WO2013016836A1 - Preparación de gel de fibrina útil como sistema de implante. - Google Patents

Preparación de gel de fibrina útil como sistema de implante. Download PDF

Info

Publication number
WO2013016836A1
WO2013016836A1 PCT/CL2012/000039 CL2012000039W WO2013016836A1 WO 2013016836 A1 WO2013016836 A1 WO 2013016836A1 CL 2012000039 W CL2012000039 W CL 2012000039W WO 2013016836 A1 WO2013016836 A1 WO 2013016836A1
Authority
WO
WIPO (PCT)
Prior art keywords
blood
cacl
solution
cells
plasma
Prior art date
Application number
PCT/CL2012/000039
Other languages
English (en)
French (fr)
Inventor
Manuel Eduardo Young Anze
Caroline Ruth Weinstein Oppenheimer
Donald Irving BROWN GONZÁLEZ
Miguel Ángel FUENTES CHANDÍA
Ricardo Andrés CERIANI FERNÁNDEZ
Fernando Antonio ALBORNOZ MÁRQUEZ
Cristian Andrés ACEVEDO GUTIÉRREZ
Original Assignee
Manuel Eduardo Young Anze
Caroline Ruth Weinstein Oppenheimer
Brown Gonzalez Donald Irving
Fuentes Chandia Miguel Angel
Ceriani Fernandez Ricardo Andres
Albornoz Marquez Fernando Antonio
Acevedo Gutierrez Cristian Andres
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Manuel Eduardo Young Anze, Caroline Ruth Weinstein Oppenheimer, Brown Gonzalez Donald Irving, Fuentes Chandia Miguel Angel, Ceriani Fernandez Ricardo Andres, Albornoz Marquez Fernando Antonio, Acevedo Gutierrez Cristian Andres filed Critical Manuel Eduardo Young Anze
Priority to BR112014002628A priority Critical patent/BR112014002628A2/pt
Priority to EP12819721.7A priority patent/EP2740443A4/en
Priority to US14/235,909 priority patent/US20140242181A1/en
Priority to JP2014523156A priority patent/JP2014524269A/ja
Publication of WO2013016836A1 publication Critical patent/WO2013016836A1/es
Priority to IL230762A priority patent/IL230762A0/en

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K35/00Medicinal preparations containing materials or reaction products thereof with undetermined constitution
    • A61K35/12Materials from mammals; Compositions comprising non-specified tissues or cells; Compositions comprising non-embryonic stem cells; Genetically modified cells
    • A61K35/14Blood; Artificial blood
    • A61K35/16Blood plasma; Blood serum
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/10Hair or skin implants
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses
    • A61L27/14Macromolecular materials
    • A61L27/22Polypeptides or derivatives thereof, e.g. degradation products
    • A61L27/225Fibrin; Fibrinogen
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses
    • A61L27/36Materials for grafts or prostheses or for coating grafts or prostheses containing ingredients of undetermined constitution or reaction products thereof, e.g. transplant tissue, natural bone, extracellular matrix
    • A61L27/3604Materials for grafts or prostheses or for coating grafts or prostheses containing ingredients of undetermined constitution or reaction products thereof, e.g. transplant tissue, natural bone, extracellular matrix characterised by the human or animal origin of the biological material, e.g. hair, fascia, fish scales, silk, shellac, pericardium, pleura, renal tissue, amniotic membrane, parenchymal tissue, fetal tissue, muscle tissue, fat tissue, enamel
    • A61L27/3616Blood, e.g. platelet-rich plasma
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses
    • A61L27/36Materials for grafts or prostheses or for coating grafts or prostheses containing ingredients of undetermined constitution or reaction products thereof, e.g. transplant tissue, natural bone, extracellular matrix
    • A61L27/3683Materials for grafts or prostheses or for coating grafts or prostheses containing ingredients of undetermined constitution or reaction products thereof, e.g. transplant tissue, natural bone, extracellular matrix subjected to a specific treatment prior to implantation, e.g. decellularising, demineralising, grinding, cellular disruption/non-collagenous protein removal, anti-calcification, crosslinking, supercritical fluid extraction, enzyme treatment
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses
    • A61L27/36Materials for grafts or prostheses or for coating grafts or prostheses containing ingredients of undetermined constitution or reaction products thereof, e.g. transplant tissue, natural bone, extracellular matrix
    • A61L27/38Materials for grafts or prostheses or for coating grafts or prostheses containing ingredients of undetermined constitution or reaction products thereof, e.g. transplant tissue, natural bone, extracellular matrix containing added animal cells
    • A61L27/3804Materials for grafts or prostheses or for coating grafts or prostheses containing ingredients of undetermined constitution or reaction products thereof, e.g. transplant tissue, natural bone, extracellular matrix containing added animal cells characterised by specific cells or progenitors thereof, e.g. fibroblasts, connective tissue cells, kidney cells
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses
    • A61L27/50Materials characterised by their function or physical properties, e.g. injectable or lubricating compositions, shape-memory materials, surface modified materials
    • A61L27/52Hydrogels or hydrocolloids
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses
    • A61L27/50Materials characterised by their function or physical properties, e.g. injectable or lubricating compositions, shape-memory materials, surface modified materials
    • A61L27/60Materials for use in artificial skin
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/10Hair or skin implants
    • A61F2/105Skin implants, e.g. artificial skin
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C2270/00Control; Monitoring or safety arrangements
    • F04C2270/04Force
    • F04C2270/042Force radial
    • F04C2270/0421Controlled or regulated

