WO2013015267A1 - Radiographic equipment - Google Patents

Radiographic equipment Download PDF

Info

Publication number
WO2013015267A1
WO2013015267A1 PCT/JP2012/068673 JP2012068673W WO2013015267A1 WO 2013015267 A1 WO2013015267 A1 WO 2013015267A1 JP 2012068673 W JP2012068673 W JP 2012068673W WO 2013015267 A1 WO2013015267 A1 WO 2013015267A1
Authority
WO
WIPO (PCT)
Prior art keywords
radiation
unit
light
radiation detector
light emitting
Prior art date
Application number
PCT/JP2012/068673
Other languages
French (fr)
Japanese (ja)
Inventor
大田 恭義
中津川 晴康
西納 直行
Original Assignee
富士フイルム株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 富士フイルム株式会社 filed Critical 富士フイルム株式会社
Publication of WO2013015267A1 publication Critical patent/WO2013015267A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B6/00Apparatus or devices for radiation diagnosis; Apparatus or devices for radiation diagnosis combined with radiation therapy equipment
    • A61B6/46Arrangements for interfacing with the operator or the patient
    • A61B6/461Displaying means of special interest
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B6/00Apparatus or devices for radiation diagnosis; Apparatus or devices for radiation diagnosis combined with radiation therapy equipment
    • A61B6/42Arrangements for detecting radiation specially adapted for radiation diagnosis
    • A61B6/4283Arrangements for detecting radiation specially adapted for radiation diagnosis characterised by a detector unit being housed in a cassette
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B6/00Apparatus or devices for radiation diagnosis; Apparatus or devices for radiation diagnosis combined with radiation therapy equipment
    • A61B6/54Control of apparatus or devices for radiation diagnosis
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B6/00Apparatus or devices for radiation diagnosis; Apparatus or devices for radiation diagnosis combined with radiation therapy equipment
    • A61B6/54Control of apparatus or devices for radiation diagnosis
    • A61B6/542Control of apparatus or devices for radiation diagnosis involving control of exposure

