à ladite source principale (3) d'alimentation en énergie pour recharger ladite au moins une source auxiliaire (8).
10. Installation selon les revendications 2 et 9, caractérisée en ce que ledit circuit de charge comprend un filtre, un convertisseur et un dispositif de correction du facteur de puissance.
1 1 . Procédé de charge d'une batterie électrique pour véhicule, dans lequel on met en œuvre une source principale (3) d'alimentation en énergie susceptible de délivrer une puissance de charge Pci et au moins une source auxiliaire (8) d'alimentation en énergie apte à délivrer une puissance de charge Pc2 de sorte que la somme des puissances de charge délivrées par lesdites sources à la batterie électrique soit égale à une puissance de charge Pc, caractérisé en ce que
- on met en œuvre pour chacune desdites sources auxiliaires (8) d'alimentation en énergie, un circuit pour convertir le courant ou la tension d'alimentation délivrée par ladite source auxiliaire (8) correspondante en un courant ou une tension de charge pour ladite batterie électrique, ledit circuit étant placé entre ladite source auxiliaire (8) correspondante et le nœud de raccordement des différentes sources d'alimentation en énergie.
12. Procédé selon la revendication 1 1 , caractérisé en ce qu'on mesure en temps réel la puissance de charge délivrée par ladite source principale (3) d'alimentation en énergie et on définit une valeur de puissance maximale Pcmax à débiter de ladite source principale (3).
13. Procédé selon la revendication 1 1 , caractérisé en ce que la puissance de charge Pci susceptible d'être délivrée par ladite source principale (3) d'alimentation en énergie étant variable en fonction du temps, on mesure ladite puissance de charge Pc-i.
14. Procédé selon la revendication 12 ou 13, caractérisé en ce qu'on détermine à partir de la valeur Pcmax ou Pc-i , la puissance de charge Pc2 que doit fournir ladite au moins une source auxiliaire (8) d'alimentation en énergie pour assurer la charge de ladite batterie électrique.
15. Procédé selon l'une quelconque des revendications 1 1 à 14, caractérisé en ce que ladite puissance de charge Pc requise étant inférieure strictement à Pc-i, on charge simultanément à ladite batterie électrique, ladite au moins une source auxiliaire (8) d'alimentation en énergie avec une puissance de charge Pc4 telle que Pc4 < Pc Pc.
16. Procédé selon l'une quelconque des revendications 1 1 à 15, caractérisé en ce que ledit véhicule comportant un ordinateur de bord (5) et la puissance de charge Pc délivrée à ladite batterie à charger étant inférieure à une valeur de puissance de charge souhaitée, on communique audit ordinateur de bord ladite valeur de charge Pc.
17. Procédé selon l'une quelconque des revendications 1 1 à 16, caractérisé en ce que chargeant une seule batterie électrique à la fois, on charge de manière séquentielle plusieurs batteries électriques.
18. Procédé selon la revendication 17, caractérisé en ce qu'on charge chacune desdites batteries pendant un temps de charge τ inférieur au temps de charge nécessaire pour charger une batterie électrique en une seule fois.
19. Procédé de charge d'une batterie électrique pour véhicule, ledit véhicule comprenant un ordinateur de bord (5), dans lequel
- on détermine la puissance de charge Pc à délivrer à la batterie électrique dudit véhicule, lors d'une charge en tension continue de ladite batterie, par rapport à une consigne de charge demandée à un instant t par ledit ordinateur de bord,
- on compare cette puissance de charge par rapport à la puissance de charge Pci susceptible d'être délivrée par une source principale (3) d'alimentation en énergie,
- si Pc > Pc-i, on met en œuvre en plus de ladite source principale (3), au moins une source auxiliaire (8) d'alimentation en énergie apte à délivrer une puissance de charge Pc2 de sorte que la somme des puissances de charge délivrée par lesdites sources soit égale à la puissance de charge Pc requise.
20. Procédé selon la revendication 19, caractérisé en ce que ladite source principale (3) d'alimentation en énergie est le réseau d'alimentation électrique délivrant une tension secteur.
21 . Procédé selon la revendication 19 ou 20, caractérisé en ce qu'on détermine la valeur de la puissance de charge Pci par rapport à une puissance de charge maximale Pcmax susceptible d'être délivrée par la source principale (3) d'alimentation en énergie.
22. Procédé selon l'une quelconque des revendications 19 à 21 , caractérisé en ce que la puissance de charge Pci susceptible d'être délivrée par ladite source principale (3) d'alimentation en énergie étant variable en fonction du temps, on mesure ladite puissance de charge Pc-i .
23. Procédé selon l'une quelconque des revendications 19 à 22, caractérisé en ce que ladite puissance de charge Pc requise étant inférieure strictement à Pc-i, on charge simultanément à ladite batterie électrique, ladite au moins une source auxiliaire (8) d'alimentation en énergie avec une puissance de charge Pc4 telle que Pc4 < Pc Pc.
PCT/EP2012/064314 2011-07-29 2012-07-20 Installation et procédé de charge pour batterie électrique WO2013017443A2 (fr)