Definitions

  • the skin is an organ consisting of three cell layers: epidermis, dermis and hypodermis, and the annexes: hair, nails, sebaceous and sweat glands (Castillo, 2001), as shown in Figure 1.
  • the epidermis is the most superficial skin and constitutes the first barrier of protection of the body against foreign substances. It consists of two groups of cells: keratinocytes or non-dendritic cells, and dendritic cells (Merkel, Langerhans cells and undetermined cells) (Navarrete, 2003).
  • the epidermis is subdivided into 5 strata:
  • Basal or germinative stratum as the name implies, in it we find germ cells necessary for the regeneration of the layers of the epidermis. It is separated from the dermis by a thin sheet called the basement membrane.
  • Lucid layer represents the transition between the granular layer and the stratum corneum, and can be clearly seen in the thick epidermis (palms and soles of the feet).
  • Stratum corneum because the cells continue to accumulate keratohyaline granules (keratinization), the lysosomal membrane rupture is caused, and with it, the release of lysosomal enzymes, which cause cell death. Dead cells and senescent cells that contain mature keratin, called corneocytes, form the stratum corneum. Dead cells gradually begin to separate from the rest, and subsequently are lost, a process known as desquamation (Haake et al., 2001). Between the dermis and the epidermis there is an area called dermoepidermal junction, which has 4 main areas: plasma membrane of the basal cell, lucid lamina, dense lamina and fibrous zone (Hib, 2001).
  • the dermis is located under the epidermis, and is constituted by connective tissue, a fundamental substance, which together with the glycosaminoglycans and fibrillar proteins form the extracellular matrix, and cells, mainly fibroblasts, which are responsible for producing collagen and elastin, which give
  • the dermis is subdivided into two zones:
  • Papillary dermis it contains vascular networks that fulfill two important functions: the first is to nourish the avascular epidermis, and the second is thermoregular.
  • the vascular network interdigitates in areas called dermal papillae.
  • dermal papillae In the papillary dermis, we also find sensory nerve endings, such as Meissner's corpuscle.
  • Reticular dermis it consists of a dense and irregular connective tissue. It is important because it gives the skin firmness and elasticity. In addition, it supports the skin annexes, such as glands and hair follicles (Haake et al., 2001). Hypodermis
  • adipose panicle also called subcutaneous cell tissue. It consists of fat cells, which are known as adipocytes, which are arranged in lobes separated by connective tissue called septa or interlobular septa (Navarrete, 2003).
  • adipocytes fat cells
  • septa or interlobular septa connective tissue
  • burns constitute one of the pathologies that most frequently occupy emergency consultations, being the variety of trauma, which leaves the patient, more commonly, serious and permanent sequelae (Aguayo, 1999).
  • burns are a serious public health problem. There are more than 300 thousand deaths every year from fires alone. The death from burns caused by fires is among the 15 causes of death in children and young adults between 5 and 29 years. In addition, millions of people become disabled or suffer disfigurement for life (WHO, 2008). Schematically, it can be said that in Chile, 50,000 people a year suffer some burn, 5,000 of them are hospitalized and 500 die.
  • stage 1 being the one in which the ulcer is not really formed, the intact skin is simply flushed
  • stage 6 is the one where there is destruction of the outer layers of the skin
  • venous ulcers which represent between 80-90% of the total vascular ulcers. They are more frequent in women, with a male-female ratio of 1-3.
  • Chronicity and recurrence are its most relevant clinical characteristics, half remain open over nine months, 20% are up to two years, and 10%> until five, reappearing, within the following twelve months upon healing, one third of those initially healed (CIGNA Health Corporation, 2008).
  • Venous disease is a precursor to venous hypertension (venous hypertension ulcers, constitute the highest percentage of the total vascular, 75% to 90%), and a risk factor for the subsequent development of ulcers in the lower extremities .
  • Venous ulcers of the lower extremities become a frequent clinical problem, affecting between 1 and 2% of the western population (Castillo et al., 2004). Decreased circulation and neuropathies are the main cause of foot ulcers in diabetics, and can lead to limb amputation (CIGNA Health Corporation, 2008). In its pathogenesis, the initial alterations occur in venous macrocirculation, mainly due to reflux and occasionally due to obstruction. These alterations cause venous hypertension, which secondarily affects the microcirculation, causing pericapillary fibrin deposits and activating cytokines and proteases that promote inflammation. This determines the appearance of lipodermatoesclerosis, consisting of a fibrous tissue, with poor cellularity and irrigation and the subsequent ulceration (Herouy et al., 2000).
  • Wound healing is a dynamic biological process that involves complex interactions of cellular, molecular and biochemical events (Lanza, 2000). In this process, interactions between epidermis and dermis cells, extracellular matrix, controlled angiogenesis, and plasma-derived proteins occur, all coordinated by a series of cytokines and growth factors (Harding et al., 2002) . This process has traditionally been divided into three distinct phases: inflammation, proliferation and remodeling (Schilling, 1976).
  • the first step is to stop the bleeding. There is contraction of damaged blood vessels, and the endothelium and platelets near the area activate the intrinsic pathway of the coagulation cascade. He Clot formed, is composed of collagen, platelets, thrombin, and fibronectin (Broughton et al., 2006). The cells trapped in the clot, mostly platelets, trigger the inflammatory response by the release of vasodilators and chemotactic agents, and the activation of the complementary cascade (Clark, 1996). The fibrin clot also serves as a prelude to invasive cells such as neutral edges, monocytes, fibroblasts and endothelial cells (Kurkinen et al., 1980).
  • neutrophils predominate. These are attracted to the wound area by chemotactic agents such as: interleukin 1 (IL-1), tumor necrosis factor (TNF- ⁇ ), transforming growth factor (TGF- ⁇ ), PF4 and bacterial products (Broughton and col., 2006; Tamariz et al, 2002). Neutrophils remove bacteria and cellular debris from the wound, by releasing proteolytic enzymes that digest bacteria and dead tissue (Broughton et al., 2006).
  • IL-1 interleukin 1
  • TGF- ⁇ tumor necrosis factor
  • TGF- ⁇ transforming growth factor
  • PF4 transforming growth factor
  • MPP matrix metalloproteinases
  • VEGF vascular endothelial growth factor
  • FGF fibroblast growth factor
  • TNF- ⁇ vascular endothelial growth factor
  • EGF epidemic growth factor
  • PDGF platelet-derived growth factor
  • IL-1 and TNF- ⁇ synthesize nitric oxide (NO), by activating nitric oxide synthase inducible by IL-1 and TNF- ⁇
  • Macrophages play a fundamental role, and mark the transition between the inflammatory and proliferative phase (Harding et al., 2002).
  • angiogenesis and the formation of a temporal matrix occur, and this stage runs from day 4 to 14.
  • the predominant cells in this phase are fibroblasts. and endothelial cells (Broughton et al., 2006).
  • Epithelialization is stimulated, in principle, by inflammatory cytokines (IL-1 and TNF- ⁇ ).
  • Fibroblasts synthesize and secrete keratinocyte growth factor (KGF-1 and KGF-2) and IL-6, which stimulate neighboring keratinocytes to migrate to the damaged area, proliferate, and differentiate in the epidermis (Smola et al., 1993; Broughton et al., 2006).
  • Fibroblasts migrate to the wound site from nearby tissues, and become active (PDGF and EGF are the main signals for fibroblasts), thus begin to synthesize collagen, and proliferate to eventually transform into myofibroblasts, which cause wound contraction (Sage, 2001).
  • fibroblasts (stimulated by PDGF) begin to synthesize, in addition to collagen, fibronectin and proteoglycans such as hyaluronic acid (Harding et al., 2002; Lynch et al., 1989).
  • TGF- ⁇ also induces fibroblasts to synthesize type I collagen, also decreasing the production of matrix metalloproteinases (MMP) and increasing the production of cell adhesion proteins (Goldman, 2004).
  • MMP matrix metalloproteinases
  • Keratinocytes secrete VEGF (also secreted by macrophages, fibroblasts and platelets), which attracts endothelial cells located in the surroundings, thus beginning the formation of new capillary vessels. Endothelial cells also produce nitric oxide, which protects new tissue from the toxic effects of ischemia and reperfusion damage, causing vasodilation of the endothelium (Broughton et al., 2006). Maturation and remodeling phase.
  • the maturation and remodeling phase is perhaps the most important, and it goes from day 8 to the year.
  • the final or remodeling stage is characterized by formation of the extracellular matrix, which is initially composed of fibrin and fibronectin. Then, the fibroblasts begin to synthesize glycosaminoglycans, proteoglycans, and other proteins (Broughton et al., 2006).
  • This temporal matrix is subsequently replaced by a more rigid and organized matrix composed mainly of collagen (in granulation tissue type III collagen reaches 30%, while in the mature scar it is below 10%).
  • the proteinases present in the remodeling of the matrix are regulated by changes in the concentrations of TGF- ⁇ , PDGF, IL-1 and EGF.
  • MMP activity is also suppressed by MMP inhibitors produced by fibroblasts present in the tissue (Henry and Garner, 2003). Collagen synthesis will continue for at least 4 to 5 weeks after the injury occurs (Diegelmann, 2003). The collagen in the scar will never be as organized and structured (even after a year), as the collagen found in healthy skin. The resistance and firmness of the skin will not be 100% normal again (Broughton et al., 2006). After wound closure, remodeling of the resulting scar can be months or years, and results in a reduction in the amount of cells and a decrease in blood flow in the scar tissue (Harding et al., 2002) .
  • ECMs extracellular matrix
  • regenerative medicine and tissue engineering as a design of a biophysical and biochemical medium that directs cellular functions and behavior. This can facilitate the restoration of structures or functions of dysfunctional or damaged tissue.
  • Biomaterials thus provide a provisional support that interacts biomolecularly with cells, spatially and temporarily guiding the complex multicellular processes of tissue formation and regeneration (Lutolf and Hubbell, 2005; Bacákova et al., 2004). Therefore, the purpose of these biomaterials is to mimic, to some extent, the processes that occur in vivo.
  • the ideal synthetic or dermal biomaterial substitute must have or meet the following characteristics: absence of antigenicity, tissue compatibility, absence of local or systemic toxicity, impermeability against exogenous microorganisms, rapid and sustained adherence to the wound surface, Elasticity, to allow tissue movement, resistance, should be translucent to allow direct observation of healing, have a low cost, which causes minimal discomfort in the patient, which reduces healing time, among others. (Ehrenreich and Ruszczak, 2006; Smith et al., 1988).
  • cells without matrix such as autologous cell transplantation or stem cell therapy
  • biomaterials derived from natural ECMs can be used as supports for transplanted cells, which will be subsequently implanted on injured tissue, and also to induce regeneration and remodeling in vivo.
  • collagen and fibrin as matrices are clinically established and approved by the FDA (Food and Drug Administration), in the treatment of burns, for wound healing and tissue repair, respectively (Lutolf and Hubbell, 2005; Van Dorp et al., 1998).
  • Fibrin-based products contain two components isolated from human plasma: fibrinogen and thrombin. The combination of these two components results in the formation of a fibrin clot, which is used to achieve hemostasis, and wound closure in surgical processes (Geer et al., 2002).
  • the fibrin clot was analyzed as a means of transporting human dermal fibroblasts, and also the proliferation and migration of these in different clot formulations was evaluated, varying the concentrations of fibrinogen and thrombin, concluding that the variation in the concentrations of both components affected the behavior of fibroblasts in three-dimensional fibrin clots.
  • the first dermal substitute available on the market used an analogous collagen based on bovine collagen and chondroitin 6-sulfate with an external silastic shell (Integra®) (Burke et al., 1981).
  • Dermagraft® is a modification of the dermal substitute compound previously, where instead of bovine collagen, fibroblasts obtained from foreskin of newborns, are grown on a nylon mesh and covered
  • silicone outer layer (Dermagraft Transitional Covering). It is designed to cover the skin's dermal layer and to stimulate an improvement in the healing process (Mansbridge et al., 1998).
  • dermal substitutes which incorporate both epidermal and dermal components (mixed or compound substitutes).
  • the first composite substitute was developed by Ortec International Inc., and integrated fibroblasts and keratinocytes from freshly born, grown on a porous matrix crosslinked with bovine collagen type 1.
  • the use of this substitute is limited, since the FDA has approved it only for two indications: the treatment of hand reconstruction in patients suffering from bulbous epidermolysis recessive dystrophic and as an aid in the healing of autograft donor areas in burned patients (Pham et al., 2002; Eisenbud et al., 2004).
  • Gra ⁇ skin (Apligraj®) is also a mixed substitute, but with multiple applications. It was developed for full thickness wound coverage. It is a mixed allogeneic graft consisting of human epidermal cells, human fibroblasts and bovine collagen type 1, which delivers 4 components: epidermal keratinocytes, a well differentiated stratum corneum, extracellular matrix and viable allogeneic dermal fibroblasts (Pham et al., 2002; Veves et al., 2001).
  • Biobrane which is a biosynthetic product, consisting of an ultra-thin and semi-permeable silicone film, with nylon fibers partially embedded in the film, chemically bonded to porcine collagen origin (UDL Labs, 2008). It is used mainly in patients with partial thickness burns and relatively fresh wounds ( ⁇ 24-48 hours) (Gerding et al., 1990).
  • Another bioengineering product which was approved by the FDA in 1997, but which has a high cost, is TransCyte®, composed of human fibroblasts of newborns, grown under aseptic conditions on the Biobrane nylon mesh component.
  • fibronectin a component of the extracellular matrix
  • decorin a component of the extracellular matrix
  • matrix-linked growth factors Ehrenreich and Ruszczak, 2006; Noordenbos et al., 1999.
  • the first is a complex, biodegradable and non-toxic carbohydrate, derived from chitin, which has been shown to have mucoadhesive activity, which makes it an excellent hemostatic agent (Wedmore et al., 2006).
  • chitin derived from chitin
  • it has other biological properties (antibacterial and antifungal) and affects macrophage function, which helps rapid healing.
  • it has the capacity to stimulate cell proliferation and histoarchitectonic tissue organization (Paul and Sharma, 2004; Fukasawa et al., 1992).
  • Hyaluronic Acid is a glycosaminoglycan found in normal skin in the intercellular spaces of the epidermis, except in the granular layer and stratum corneum. In addition to being a matrix in which the cells are embedded, it was discovered that it has numerous functions in the skin: it can retain water in the tissues, due to this changes the volume and dermal compressibility; it can also improve cell proliferation and differentiation and repair of damaged tissue (Juhlin, 1997; Laurent and Fraser, 1992).
  • Integrated Implant System consisting of a polymeric support that integrates in its matrix autologous keratinocytes and fibroblasts, the which are proportionally combined on fibrin that polymerizes in situ, on a matrix composed of gelatin-chitosan-hyaluronic acid.
  • the developed system is called integrated, because the cells are not located on the surface of the support but embedded in it (Young et al., 2006). This system has demonstrated excellent adhesion to the area of the lesion and, on the other hand, no toxicity reactions to the system components have been observed.
  • the technical problem posed in the present application consists in providing a product and preferably autologous system that allows immobilizing, proliferating and vehicularizing cells within a matrix for tissue regeneration purposes.
  • the present invention is directed to generating a fibrin gel for cell proliferation and vehiculization from the patient's own blood or compatible blood.
  • Blood at a rate of 200 uL per cm of implant to be prepared is taken using sodium citrate as an anticoagulant at a rate of 0.09g per mL of blood.
  • the citrated plasma is separated by centrifugation. Then the cells are resuspended in this plasma.
  • a solution of CaCl 2 is added to form the gel either as an isolated clot or inside a porous matrix.
  • the product thus developed is of much lower cost than commercial fibrin glue and because it is an autologous product eliminates the risk of infections and immunological rejection, even when it can be difficult to obtain large volumes of blood from a compromised patient, this is You can overcome using compatible blood.
  • This system has been used for the treatment of skin lesions with positive results.
  • the application will be for cell growth for implant purposes in skin, cartilage, gingival and bone lesions, among others. It can provide that any application in the field
  • Fibrin glue contains both components and some of the blood, but they are not equivalent to plasma because they are purified. They also incorporate additives, such as protease inhibitors that are not present in the plasma.
  • the product generated in the present invention has as main advantages that it has a much lower cost than the commercial "fibrin glue" and that being an autologous product eliminates the risk of infections and immunological rejection.
  • it has a disadvantage that it can be difficult to obtain large volumes of blood from a compromised patient, which is solved using compatible blood.
  • An object of the present invention corresponds to the application for cell growth for implant purposes in skin, cartilage, gingival, bone lesions, among others.
  • Gel is acellular, unlike the present invention, and contains platelets that come from the patient's blood.
  • the cells incorporating the present invention are preferably fibroblasts and keratinocytes previously obtained from a biopsy, cultured in the laboratory and vehiculized in a fibrin gel.
  • Example 1 Obtaining and culturing human fibroblasts
  • Human fibroblasts are obtained from foreskin surgeries due to phimosis in children under 6 years. The biopsy is washed in a sterile Petri dish with 5 ml of Phosphate Buffer solution
  • PBS 0.1 M saline pH 7.4
  • GIC penicillin / streptomycin antibiotics
  • amphotericin B 250 ⁇ g / mL
  • the sample is incubated in 0.5% trypsin-5.3 mM EDTA (GIBCO®), for 30 minutes at 37 ° C in Thermo Forma® incubator. Subsequently, by using sterile tweezers, the dermis and epidermis are mechanically separated. The dermis is treated for 20 minutes with collagenase type
  • the human fibroblasts obtained after enzymatic digestion were resuspended in Dulbecco's Modified Eagle's medium (DMEM, GIBCO®) medium supplemented with 10% fetal bovine serum (INVITROGEN®), 50% Ham's F12 medium (GIBCO®) and 10 ⁇ JUTDL Biomyc 1 (Biological Industries®) in T-25 culture bottles (Falcon®), which were incubated in a ThermoForma incubator, in a humidified atmosphere with 5% C0 2 and at a temperature of 37 ° C.
  • DMEM Dulbecco's Modified Eagle's medium
  • IGIBCO® 50% Ham's F12 medium
  • Falcon® 10 ⁇ JUTDL Biomyc 1
  • Example 2 Obtaining and evaluating fibrin clots of human origin
  • the plasma is separated from whole blood collected in tubes with 3.2% sodium citrate, centrifuged at 453 x g for 5 minutes.
  • Coagulation test by visual observation Initial coagulation tests are performed in microcentrifuge tubes, testing different concentrations of calcium, called formulations (F). For this, a constant volume of citrated plasma of ⁇ with different volumes of the dilutions of CaCl 2 is used , to obtain different final concentrations thereof, generating 30 formulations, as illustrated in Table 2: Table 2. Clot formulations according to CaCl 2 concentrations.
  • each clot is removed with tweezers from the microcentrifuge tube to assess its mechanical strength, and thus choose the 6 best formulations, based on the existence of a clot and that have greater mechanical strength.
  • the coagulometer BBL Fibrosystem
  • This test is performed only on the 6 pre-selected formulations in the preliminary stage.
  • the clot stability is determined in 6 clots of the formulations chosen with culture medium (DMEM, GIBCO®), supplemented with 10% fetal bovine serum (INVITROGEN®), 50% Ham's F12 medium (GIBCO®). Subsequently, they are incubated at 37 ° C. The degree of disintegration is assessed visually on day 3 ( Figure 3).
  • Preparation of the base polymer For the base polymer, the following solutions are prepared: 1% w / v gelatin, 2% w / v chitosan in 1% v / v acetic acid, and 0.01% w / v hyaluronic acid and follow the following protocol: The gelatin solution is mixed with the chitosan and the hyaluronic acid solution, and homogenized for 30 minutes with a magnetic stirrer at 50 ° C.
  • the mixture is poured into Petri dishes that were refrigerated at 4 ° C until gel formation.
  • the gel is frozen slowly at -20 ° C for 8 hours.
  • the polymer is brought to -80 ° C for 8 hours.
  • the polymer is slowly immersed in liquid nitrogen for 3 minutes.
  • the lyophilisate is immersed in 50 mM MES (2-Morpholinoethane sulfonic acid), for 30 minutes.
  • crosslinking solution composed of 50 mM MES, 30 mM EDC (l-ethyl- [3,3-dimethylaminopropyl] carbodiimide) and 8 mM NHS (N-hydroxysuccinimide) is added. It is allowed to react for 2 hours.
  • Example 4 Study of cell growth and proliferation for selected surfaces.
  • the MTT technique [(3-4,5-dimethylthiazolyl-2) -2,5-diphenyltetrazolium bromide] is used, which allows quantification of viable cells. This technique is based on the reduction of MTT, only for those cells
  • Metabolically active in a compound called formazan, a soluble blue-purple crystal, which can be quantified by spectrophotometry at 540 nm.
  • MTT test Obtaining fibroblasts for this test is carried out as follows:
  • T-75 culture flasks (Falcon®) with fibroblasts are washed with PBS and then trypsinized.
  • the cell suspension is deposited in a 50 ml disposable centrifuge tube, and centrifuged at 453xg for 5 minutes. Then, the precipitate obtained is resuspended to verify the number of viable cells.
  • the suspension is centrifuged again, and a part of the cells are resuspended in culture medium (DMEM, GIBCO®), supplemented with 10% fetal bovine serum (INVITROGEN®), 50% medium Ham F12 (GIBCO®) and a mixture of antibiotics penicillin / streptomycin (100 U / ml / 100 ⁇ g / ml), INVITROGEN®), and the other in plasma.
  • This test is performed on flat-bottom 96-well plates (Falcon®), where fibroblast proliferation is evaluated, using different surfaces for cultivation. The test is carried out from day 0 to day 3, that is, at 0, 24, 48 and 72 hours, and each condition is evaluated in triplicate with its respective control for each day. In addition, for the test, only the two best formulations previously selected are considered.
  • the MTT test is detailed below, to examine the proliferation of fibroblasts on different surfaces:
  • Monolayer human fibroblasts resuspended in medium (5x10 6 cells per well), are grown directly to the well with 150 ⁇ of culture medium.
  • Polymer Matrix the polymer matrix is placed in each well and the resuspended human fibroblasts are deposited in medium (5x10 6 cells per well). Culture medium is added until 150 ⁇ is completed.
  • Clot F17 30 ⁇ of plasma are deposited with human fibroblasts (5xl0 6 cells per well), and to this, 45 ⁇ of 30mM CaCl 2 is added. Incubate at 37 ° C until clot formation and then culture medium is added until 150 ⁇ is completed.
  • Clot F27 30 ⁇ of plasma are deposited with human fibroblasts (5xl0 6 cells per well), and to this, 22.5 ⁇ of 50mM CaCl 2 is added . Incubate at 37 ° C until clot formation, and then culture medium is added until 150 ⁇ is completed.
  • SU with FI 7 30 ⁇ , plasma with human fibroblasts (5xl0 6 cells per well), and 45 ⁇ of 30mM CaCl 2 are deposited on polymer matrix. Incubate at 37 ° C until clot formation, and then culture medium is added until 150 ⁇ is completed.
  • SU with F27 30 ⁇ , plasma with human fibroblasts (5xl0 6 cells per well), and 22.5 ⁇ of 50mM CaCl 2 were deposited on polymer matrix. Incubate at 37 ° C until clot formation, and then culture medium is added until 150 ⁇ is completed.
  • MTT Procedure Once the experiment with the different cell culture conditions is assembled, the MTT test is performed for day 0 (0 hours) to establish cell viability values at the time of the start of the experiment. This procedure is repeated later at 24, 48 and 72 hours.
  • the procedure consists of:
  • each solution is extracted from the wells and transferred to corresponding microcentrifuge tubes for each sample.
  • the tubes are kept at -20 ° C until photometric quantification. To do this, the microcentrifuge tubes are defrosted with the daily samples.
  • the tubes Once the tubes have been thawed, they are vigorously agitated by vortexing. Then ultrasound is applied for 30 minutes.
  • the tubes are homogenized again by means of vertex.
  • Tumor necrosis factor alpha suppresses the induction of connective tissue growth factor by transforming growth factor-beta in normal and scleroderma fibroblasts. J. Biol. Chem. 2000.; 275 (20): 15220-15225.
  • Clark R. 1996 Wound repair: overview and general considerations. In Clark, R (ed). The molecular and cellular biology of wound repair. Plenum, New York, pp 3 - 50.
  • Lutolf M and Hubbell J Synthetic biomaterials as instructive extracellular microenvironments for morphogenesis in Tissue Engineering. Nat Biotechnol. 2005; 23 (1): 47-55.
  • FIG 1 Skin structure. (1) Hair, (2) sweat glands, (3) blade
  • FIG. 1 Histology and Immunohistochemistry of microencapsulated cells.
  • A a cell in a homogeneous zone of fibrin stained with methylene blue (microencapsulation day); B, metaphase cell located near fibrin stained with erythrosine (48 hours after microencapsulation); C, three cells embedded in the fibrin gel (24 hours after microencapsulation); D, a pair of cells located in the pores of the fibrin matrix (48 hours after microencapsulation); E, group of cells located within the fibrin gel (96 hours after microencapsulation); F, enlargement of the cluster of cells of Figure E (arrows) where a metaphase cell is observed; G-I, Immunohistochemistry of a cluster of cells growing in a fibrin gel; G, control with Arteta staining; H, immunolocation for cytokeratin and I, immunolocation for vimentin (Acevedo et al., 2008).
  • Figure 3 Stability study of selected clots (F17, F22, F23, F27). Panel A: appearance at start time. Panel B: appearance at three days post-incubation at 37 ° C.
  • Figure 4 Growth curves for human fibroblasts, grown on the mentioned surfaces. Statistically significant differences in growth are indicated with respect to day 0 (*) (ANOVA, p ⁇ 0.05).

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • Engineering & Computer Science (AREA)
  • Biomedical Technology (AREA)
  • Veterinary Medicine (AREA)
  • Public Health (AREA)
  • Transplantation (AREA)
  • Medicinal Chemistry (AREA)
  • Epidemiology (AREA)
  • Dermatology (AREA)
  • Oral & Maxillofacial Surgery (AREA)
  • Hematology (AREA)
  • Cell Biology (AREA)
  • Zoology (AREA)
  • Botany (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Urology & Nephrology (AREA)
  • Molecular Biology (AREA)
  • Biotechnology (AREA)
  • Developmental Biology & Embryology (AREA)
  • Immunology (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Virology (AREA)
  • Dispersion Chemistry (AREA)
  • Cardiology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Vascular Medicine (AREA)
  • Materials For Medical Uses (AREA)
  • Medicines Containing Material From Animals Or Micro-Organisms (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)

Abstract

La presente invención se dirige a generar un gel de fibrina para la proliferación y vehiculización celular a partir de sangre del paciente o sangre compatible. El procedimiento consiste en tomar sangre del paciente usando citrato sódico como anticoagulante, separar el plasma citratado mediante centrifugación, y resuspender en él, las células a vehiculizar. A la suspensión obtenida se añade CaCl2 para formar el gel (ya sea como coágulo aislado o al interior de una matriz porosa de quitosano/gelatina/ácido hialurónico), y éste se cultiva en un incubador con fines de crecimiento celular. La aplicación del gel será para el crecimiento celular con fines de implante en lesiones cutáneas, de cartílago, gingivales y óseas entre otras, y en ingeniería de tejidos.