Definitions

  • the present invention relates to a radiation imaging apparatus capable of moving image shooting and still image shooting.
  • the radiation imaging apparatus includes a radiation generator that emits radiation (for example, X-rays) toward a subject, and a radiation detector that is disposed opposite to the radiation generator and detects and images radiation that has passed through the subject. .
  • Some of these radiation imaging apparatuses are capable of both moving image shooting (also referred to as fluoroscopic imaging) and still image shooting (also simply referred to as shooting).
  • the dose of radiation emitted from the radiation generator differs between when shooting moving images and when shooting still images. Movie shooting is performed at a low dose, and is used for positioning a patient for still image shooting, searching for a lesion, and the like. Still image capturing is performed at a high dose, and is used to obtain a clear radiographic image of a lesion. Generally, the dose during still image shooting is about 100 times the dose during moving image shooting.
  • Patent Documents 2 and 3 disclose a first radiation detector that performs still image shooting, and a first field detector that performs moving image shooting with a smaller field of view than the first radiation detector.
  • a radiation imaging apparatus is described in which two radiation detectors are used and arranged in a radiation region from the radiation generator in a state where they are overlapped. When switching from moving image shooting to still image shooting, the second radiation detector is retracted from the radiation irradiation region from the radiation generator, and then the still image shooting is performed by the first radiation detector.
  • the radiographic apparatuses described in Patent Documents 2 and 3 require a mechanical mechanism for moving the second radiation detector in and out of the radiation irradiation area in order to switch between moving image capturing and still image capturing. Therefore, switching between moving image shooting and still image shooting cannot be performed quickly, and there is a possibility of missing a shooting opportunity.
  • An object of the present invention is to provide a radiation imaging apparatus that can quickly and easily switch between moving image shooting and still image shooting.
  • a radiation imaging apparatus of the present invention transmits a first radiation detector that detects radiation emitted from a radiation generator and generates image data, and the first radiation detector.
  • a second radiation detector that detects radiation and generates image data; and a control unit that causes the first radiation detector to perform moving image photographing and causes the second radiation detector to perform still image photographing. ing.
  • a radiation dose measurement unit that measures the dose of the radiation pulse emitted from the radiation generator
  • a dose determination unit that compares the dose measured by the radiation dose measurement unit with a predetermined threshold.
  • the control unit causes the first radiation detector to perform moving image shooting, and the dose determination unit detects a high-dose pulse greater than the threshold. If this happens, the second radiation detector is caused to execute still image shooting.
  • the first radiation detector preferably has a smaller pixel arrangement density than the second radiation detector.
  • the first radiation detector preferably has fewer pixels than the second radiation detector.
  • the first radiation detector has a higher frame rate than the second radiation detector. Further, the first radiation detector preferably has a smaller area than the second radiation detector.
  • the first radiation detector absorbs radiation to generate visible light, and is disposed on the radiation incident side of the light emitting unit, and detects the visible light generated by the light emitting unit.
  • the second radiation detector is arranged on the side opposite to the radiation incident side of the light emitting unit and detects the visible light generated by the light emitting unit to generate image data. It is preferable that it is comprised by the 2nd photon detection part to do.
  • the light emitting portion has a columnar crystal phosphor, and the tip portion of the columnar crystal phosphor faces the first photodetection portion.
  • the first light detection unit preferably has a smaller area than the light emitting unit.
  • the second light detection unit has a smaller area than the light emission unit, and condenses visible light emitted from the light emission unit on the second light detection unit between the light emission unit and the second light detection unit. It is preferable to further include a Fresnel lens.
  • the first radiation detector is disposed on the radiation incident side of the first light emitting unit and absorbs radiation and generates visible light, and visible light generated by the first light emitting unit.
  • a first light detection unit configured to detect light and generate image data
  • the second radiation detector absorbs the radiation transmitted through the first light emission unit and the first light detection unit and is visible.
  • a second light emitting unit for generating light is disposed on the side opposite to the radiation incident side of the second light emitting unit, and visible light generated by the second light emitting unit is detected to generate image data. You may be comprised by the 2nd photon detection part.
  • one of the first light emitting part and the second light emitting part has a columnar crystal phosphor, and the other has a GOS phosphor or a BaFX phosphor.
  • the first radiation detector that detects the radiation emitted from the radiation generator and generates image data, and the radiation that has passed through the first radiation detector are detected and imaged.
  • a second radiation detector for generating data and the first radiation detector is used for moving image shooting and the second radiation detector is used for still image shooting.
  • the moving mechanism of the vessel is not necessary. Further, according to the present invention, since the switching between the moving image shooting and the still image shooting is performed quickly, the shooting opportunity of the still image shooting is not missed.
  • a radiation information system (RIS) 10 is a system for managing information such as medical appointments and diagnosis records in a radiology department in a hospital.
  • the RIS 10 includes a plurality of terminal devices 11, an RIS server 12, a radiography system 13 installed in each radiography room (or operating room) in the hospital, and an in-hospital network NW connected in a wired or wireless manner. It is comprised by.
  • a personal computer (PC) or the like is used, which is operated by a photographer (doctor or radiographer). The photographer operates the terminal device 11 to input / view diagnostic information and facility reservation. A radiographic imaging request (imaging reservation) is also input via the terminal device 11.
  • the RIS server 12 is a computer including a storage unit 12A that stores an RIS database (DB).
  • the storage unit 12A includes patient attribute information (patient name, sex, date of birth, age, blood type, patient ID, etc.), medical history, medical history, history of radiography, and data of radiographic images taken in the past. Other information related to the patient such as information related to the electronic cassette 15 included in each radiation imaging system 13 (identification number, model, size, sensitivity, usable imaging part, use start date, use frequency, etc.) Yes.
  • the RIS server 12 is a process for managing the entire RIS 10 based on the information registered in the storage unit 12A (for example, a process for receiving an imaging request from each terminal device 11 and managing an imaging schedule of each radiation imaging system 13). )I do.
  • the radiation imaging system 13 captures a radiation image instructed from the RIS server 12 according to the operation of a doctor or a radiographer.
  • the radiation imaging system 13 includes a radiation generator 14 that generates radiation, an electronic cassette 15 that detects radiation transmitted through an imaging region of a patient and generates a radiation image, a cradle 16 that charges the electronic cassette 15, and these And a console 17 for controlling the operation of each device.
  • the electronic cassette 15 is a portable radiation imaging apparatus.
  • the radiation imaging room includes a radiation generator 14, a standing table 20 used for radiography of a standing patient 20 ⁇ / b> A (hereinafter referred to as standing imaging), and a supine patient 21 ⁇ / b> A.
  • a supine table 21 used for photographing (hereinafter, referred to as supine photographing) is installed.
  • the standing base 20 is provided with a cassette chamber 22 in which the electronic cassette 15 is mounted.
  • the electronic cassette 15 is loaded into the cassette chamber 22 of the standing base 20.
  • the electronic cassette 15 is loaded into the cassette chamber 23 of the supine position table 21.
  • the radiation generator 14 is supported on the ceiling 26 while supporting the telescopic support 25.
  • a moving mechanism 24 that moves two-dimensionally is provided.
  • pillar 25 is supporting the radiation generator 14 so that rotation of the surroundings of a horizontal axis (arrow A direction) and a vertical axis (arrow B direction) is possible.
  • the cradle 16 is formed with an accommodating portion 16A capable of accommodating the electronic cassette 15.
  • the electronic cassette 15 is accommodated in the accommodating portion 16A when not in use, and the built-in battery is charged in this state.
  • the electronic cassette 15 is taken out of the cradle 16 by the photographer at the time of radiographic image capturing, and is set on the holding unit 22 of the standing base 20 in the case of the standing position imaging, and the supine position base 21 in the case of the standing position imaging. Set in the cassette chamber 23 of the machine.
  • the electronic cassette 15 includes a housing 30, a radiation dose measurement sensor 31, a first light detection unit 32, a light emission unit 33, a second light detection unit 34, a base 35, and a storage case 36. Yes.
  • the radiation dose measurement sensor 31, the first light detection unit 32, the light emission unit 33, and the second light detection unit 34 are stacked in the housing 30 in this order along the radiation incident direction, and each has an area. It has the same panel shape.
  • the housing 30 is made of a radiation transmissive material and has an overall shape of a rectangular parallelepiped.
  • the housing 30 has a top plate 30A formed of a low radiation absorbing material such as carbon.
  • the top plate 30A is irradiated with radiation that has passed through the imaging region of the patient. Portions other than the top plate 30A of the housing 30 are made of ABS resin or the like.
  • the top panel 30A is composed of a plurality of light emitting diodes (LEDs), and the operation state of the electronic cassette 15 such as the operation mode (eg, “ready state” or “data transmitting”) and the remaining battery capacity is indicated by the LED.
  • a display unit 37 is provided for displaying by lighting. Note that the display unit 37 may be a display device configured by a light emitting element other than an LED, a liquid crystal display or an organic EL display that displays a state with characters or the like. Moreover, you may provide the display part 37 in parts other than the top plate 30A.
  • the storage case 35 is provided along one end side in the longitudinal direction of the top plate 30A.
  • the storage case 35 stores a microcomputer (not shown) and a battery (not shown).
  • the battery is chargeable and detachable.
  • Various electronic circuits of the electronic cassette 15 including the radiation dose measuring sensor 31, the first light detection unit 32, and the second light detection unit 34 are operated by electric power supplied from the battery.
  • a radiation shielding member such as a lead plate is provided on the top plate 30 ⁇ / b> A side of the storage case 36.
  • the first light detection unit 32 is configured by forming a plurality of pixels 324 including a photoelectric conversion unit 321, a thin film transistor (TFT: Thin Film Transistor) 322, and a capacitor 323 over an insulating substrate 325. ing.
  • the pixels 324 are arranged in a two-dimensional matrix.
  • the insulating substrate 325 and the layer on which the TFT 322 and the capacitor 323 are formed constitute a so-called TFT active matrix substrate (hereinafter referred to as a TFT substrate) 32A.
  • the TFT 322 is made of amorphous silicon.
  • the insulating substrate 325 is formed of a material having light transmissivity, such as a quartz substrate, a glass substrate, and a resin substrate, and having little radiation absorption.
  • the photoelectric conversion unit 321 includes a first electrode 321A and a second electrode 321B, and a photoelectric conversion film 321C disposed therebetween.
  • the photoelectric conversion film 321C is formed of amorphous silicon, and absorbs visible light emitted from the light emitting unit 33 described later to generate charges.
  • the photoelectric conversion unit 321 constitutes a PIN-type or MIS-type photodiode and is provided on the TFT substrate 32A.
  • a planarizing layer 326 that covers the photoelectric conversion unit 321 is provided on the TFT substrate 32A.
  • the planarization layer 326 is formed of silicon nitride, silicon oxide, or the like, and the surface opposite to the radiation incident side is planarized.
  • the second light detection unit 34 has the same configuration as that of the first light detection unit 32, and the pixels 344 including the photoelectric conversion unit 341, the TFT 342, and the capacitor 343 are arranged in a two-dimensional matrix on the insulating substrate 345. A plurality are formed.
  • the photoelectric conversion unit 341 includes a first electrode 341A and a second electrode 341B, and a photoelectric conversion film 341C disposed therebetween.
  • a planarization layer 346 that covers the photoelectric conversion portion 341 is provided, and the planarization layer 346 has a plane on the radiation incident side that is planarized.
  • the insulating substrate 345 and the layer on which the TFT 342 and the capacitor 343 are formed constitute the TFT substrate 34A.
  • the configuration order of each part with respect to the radiation incident direction is opposite to the configuration order of each part of the first light detection unit 32. That is, the planarization layer 326 of the first light detection unit 32 and the planarization layer 346 of the second light detection unit 34 face each other, and the light emitting unit 33 is disposed therebetween.
  • the light emitting unit 33 generates and emits visible light in response to the incidence of radiation.
  • the second light detection unit 34 has substantially the same planar shape and area as the first light detection unit 32.
  • the planarizing layer 326 of the first light detection unit 32 and the light emitting unit 33 are bonded to each other by a light-transmitting adhesive layer 327.
  • the planarization layer 346 of the second light detection unit 34 and the light emitting unit 33 are bonded to each other with a light-transmitting adhesive layer 347.
  • the insulating substrate 345 of the second light detection unit 34 is bonded to the base 35 with an adhesive layer 348.
  • a radiation dose measuring sensor 31 is formed on the radiation incident side of the first light detection unit 32.
  • a wiring layer 311, an insulating layer 312, a photoelectric conversion unit 313, and a protective layer 314 are sequentially formed on an insulating substrate 325.
  • the wiring layer 311 is a layer in which a wiring 73 (see FIG. 7) described later is patterned on the insulating substrate 315.
  • the photoelectric conversion unit 313 is an element that detects light emitted from the light emitting unit 33 and transmitted through the first light detection unit 32, and a plurality of photoelectric conversion units 313 are formed on the insulating layer 312 in a matrix.
  • the thickness of the radiation dose measuring sensor 31 is about 0.05 mm.
  • the photoelectric conversion unit 313 includes a first electrode 313A and a second electrode 313B, and a photoelectric conversion film 313C disposed therebetween.
  • the photoelectric conversion film 313C is formed of an organic photoelectric conversion material.
  • the photoelectric conversion film 313C is formed by applying an organic photoelectric conversion material onto the second electrode 313B using an inkjet head or the like.
  • the light emitting unit 33 includes a vapor deposition substrate 331, a scintillator 332, and a moisture-proof protective film 333.
  • the vapor deposition substrate 331 is a light transmissive substrate such as a quartz substrate, a glass substrate, or a resin substrate.
  • the scintillator 332 is formed by vapor depositing thallium activated cesium iodide (CsI: Tl) on the vapor deposition substrate 331.
  • the scintillator 332 includes a non-columnar crystal 332A and a plurality of columnar crystals 332B provided on the non-columnar crystal 332A.
  • the moisture-proof protective film 333 is formed of a light-proof moisture-proof material (for example, polyparaxylylene) and covers the periphery of the scintillator 332.
  • the vapor deposition substrate 331 is not necessarily provided.
  • the vapor deposition substrate 331 may be peeled off from the scintillator 332, and the scintillator 332 may be bonded to the second light detection unit 34.
  • the scintillator 332 may be directly deposited on the second light detection unit 34.
  • a phosphor material such as sodium activated cesium iodide (CsI: Na) may be used.
  • the tip portion 332 ⁇ / b> C of the columnar crystal 332 ⁇ / b> B is arranged to face the first light detection unit 32.
  • the vapor deposition substrate 331 is bonded to the second light detection unit 34 with an adhesive or the like.
  • the plurality of columnar crystals 332B are separated from each other through the gap GP.
  • the diameter of each columnar crystal 332B is about several ⁇ m to 10 ⁇ m.
  • the scintillator 332 absorbs radiation that is emitted from the radiation generator 14 and passes through the patient, the top plate 30A, the radiation dose measurement sensor 31, the first light detection unit 32, and the like and is incident on the light emitting unit 33 to generate visible light. appear. Since radiation enters the scintillator 332 from the first light detection unit 32 side, light emission in the scintillator 332 occurs mainly on the distal end portion 332C side. Visible light generated in the scintillator 332 travels toward the first light detection unit 32 and the second light detection unit 34 by the light guide effect of the columnar crystal 332B.
  • the visible light that has traveled toward the first light detection unit 32 is emitted from the pointed tip 332C, passes through the moisture-proof protective film 333, and enters the first light detection unit 32.
  • the first light detection unit It is detected by 32 photoelectric conversion units 321. Further, part of the visible light incident on the first light detection unit 32 passes through the first light detection unit 32 and enters the radiation dose measurement sensor 31. Visible light incident on the radiation dose measurement sensor 31 is detected by the photoelectric conversion unit 313.
  • the light emitting unit 33 and the first light detection unit 32 constitute a first radiation detector 40.
  • the first radiation detector 40 is arranged in the order of the first light detection unit 32 and the light emitting unit 33 along the radiation traveling direction.
  • Such an arrangement method is called an ISS (Irradiation Side Sampling) type.
  • the light emitting unit 33 and the second light detection unit 34 constitute a second radiation detector 41.
  • the second radiation detector 41 is arranged in the order of the light emitting unit 33 and the second light detection unit 34 along the radiation traveling direction.
  • PSS Penetration Side Sampling
  • the light emitting unit 33 and the radiation dose measuring sensor 31 constitute an ISS type radiation dose measuring unit 42.
  • the first radiation detector 40 has high sensitivity to radiation.
  • the arrangement pitch of the pixels 324 is larger than the arrangement pitch of the pixels 344 of the second radiation detector 42 (the arrangement density is small), and the number of pixels 324 (the number of effective pixels) is small. For this reason, the first radiation detector 40 is driven at a higher frame rate than the second radiation detector 42 and is used for moving image shooting. The other second radiation detector 41 is used for still image shooting.
  • the first photodetecting portion 32 extends along the row direction, and includes a plurality of gate wirings 50 for turning on / off each TFT 322, and a column direction intersecting the row direction.
  • a plurality of data wirings 51 are provided for reading out the charges accumulated in the capacitor 323 through the TFT 322 in the on state.
  • the first radiation detector 40 is provided with a gate line driver 52, a signal processing unit 53, and an image memory 54 in addition to the first light detection unit 32.
  • the gate wiring 50 is connected to the gate line driver 52.
  • the data wiring 51 is connected to the signal processing unit 53.
  • the TFTs 322 When charges are accumulated in the capacitor 323, the TFTs 322 are sequentially turned on in units of rows by a signal supplied from the gate line driver 52 via the gate wiring 50.
  • the electric charge accumulated in the capacitor 323 of the pixel 324 in which the TFT 322 is turned on is transmitted through the data wiring 51 as an analog electric signal and input to the signal processing unit 53. In this way, the charges accumulated in the capacitor 323 of each pixel 324 are sequentially read out in units of rows.
  • the signal processing unit 53 includes an amplifier (not shown) and a sample hold circuit (not shown) for each data wiring 51.
  • the electric signal transmitted through each data line 51 is amplified by an amplifier and then held in a sample and hold circuit.
  • a multiplexer (not shown) and an A / D converter (not shown) are sequentially connected to the output side of the sample hold circuit.
  • the electric signal held in each sample and hold circuit is selected by a multiplexer and converted into digital image data by an A / D converter.
  • An image memory 54 is connected to the signal processing unit 53, and image data output from the A / D converter of the signal processing unit 53 is stored in the image memory 54.
  • the second light detection unit 34 is provided with a plurality of gate wirings 60 and a plurality of data wirings 61.
  • the second radiation detector 41 is provided with a gate line driver 62, a signal processing unit 63, and an image memory 64 in addition to the second light detection unit 34.
  • the gate line 60 is connected to the gate line driver 62, and the data line 61 is connected to the signal processing unit 63.
  • An image memory 64 is connected to the signal processing unit 63.
  • the number of the gate wirings 50 and the data wirings 51 is equal to the number of the gate wirings 60 and the data wirings 61 of the second light detection unit 34. Less than the number.
  • the gain of the amplifier of the signal processing unit 53 is set to a value larger than the gain of the amplifier of the signal processing unit 63 in the second radiation detector 41. Yes. Since the configuration of the second radiation detector 41 other than this is the same as the configuration of the first radiation detector 40, detailed description thereof is omitted.
  • the image memories 54 and 64 are connected to a cassette control unit 70 that controls the overall operation of the electronic cassette 15.
  • the cassette control unit 70 is a microcomputer, and includes a CPU 70A, a RAM 70B, and a nonvolatile ROM 70C such as a flash memory.
  • the cassette control unit 70 is connected to a wireless communication unit 71 that wirelessly transmits and receives various types of information to and from external devices.
  • the wireless communication unit 71 corresponds to a wireless LAN (Local Area Network) standard represented by IEEE (Institute of Electrical and Electronics Electronics) (802.11a / b / g / n).
  • the cassette control unit 70 performs wireless communication with the console 17 via the wireless communication unit 71.
  • the radiation dose measuring unit 42 is used for measuring the dose of radiation (radiation dose per unit time) irradiated to the electronic cassette 15 from the radiation generator 14.
  • the radiation generator 14 emits, as radiation, a low-dose pulse for moving image shooting and a high-dose pulse for still image shooting according to the operation of the photographer.
  • the radiation dose measurement sensor 31 of the radiation dose measurement unit 42 is provided with the same number of wirings 73 as the photoelectric conversion unit 313.
  • the radiation dose measurement unit 42 is provided with a signal detection unit 74.
  • Each photoelectric conversion unit 313 is connected to the signal detection unit 74 via a dedicated wiring 73.
  • the signal detection unit 74 includes an amplifier, a sample hold circuit, and an A / D converter (all not shown) for each wiring 73, and is connected to the cassette control unit 70 and the dose determination unit 75.
  • the signal detection unit 74 performs sampling of a signal transmitted from the photoelectric conversion unit 313 via the wiring 73 in a predetermined cycle under the control of the cassette control unit 70, converts the sampled signal into digital data, and determines the dose.
  • the data are sequentially output to the unit 75.
  • the dose determination unit 75 determines the dose of radiation emitted from the radiation generator 14 based on the data input from the signal detection unit 74 (that is, a low-dose pulse for moving image shooting and a high-dose pulse for still image shooting). To determine which of the two). This determination result is output to the cassette control unit 70.
  • the electronic cassette 15 is provided with a power supply unit 77 and is connected to the various electronic circuits described above by wiring (not shown).
  • the power supply unit 77 incorporates the above-described battery so as not to impair the portability of the electronic cassette 15, and supplies power from the battery to various electronic circuits.
  • the power supply unit 77 is connected to the cassette control unit 70.
  • the cassette controller 70 can selectively turn on / off the power supply to the first radiation detector 40 and the second radiation detector 41.
  • the console 17 is configured by a computer and includes a CPU 170 that controls the operation of the entire apparatus, a ROM 171 that stores various programs including a control program in advance, a RAM 172 that temporarily stores various data, And an HDD 173 for storing data, which are connected to each other via a bus line BL.
  • a communication I / F 174 and a wireless communication unit 175 are connected to the bus line BL, and a display 176 is connected via a display driver 177.
  • an operation unit 178 is connected to the bus line BL via an operation input detection unit 179.
  • the communication I / F 174 is connected to the connection terminal 14A of the radiation generator 14 via the connection terminal 17A and the communication cable 78.
  • the CPU 170 transmits and receives information such as the exposure conditions to and from the radiation generator 14 by a wired method using the communication I / F 174 and the like.
  • the wireless communication unit 175 communicates with the wireless communication unit 71 of the electronic cassette 15 and transmits and receives various types of information such as image data between the CPU 170 and the electronic cassette 15.
  • the display driver 177 generates and outputs a signal for displaying various information on the display 176.
  • the CPU 170 displays an operation menu, a radiation image, and the like on the display 176 via the display driver 177.
  • the operation unit 178 includes a keyboard and the like, and various information and operation instructions are input thereto.
  • the operation input detection unit 179 detects an operation on the operation unit 178 and transmits a detection result to the CPU 170.
  • the operation unit 178 is connected to a foot switch (not shown) that is arranged on the floor of the radiation imaging room and performs switching between moving image shooting and still image shooting. The foot switch is turned on / off when the photographer steps on the foot.
  • the radiation generator 14 performs radiation based on the radiation I / F 141 that transmits and receives various information such as the exposure conditions between the radiation source 140 that generates radiation and the console 17, and the exposure conditions received from the console 17.
  • a radiation source controller 142 for controlling the source 140.
  • an imaging request is input from the terminal device 11.
  • a patient to be imaged an imaging region to be imaged are designated, and tube voltage, tube current, etc. are designated as necessary.
  • the RIS server 12 notifies the RIS server 12 of the content of the input photographing request.
  • the RIS server 12 stores the content of the imaging request notified from the terminal device 11 in the storage unit 12A.
  • the console 17 accesses the RIS server 12 to acquire the content of the imaging request and the attribute information of the patient to be imaged, and displays the content of the imaging request and the attribute information of the patient on the display 176 (see FIG. 8). .
  • the radiographer performs preparatory work for radiographic imaging based on the content of the radiography request displayed on the display 176. For example, when photographing the affected part of the patient 21 A lying on the prone table 21, the electronic cassette 15 is loaded in the cassette chamber 23 of the prone table 21.
  • the photographer When the preparatory work is completed, the photographer performs an operation for notifying the completion of the preparatory work through the operation unit 178 of the console 17. Using this operation as a trigger, the console 17 sets the operation mode of the electronic cassette 15 to the ready state.
  • the radiation control unit 70 drives the radiation dose measurement unit 42 and the dose determination unit 75 to irradiate the radiation pulse (a low-dose pulse for moving image shooting or a still image).
  • a standby operation for detecting a high-dose pulse for imaging) is started.
  • the console 17 notifies the photographer that the camera is ready to shoot by switching the display on the display 176.
  • the photographer who has confirmed this notification issues a shooting instruction via the operation unit 178.
  • the console 17 transmits an instruction signal instructing the start of exposure to the radiation generator 14.
  • the radiation generator 14 emits a high-dose pulse for taking a still image from the radiation generator 14 with a tube voltage and a tube current corresponding to the exposure conditions received from the console 17.
  • the image data obtained by 41 is transmitted to the console 17 via the wireless communication unit 71.
  • the input image data is displayed on the display 176 as a still image.
  • the radiation generator 14 irradiates the patient with a low-dose pulse for moving image shooting at a predetermined interval.
  • the radiation dose measurement unit 42 performs radiation sampling at an interval shorter than the irradiation interval of the low dose pulse.
  • the dose determination unit 75 compares the radiation dose at the rise of the radiation detected by the radiation dose measurement unit 42 with a predetermined threshold value, and determines that the radiation dose (intensity) is lower than this threshold value as a low dose pulse. To do.
  • the cassette control unit 70 drives the first radiation detector 40 in synchronization with the low-dose pulse to execute the moving image capturing operation MP.
  • this moving image shooting operation MP all the gate wirings 50 are selected at once by the gate line driver 52, all the TFTs 322 are turned on, and the charges accumulated in the capacitor 323 are discarded (reset).
  • the gate wirings 50 are not selected, all the TFTs 322 are turned off, and the capacitor 323 is in a charge accumulation state.
  • the photoelectric conversion unit 321 generates charges corresponding to the radiation transmitted through the imaging region of the patient and accumulates them in the capacitor 323.
  • the gate wiring 50 is sequentially driven by the gate line driver 52, whereby the charges accumulated in the capacitor 323 are read out, and image data is generated by the signal processing unit 53. .
  • the cassette control unit 70 stops the supply of the power supply voltage from the power supply unit 77 to each part of the second radiation detector 41 and turns it off (OFF). Thereby, the influence of the power supply noise on the reading operation of the first radiation detector 40 is reduced.
  • a moving image capturing operation MP is performed, and image data is sequentially transmitted from the image memory 64 to the console 17 via the wireless communication unit 71.
  • the input image data is displayed on the display 176 as a moving image.
  • a high-dose pulse for shooting a still image is emitted from the radiation generator 14 toward the patient.
  • the dose of this high dose pulse is about 100 times that of the low dose pulse.
  • the dose determination unit 75 compares the radiation dose at the time of rising of the radiation detected by the radiation dose measurement unit 42 with a predetermined threshold value, and determines that the dose is a high dose pulse when the radiation dose is larger than this threshold value.
  • the cassette control unit 70 drives the second radiation detector 41 in synchronization with the high-dose pulse to execute the still image shooting operation SP.
  • This still image shooting operation SP is the same as the moving image shooting operation MP, and image data is generated by the second radiation detector 41.
  • This image data is transmitted to the console 17 via the wireless communication unit 71, and is displayed on the display 176 as a still image on the console 17. Note that this still image may be displayed on another display other than the display 176.
  • the cassette control unit 70 stops the supply of the power supply voltage from the power supply unit 77 to each part of the first radiation detector 40 to be turned off (OFF). Thereby, since the moving image capturing operation MP is interrupted, the influence of power supply noise on the reading operation of the second radiation detector 41 is reduced.
  • the second radiation detector 41 since the second radiation detector 41 has a high arrangement density of the pixels 344, a high-definition still image can be obtained.
  • the first radiation detector 40 is driven at high speed and generates a moving image at a high frame rate because the arrangement density of the pixels 324 is small and the number of the pixels 324 is small.
  • the first radiation detector 40 and the second radiation detector 41 are stacked in the radiation traveling direction, and the second radiation detector 41 detects the radiation transmitted through the first radiation detector 40. Therefore, when switching from moving image shooting to still image shooting, there is no need to move the second radiation detector 41, and still image shooting is quickly switched.
  • the radiation dose measurement sensor 31, the light emitting unit 33, and the second light detection unit 34 have the same configuration as in the above embodiment, but the first light detection unit 32 a includes the light emission unit 33 and the first light detection unit 32 a.
  • the second embodiment is different from the above embodiment in that the area is smaller than that of the second light detection unit 34 (the visual field range is small). Even in this case, it is preferable that the arrangement pitch of the pixels 324 of the first light detection unit 32a is larger than the arrangement pitch of the pixels 344 of the second light detection unit 34 (the arrangement density is small).
  • the shape (particularly the edge portion) may be reflected in the image data obtained by the second light detection unit 34. Since this reflection becomes a fixed pattern, the reflection may be removed by performing correction processing of the fixed pattern in the signal processing unit 63 or an external image processing apparatus (not shown).
  • a plurality of first light detection units 32a to 32c having a small area are laid down to have an area equivalent to that of the light emitting unit 33 and the second light detection unit 34.
  • a gap corresponding to the joint between the first light detection units 32a to 32c is generated. Processing is performed. Since this radiation image is used as a moving image, it has little influence on diagnosis.
  • the first light detection unit 32 a and the second light detection unit 34 a are smaller than the light emission unit 33 and have a smaller area, and between the second light detection unit 34 a and the light emission unit 33.
  • a Fresnel lens 80 is disposed on the surface. The visible light emitted from the light emitting unit 33 in the direction of the second light detection unit 34a is collected by the Fresnel lens 80 and is incident on the second light detection unit 34a. A visual field range equivalent to that of the light emitting unit 33 can be detected.
  • the second light detection unit 34a having a small area, it is possible to use a CMOS image sensor or a CCD image sensor configured based on a silicon substrate or a wide gap semiconductor substrate such as silicon carbide (SiC). . Since a SiC substrate is about 500 times more resistant to radiation than a silicon substrate, it is preferable to use a SiC substrate.
  • the Fresnel lens 80 is made of radiation (X It is preferable to form with a glass material containing an element having a high attenuation effect.
  • the Fresnel lens 80 is also suitable when the substrate of the second light detection unit 34a is a SiC substrate. It is also preferable to provide a light-transmitting member such as a glass plate containing an element such as lead, strontium, or barium between the light emitting unit 33 and the Fresnel lens 80 separately.
  • the first light detection unit 32 a has a smaller area than the light emitting unit 33, but as illustrated in FIG. 6, the first light detection unit 32 having the same size as the light emitting unit 33. May be used.
  • the radiation dose measurement sensor 31, the first light detection unit 32, the first light emission unit 33A, the second light detection unit 34, and the second light emission unit are arranged along the radiation traveling direction. 33B are arranged in order.
  • the first light emitting unit 33A and the second light emitting unit 33B have the same configuration as the light emitting unit 33 described above.
  • the first radiation detector 40 is an ISS type radiation detector composed of a first light detection unit 32 and a first light emitting unit 33A
  • the second radiation detector 41 is: It is an ISS type radiation detector comprised by the 2nd light detection part 34 and the 2nd light emission part 33B.
  • the light reflecting layer 81A is formed on the surface opposite to the radiation incident side of the first light emitting portion 33A, and the light reflecting layer 81B is formed on the surface opposite to the radiation incident side of the second light emitting portion 33B. It is preferable to form.
  • the light reflecting layers 81A and 81B are formed of a metal film such as aluminum.
  • the radiation dose measuring sensor 31, the first light emitting unit 33A, the first light detecting unit 32, the second light emitting unit 33B, and the second light detecting unit are arranged along the radiation traveling direction. 34 are arranged in order.
  • the first radiation detector 40 is a PSS type radiation detector composed of a first light detection unit 32 and a first light emitting unit 33A
  • the second radiation detector 41 is This is a PSS type radiation detector composed of a second light detection unit 34 and a second light emission unit 33B.
  • the light reflecting layer 81A is formed on the radiation incident side surface of the first light emitting unit 33A
  • the light reflecting layer 81B is formed on the radiation incident side surface of the second light emitting unit 33B.
  • the radiation dose measurement sensor 31, the first light detection unit 32, the first light emission unit 33 ⁇ / b> A, the second light emission unit 33 ⁇ / b> B, and the second light detection unit are arranged along the radiation traveling direction. 34 are arranged in order.
  • the light emitting unit 33 is configured by a first light emitting unit 33A and a second light emitting unit 33B.
  • the first radiation detector 40 is an ISS type radiation detector composed of a first light emitting unit 33A and a first light detecting unit 32
  • the second radiation detector 41 is a second light emitting unit. This is a PSS type radiation detector composed of 33B and the second light detection unit.
  • the first light emitting unit 33A and the second light emitting unit 33B may be formed of phosphors having different characteristics.
  • it is preferable that the tip of the columnar crystal phosphor is opposed to the second light detection unit 34.
  • the columnar crystal phosphor has high resolution and high performance, it is more expensive than the BaFX phosphor, so that the second radiation detector 41 for still image photography that requires high-quality photography is required.
  • a columnar crystal phosphor is used for the light emitting unit 33B, and a BaFX phosphor is used for the first light emitting unit 33A of the first radiation detector 40 for moving image shooting that does not require high image quality. This can reduce costs without sacrificing the desired performance.
  • the columnar crystal phosphor has a shock resistance that deteriorates as the thickness increases. However, in this configuration, the columnar crystal phosphor can be thinned, and thus the impact resistance is improved.
  • the first light emitting unit 33A absorbs radiation (X-rays) with lower energy than the second light emitting unit 33B having the columnar crystal phosphor by the BaFX phosphor.
  • This configuration is effective when the tube voltage of the radiation source 140 is changed between moving image shooting and still image shooting to increase the tube voltage during still image shooting in order to obtain a high-contrast still image.
  • a gadolinium oxide (GOS) phosphor may be used for the first light emitting portion 33A and a columnar crystal phosphor may be used for the second light emitting portion 33B.
  • the first light emitting unit 33A absorbs radiation (X-rays) having a relatively higher energy than the second light emitting unit 33B having the columnar crystal phosphor by the GOS phosphor. Since the columnar crystal phosphor such as CsI has a characteristic that the sensitivity gradually decreases due to the cumulative irradiation of radiation, the first light emitting unit 33A absorbs the radiation on the higher pressure side than the absorption energy of the columnar crystal phosphor. A decrease in sensitivity of the second light emitting unit 33B is suppressed.
  • the GOS phosphor is formed by applying or bonding to the first light detection unit 32.
  • the columnar crystal phosphor is formed by vapor deposition or bonding to the second light detection unit 34.
  • the vapor deposition of the columnar crystal phosphor includes direct vapor deposition and indirect vapor deposition. Indirect vapor deposition is a method in which a columnar crystal phosphor is vapor-deposited on a vapor deposition substrate, the columnar crystal phosphor is bonded to the second light detection unit 34, and then the vapor deposition substrate is peeled off.
  • the columnar crystal phosphor and the GOS phosphor are bonded together by bonding or by pouching in a state where both are pressed.
  • the columnar crystal phosphor may be directly or indirectly deposited on the GOS phosphor, and then the columnar crystal phosphor and the second light detection unit 34 may be bonded together.
  • the radiation dose measuring sensor 31, the first light detection unit 32, the second light detection unit 34, and the light emitting unit 33 are sequentially arranged along the radiation traveling direction.
  • the first radiation detector 40 is an ISS type radiation detector composed of a first light detector 32 and a light emitter 33
  • the second radiation detector 41 is a second light.
  • This is an ISS type radiation detector composed of a detector 34 and a light emitter 33B.
  • the photoelectric converting film 321C of the 1st photon detection part 32 is comprised with the amorphous silicon
  • the photoelectric converting film 321C is made into organic photoelectric. You may comprise with the material containing conversion material. In this case, an absorption spectrum showing high absorption mainly in the visible light region is obtained, and the photoelectric conversion film 321C hardly absorbs electromagnetic waves other than visible light emitted from the scintillator 332. Thereby, the noise which generate
  • the photoelectric conversion film 321C made of an organic photoelectric conversion material can be formed by attaching an organic photoelectric conversion material onto the TFT substrate 32A using a droplet discharge head such as an ink jet head, and is included in the TFT substrate 32A.
  • the insulating substrate 325 is not required to have heat resistance. For this reason, the insulating substrate 325 can be made of a material other than glass.
  • the photoelectric conversion film 321 ⁇ / b> C is made of an organic photoelectric conversion material, radiation is hardly absorbed by the photoelectric conversion film 321 ⁇ / b> C, and thus attenuation of radiation due to transmission through the first light detection unit 32 is suppressed. Therefore, it is preferable that the photoelectric conversion film 321C is made of an organic photoelectric conversion material when the first radiation detector 40 is an ISS type.
  • the organic photoelectric conversion material that constitutes the photoelectric conversion film 321C is preferably such that its absorption peak wavelength is closer to the emission peak wavelength of the scintillator 332 in order to absorb the visible light emitted from the scintillator 332 most efficiently.
  • the absorption peak wavelength of the organic photoelectric conversion material matches the emission peak wavelength of the scintillator 332, but if the difference between the two is small, the visible light emitted from the scintillator 332 can be sufficiently absorbed. is there.
  • the difference between the absorption peak wavelength of the organic photoelectric conversion material and the emission peak wavelength of the scintillator 332 is preferably within 10 nm, and more preferably within 5 nm.
  • organic photoelectric conversion materials examples include quinacridone organic compounds and phthalocyanine organic compounds. Since the absorption peak wavelength in the visible region of quinacridone is 560 nm, if quinacridone is used as the organic photoelectric conversion material and CsI: Tl is used as the material of the scintillator 332, the difference in the peak wavelengths can be made within 5 nm. The amount of charge generated in the scintillator 332 can be substantially maximized.
  • the photoelectric conversion film 321C preferably contains an organic p-type compound or an organic n-type compound.
  • An organic p-type compound is a donor organic semiconductor typified by a hole-transporting organic compound and has a property of easily donating electrons. More specifically, the organic p-type compound is an organic compound having a smaller ionization potential when two organic materials are used in contact with each other. Any organic compound can be used as the donor organic semiconductor as long as it has an electron donating property.
  • the organic n-type compound is an acceptor organic semiconductor mainly represented by an electron transporting organic compound, and has a property of easily accepting electrons. More specifically, the organic n-type compound is an organic compound having a higher electron affinity when two organic compounds are used in contact with each other. As the acceptor organic semiconductor, any organic compound can be used as long as it has an electron accepting property.
  • the photoelectric conversion unit 321 only needs to include at least the electrodes 321A and 321B and the photoelectric conversion film 321C, but in order to suppress an increase in dark current, at least one of an electron blocking film and a hole blocking film is provided. It is preferable to provide both.
  • the active layer of the TFT 322 is preferably an amorphous oxide containing at least one of In, Ga, and Zn (for example, an In—O system), and at least two of In, Ga, and Zn are used.
  • Amorphous oxides containing for example, In—Zn—O, In—Ga—O, and Ga—Zn—O
  • amorphous oxides including In, Ga, and Zn are particularly preferable.
  • the active layer of the TFT 322 may be formed of an organic semiconductor material.
  • the organic semiconductor material include phthalocyanine compounds described in JP2009-212389A, pentacene, vanadyl phthalocyanine, and the like.
  • the active layer of the TFT 322 is formed of an amorphous oxide or an organic semiconductor material, it does not absorb radiation such as X-rays, or even if it is absorbed, the amount of noise remains very small.
  • the active layer of the TFT 322 may be formed of carbon nanotubes.
  • the switching speed of the TFT 322 is increased.
  • the degree of light absorption in the visible light region in the TFT 322 can be reduced.
  • the active layer is formed of carbon nanotubes, the performance of the TFT 322 is remarkably deteriorated just by mixing a very small amount of metallic impurities into the active layer. Therefore, the highly pure carbon nanotubes are separated and extracted by centrifugation or the like. Therefore, it must be used for forming the active layer.
  • the insulating substrate 325 is not limited to a substrate having high heat resistance such as a quartz substrate or a glass substrate, and a flexible substrate made of synthetic resin, aramid, or bionanofiber can be used.
  • flexible materials such as polyesters such as polyethylene terephthalate, polybutylene phthalate, and polyethylene naphthalate, polystyrene, polycarbonate, polyethersulfone, polyarylate, polyimide, polycycloolefin, norbornene resin, and poly (chlorotrifluoroethylene).
  • a conductive substrate can be used. If such a flexible substrate made of a synthetic resin is used, the weight can be reduced.
  • the insulating substrate 325 includes an insulating layer for ensuring insulation, a gas barrier layer for preventing permeation of moisture and oxygen, an undercoat layer for improving flatness or adhesion to electrodes, and the like. May be provided.
  • the bio-nanofiber is a composite of a cellulose microfibril bundle (bacterial cellulose) produced by bacteria (Acetobacter Xylinum) and a transparent resin.
  • the cellulose microfibril bundle has a width of 50 nm and a size of 1/10 of the visible light wavelength, and has high strength, high elasticity, and low thermal expansion.
  • a transparent resin such as acrylic resin or epoxy resin in bacterial cellulose
  • a bio-nanofiber having a light transmittance of about 90% at a wavelength of 500 nm can be obtained while containing 60 to 70% of the fiber.
  • Bionanofiber has a low coefficient of thermal expansion (3-7ppm) comparable to silicon crystals, and is as strong as steel (460MPa), highly elastic (30GPa), and flexible. Thinner.
  • the first and second light detection units may each use a TFT substrate, a silicon substrate, or a SiC substrate.
  • the silicon substrate has low radiation resistance
  • at least one of the first and second light detection units is formed of the silicon substrate, and the light emitting unit is disposed on the radiation incident side
  • the optical member include a radiation-absorbing glass plate containing an element such as lead, strontium, and barium.
  • all of the 1st radiation detector 40, the 2nd radiation detector 41, and the radiation dose measurement part 42 convert a radiation into light with a scintillator, and make this light into an electric charge.
  • it is an indirect conversion type radiation detector for conversion, it may be a direct conversion type radiation detector that converts radiation directly into electric charges by a photoconductive layer such as amorphous selenium.
  • the radiation dose measurement sensor 31 is arrange
  • the radiation dose measuring sensor 31 may be disposed on the downstream side of the radiation from the first light detection unit 32 and the second light detection unit 34. Further, the radiation dose measuring sensor 31 may be incorporated in the first light detection unit 32 or the second light detection unit 34.
  • an electronic cassette is exemplified as the radiation imaging apparatus, but the present invention can be applied to a radiation detection apparatus such as a mammography apparatus instead of the electronic cassette.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Medical Informatics (AREA)
  • Radiology & Medical Imaging (AREA)
  • Molecular Biology (AREA)
  • Biophysics (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Optics & Photonics (AREA)
  • Pathology (AREA)
  • Physics & Mathematics (AREA)
  • Biomedical Technology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Surgery (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Human Computer Interaction (AREA)
  • Measurement Of Radiation (AREA)
  • Apparatus For Radiation Diagnosis (AREA)