Priority Applications (9)

Application Number Priority Date Filing Date Title
KR1020147004950A KR20140114330A (ko) 2011-07-29 2012-07-20 전기 배터리 충전 설비 및 방법
MX2014001177A MX2014001177A (es) 2011-07-29 2012-07-20 Instalacion y metodo de carga para bateria electrica.
SG2014006688A SG2014006688A (en) 2011-07-29 2012-07-20 Electric battery charging installation and method
CA2844356A CA2844356C (fr) 2011-07-29 2012-07-20 Installation et procede de charge pour batterie electrique
EP12735914.9A EP2736757A2 (fr) 2011-07-29 2012-07-20 Installation et procédé de charge pour batterie électrique
US14/235,760 US9676287B2 (en) 2011-07-29 2012-07-20 Electric battery charging installation and method
BR112014002236A BR112014002236A2 (pt) 2011-07-29 2012-07-20 intalação e processo de carga para bateria elétrica
CN201280047828.1A CN104093590A (zh) 2011-07-29 2012-07-20 电池的充电设备和方法
ZA2014/01399A ZA201401399B (en) 2011-07-29 2014-02-24 Electric battery charging installation and method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR1102414 2011-07-29
FR1102414A FR2978624B1 (fr) 2011-07-29 2011-07-29 Installation et procede de charge pour batterie electrique

Publications (2)

Publication Number Publication Date
WO2013017443A2 true WO2013017443A2 (fr) 2013-02-07
WO2013017443A3 WO2013017443A3 (fr) 2013-07-25

Family

ID=46516787

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2012/064314 WO2013017443A2 (fr) 2011-07-29 2012-07-20 Installation et procédé de charge pour batterie électrique

Country Status (11)

Country Link
US (1) US9676287B2 (fr)
EP (1) EP2736757A2 (fr)
KR (1) KR20140114330A (fr)
CN (1) CN104093590A (fr)
BR (1) BR112014002236A2 (fr)
CA (1) CA2844356C (fr)
FR (1) FR2978624B1 (fr)
MX (1) MX2014001177A (fr)
SG (1) SG2014006688A (fr)
WO (1) WO2013017443A2 (fr)
ZA (1) ZA201401399B (fr)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2902249A3 (fr) * 2014-01-21 2015-09-09 Delta Electronics, Inc. Appareil de charge avec courant de charge dynamique et son procédé de fonctionnement

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
NO337360B1 (no) * 2014-03-11 2016-03-29 Zaptec Ip As Strømforsyningssystem for lading av elektriske kjøretøy
US20180072167A1 (en) * 2015-05-14 2018-03-15 Efacec Electric Mobility, S.A. Fast charging system for electric vehicles
WO2017041183A1 (fr) * 2015-09-10 2017-03-16 Power Systems Technology (Eegenco) Ltd Sous-station compacte
CN105818710B (zh) * 2016-05-20 2018-07-10 武汉中原弘仁新能源科技有限公司 基于云计算后台系统精准充电的充电桩及充电方法
FR3053506B1 (fr) * 2016-07-04 2022-09-16 Omninov Gestion d'une installation de recharge de batteries de vehicules automobiles electriques dans un parking collectif
US10650621B1 (en) 2016-09-13 2020-05-12 Iocurrents, Inc. Interfacing with a vehicular controller area network
FR3059199B1 (fr) * 2016-11-24 2021-01-01 Lancey Energy Storage Appareil de chauffage de type radiateur electrique incluant un convertisseur de tension
DE102017105632A1 (de) * 2017-03-16 2018-09-20 Dr. Ing. H.C. F. Porsche Ag Ladestationssystem für Elektrofahrzeuge
KR101999127B1 (ko) 2017-04-05 2019-07-11 한국전력공사 컨버터 분리형 전기차 충전 시스템
IT201800004708A1 (it) * 2018-04-19 2019-10-19 Installazione fotovoltaica per sito industriale con dispositivo di accumulo energetico in carrelli elevatori parcheggiati
DE102020114676A1 (de) * 2020-06-02 2021-12-02 Me Energy Gmbh Ladesäule