Description

PREPARACION DE GEL DE FIBRINA UTIL COMO SISTEMA DE IMPLANTE. MEMORIA DESCRIPTIVA La piel
La piel es un órgano constituido por tres capas celulares: epidermis, dermis e hipodermis, y por los anexos: pelo, uñas, glándulas sebáceas y sudoríparas (Castillo, 2001), como se muestra en la Figura 1. La epidermis es la capa más superficial de la piel y constituye la primera barrera de protección del cuerpo contra sustancias extrañas. Se encuentra constituida por dos grupos de células: queratinocitos o células no dendríticas, y células dendríticas (células de Merkel, de Langerhans y células indeterminadas) (Navarrete, 2003). La epidermis a su vez, está subdividida en 5 estratos:
- Estrato basal o germinativo: como su nombre lo indica, en éste encontramos células germinales necesarias para la regeneración de las capas de la epidermis. Está separada de la dermis por una delgada lámina llamada membrana basal.
Estrato espinoso: Las células comienzan a acumular una gran cantidad de desmosomas (o puentes celulares) en su superficie externa, lo que da una característica espinosa o de púa.
- Estrato granuloso: las células de este estrato acumulan granulos de queratohialina. Estos gránulos contienen lípidos, que junto a los desmosomas, ayudan a formar una barrera impermeable, que previenen en el cuerpo la pérdida de fluidos. Estrato lúcido: representa la transición entre el estrato granuloso y el estrato córneo, y se puede apreciar claramente en la epidermis gruesa (palmas de las manos y plantas de los pies).
Estrato córneo: debido a que las células continúan acumulando granulos de queratohialina (queratinización), se provoca la ruptura de la membrana lisosomal, y con ello, la liberación de enzimas lisosomales, que causan la muerte celular. Las células muertas y las células senescentes que contienen queratina madura, llamados corneocitos, forman el estrato córneo. Las células muertas gradualmente se comienzan a separar del resto, y posteriormente se pierden, proceso conocido como descamación (Haake y col., 2001). Entre la dermis y la epidermis existe una zona llamada unión dermoepidérmica, que posee 4 zonas principales: membrana plasmática de la célula basal, lámina lúcida, lámina densa y zona fibrosa (Hib, 2001).
Dermis
La dermis está situada debajo de la epidermis, y está constituida por tejido conectivo, sustancia fundamental, que junto con los glicosaminoglicanos y proteínas fibrilares forman la matriz extracelular, y células, principalmente fibroblastos, que son los responsables de producir colágeno y elastina, que dan
soporte y elasticidad a la piel (Green, 1991). También posee células del sistema inmune que ayudan en la defensa contra agentes patógenos. La dermis se subdivide en dos zonas:
Dermis papilar: contiene redes vasculares que cumplen dos importantes funciones: la primera es nutrir a la epidermis avascular, y la segunda, es termorregular. La red vascular se interdigita en áreas llamadas papilas dérmicas. En la dermis papilar, también encontramos terminaciones nerviosas sensoriales, como por ejemplo, el corpúsculo de Meissner.
Dermis reticular: consiste en un tejido conectivo denso e irregular. Es importante porque le confiere a la piel firmeza y elasticidad. Además, sirve de soporte a los anexos cutáneos, como glándulas y folículos pilosos (Haake y col., 2001). Hipodermis
Llamada también panículo adiposo o tejido celular subcutáneo. Está constituido por células grasas, que se conocen con el nombre de adipocitos, los cuales se disponen en lóbulos separados por tejido conectivo llamados septos o tabiques interlobulillares (Navarrete, 2003). En la hipodermis se encuentran: la red vascular profunda, porciones inferiores de algunos folículos pilosos, acinos de glándulas ecrinas y apocrinas, corpúsculos sensoriales de Vatter-Puccini, sensibles a cambios de presión y corpúsculos de Ruffíni, sensibles al calor.
Lesiones cutáneas
Dentro de las lesiones que pueden afectar a este órgano, las quemaduras constituyen una de las patologías que con mayor frecuencia ocupan las consultas de urgencia, siendo la variedad de trauma, la que deja en el paciente, en forma más habitual, graves y permanentes secuelas (Aguayo, 1999). Mundialmente, las quemaduras son un serio problema de salud pública. Hay más de 300 mil muertes cada año sólo por incendios. La muerte por quemaduras producto de incendios, está entre las 15 causas de muerte en niños y adultos jóvenes de entre 5 y 29 años. Además, millones de personas quedan con discapacidad o sufren desfiguramiento de por vida (WHO, 2008). De manera esquemática, se puede decir que en Chile, 50.000 personas al año sufren alguna quemadura, 5.000 de ellas se hospitalizan y 500 fallecen. De este total, dos tercios son niños, el grupo de más alto riesgo, junto con los mayores de sesenta años de edad (Castillo, 2003). La principal característica de las lesiones por quemaduras, es la pérdida de la cubierta cutánea, ya sea en forma parcial o total. En el caso de las quemaduras severas, hay pérdida de electrolitos y fluidos, e infección de la piel que puede llegar a desencadenar una infección sistémica (CIGNA Health Corporation, 2008).
Las quemaduras, según el daño causado al tejido, eran clasificadas tradicionalmente en:
- grado 1 o eritematosas, donde la lesión es muy superficial y se regenera en el lapso de una semana sin dejar cicatriz (esto es a nivel de epidermis) grado 2, cuando presentan flictenas (ampollas), donde la lesión abarca epidermis y la capa superficial de la dermis (papilar), y se regenera en un lapso de 8 a 14 días sin dejar cicatriz y,
quemaduras de tercer grado, donde la lesión ocupa el espesor total de la piel, esto es, epidermis, dermis e hipodermis, causando carbonización o un color blanco translúcido en la piel, y no se pueden regenerar por no existir elementos cutáneos para ello (Cienfuegos y col., 2003; Cuenca y Alvarez, 2003).
Sin embargo, un esquema más reciente ha sido descrito. Las lesiones que afectan sólo epidermis son llamadas superficiales. Las quemaduras, que también involucran dermis, son clasificadas como quemaduras de espesor parcial, y estas pueden ser superficiales o profundas (las primeras afectan la dermis papilar y las segundas, tanto dermis papilar como reticular). Las quemaduras que se extienden a través de todas las capas de la dermis y a través de tejido subcutáneo, son llamadas quemaduras de espesor total (Ehrenreich y Ruszczak, 2006). Las úlceras de piel representan otro tipo de lesión frecuente y de difícil tratamiento. Se producen, generalmente, debido a una estasis venosa, diabetes, vasculitis, u oclusión arterial. Se clasifican por estadios 1- 6; siendo el estadio 1 aquel en el que la úlcera no está formada realmente, la piel intacta está simplemente enrojecida, y el estadio 6 aquel en donde hay destrucción de capas externas de la piel (Bolívar-Flores y Kuri-Harcuch, 2000). Dentro de las úlceras de piel podemos encontrar las úlceras venosas, que representan entre el 80-90% del total de las úlceras vasculares. Son más frecuentes en mujeres, con una relación varón-mujer de 1-3. La cronicidad y la recidiva son sus características clínicas más relevantes, la mitad permanecen abiertas por encima de los nueve meses, un 20% lo están hasta los dos años, y un 10%> hasta los cinco, reapareciendo, dentro de los doce meses siguientes a su curación, un tercio de las inicialmente cicatrizadas (CIGNA Health Corporation, 2008). La enfermedad venosa es precursora de la hipertensión venosa (las úlceras por hipertensión venosa, constituyen el mayor porcentaje de entre el total de las vasculares, 75% al 90%), y un factor de riesgo para el posterior desarrollo de úlceras en las extremidades inferiores.
Las úlceras venosas de las extremidades inferiores, se transforman en un problema clínico frecuente, afectando entre el 1 y 2% de la población occidental (Castillo y col., 2004). La disminución de la circulación y las neuropatías, son la causa principal de úlceras de pie en diabéticos, y pueden llevar a la amputación de la extremidad (CIGNA Health Corporation, 2008). En su patogénesis, las alteraciones iniciales ocurren en la macrocirculación venosa, principalmente por reflujo y ocasionalmente por obstrucción. Estas alteraciones causan hipertensión venosa, la que afecta secundariamente la microcirculación, causando depósitos de fibrina pericapilar y activando citoquinas y proteasas que promueven la inflamación. Esto determina la aparición de lipodermatoesclerosis, consistente en un tejido fibroso, con escasa celularidad e irrigación y la consiguiente ulceración (Herouy y col., 2000).
Cicatrización de heridas
La cicatrización de heridas, es un proceso biológico dinámico que involucra complejas interacciones de eventos celulares, moleculares y bioquímicos (Lanza, 2000). En este proceso, ocurren interacciones entre las células de la epidermis y de la dermis, la matriz extracelular, la angiogénesis controlada, y proteínas derivadas del plasma, todo coordinado por una serie de citoquinas y factores de crecimiento (Harding y col., 2002). Este proceso, ha sido tradicionalmente dividido en tres fases distintas: inflamación, proliferación y remodelación (Schilling, 1976).
Hemostasis e inflamación
Esta etapa ocurre, inmediatamente, después de producida la lesión entre los días 4 y 6. El primer paso, es detener el sangrado. Hay contracción de los vasos sanguíneos dañados, y el endotelio y las plaquetas cercanas a la zona activan la vía intrínseca de la cascada de la coagulación. El coágulo formado, está compuesto por colágeno, plaquetas, trombina, y fibronectina (Broughton y col., 2006). Las células atrapadas en el coágulo, mayormente plaquetas, desencadenan la respuesta inflamatoria mediante la liberación de vasodilatadores y quimiotácticos, y la activación de la cascada complementaria (Clark, 1996). El coágulo de fibrina, sirve también como antesala para células invasoras como: neutro filos, monocitos, fibroblastos y células endoteliales (Kurkinen y col., 1980).
En la primera etapa de la inflamación, predominan los neutrófilos. Estos son atraídos al área de la herida por agentes quimiotácticos como: la interleuquina 1 (IL-1), el factor de necrosis tumoral (TNF-α), factor de crecimiento transformante (TGF-β), PF4 y productos bacteriales (Broughton y col., 2006; Tamariz y col, 2002). Los neutrófilos remueven bacterias y desechos celulares de la herida, mediante la liberación de enzimas proteolíticas que digieren las bacterias y el tejido muerto (Broughton y col., 2006). La matriz extracelular dañada es limpiada también por metaloproteinasas de matriz (MPP por sus siglas en inglés), las que son expresadas por queratinocitos, fibroblastos, monocitos y macrófagos en respuesta al TNF-α (Abraham y col., 2000). Posteriormente, el número de neutrófilos disminuye y estos son reemplazados por macrófagos. Estos macrófagos activados, actuarán como mediadores en la angiogénesis (sintetizando factor de crecimiento endotelial vascular [VEGF], factor de crecimiento de fibroblastos [FGF] y TNF-α), en la fibroplasia por la síntesis de TGF-β, factor de crecimiento epidemial [EGF], factor de crecimiento derivado de plaquetas [PDGF], IL-1 y TNF- α y por último, sintetizan óxido nítrico (NO), mediante la activación de la óxido nítrico sintasa inducible por IL-1 y TNF- α (Witte y Barbul, 2002). Los macrófagos cumplen un rol fundamental, y marcan la transición entre la fase inflamatoria y la proliferativa (Harding y col., 2002).
Fase Proliferativa
En esta fase ocurren la epitelización, angiogénesis y la formación de una matriz temporal, y esta etapa transcurre desde el día 4 al 14. Las células predominantes en esta fase, son los fibroblastos y las células endoteliales (Broughton y col., 2006). La epitelización es estimulada, en principio, por citoquinas inflamatorias (IL-1 y TNF-α). Los fibroblastos, por otra parte, sintetizan y secretan factor de crecimiento de queratinocitos (KGF-1 y KGF-2) e IL-6, los que estimulan a queratinocitos vecinos a migrar hacia la zona dañada, a proliferar, y diferenciarse en la epidermis (Smola y col., 1993; Broughton y col., 2006). Los fibroblastos migran al sitio de la herida desde tejidos cercanos, y se vuelven activos (PDGF y EGF son las principales señales para los fibroblastos), así comienzan a sintetizar colágeno, y proliferan para finalmente transformarse en miofibroblastos, que provocan la contracción de la herida (Sage, 2001). Para la formación de la matriz temporal, los fibroblastos (estimulados por PDGF) comienzan a sintetizar, además de colágeno, fibronectina y proteoglicanos como por ejemplo, el ácido hialurónico (Harding y col., 2002; Lynch y col., 1989). El TGF-β, induce también a los fibroblastos a sintetizar colágeno tipo I, disminuyendo también la producción de metaloproteinasas de matriz (MMP) e incrementando la producción de proteínas de adhesión celular (Goldman, 2004).
Los queratinocitos, por otra parte, secretan VEGF (también secretado por macrófagos, fibroblastos y plaquetas), que atrae células endoteliales localizadas en los alrededores, comenzando así, la formación de nuevos vasos capilares. Las células endoteliales, producen también óxido nítrico, que protege al tejido nuevo de los efectos tóxicos de la isquemia y de daños por reperfusión, provocando la vasodilatación del endotelio (Broughton y col., 2006). Fase de maduración y remodelamiento.
Clínicamente, la fase de maduración y remodelamiento es tal vez, la más importante, y va desde el día 8 hasta el año. La etapa final o de remodelación, se caracteriza por formación de la matriz extracelular, que inicialmente está compuesta por fibrina y fibronectina. Luego, los fibroblastos comienzan a sintetizar glicosaminoglicanos, proteoglicanos, y otras proteínas (Broughton y col., 2006). Esta matriz temporal es reemplazada, posteriormente, por una matriz más rígida y organizada compuesta principalmente por colágeno (en el tejido de granulación el colágeno tipo III alcanza el 30%, mientras que en la cicatriz madura está bajo el 10%). Las proteinasas presentes en la remodelación de la matriz, se ven reguladas por cambios en las concentraciones de TGF-β, PDGF, IL-1 y EGF.
La actividad de MMP es suprimida además, por inhibidores de MMP producidos por fibroblastos presentes en el tejido (Henry y Garner, 2003). La síntesis de colágeno continuará por al menos 4 a 5 semanas después de ocurrida la lesión (Diegelmann, 2003). El colágeno en la cicatriz, nunca estará tan organizado y estructurado (incluso después de un año), como el colágeno encontrado en la piel sana. La resistencia y firmeza de la piel tampoco volverá a ser 100% normal (Broughton y col., 2006). Posterior al cierre de la herida, el remodelamiento de la cicatriz resultante puede ser de meses o años, y deja como resultado, una reducción en la cantidad de células y una disminución del flujo sanguíneo en el tejido cicatrizado (Harding y col., 2002). En conclusión, la cicatrización de una lesión de espesor total, requiere la reepitelización desde los límites de la herida, mediante la proliferación y migración de queratinocitos, a través de una matriz extracelular temporal, convertida después en tejido de granulación, que será finalmente remodelado a neodermis (Clark, 1996; Tamariz y col., 2002).