Abstract

In order to rapidly switch between video imaging and still image photography, an electronic cassette (15) is provided with a first radiation detector (40) and a second radiation detector (41). The first radiation detector (40) comprises a light emitting part (33) that absorbs radiation and produces visible light, and a first light detecting part (32) that detects the visible light. The second radiation detector (41) comprises the light emitting part (33), and a second light detecting part (34) that is positioned on the opposite side to the side where the radiation enters. A cassette control unit (70) drives the first radiation detector (40) during video imaging, and drives the second radiation detector (41) during still image photography.

Description

放射線撮影装置Radiography equipment
 本発明は、動画撮影と静止画撮影とが可能な放射線撮影装置に関する。 The present invention relates to a radiation imaging apparatus capable of moving image shooting and still image shooting.
 医療分野において、画像診断を行うために、放射線(例えば、X線)を用いて被写体(患者の撮影部位)を撮影する放射線撮影装置が知られている。放射線撮影装置は、放射線(例えば、X線)を被写体に向けて放射する放射線発生器と、放射線発生器に対向配置され、被写体を透過した放射線を検出して画像化する放射線検出器とを備える。 2. Description of the Related Art In the medical field, a radiation imaging apparatus that captures a subject (a patient's imaging region) using radiation (for example, X-rays) is known for performing image diagnosis. The radiation imaging apparatus includes a radiation generator that emits radiation (for example, X-rays) toward a subject, and a radiation detector that is disposed opposite to the radiation generator and detects and images radiation that has passed through the subject. .
 この放射線撮影装置には、動画撮影(透視撮影ともいう)と静止画撮影(単に撮影ともいう)の両方が可能なものがある。動画撮影を行う場合と静止画撮影を行う場合とでは、放射線発生器から放射される放射線の線量が異なる。動画撮影は、低線量で行われ、静止画撮影のための患者の位置決めや、病変部の探索等を行うために使用される。静止画撮影は、高線量で行われ、病変部の鮮明な放射線画像を得るために使用される。一般に、静止画撮影時の線量は、動画撮影時の線量の100倍程度である。 Some of these radiation imaging apparatuses are capable of both moving image shooting (also referred to as fluoroscopic imaging) and still image shooting (also simply referred to as shooting). The dose of radiation emitted from the radiation generator differs between when shooting moving images and when shooting still images. Movie shooting is performed at a low dose, and is used for positioning a patient for still image shooting, searching for a lesion, and the like. Still image capturing is performed at a high dose, and is used to obtain a clear radiographic image of a lesion. Generally, the dose during still image shooting is about 100 times the dose during moving image shooting.
 このように動画撮影と静止画撮影が可能な放射線撮影装置では、動画撮影と静止画撮影とのいずれを行うかに応じて放射線検出器の駆動モードを切り替える必要がある。この駆動モードの切り替えを容易に行うために、特許文献1では、放射線発生器から射出される放射線の線量を放射線検出器側で監視し、低線量から高線量に移行するタイミングに合わせて、放射線検出器を動画撮影モードから静止画撮影モードに切り替えることが提案されている。これにより、放射線発生器と放射線検出器との間で同期信号の授受を行わずに放射線検出器の駆動モードを切り替えることができる。 In such a radiographic apparatus capable of capturing moving images and still images, it is necessary to switch the driving mode of the radiation detector depending on whether to perform moving image shooting or still image shooting. In order to easily switch the driving mode, in Patent Document 1, the radiation dose emitted from the radiation generator is monitored on the radiation detector side, and the radiation is synchronized with the timing of shifting from the low dose to the high dose. It has been proposed to switch the detector from the moving image shooting mode to the still image shooting mode. Thereby, the drive mode of a radiation detector can be switched, without performing transmission / reception of a synchronizing signal between a radiation generator and a radiation detector.
 しかし、特許文献1に記載の放射線撮影装置は、単一の放射線検出器を用いて動画撮影と静止画撮影を行っているため、動画撮影の場合と静止画撮影の場合との間で画質や視野サイズ等を変更することができない。この画質等の問題を解決するために、特許文献2,3には、静止画撮影を行う第1の放射線検出器と、第1の放射線検出器より小視野であって、動画撮影を行う第2の放射線検出器とを用い、これらを重ねた状態で放射線発生器からの放射線領域内に配置した放射線撮影装置が記載されている。動画撮影から静止画撮影に切り替える場合には、第2の放射線検出器を放射線発生器からの放射線照射領域から退避させたうえで、第1の放射線検出器により静止画撮影を行う。 However, since the radiographic apparatus described in Patent Document 1 performs moving image shooting and still image shooting using a single radiation detector, the image quality and the still image shooting can be reduced between moving image shooting and still image shooting. The field of view size cannot be changed. In order to solve this problem such as image quality, Patent Documents 2 and 3 disclose a first radiation detector that performs still image shooting, and a first field detector that performs moving image shooting with a smaller field of view than the first radiation detector. A radiation imaging apparatus is described in which two radiation detectors are used and arranged in a radiation region from the radiation generator in a state where they are overlapped. When switching from moving image shooting to still image shooting, the second radiation detector is retracted from the radiation irradiation region from the radiation generator, and then the still image shooting is performed by the first radiation detector.
特開2003-307569号公報Japanese Patent Laid-Open No. 2003-307568 特開2011-004966号公報JP 2011-004966 A 特開2002-102213号公報JP 2002-102213 A
 しかしながら、特許文献2,3に記載の放射線撮影装置では、動画撮影と静止画撮影との切り替えのためには、第2の放射線検出器を放射線照射領域から出し入れさせる機械的な機構が必要であるため、動画撮影と静止画撮影との切り替えを迅速に行うことができず、撮影好機を逃してしまうおそれがある。 However, the radiographic apparatuses described in Patent Documents 2 and 3 require a mechanical mechanism for moving the second radiation detector in and out of the radiation irradiation area in order to switch between moving image capturing and still image capturing. Therefore, switching between moving image shooting and still image shooting cannot be performed quickly, and there is a possibility of missing a shooting opportunity.
 本発明は、動画撮影と静止画撮影との切り替えを迅速かつ簡単にできる放射線撮影装置を提供することを目的とする。 An object of the present invention is to provide a radiation imaging apparatus that can quickly and easily switch between moving image shooting and still image shooting.
 上記課題を解決するために、本発明の放射線撮影装置は、放射線発生器から射出された放射線を検出して画像データを生成する第1の放射線検出器と、第1の放射線検出器を透過した放射線を検出して画像データを生成する第2の放射線検出器と、第1の放射線検出器に動画撮影を実行させ、第2の放射線検出器に静止画撮影を実行させる制御部と、を備えている。 In order to solve the above problems, a radiation imaging apparatus of the present invention transmits a first radiation detector that detects radiation emitted from a radiation generator and generates image data, and the first radiation detector. A second radiation detector that detects radiation and generates image data; and a control unit that causes the first radiation detector to perform moving image photographing and causes the second radiation detector to perform still image photographing. ing.
 なお、放射線発生器から射出された放射線パルスの線量を測定する放射線量測定部と、放射線量測定部により測定された線量を所定の閾値と比較する線量判定部とをさらに備えることが好ましい。制御部は、線量判定部により所定の閾値より小さい低線量パルスが検出された場合には、第1の放射線検出器に動画撮影を実行させ、線量判定部により閾値より大きい高線量パルスが検出された場合には、第2の放射線検出器に静止画撮影を実行させる。 In addition, it is preferable to further include a radiation dose measurement unit that measures the dose of the radiation pulse emitted from the radiation generator, and a dose determination unit that compares the dose measured by the radiation dose measurement unit with a predetermined threshold. When the dose determination unit detects a low-dose pulse smaller than a predetermined threshold, the control unit causes the first radiation detector to perform moving image shooting, and the dose determination unit detects a high-dose pulse greater than the threshold. If this happens, the second radiation detector is caused to execute still image shooting.
 第1の放射線検出器は、第2の放射線検出器より画素の配置密度が小さいことが好ましい。また、第1の放射線検出器は、第2の放射線検出器より画素の数が少ないことが好ましい。 The first radiation detector preferably has a smaller pixel arrangement density than the second radiation detector. The first radiation detector preferably has fewer pixels than the second radiation detector.
 また、第1の放射線検出器は、第2の放射線検出器よりフレームレートが高いことが好ましい。さらに、第1の放射線検出器は、第2の放射線検出器より面積が小さいことが好ましい。 Further, it is preferable that the first radiation detector has a higher frame rate than the second radiation detector. Further, the first radiation detector preferably has a smaller area than the second radiation detector.
 第1の放射線検出器は、放射線を吸収して可視光を発生する発光部と、発光部の放射線入射側に配置されると共に、発光部により発生された可視光を検出する第1の光検出部とにより構成され、第2の放射線検出器は、発光部と、発光部の放射線入射側とは反対側に配置されると共に、発光部により発生された可視光を検出して画像データを生成する第2の光検出部とにより構成されていることが好ましい。 The first radiation detector absorbs radiation to generate visible light, and is disposed on the radiation incident side of the light emitting unit, and detects the visible light generated by the light emitting unit. The second radiation detector is arranged on the side opposite to the radiation incident side of the light emitting unit and detects the visible light generated by the light emitting unit to generate image data. It is preferable that it is comprised by the 2nd photon detection part to do.
 この場合、発光部は、柱状結晶蛍光体を有し、この柱状結晶蛍光体の先端部が第1の光検出部に対向していることが好ましい。また、第1の光検出部は、発光部より面積が小さいことが好ましい。 In this case, it is preferable that the light emitting portion has a columnar crystal phosphor, and the tip portion of the columnar crystal phosphor faces the first photodetection portion. The first light detection unit preferably has a smaller area than the light emitting unit.
 第2の光検出部は、発光部より面積が小さく、発光部と第2の光検出部との間に、発光部から放出された可視光を第2の光検出部に集光するためのフレネルレンズをさらに備えることが好ましい。 The second light detection unit has a smaller area than the light emission unit, and condenses visible light emitted from the light emission unit on the second light detection unit between the light emission unit and the second light detection unit. It is preferable to further include a Fresnel lens.
 第1の放射線検出器は、放射線を吸収して可視光を発生する第1の発光部と、第1の発光部の放射線入射側に配置されると共に、第1の発光部により発生された可視光を検出して画像データを生成する第1の光検出部とにより構成され、第2の放射線検出器は、第1の発光部及び第1の光検出部を透過した放射線を吸収して可視光を発生する第2の発光部と、第2の発光部の放射線入射側とは反対側に配置されると共に、第2の発光部により発生された可視光を検出して画像データを生成する第2の光検出部とにより構成されていてもよい。 The first radiation detector is disposed on the radiation incident side of the first light emitting unit and absorbs radiation and generates visible light, and visible light generated by the first light emitting unit. A first light detection unit configured to detect light and generate image data, and the second radiation detector absorbs the radiation transmitted through the first light emission unit and the first light detection unit and is visible. A second light emitting unit for generating light is disposed on the side opposite to the radiation incident side of the second light emitting unit, and visible light generated by the second light emitting unit is detected to generate image data. You may be comprised by the 2nd photon detection part.
 この場合、第1の発光部と第2の発光部とのうち一方が柱状結晶蛍光体を有し、他方がGOS蛍光体またはBaFX蛍光体を有することが好ましい。 In this case, it is preferable that one of the first light emitting part and the second light emitting part has a columnar crystal phosphor, and the other has a GOS phosphor or a BaFX phosphor.
 本発明の放射線撮影装置によれば、放射線発生器から射出された放射線を検出して画像データを生成する第1の放射線検出器と、第1の放射線検出器を透過した放射線を検出して画像データを生成する第2の放射線検出器とを設け、第1の放射線検出器を動画撮影用、第2の放射線検出器を静止画撮影用として用いるので、従来のように動画撮影用の放射線検出器の移動機構が不要となる。また、本発明は、動画撮影と静止画撮影との切り替えが迅速に行われるので、静止画撮影の撮影好機を逃すこともない。 According to the radiation imaging apparatus of the present invention, the first radiation detector that detects the radiation emitted from the radiation generator and generates image data, and the radiation that has passed through the first radiation detector are detected and imaged. And a second radiation detector for generating data, and the first radiation detector is used for moving image shooting and the second radiation detector is used for still image shooting. The moving mechanism of the vessel is not necessary. Further, according to the present invention, since the switching between the moving image shooting and the still image shooting is performed quickly, the shooting opportunity of the still image shooting is not missed.
放射線情報システムのブロック図である。It is a block diagram of a radiation information system. 放射線撮影システムの各装置の配置状態を示す側面図である。It is a side view which shows the arrangement | positioning state of each apparatus of a radiography system. 電子カセッテの一部破断斜視図である。It is a partially broken perspective view of an electronic cassette. 電子カセッテの構成を模式的に示した断面図である。It is sectional drawing which showed the structure of the electronic cassette typically. シンチレータの構成を示す断面図である。It is sectional drawing which shows the structure of a scintillator. 第1の放射線検出器、第2の放射線検出器、放射線量測定部の構成を説明する説明図である。It is explanatory drawing explaining the structure of a 1st radiation detector, a 2nd radiation detector, and a radiation dose measurement part. 電子カセッテの電気的構成を示すブロック図である。It is a block diagram which shows the electric constitution of an electronic cassette. 放射線発生器及びコンソールのブロック図である。It is a block diagram of a radiation generator and a console. 放射線撮影システムの動作タイミングを説明する説明図である。It is explanatory drawing explaining the operation | movement timing of a radiography system. 電子カセッテの第1の変形例を説明する説明図である。It is explanatory drawing explaining the 1st modification of an electronic cassette. 電子カセッテの第2の変形例を説明する説明図である。It is explanatory drawing explaining the 2nd modification of an electronic cassette. 電子カセッテの第3の変形例を説明する説明図である。It is explanatory drawing explaining the 3rd modification of an electronic cassette. 電子カセッテの第4の変形例を説明する説明図である。It is explanatory drawing explaining the 4th modification of an electronic cassette. 電子カセッテの第5の変形例を説明する説明図である。It is explanatory drawing explaining the 5th modification of an electronic cassette. 電子カセッテの第6の変形例を説明する説明図である。It is explanatory drawing explaining the 6th modification of an electronic cassette. 電子カセッテの第7の変形例を説明する説明図である。It is explanatory drawing explaining the 7th modification of an electronic cassette.
 図1において、放射線情報システム(RIS:Radiology Information System)10は、病院内の放射線科部門における診療予約や診断記録等の情報管理を行うためのシステムである。RIS10は、複数の端末装置11、RISサーバ12、病院内の各放射線撮影室(或いは手術室)に設置された放射線撮影システム13の各機器と、有線又は無線で接続される病院内ネットワークNWとにより構成されている。 Referring to FIG. 1, a radiation information system (RIS) 10 is a system for managing information such as medical appointments and diagnosis records in a radiology department in a hospital. The RIS 10 includes a plurality of terminal devices 11, an RIS server 12, a radiography system 13 installed in each radiography room (or operating room) in the hospital, and an in-hospital network NW connected in a wired or wireless manner. It is comprised by.
 端末装置11としては、パーソナル・コンピュータ(PC)等が用いられ、撮影者(医師や放射線技師)によって操作される。撮影者は、端末装置11を操作して診断情報や施設予約の入力・閲覧を行う。放射線画像の撮影依頼(撮影予約)も端末装置11を介して入力される。 As the terminal device 11, a personal computer (PC) or the like is used, which is operated by a photographer (doctor or radiographer). The photographer operates the terminal device 11 to input / view diagnostic information and facility reservation. A radiographic imaging request (imaging reservation) is also input via the terminal device 11.
 RISサーバ12は、RISデータベース(DB)を記憶する記憶部12Aを備えたコンピュータである。記憶部12Aには、患者の属性情報(患者の氏名、性別、生年月日、年齢、血液型、患者ID等)や、病歴、受診歴、放射線撮影の履歴、過去に撮影した放射線画像のデータ等の患者に関する他の情報、各放射線撮影システム13が有する電子カセッテ15に関する情報(識別番号、型式、サイズ、感度、使用可能な撮影部位、使用開始年月日、使用回数等)が登録されている。RISサーバ12は、記憶部12Aに登録されている情報に基づいて、RIS10全体を管理する処理(例えば、各端末装置11からの撮影依頼を受け付け、各放射線撮影システム13の撮影スケジュールを管理する処理)を行う。 The RIS server 12 is a computer including a storage unit 12A that stores an RIS database (DB). The storage unit 12A includes patient attribute information (patient name, sex, date of birth, age, blood type, patient ID, etc.), medical history, medical history, history of radiography, and data of radiographic images taken in the past. Other information related to the patient such as information related to the electronic cassette 15 included in each radiation imaging system 13 (identification number, model, size, sensitivity, usable imaging part, use start date, use frequency, etc.) Yes. The RIS server 12 is a process for managing the entire RIS 10 based on the information registered in the storage unit 12A (for example, a process for receiving an imaging request from each terminal device 11 and managing an imaging schedule of each radiation imaging system 13). )I do.
 放射線撮影システム13は、RISサーバ12から指示された放射線画像の撮影を、医師や放射線技師の操作に従って行う。放射線撮影システム13は、放射線を発生する放射線発生器14と、患者の撮影部位を透過した放射線を検出し放射線画像を生成する電子カセッテ15と、電子カセッテ15を充電するためのクレードル16と、これらの各機器の動作を制御するコンソール17とを備えている。電子カセッテ15は、可搬型の放射線撮影装置である。 The radiation imaging system 13 captures a radiation image instructed from the RIS server 12 according to the operation of a doctor or a radiographer. The radiation imaging system 13 includes a radiation generator 14 that generates radiation, an electronic cassette 15 that detects radiation transmitted through an imaging region of a patient and generates a radiation image, a cradle 16 that charges the electronic cassette 15, and these And a console 17 for controlling the operation of each device. The electronic cassette 15 is a portable radiation imaging apparatus.
 図2において、放射線撮影室には、放射線発生器14と、立位の患者20Aを放射線撮影(以下、立位撮影という)する際に用いられる立位台20と、臥位の患者21Aを放射線撮影(以下、臥位撮影という)する際に用いられる臥位台21とが設置されている。立位台20には、電子カセッテ15が装着されるカセッテ室22が設けられている。立位撮影を行う際には、電子カセッテ15を立位台20のカセッテ室22に装填する。臥位撮影を行う際には、電子カセッテ15を臥位台21のカセッテ室23に装填する。 In FIG. 2, the radiation imaging room includes a radiation generator 14, a standing table 20 used for radiography of a standing patient 20 </ b> A (hereinafter referred to as standing imaging), and a supine patient 21 </ b> A. A supine table 21 used for photographing (hereinafter, referred to as supine photographing) is installed. The standing base 20 is provided with a cassette chamber 22 in which the electronic cassette 15 is mounted. When performing the standing position photographing, the electronic cassette 15 is loaded into the cassette chamber 22 of the standing base 20. When performing the supine position photographing, the electronic cassette 15 is loaded into the cassette chamber 23 of the supine position table 21.
 また、放射線撮影室には、1つの放射線発生器14で立位撮影と臥位撮影とを可能とするために、伸縮自在な支柱25を介して放射線発生器14を支持しながら、天井26に沿って二次元的に移動する移動機構24が設けられている。支柱25は、放射線発生器14を、水平な軸回り(矢印A方向)、及び鉛直な軸回り(矢印B方向)の回転を可能に支持している。 In addition, in the radiography room, in order to enable standing radiography and supine radiography with one radiation generator 14, the radiation generator 14 is supported on the ceiling 26 while supporting the telescopic support 25. A moving mechanism 24 that moves two-dimensionally is provided. The support | pillar 25 is supporting the radiation generator 14 so that rotation of the surroundings of a horizontal axis (arrow A direction) and a vertical axis (arrow B direction) is possible.
 クレードル16には、電子カセッテ15を収納可能な収容部16Aが形成されている。電子カセッテ15は、非使用時には収容部16Aに収納され、この状態で内蔵バッテリの充電が行われる。放射線画像の撮影時には、電子カセッテ15は、撮影者によってクレードル16から取り出され、立位撮影の場合には立位台20の保持部22にセットされ、臥位撮影の場合には臥位台21のカセッテ室23にセットされる。 The cradle 16 is formed with an accommodating portion 16A capable of accommodating the electronic cassette 15. The electronic cassette 15 is accommodated in the accommodating portion 16A when not in use, and the built-in battery is charged in this state. The electronic cassette 15 is taken out of the cradle 16 by the photographer at the time of radiographic image capturing, and is set on the holding unit 22 of the standing base 20 in the case of the standing position imaging, and the supine position base 21 in the case of the standing position imaging. Set in the cassette chamber 23 of the machine.
 図3において、電子カセッテ15は、筐体30、放射線量測定センサ31、第1の光検出部32、発光部33、第2の光検出部34、基台35、及び収納ケース36を備えている。放射線量測定センサ31、第1の光検出部32、発光部33、及び第2の光検出部34は、放射線の入射方向に沿ってこの順に筐体30内に積層されており、それぞれ面積が同じパネル状をしている。 In FIG. 3, the electronic cassette 15 includes a housing 30, a radiation dose measurement sensor 31, a first light detection unit 32, a light emission unit 33, a second light detection unit 34, a base 35, and a storage case 36. Yes. The radiation dose measurement sensor 31, the first light detection unit 32, the light emission unit 33, and the second light detection unit 34 are stacked in the housing 30 in this order along the radiation incident direction, and each has an area. It has the same panel shape.
 筐体30は、放射線透過性材料により形成され、全体形状が直方体状である。筐体30は、カーボン等の放射線低吸収材で形成された天板30Aを有する。天板30Aには、患者の撮影部位を透過した放射線が照射される。筐体30のうち、天板30A以外の部分は、ABS樹脂等で形成されている。 The housing 30 is made of a radiation transmissive material and has an overall shape of a rectangular parallelepiped. The housing 30 has a top plate 30A formed of a low radiation absorbing material such as carbon. The top plate 30A is irradiated with radiation that has passed through the imaging region of the patient. Portions other than the top plate 30A of the housing 30 are made of ABS resin or the like.
 天板30Aには、複数個の発光ダイオード(LED)で構成され、電子カセッテ15の動作モード(例えば「レディ状態」や「データ送信中」等)やバッテリの残容量等の動作状態をLEDの点灯で表示する表示部37が設けられている。なお、表示部37は、LED以外の発光素子で構成された表示装置や、文字等で状態を表示する液晶ディスプレイや有機ELディスプレイであってもよい。また、表示部37を、天板30A以外の部分に設けてもよい。 The top panel 30A is composed of a plurality of light emitting diodes (LEDs), and the operation state of the electronic cassette 15 such as the operation mode (eg, “ready state” or “data transmitting”) and the remaining battery capacity is indicated by the LED. A display unit 37 is provided for displaying by lighting. Note that the display unit 37 may be a display device configured by a light emitting element other than an LED, a liquid crystal display or an organic EL display that displays a state with characters or the like. Moreover, you may provide the display part 37 in parts other than the top plate 30A.
 収納ケース35は、天板30Aの長手方向の一端側に沿って設けられている。収納ケース35には、マイクロコンピュータ(図示せず)や、バッテリ(図示せず)を収納している。バッテリは、充電可能で、かつ着脱可能である。放射線量測定センサ31、第1の光検出部32、第2の光検出部34を含む電子カセッテ15の各種電子回路は、バッテリから供給される電力によって動作する。これらの各種電子回路が放射線によって損傷することを防止するため、収納ケース36の天板30A側には鉛板等の放射線遮蔽部材(図示せず)が設けられている。 The storage case 35 is provided along one end side in the longitudinal direction of the top plate 30A. The storage case 35 stores a microcomputer (not shown) and a battery (not shown). The battery is chargeable and detachable. Various electronic circuits of the electronic cassette 15 including the radiation dose measuring sensor 31, the first light detection unit 32, and the second light detection unit 34 are operated by electric power supplied from the battery. In order to prevent these various electronic circuits from being damaged by radiation, a radiation shielding member (not shown) such as a lead plate is provided on the top plate 30 </ b> A side of the storage case 36.