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5057762A (en) 1990-07-30 1991-10-15 Motorola, Inc. System for determining battery charge states and charging sequence for a battery charger
US7256516B2 (en) * 2000-06-14 2007-08-14 Aerovironment Inc. Battery charging system and method
CN2891442Y (zh) * 2005-12-29 2007-04-18 比亚迪股份有限公司 电动汽车便携式充电器
US20070273214A1 (en) * 2006-05-23 2007-11-29 Wang Kon-King M System and method for connecting power sources to a power system
CN101150259B (zh) * 2006-09-18 2010-05-12 比亚迪股份有限公司 电动车充电系统
US8018204B2 (en) * 2007-03-26 2011-09-13 The Gillette Company Compact ultra fast battery charger
JP4842885B2 (ja) * 2007-05-23 2011-12-21 トヨタ自動車株式会社 車載機器制御システムおよび車両
US8054048B2 (en) * 2007-10-04 2011-11-08 GM Global Technology Operations LLC Power grid load management for plug-in vehicles
US20100039062A1 (en) * 2008-08-18 2010-02-18 Gong-En Gu Smart charge system for electric vehicles integrated with alternative energy sources and energy storage
CN201395065Y (zh) * 2009-01-05 2010-02-03 严本信 新型双动力电动汽车
US8384358B2 (en) * 2009-05-28 2013-02-26 GM Global Technology Operations LLC Systems and methods for electric vehicle charging and for providing notification of variations from charging expectations
CN102763302A (zh) * 2009-08-11 2012-10-31 威罗门飞行公司 储能和充电装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
None

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2902249A3 (fr) * 2014-01-21 2015-09-09 Delta Electronics, Inc. Appareil de charge avec courant de charge dynamique et son procédé de fonctionnement
US9457672B2 (en) 2014-01-21 2016-10-04 Delta Electronics, Inc. Charging apparatus with dynamical charging power and method of operating the same

Also Published As

Publication number Publication date
BR112014002236A2 (pt) 2017-02-21
CA2844356C (fr) 2022-06-14
SG2014006688A (en) 2014-04-28
WO2013017443A3 (fr) 2013-07-25
CN104093590A (zh) 2014-10-08
MX2014001177A (es) 2014-11-21
FR2978624B1 (fr) 2013-12-20
US20140167697A1 (en) 2014-06-19
ZA201401399B (en) 2014-12-23
FR2978624A1 (fr) 2013-02-01
EP2736757A2 (fr) 2014-06-04
KR20140114330A (ko) 2014-09-26
CA2844356A1 (fr) 2013-02-07
US9676287B2 (en) 2017-06-13

Similar Documents

Publication Publication Date Title
CA2844356C (fr) Installation et procede de charge pour batterie electrique
US10183583B2 (en) Energy generation and storage system with electric vehicle charging capability
USRE46156E1 (en) Hybrid energy storage system, renewable energy system including the storage system, and method of using same
Bhatti et al. Electric vehicle charging using photovoltaic based microgrid for remote islands
KR100993224B1 (ko) 하이브리드 발전 시스템의 에너지 충전 장치
US11689118B2 (en) Converter with power management system for household users to manage power between different loads including their electric vehicle
US20150162784A1 (en) Vehicle-Solar-Grid Integration
KR101268034B1 (ko) 전기자동차의 최적충전 시스템 및 충전방법
EP3676541B1 (fr) Appareil de chauffage intégrant une batterie et un onduleur pour injecter de l&#39;énergie de la batterie vers la source d&#39;alimentation électrique
JP2003079054A (ja) 蓄電池を備えた太陽光発電システム
WO2011145034A2 (fr) Systeme de recuperation d&#39;energie renouvelable
JP2010259303A (ja) 分散発電システム
FR3029326A1 (fr) Procede et systeme pour la gestion d’energie
FR3065332A1 (fr) Dispositif de conversion, procede de commande et vehicule associes
Liang et al. Charging electric cars from solar energy
EP4038716B1 (fr) Chargeur electrique pour equipement de maintenance aeronautique
JP2012191698A (ja) 蓄電池搭載機器充電用の蓄電池システム
EP3123583A1 (fr) Mono-onduleur
Parvathy Battery Charging Systems
FR3132877A1 (fr) Hié r a r c h i s a t i o n d yn a m iq u e d e s c o n s o m m a t io n s é le c t r iq u e s a u s e in d’une station de recharge pour véhicules électriques en charge lente et rapide en fonction de sources d’énergie renouvelable

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12735914

Country of ref document: EP

Kind code of ref document: A2

ENP Entry into the national phase

Ref document number: 2844356

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: 2012735914

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: MX/A/2014/001177

Country of ref document: MX

WWE Wipo information: entry into national phase

Ref document number: 14235760

Country of ref document: US

ENP Entry into the national phase

Ref document number: 20147004950

Country of ref document: KR

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2014105688

Country of ref document: RU

Kind code of ref document: A

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112014002236

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 112014002236

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20140129