Substitutos dérmicos
La necesidad de obtener rápido cierre de la herida en quemados extensos, hizo desarrollar métodos de expansión y reproducción de células de dermis y epidermis autólogas o heterólogas in vitro (Green y col., 1979) Es así, como hoy en día, es posible realizar un cultivo en serie de distintas fórmulas celulares (queratinocitos puros o mezclados con fibroblastos). A partir de una pequeña biopsia, la epidermis humana se puede cultivar en grandes cantidades de tres a cuatro semanas y usarse como autoinjertos, pudiendo cubrir la superficie corporal total de un adulto (Cuenca y Álvarez, 2003). El uso de autoinjertos y aloinjertos de epidermis cultivada, se ha constituido como parte de la terapia del paciente quemado. De hecho, las Guías Clínicas del Gran Quemado, elaboradas por expertos chilenos para guiar el tratamiento en el marco de las Garantías Explícitas de Salud, incluyen el uso de queratinocitos cultivados (MINSAL, 2007). Estudios clínicos demuestran que los aloinjertos de epidermis humana, cultivada in vitro, actúan como un aposito biológicamente activo, que reduce el
tiempo de epitelización en quemaduras de segundo grado profundo, zonas donadoras de autoinjertos, dermoabrasión y úlceras por venostasis o diabetes (Sosa y col., 1999). Es así, como hoy en día, están disponibles una serie de substitutos dérmicos, como se muestra en la Tabla 1 :
Tabla 1: Diferentes tipos de substitutos dérmicos (Dini y col., 2006).
Figure imgf000011_0001
En la actualidad, se han desarrollado una serie de biomateriales sintéticos que actúan como microambientes extracelulares, imitando las características reguladoras que tiene la matriz extracelular natural (ECMs).
Los biomateriales juegan un rol central en las estrategias modernas de la
medicina regenerativa y la ingeniería en tejidos, como diseño de un medio biofísico y bioquímico que dirige funciones y comportamiento celular. Esto puede facilitar la restauración de estructuras o funciones del tejido disfuncional o dañado.
Los biomateriales proporcionan así, un soporte provisional que interactúa biomolecularmente con las células, guiando espacial y temporalmente los complejos procesos multicelulares de formación y regeneración de tejidos (Lutolf y Hubbell, 2005; Bacákova y col., 2004). Por lo tanto, el fin de estos biomateriales es imitar, en cierto grado, los procesos que ocurren in vivo. El substituto dérmico o biomaterial sintético ideal, debe tener o cumplir con las siguientes características: ausencia de antígenicidad, compatibilidad con el tejido, ausencia de toxicidad local o sistémica, impermeabilidad frente a microorganismos exógenos, adherencia rápida y sostenida a la superficie de la herida, elasticidad, para permitir el movimiento del tejido, resistencia, debe ser traslúcido para permitir la directa observación de la cicatrización, tener un bajo costo, que cause mínima incomodidad en el paciente, que reduzca el tiempo de sanación, entre otros. (Ehrenreich y Ruszczak, 2006; Smith y col., 1988).
Los avances terapéuticos que se han logrado para los productos desarrollados por la ingeniería en tejidos, están basados en 3 estrategias:
el uso de células sin matriz (como el transplante de células autólogas o la terapia con células troncales)
el uso de polímeros sintéticos con o sin factores de crecimiento y citoquinas
el uso de una matriz tridimensional con células en ella (Jiménez y Jiménez, 2004).
Existe un gran número de estos sistemas experimentales disponibles. Estos van desde matrices derivadas de células o tejidos (Ej.: Matrigel), hidrogeles de polímero sintético, hasta matrices compuestas por proteínas recombinantes. También han sido desarrolladas superficies bioinertes, utilizando moléculas como proteína albúmina antiadhesiva, hidrogeles basados en ácido hialurónico o poli (hidroxil etil metacrilato), alcohol polivinílico, poliacrilamida, dextrán y particularmente polietilenglicol (PEG) (Bacákova y col., 2004).
Es así como, los biomateriales derivados de ECMs natural, pueden ser usados como soportes para células transplantadas, que serán posteriormente implantadas sobre tejido lesionado, y también para inducir la regeneración y remodelación in vivo. Por ejemplo, el colágeno y la fibrina como matrices, están clínicamente establecidas y aprobadas por la FDA (Food and Drug Administration), en el tratamiento de quemados, para la cicatrización de heridas y en reparación de tejidos, respectivamente (Lutolf y Hubbell, 2005; Van Dorp y col., 1998). Los productos a base de fibrina, contienen dos componentes aislados del plasma humano: fíbrinógeno y trombina. La combinación de estos dos componentes da como resultado, la formación de un coágulo de fibrina, que es usado para alcanzar la hemostasis, y el cierre de la herida en procesos quirúrgicos (Geer y col., 2002).
En un estudio realizado por Cox y col., 2004, se analizó el coágulo de fibrina como medio de transporte de fibroblastos dérmicos humanos, y además se evaluó, la proliferación y migración de estos en diferentes formulaciones de coágulos, variando las concentraciones de fíbrinógeno y trombina, llegando a la conclusión de que la variación en las concentraciones de ambos componentes, afectaba el comportamiento de los fibroblastos en los coágulos de fibrina tridimensionales.
El primer substituto dérmico disponible en el mercado, utilizó un colágeno análogo basado en el colágeno bovino y condroitin 6 - sulfato con una cubierta externa de silastic (Integra®) (Burke y col., 1981).
Dermagraft® es una modificación del substituto dérmico compuesto anteriormente, donde en lugar del colágeno bovino, fibroblastos obtenidos de prepucio de recién nacidos, son cultivados sobre una malla de nylon y cubiertos
con una capa exterior de silicona (Dermagraft Transitional Covering). Está diseñado para cubrir la capa dérmica de la piel y para estimular una mejora en el proceso de cicatrización (Mansbridge y col., 1998).
Existen también otros tipos de substitutos dérmicos, que incorporan tanto componentes epidérmicos como dérmicos (substitutos mixtos o compuestos). El primer substituto compuesto fue desarrollado por Ortec International Inc., e integraba fibroblastos y queratinocitos de recién nacidos, cultivados sobre una matriz porosa entrecruzada con colágeno bovino tipo 1. Sin embargo, el uso de este substituto es limitado, ya que la FDA lo ha aprobado sólo para dos indicaciones: el tratamiento de reconstrucción de mano en pacientes que padecen de epidermolisis bulosa distrófica recesiva y como ayuda en la cicatrización de zonas donadoras de autoinjertos en pacientes quemados (Pham y col., 2002; Eisenbud y col., 2004).
Grañskin (Apligraj®) también es un substituto mixto, pero con múltiples aplicaciones. Fue desarrollado para la cobertura de heridas de espesor total. Es un injerto mixto alogénico que consiste en células epidérmicas humanas, fibroblastos humanos y colágeno bovino tipo 1, que entrega 4 componentes: queratinocitos epidérmicos, un estrato córneo bien diferenciado, matriz extracelular y fibroblastos dérmicos alogénicos viables (Pham y col., 2002; Veves y col., 2001). Por otro lado, Mylan Laboratories, Inc., desarrolló Biobrane, que es un producto biosintético, constituido por un film de silicona ultradelgado y semipermeable, con fibras de nylon parcialmente embebidas en el film, unido químicamente a colágeno de origen porcino (UDL Labs, 2008). Es usado, principalmente, en pacientes con quemaduras de espesor parcial y en heridas relativamente frescas (<24 - 48 horas) (Gerding y col., 1990). Otro producto de la bioingeniería, que fue aprobado por la FDA en 1997, pero que posee un elevado costo, es TransCyte®, compuesto por fibroblastos humanos de recién nacidos, cultivados bajo condiciones asépticas sobre el componente de la malla de nylon de Biobrane. Los fibroblastos secretan en la malla, componentes de la matriz extracelular, como fibronectina, colágeno tipo 1, decorina y factores de crecimiento ligados a la matriz (Ehrenreich y Ruszczak, 2006; Noordenbos y col., 1999). Sin embargo, en la mayoría de los casos, es difícil argumentar el uso de estos costosos productos (por ejemplo en zonas donadoras de piel) cuando hay alternativas más económicas y efectivas, que ya están disponibles, como Biobrane y los implantes convencionales para la cobertura de heridas. En pacientes extensamente quemados, en donde las zonas donadoras de autoinjertos están limitadas o no son adecuadas (para poder utilizarlas se requiere dos o más semanas), podría justificarse el uso de biomateriales que proporcionarán una cobertura temporal de la herida, promoviendo así, una cicatrización más rápida y de mejor calidad (Sosa y col., 1999; Bar-Meir y col., 2006).
Existen, por el contrario, biomateriales de menor costo, y que han sido utilizados ampliamente en la Ingeniería de Tejidos, como es el caso del Quitosano y del Acido Hialurónico. El primero, es un carbohidrato complejo, biodegradable y no tóxico, derivado de la quitina, que ha demostrado tener actividad mucoadhesiva, esto lo convierte en un excelente agente hemostático (Wedmore y col., 2006). Además, posee otras propiedades biológicas (antibacteriano y antifúngico) y afecta la función de macrófagos, lo que ayuda a una rápida cicatrización. También, tiene capacidad para estimular la proliferación celular y la organización histoarquitectónica de los tejidos (Paul y Sharma, 2004; Fukasawa y col., 1992). Por otra parte, el Acido Hialurónico (HA), es un glicosaminoglicano que se encuentra en la piel normal en los espacios intercelulares de la epidermis, excepto en la capa granular y estrato córneo. Además de ser una matriz en la cual las células están embebidas, se descubrió que tiene numerosas funciones en la piel: puede retener agua en los tejidos, debido a esto cambia el volumen y compresibilidad dérmica; puede también mejorar la proliferación y diferenciación celular y la reparación del tejido dañado (Juhlin, 1997; Laurent y Fraser, 1992).
En el marco de un proyecto FONDEF (0211009) desarrollado por los inventores de la presente solicitud, se creó un sustituto dérmico denominado Sistema de Implante Integrado (SU), que consiste en un soporte polimérico que integra en su matriz queratinocitos y fibroblastos autólogos, los cuales son proporcionalmente combinados sobre fibrina que se polimeriza in situ, sobre una matriz compuesta por gelatina-quitosán-ácido hialurónico. El sistema desarrollado se denomina integrado, porque las células no se ubican en la superficie del soporte sino embebidas en él (Young y col., 2006). Este sistema ha demostrado una excelente adherencia a la zona de la lesión y, por otra parte, no se han observado reacciones de toxicidad ante los componentes del sistema.
Además, estudios publicados por los propios inventores de la presente solicitud muestran que células de piel encapsuladas en fibrina, exhiben un patrón de crecimiento diferente a células cultivadas en frascos de cultivo convencionales (Figura 2). Un inconveniente encontrado por el grupo de investigación, ha sido el alto costo de los materiales de grado clínico, que limitan los riesgos de contraer enfermedades infecciosas con estos materiales y que son indispensables para aplicar el SU en humanos. Entre estos materiales, el fibrinógeno y trombina han sido los que más exceden en precio al utilizar equivalentes aprobados para uso humano. Por este motivo, surge la necesidad de generar trombina autóloga, utilizando plasma del paciente como una forma de disminuir costos. Ello crea el requerimiento de estudiar las condiciones para crear un coágulo óptimo que permita el crecimiento celular, especialmente al interior del SIL
DESCRIPCION DETALLADA DE LA INVENCION
El problema técnico planteado en la presente solicitud consiste en proveer un producto y sistema preferentemente autólogo que permita inmovilizar, proliferar y vehiculizar células dentro de una matriz con fines de regeneración tisular.
La búsqueda de biomateriales que potencien el crecimiento celular es un fértil terreno. Se requieren materiales que imiten el medio extracelular de las células con sus características tridimensionales. Dentro de estos biomateriales se han utilizado colágeno, gelatina, alginato y otros materiales. Entre estos, el uso de fibrina ha demostrado extraordinarias propiedades para promover el crecimiento de células de piel. Sin embargo, en la aplicación clínica de estos cultivos para el tratamiento de lesiones cutáneas se encuentra con la desventaja que se debe utilizar sólo materiales de "grado clínico". Estos últimos existen y se denominan Tissucol® y Beriplast® en la clínica se usan como sellantes de fibrina en diferentes procedimientos quirúrgicos. Se ha comprobado estos productos mantienen las propiedades de promoción de crecimiento celular detectada con la combinación de trombina y fibrinógeno de grado investigación in vitro. No obstante lo anterior el costo de estos productos, dado los complejos análisis microbiológicos que requieren, los hace incompatible con la posibilidad de crear un producto comercial que contenga fibrina y permita cubrir extensas áreas de piel dañada. Además se requieren materiales que sean seguros para el ser humano, libres de componentes animales y de riesgos de transmisión de enfermedades conocidas y emergentes. Un producto de origen autólogo, siempre será más seguro desde el punto de vista microbiológico que uno heterólogo, puesto que aunque este contaminado, volverá al mismo hospedero. Por otra parte, desde el punto de vista inmunológico, los anticuerpos y otras proteínas presentes en el mismo serán las ya existentes en el individuo, eliminándose la posibilidad de rechazo inmunológico.
La presente invención se dirige a generar un gel de fibrina para proliferación y vehiculización celular a partir de la propia sangre del paciente o sangre compatible. La sangre en razón de 200 uL por cm de implante a preparar se toma usando citrato sódico como anticoagulante en una razón de 0,09g por mL de sangre. El plasma citratado es separado mediante centrifugación. Luego las células se resuspenden en este plasma. Para formar el gel ya sea como coágulo aislado o al interior de una matriz porosa se procede a agregar una solución de CaCl2. El producto así desarrollado es de costo muy inferior a los fibrin glue comerciales y por el hecho de ser un producto autólogo elimina el riesgo de infecciones y de rechazo inmunológico, aún cuando puede ser complicado obtener grandes volúmenes de sangre de un paciente comprometido, esto se puede superar utilizando sangre compatible. Este sistema ha sido utilizado para el tratamiento de lesiones cutáneas con resultados positivos. La aplicación será para el crecimiento celular con fines de implante en lesiones cutáneas, de cartílago, gingivales y óseas, entre otras. Se puede prever que cualquier aplicación en el campo de la ingeniería de tejidos se puede valer de esta tecnología.
La novedad la constituye el incorporar las células a un coágulo de fibrina usando plasma en vez de fibrina y trombina purificadas. Los fibrin glue contienen ambos componentes y algunos otros de la sangre, pero no son equivalentes al plasma porque son purificados. Además incorporan aditivos, tales como inhibidores de proteasas que no están presentes en el plasma.
Todas las referencias mostradas son formas de generar el coágulo de fibrina, no formas de integrar las células a un coágulo de fibrina con fines de ingeniería de tejidos.
Existen numerosas publicaciones que avalan el potencial de crecer células en coágulos de fibrina. Para ello se adquiere fibrinógeno y trombina comercial o bien se usa preparados comerciales conocidos como fibrin glue, siendo los más populares el Tissucol (Baxter) o Beriplast (CSL Behring). Estos productos permiten suspender las células en trombina y luego se agrega el fibrinógeno para que se forme un coágulo que contiene las células. El problema es que para realizar esto con fines clínicos y comerciales se debe gastar mucho dinero por cuanto el producto de grado clínico es muy caro. Además es difícil estar 100 % seguro que no transmitirá algún virus o microorganismo desconocido para el cual no existan pruebas de detección con sensibilidad apropiada.
Surge así la idea de generar fibrina para crecimiento celular a partir de la propia sangre del paciente para formar el gel ya sea como coágulo aislado o al interior de una matriz porosa.
De acuerdo a lo anterior, el producto generado en la presente invención posee como principales ventajas que presenta un costo muy inferior a los "fibrin glue" comerciales y que por ser un producto autólogo elimina el riesgo de infecciones y de rechazo inmunológico. Por otro lado posee como desventaja el que puede ser complicado obtener grandes volúmenes de sangre de un paciente comprometido, lo que se resuelve utilizando sangre compatible.
Para el sustento de la invención se ha venido desarrollando un número de pruebas clínicas que incorporan las células en una matriz porosa mediante el uso de sangre autóloga. Este sistema ha sido utilizado para el tratamiento de lesiones cutáneas con resultados positivos.
Un objeto de la presente invención corresponde a la aplicación para crecimiento celular con fines de implante en lesiones cutáneas, de cartílago, gingivales, óseas, entre otras.
La literatura de patentes muestra productos homólogos que difieren de la invención en aspectos fundamentales. A continuación una descripción de lo más relevante conocido en patentes:
Beretta & Grippi en la patente US2009258056 y WO2007021344 y Beretta & Lodi US6368298, desarrollaron métodos para regenerar tejidos en un organismo vivo, el cual incluye el poner en contacto el área afectada con una red de fibrina sólida que contiene plaquetas que liberan factores de crecimiento El gel es acelular, a diferencia de la presente invención, y contiene plaquetas que provienen de la sangre del paciente. Las células que incorpora la presente invención, son preferentemente fibroblastos y queratinocitos obtenidos previamente desde una biopsia, cultivados en el laboratorio y vehiculizados en un gel de fibrina.
Del mismo modo Baugh & Lim en las patentes US2005152886, US2002159985 y US6444228, y Hirsch & Johnston en la patente EP0820314 describen métodos para obtener sellante de fibrina autólogo, el cual no contiene las células incorporadas sino tan sólo plaquetas. La patente publicada con el número US5185001 de Galanakis D. describe un kit que contiene todos los elementos para producir un coágulo de fibrina a partir de plasma autólogo con fines de ser utilizado con fines de inducir hemostasis (coagulación en una herida), pero no reporta la inclusión de células.
Por otra parte, en la solicitud Chilena CL 200201439 se describe la obtención de un sustituto dérmico a partir de plasma utilizando cloruro cálcico, durante la gelificación, pero al igual que las invenciones anteriormente descritas no se incorpora el componente celular proveniente de un cultivo. Se menciona que permite ser invadido por células y vasos sanguíneos, pero se refiere a aquellos del lecho de la herida y no proporcionados en forma exógena.
Adicionalmente, existe una cantidad importante de manuscritos científicos además de algunas patentes como las ya mencionadas que persiguen investigar y/o el mismo problema técnico, sin embargo, todos son formas de generar el coágulo de fibrina, no formas de integrar las células a un coágulo de fibrina con fines de ingeniería de tejidos. Todos los documentos al respecto se adjuntan más adelante en el ítem referencias, incluyendo aquellos ya discutidos en esta memoria.
EJEMPLOS
Los ejemplos que a continuación se señalan se incorporan a título exclusivamente ilustrativo para favorecer la comprensión del pliego y no significan que limiten en modo alguno los alcances de las reivindicaciones que se solicitan.
Ejemplo 1: Obtención y cultivo de fibroblastos humanos
Los fibroblastos humanos, se obtienen desde prepucios de cirugías debido a fimosis en menores de 6 años. La biopsia se lava en una placa Petri estéril con 5 mi de solución de Buffer Fosfato
Salino 0,1 M pH 7,4 (PBS) (GIBCO®), que contiene una mezcla de antibióticos penicilina/estreptomicina (100 U/mL /100 μg/mL, Invitrogen®) y anfotericina B 250 μg/mL
(Fungizone®, Invitrogen). Para obtener fibroblastos y queratinocitos por separado, la muestra se incuba en tripsina 0,5 %-EDTA 5,3 mM (GIBCO®), por 30 minutos a 37°C en incubador Thermo Forma®. Posteriormente, mediante la utilización de pinzas estériles, se separa mecánicamente, la dermis y la epidermis. La dermis, se trata por 20 minutos con colagenasa tipo
I (Invitrogen®) 2 mg/mL a 37 °C. Luego, la suspensión celular obtenida es centrifugada y el precipitado obtenido se lava con PBS para remover la enzima. Su viabilidad celular se determina mediante el colorante de exclusión azul de Tripán. Esto se realiza, mediante la observación microscópica de una alícuota de suspensión celular mezclada con el colorante azul de Tripán en proporción 1 : 1. Luego, esta suspensión se coloca en cámara de Neubauer y se cuenta las células viables mediante observación en microscopio invertido Lieder®. Los fibroblastos humanos obtenidos luego de la digestión enzimática, fueron resuspendidos en medio de cultivo Dulbecco 's Modified Eagle 's médium (DMEM, GIBCO®) suplementado con un 10% de suero bovino fetal (INVITROGEN®), 50% medio F12 de Ham (GIBCO®) y 10 \JUTDL Biomyc 1 (Biological Industries®) en frascos de cultivo T-25 (Falcon®), que fueron incubados en incubadora ThermoForma, en una atmósfera humidificada con 5% de C02 y a una temperatura de 37°C.
Ejemplo 2: Obtención y evaluación de coágulos fibrina de origen humano
Obtención del plasma'. El plasma se separa desde sangre entera recolectada en tubos con citrato de sodio al 3,2%, centrifugando a 453 x g por 5 minutos. El plasma separado en condiciones de esterilidad, bajo campana de bioseguridad, se almacena a -20°C hasta su utilización.
Prueba de coagulación mediante observación visual: Las pruebas iniciales de coagulación, se realizan en tubos de microcentrífuga, probando diferentes concentraciones de calcio, denominadas formulaciones (F). Para esto, se utiliza un volumen de plasma citratado constante de ΙΟΟμί con diferentes volúmenes de las diluciones de CaCl2, para obtener distintas concentraciones finales del mismo, generándose 30 formulaciones, tal como se ilustra en la Tabla 2: Tabla 2. Formulaciones de coágulos según las concentraciones de CaCl2.
Figure imgf000022_0001
Después de preparar las 30 formulaciones, éstas se incubaron con el volumen constante de plasma a 37°C durante 20 minutos. Se evalúa así, de manera visual, si hay o no coagulación en cada formulación. Además, cada coágulo se retira con pinzas del tubo de microcentrífuga para evaluar su resistencia mecánica, y escoger así las 6 mejores formulaciones, sobre la base de la existencia de coágulo y de que presenten mayor resistencia mecánica. Para la determinación del tiempo de coagulación se utiliza el coagulómetro (BBL Fibrosystem), que permite determinar, en forma más precisa, el tiempo en el que se forma el coágulo. Esta prueba se realiza sólo en las 6 formulaciones preseleccionadas en la etapa preliminar. La estabilidad del coágulo se determina en 6 coágulos de las formulaciones elegidas con medio de cultivo (DMEM, GIBCO®), suplementado con un 10% de suero bovino fetal (INVITROGEN®), 50% medio F12 de Ham (GIBCO®). Posteriormente, se incuban a 37°C. El grado de disgregación se evalúa visualmente al día 3 (Figura 3).
Ejemplo 3. Preparación de matriz polimérica
Preparación de polímero base: Para el polímero base se preparadan las siguientes soluciones: gelatina 1% p/v, quitosano 2% p/v en ácido acético 1% v/v, y ácido hialurónico 0,01% p/v y se sigue el siguiente protocolo: Se mezcla la solución de gelatina con la de quitosán y la de ácido hialurónico, y se homogeniza durante 30 minutos con agitador magnético a 50°C.
- . La mezcla se vierte en placas Petri que fueron refrigeradas a 4°C hasta la formación del gel.
- Después, se congela el gel lentamente a -20°C durante 8 horas.
Luego, el polímero se lleva a -80°C por 8 horas.
El polímero se sumerge lentamente en nitrógeno líquido durante 3 minutos.
Finalmente, se liofiliza por 48 horas en liofilizador Liobras LT01. Entrecruzamiento'. Para el entrecruzamiento del polímero base se realiza el siguiente procedimiento:
Se sumerge el liofilizado en MES 50 mM (Acido 2-Morfolinoetano sulfónico), por 30 minutos.
Luego, esta solución se descarta y se agrega solución entrecruzante compuesta por MES 50 mM, EDC 30 mM (l-etil-[3,3-dimetilaminopropil] carbodiimida) y NHS 8 mM (N- hidroxisuccinimida). Se deja reaccionar durante 2 horas.
Se lava posteriormente con etanol y se congela.
Una vez congelada, se sumerge en nitrógeno líquido por 3 minutos.
Finalmente, se liofiliza por 24 horas.
Ejemplo 4: Estudio del crecimiento y proliferación celular para superficies seleccionadas.
Para este experimento, se utiliza la técnica de MTT [(3-4,5-dimetiltiazolil-2) - 2,5 - difeniltetrazolio bromuro], que permite la cuantificación de células viables. Esta técnica se basa en la reducción del MTT, sólo por aquellas células
metabólicamente activas, en un compuesto llamado formazan, un cristal azulpurpúreo soluble, que puede ser cuantifícado mediante espectrofotometría a 540nm. Ensayo MTT: La obtención de fibroblastos para este ensayo se realiza de la siguiente forma:
Los frascos de cultivo T-75 (Falcon®) con fibroblastos, se lavan con PBS, para luego ser tripsinizados. La suspensión celular, se deposita en un tubo de centrífuga desechable de 50 mi, y centrifugada a 453xg por 5 minutos. Luego, el precipitado obtenido se resuspende para verificar el número de células viables.
Una vez realizado el conteo celular, se vuelve a centrifugar la suspensión, y una parte de las células se resuspende en medio de cultivo (DMEM, GIBCO®), suplementado con un 10% de suero bovino fetal (INVITROGEN®), 50% medio F12 de Ham (GIBCO®) y una mezcla de antibióticos penicilina/estreptomicina (100 U/ml/ 100μg/ml), INVITROGEN®), y la otra en plasma. Este ensayo se realiza en placas de 96 pocilios de fondo plano (Falcon®), donde se evalúa la proliferación de los fibroblastos, utilizando diferentes superficies para su cultivo. El ensayo se realiza desde el día 0 hasta el día 3, es decir, a las 0, 24, 48 y 72 horas, y cada condición se evalúa por triplicado con su control respectivo para cada día. Además, para el ensayo, sólo se considera las dos mejores formulaciones anteriormente seleccionadas.
Se detalla a continuación el ensayo MTT, para examinar la proliferación de fibroblastos sobre diferentes superficies:
Condiciones de experimentación (Figura 4):
Monocapa: los fibroblastos humanos resuspendidos en medio (5x106 células por pocilio), se cultivan directamente al pocilio con 150μί de medio de cultivo.
Matriz Polimérica: se coloca la matriz polimérica en cada pocilio y se depositan los fibroblastos humanos resuspendidos en medio (5x106 células por pocilio). Se agrega medio de cultivo hasta completar 150μΕ.
Coágulo F17: se depositan 30μί de plasma con fibroblastos humanos (5xl06 células por pocilio), y a esto, se le agrega 45μΕ de CaCl2 30mM. Se incuba a 37°C hasta la formación del coágulo y luego se agrega medio de cultivo hasta completar 150μΕ. Coágulo F27: se depositan 30μί de plasma con fibroblastos humanos (5xl06 células por pocilio), y a esto, se le agrega 22,5μΙ, de CaCl2 50mM. Se incuba a 37°C hasta la formación del coágulo, y luego se agrega medio de cultivo hasta completar 150μί.
SU con FI 7: sobre matriz polimérica se depositan 30μΙ, de plasma con fibroblastos humanos (5xl06 células por pocilio), y 45μί de CaCl2 30mM. Se incuba a 37°C hasta la formación del coágulo, y luego se agrega medio de cultivo hasta completar 150μί.
SU con F27: sobre matriz polimérica se depositaron 30μΙ, de plasma con fibroblastos humanos (5xl06 células por pocilio), y 22,5μί de CaCl2 50mM. Se incuba a 37°C hasta la formación del coágulo, y luego se agrega medio de cultivo hasta completar 150μί.
Procedimiento del MTT: Una vez montado el experimento con las diferentes condiciones de cultivo celular, se realiza el ensayo MTT para el día 0 (0 horas) para establecer valores de viabilidad celular al tiempo de inicio del experimento. Este procedimiento se repite posteriormente a las 24, 48 y 72 horas. El procedimiento consiste en:
Agregar 50μί de solución de MTT a cada pocilio correspondiente al día en evaluación e incubar a 37°C durante 4 horas.
Posteriormente, se extrae cada solución de los pocilios y se transfiere a tubos de microcentrífuga correspondiente para cada muestra.
A cada pocilio de le agrega 150μΕ de tripsina 10%. Se lleva nuevamente la placa a la incubadora a 37°C por 1 hora.
- Finalmente, se agrega 300μί de buffer de lisis a cada pocilio (para monocapa 400μΕ), se repipetea enérgicamente, y se transfiere la solución a cada tubo de microcentrífuga (esto se realizó en dos pasos, primero se agrega ΙΟΟμί ó 200μΙ,, según corresponda, y en una segunda etapa se agrega los 200μί restantes).
Los tubos se mantienen a -20°C hasta su cuantificación fotométrica. Para ello se descongelan los tubos de microcentrífuga con las muestras de cada día.
Una vez descongelados los tubos, se agitan enérgicamente mediante vórtex. Luego se aplica ultrasonido durante 30 minutos.
Los tubos se vuelven a homogenizar mediante vértex .
Se vuelve a aplicar ultrasonido por 30 minutos.
Posteriormente, se centrifuga a 17.949xg por 15 minutos.
- Cuidadosamente, se extraen los sobrenadantes libres de partículas de cada tubo, y se depositan 200μί de cada muestra en una placa de 96 pocilios.
Finalmente, la absorbancia se lee en lector de placas ELISA SENSISCAN (MERK®) a
540nm. REFERENCIAS Patentes
1. SYSTEM AND METHOD FOR PREPARING AUTOLOGOUS FIBRIN GLUE. Inventors: BERETTA ROBERTO; GRIPPI NICHOLAS A Applicant: BERETTA ROBERTO; GRIPPI NICHOLAS A. Publication info: JP2010115507 (A) - 2010-05-27, Priority Date: 2002-01-15.
2. SYSTEMS AND METHODS FOR PREPARING AUTOLOGOUS FIBRIN. Inventor: BERETTA ROBERTO [IT] ; GRIPPI NICHOLAS A [US] Applicant: CASCADE MEDICAL ENTPR LLC [US]. Publication info: US2009203613 (Al) - 2009-08-13. Priority Date: 1997- 06-24.
3. SYSTEMS AND METHODS FOR PREPARING AUTOLOGOUS FIBRIN GLUE. Inventor: BERETTA ROBERTO [IT] ; GRIPPI NICHOLAS A [US]. Applicant: CASCADE MEDICAL ENTPR LLC [US]. Publication info: US2009258056 (Al) - 2009-10-15. Priority Date: 1997-06-24
4. SYSTEMS AND METHODS FOR PREPARING AUTOLOGOUS FIBRIN GLUE. Inventor: BERETTA ROBERTO [IT] ; GRIPPI NICHOLAS A [US]. Applicant: CASCADE MEDICAL ENTPR LLC [US] ; BERETTA ROBERTO [IT] (+1). Publication info: WO2007021344 (Al) - 2007-02-22. Priority Date: 2005-08-17.
5. AUTOLOGOUS FIBRIN SEALANT AND METHOD FOR MAKING THE SAME. Inventor: BAUGH ROBERT F [US] ; LIM LISA M [US] (+2) Applicant: MEDTRONIC INC. Publication info: US2005152886 (Al) - 2005-07-14, US7811607 (B2) - 2010-10-12. Priority Date: 1996-04-30.
6. AUTOLOGOUS FIBRIN SEALANT AND METHOD FOR MAKING THE SAME. Inventor: BAUGH ROBERT F [US] ; LIM LISA M [US] (+2) Applicant: BAUGH ROBERT F, ; LIM LISA M, (+3). Publication info: US2002159985 (Al) - 2002-10-31, US6830762 (B2) - 2004-12-14 Priority Date: 1996-04-30.
7. PREPARING AUTOLOGOUS FIBRIN GLUE. Inventor: BERETTA ROBERTO [IT]; LODI SERGIO [IT]. Applicant: BERETTA ROBERTO [IT]. Publication info: US6368298 (Bl) - 2002-04-09. Priority Date: 1997-06-24.
8. SINGLE USE SYSTEM FOR PREPARING AUTOLOGOUS PLASMA AND FIBRIN GEL. Inventor: WHITMORE ELAINE [US]. Applicant: WHITMORE ELAINE. Publication info: US6197194 (Bl) - 2001-03-06. Priority Date: 1995-03-24.
9. AUTOLOGOUS FIBRIN SEALANT AND METHOD FOR MAKING THE SAME. Inventor: BAUGH ROBERT F [US] ; LIM LISA M [US] (+2) Applicant: MEDTRONIC INC [US]. Publication info: US6444228 (Bl) - 2002-09-03. Priority Date: 1996-04-30.
10. PREPARATION OF AUTOLOGOUS PLASMA AND FIBRIN GEL. Inventor: WHITMORE ELAINE [US]. Applicant: JOHNSON & JOHNSON MEDICAL [US]. Publication info: US5935437 (A) - 1999-08-10. Priority Date: 1995-03-24.
1 1. PROCESS OF PREPARATION OF AN AUTOLOGOUS FIBRIN GLUE. Inventor: TARANTINO FLAVIO [IT] ; BENINCASA CARLO [IT] (+2) Applicant: TARANTINO FLAVIO [IT] ; BENINCASA CARLO [IT] (+2) Publication info: W0981 1925 (Al) - 1998- 03-26. Priority Date: 1996-09-18. 12. AUTOLOGOUS FIBRIN GLUE AND METHODS FOR ITS PREPARATION AND
USE. Inventor: HIRSH JACK [CA] ; JOHNSTON MARILYN [CA] (+1). Applicant:
HAMILTON CIVIC HOSPITALS RES [CA]. Publication info: EP0820314 (Al) - 1998-01-
28. Priority Date: 1995-04-06.
13. METHOD OF PREPARING AUTOLOGOUS PLASMA FIBRIN AND APPLICATION
APPARATUS THEREFORE. Inventor: GALANAKIS DENNIS K [US]. Applicant: UNIV
NEW YORK STATE RES FOUND [US]. Publication info: US5185001 (A) - 1993-02-09.
Priority Date: 1990-01-18.
14. METODO DE OBTENCION DE SUSTITUIDO DERMICO A PARTIR DE FIBRINA. S, CL 200201439. Inventor: ABELARDO SIMON OSVALDO MEDINA DIAZ. Solicitante : ABELARDO SIMON OSVALDO MEDINA DIAZ.
Literatura Científica
1. Tomoko Ichiyanagi, Kouki Anabuki, Yoji Nishijima, Hirohisa Ono,* Isolation of mesenchymal stem cells from bone marrow wastes of spinal fusión procedure (TLIF) for low back pain patients and preparation of bone dusts for transplantable autologous bone grañ with a serum glue. BioScience Trends. 2010; 4(3): 110-118. 1 10
2. Aleksandra Wysocka, Karolina Mann, Henryk Bursig, Juliusz Dec, Tadeusz S. Chondrocyte suspensión in fibrin glue. Gaz'dzik Cell Tissue Bank 2010; 11 :209-215
3. David M. Dohan Ehrenfest, Pierre Doglioli, Giuseppe M. de Peppo, Marco Del Corso, Jean-Baptiste Charrier. Choukroun's platelet-rich fibrin (PRF) stimulates in vitro proliferation and differentiation of human oral bone mesenchymal stem cell in a dose-dependent way. A r e Ora l B i o l 2010; 5 5 :1 85 - 1 94
4. García Guevara et al. Aplicación de fibrina rica en plaquetas (frp) posterior a extracciones dentarias. The preliminary program for iadr Venezuelan división annual meeting. November 15-16, 2010. 5. Kojun Okamoto et al. The use of autologous fibrin glue for the treatment of postoperative fecal fístula following an appendectomy: report of a case. Surg Today, año? 33( 7):, 550 - 552.
6. Kenjiro Nakama et al. Use of autologous fibrin sealants to treat ganglion cysts: a report of two cases. J Orthop Surg 2010; 18(1): 104- 106.
7. Aparecida Machado de Moraes, Joyce Maria Annichino-Bizzacchi, ana Beatris Rodrigues Rossi. Use of autologous fibrin glue in dermatologic surgery: application of skin graft and second intention healing. Sao Paulo Med. J. 1998; 1 16 (4) Faltan las pags
8. Vivostat® autologous fibrin sealant. http://www.vivostat.com/composite-41.htm. (Ingreso mayo 19 de 2011)
9. Abraham D, Shiwen X, Black C, Sa S, Xu Y y Leask A. Tumor necrosis factor alpha suppresses the induction of connective tissue growth factor by transforming growth factor-beta in normal and scleroderma fibroblasts. J. Biol. Chem. 2000. ; 275(20): 15220 - 15225.
10. Acevedo C, Weinstein C, Brown D, Huebner H, Buchholz R y Young ME. 201 1. A mathematical model for the design of fibrin microcapsules with skin cells. Bioprocess Biosyst Eng. 2009; 32(3):341-51.
11. Aguayo B. Manejo inicial de las quemaduras. Rev. Chil. Pediatr. 1999; 70(4): 337 - 347.
12. Bacákova L, Filová E, Ryácek F, Svorcík V, Stary V.. Cell adhesión on artificial materials for Tissue Engineering. Physiol. Res. 2004; 53 (Suppl. 1): S35 - S45.
13. Bar-Meir E, Mendes D y Winkler E.. Reviews: Skin substitutes. IMAJ. 2006; 8(3): 188 - 191.
14. Bolívar-Flores Y y Kuri - Harcuch W. Cure of acute, chronic, and complicated leg ulcers with frozen allogenic human epidemial cultures. Home Health Care Consultant. 2000; 7(4): 1 1 - 16.
15. Bailey J, Ollis D. 1986. Biochemical Engineering Fundamentáis. 2a
Edición. McGraw - Hill.
16. Broughton G, Janis J, Attinger C. The Basic Science of Wound Healing. Plast. Reconstr. Surg. 2006; 1 17 (Suppl): 12S - 34S. 17. Burke J, Yannas I, Quinby W, Bondoc C y Jung W. Succesful use of physiologically aceptable artificial skin in the treatment of extensive burn injury. Ann Surg. 1981 ; 194(4): 413— 428.
18. Castillo P.. La piel como fuente de malignidad. Rev. Chil. Pediatr. 2001 ; 72(5): 466 - 472.
19. Castillo P.. Quemaduras. Conceptos para el médico general.
Cuad. Cir. 2003; 17(1): 58 - 63. ISSN 0718 - 2864. -
20. Castillo P, Sagúes R, Urrea C, Bardisa J, López A.. Colgajo sural en úlceras venosas crónicas de piernas. Rev. Chil. Cir. 2004; 56 (5): 475 -480.
21. Cienfuegos R, Sierra E, Juárez E, Kuri-Harcuch W.. Aloinjertos de epidermis cultivada para áreas donadoras de piel y lesiones de espesor total en pacientes politraumatizados. An Med Asoc Med Hosp ABC. 2003; 48(2): 84 - 88.
22. CIGNA Health Corporation. 2008. Cigna Healthcare Coverage Position. Tissue - Engineered Skin Substitute and Growth Factors. N° 0068: 1 - 40.
23. Clark R. 1996. Wound repair: overview and general considerations. En Clark, R (ed). The molecular and cellular biology of wound repair. Plenum, New York, pp 3 - 50.
24. Cox S, Colé M y Tawil B.. Behavior of human termal fibroblasts in Three - Dimensional fíbrin clots: dependence on fibrinogen and thrombin concentration. Tissue Eng. 2004; 10 (5 - 6): 942 - 954.
25. Cuenca J, Alvarez C. Injertos en malla 1 :6 cubiertos con aloinjertos de epidermis cultivada en áreas cruentas por quemadura. Cir. Plast. 2003; 13(1): 13 -17.
26. Currie L, Sharpe J y Martin R.. The use of fíbrin glue in skin grafts and Tissue - Engineered skin replacement: A review. Plast. Reconstr. Surg. 2001 ; 108: 1713 - 1726.
27. Diegelmann, R. Analysis of collagen synthesis. Methods Mol. Med. 2003; 78: 349.
28. Dini V, Romanelli M, Piaggesi A, Stefani A y Mosca F.. Cutaneous Tissue Engineering and lower extremity rounds (Part 2). Int J Low Extrem Wounds. 2006; 5(1): 27 - 34. 29. Ehrenreich M. y Ruszczak Z.. Tissue - engineering wound coverings. Important options for the clinician. Acta Dermatoven APA 2006; 15(1): 5 - 1 1.
30. Eisenbud D, Huang N, Luke S, Silberklang M.. Skin substitutes and wound healing: current status and challenges. Wounds. 2004; 16(1): 2 - 17.
31. Fukasawa M, Abe H, Masaoka T.. The hemostatic effect of deacetylated chitin membrane on peritoneal injury in rabbit model. Surg. Today. 1992; 22(4): 333 - 338.
32. Geer D, Swartz B y Andreadis S.. Fibrin promotes migration in a Three - Dimensional in vitro model of wound regeneration. Tissue Eng. 2002; 8(5): 787 - 797.
33. Gerding R, Emerman C, Effron D, Lukens I, Fratianne R. Outpatient management of partial - thickness burns: Biobrane versus 1% silver sulfadiazine. Ann Emerg Med. 1990; 19(2):
121 - 124.
34. Goldman, R.. Growth factors and chronic wound healing: Past, present, and future. Adv Skin Wound Care. 2004; 17(1): 24 - 35.
35. Green H, Kehinde O y Thomas J.. Growth of cultured human epidermal cells into múltiple epithelia suitable for grafting. Proc. Nati. Acad. Sci. U S A. 1979; 76(1 1): 5665 - 5668.
36. Green H.. Cultures cells for the treatment of disease. Sci. Am. 1991 ; 265(5):96 - 102.
37. Haake A, Scout G, Holbrook K. 2001. Structure and function of the skin: overview of the epidermis and dermis. En: The biology of the skin.
38. Freinkel R, Woodley D. The parthenon publishing group. pp: 19 - 45.
39. Harding K, Morris H, Patel G.. Healing Chronic Wounds. BMJ 2002; 324: 160 - 163.
40. Henry G y Garner W.. Inflammatory mediators in wound healing. Surg. Clin. North Am. 2003; 83(3): 483 - 507.
41. Herouy Y, Trefzer D, Hellstern MO, Stark GB, Vanscheidt W, Schopf E, Norgauer J.. Plasminogen activation in venous leg ulcers. Br J. Dermatol. 2000; 143(5): 930 - 936.
42. Hib, J. 2001. Histología Di Fiore. En: Tejido Conectivo. Hib, J (ed)
Editorial El Ateneo, Argentina, pp 35 - 45.
43. Jiménez PA, Jiménez SE.. Tissue and cellular approaches to wound repair. Am J Surg. 2004; 187(5A): 56S - 64S.
44. Juhlin L.. Hyaluronan in skin. J Int Med. 1997;242(1): 61 - 66.
45. Kurkinen M, Vaheri A, Roberts PJ, Stenman S.. Sequential appearance of fíbronectin and collagen in experimental granulation tissue. Lab Invest. 1980; 43(1): 47 - 51.
46. Lanza R, Langer R, Vacanti J. 2000. Principies of Tissue Enginering. Naughton G (ed). En: Dermal equivalents. Academic Press, New York, pp 891 - 901.
47. Laurent T y Fraser J. Hyaluronan. FASEB J. 1992; 6: 2397 - 2404.
48. Liu H, Mao J, Yao K, Yang G, Cui L, Cao Y. A study on a chitosangelatin-hyaluronic acid scaffold as artificial skin in vitro and its tissue engineering applications. J Biomater Sci Polym Ed. . 2004; 15(1): 25 - 40.
49. Lutolf M y Hubbell J. Synthetic biomaterials as instructive extracellular microenvironments for morphogenesis in Tissue Engineering. Nat Biotechnol. 2005; 23 (1): 47 - 55.
50. Lynch S, Colvin R, Antoniades H. Growth factors in wound healing. Single and synergistic effects on partial thickness porcine skin wound. J. Clin. Invest. 1989; 84(2): 640 -
646.
51. Mansbridge J, Liu K, Patch R, Symons K, Pinney E.. Three - dimensional fibroblast culture implant for the treatment of diabetic foot ulcers: metabolic activity and therapeuctic range. Tissue Eng. 1998; 4 (4):403 - 14.
52. MINISTERIO DE SALUD de Chile. 2007. Guía Clínica Gran Quemado. Serie Guías Clínicas MINSAL N° 55.
53. Navarrete G.. Histología de la piel. Rev Fac Med UNAM. 2003; 46 (4): 130 - 133.
54. Noordenbos J, Dore C, Hansbrough JF.. Safety and efficacy of TransCyte for the treatment of partial - thickness burns. J Burn Care Rehabil. 1999; 20(4): 275 - 281.
55. Paul W y Sharma C. Chitosan and Alginate Wound Dressings: A Short Review. Trends Biomater. Artif. Organs. 2004; 18 (1): 18 - 23. 56. Pham H, Rich J y Veves A. Using living skin equivalents for diabetic foot ulceration. Int J Low Extrem Wounds. 2002; 1 (1): 27 - 32.
57. Sage E.. Regulation of interactions between cells and extracellular matrix: a command performance on several stages. J. Clin. Invest. 2001 ; 107 (7): 781 - 783.
58. Schilling J.. Wound healing. Surg. Clin. North Am. 1976; 56: 859.
59. Smith D, McHugh T, Phillips L, Robson M y Heggers P,. Biosynthetic compound dressing - management of hand burns. Burnsl988; Incl Therm Inj. 14(5): 405 - 408
60. Smola H, Thiekotter G y Fusenig N.. Mutual induction of growth factor gene expression in by epidemial - dermal cell interaction. J. Cell Biol. 1993; 122 (2): 417 - 429.
61. Sosa A, Álvarez C, Cuenca J, Juárez E, Kuri - Harcuch W.. Cir Plast. 1999; 9 (3): 126 - 129.
62. Tamariz - Domínguez E, Castro F, Kuri Harcuch W. Growth factors and extracellular matrix proteins during wound healing promoted with frozen cultured sheets of human epidemial keratinocytes. Cell Tissue Res. 2002; 307(1): 79 - 89.
63. UDL Labs. 2008. UDL Laboratories, http://www.udllabs.com (ingreso el 27 de Agosto de 2008)
64. Van Dorp A, Verhoeven M, Koerten H, Van Der Nat T - Van Der Meij TH, Van Blitterswijk C, Ponec M.. Dermal regeneration in full - thickness wounds in Yucatán miniature pigs using a biodegradable copolymer. Wound Repair Reg. 1998; 6(6): 556 - 568.
65. Veves A, Falanga V, Armstrong D, Sabolinski M.. Graftskin, a human skin equivalent is effective in the management of noninfected neuropathic diabetic foot ulcers: a prospective randomized multicenter clinical trial. Diabetes Care 2001 ; 24(2): 290 - 295.
66. Wedmore I, McManus J, Pusateri A, Holcomb J.. A special report on the chitosan - based hemostatic dressing: Experience in current combat operations. J Trauma. 2006; 60(3): 655 - 658. 67. WHO. 2008. World Health Organization. http://www.who.int/en (ingreso el 20 de Agosto de 2008). 68. Witte M y Barbul A.. Role of nitric oxide in wound repair. Am. J. Surg. 2002; 183(4): 406 - 412.
69. Young ME, Acevedo C, Weinstein C, Brown D, Tapia, S, Albornoz F. Memoria Descriptiva Solicitud de Patente para el Sistema de Implante Integrado. Junio 2006.
DESCRIPCION DE LAS FIGURAS
Figura 1: Estructura de la piel. (1) Pelo, (2) glándulas sudoríparas, (3) lámina
basal, (4) vasos sanguíneos (Hib, 2001)
Figura 2. Histología e Inmunohistoquímica de células microencapsuladas. A, una célula en una zona homogénea de fibrina teñida con azul de metileno (día de microencapsulación); B, célula en metafase ubicada cerca de la fibrina teñida con eritrosina (48 horas después de la microencapsulación); C, tres células embebidas en el gel de fibrina (24 horas después de la microencapsulación); D, un par de células ubicadas en los poros de la matriz de fibrina (48 horas después de la microencapsulación); E, grupo de células ubicadas dentro del gel de fibrina (96 horas después de la microencapsulación); F, ampliación del racimo de células de la Figura E (flechas) donde se observa una célula en metafase; G-I, Inmunohistoquímica de un racimo de células creciendo en un gel de fibrina; G, control con tinción Arteta; H, inmunolocalización para citoqueratina e I, inmunolocalización para vimentina (Acevedo y col., 2008).
Figura 3. Estudio de estabilidad de coágulos seleccionados (F17, F22, F23, F27). Panel A: apariencia a tiempo de inicio. Panel B: apariencia a los tres días post-incubación a 37°C.
Figura 4. Curvas de crecimiento para fibroblastos humanos, cultivados sobre las superficies mencionadas. Se indican diferencias estadísticamente significativas en crecimiento con respecto al día 0 (*) (ANOVA, p < 0,05).

Claims

REIVINDICACIONES
1. Proceso de preparación de un gel de fibrina autóloga o desde sangre compatible para proliferación y vehiculización celular CARACTERIZADO porque comprende los pasos de: a) Tomar una cantidad de sangre del mismo paciente, a razón de 200 DL por cm de implante a preparar, usando citrato sódico como anticoagulante en una concentración de 0,09 g por mL de sangre
b) Separar el plasma citratado mediante centrifugación a 3000rpm por diez minutos a 4°C. Re-suspender las células a vehiculizar en el plasma obtenido en el paso anterior- c) Agregar a la suspensión obtenida en el paso anterior una solución de CaCl2 10% para formar el gel ya sea como coágulo aislado o al interior de una matriz porosa.
Cultivar el gel en incubador a 37°C en ambiente humidificado y 5% de C02, con fines de crecimiento celular.
2. Proceso de acuerdo a la reivindicación 1, CARACTERIZADO en que la muestra de sangre del paciente o sangre compatible es mantenida no coagulada mediante citrato de sodio.
3. Proceso de acuerdo a la reivindicación 2, CARACTERIZADO en que la muestra de sangre del paciente o sangre compatible, es mantenida no coagulada preferentemente utilizando citrato de sodio.
4. Proceso de acuerdo a la reivindicación 3, CARACTERIZADO en que la muestra de sangre del paciente o sangre compatible es mantenida no coagulada preferentemente utilizando citrato de sodio en una relación de 2,5 mL de sangre con alrededor de 0,05 a 0,1 g/mL de citrato de sodio
5. Proceso de acuerdo a la reivindicación 3, CARACTERIZADO en que la muestra de sangre del paciente o sangre compatible es mantenida no coagulada preferentemente utilizando citrato de sodio en una relación de:
• ΙΟΟμΙ. de plasma citratado con ΙΟΟμΙ. de solución de CaCl2 30mM.
• ΙΟΟμί de plasma citratado con 150μί de solución de CaCl2 30mM
· · ΙΟΟμΙ de plasma citratado con 200μΙν de solución de CaCl2 3 OmM
• ΙΟΟμΙ. de plasma citratado con 75μί de solución de CaCl2 40mM.
• ΙΟΟμί de plasma citratado con ΙΟΟμί de solución de CaCl2 40mM.
• ΙΟΟμί de plasma citratado con 150μΙ. de solución de CaCl2 40mM.
• ΙΟΟμί de plasma citratado con 200μί de solución de CaCl2 40mM.
• 100 μί de plasma citratado con 5 Ομί de solución de CaCl2 5 OmM.
• 100 μί de plasma citratado con 75μΙ. de solución de CaCl2 50mM.
• 100 μΐ. de plasma citratado con ΙΟΟμΙ^ de solución de CaCl2 50mM.
6. Proceso de acuerdo a la reivindicación 1, CARACTERIZADO porque la cantidad de sangre extraída al paciente o sangre compatible es entre alrededor de 2,5 mL a 250 mL.
7. Proceso de acuerdo a la reivindicación 6, CARACTERIZADO porque alrededor de 2,5 a 250 mL de sangre en citrato de sodio es sometida a centrifugación a 453 x g por 5 minutos.
8. Proceso de acuerdo a la reivindicación 7, CARACTERIZADO en que el producto de la centrifugación debe ser congelado a temperaturas entre -20°C a -86°C hasta su utilización.
9. Proceso de acuerdo a la reivindicación 1, CARACTERIZADO porque para obtener el gel de fibrina autóloga o de sangre compatible se requiere preparar una matriz polimérica de quitosano-gelatina-ácido hialurónico.
10. Gel de fibrina autóloga o de sangre compatible CARACTERIZADO porque es obtenido mediante el proceso de la reivindicación 1.
1 1. Uso del gel de fibrina autóloga o de sangre compatible CARACTERIZADO porque sirve para uso quirúrgico, sellamiento de heridas o lesiones cutáneas, lesiones de cartílago, gingivales u óseas, conección de componentes biológicos, reemplazamiento, integración de suturas quirúrgicas y cualquier aplicación en el campo de la ingeniería de tejidos
PCT/CL2012/000039 2011-08-03 2012-08-03 Preparación de gel de fibrina útil como sistema de implante. WO2013016836A1 (es)

Priority Applications (5)

Application Number Priority Date Filing Date Title
BR112014002628A BR112014002628A2 (pt) 2011-08-03 2012-08-03 processo para a preparação de um gel de fibrina, gel de fibrina e uso do gel de fibrina
EP12819721.7A EP2740443A4 (en) 2011-08-03 2012-08-03 PREPARATION OF FIBRINGEL FOR USE AS IMPLANT SYSTEM
US14/235,909 US20140242181A1 (en) 2011-08-03 2012-08-03 Preparation of fibrin gel for use as implant system
JP2014523156A JP2014524269A (ja) 2011-08-03 2012-08-03 自己移植システムの調製方法およびこれにより得られた移植システム
IL230762A IL230762A0 (en) 2011-08-03 2014-02-02 A method for preparing an implant system originating from a patient and an implant system thus obtained

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CL1870-2011 2011-08-03
CL2011001870A CL2011001870A1 (es) 2011-08-03 2011-08-03 Proceso de preparacion de un gel de fibrina autologo o desde sangre compatible para proliferacion y vehiculizacion celular; gel de fibrina o de sangre compatible; uso del gel de fibrina o de sangre compatible para uso quirurgico.

Publications (1)

Publication Number Publication Date
WO2013016836A1 true WO2013016836A1 (es) 2013-02-07

Family

ID=50436515

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CL2012/000039 WO2013016836A1 (es) 2011-08-03 2012-08-03 Preparación de gel de fibrina útil como sistema de implante.

Country Status (9)

Country Link
US (1) US20140242181A1 (es)
EP (1) EP2740443A4 (es)
JP (1) JP2014524269A (es)
BR (1) BR112014002628A2 (es)
CL (1) CL2011001870A1 (es)
CO (1) CO7020845A2 (es)
IL (1) IL230762A0 (es)
PE (1) PE20141248A1 (es)
WO (1) WO2013016836A1 (es)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9680185B2 (en) 2014-10-02 2017-06-13 Silatronix, Inc. Organosilicon-containing electrolyte compositions having enhanced electrochemical and thermal stability
RU2758260C1 (ru) * 2020-12-24 2021-10-27 Федеральное государственное бюджетное научное учреждение "Научно-исследовательский институт комплексных проблем сердечно-сосудистых заболеваний" (НИИ КПССЗ) Способ изготовления аутологичного фибрина с регулируемым содержанием фибриногена без использования экзогенного тромбина

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA2983373C (en) 2015-04-23 2018-12-11 Bone Therapeutics S.A. In vitro preservation of therapeutic cells
AU2016343292B9 (en) * 2015-10-19 2017-07-20 Skin Tissue Engineering Pty Ltd Porous matrix with incorporated cells

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5185001A (en) 1990-01-18 1993-02-09 The Research Foundation Of State University Of New York Method of preparing autologous plasma fibrin and application apparatus therefor
EP0820314A1 (en) 1995-04-06 1998-01-28 Hamilton Civic Hospitals Research Development, Inc. Autologous fibrin glue and methods for its preparation and use
WO1998011925A1 (en) 1996-09-18 1998-03-26 Flavio Tarantino Process of preparation of an autologous fibrin glue
ES2132027A1 (es) * 1997-07-04 1999-08-01 Comunitario De Transfusion Del Desarrollo de una piel artificial mediante cultivo de queratinocitos sobre una base de fibrina y fibroblastos humanos y metodo de preparacion de esta piel para trasplante.
US5935437A (en) 1995-03-24 1999-08-10 Johnson & Johnson Medical, Inc. Preparation of autologous plasma and fibrin gel
US6368298B1 (en) 1997-06-24 2002-04-09 Roberto Beretta Preparing autologous fibrin glue
US6444228B1 (en) 1996-04-30 2002-09-03 Medtronic, Inc. Autologous fibrin sealant and method for making the same
US20020159985A1 (en) 1996-04-30 2002-10-31 Baugh Robert F. Autologous fibrin sealant and method for making the same
WO2007021344A1 (en) 2005-08-17 2007-02-22 Cascade Medical Enterprises, Llc Systems and methods for preparing autologous fibrin glue
US20090203613A1 (en) 1997-06-24 2009-08-13 Cascade Medical Enterprises, Llc Systems and methods for preparing autologous fibrin glue
US20090258056A1 (en) 1997-06-24 2009-10-15 Cascade Medical Enterprises, Llc Systems and methods for preparing autologous fibrin glue
EP2165678A1 (en) * 2001-03-01 2010-03-24 Centro De Investigaciones Energeticas Medioambientales Y Tecnologicas (C.I.E.M.A.T.) Artificial dermis and production method therefor

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8798932B2 (en) * 2008-10-31 2014-08-05 The Invention Science Fund I, Llc Frozen compositions and methods for piercing a substrate

Patent Citations (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5185001A (en) 1990-01-18 1993-02-09 The Research Foundation Of State University Of New York Method of preparing autologous plasma fibrin and application apparatus therefor
US5935437A (en) 1995-03-24 1999-08-10 Johnson & Johnson Medical, Inc. Preparation of autologous plasma and fibrin gel
US6197194B1 (en) 1995-03-24 2001-03-06 Elaine Whitmore Single use system for preparing autologous plasma and fibrin gel
EP0820314A1 (en) 1995-04-06 1998-01-28 Hamilton Civic Hospitals Research Development, Inc. Autologous fibrin glue and methods for its preparation and use
US20020159985A1 (en) 1996-04-30 2002-10-31 Baugh Robert F. Autologous fibrin sealant and method for making the same
US6444228B1 (en) 1996-04-30 2002-09-03 Medtronic, Inc. Autologous fibrin sealant and method for making the same
US6830762B2 (en) 1996-04-30 2004-12-14 Medtronic, Inc. Autologous fibrin sealant and method for making the same
US20050152886A1 (en) 1996-04-30 2005-07-14 Medtronic, Inc. Autologous fibrin sealant and method for making the same
US7811607B2 (en) 1996-04-30 2010-10-12 Arteriocyte Medical Systems, Inc. Autologous fibrin sealant and method for making the same
WO1998011925A1 (en) 1996-09-18 1998-03-26 Flavio Tarantino Process of preparation of an autologous fibrin glue
US6368298B1 (en) 1997-06-24 2002-04-09 Roberto Beretta Preparing autologous fibrin glue
US20090203613A1 (en) 1997-06-24 2009-08-13 Cascade Medical Enterprises, Llc Systems and methods for preparing autologous fibrin glue
US20090258056A1 (en) 1997-06-24 2009-10-15 Cascade Medical Enterprises, Llc Systems and methods for preparing autologous fibrin glue
ES2132027A1 (es) * 1997-07-04 1999-08-01 Comunitario De Transfusion Del Desarrollo de una piel artificial mediante cultivo de queratinocitos sobre una base de fibrina y fibroblastos humanos y metodo de preparacion de esta piel para trasplante.
EP2165678A1 (en) * 2001-03-01 2010-03-24 Centro De Investigaciones Energeticas Medioambientales Y Tecnologicas (C.I.E.M.A.T.) Artificial dermis and production method therefor
JP2010115507A (ja) 2002-01-15 2010-05-27 Roberto Beretta 自己フィブリン糊を調製するためのシステムおよび方法
WO2007021344A1 (en) 2005-08-17 2007-02-22 Cascade Medical Enterprises, Llc Systems and methods for preparing autologous fibrin glue

Non-Patent Citations (73)

* Cited by examiner, † Cited by third party
Title
"Cigna Healthcare Coverage Position. Tissue", ENGINEERED SKIN SUBSTITUTE AND GROWTH FACTORS, vol. 0068, 2008, pages 1 - 40
"UDL Laboratories", 27 August 2008
ABRAHAM D; SHIWEN X; BLACK C; SA S; XU Y; LEASK A: "Tumor necrosis factor alpha suppresses the induction of connective tissue growth factor by transforming growth factor- beta in normal and scleroderma fibroblasts", J. BIOL. CHEM., vol. 275, no. 20, 2000, pages 15220 - 15225
ACEVEDO C. ET AL., BIOPROCESS BIOSYST ENG., vol. 32, no. 3, 2009, pages 341 - 51
ACEVEDO C; WEINSTEIN C; BROWN D; HUEBNER H; BUCHHOLZ R; YOUNG ME: "A mathematical model for the design of fibrin microcapsules with skin cells", BIOPROCESS BIOSYST ENG., vol. 32, no. 3, 2009, pages 341 - 51
AGUAYO B.: "Manejo inicial of las quemaduras", REV. CHIL. PEDIATR., vol. 70, no. 4, 1999, pages 337 - 347
ALEKSANDRA WYSOCKA; KAROLINA MANN; HENRYK BURSIG; JULIUSZ DEC; TADEUSZ S: "Chondrocyte suspension in fibrin glue", GAZ'DZIK CELL TISSUE BANK, vol. 11, 2010, pages 209 - 215
BACAKOVA L; FILOVA E; RYÁCEK F; SVORCIK V; STARY V.: "Cell adhesion on artificial materials for Tissue Engineering", PHYSIOL. RES., vol. 53, no. 1, 2004, pages S35 - S45
BAILEY J; OLLIS D: "Biochemical Engineering Fundamentais", 1986, MCGRAW - HILL
BAR-MEIR E; MENDES D; WINKLER E: "Reviews: Skin substitutes", IMAJ., vol. 8, no. 3, 2006, pages 188 - 191
BOLIVAR-FLORES; Y KURI - HARCUCH W: "Cure of acute, chronic, and complicated leg ulcers with frozen allogenic human epidemial cultures", HOME HEALTH CARE CONSULTANT, vol. 7, no. 4, 2000, pages 1 1 - 16
BROUGHTON G; JANIS J; ATTINGER C.: "The Basic Science of Wound Healing", PLAST. RECONSTR. SURG., vol. 1 17, 2006, pages 12S - 34S
BURKE J; YANNAS I; QUINBY W; BONDOC C; JUNG W: "Succesful use of physiologically aceptable artificial skin in the treatment of extensive burn injury", ANN SURG., vol. 194, no. 4, 1981, pages 413 - 428
CASTILLO P. QUEMADURAS: "Conceptos para el medico general", CUAD. CIR., vol. 17, no. 1, 2003, pages 58 - 63
CASTILLO P: "La piel como fuente of malignidad", REV. CHIL. PEDIATR., vol. 72, no. 5, 2001, pages 466 - 472
CASTILLO P; SAGUES R; URREA C; BARDISA J; LOPEZ A.: "Colgajo sural en ulceras venosas cr6nicas of piernas", REV. CHIL. CIR., vol. 56, no. 5, 2004, pages 475 - 480
CIENFUEGOS R; SIERRA E; JUAREZ E; KURI-HARCUCH W: "Aloinjertos of epidermis cultivada para areas donadoras of piel y lesiones of espesor total en pacientes politraumatizados", AN MED ASOC MED HOSP ABC, vol. 48, no. 2, 2003, pages 84 - 88
CLARK R.: "The molecular and cellular biology of wound repair", 1996, PLENUM, article "Wound repair: overview and general considerations", pages: 3 - 50
COX S; COLE M; TAWIL B: "Behavior of human termal fibroblasts in Three - Dimensional fibrin clots: dependence on fibrinogen and thrombin concentration", TISSUE ENG., vol. 10, no. 5 - 6, 2004, pages 942 - 954
CUENCA J; ALVAREZ C.: "Injertos en malla 1 :6 cubiertos con aloinjertos of epidermis cultivada en areas cruentas por quemadura", CIR. PLAST., vol. 13, no. 1, 2003, pages 13 - 17
CURRIE L; SHARPE J; MARTIN R.: "The use of fibrin glue in skin grafts and Tissue - Engineered skin replacement: A review", PLAST. RECONSTR. SURG., vol. 108, 2001, pages 1713 - 1726
DAVID M. DOHAN EHRENFEST; PIERRE DOGLIOLI; GIUSEPPE M. OF PEPPO; MARCO DEL CORSO; JEAN-BAPTISTE CHARRIER: "Choukroun's platelet-rich fibrin (PRF) stimulates in vitro proliferation and differentiation of human oral bone mesenchymal stem cell in a dose- dependent way", ARC. ORAL BIOL, vol. 55, 2010, pages 185 - 194
DIEGELMANN, R: "Analysis of collagen synthesis", METHODS MOL. MED., vol. 78, 2003, pages 349
DINI V; ROMANELLI M; PIAGGESI A; STEFANI A; MOSCA F: "Cutaneous Tissue Engineering and lower extremity rounds", INT J LOW EXTREM WOUNDS, vol. 5, no. 1, 2006, pages 27 - 34
EHRENREICH M; RUSZCZAK Z: "Tissue - engineering wound coverings. Important options for the clinician", ACTA DERMATOVEN APA, vol. 15, no. 1, 2006, pages 5 - 11
EISENBUD D; HUANG N; LUKE S; SILBERKLANG M: "Skin substitutes and wound healing: current status and challenges", WOUNDS, vol. 16, no. 1, 2004, pages 2 - 17
ENRIONE J. ET AL.: "Characterization of a gelatin/chitosan/hyaluronan scaffold-polymer", ELECTRONIC JOURNAL OF BIOTECHNOLOGY, vol. 13, no. 5, 15 September 2010 (2010-09-15), XP055123541 *
FREINKEL R; WOODLEY D, THE PARTHENON PUBLISHING GROUP, pages 19 - 45
FUKASAWA M; ABE H; MASAOKA T: "The hemostatic effect of deacetylated chitin membrane on peritoneal injury in rabbit model", SURG. TODAY, vol. 22, no. 4, 1992, pages 333 - 338
GARCIA GUEVARA ET AL.: "Aplicaci6n of fibrina rica en plaquetas (frp) posterior a extracciones dentarias", THE PRELIMINARY PROGRAM FOR IADR VENEZUELAN DIVISION ANNUAL MEETING, 15 November 2010 (2010-11-15)
GEER D; SWARTZ B.; ANDREADIS S: "Fibrin promotes migration in a Three - Dimensional in vitro model of wound regeneration", TISSUE ENG., vol. 8, no. 5, 2002, pages 787 - 797
GERDING R; EMERMAN C; EFFRON D; LUKENS I; FRATIANNE R: "Outpatient management of partial - thickness bums: Biobrane versus 1% silver sulfadiazine", ANN EMERG MED., vol. 19, no. 2, 1990, pages 121 - 124
GOLDMAN, R: "Growth factors and chronic wound healing: Past, present, and future", ADV SKIN WOUND CARE, vol. 17, no. 1, 2004, pages 24 - 35
GREEN H.: "Cultures cells for the treatment of disease", SCI. AM., vol. 265, no. 5, 1991, pages 96 - 102
GREEN H; KEHINDE O; THOMAS J: "Growth of cultured human epidermal cells into multiple epithelia suitable for grafting", PROC. NATI. ACAD. SCI. USA, vol. 76, no. L 1, 1979, pages 5665 - 5668
GUIA CLINICA GRAN QUEMADO. SERIE GUMS CLINICAS MINSAL, 2007
HAAKE A; SCOUT G; HOLBROOK K: "Structure and function of the skin: overview of the epidermis and dermis", THE BIOLOGY OF THE SKIN, 2001
HARDING K; MORRIS H; PATEL G: "Healing Chronic Wounds", BMJ, vol. 324, 2002, pages 160 - 163
HENRY G; GARNER W: "Inflammatory mediators in wound healing", SURG. CLIN. NORTH AM., vol. 83, no. 3, 2003, pages 483 - 507
HEROUY Y; TREFZER D; HELLSTERN MO; STARK GB; VANSCHEIDT W; SCHOPF E; NORGAUER J: "Plasminogen activation in venous leg ulcers", BR J. DERMATOL, vol. 143, no. 5, 2000, pages 930 - 936
HIB, J., HISTOLOGIA DI FIORE. EN: TEJIDO CONECTIVO, 2001, pages 35 - 45
JIMENEZ PA; JIMENEZ SE: "Tissue and cellular approaches to wound repair", AM J SURG., vol. 187, no. 5A, 2004, pages 56S - 64S
JOYCE MARIA ANNICHINO-BIZZACCHI; BEATRIS RODRIGUES ROSSI: "Use of autologous fibrin glue in dermatologic surgery: application of skin graft and second intention healing", SAO PAULO MED. J., vol. 116, no. 4, 1998
JUHLIN L.: "Hyaluronan in skin", J INT MED., vol. 242, no. 1, 1997, pages 61 - 66
KENJIRO NAKAMA ET AL.: "Use of autologous fibrin sealants to treat ganglion cysts: a report of two cases", J ORTHOP SURG, vol. 18, no. 1, 2010, pages 104 - 106
KOJUN OKAMOTO ET AL.: "The use of autologous fibrin glue for the treatment of postoperative fecal fistula following an appendectomy: report of a case", SURG TODAY, vol. 33, no. 7, pages 550 - 552
KURKINEN M; VAHERI A; ROBERTS PJ; STENMAN S: "Sequential appearance of fibronectin and collagen in experimental granulation tissue", LAB INVEST., vol. 43, no. 1, 1980, pages 47 - 51
LANZA R; LANGER R; VACANTI J: "Principies of Tissue Enginering", 2000, ACADEMIC PRESS, pages: 891 - 901
LAURENT T; FRASER J. HYALURONAN, FASEB J., vol. 6, 1992, pages 2397 - 2404
LIU H; MAO J; YAO K; YANG G; CUI L; CAO Y: "A study on a chitosangelatin-hyaluronic acid scaffold as artificial skin in vitro and its tissue engineering applications", J BIOMATER SCI POLYM ED., vol. 15, no. 1, 2004, pages 25 - 40
LUTOLF M; HUBBELL J: "Synthetic biomaterials as instructive extracellular microenvironments for morphogenesis in Tissue Engineering", NAT BIOTECHNOL., vol. 23, 2005, pages 47 - 55
LYNCH S; COLVIN R; ANTONIADES H: "Growth factors in wound healing. Single and synergistic effects on partial thickness porcine skin wound", J. CLIN. INVEST., vol. 84, no. 2, 1989, pages 640 - 646
MANSBRIDGE J; LIU K; PATCH R, SYMONS K; PINNEY E: "Three - dimensional fibroblast culture implant for the treatment of diabetic foot ulcers: metabolic activity and therapeuctic range", TISSUE ENG., vol. 4, no. 4, 1998, pages 403 - 14
MAZLYZAM ET AL.: "Reconstruction of living bilayer human skin equivalent utilizing human fibrin as a scaffold", BURNS, vol. 33, no. 3, 21 March 2007 (2007-03-21), pages 355 - 363, XP005930055 *
NAVARRETE G: "Histologia of la piel", REV FAC MED UNAM, vol. 46, no. 4, 2003, pages 130 - 133
NOORDENBOS J; DORE C; HANSBROUGH JF: "Safety and efficacy of TransCyte for the treatment of partial - thickness burns", J BURN CARE REHABIL, vol. 20, no. 4, 1999, pages 275 - 281
PAUL W; SHARMA C.: "Chitosan and Alginate Wound Dressings: A Short Review", TRENDS BIOMATER. ARTIF. ORGANS, vol. 18, no. 1, 2004, pages 18 - 23
PHAM H; RICH J; VEVES A: "Using living skin equivalents for diabetic foot ulceration", INT J LOW EXTREM WOUNDS, vol. 1, no. 1, 2002, pages 27 - 32
SAGE E.: "Regulation of interactions between cells and extracellular matrix: a command performance on several stages", J. CLIN. INVEST., vol. 107, no. 7, 2001, pages 781 - 783
SCHILLING J.: "Wound healing", SURG. CLIN. NORTH AM., vol. 56, 1976, pages 859
See also references of EP2740443A4
SMITH D; MCHUGH T; PHILLIPS L; ROBSON M; HEGGERS P: "Biosynthetic compound dressing - management of hand burns", INCL THERM INJ., vol. 14, no. 5, 1988, pages 405 - 408
SMOLA H; THIEKOTTER G; FUSENIG N: "Mutual induction of growth factor gene expression in by epidemial - dermal cell interaction", J. CELL BIOL., vol. 122, no. 2, 1993, pages 417 - 429
SOSA A; ALVAREZ C; CUENCA J; JUAREZ E; KURI - HARCUCH W., CIR PLAST., vol. 9, no. 3, 1999, pages 126 - 129
TAMARIZ - DOMINGUEZ E; CASTRO F; KURI HARCUCH W: "Growth factors and extracellular matrix proteins during wound healing promoted with frozen cultured sheets of human epidemial keratinocytes", CELL TISSUE RES., vol. 307, no. 1, 2002, pages 79 - 89
TOMOKO ICHIYANAGI; KOUKI ANABUKI; YOJI NISHIJIMA; HIROHISA ONO: "Isolation of mesenchymal stem cells from bone marrow wastes of spinal fusi6n procedure (TLIF) for low back pain patients and preparation of bone dusts for transplantable autologous bone gran with a serum glue", BIOSCIENCE TRENDS, vol. 4, no. 3, 2010, pages 110 - 118
VAN DORP A; VERHOEVEN M; KOERTEN H; VAN DER NAT T; VAN DER MEIJ TH; VAN BLITTERSWIJK C; PONEC M.: "Dermal regeneration in full - thickness wounds in Yucatan miniature pigs using a biodegradable copolymer", WOUND REPAIR REG., vol. 6, no. 6, 1998, pages 556 - 568
VEVES A; FALANGA V; ARMSTRONG D; SABOLINSKI M.: "Graftskin, a human skin equivalent is effective in the management of noninfected neuropathic diabetic foot ulcers: a prospective randomized multicenter clinical trial", DIABETES CARE, vol. 24, no. 2, 2001, pages 290 - 295
VIVOSTAT@ AUTOLOGOUS FIBRIN SEALANT, 19 May 2011 (2011-05-19)
WEDMORE I; MCMANUS J; PUSATERI A; HOLCOMB J: "A special report on the chitosan - based hemostatic dressing: Experience in current combat operations", J TRAUMA, vol. 60, no. 3, 2006, pages 655 - 658
WITTE M; BARBUL A: "Role of nitric oxide in wound repair", AM. J. SURG., vol. 183, no. 4, 2002, pages 406 - 412
WORLD HEALTH ORGANIZATION, 2008, Retrieved from the Internet <URL:http://www.who.int/en>
YOUNG ME; ACEVEDO C; WEINSTEIN C; BROWN D; TAPIA, S; ALBORNOZ F., MEMORIA DESCRIPTIVA SOLICITUD OF PATENTE PARA EL SISTEMA OF IMPLANTE INTEGRADO, June 2006 (2006-06-01)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9680185B2 (en) 2014-10-02 2017-06-13 Silatronix, Inc. Organosilicon-containing electrolyte compositions having enhanced electrochemical and thermal stability
US9799918B2 (en) 2014-10-02 2017-10-24 Silatronix, Inc. Organosilicon—containing electrolyte compositions having enhanced electrochemical and thermal stability
US10790536B2 (en) 2014-10-02 2020-09-29 Silatronix, Inc. Organosilicon-containing electrolyte compositions having enhanced electrochemical and thermal stability
RU2758260C1 (ru) * 2020-12-24 2021-10-27 Федеральное государственное бюджетное научное учреждение "Научно-исследовательский институт комплексных проблем сердечно-сосудистых заболеваний" (НИИ КПССЗ) Способ изготовления аутологичного фибрина с регулируемым содержанием фибриногена без использования экзогенного тромбина

Also Published As

Publication number Publication date
PE20141248A1 (es) 2014-10-22
BR112014002628A2 (pt) 2017-08-08
IL230762A0 (en) 2014-03-31
US20140242181A1 (en) 2014-08-28
CO7020845A2 (es) 2014-08-11
JP2014524269A (ja) 2014-09-22
EP2740443A1 (en) 2014-06-11
CL2011001870A1 (es) 2012-01-27
EP2740443A4 (en) 2015-01-07

Similar Documents

Publication Publication Date Title
Edwards et al. Functional analysis reveals angiogenic potential of human mesenchymal stem cells from Wharton’s jelly in dermal regeneration
KR101495281B1 (ko) 피부 재생 또는 상처 치유를 위한 중간엽 줄기세포-하이드로겔-생분해성 또는 중간엽 줄기세포-하이드로겔-비분해성 지지체 조성물
Clark et al. Tissue engineering for cutaneous wounds
ES2326873T3 (es) Dispositivo quirurgico para tratamiento o analisis de la piel.
ES2790300T3 (es) Métodos y medios para ingeniería de tejidos blandos
ES2600793T3 (es) Método para la preparación de plasma rico en plaquetas para usos no procesados y su combinación con las células de piel y hueso
AU700762B2 (en) Artificial skin containing as support biocompatible materials based on hyaluronic acid derivatives
CN106176563B (zh) 人脐带msc无血清培养液脂质体冻干粉及其制备和应用
CA2476247C (en) Compositions for the treatment of skin conditions, disorders or diseases and methods of making and using the same
US11241516B2 (en) Biomaterial scaffold for regenerating the oral mucosa
US9867905B2 (en) Collagen-based matrices with stem cells
WO2002072800A1 (es) Dermis artificial y metodo de obtencion
WO2017043953A2 (es) Proceso de obtención de un compuesto de aspersión de células endoteliales microvasculares de piel y células madre mesenquimales y su método de aplicación para la regeneración tisular
Shukla et al. Acellular dermis as a dermal matrix of tissue engineered skin substitute for burns treatment
CN108619086A (zh) 一种治疗组织损伤的细胞凝胶制剂及其用途和所用的保持冻存细胞活性的凝胶溶液
WO2013016836A1 (es) Preparación de gel de fibrina útil como sistema de implante.
KR20010072553A (ko) 살아있는 키메릭 피부 대체물
Chiu et al. Tissue engineering-based strategies for diabetic foot ulcer management
JP4726300B2 (ja) 移植用マトリックス・タンパク質組成物
US20070258958A1 (en) Interactive wound cover
ES2304321B1 (es) Procedimiento de obtencion de estructuras tridimensionales para ingenieria tisular.
Obulapuram et al. Role of natural cellulose and hydrogel matrices in stem cell therapy of diabetic foot ulcer
WO2018056798A1 (es) Método para preparar un suplemento a partir de cultivos de células mesenquimales de gelatina de wharton y usos del mismo
Rashmi Bioengineered skin grafts for chronic wounds using 3-dimensional hybrid scaffolds made up of silk fibroin, fibrin composite and amnion
RU2616866C1 (ru) Биорезорбируемый микроноситель для доставки клеток в область заживления и регенерации ран

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12819721

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 14016785

Country of ref document: CO

Ref document number: CR2014-000043

Country of ref document: CR

WWE Wipo information: entry into national phase

Ref document number: 000136-2014

Country of ref document: PE

Ref document number: MX/A/2014/001164

Country of ref document: MX

WWE Wipo information: entry into national phase

Ref document number: 230762

Country of ref document: IL

ENP Entry into the national phase

Ref document number: 2014523156

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2012819721

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 14235909

Country of ref document: US

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112014002628

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 112014002628

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20140203