 図4において、第1の光検出部32は、光電変換部321、薄膜トランジスタ(TFT:Thin Film Transistor)322、及びキャパシタ323を有する画素324を、絶縁性基板325上に複数形成することにより構成されている。画素324は、2次元マトリクス状に配列されている。 In FIG. 4, the first light detection unit 32 is configured by forming a plurality of pixels 324 including a photoelectric conversion unit 321, a thin film transistor (TFT: Thin Film Transistor) 322, and a capacitor 323 over an insulating substrate 325. ing. The pixels 324 are arranged in a two-dimensional matrix.
 絶縁性基板325と、TFT322及びキャパシタ323が形成された層とは、いわゆるTFTアクティブマトリクス基板(以下、TFT基板という)32Aを構成している。TFT322は、アモルファスシリコンにより形成されている。絶縁性基板325は、石英基板、ガラス基板、樹脂基板等の光透過性を有し、かつ放射線の吸収が少ない材料で形成されている。 The insulating substrate 325 and the layer on which the TFT 322 and the capacitor 323 are formed constitute a so-called TFT active matrix substrate (hereinafter referred to as a TFT substrate) 32A. The TFT 322 is made of amorphous silicon. The insulating substrate 325 is formed of a material having light transmissivity, such as a quartz substrate, a glass substrate, and a resin substrate, and having little radiation absorption.
 光電変換部321は、第1の電極321A及び第2の電極321Bと、これらの間に、配置された光電変換膜321Cとを有する。光電変換膜321Cは、アモルファスシリコンにより形成されており、後述する発光部33から放出された可視光を吸収して電荷を発生する。光電変換部321は、PIN型またはMIS型のフォトダイオードを構成しており、TFT基板32A上に設けられている。TFT基板32A上には、光電変換部321を覆う平坦化層326が設けられている。平坦化層326は、窒化シリコンや酸化シリコン等で形成されており、放射線の入射側と反対側の面が平坦化されている。 The photoelectric conversion unit 321 includes a first electrode 321A and a second electrode 321B, and a photoelectric conversion film 321C disposed therebetween. The photoelectric conversion film 321C is formed of amorphous silicon, and absorbs visible light emitted from the light emitting unit 33 described later to generate charges. The photoelectric conversion unit 321 constitutes a PIN-type or MIS-type photodiode and is provided on the TFT substrate 32A. A planarizing layer 326 that covers the photoelectric conversion unit 321 is provided on the TFT substrate 32A. The planarization layer 326 is formed of silicon nitride, silicon oxide, or the like, and the surface opposite to the radiation incident side is planarized.
 第2の光検出部34は、第1の光検出部32と同様な構成であり、光電変換部341、TFT342、及びキャパシタ343を備えた画素344が、絶縁性基板345に2次元マトリクス状に複数形成されている。 The second light detection unit 34 has the same configuration as that of the first light detection unit 32, and the pixels 344 including the photoelectric conversion unit 341, the TFT 342, and the capacitor 343 are arranged in a two-dimensional matrix on the insulating substrate 345. A plurality are formed.
 光電変換部341は、第1の電極341A及び第2の電極341Bと、これらの間に配置された光電変換膜341Cとにより構成されている。また、光電変換部341を覆う平坦化層346が設けられており、平坦化層346は、放射線の入射側の面が平坦化されている。絶縁性基板345と、TFT342及びキャパシタ343が形成された層とが、TFT基板34Aを構成している。 The photoelectric conversion unit 341 includes a first electrode 341A and a second electrode 341B, and a photoelectric conversion film 341C disposed therebetween. In addition, a planarization layer 346 that covers the photoelectric conversion portion 341 is provided, and the planarization layer 346 has a plane on the radiation incident side that is planarized. The insulating substrate 345 and the layer on which the TFT 342 and the capacitor 343 are formed constitute the TFT substrate 34A.
 第2の光検出部34は、放射線の入射方向に対する各部の構成順序が、第1の光検出部32の各部の構成順序とは逆である。すなわち、第1の光検出部32の平坦化層326と、第2の光検出部34の平坦化層346とが対向しており、これらの間に発光部33が配置されている。発光部33は、放射線の入射に応じて可視光を発生して放出する。第2の光検出部34は、第1の光検出部32とほぼ同一の平面形状及び面積を有する。 In the second light detection unit 34, the configuration order of each part with respect to the radiation incident direction is opposite to the configuration order of each part of the first light detection unit 32. That is, the planarization layer 326 of the first light detection unit 32 and the planarization layer 346 of the second light detection unit 34 face each other, and the light emitting unit 33 is disposed therebetween. The light emitting unit 33 generates and emits visible light in response to the incidence of radiation. The second light detection unit 34 has substantially the same planar shape and area as the first light detection unit 32.
 第1の光検出部32の平坦化層326と発光部33とは、透光性を有する接着層327によって接着されている。同様に、第2の光検出部34の平坦化層346と発光部33とは、透光性を有する接着層347によって接着されている。また、第2の光検出部34の絶縁性基板345は、基台35に接着層348によって接着されている。 The planarizing layer 326 of the first light detection unit 32 and the light emitting unit 33 are bonded to each other by a light-transmitting adhesive layer 327. Similarly, the planarization layer 346 of the second light detection unit 34 and the light emitting unit 33 are bonded to each other with a light-transmitting adhesive layer 347. Further, the insulating substrate 345 of the second light detection unit 34 is bonded to the base 35 with an adhesive layer 348.
 第1の光検出部32の放射線入射側には、放射線量測定センサ31が形成されている。放射線量測定センサ31は、絶縁性基板325上に、配線層311、絶縁層312、光電変換部313、保護層314が順に形成されている。配線層311は、絶縁性基板315上に後述する配線73(図7参照)がパターニングされた層である。光電変換部313は、発光部33から放出され第1の光検出部32を透過した光を検出する素子であり、絶縁層312上にマトリクス状に複数形成されている。放射線量測定センサ31の厚みは、0.05mm程度である。 A radiation dose measuring sensor 31 is formed on the radiation incident side of the first light detection unit 32. In the radiation dose measurement sensor 31, a wiring layer 311, an insulating layer 312, a photoelectric conversion unit 313, and a protective layer 314 are sequentially formed on an insulating substrate 325. The wiring layer 311 is a layer in which a wiring 73 (see FIG. 7) described later is patterned on the insulating substrate 315. The photoelectric conversion unit 313 is an element that detects light emitted from the light emitting unit 33 and transmitted through the first light detection unit 32, and a plurality of photoelectric conversion units 313 are formed on the insulating layer 312 in a matrix. The thickness of the radiation dose measuring sensor 31 is about 0.05 mm.
 光電変換部313は、第1の電極313A及び第2の電極313Bと、これらの間に配置された光電変換膜313Cとを備える。光電変換膜313Cは、有機光電変換材料で形成されている。光電変換膜313Cは、インクジェットヘッド等を用いて有機光電変換材料を第2の電極313B上に塗布することで形成される。 The photoelectric conversion unit 313 includes a first electrode 313A and a second electrode 313B, and a photoelectric conversion film 313C disposed therebetween. The photoelectric conversion film 313C is formed of an organic photoelectric conversion material. The photoelectric conversion film 313C is formed by applying an organic photoelectric conversion material onto the second electrode 313B using an inkjet head or the like.
 図5において、発光部33は、蒸着基板331、シンチレータ332、及び防湿保護膜333により構成されている。蒸着基板331は、石英基板、ガラス基板、樹脂基板等の光透過性を有する基板である。シンチレータ332は、蒸着基板331上にタリウム活性化ヨウ化セシウム(CsI:Tl)を蒸着することにより形成される。シンチレータ332は、非柱状結晶332Aと、この非柱状結晶332A上に立設した複数の柱状結晶332Bとにより構成されている。防湿保護膜333は、透光性を有する防湿性材料(例えば、ポリパラキシリレン)により形成されており、シンチレータ332の周囲を覆っている。 In FIG. 5, the light emitting unit 33 includes a vapor deposition substrate 331, a scintillator 332, and a moisture-proof protective film 333. The vapor deposition substrate 331 is a light transmissive substrate such as a quartz substrate, a glass substrate, or a resin substrate. The scintillator 332 is formed by vapor depositing thallium activated cesium iodide (CsI: Tl) on the vapor deposition substrate 331. The scintillator 332 includes a non-columnar crystal 332A and a plurality of columnar crystals 332B provided on the non-columnar crystal 332A. The moisture-proof protective film 333 is formed of a light-proof moisture-proof material (for example, polyparaxylylene) and covers the periphery of the scintillator 332.
 なお、蒸着基板331は設けなくてもよい。例えば、蒸着基板331上にシンチレータ332を形成した後、蒸着基板331をシンチレータ332から剥離して、シンチレータ332を第2の光検出部34に接合してもよい。これに代えて、シンチレータ332を第2の光検出部34上に直接蒸着形成してもよい。また、CsI:Tlに代えて、ナトリウム活性化ヨウ化セシウム(CsI:Na)等の蛍光体材料を用いてもよい。 Note that the vapor deposition substrate 331 is not necessarily provided. For example, after forming the scintillator 332 on the vapor deposition substrate 331, the vapor deposition substrate 331 may be peeled off from the scintillator 332, and the scintillator 332 may be bonded to the second light detection unit 34. Alternatively, the scintillator 332 may be directly deposited on the second light detection unit 34. Further, instead of CsI: Tl, a phosphor material such as sodium activated cesium iodide (CsI: Na) may be used.
 シンチレータ332は、柱状結晶332Bの先端部332Cが第1の光検出部32に対向して配置されている。蒸着基板331は、接着剤等で第2の光検出部34に接合されている。複数の柱状結晶332Bは、互いに空隙GPを介して離間されている。各柱状結晶332Bの径は、数μm~10μm程度である。 In the scintillator 332, the tip portion 332 </ b> C of the columnar crystal 332 </ b> B is arranged to face the first light detection unit 32. The vapor deposition substrate 331 is bonded to the second light detection unit 34 with an adhesive or the like. The plurality of columnar crystals 332B are separated from each other through the gap GP. The diameter of each columnar crystal 332B is about several μm to 10 μm.
 シンチレータ332は、放射線発生器14から射出され、患者、天板30A、放射線量測定センサ31、第1の光検出部32等を透過して発光部33に入射した放射線を吸収して可視光を発生する。放射線は、第1の光検出部32の側からシンチレータ332に入射するため、シンチレータ332内での発光は、主に先端部332C側で生じる。シンチレータ332で発生した可視光は、柱状結晶332Bのライトガイド効果によって、第1の光検出部32及び第2の光検出部34に向かって進行する。 The scintillator 332 absorbs radiation that is emitted from the radiation generator 14 and passes through the patient, the top plate 30A, the radiation dose measurement sensor 31, the first light detection unit 32, and the like and is incident on the light emitting unit 33 to generate visible light. appear. Since radiation enters the scintillator 332 from the first light detection unit 32 side, light emission in the scintillator 332 occurs mainly on the distal end portion 332C side. Visible light generated in the scintillator 332 travels toward the first light detection unit 32 and the second light detection unit 34 by the light guide effect of the columnar crystal 332B.
 第1の光検出部32に向かって進行した可視光は、尖った先端部332Cから射出され、防湿保護膜333を透過して第1の光検出部32に入射し、第1の光検出部32の光電変換部321により検出される。また、第1の光検出部32に入射した可視光の一部は、第1の光検出部32を透過して放射線量測定センサ31に入射する。放射線量測定センサ31に入射した可視光は、光電変換部313により検出される。 The visible light that has traveled toward the first light detection unit 32 is emitted from the pointed tip 332C, passes through the moisture-proof protective film 333, and enters the first light detection unit 32. The first light detection unit It is detected by 32 photoelectric conversion units 321. Further, part of the visible light incident on the first light detection unit 32 passes through the first light detection unit 32 and enters the radiation dose measurement sensor 31. Visible light incident on the radiation dose measurement sensor 31 is detected by the photoelectric conversion unit 313.
 一方、第2の光検出部34に向かって進行した可視光は、非柱状結晶332Aに入射し、非柱状結晶332Aによって一部が反射されるが、大半は蒸着基板331を透過して第2の光検出部34に入射する。第2の光検出部34に入射した可視光は、光電変換部341により検出される。 On the other hand, visible light traveling toward the second light detection unit 34 is incident on the non-columnar crystal 332A and is partially reflected by the non-columnar crystal 332A. The light is incident on the light detector 34. Visible light incident on the second light detection unit 34 is detected by the photoelectric conversion unit 341.
 図6に示すように、発光部33と第1の光検出部32とにより、第1の放射線検出器40が構成されている。第1の放射線検出器40は、放射線の進行方向に沿って、第1の光検出部32、発光部33の順に配置されている。このような配置方式は、ISS(Irradiation Side Sampling)型と呼ばれる。また、発光部33と第2の光検出部34とにより、第2の放射線検出器41が構成されている。第2の放射線検出器41は、放射線の進行方向に沿って、発光部33、第2の光検出部34の順に配置される。このような配置方式は、PSS(Penetration Side Sampling)型と呼ばれる。 As shown in FIG. 6, the light emitting unit 33 and the first light detection unit 32 constitute a first radiation detector 40. The first radiation detector 40 is arranged in the order of the first light detection unit 32 and the light emitting unit 33 along the radiation traveling direction. Such an arrangement method is called an ISS (Irradiation Side Sampling) type. The light emitting unit 33 and the second light detection unit 34 constitute a second radiation detector 41. The second radiation detector 41 is arranged in the order of the light emitting unit 33 and the second light detection unit 34 along the radiation traveling direction. Such an arrangement method is called a PSS (Penetration Side Sampling) type.
 さらに、発光部33と放射線量測定センサ31とにより、ISS型の放射線量測定部42が構成されている。前述のように、発光部33のシンチレータ332内での発光は、第1の光検出部32の近傍で生じるため、第1の放射線検出器40は、放射線に対する感度が高い。 Further, the light emitting unit 33 and the radiation dose measuring sensor 31 constitute an ISS type radiation dose measuring unit 42. As described above, since the light emission in the scintillator 332 of the light emitting unit 33 occurs in the vicinity of the first light detection unit 32, the first radiation detector 40 has high sensitivity to radiation.
 第1の放射線検出器40は、画素324の配列ピッチが第2の放射線検出器42の画素344の配列ピッチより大きく(配置密度が小さく)、画素324の数(有効画素数)が少ない。このため、第1の放射線検出器40は、第2の放射線検出器42より高フレームレートで駆動され、動画撮影に用いられる。他方の第2の放射線検出器41は、静止画撮影に用いられる。 In the first radiation detector 40, the arrangement pitch of the pixels 324 is larger than the arrangement pitch of the pixels 344 of the second radiation detector 42 (the arrangement density is small), and the number of pixels 324 (the number of effective pixels) is small. For this reason, the first radiation detector 40 is driven at a higher frame rate than the second radiation detector 42 and is used for moving image shooting. The other second radiation detector 41 is used for still image shooting.
 図7において、第1の光検出部32には、行方向に沿って延在され、各TFT322をオン/オフさせるための複数本のゲート配線50と、行方向と交差する列方向に沿って延在され、キャパシタ323に蓄積された電荷をオン状態のTFT322を介して読み出すための複数本のデータ配線51が設けられている。第1の放射線検出器40には、この第1の光検出部32の他、ゲート線ドライバ52、信号処理部53、及び画像メモリ54が設けられている。 In FIG. 7, the first photodetecting portion 32 extends along the row direction, and includes a plurality of gate wirings 50 for turning on / off each TFT 322, and a column direction intersecting the row direction. A plurality of data wirings 51 are provided for reading out the charges accumulated in the capacitor 323 through the TFT 322 in the on state. The first radiation detector 40 is provided with a gate line driver 52, a signal processing unit 53, and an image memory 54 in addition to the first light detection unit 32.
 ゲート配線50は、ゲート線ドライバ52に接続されている。データ配線51は、信号処理部53に接続されている。患者の撮影部位を透過した放射線(撮影部位の画像情報を担持した放射線)が電子カセッテ15に照射されると、発光部33からは、放射線の照射量に応じた光量の可視光が放出される。各画素324の光電変換部321では、可視光の入射光量に応じた大きさの電荷が発生する。この電荷がキャパシタ323に蓄積される。 The gate wiring 50 is connected to the gate line driver 52. The data wiring 51 is connected to the signal processing unit 53. When the electronic cassette 15 is irradiated with radiation that has passed through the imaging region of the patient (radiation carrying image information of the imaging region), visible light having a light amount corresponding to the radiation dose is emitted from the light emitting unit 33. . In the photoelectric conversion unit 321 of each pixel 324, a charge having a magnitude corresponding to the incident light amount of visible light is generated. This charge is accumulated in the capacitor 323.
 キャパシタ323に電荷が蓄積されると、TFT322は、ゲート線ドライバ52からゲート配線50を介して供給される信号により行単位で順にオンされる。TFT322がオンされた画素324のキャパシタ323に蓄積されている電荷は、アナログの電気信号としてデータ配線51を伝送されて信号処理部53に入力される。このように、各画素324のキャパシタ323に蓄積された電荷は行単位で順に読み出される。 When charges are accumulated in the capacitor 323, the TFTs 322 are sequentially turned on in units of rows by a signal supplied from the gate line driver 52 via the gate wiring 50. The electric charge accumulated in the capacitor 323 of the pixel 324 in which the TFT 322 is turned on is transmitted through the data wiring 51 as an analog electric signal and input to the signal processing unit 53. In this way, the charges accumulated in the capacitor 323 of each pixel 324 are sequentially read out in units of rows.
 信号処理部53は、周知のように、データ配線51毎に、増幅器(図示せず)及びサンプルホールド回路(図示せず)を備えている。各データ配線51を伝送された電気信号は、増幅器で増幅された後、サンプルホールド回路に保持される。サンプルホールド回路の出力側には、マルチプレクサ(図示せず)、A/D変換器(図示せず)が順に接続されている。各サンプルホールド回路に保持された電気信号は、マルチプレクサにより選択され、A/D変換器によってデジタルの画像データに変換される。信号処理部53には、画像メモリ54が接続されており、信号処理部53のA/D変換器から出力された画像データは、画像メモリ54に記憶される。 As is well known, the signal processing unit 53 includes an amplifier (not shown) and a sample hold circuit (not shown) for each data wiring 51. The electric signal transmitted through each data line 51 is amplified by an amplifier and then held in a sample and hold circuit. A multiplexer (not shown) and an A / D converter (not shown) are sequentially connected to the output side of the sample hold circuit. The electric signal held in each sample and hold circuit is selected by a multiplexer and converted into digital image data by an A / D converter. An image memory 54 is connected to the signal processing unit 53, and image data output from the A / D converter of the signal processing unit 53 is stored in the image memory 54.
 第2の光検出部34には、同様に、複数本のゲート配線60と、複数本のデータ配線61が設けられている。第2の放射線検出器41には、この第2の光検出部34の他、ゲート線ドライバ62、信号処理部63、及び画像メモリ64が設けられている。ゲート配線60はゲート線ドライバ62に接続されており、データ配線61は信号処理部63に接続されている。そして、信号処理部63には、画像メモリ64が接続されている。 Similarly, the second light detection unit 34 is provided with a plurality of gate wirings 60 and a plurality of data wirings 61. The second radiation detector 41 is provided with a gate line driver 62, a signal processing unit 63, and an image memory 64 in addition to the second light detection unit 34. The gate line 60 is connected to the gate line driver 62, and the data line 61 is connected to the signal processing unit 63. An image memory 64 is connected to the signal processing unit 63.
 前述のように、第1の光検出部32は、画素324の配置密度が小さいため、ゲート配線50及びデータ配線51の本数が、第2の光検出部34のゲート配線60及びデータ配線61の本数より少ない。また、第1の放射線検出器40は動画撮影用であるため、信号処理部53の増幅器のゲインは、第2の放射線検出器41における信号処理部63の増幅器のゲインより大きな値に設定されている。これ以外の第2の放射線検出器41の構成は、第1の放射線検出器40の構成と同一であるため、詳しい説明は省略する。 As described above, since the first light detection unit 32 has a low arrangement density of the pixels 324, the number of the gate wirings 50 and the data wirings 51 is equal to the number of the gate wirings 60 and the data wirings 61 of the second light detection unit 34. Less than the number. Further, since the first radiation detector 40 is for moving image shooting, the gain of the amplifier of the signal processing unit 53 is set to a value larger than the gain of the amplifier of the signal processing unit 63 in the second radiation detector 41. Yes. Since the configuration of the second radiation detector 41 other than this is the same as the configuration of the first radiation detector 40, detailed description thereof is omitted.
 画像メモリ54,64は、電子カセッテ15の全体の動作を制御するカセッテ制御部70と接続されている。カセッテ制御部70は、マイクロコンピュータであり、CPU70Aと、RAM70Bと、フラッシュメモリ等の不揮発性のROM70Cとを有する。 The image memories 54 and 64 are connected to a cassette control unit 70 that controls the overall operation of the electronic cassette 15. The cassette control unit 70 is a microcomputer, and includes a CPU 70A, a RAM 70B, and a nonvolatile ROM 70C such as a flash memory.
 カセッテ制御部70には、外部機器との間で各種情報の送受信を無線により行う無線通信部71が接続されている。無線通信部71は、IEEE(Institute of Electrical and Electronics Engineers)802.11a/b/g/nに代表される無線LAN(Local Area Network)規格に対応している。カセッテ制御部70は、無線通信部71を介してコンソール17と無線通信を行う。 The cassette control unit 70 is connected to a wireless communication unit 71 that wirelessly transmits and receives various types of information to and from external devices. The wireless communication unit 71 corresponds to a wireless LAN (Local Area Network) standard represented by IEEE (Institute of Electrical and Electronics Electronics) (802.11a / b / g / n). The cassette control unit 70 performs wireless communication with the console 17 via the wireless communication unit 71.
 放射線量測定部42は、放射線発生器14から電子カセッテ15に照射される放射線の線量(単位時間当たりの放射線量)を測定するために用いられる。放射線発生器14は、放射線として、動画撮影用の低線量パルスと、静止画撮影用の高線量パルスとを、撮影者の操作に従って射出する。 The radiation dose measuring unit 42 is used for measuring the dose of radiation (radiation dose per unit time) irradiated to the electronic cassette 15 from the radiation generator 14. The radiation generator 14 emits, as radiation, a low-dose pulse for moving image shooting and a high-dose pulse for still image shooting according to the operation of the photographer.
 放射線量測定部42の放射線量測定センサ31には、光電変換部313と同数の配線73が設けられている。放射線量測定部42には、この放射線量測定センサ31の他、信号検出部74が設けられている。各光電変換部313は、専用の配線73を介して信号検出部74に接続されている。信号検出部74は、配線73毎に、増幅器、サンプルホールド回路、及びA/D変換器(いずれも図示せず)を備えており、カセッテ制御部70及び線量判定部75と接続されている。 The radiation dose measurement sensor 31 of the radiation dose measurement unit 42 is provided with the same number of wirings 73 as the photoelectric conversion unit 313. In addition to the radiation dose measurement sensor 31, the radiation dose measurement unit 42 is provided with a signal detection unit 74. Each photoelectric conversion unit 313 is connected to the signal detection unit 74 via a dedicated wiring 73. The signal detection unit 74 includes an amplifier, a sample hold circuit, and an A / D converter (all not shown) for each wiring 73, and is connected to the cassette control unit 70 and the dose determination unit 75.
 信号検出部74は、カセッテ制御部70からの制御により、光電変換部313から配線73を介して伝送される信号のサンプリングを所定の周期で行い、サンプリングした信号をデジタルデータに変換して線量判定部75へ順次出力する。線量判定部75は、信号検出部74から入力されたデータに基づき、放射線発生器14から照射された放射線の線量を判定(すなわち、動画撮影用の低線量パルス、静止画撮影用の高線量パルスのいずれであるかを判定)する。この判定結果は、カセッテ制御部70へ出力される。 The signal detection unit 74 performs sampling of a signal transmitted from the photoelectric conversion unit 313 via the wiring 73 in a predetermined cycle under the control of the cassette control unit 70, converts the sampled signal into digital data, and determines the dose. The data are sequentially output to the unit 75. The dose determination unit 75 determines the dose of radiation emitted from the radiation generator 14 based on the data input from the signal detection unit 74 (that is, a low-dose pulse for moving image shooting and a high-dose pulse for still image shooting). To determine which of the two). This determination result is output to the cassette control unit 70.
 電子カセッテ15には電源部77が設けられており、上述した各種電子回路と配線(図示せず)により接続されている。電源部77は、電子カセッテ15の可搬性を損なわないように、前述のバッテリを内蔵しており、このバッテリから各種電子回路へ電力を供給する。また、電源部77は、カセッテ制御部70に接続されている。カセッテ制御部70は、第1の放射線検出器40及び第2の放射線検出器41への電力の供給を選択的にオン/オフすることを可能とする。 The electronic cassette 15 is provided with a power supply unit 77 and is connected to the various electronic circuits described above by wiring (not shown). The power supply unit 77 incorporates the above-described battery so as not to impair the portability of the electronic cassette 15, and supplies power from the battery to various electronic circuits. The power supply unit 77 is connected to the cassette control unit 70. The cassette controller 70 can selectively turn on / off the power supply to the first radiation detector 40 and the second radiation detector 41.
 図8において、コンソール17は、コンピュータで構成され、装置全体の動作を制御するCPU170と、制御プログラムを含む各種プログラム等が予め記憶されたROM171と、各種データを一時的に記憶するRAM172と、各種データを記憶するHDD173とを備え、これらはバス線BLを介して互いに接続されている。また、バス線BLには、通信I/F174及び無線通信部175が接続され、ディスプレイ176がディスプレイドライバ177を介して接続されている。更に、バス線BLには、操作部178が操作入力検出部179を介して接続されている。 In FIG. 8, the console 17 is configured by a computer and includes a CPU 170 that controls the operation of the entire apparatus, a ROM 171 that stores various programs including a control program in advance, a RAM 172 that temporarily stores various data, And an HDD 173 for storing data, which are connected to each other via a bus line BL. In addition, a communication I / F 174 and a wireless communication unit 175 are connected to the bus line BL, and a display 176 is connected via a display driver 177. Furthermore, an operation unit 178 is connected to the bus line BL via an operation input detection unit 179.
 通信I/F174は、接続端子17A及び通信ケーブル78を介して、放射線発生器14の接続端子14Aに接続されている。CPU170は、通信I/F174等を用いた有線方式により、放射線発生器14との間で、曝射条件等の情報を送受信する。また、無線通信部175は、電子カセッテ15の無線通信部71と通信し、CPU170と電子カセッテ15との間で、画像データ等の各種の情報を送受信する。 The communication I / F 174 is connected to the connection terminal 14A of the radiation generator 14 via the connection terminal 17A and the communication cable 78. The CPU 170 transmits and receives information such as the exposure conditions to and from the radiation generator 14 by a wired method using the communication I / F 174 and the like. The wireless communication unit 175 communicates with the wireless communication unit 71 of the electronic cassette 15 and transmits and receives various types of information such as image data between the CPU 170 and the electronic cassette 15.
 ディスプレイドライバ177は、ディスプレイ176に各種情報を表示させるための信号を生成して出力する。CPU170は、ディスプレイドライバ177を介して、操作メニューや放射線画像等をディスプレイ176に表示させる。操作部178は、キーボード等により構成され、各種情報や操作指示が入力される。操作入力検出部179は、操作部178に対する操作を検出し、検出結果をCPU170に送信する。また、操作部178には、放射線撮影室の床上に配置され、動画撮影と静止画撮影との切り替えを行うためのフットスイッチ(図示せず)が接続されている。このフットスイッチは、撮影者が足で踏むことによってオン/オフする。 The display driver 177 generates and outputs a signal for displaying various information on the display 176. The CPU 170 displays an operation menu, a radiation image, and the like on the display 176 via the display driver 177. The operation unit 178 includes a keyboard and the like, and various information and operation instructions are input thereto. The operation input detection unit 179 detects an operation on the operation unit 178 and transmits a detection result to the CPU 170. The operation unit 178 is connected to a foot switch (not shown) that is arranged on the floor of the radiation imaging room and performs switching between moving image shooting and still image shooting. The foot switch is turned on / off when the photographer steps on the foot.
 放射線発生器14は、放射線を発生する放射線源140と、コンソール17との間で曝射条件等の各種情報の送受信を行う通信I/F141と、コンソール17から受信した曝射条件に基づいて放射線源140を制御する線源制御部142とを備えている。 The radiation generator 14 performs radiation based on the radiation I / F 141 that transmits and receives various information such as the exposure conditions between the radiation source 140 that generates radiation and the console 17, and the exposure conditions received from the console 17. A radiation source controller 142 for controlling the source 140.
 次に、RIS10の作用について説明する。放射線画像の撮影を行う場合に、端末装置11から撮影依頼を入力する。この撮影依頼では、撮影対象とする患者、撮影対象とする撮影部位が指定され、管電圧、管電流などが必要に応じて指定される。 Next, the operation of the RIS 10 will be described. When taking a radiographic image, an imaging request is input from the terminal device 11. In this imaging request, a patient to be imaged, an imaging region to be imaged are designated, and tube voltage, tube current, etc. are designated as necessary.
 図1に示す端末装置11は、入力された撮影依頼の内容をRISサーバ12に通知する。RISサーバ12は、端末装置11から通知された撮影依頼の内容を記憶部12Aに記憶する。コンソール17は、RISサーバ12にアクセスすることにより、撮影依頼の内容及び撮影対象とする患者の属性情報を取得し、撮影依頼の内容及び患者の属性情報をディスプレイ176(図8参照)に表示させる。 1 notifies the RIS server 12 of the content of the input photographing request. The RIS server 12 stores the content of the imaging request notified from the terminal device 11 in the storage unit 12A. The console 17 accesses the RIS server 12 to acquire the content of the imaging request and the attribute information of the patient to be imaged, and displays the content of the imaging request and the attribute information of the patient on the display 176 (see FIG. 8). .
 撮影者(放射線技師等)は、ディスプレイ176に表示された撮影依頼の内容に基づいて、放射線画像の撮影を行うための準備作業を行う。例えば、臥位台21上に横臥した患者21Aの患部の撮影を行う場合には、臥位台21のカセッテ室23に電子カセッテ15を装填する。 The radiographer (radiologist, etc.) performs preparatory work for radiographic imaging based on the content of the radiography request displayed on the display 176. For example, when photographing the affected part of the patient 21 A lying on the prone table 21, the electronic cassette 15 is loaded in the cassette chamber 23 of the prone table 21.
 撮影者は、上記の準備作業が完了すると、コンソール17の操作部178を介して準備作業の完了を通知する操作を行う。コンソール17は、この操作をトリガとして、電子カセッテ15の動作モードをレディ状態とする。電子カセッテ15は、レディ状態となると、カセッテ制御部70により放射線量測定部42及び線量判定部75が駆動され、放射線発生器14から照射される放射線パルス(動画撮影用の低線量パルスまたは静止画撮影用の高線量パルス)を検出するための待ち受け動作を開始する。コンソール17は、ディスプレイ176の表示を切り替えることで撮影可能状態になったことを撮影者へ通知する。 When the preparatory work is completed, the photographer performs an operation for notifying the completion of the preparatory work through the operation unit 178 of the console 17. Using this operation as a trigger, the console 17 sets the operation mode of the electronic cassette 15 to the ready state. When the electronic cassette 15 is in a ready state, the radiation control unit 70 drives the radiation dose measurement unit 42 and the dose determination unit 75 to irradiate the radiation pulse (a low-dose pulse for moving image shooting or a still image). A standby operation for detecting a high-dose pulse for imaging) is started. The console 17 notifies the photographer that the camera is ready to shoot by switching the display on the display 176.
 この通知を確認した撮影者は、操作部178を介して撮影指示を行う。例えば、静止画撮影の場合には、コンソール17は、曝射開始を指示する指示信号を放射線発生器14へ送信する。放射線発生器14は、コンソール17から受信した曝射条件に応じた管電圧、管電流で放射線発生器14から静止画撮影用の高線量パルスを射出させる。 The photographer who has confirmed this notification issues a shooting instruction via the operation unit 178. For example, in the case of still image shooting, the console 17 transmits an instruction signal instructing the start of exposure to the radiation generator 14. The radiation generator 14 emits a high-dose pulse for taking a still image from the radiation generator 14 with a tube voltage and a tube current corresponding to the exposure conditions received from the console 17.
 電子カセッテ15のカセッテ制御部70は、放射線量測定部42及び線量判定部75により高線量パルスを検出すると、第2の放射線検出器41を駆動して撮影動作を行い、第2の放射線検出器41により得られた画像データを、無線通信部71を介してコンソール17に送信する。コンソール17では、入力された画像データは、静止画像としてディスプレイ176に表示される。 The cassette control unit 70 of the electronic cassette 15, when detecting the high-dose pulse by the radiation dose measurement unit 42 and the dose determination unit 75, drives the second radiation detector 41 to perform an imaging operation, and performs the second radiation detector. The image data obtained by 41 is transmitted to the console 17 via the wireless communication unit 71. In the console 17, the input image data is displayed on the display 176 as a still image.
 循環器系の診断や処置等を行う場合には、撮影者として数名の医師等がチームを組んで対処する。このチームは、患者の載置されている臥位台21の位置を調整したり、患者の撮影部位に合わせて放射線発生器14を回転させたりする操作を担当する補助的な役割を担う者と、動画像(透視像)を観察しながら患者に挿入するカテーテルやガイドワイヤを操作する医師とにより構成される。この医師は、カテーテルやガイドワイヤを操作するために両手が塞がっているため、前述のフットスイッチを用いて動画撮影、静止画撮影の切り替えを行う。動画撮影は、患者の位置決めや、病変部の探索に使用される。静止画撮影は、病変部のより鮮明な放射線画像を得るために使用される。 When performing cardiovascular system diagnosis and treatment, several doctors as a photographer form a team. This team has an auxiliary role in charge of operations such as adjusting the position of the prone position 21 on which the patient is placed and rotating the radiation generator 14 according to the imaging region of the patient. And a doctor who operates a catheter or guide wire inserted into a patient while observing a moving image (perspective image). Since both hands are closed to operate the catheter and guide wire, the doctor switches between moving image shooting and still image shooting using the above-described foot switch. Movie shooting is used for patient positioning and lesion search. Still image capturing is used to obtain a clearer radiation image of a lesion.
 次に、図9に示すタイミングチャートを参照して、動画撮影を一時中断して静止画撮影を行う場合について説明する。動画撮影時には、放射線発生器14から動画撮影用の低線量パルスが所定の間隔で患者に向けて照射される。このとき、放射線量測定部42は、この低線量パルスの照射間隔より短い間隔で放射線のサンプリングを行っている。線量判定部75は、放射線量測定部42により検出される放射線の立ち上がり時の放射線量を、所定の閾値と比較し、この閾値より放射線量(強度)が小さい場合には、低線量パルスと判定する。 Next, with reference to a timing chart shown in FIG. 9, a case will be described in which video shooting is temporarily interrupted and still image shooting is performed. At the time of moving image shooting, the radiation generator 14 irradiates the patient with a low-dose pulse for moving image shooting at a predetermined interval. At this time, the radiation dose measurement unit 42 performs radiation sampling at an interval shorter than the irradiation interval of the low dose pulse. The dose determination unit 75 compares the radiation dose at the rise of the radiation detected by the radiation dose measurement unit 42 with a predetermined threshold value, and determines that the radiation dose (intensity) is lower than this threshold value as a low dose pulse. To do.
 線量判定部75により低線量パルスが検出されると、カセッテ制御部70は、低線量パルスに同期して第1の放射線検出器40を駆動し、動画撮影動作MPを実行させる。この動画撮影動作MPでは、まず、ゲート線ドライバ52により全てのゲート配線50が一括選択されて全てのTFT322がオン状態となり、キャパシタ323に蓄積された電荷が廃棄(リセット)される。 When the low-dose pulse is detected by the dose determination unit 75, the cassette control unit 70 drives the first radiation detector 40 in synchronization with the low-dose pulse to execute the moving image capturing operation MP. In this moving image shooting operation MP, all the gate wirings 50 are selected at once by the gate line driver 52, all the TFTs 322 are turned on, and the charges accumulated in the capacitor 323 are discarded (reset).
 次に、全てのゲート配線50が非選択とされて全てのTFT322がオフ状態となり、キャパシタ323が電荷蓄積状態となる。光電変換部321により、患者の撮影部位を透過した放射線に応じた電荷が発生され、キャパシタ323に蓄積される。そして、低線量パルスの照射終了後、ゲート線ドライバ52によりゲート配線50が順次に駆動されることにより、キャパシタ323に蓄積された電荷が読み出され、信号処理部53により画像データが生成される。 Next, all the gate wirings 50 are not selected, all the TFTs 322 are turned off, and the capacitor 323 is in a charge accumulation state. The photoelectric conversion unit 321 generates charges corresponding to the radiation transmitted through the imaging region of the patient and accumulates them in the capacitor 323. Then, after the low-dose pulse irradiation is completed, the gate wiring 50 is sequentially driven by the gate line driver 52, whereby the charges accumulated in the capacitor 323 are read out, and image data is generated by the signal processing unit 53. .
 この動画撮影動作MPには、カセッテ制御部70は、電源部77から第2の放射線検出器41の各部への電源電圧の供給を停止し、オフ状態(OFF)とする。これにより、第1の放射線検出器40の読み出し動作への電源ノイズの影響が低減される。 In this moving image shooting operation MP, the cassette control unit 70 stops the supply of the power supply voltage from the power supply unit 77 to each part of the second radiation detector 41 and turns it off (OFF). Thereby, the influence of the power supply noise on the reading operation of the first radiation detector 40 is reduced.
 低線量パルスが検出されるたびに動画撮影動作MPが行われ、画像データが画像メモリ64から無線通信部71を介してコンソール17に順次に送信される。コンソール17では、入力された画像データは、動画像としてディスプレイ176に表示される。 Each time a low-dose pulse is detected, a moving image capturing operation MP is performed, and image data is sequentially transmitted from the image memory 64 to the console 17 via the wireless communication unit 71. In the console 17, the input image data is displayed on the display 176 as a moving image.
 この動画撮影中に、フットスイッチ等の操作により静止画撮影指示がなされた場合には、放射線発生器14から静止画撮影用の高線量パルスが患者に向けて照射される。この高線量パルスの線量は、低線量パルスの100倍程度である。線量判定部75は、放射線量測定部42により検出される放射線の立ち上がり時の放射線量を、所定の閾値と比較し、この閾値より放射線量が大きい場合には、高線量パルスと判定する。 When a still image shooting instruction is given by operating a foot switch or the like during this moving image shooting, a high-dose pulse for shooting a still image is emitted from the radiation generator 14 toward the patient. The dose of this high dose pulse is about 100 times that of the low dose pulse. The dose determination unit 75 compares the radiation dose at the time of rising of the radiation detected by the radiation dose measurement unit 42 with a predetermined threshold value, and determines that the dose is a high dose pulse when the radiation dose is larger than this threshold value.
 線量判定部75により高線量パルスが検出されると、カセッテ制御部70は、高線量パルスに同期して第2の放射線検出器41を駆動し、静止画撮影動作SPを実行させる。この静止画撮影動作SPは、動画撮影動作MPと同様であり、第2の放射線検出器41により画像データが生成される。この画像データは、無線通信部71を介してコンソール17に送信され、コンソール17では、静止画像としてディスプレイ176に表示される。なお、この静止画像を、ディスプレイ176以外の別のディスプレイに表示してもよい。 When the high-dose pulse is detected by the dose determination unit 75, the cassette control unit 70 drives the second radiation detector 41 in synchronization with the high-dose pulse to execute the still image shooting operation SP. This still image shooting operation SP is the same as the moving image shooting operation MP, and image data is generated by the second radiation detector 41. This image data is transmitted to the console 17 via the wireless communication unit 71, and is displayed on the display 176 as a still image on the console 17. Note that this still image may be displayed on another display other than the display 176.
 また、この静止画撮影動作SPには、カセッテ制御部70は、電源部77から第1の放射線検出器40の各部への電源電圧の供給を停止し、オフ状態(OFF)とする。これにより、動画撮影動作MPが中断されているから、第2の放射線検出器41の読み出し動作への電源ノイズの影響が低減される。 Also, in this still image shooting operation SP, the cassette control unit 70 stops the supply of the power supply voltage from the power supply unit 77 to each part of the first radiation detector 40 to be turned off (OFF). Thereby, since the moving image capturing operation MP is interrupted, the influence of power supply noise on the reading operation of the second radiation detector 41 is reduced.
 以上のように、第2の放射線検出器41は、画素344の配置密度が大きいため、高精細な静止画像が得られる。これに対して、第1の放射線検出器40は、画素324の配置密度が小さく、画素324の数が少ないため、高速駆動され、高フレームレートで動画像が生成される。 As described above, since the second radiation detector 41 has a high arrangement density of the pixels 344, a high-definition still image can be obtained. In contrast, the first radiation detector 40 is driven at high speed and generates a moving image at a high frame rate because the arrangement density of the pixels 324 is small and the number of the pixels 324 is small.
 また、第1の放射線検出器40と第2の放射線検出器41とは放射線の進行方向に積層され、第2の放射線検出器41は第1の放射線検出器40を透過した放射線を検出する構成であるため、動画撮影から静止画撮影に切り替える際に、第2の放射線検出器41を移動させる必要はなく、迅速に静止画撮影の切り替えが行われる。 The first radiation detector 40 and the second radiation detector 41 are stacked in the radiation traveling direction, and the second radiation detector 41 detects the radiation transmitted through the first radiation detector 40. Therefore, when switching from moving image shooting to still image shooting, there is no need to move the second radiation detector 41, and still image shooting is quickly switched.
 以下、電子カセッテの変形例を示す。図10に示す変形例は、放射線量測定センサ31、発光部33、第2の光検出部34が上記実施形態と同一の構成であるが、第1の光検出部32aが発光部33及び第2の光検出部34より小面積である(視野範囲が小さい)点が上記実施形態と異なる。この場合でも、第1の光検出部32aの画素324の配列ピッチが、第2の光検出部34の画素344の配列ピッチより大きい(配置密度が小さい)ことが好ましい。 The following is a modification of the electronic cassette. In the modification shown in FIG. 10, the radiation dose measurement sensor 31, the light emitting unit 33, and the second light detection unit 34 have the same configuration as in the above embodiment, but the first light detection unit 32 a includes the light emission unit 33 and the first light detection unit 32 a. The second embodiment is different from the above embodiment in that the area is smaller than that of the second light detection unit 34 (the visual field range is small). Even in this case, it is preferable that the arrangement pitch of the pixels 324 of the first light detection unit 32a is larger than the arrangement pitch of the pixels 344 of the second light detection unit 34 (the arrangement density is small).
 このような小面積の第1の光検出部32aを用いた場合には、その形状(特にエッジ部分)が第2の光検出部34により得られる画像データに写り込んでしまう可能性があるが、この写り込みは固定パターンとなるため、信号処理部63または外部の画像処理装置(図示せず)において固定パターンの補正処理を施すことにより、該写り込みを除去すればよい。 When the first light detection unit 32a having such a small area is used, the shape (particularly the edge portion) may be reflected in the image data obtained by the second light detection unit 34. Since this reflection becomes a fixed pattern, the reflection may be removed by performing correction processing of the fixed pattern in the signal processing unit 63 or an external image processing apparatus (not shown).
 図11に示す変形例では、複数の小面積の第1の光検出部32a~32cが敷詰められて発光部33及び第2の光検出部34と同等の面積とされている。この場合、第1の光検出部32a~32cにより得られる放射線画像には、第1の光検出部32a~32cの間の繋ぎ目に対応する隙間が生じてしまうが、この隙間部分には補間処理が施される。この放射線画像は動画像として用いられるため、診断への影響は少ない。 In the modification shown in FIG. 11, a plurality of first light detection units 32a to 32c having a small area are laid down to have an area equivalent to that of the light emitting unit 33 and the second light detection unit 34. In this case, in the radiographic images obtained by the first light detection units 32a to 32c, a gap corresponding to the joint between the first light detection units 32a to 32c is generated. Processing is performed. Since this radiation image is used as a moving image, it has little influence on diagnosis.
 図12に示す変形例では、第1の光検出部32a及び第2の光検出部34aが発光部33より小さく小面積とされると共に、第2の光検出部34aと発光部33との間にフレネルレンズ80が配置されている。発光部33から第2の光検出部34aの方向へ放出される可視光は、フレネルレンズ80により集光され、第2の光検出部34aに入射するため、第2の光検出部34aは、発光部33と同等の視野範囲を検出することができる。 In the modification shown in FIG. 12, the first light detection unit 32 a and the second light detection unit 34 a are smaller than the light emission unit 33 and have a smaller area, and between the second light detection unit 34 a and the light emission unit 33. A Fresnel lens 80 is disposed on the surface. The visible light emitted from the light emitting unit 33 in the direction of the second light detection unit 34a is collected by the Fresnel lens 80 and is incident on the second light detection unit 34a. A visual field range equivalent to that of the light emitting unit 33 can be detected.
 この小面積の第2の光検出部34aとして、シリコン基板や、炭化シリコン(SiC)等のワイドギャップ半導体基板をベースとして構成されたCMOS型イメージセンサやCCD型イメージセンサを用いることが可能である。SiC基板は、シリコン基板より500倍程度放射線耐性に優れているため、SiC基板を用いることが好ましい。 As the second light detection unit 34a having a small area, it is possible to use a CMOS image sensor or a CCD image sensor configured based on a silicon substrate or a wide gap semiconductor substrate such as silicon carbide (SiC). . Since a SiC substrate is about 500 times more resistant to radiation than a silicon substrate, it is preferable to use a SiC substrate.
 一方、シリコン基板は、放射線耐性が低く、放射線の累積被曝により劣化が生じるおそれがある。このため、第2の光検出部34aとして、シリコン基板をベースとして構成されたCMOS型イメージセンサやCCD型イメージセンサを用いる場合には、フレネルレンズ80を、鉛、ストロンチウム、バリウムなどの放射線(X線)の減衰効果が高い元素を含有するガラス材で形成することが好ましい。なお、このフレネルレンズ80は、第2の光検出部34aの基板がSiC基板である場合にも好適である。また、鉛、ストロンチウム、バリウムなどの元素を含有するガラス板等の透光性部材を、発光部33とフレネルレンズ80との間に別途設けることも好ましい。 On the other hand, silicon substrates have low radiation resistance, and there is a risk of deterioration due to cumulative exposure to radiation. For this reason, when a CMOS image sensor or a CCD image sensor configured based on a silicon substrate is used as the second light detection unit 34a, the Fresnel lens 80 is made of radiation (X It is preferable to form with a glass material containing an element having a high attenuation effect. The Fresnel lens 80 is also suitable when the substrate of the second light detection unit 34a is a SiC substrate. It is also preferable to provide a light-transmitting member such as a glass plate containing an element such as lead, strontium, or barium between the light emitting unit 33 and the Fresnel lens 80 separately.
 なお、図12に示す例では、第1の光検出部32aが発光部33より小面積であるが、図6に示すように、発光部33と同等の大きさの第1の光検出部32を用いてもよい。 In the example illustrated in FIG. 12, the first light detection unit 32 a has a smaller area than the light emitting unit 33, but as illustrated in FIG. 6, the first light detection unit 32 having the same size as the light emitting unit 33. May be used.
 図13に示す変形例では、放射線の進行方向に沿って、放射線量測定センサ31、第1の光検出部32、第1の発光部33A、第2の光検出部34、第2の発光部33Bが順に配置されている。第1の発光部33A及び第2の発光部33Bは、前述の発光部33と同一の構成である。この変形例では、第1の放射線検出器40は、第1の光検出部32と第1の発光部33Aとで構成されたISS型放射線検出器であり、第2の放射線検出器41は、第2の光検出部34と第2の発光部33Bとで構成されたISS型放射線検出器である。この場合、第1の発光部33Aの放射線入射側とは反対側の面に光反射層81Aを形成し、第2の発光部33Bの放射線入射側とは反対側の面に光反射層81Bを形成することが好ましい。光反射層81A,81Bは、アルミニウム等の金属膜により形成される。 In the modification shown in FIG. 13, the radiation dose measurement sensor 31, the first light detection unit 32, the first light emission unit 33A, the second light detection unit 34, and the second light emission unit are arranged along the radiation traveling direction. 33B are arranged in order. The first light emitting unit 33A and the second light emitting unit 33B have the same configuration as the light emitting unit 33 described above. In this modification, the first radiation detector 40 is an ISS type radiation detector composed of a first light detection unit 32 and a first light emitting unit 33A, and the second radiation detector 41 is: It is an ISS type radiation detector comprised by the 2nd light detection part 34 and the 2nd light emission part 33B. In this case, the light reflecting layer 81A is formed on the surface opposite to the radiation incident side of the first light emitting portion 33A, and the light reflecting layer 81B is formed on the surface opposite to the radiation incident side of the second light emitting portion 33B. It is preferable to form. The light reflecting layers 81A and 81B are formed of a metal film such as aluminum.
 図14に示す変形例では、放射線の進行方向に沿って、放射線量測定センサ31、第1の発光部33A、第1の光検出部32、第2の発光部33B、第2の光検出部34が順に配置されている。この変形例では、第1の放射線検出器40は、第1の光検出部32と第1の発光部33Aとで構成されたPSS型放射線検出器であり、第2の放射線検出器41は、第2の光検出部34と第2の発光部33Bとで構成されたPSS型放射線検出器である。この場合、第1の発光部33Aの放射線入射側の面に光反射層81Aを形成し、第2の発光部33Bの放射線入射側の面に光反射層81Bを形成することが好ましい。 In the modification shown in FIG. 14, the radiation dose measuring sensor 31, the first light emitting unit 33A, the first light detecting unit 32, the second light emitting unit 33B, and the second light detecting unit are arranged along the radiation traveling direction. 34 are arranged in order. In this modification, the first radiation detector 40 is a PSS type radiation detector composed of a first light detection unit 32 and a first light emitting unit 33A, and the second radiation detector 41 is This is a PSS type radiation detector composed of a second light detection unit 34 and a second light emission unit 33B. In this case, it is preferable that the light reflecting layer 81A is formed on the radiation incident side surface of the first light emitting unit 33A, and the light reflecting layer 81B is formed on the radiation incident side surface of the second light emitting unit 33B.
 図15に示す変形例では、放射線の進行方向に沿って、放射線量測定センサ31、第1の光検出部32、第1の発光部33A、第2の発光部33B、第2の光検出部34が順に配置されている。この変形例は、図6に示す構成において、発光部33を第1の発光部33Aと第2の発光部33Bとで構成したものである。第1の放射線検出器40は、第1の発光部33Aと第1の光検出部32とで構成されたISS型放射線検出器であり、第2の放射線検出器41は、第2の発光部33Bと第2の光検出部34とで構成されたPSS型放射線検出器である。 In the modification shown in FIG. 15, the radiation dose measurement sensor 31, the first light detection unit 32, the first light emission unit 33 </ b> A, the second light emission unit 33 </ b> B, and the second light detection unit are arranged along the radiation traveling direction. 34 are arranged in order. In this modification, in the configuration shown in FIG. 6, the light emitting unit 33 is configured by a first light emitting unit 33A and a second light emitting unit 33B. The first radiation detector 40 is an ISS type radiation detector composed of a first light emitting unit 33A and a first light detecting unit 32, and the second radiation detector 41 is a second light emitting unit. This is a PSS type radiation detector composed of 33B and the second light detection unit.
 図13~図15に示す各変形例において、第1の発光部33Aと第2の発光部33Bとを、特性の異なる蛍光体で形成してもよい。例えば、第2の発光部33Bに、CsI:TlやCsI:Na等の柱状結晶構造を有する柱状結晶蛍光体を用い、第1の発光部33Aに、ハロゲン化バリウム系(BaFX(X=Br,Cl,I))蛍光体を用いる。この場合、柱状結晶蛍光体の先端部を第2の光検出部34に対向させること好ましい。 13 to 15, the first light emitting unit 33A and the second light emitting unit 33B may be formed of phosphors having different characteristics. For example, a columnar crystal phosphor having a columnar crystal structure such as CsI: Tl or CsI: Na is used for the second light emitting portion 33B, and a barium halide (BaFX (X = Br, X) is used for the first light emitting portion 33A. Cl, I)) phosphors are used. In this case, it is preferable that the tip of the columnar crystal phosphor is opposed to the second light detection unit 34.
 柱状結晶蛍光体は、分解能が高く高性能である反面、BaFX蛍光体に比べて高価であるため、高画質の撮影を必要とする静止画撮影用の第2の放射線検出器41の第2の発光部33Bに柱状結晶蛍光体を用い、高画質が必要とされない動画撮影用の第1の放射線検出器40の第1の発光部33AにBaFX蛍光体を用いている。これにより、所望される性能を犠牲とすることなくコストを削減することができる。また、柱状結晶蛍光体は、厚みが厚いほど耐衝撃性が劣化するが、本構成では柱状結晶蛍光体を薄くすることができるため、耐衝撃性が向上する。 Although the columnar crystal phosphor has high resolution and high performance, it is more expensive than the BaFX phosphor, so that the second radiation detector 41 for still image photography that requires high-quality photography is required. A columnar crystal phosphor is used for the light emitting unit 33B, and a BaFX phosphor is used for the first light emitting unit 33A of the first radiation detector 40 for moving image shooting that does not require high image quality. This can reduce costs without sacrificing the desired performance. In addition, the columnar crystal phosphor has a shock resistance that deteriorates as the thickness increases. However, in this configuration, the columnar crystal phosphor can be thinned, and thus the impact resistance is improved.
 第1の発光部33Aは、BaFX蛍光体により、柱状結晶蛍光体を有する第2の発光部33Bより相対的に低いエネルギーの放射線(X線)を吸収する。この構成は、動画撮影と静止画撮影とで放射線源140の管電圧を変え、高コントラストの静止画像を得るために静止画撮影時の管電圧を高くする場合に有効である。 The first light emitting unit 33A absorbs radiation (X-rays) with lower energy than the second light emitting unit 33B having the columnar crystal phosphor by the BaFX phosphor. This configuration is effective when the tube voltage of the radiation source 140 is changed between moving image shooting and still image shooting to increase the tube voltage during still image shooting in order to obtain a high-contrast still image.
 また、図13~図15に示す各変形例において、第1の発光部33Aに酸化ガドリニウム(GOS)蛍光体を用い、第2の発光部33Bに柱状結晶蛍光体を用いてもよい。この場合、第1の発光部33Aは、GOS蛍光体により、柱状結晶蛍光体を有する第2の発光部33Bより相対的に高いエネルギーの放射線(X線)を吸収する。CsI等の柱状結晶蛍光体は、放射線の累積照射により感度が次第に低下するという特性を有するため、柱状結晶蛍光体の吸収エネルギーより高圧側の放射線を第1の発光部33Aで吸収することにより、第2の発光部33Bの感度低下が抑制される。 In each of the modifications shown in FIGS. 13 to 15, a gadolinium oxide (GOS) phosphor may be used for the first light emitting portion 33A and a columnar crystal phosphor may be used for the second light emitting portion 33B. In this case, the first light emitting unit 33A absorbs radiation (X-rays) having a relatively higher energy than the second light emitting unit 33B having the columnar crystal phosphor by the GOS phosphor. Since the columnar crystal phosphor such as CsI has a characteristic that the sensitivity gradually decreases due to the cumulative irradiation of radiation, the first light emitting unit 33A absorbs the radiation on the higher pressure side than the absorption energy of the columnar crystal phosphor. A decrease in sensitivity of the second light emitting unit 33B is suppressed.
 この場合、図15に示す変形例では、GOS蛍光体は、第1の光検出部32に、塗布または貼り合せを行うことにより形成される。柱状結晶蛍光体は、第2の光検出部34に、蒸着または貼り合せを行ことにより形成される。柱状結晶蛍光体の蒸着には、直接蒸着と間接蒸着とがある。間接蒸着とは、蒸着基板に柱状結晶蛍光体を蒸着し、柱状結晶蛍光体を第2の光検出部34に貼り合せた後、蒸着基板を剥離する方法である。柱状結晶蛍光体とGOS蛍光体との接合は、貼り合せ、または両者を押し当てた状態でパウチ加工することにより行う。また、柱状結晶蛍光体を、GOS蛍光体上に直接蒸着または間接蒸着した後、柱状結晶蛍光体と第2の光検出部34とを貼り合せてもよい。 In this case, in the modification shown in FIG. 15, the GOS phosphor is formed by applying or bonding to the first light detection unit 32. The columnar crystal phosphor is formed by vapor deposition or bonding to the second light detection unit 34. The vapor deposition of the columnar crystal phosphor includes direct vapor deposition and indirect vapor deposition. Indirect vapor deposition is a method in which a columnar crystal phosphor is vapor-deposited on a vapor deposition substrate, the columnar crystal phosphor is bonded to the second light detection unit 34, and then the vapor deposition substrate is peeled off. The columnar crystal phosphor and the GOS phosphor are bonded together by bonding or by pouching in a state where both are pressed. Alternatively, the columnar crystal phosphor may be directly or indirectly deposited on the GOS phosphor, and then the columnar crystal phosphor and the second light detection unit 34 may be bonded together.
 図16に示す変形例では、放射線の進行方向に沿って、放射線量測定センサ31、第1の光検出部32、第2の光検出部34、発光部33が順に配置されている。この構成では、第1の放射線検出器40は、第1の光検出部32と発光部33とで構成されたISS型放射線検出器であり、第2の放射線検出器41は、第2の光検出部34と発光部33Bとで構成されたISS型放射線検出器である。この場合、発光部33の放射線入射側とは反対側の面に光反射層82を形成することが好ましい。 In the modification shown in FIG. 16, the radiation dose measuring sensor 31, the first light detection unit 32, the second light detection unit 34, and the light emitting unit 33 are sequentially arranged along the radiation traveling direction. In this configuration, the first radiation detector 40 is an ISS type radiation detector composed of a first light detector 32 and a light emitter 33, and the second radiation detector 41 is a second light. This is an ISS type radiation detector composed of a detector 34 and a light emitter 33B. In this case, it is preferable to form the light reflecting layer 82 on the surface of the light emitting unit 33 opposite to the radiation incident side.
 また、上記実施形態及び各変形例では、第1の放射線検出器40において、第1の光検出部32の光電変換膜321Cをアモルファスシリコンによって構成しているが、光電変換膜321Cを、有機光電変換材料を含む材料で構成してもよい。この場合には、主に可視光域で高い吸収を示す吸収スペクトルが得られ、光電変換膜321Cではシンチレータ332から放出された可視光以外の電磁波の吸収が殆どない。これにより、放射線が光電変換膜321Cで吸収されることで発生するノイズが抑制される。 Moreover, in the said embodiment and each modification, in the 1st radiation detector 40, although the photoelectric converting film 321C of the 1st photon detection part 32 is comprised with the amorphous silicon, the photoelectric converting film 321C is made into organic photoelectric. You may comprise with the material containing conversion material. In this case, an absorption spectrum showing high absorption mainly in the visible light region is obtained, and the photoelectric conversion film 321C hardly absorbs electromagnetic waves other than visible light emitted from the scintillator 332. Thereby, the noise which generate | occur | produces because a radiation is absorbed by the photoelectric converting film 321C is suppressed.
 また、有機光電変換材料からなる光電変換膜321Cは、インクジェットヘッド等の液滴吐出ヘッドを用いて有機光電変換材料をTFT基板32A上に付着させることで形成することができ、TFT基板32Aに含まれる絶縁性基板325には、耐熱性は要求されない。このため、絶縁性基板325をガラス以外の材質とすることができる。 The photoelectric conversion film 321C made of an organic photoelectric conversion material can be formed by attaching an organic photoelectric conversion material onto the TFT substrate 32A using a droplet discharge head such as an ink jet head, and is included in the TFT substrate 32A. The insulating substrate 325 is not required to have heat resistance. For this reason, the insulating substrate 325 can be made of a material other than glass.
 光電変換膜321Cを有機光電変換材料で構成した場合、光電変換膜321Cで放射線が殆ど吸収されないので、第1の光検出部32を透過することによる放射線の減衰が抑制される。従って、光電変換膜321Cを有機光電変換材料で構成することは、第1の放射線検出器40がISS型である場合に好適である。 When the photoelectric conversion film 321 </ b> C is made of an organic photoelectric conversion material, radiation is hardly absorbed by the photoelectric conversion film 321 </ b> C, and thus attenuation of radiation due to transmission through the first light detection unit 32 is suppressed. Therefore, it is preferable that the photoelectric conversion film 321C is made of an organic photoelectric conversion material when the first radiation detector 40 is an ISS type.
 光電変換膜321Cを構成する有機光電変換材料は、シンチレータ332から放出された可視光を最も効率良く吸収するために、その吸収ピーク波長が、シンチレータ332の発光ピーク波長と近いほど好ましい。有機光電変換材料の吸収ピーク波長とシンチレータ332の発光ピーク波長とが一致することが理想的であるが、双方の差が小さければシンチレータ332から放出された可視光を十分に吸収することが可能である。具体的には、有機光電変換材料の吸収ピーク波長と、シンチレータ332の発光ピーク波長との差が10nm以内であることが好ましく、5nm以内であることがより好ましい。 The organic photoelectric conversion material that constitutes the photoelectric conversion film 321C is preferably such that its absorption peak wavelength is closer to the emission peak wavelength of the scintillator 332 in order to absorb the visible light emitted from the scintillator 332 most efficiently. Ideally, the absorption peak wavelength of the organic photoelectric conversion material matches the emission peak wavelength of the scintillator 332, but if the difference between the two is small, the visible light emitted from the scintillator 332 can be sufficiently absorbed. is there. Specifically, the difference between the absorption peak wavelength of the organic photoelectric conversion material and the emission peak wavelength of the scintillator 332 is preferably within 10 nm, and more preferably within 5 nm.
 このような条件を満たすことが可能な有機光電変換材料としては、キナクリドン系有機化合物やフタロシアニン系有機化合物が挙げられる。キナクリドンの可視域における吸収ピーク波長は560nmであるため、有機光電変換材料としてキナクリドンを用い、シンチレータ332の材料としてCsI:Tlを用いれば、上記ピーク波長の差を5nm以内にすることが可能であり、シンチレータ332で発生する電荷量をほぼ最大にすることができる。 Examples of organic photoelectric conversion materials that can satisfy these conditions include quinacridone organic compounds and phthalocyanine organic compounds. Since the absorption peak wavelength in the visible region of quinacridone is 560 nm, if quinacridone is used as the organic photoelectric conversion material and CsI: Tl is used as the material of the scintillator 332, the difference in the peak wavelengths can be made within 5 nm. The amount of charge generated in the scintillator 332 can be substantially maximized.
 光電変換膜321Cは、有機p型化合物または有機n型化合物を含有することが好ましい。有機p型化合物は、主に正孔輸送性有機化合物に代表されるドナー性有機半導体であり、電子を供与しやすい性質を有する。より詳しくは、有機p型化合物は、2つの有機材料を接触させて用いたときにイオン化ポテンシャルの小さい方の有機化合物である。ドナー性有機半導体としては、電子供与性を有するものであれば如何なる有機化合物も使用可能である。有機n型化合物は、主に電子輸送性有機化合物に代表されるアクセプター性有機半導体であり、電子を受容し易い性質を有する。より詳しくは、有機n型化合物は、2つの有機化合物を接触させて用いたときに電子親和力の大きい方の有機化合物である。アクセプター性有機半導体としては、電子受容性を有するものであれば如何なる有機化合物も使用可能である。 The photoelectric conversion film 321C preferably contains an organic p-type compound or an organic n-type compound. An organic p-type compound is a donor organic semiconductor typified by a hole-transporting organic compound and has a property of easily donating electrons. More specifically, the organic p-type compound is an organic compound having a smaller ionization potential when two organic materials are used in contact with each other. Any organic compound can be used as the donor organic semiconductor as long as it has an electron donating property. The organic n-type compound is an acceptor organic semiconductor mainly represented by an electron transporting organic compound, and has a property of easily accepting electrons. More specifically, the organic n-type compound is an organic compound having a higher electron affinity when two organic compounds are used in contact with each other. As the acceptor organic semiconductor, any organic compound can be used as long as it has an electron accepting property.
 また、光電変換部321は、少なくとも電極321A,321Bと光電変換膜321Cとを含んでいればよいが、暗電流の増加を抑制するため、電子ブロッキング膜及び正孔ブロッキング膜の少なくとも何れかを設けることが好ましく、両方を設けることがより好ましい。 In addition, the photoelectric conversion unit 321 only needs to include at least the electrodes 321A and 321B and the photoelectric conversion film 321C, but in order to suppress an increase in dark current, at least one of an electron blocking film and a hole blocking film is provided. It is preferable to provide both.
 また、TFT322の活性層としては、In、Ga及びZnのうちの少なくとも1つを含む非晶質酸化物(例えば、In-O系)が好ましく、In、Ga及びZnのうちの少なくとも2つを含む非晶質酸化物(例えば、In-Zn-O系、In-Ga-O系、Ga-Zn-O系)がより好ましく、In、Ga及びZnを含む非晶質酸化物が特に好ましい。In-Ga-Zn-O系非晶質酸化物としては、結晶状態における組成がInGaO(ZnO)(mは6未満の自然数)で表される非晶質酸化物が好ましく、特に、m=4であることがより好ましい。 The active layer of the TFT 322 is preferably an amorphous oxide containing at least one of In, Ga, and Zn (for example, an In—O system), and at least two of In, Ga, and Zn are used. Amorphous oxides containing (for example, In—Zn—O, In—Ga—O, and Ga—Zn—O) are more preferable, and amorphous oxides including In, Ga, and Zn are particularly preferable. As the In—Ga—Zn—O-based amorphous oxide, an amorphous oxide whose composition in a crystalline state is represented by InGaO 3 (ZnO) m (m is a natural number of less than 6) is preferable. = 4 is more preferable.
 また、TFT322の活性層を有機半導体材料で形成してもよい。この場合、有機半導体材料としては、特開2009-212389号公報に記載されたフタロシアニン化合物や、ペンタセン、バナジルフタロシアニン等が挙げられる。 Further, the active layer of the TFT 322 may be formed of an organic semiconductor material. In this case, examples of the organic semiconductor material include phthalocyanine compounds described in JP2009-212389A, pentacene, vanadyl phthalocyanine, and the like.
 TFT322の活性層を、非晶質酸化物や有機半導体材料によって形成すれば、X線等の放射線を吸収せず、或いは吸収したとしても極めて微量に留まるため、ノイズの発生が効果的に抑制される。 If the active layer of the TFT 322 is formed of an amorphous oxide or an organic semiconductor material, it does not absorb radiation such as X-rays, or even if it is absorbed, the amount of noise remains very small. The
 また、TFT322の活性層をカーボンナノチューブで形成してもよい。この場合、TFT322のスイッチング速度が高速化する。また、TFT322における可視光域の光の吸収度合いを低下させることができる。なお、活性層をカーボンナノチューブで形成する場合、活性層にごく微量の金属性不純物が混入しただけでTFT322の性能が著しく低下するため、遠心分離等により非常に純度の高いカーボンナノチューブを分離・抽出して活性層の形成に用いる必要がある。 Further, the active layer of the TFT 322 may be formed of carbon nanotubes. In this case, the switching speed of the TFT 322 is increased. Further, the degree of light absorption in the visible light region in the TFT 322 can be reduced. When the active layer is formed of carbon nanotubes, the performance of the TFT 322 is remarkably deteriorated just by mixing a very small amount of metallic impurities into the active layer. Therefore, the highly pure carbon nanotubes are separated and extracted by centrifugation or the like. Therefore, it must be used for forming the active layer.
 TFT322の活性層を構成する非晶質酸化物や有機半導体材料、光電変換膜321Cを構成する有機光電変換材料は、いずれも低温での成膜が可能である。従って、絶縁性基板325としては、石英基板、ガラス基板等の耐熱性の高い基板に限られず、合成樹脂製の可撓性基板、アラミド、バイオナノファイバを用いることができる。具体的には、ポリエチレンテレフタレート、ポリブチレンフタレート、ポリエチレンナフタレート等のポリエステル、ポリスチレン、ポリカーボネート、ポリエーテルスルホン、ポリアリレート、ポリイミド、ポリシクロオレフィン、ノルボルネン樹脂、ポリ(クロロトリフルオロエチレン)等の可撓性基板を用いることができる。このような合成樹脂製の可撓性基板を用いれば、軽量化を図ることもできる。なお、絶縁性基板325には、絶縁性を確保するための絶縁層、水分や酸素の透過を防止するためのガスバリア層、平坦性あるいは電極等との密着性を向上するためのアンダーコート層等を設けてもよい。 The amorphous oxide and organic semiconductor material constituting the active layer of the TFT 322 and the organic photoelectric conversion material constituting the photoelectric conversion film 321C can all be formed at a low temperature. Therefore, the insulating substrate 325 is not limited to a substrate having high heat resistance such as a quartz substrate or a glass substrate, and a flexible substrate made of synthetic resin, aramid, or bionanofiber can be used. Specifically, flexible materials such as polyesters such as polyethylene terephthalate, polybutylene phthalate, and polyethylene naphthalate, polystyrene, polycarbonate, polyethersulfone, polyarylate, polyimide, polycycloolefin, norbornene resin, and poly (chlorotrifluoroethylene). A conductive substrate can be used. If such a flexible substrate made of a synthetic resin is used, the weight can be reduced. Note that the insulating substrate 325 includes an insulating layer for ensuring insulation, a gas barrier layer for preventing permeation of moisture and oxygen, an undercoat layer for improving flatness or adhesion to electrodes, and the like. May be provided.
 また、バイオナノファイバは、バクテリア(酢酸菌、Acetobacter Xylinum)が産出するセルロースミクロフィブリル束(バクテリアセルロース)と透明樹脂とを複合したものである。セルロースミクロフィブリル束は、幅50nmと可視光波長に対して1/10のサイズで、かつ、高強度、高弾性、低熱膨である。バクテリアセルロースにアクリル樹脂、エポキシ樹脂等の透明樹脂を含浸・硬化させることで、繊維を60~70%も含有しながら、波長500nmで約90%の光透過率を示すバイオナノファイバが得られる。バイオナノファイバは、シリコン結晶に匹敵する低い熱膨張係数(3~7ppm)を有し、鋼鉄並の強度(460MPa)、高弾性(30GPa)で、かつフレキシブルであることから、ガラス基板等と比べて薄型化できる。 The bio-nanofiber is a composite of a cellulose microfibril bundle (bacterial cellulose) produced by bacteria (Acetobacter Xylinum) and a transparent resin. The cellulose microfibril bundle has a width of 50 nm and a size of 1/10 of the visible light wavelength, and has high strength, high elasticity, and low thermal expansion. By impregnating and curing a transparent resin such as acrylic resin or epoxy resin in bacterial cellulose, a bio-nanofiber having a light transmittance of about 90% at a wavelength of 500 nm can be obtained while containing 60 to 70% of the fiber. Bionanofiber has a low coefficient of thermal expansion (3-7ppm) comparable to silicon crystals, and is as strong as steel (460MPa), highly elastic (30GPa), and flexible. Thinner.
 なお、以上のように構成された第1の光検出部32と同様に第2の光検出部34を構成してもよい。 In addition, you may comprise the 2nd light detection part 34 similarly to the 1st light detection part 32 comprised as mentioned above.
 また、上記実施形態及び各変形例において、第1及び第2の光検出部の構成を適宜変更してもよい。第1及び第2の光検出部は、それぞれTFT基板、シリコン基板、SiC基板のいずれを用いてもよい。前述のように、シリコン基板は放射線耐性が低いため、第1及び第2の光検出部の少なくとも一方をシリコン基板で形成し、その放射線入射側に発光部が配置されている場合には、そのシリコン基板で形成された光検出器と発光部との間に、放射線の減衰効果を有する光学部材を設けることが好ましい。この光学部材として、例えば、鉛、ストロンチウム、バリウムなどの元素を含有する放射線吸収性のガラス板が挙げられる。 Further, in the above-described embodiment and each modification, the configurations of the first and second light detection units may be changed as appropriate. The first and second light detection units may each use a TFT substrate, a silicon substrate, or a SiC substrate. As described above, since the silicon substrate has low radiation resistance, at least one of the first and second light detection units is formed of the silicon substrate, and the light emitting unit is disposed on the radiation incident side, the It is preferable to provide an optical member having a radiation attenuation effect between the photodetector formed of a silicon substrate and the light emitting portion. Examples of the optical member include a radiation-absorbing glass plate containing an element such as lead, strontium, and barium.
 また、上記実施形態及び各変形例では、第1の放射線検出器40、第2の放射線検出器41、放射線量測定部42は、いずれも放射線をシンチレータで光に変換し、この光を電荷に変換する間接変換型の放射線検出器であるが、アモルファスセレン等の光導電性層により放射線を電荷に直接変換する直接変換型の放射線検出器としてもよい。 Moreover, in the said embodiment and each modification, all of the 1st radiation detector 40, the 2nd radiation detector 41, and the radiation dose measurement part 42 convert a radiation into light with a scintillator, and make this light into an electric charge. Although it is an indirect conversion type radiation detector for conversion, it may be a direct conversion type radiation detector that converts radiation directly into electric charges by a photoconductive layer such as amorphous selenium.
 また、上記実施形態及び各変形例では、放射線量測定センサ31を、第1の光検出部32及び第2の光検出部34より放射線の上流側に配置しているが、これに代えて、放射線量測定センサ31を、第1の光検出部32及び第2の光検出部34より放射線の下流側に配置してもよい。さらには、放射線量測定センサ31を、第1の光検出部32または第2の光検出部34に組み込んでもよい。 Moreover, in the said embodiment and each modification, although the radiation dose measurement sensor 31 is arrange | positioned in the upstream of a radiation from the 1st photon detection part 32 and the 2nd photon detection part 34, it replaces with this, The radiation dose measuring sensor 31 may be disposed on the downstream side of the radiation from the first light detection unit 32 and the second light detection unit 34. Further, the radiation dose measuring sensor 31 may be incorporated in the first light detection unit 32 or the second light detection unit 34.
 上記実施形態及び各変形例では、放射線撮影装置として電子カセッテを例示したが、電子カセッテに代えて、マンモグラフィ装置等の放射線検出装置にも本発明を適用可能である。 In the above embodiment and each modification, an electronic cassette is exemplified as the radiation imaging apparatus, but the present invention can be applied to a radiation detection apparatus such as a mammography apparatus instead of the electronic cassette.
 15 電子カセッテ
 31 放射線量測定センサ
 32,32a~32c 第1の光検出部
 33 発光部
 34,34a 第2の光検出部
 40 第1の放射線検出器
 41 第2の放射線検出器
 42 放射線量測定部
 321,341 光電変換部
 324,344 画素
 332 シンチレータ
 332A 非柱状結晶
 332B 柱状結晶
 332C 先端部
 333 防湿保護膜
DESCRIPTION OF SYMBOLS 15 Electronic cassette 31 Radiation dose measurement sensor 32, 32a-32c 1st light detection part 33 Light emission part 34, 34a 2nd light detection part 40 1st radiation detector 41 2nd radiation detector 42 Radiation dose measurement part 321, 341 Photoelectric conversion unit 324, 344 Pixel 332 Scintillator 332 A Non-columnar crystal 332 B Columnar crystal 332 C Tip portion 333 Moisture-proof protective film

Claims (12)

  1.  放射線発生器から射出された放射線を検出して画像データを生成する第1の放射線検出器と、
     前記第1の放射線検出器を透過した放射線を検出して画像データを生成する第2の放射線検出器と、
     前記第1の放射線検出器に動画撮影を実行させ、前記第2の放射線検出器に静止画撮影を実行させる制御部と、
     を備えることを特徴とする放射線撮影装置。
    A first radiation detector for detecting radiation emitted from the radiation generator and generating image data;
    A second radiation detector that detects radiation transmitted through the first radiation detector and generates image data;
    A control unit that causes the first radiation detector to perform moving image shooting and causes the second radiation detector to perform still image shooting;
    A radiation imaging apparatus comprising:
  2.  前記放射線発生器から射出された放射線パルスの線量を測定する放射線量測定部と、
     前記放射線量測定部により測定された線量を所定の閾値と比較する線量判定部とをさらに備え、
     前記制御部は、前記線量判定部により所定の閾値より小さい低線量パルスが検出された場合には、前記第1の放射線検出器に動画撮影を実行させ、前記線量判定部により前記閾値より大きい高線量パルスが検出された場合には、前記第2の放射線検出器に静止画撮影を実行させる、
     ことを特徴とする請求の範囲第1項に記載の放射線撮影装置。
    A radiation dose measuring unit for measuring a dose of radiation pulses emitted from the radiation generator;
    A dose determination unit that compares the dose measured by the radiation dose measurement unit with a predetermined threshold;
    The control unit causes the first radiation detector to perform moving image capturing when the low-dose pulse smaller than a predetermined threshold is detected by the dose determination unit, and the dose determination unit causes a high value higher than the threshold. If a dose pulse is detected, cause the second radiation detector to perform still image capture;
    The radiation imaging apparatus according to claim 1, wherein:
  3.  前記第1の放射線検出器は、前記第2の放射線検出器より画素の配置密度が小さいことを特徴とする請求の範囲第2項に記載の放射線撮影装置。 The radiation imaging apparatus according to claim 2, wherein the first radiation detector has a smaller pixel arrangement density than the second radiation detector.
  4.  前記第1の放射線検出器は、前記第2の放射線検出器より画素の数が少ないことを特徴とする請求の範囲第3項に記載の放射線撮影装置。 The radiation imaging apparatus according to claim 3, wherein the first radiation detector has a smaller number of pixels than the second radiation detector.
  5.  前記第1の放射線検出器は、前記第2の放射線検出器よりフレームレートが高いことを特徴とする請求の範囲第4項に記載の放射線撮影装置。 The radiation imaging apparatus according to claim 4, wherein the first radiation detector has a higher frame rate than the second radiation detector.
  6.  前記第1の放射線検出器は、前記第2の放射線検出器より面積が小さいことを特徴とする請求の範囲第2項に記載の放射線撮影装置。 The radiation imaging apparatus according to claim 2, wherein the first radiation detector has a smaller area than the second radiation detector.
  7.  前記第1の放射線検出器は、放射線を吸収して可視光を発生する発光部と、前記発光部の放射線入射側に配置されると共に、前記発光部により発生された可視光を検出する第1の光検出部とにより構成され、
     前記第2の放射線検出器は、前記発光部と、前記発光部の放射線入射側とは反対側に配置されると共に、前記発光部により発生された可視光を検出して画像データを生成する第2の光検出部とにより構成されている、
     ことを特徴とする請求の範囲第1項から第6項のうちいずれか1項に記載の放射線撮影装置。
    The first radiation detector is disposed on the radiation incident side of the light emitting unit to absorb visible radiation and generates visible light, and detects the visible light generated by the light emitting unit. And a light detection unit of
    The second radiation detector is disposed on the light emitting unit and on the side opposite to the radiation incident side of the light emitting unit, and detects the visible light generated by the light emitting unit to generate image data. 2 light detection units,
    The radiation imaging apparatus according to any one of claims 1 to 6, wherein:
  8.  前記発光部は、柱状結晶蛍光体を有し、前記柱状結晶蛍光体の先端部が前記第1の光検出部に対向していることを特徴とする請求の範囲第7項に記載の放射線撮影装置。 The radiographic imaging according to claim 7, wherein the light emitting unit has a columnar crystal phosphor, and a tip of the columnar crystal phosphor is opposed to the first light detection unit. apparatus.
  9.  前記第1の光検出部は、前記発光部より面積が小さいことを特徴とする請求の範囲第7項に記載の放射線撮影装置。 The radiation imaging apparatus according to claim 7, wherein the first light detection unit has a smaller area than the light emitting unit.
  10.  前記第2の光検出部は、前記発光部より面積が小さく、前記発光部と前記第2の光検出部との間に、前記発光部から放出された可視光を前記第2の光検出部に集光するためのフレネルレンズをさらに備えることを特徴とする請求の範囲第9項に記載の放射線撮影装置。 The second light detection unit is smaller in area than the light emission unit, and visible light emitted from the light emission unit is transmitted between the light emission unit and the second light detection unit to the second light detection unit. The radiation imaging apparatus according to claim 9, further comprising a Fresnel lens for condensing the light.
  11.  前記第1の放射線検出器は、放射線を吸収して可視光を発生する第1の発光部と、前記第1の発光部の放射線入射側に配置されると共に、前記第1の発光部により発生された可視光を検出して画像データを生成する第1の光検出部とにより構成され、
     前記第2の放射線検出器は、前記第1の発光部及び前記第1の光検出部を透過した放射線を吸収して可視光を発生する第2の発光部と、前記第2の発光部の放射線入射側とは反対側に配置されると共に、前記第2の発光部により発生された可視光を検出して画像データを生成する第2の光検出部とにより構成されている、
     ことを特徴とする請求の範囲第1項から第6項のうちいずれか1項に記載の放射線撮影装置。
    The first radiation detector is disposed on a radiation incident side of the first light emitting unit and absorbs radiation and generates visible light, and is generated by the first light emitting unit. A first light detection unit that detects the visible light generated to generate image data,
    The second radiation detector includes: a second light emitting unit that generates visible light by absorbing radiation transmitted through the first light emitting unit and the first light detecting unit; and the second light emitting unit. The second light detection unit is arranged on the side opposite to the radiation incident side and detects the visible light generated by the second light emitting unit to generate image data.
    The radiation imaging apparatus according to any one of claims 1 to 6, wherein:
  12.  前記第1の発光部と前記第2の発光部とのうち一方が柱状結晶蛍光体を有し、他方がGOS蛍光体またはBaFX蛍光体を有することを特徴とする請求項11に記載の放射線撮影装置。 The radiographic imaging according to claim 11, wherein one of the first light emitting unit and the second light emitting unit has a columnar crystal phosphor, and the other has a GOS phosphor or a BaFX phosphor. apparatus.
PCT/JP2012/068673 2011-07-27 2012-07-24 Radiographic equipment WO2013015267A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011164280A JP2014195481A (en) 2011-07-27 2011-07-27 Radiographic device
JP2011-164280 2011-07-27

Publications (1)

Publication Number Publication Date
WO2013015267A1 true WO2013015267A1 (en) 2013-01-31

Family

ID=47601112

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/068673 WO2013015267A1 (en) 2011-07-27 2012-07-24 Radiographic equipment

Country Status (2)

Country Link
JP (1) JP2014195481A (en)
WO (1) WO2013015267A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018149229A (en) * 2017-03-15 2018-09-27 キヤノンメディカルシステムズ株式会社 X-ray diagnostic device

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108781263B (en) 2016-03-28 2020-09-11 富士胶片株式会社 Radiographic imaging device and radiographic imaging method
WO2017212000A1 (en) * 2016-06-08 2017-12-14 Koninklijke Philips N.V. Analyzing grid for phase contrast imaging and/or dark-field imaging
JP6912891B2 (en) * 2017-01-16 2021-08-04 キヤノン株式会社 Radiation imaging device, its manufacturing method and imaging system
JP7123582B2 (en) * 2017-03-15 2022-08-23 キヤノンメディカルシステムズ株式会社 X-ray diagnostic equipment
JP6984205B2 (en) * 2017-07-14 2021-12-17 コニカミノルタ株式会社 Radiation imaging system and radiation imaging equipment

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04129390A (en) * 1990-09-20 1992-04-30 Hitachi Medical Corp X-ray tomography
JPH0772257A (en) * 1993-09-01 1995-03-17 Fuji Photo Film Co Ltd Radiation detector
JPH08313640A (en) * 1995-05-17 1996-11-29 Hitachi Ltd Two-dimensional radiation image detector
JP2011133860A (en) * 2009-11-30 2011-07-07 Fujifilm Corp Radiographic imaging apparatus

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04129390A (en) * 1990-09-20 1992-04-30 Hitachi Medical Corp X-ray tomography
JPH0772257A (en) * 1993-09-01 1995-03-17 Fuji Photo Film Co Ltd Radiation detector
JPH08313640A (en) * 1995-05-17 1996-11-29 Hitachi Ltd Two-dimensional radiation image detector
JP2011133860A (en) * 2009-11-30 2011-07-07 Fujifilm Corp Radiographic imaging apparatus

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018149229A (en) * 2017-03-15 2018-09-27 キヤノンメディカルシステムズ株式会社 X-ray diagnostic device

Also Published As

Publication number Publication date
JP2014195481A (en) 2014-10-16

Similar Documents

Publication Publication Date Title
US8550709B2 (en) Imaging area specifying apparatus, radiographic system, imaging area specifying method, radiographic apparatus, and imaging table
JP6033363B2 (en) Radiation detection panel
US9592017B2 (en) Radiographic imaging device and computer readable medium
JP5620249B2 (en) Radiation imaging system
JP5595876B2 (en) Radiography apparatus and radiation imaging system
US8735829B2 (en) Radiographic image capturing system, program storage medium, and method
WO2013015016A1 (en) Radiographic equipment
WO2013015267A1 (en) Radiographic equipment
WO2012014543A1 (en) Radiation detector panel
JP2011212427A (en) Radiation imaging system
JP5634894B2 (en) Radiation imaging apparatus and program
JP5489951B2 (en) Imaging area specifying device, radiographic imaging system, and imaging area specifying method
WO2013015062A1 (en) Radiographic equipment
JP5615664B2 (en) Radiography equipment
JP5705534B2 (en) Radiation image capturing apparatus, radiation image capturing method, and radiation image capturing control processing program
WO2012023311A1 (en) Radiation detecting panel
WO2013015044A1 (en) Radiographic equipment
WO2012056950A1 (en) Radiation detector and radiographic imaging device
WO2013062052A1 (en) Radiographic display system, radiographic display device, radiographic imaging device, program, radiograph display method, and recording medium
WO2012029403A1 (en) Radiation imaging system, radiation imaging device, and computer-readable recording medium
JP2012093259A (en) Radiography apparatus
JP2012073230A (en) Radiation imaging device and radiation imaging system
JP2011194214A (en) Radiographic apparatus
JP2012032182A (en) Radiographic device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12817306

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12817306

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP