WO2013015261A1 - Hydrogen combustion catalyst - Google Patents

Hydrogen combustion catalyst Download PDF

Info

Publication number
WO2013015261A1
WO2013015261A1 PCT/JP2012/068655 JP2012068655W WO2013015261A1 WO 2013015261 A1 WO2013015261 A1 WO 2013015261A1 JP 2012068655 W JP2012068655 W JP 2012068655W WO 2013015261 A1 WO2013015261 A1 WO 2013015261A1
Authority
WO
WIPO (PCT)
Prior art keywords
zirconia
catalyst
hydrogen combustion
hydrogen
washcoat
Prior art date
Application number
PCT/JP2012/068655
Other languages
French (fr)
Japanese (ja)
Inventor
久保 仁志
淳一 谷内
宏史 野口
優輔 大嶋
Original Assignee
田中貴金属工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 田中貴金属工業株式会社 filed Critical 田中貴金属工業株式会社
Publication of WO2013015261A1 publication Critical patent/WO2013015261A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/74General processes for purification of waste gases; Apparatus or devices specially adapted therefor
    • B01D53/86Catalytic processes
    • B01D53/8671Removing components of defined structure not provided for in B01D53/8603 - B01D53/8668
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J21/00Catalysts comprising the elements, oxides, or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium, or hafnium
    • B01J21/06Silicon, titanium, zirconium or hafnium; Oxides or hydroxides thereof
    • B01J21/066Zirconium or hafnium; Oxides or hydroxides thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
    • B01J23/54Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/56Platinum group metals
    • B01J23/64Platinum group metals with arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J23/652Chromium, molybdenum or tungsten
    • B01J23/6527Tungsten
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/20Metals or compounds thereof
    • B01D2255/207Transition metals
    • B01D2255/20715Zirconium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/20Metals or compounds thereof
    • B01D2255/207Transition metals
    • B01D2255/20776Tungsten
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/90Physical characteristics of catalysts
    • B01D2255/92Dimensions
    • B01D2255/9202Linear dimensions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/90Physical characteristics of catalysts
    • B01D2255/92Dimensions
    • B01D2255/9205Porosity
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/90Physical characteristics of catalysts
    • B01D2255/92Dimensions
    • B01D2255/9207Specific surface
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2257/00Components to be removed
    • B01D2257/10Single element gases other than halogens
    • B01D2257/108Hydrogen
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2258/00Sources of waste gases
    • B01D2258/02Other waste gases
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • B01J35/391Physical properties of the active metal ingredient
    • B01J35/393Metal or metal oxide crystallite size
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/60Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J35/61Surface area
    • B01J35/61310-100 m2/g
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/60Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J35/64Pore diameter
    • B01J35/6472-50 nm
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/0215Coating

Definitions

  • the present invention relates to a catalyst for burning hydrogen in an air-containing gas.
  • the present invention provides a hydrogen combustion catalyst that can maintain catalytic activity for a long time even at a relatively low temperature.
  • a catalyst in which a catalyst metal such as platinum is supported on a pellet-like support made of a metal oxide such as silica or alumina has been proposed.
  • a catalyst metal such as platinum
  • a metal oxide such as silica or alumina
  • an object of the present invention is to provide a hydrogen combustion catalyst that has sufficient catalytic activity even at low temperatures and can maintain the activity for a long period of time.
  • the present inventors In developing a catalyst that solves the above problems, the present inventors first conducted a screening test on the type of washcoat formed on the catalyst. In this screening test, the initial activity before the start of use was compared for a catalyst having a washcoat containing silica, alumina, or zirconia. As a result, it was found that having a washcoat containing zirconia or alumina provides a catalyst with relatively high initial activity even at low temperatures. Next, a catalyst using zirconia or alumina having a high initial activity was continuously used as a catalyst for one week or more, and a change in activity was observed. As a result, the activity of the catalyst using alumina significantly decreased in a short period of about 3 days. On the other hand, the catalyst using zirconia was found to be a catalyst capable of maintaining a certain degree of activity as compared with alumina, although a slight decrease in activity was observed.
  • the present inventors diligently studied a zirconia-containing catalyst that can maintain activity for a long period of time based on the above screening results. Further, the present inventors have found that a catalyst containing tungsten oxide together with zirconia as a washcoat and having a plurality of crystal structures as zirconia exhibits good catalytic performance for a long period of time. did.
  • the present invention relates to a hydrogen combustion catalyst in which a catalyst metal is supported on a carrier having a washcoat layer.
  • the washcoat layer is composed of zirconia and tungsten oxide, and the zirconia includes monoclinic zirconia as an essential component.
  • the present invention relates to a hydrogen combustion catalyst containing at least one of cubic zirconia and tetragonal zirconia.
  • the hydrogen combustion catalyst of the present invention has a high initial activity before starting the use of the catalyst, and the activity does not easily decrease even if the use is continued for a long time.
  • Zirconia has a tetragonal or cubic crystal structure under high temperature conditions, and a stable monoclinic crystal structure at room temperature.
  • the zirconia of the present invention is characterized by including a tetragonal or cubic crystal structure that usually exists only at high temperatures.
  • a catalyst containing two or more kinds of zirconia having a crystal structure and also containing tungsten oxide is a hydrogen combustion catalyst whose activity is unlikely to decrease for a long time.
  • the washcoat contains tungsten oxide and tends to be a catalyst containing zirconia having a plurality of crystal structures.
  • the zirconia contained in the catalyst of the present invention includes not only monoclinic crystals but also tetragonal crystals or cubic crystals.
  • the catalyst of the present invention contains tetragonal crystals or cubic crystals as zirconia, and further contains these tetragonal crystals or cubic zirconia within a specific range with respect to tungsten oxide or monoclinic zirconia. It is preferable.
  • B / A is more preferably 0.1 to 1.0.
  • the peak intensity ratio B / A indicates the abundance ratio of tetragonal or cubic zirconia to tungsten oxide.
  • the peak intensity ratio B / A is less than 0.05, the number of strong acid points on the catalyst is decreased, the activation rate of hydrogen as a reaction gas tends to be slow, and it is difficult to obtain a catalyst with high catalytic activity. On the other hand, if it exceeds 1.0, the dissociation and diffusion of oxygen on the tungsten oxide are slowed down, and it becomes difficult to activate oxygen, so that the hydrogen combustion activity by the catalyst tends to decrease.
  • the peak intensity ratio B / C is less than 0.05, the number of strong acid points on the catalyst is decreased, the activation rate of hydrogen as a reaction gas tends to be slow, and it is difficult to obtain a catalyst with high catalytic activity.
  • platinum which is a catalyst metal particle, tends to cause grain growth from the preparation stage, the reaction area of the catalyst becomes small, the hydrogen combustion rate becomes slow, and the catalyst having high catalytic activity. It is hard to become.
  • the peak intensity obtained by subtracting the background is applied as the peak intensity used as the calculation standard. Specifically, the peak obtained by subtracting the background from the peak vertex intensity by subtracting the lowest intensity value within the range of 2 ⁇ from 25 to 35 ° from the 2 ⁇ value at which the target peak vertex is located. The strength can be determined.
  • the catalyst of the present invention has a total of two on both the low temperature side at a temperature of 150 to 250 ° C. and the high temperature side at a temperature of 550 to 700 ° C. in acidity measurement by ammonia temperature programmed desorption (NH 3 -TPD) It is preferable that a peak appears.
  • This acid point measurement shows the characteristics of the extreme surface that contributes to the reaction of the catalyst. If two kinds of zirconia are also present on the extreme surface of the catalyst in the acid point measurement, the catalyst activity decreases for a long time. It is because it becomes difficult to do.
  • the two peaks in the acid point measurement indicate the presence of monoclinic crystals on the low temperature side and tetragonal or cubic zirconia on the high temperature side.
  • a single ammonia desorption peak appears only on the low temperature side at a temperature of 150 to 250 ° C. when acid measurement is performed.
  • the hydrogen combustion catalyst of the present invention preferably contains 5 to 200 g / L of the washcoat layer described above, and particularly preferably 60 to 100 g / L.
  • the washcoat layer is less than 5 g / L, it is difficult to obtain an effect of maintaining the catalyst activity for a long time, and when it exceeds 200 g / L, gas diffusion to the catalyst metal is rate-determined and it is difficult to achieve high catalyst performance.
  • a support having the above-described washcoat layer on a support having a shape such as foam metal, pellets, honeycomb, or net can be employed.
  • the support can be made of an appropriate material such as ceramic, metal, and nonwoven fabric, and a metal honeycomb is particularly suitable.
  • a noble metal is preferable, and in particular, platinum, palladium or an alloy thereof is suitable for hydrogen combustion.
  • the catalyst metal is in the form of metal particles formed by adsorbing a metal salt solution on a support and calcining or reducing, or colloidal (clustered) metal formed by adsorbing a previously prepared metal colloid solution on a support. Any state is acceptable.
  • the particle size of the catalytic metal is 10 to 200 nm.
  • the amount of catalyst metal supported (support rate) is not particularly limited, but is preferably 1 to 6 g / L based on the weight of the carrier.
  • the physical properties of the catalyst according to the present invention are preferably those having a specific surface area of 15 to 100 m 2 / g and an average pore diameter of 1 to 10 nm.
  • the hydrogen combustion catalyst of the present invention described above is a method for forming a washcoat layer in which a washcoat solution containing tungsten oxide and zirconia is impregnated with a carrier, and then drying and firing, and the carrier on which the washcoat layer has been formed is rapidly cooled.
  • powdered zirconia and an aqueous solution of a zirconium salt such as zirconium nitrate are mixed and used as zirconia to be added to the washcoat solution.
  • a zirconia of different raw materials that is, an aqueous solution of powdered zirconia and a zirconium salt
  • a catalyst containing zirconia having a plurality of crystal structures is easily obtained.
  • the carrier is rapidly cooled. By this rapid cooling, it becomes easy to become a catalyst containing tetragonal crystals or cubic crystals as zirconia.
  • Zirconium nitrate, acetate, sulfate, chloride, etc. can be used as the zirconium salt used in the washcoat solution. Specifically, zirconium acetate, zirconium chloride, zirconium sulfate, zirconium nitrate and the like are preferable, and zirconium nitrate and zirconium acetate are preferable.
  • Zirconium nitrate becomes zirconia by the firing process.
  • the powdery zirconia preferably has a purity of 98 wt% or more, and zirconium dioxide is preferred.
  • the addition amount in the washcoat solution is preferably adjusted so that the amount of zirconia in the aqueous solution of zirconium salt is 10 to 70 wt% and the amount of powdered zirconia is 10 to 50 wt%.
  • the tungsten oxide is preferably in the form of powder and preferably has a purity of 95 wt% or more.
  • a suitable type of tungsten oxide is tungsten (VI) WO 3 .
  • the crystal structure of tungsten oxide may be tetragonal, orthorhombic, monoclinic or triclinic.
  • the content of tungsten oxide in the washcoat is preferably 5 to 90 wt%, particularly preferably 15 to 80 wt%. If the content of tungsten oxide is less than 5 wt%, it becomes difficult to become a highly active catalyst, and if it exceeds 90 wt%, it tends to be difficult to support the catalyst metal.
  • the washcoat layer can be formed by impregnating a carrier with a washcoat solution obtained by mixing the above zirconia and tungsten oxide, and then drying and baking.
  • the drying condition of the washcoat layer is preferably 80 to 120 ° C.
  • the baking condition is preferably 500 to 700 ° C. and 1 to 2 hours.
  • the carrier on which the washcoat layer has been formed is rapidly cooled.
  • the rapid cooling is preferably performed at a cooling rate of 200 ° C./min to 50 ° C./min. This is because a catalyst containing tetragonal or cubic zirconia at an appropriate content is likely to be obtained.
  • the catalyst metal is supported by impregnating or adsorbing the support on which the washcoat layer has been formed in a catalyst metal solution and calcining at 250 to 700 ° C.
  • the firing conditions for the catalytic metal layer are preferably 500 to 700 ° C. and 1 to 2 hours. You may reduce
  • rapid cooling is performed after the formation of the washcoat layer.
  • rapid cooling is preferably performed after the catalyst metal is supported and calcined (or reduced). This is because the catalyst is more likely to contain tetragonal or cubic zirconia.
  • the hydrogen combustion catalyst of the present invention has sufficient catalytic activity even at a low temperature, and can maintain its activity even after long-term use.
  • Example 1 A hydrogen combustion catalyst containing powdered tungsten oxide and an aqueous solution of powdered zirconia and a zirconium salt was produced, and physical properties of the obtained catalyst were evaluated and a hydrogen combustion test was performed.
  • a catalytic metal solution was prepared by diluting 1.23 g of 8% dinitrodiamine platinum aqueous solution with 100 g of water.
  • the catalyst metal solution was impregnated with a honeycomb having a washcoat layer attached thereto, and dried at 120 ° C. for 1 hour. After drying, the catalyst metal was supported by firing for 2 hours in an electric furnace at 700 ° C. The fired honeycomb was immediately removed from the furnace and rapidly cooled at a cooling rate of 150 ° C./min to obtain a hydrogen combustion catalyst.
  • the surface area was 65 m 2 / g
  • the average pore diameter was 2 nm
  • the average particle diameter of platinum particles was 72 nm.
  • Example 3 In Example 1, a catalyst in which the ratio of powdered tungsten oxide, powdered zirconia and zirconium salt-derived zirconia in the washcoat was changed was produced.
  • preparation of the washcoat solution 37.3 g of powdered tungsten oxide, 4.7 g of powdered zirconia, and 23.4 g of 36.6 wt% zirconium acetate aqueous solution (zirconia solid content 20%) were mixed (powdered tungsten oxide: powder)
  • the surface area was 46 m 2 / g
  • the average pore diameter was 4 nm
  • the average particle diameter of platinum particles was 109 nm.
  • Comparative Examples 1 and 2 A hydrogen combustion catalyst was produced in the same manner as in Example 1 except that alumina was used instead of zirconia in the preparation of the washcoat solution.
  • alumina was used instead of zirconia in the preparation of the washcoat solution.
  • both the zirconium nitrate aqueous solution and the powdered zirconia were changed to the aluminum nitrate aqueous solution and the powdered alumina.
  • As alumina 595 g of 37.5 wt% aqueous aluminum nitrate solution (alumina solid content 5.1%) and 9.33 g of 99.5 wt% powdered alumina were used.
  • Example 3 Without adding powdered tungsten oxide, 16.3 g of powdered zirconia having a purity of 99.5% and only 121.3 g of a 47 wt% zirconium nitrate aqueous solution (25% zirconia solid content) were mixed to prepare a washcoat solution. Other conditions were the same as in Example 1.
  • Example 4 Without adding powdered zirconia, only 16.3 g of powdered tungsten oxide and 121.3 g of 47 wt% zirconium nitrate aqueous solution (zirconia solid content 25%) were mixed to prepare a washcoat solution. Other conditions were the same as in Example 1.
  • the catalysts of Examples 1, 3 and Comparative Example 3 have a peak derived from monoclinic zirconia at a temperature of about 180 ° C. And a peak derived from crystal zirconia.
  • the catalysts of Comparative Examples 1 and 2 have only peaks derived from monoclinic zirconia around 150 ° C.
  • Comparative Example 4 has peaks derived from tetragonal or cubic zirconia around 700 ° C. It was only.
  • the hydrogen concentration in the mixed gas at the catalyst layer inlet and the catalyst layer outlet was measured using a gas chromatograph.
  • the gas chromatograph whose effective measurement upper limit of decomposition efficiency is 99.9% was used.
  • the hydrogen concentration measurement test was performed under the following conditions. ⁇ Hydrogen concentration in mixed gas before passing through catalyst layer is 10000ppm ⁇ Catalyst layer inlet temperature 25 °C ⁇ Catalyst layer catalyst volume 24.5mL ⁇ Mixed gas flow rate 2000mL / min
  • the hydrogen combustion catalyst was stored in air at room temperature and atmospheric pressure for 1 to 10 days, and the long-term change in catalyst activity over time was measured. Similarly, the catalytic activity after 4 months was also evaluated.
  • the hydrogen combustion catalyst of the present invention is suitable for burning hydrogen in exhaust gas in a hydrogen production plant or a hydrogen atmosphere furnace.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Environmental & Geological Engineering (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Biomedical Technology (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • General Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Catalysts (AREA)
  • Exhaust Gas Treatment By Means Of Catalyst (AREA)

Abstract

This invention relates to a hydrogen combustion catalyst having a washcoat layer formed from zirconia and tungsten oxide, wherein the zirconia comprises monoclinic zirconia as the essential component and further includes at least one of cubic zirconia and tetragonal zirconia. This catalyst has sufficient catalytic activity even at low temperatures and is capable of maintaining this activity even with long-term use. This invention is a catalyst that is ideal for combustion treatment of hydrogen in exhaust gas from hydrogen production plants and hydrogen furnaces and the like.

Description

水素燃焼触媒Hydrogen combustion catalyst
 本発明は、空気含有ガス中の水素を燃焼させるための触媒に関する。特に、比較的低温でも、長期間触媒活性を保持できる水素燃焼触媒を提供する。 The present invention relates to a catalyst for burning hydrogen in an air-containing gas. In particular, the present invention provides a hydrogen combustion catalyst that can maintain catalytic activity for a long time even at a relatively low temperature.
 水素製造プラントや水素雰囲気炉などの水素を用いる設備では、排ガス中に含まれる使用済みの水素を除去し、クリーンなガスとして環境中に廃棄可能にする技術が必要となる。このため、従来より、排ガスを触媒層に通過させ、触媒反応により水素を燃焼させて水とし、生成した水分を除去・回収する技術が知られている(特許文献1)。 Equipment that uses hydrogen, such as hydrogen production plants and hydrogen atmosphere furnaces, requires technology that removes used hydrogen contained in the exhaust gas and allows it to be disposed of in the environment as clean gas. For this reason, conventionally, a technique is known in which exhaust gas is passed through a catalyst layer, hydrogen is burned by a catalytic reaction to form water, and the generated moisture is removed and recovered (Patent Document 1).
特開2008-139005号公報JP 2008-139005 A
 排ガス中の水素を燃焼させるに際しては、水素が爆発性を有することから、極力低温条件において触媒作用を発揮できることが望ましい。特に、高純度水素精製プラントのように多量の水素を取り扱う設備など、安全性の強化が要求される設備では、低温でも充分な活性を示す水素燃焼触媒の提供が必須となる。 When burning the hydrogen in the exhaust gas, it is desirable that the catalytic action can be exhibited at the lowest possible temperature because hydrogen is explosive. In particular, in facilities that require enhanced safety, such as facilities that handle large amounts of hydrogen, such as high-purity hydrogen purification plants, it is essential to provide a hydrogen combustion catalyst that exhibits sufficient activity even at low temperatures.
 このような水素燃焼触媒として、シリカ、アルミナ等の金属酸化物からなるペレット状の担体に、白金等の触媒金属が担持されたものが提案されている。しかしながら、これらの触媒は、低温で充分な触媒活性を有しないか、使用開始当初ある程度の活性を有していても、3日~1週間程度使用を継続すると、次第に活性が低下するものであり、使用期間が数ヶ月を超えると良好な触媒活性を維持することが困難であった。 As such a hydrogen combustion catalyst, a catalyst in which a catalyst metal such as platinum is supported on a pellet-like support made of a metal oxide such as silica or alumina has been proposed. However, even if these catalysts do not have sufficient catalytic activity at low temperatures, or have some activity at the beginning of use, their activity gradually decreases when used for about 3 days to 1 week. When the service period exceeds several months, it is difficult to maintain good catalytic activity.
 そこで、本発明は、低温でも充分な触媒活性を有し、かつ、活性を長期間維持できる水素燃焼触媒の提供を目的とする。 Therefore, an object of the present invention is to provide a hydrogen combustion catalyst that has sufficient catalytic activity even at low temperatures and can maintain the activity for a long period of time.
 本発明者等は、上記課題を解決する触媒の開発に際し、まず、触媒に形成するウォッシュコートの種類についてスクリーニング試験を行った。このスクリーニング試験では、シリカ、アルミナ、又はジルコニアを含むウォッシュコートを有する触媒について、使用開始前の初期活性を比較した。その結果、ジルコニア又はアルミナを含むウォッシュコートを有すると、低温でも、比較的初期活性の高い触媒になることが分かった。次に、初期活性の高かったジルコニア又はアルミナを用いた触媒を、1週間以上、触媒として使用継続し、活性変化を観察した。その結果、アルミナを用いた触媒は、3日程度の短期間で大幅に活性が低下した。これに対し、ジルコニアを用いた触媒は、多少の活性低下はみられたものの、アルミナと比較して、ある程度の活性を維持できる触媒であることが分かった。 In developing a catalyst that solves the above problems, the present inventors first conducted a screening test on the type of washcoat formed on the catalyst. In this screening test, the initial activity before the start of use was compared for a catalyst having a washcoat containing silica, alumina, or zirconia. As a result, it was found that having a washcoat containing zirconia or alumina provides a catalyst with relatively high initial activity even at low temperatures. Next, a catalyst using zirconia or alumina having a high initial activity was continuously used as a catalyst for one week or more, and a change in activity was observed. As a result, the activity of the catalyst using alumina significantly decreased in a short period of about 3 days. On the other hand, the catalyst using zirconia was found to be a catalyst capable of maintaining a certain degree of activity as compared with alumina, although a slight decrease in activity was observed.
 本発明者等は、上記スクリーニング結果をもとに、長期間活性を維持できるジルコニア含有触媒について、鋭意検討を行った。そして、ウォッシュコートとして、ジルコニアと共に酸化タングステンを含み、かつ、ジルコニアとして複数の結晶構造のものが含まれる触媒であると、長期間良好な触媒性能を示すものになることを見出し、本発明に想到した。 The present inventors diligently studied a zirconia-containing catalyst that can maintain activity for a long period of time based on the above screening results. Further, the present inventors have found that a catalyst containing tungsten oxide together with zirconia as a washcoat and having a plurality of crystal structures as zirconia exhibits good catalytic performance for a long period of time. did.
 すなわち本発明は、ウォッシュコート層を備える担体に、触媒金属が担持されてなる水素燃焼触媒において、ウォッシュコート層は、ジルコニアと酸化タングステンとからなり、前記ジルコニアは、単斜晶ジルコニアを必須成分とし、更に、立方晶ジルコニア又は正方晶ジルコニアの少なくともいずれかを含む水素燃焼触媒に関する。本発明の水素燃焼触媒は、触媒使用開始前の初期活性が高く、かつ、長期間使用を継続しても活性が低下しにくい。 That is, the present invention relates to a hydrogen combustion catalyst in which a catalyst metal is supported on a carrier having a washcoat layer. The washcoat layer is composed of zirconia and tungsten oxide, and the zirconia includes monoclinic zirconia as an essential component. Furthermore, the present invention relates to a hydrogen combustion catalyst containing at least one of cubic zirconia and tetragonal zirconia. The hydrogen combustion catalyst of the present invention has a high initial activity before starting the use of the catalyst, and the activity does not easily decrease even if the use is continued for a long time.
 ジルコニアは、高温条件下において正方晶や立方晶の結晶構造をとり、室温では、安定的な単斜晶の結晶構造をとる。本発明のジルコニアは、室温で安定な単斜晶ジルコニアを含むことに加え、通常は、高温下でのみ存在する正方晶や立方晶の結晶構造を含む点に特徴を有する。本発明の触媒のように、2種以上の結晶構造のジルコニアを含むとともに、酸化タングステンを含む触媒であると、長期間活性の低下しにくい水素燃焼触媒となる。 Zirconia has a tetragonal or cubic crystal structure under high temperature conditions, and a stable monoclinic crystal structure at room temperature. In addition to containing monoclinic zirconia that is stable at room temperature, the zirconia of the present invention is characterized by including a tetragonal or cubic crystal structure that usually exists only at high temperatures. Like the catalyst of the present invention, a catalyst containing two or more kinds of zirconia having a crystal structure and also containing tungsten oxide is a hydrogen combustion catalyst whose activity is unlikely to decrease for a long time.
 また、本発明の水素燃焼触媒は、X線回折において2θ=23.2°、23.6°、24.4°、28.3°、30.3°、及び31.5°にピークを有することが好ましい。かかるX線回折ピークを有する場合、ウォッシュコート中に酸化タングステンを含むとともに、ジルコニアとして複数の結晶構造のものを含む触媒となりやすい。 The hydrogen combustion catalyst of the present invention has peaks at 2θ = 23.2 °, 23.6 °, 24.4 °, 28.3 °, 30.3 °, and 31.5 ° in X-ray diffraction. It is preferable. When having such an X-ray diffraction peak, the washcoat contains tungsten oxide and tends to be a catalyst containing zirconia having a plurality of crystal structures.
 X線回折において、2θ=23.2°、23.6°、24.4°の出現ピークはウォッシュコート中の酸化タングステンに由来する。2θ=28.3°、30.3°、31.5°の範囲の出現ピークはジルコニアに由来し、このうち2θ=28.3°、31.5°のピークは、単斜晶のジルコニアに由来し、2θ=30.3°のピークは、正方晶又は立方晶のジルコニアに由来する。このように本発明の触媒に含まれるジルコニアには、単斜晶のみならず正方晶又は立方晶が含まれる。 In X-ray diffraction, the appearance peaks at 2θ = 23.2 °, 23.6 °, and 24.4 ° are derived from tungsten oxide in the washcoat. Appearance peaks in the range of 2θ = 28.3 °, 30.3 °, 31.5 ° are derived from zirconia, and of these, peaks at 2θ = 28.3 °, 31.5 ° are in monoclinic zirconia. The peak at 2θ = 30.3 ° is derived from tetragonal or cubic zirconia. Thus, the zirconia contained in the catalyst of the present invention includes not only monoclinic crystals but also tetragonal crystals or cubic crystals.
 以上のように、本発明の触媒は、ジルコニアとして正方晶又は立方晶を含むものであるが、さらに、これら正方晶又は立方晶ジルコニアを、酸化タングステン又は単斜晶ジルコニアに対して特定範囲内で含有することが好ましい。具体的には、X線回折において、酸化タングステンに由来するピーク2θ=23.2°、23.6°、24.4°のうち最も高いピークの強度(A)、正方晶又は立方晶のジルコニアに由来する2θ=30.3°のピーク強度(B)、及び単斜晶のジルコニアに由来するピークのうち2θ=28.3°のピーク強度(C)のピーク強度比が、以下に示す特定範囲内であると好ましい。 As described above, the catalyst of the present invention contains tetragonal crystals or cubic crystals as zirconia, and further contains these tetragonal crystals or cubic zirconia within a specific range with respect to tungsten oxide or monoclinic zirconia. It is preferable. Specifically, in X-ray diffraction, the highest peak intensity (A) among peaks 2θ = 23.2 °, 23.6 °, 24.4 ° derived from tungsten oxide, tetragonal or cubic zirconia The peak intensity ratio of 2θ = 30.3 ° derived from (2) = 30.3 ° and the peak intensity ratio of 2θ = 28.3 ° of the peak derived from monoclinic zirconia (C) is shown below. It is preferable to be within the range.
 すなわち、X線回折における2θ=23.2°、23.6°、24.4°のうち最も高いピークの強度(A)と、2θ=30.3°のピーク強度(B)との比(B/A)が、0.05~1.0の範囲内であると好ましい。B/Aは、0.1~1.0であると、より好ましい。上述のように、2θ=23.2°、23.6°、24.4°のピークは酸化タングステンに由来し、2θ=30.3°のピークは正方晶又は立方晶のジルコニアに由来するため、ピーク強度比B/Aは、酸化タングステンに対する正方晶又は立方晶ジルコニアの存在比率を示す。ピーク強度比B/Aが0.05未満であると、触媒上における強酸点の数が少なくなり、反応ガスである水素の活性化速度が遅くなる傾向となり、触媒活性の高い触媒となりにくい。また、1.0を超えると、酸化タングステン上での酸素の解離、拡散が遅くなり、酸素が活性化しにくくなることにより、触媒による水素の燃焼活性が低下する傾向となる。 That is, the ratio of the intensity (A) of the highest peak among 2θ = 23.2 °, 23.6 °, and 24.4 ° in X-ray diffraction to the peak intensity (B) of 2θ = 30.3 ° ( B / A) is preferably in the range of 0.05 to 1.0. B / A is more preferably 0.1 to 1.0. As described above, the peaks at 2θ = 23.2 °, 23.6 °, and 24.4 ° are derived from tungsten oxide, and the peak at 2θ = 30.3 ° is derived from tetragonal or cubic zirconia. The peak intensity ratio B / A indicates the abundance ratio of tetragonal or cubic zirconia to tungsten oxide. When the peak intensity ratio B / A is less than 0.05, the number of strong acid points on the catalyst is decreased, the activation rate of hydrogen as a reaction gas tends to be slow, and it is difficult to obtain a catalyst with high catalytic activity. On the other hand, if it exceeds 1.0, the dissociation and diffusion of oxygen on the tungsten oxide are slowed down, and it becomes difficult to activate oxygen, so that the hydrogen combustion activity by the catalyst tends to decrease.
 また、2θ=28.3°のピーク強度(C)と、2θ=30.3°のピーク強度(B)との比(B/C)が0.05~2.00の範囲内であると好ましい。B/Cは、0.10~1.0がより好ましく、0.10~0.80がさらに好ましい。2θ=28.3°のピークは単斜晶ジルコニアに由来するため、ピーク強度比B/Cは、単斜晶ジルコニアに対する正方晶又は立方晶ジルコニアの存在比率を示すものと考えられる。ピーク強度比B/Cが0.05未満であると、触媒上における強酸点の数が少なくなり、反応ガスである水素の活性化速度が遅くなる傾向となり、触媒活性の高い触媒となりにくい。また、2.0を超えると触媒金属粒子である白金等が、調製段階から粒成長を起こす傾向となり、触媒の反応面積が小さくなることにより、水素の燃焼速度が遅くなり、触媒活性の高い触媒となりにくい。 The ratio (B / C) of the peak intensity (C) at 2θ = 28.3 ° and the peak intensity (B) at 2θ = 20.3 ° is in the range of 0.05 to 2.00. preferable. B / C is more preferably 0.10 to 1.0, and further preferably 0.10 to 0.80. Since the peak at 2θ = 28.3 ° is derived from monoclinic zirconia, the peak intensity ratio B / C is considered to indicate the abundance ratio of tetragonal or cubic zirconia to monoclinic zirconia. When the peak intensity ratio B / C is less than 0.05, the number of strong acid points on the catalyst is decreased, the activation rate of hydrogen as a reaction gas tends to be slow, and it is difficult to obtain a catalyst with high catalytic activity. On the other hand, if it exceeds 2.0, platinum, which is a catalyst metal particle, tends to cause grain growth from the preparation stage, the reaction area of the catalyst becomes small, the hydrogen combustion rate becomes slow, and the catalyst having high catalytic activity. It is hard to become.
 以上、本発明におけるX線回折のピーク強度比としては、算定基準とするピーク強度として、バックグラウンドを差し引いたピーク強度を適用する。具体的には、対象となるピーク頂点の位置する2θの値より2θが25~35°の範囲内で一番強度の小さい値を、ピーク頂点の強度から差し引く方法により、バックグラウンドを差し引いたピーク強度を求めることができる。 As described above, as the peak intensity ratio of the X-ray diffraction in the present invention, the peak intensity obtained by subtracting the background is applied as the peak intensity used as the calculation standard. Specifically, the peak obtained by subtracting the background from the peak vertex intensity by subtracting the lowest intensity value within the range of 2θ from 25 to 35 ° from the 2θ value at which the target peak vertex is located. The strength can be determined.
 また、本発明の触媒は、アンモニア昇温脱離法(NH-TPD)による酸性測定において、温度150~250℃の低温側と、温度550~700℃の高温側の両方に、合計2つのピークが出現することが好ましい。この酸点測定は、触媒の反応に寄与する極表面の特性を示すものであり、酸点測定において触媒の極表面にも2種類のジルコニアが存在するものであると、長期間触媒活性の低下しにくいものとなるためである。酸点測定における2つのピークは、低温側が単斜晶、高温側が正方晶又は立方晶ジルコニアの存在を示すものである。一方、単斜晶ジルコニアのみを含む触媒であると、酸性測定した場合、温度150~250℃の低温側のみに、単一のアンモニア脱離ピークが出現する。 In addition, the catalyst of the present invention has a total of two on both the low temperature side at a temperature of 150 to 250 ° C. and the high temperature side at a temperature of 550 to 700 ° C. in acidity measurement by ammonia temperature programmed desorption (NH 3 -TPD) It is preferable that a peak appears. This acid point measurement shows the characteristics of the extreme surface that contributes to the reaction of the catalyst. If two kinds of zirconia are also present on the extreme surface of the catalyst in the acid point measurement, the catalyst activity decreases for a long time. It is because it becomes difficult to do. The two peaks in the acid point measurement indicate the presence of monoclinic crystals on the low temperature side and tetragonal or cubic zirconia on the high temperature side. On the other hand, in the case of a catalyst containing only monoclinic zirconia, a single ammonia desorption peak appears only on the low temperature side at a temperature of 150 to 250 ° C. when acid measurement is performed.
 そして、本発明の水素燃焼触媒は、以上説明したウォッシュコート層を5~200g/L含有することが好ましく、60~100g/Lであると特に好ましい。ウォッシュコート層が5g/L未満であると、長期間触媒活性を維持する効果が得られにくく、200g/Lを超えると、触媒金属へのガス拡散が律速となり、触媒性能の高いものとなりにくい。 The hydrogen combustion catalyst of the present invention preferably contains 5 to 200 g / L of the washcoat layer described above, and particularly preferably 60 to 100 g / L. When the washcoat layer is less than 5 g / L, it is difficult to obtain an effect of maintaining the catalyst activity for a long time, and when it exceeds 200 g / L, gas diffusion to the catalyst metal is rate-determined and it is difficult to achieve high catalyst performance.
 本発明の水素燃焼触媒における担体としては、発泡金属、ペレット、ハニカム、網等の形状を備える支持体上に、上記したウォッシュコート層を有するものを採用できる。支持体は、セラミック、メタル、不織布等、適宜の材質のものを使用でき、メタルハニカムが特に好適である。 As the carrier in the hydrogen combustion catalyst of the present invention, a support having the above-described washcoat layer on a support having a shape such as foam metal, pellets, honeycomb, or net can be employed. The support can be made of an appropriate material such as ceramic, metal, and nonwoven fabric, and a metal honeycomb is particularly suitable.
 担体上に担持する触媒金属としては、貴金属が好ましく、特に、白金、パラジウム又はこれらの合金が水素燃焼に適している。触媒金属の状態は、金属塩溶液を担体に吸着させて焼成又は還元して形成される金属粒子や、予め調整された金属コロイド溶液を担体に吸着させて形成されるコロイド状(クラスター状)金属の、いずれの状態でも良い。これらの状態により、触媒金属の粒径は10~200nmとなる。更に、触媒金属の担持量(担持率)について、特に限定はないが、担体重量に対して1~6g/Lが好ましい。また、本発明に係る触媒の物性としては、比表面積15~100m/g、平均細孔径1~10nmのものが好適である。 As the catalyst metal supported on the support, a noble metal is preferable, and in particular, platinum, palladium or an alloy thereof is suitable for hydrogen combustion. The catalyst metal is in the form of metal particles formed by adsorbing a metal salt solution on a support and calcining or reducing, or colloidal (clustered) metal formed by adsorbing a previously prepared metal colloid solution on a support. Any state is acceptable. Depending on these conditions, the particle size of the catalytic metal is 10 to 200 nm. Further, the amount of catalyst metal supported (support rate) is not particularly limited, but is preferably 1 to 6 g / L based on the weight of the carrier. The physical properties of the catalyst according to the present invention are preferably those having a specific surface area of 15 to 100 m 2 / g and an average pore diameter of 1 to 10 nm.
 以上説明した本発明の水素燃焼触媒は、酸化タングステンとジルコニアとを含むウォッシュコート溶液に担体を含浸した後、乾燥し、焼成するウォッシュコート層の形成工程と、ウォッシュコート層を形成した担体を急冷する工程と、急冷した担体を触媒金属溶液に含浸又は吸着して触媒金属を担持する工程と、触媒金属の担持後、焼成し又は還元する工程とを含み、ウォッシュコート溶液には、ジルコニアとして粉状ジルコニアとジルコニウム塩の水溶液とを用いる製造方法により製造できる。 The hydrogen combustion catalyst of the present invention described above is a method for forming a washcoat layer in which a washcoat solution containing tungsten oxide and zirconia is impregnated with a carrier, and then drying and firing, and the carrier on which the washcoat layer has been formed is rapidly cooled. A step of impregnating or adsorbing a rapidly cooled carrier to a catalytic metal solution to support the catalytic metal, and a step of firing or reducing after the catalytic metal is supported, and the washcoat solution contains powder as zirconia. It can be produced by a production method using an aqueous solution of zirconia and a zirconium salt.
 本発明の製造方法は、ウォッシュコート溶液に添加するジルコニアとして、粉状ジルコニアと、硝酸ジルコニウム等のジルコニウム塩の水溶液とを混合して用いるものである。粉状ジルコニアとジルコニウム塩の水溶液という、原料の異なるジルコニアを混合して用いることで、複数の結晶構造のジルコニアを含む触媒となりやすい。また、担体をウォッシュコート溶液に含浸し、乾燥及び焼成した後、担体を急冷する。この急冷により、ジルコニアとして正方晶又は立方晶を含む触媒となりやすい。焼成により単斜晶から正方晶、立方晶へと相変化したジルコニアが、安定的な単斜晶に戻ることなく、正方晶や立方晶のまま残存しやすくなるためと考えられる。以下、本発明の製造方法について詳細に説明する。 In the production method of the present invention, powdered zirconia and an aqueous solution of a zirconium salt such as zirconium nitrate are mixed and used as zirconia to be added to the washcoat solution. By mixing and using zirconia of different raw materials, that is, an aqueous solution of powdered zirconia and a zirconium salt, a catalyst containing zirconia having a plurality of crystal structures is easily obtained. Further, after impregnating the carrier with a washcoat solution, drying and baking, the carrier is rapidly cooled. By this rapid cooling, it becomes easy to become a catalyst containing tetragonal crystals or cubic crystals as zirconia. This is considered to be because zirconia, which has changed in phase from monoclinic to tetragonal or cubic by firing, tends to remain as tetragonal or cubic without returning to stable monoclinic. Hereinafter, the production method of the present invention will be described in detail.
 ウォッシュコート溶液に用いるジルコニウム塩としては、ジルコニムの硝酸塩、酢酸塩、硫酸塩、塩化物等を適用できる。具体的には、酢酸ジルコニウム、塩化ジルコニウム、硫酸ジルコニウム、硝酸ジルコニウムなどが好ましく、硝酸ジルコニウム、酢酸ジルコニウムが好適である。尚、硝酸ジルコニウムは、焼成工程によりジルコニアとなる。粉状ジルコニアとしては、純度98wt%以上のものが好ましく、二酸化ジルコニウムが好適である。ウォッシュコート溶液中の添加量は、ジルコニウム塩の水溶液中におけるジルコニアが10~70wt%、粉状ジルコニアが10~50wt%となるように調製することが好ましい。 Zirconium nitrate, acetate, sulfate, chloride, etc. can be used as the zirconium salt used in the washcoat solution. Specifically, zirconium acetate, zirconium chloride, zirconium sulfate, zirconium nitrate and the like are preferable, and zirconium nitrate and zirconium acetate are preferable. Zirconium nitrate becomes zirconia by the firing process. The powdery zirconia preferably has a purity of 98 wt% or more, and zirconium dioxide is preferred. The addition amount in the washcoat solution is preferably adjusted so that the amount of zirconia in the aqueous solution of zirconium salt is 10 to 70 wt% and the amount of powdered zirconia is 10 to 50 wt%.
 酸化タングステンは、粉状のものが好ましく、純度95wt%以上が好適である。好適な酸化タングステンの種類は、酸化タングステン(VI) WOである。酸化タングステンの結晶構造は正方晶系、斜方晶系、単斜晶系又は三斜晶系であっても良い。ウォッシュコート中の酸化タングステン含有量は、5~90wt%が好ましく、15~80wt%が特に好ましい。酸化タングステンの含有量は、5wt%未満であると、活性の高い触媒となりにくく、90wt%を超えると、触媒金属の担持が困難な傾向となる。 The tungsten oxide is preferably in the form of powder and preferably has a purity of 95 wt% or more. A suitable type of tungsten oxide is tungsten (VI) WO 3 . The crystal structure of tungsten oxide may be tetragonal, orthorhombic, monoclinic or triclinic. The content of tungsten oxide in the washcoat is preferably 5 to 90 wt%, particularly preferably 15 to 80 wt%. If the content of tungsten oxide is less than 5 wt%, it becomes difficult to become a highly active catalyst, and if it exceeds 90 wt%, it tends to be difficult to support the catalyst metal.
 ウォッシュコート層は、以上のジルコニア及び酸化タングステンを混合してなるウォッシュコート溶液に担体を含浸した後、乾燥し、焼成することで形成できる。ウォッシュコート層の乾燥条件は80~120℃が好ましく、焼成条件は500~700℃、1~2時間が好ましい。その後、ウォッシュコート層を形成した担体を急冷する。急冷は、冷却速度200℃/分~50℃/分で行うことが好ましい。正方晶又は立方晶のジルコニアを適度な含有量で含む触媒となりやすいからである。 The washcoat layer can be formed by impregnating a carrier with a washcoat solution obtained by mixing the above zirconia and tungsten oxide, and then drying and baking. The drying condition of the washcoat layer is preferably 80 to 120 ° C., and the baking condition is preferably 500 to 700 ° C. and 1 to 2 hours. Thereafter, the carrier on which the washcoat layer has been formed is rapidly cooled. The rapid cooling is preferably performed at a cooling rate of 200 ° C./min to 50 ° C./min. This is because a catalyst containing tetragonal or cubic zirconia at an appropriate content is likely to be obtained.
 触媒金属の担持は、ウォッシュコート層を形成した担体を、触媒金属溶液に含浸又は吸着させ、250~700℃で焼成して行う。触媒金属層の焼成条件は500~700℃、1~2時間が好ましい。必要に応じ、焼成と同様の条件で還元しても良い。上記したように、本製造方法では、ウォッシュコート層形成後に急冷を行うものであるが、急冷は、触媒金属の担持・焼成(又は還元)後にも行うことが好ましい。より正方晶や立方晶のジルコニアを含む触媒となりやすいためである。 The catalyst metal is supported by impregnating or adsorbing the support on which the washcoat layer has been formed in a catalyst metal solution and calcining at 250 to 700 ° C. The firing conditions for the catalytic metal layer are preferably 500 to 700 ° C. and 1 to 2 hours. You may reduce | restore on the conditions similar to baking as needed. As described above, in this production method, rapid cooling is performed after the formation of the washcoat layer. However, rapid cooling is preferably performed after the catalyst metal is supported and calcined (or reduced). This is because the catalyst is more likely to contain tetragonal or cubic zirconia.
 本発明の水素燃焼触媒は、低温でも充分な触媒活性を有するものであり、長期間の使用によっても、その活性を維持することが可能である。 The hydrogen combustion catalyst of the present invention has sufficient catalytic activity even at a low temperature, and can maintain its activity even after long-term use.
実施形態における水素燃焼触媒のX線回折図(実施例)X-ray diffraction diagram of the hydrogen combustion catalyst in the embodiment (Example) 実施形態における水素燃焼触媒のX線回折図(比較例)X-ray diffraction pattern of the hydrogen combustion catalyst in the embodiment (comparative example) 実施形態における水素燃焼触媒の酸点測定結果図The acid point measurement result diagram of the hydrogen combustion catalyst in the embodiment 実施形態における水素燃焼触媒の活性経時変化Change of activity of hydrogen combustion catalyst with time in embodiment
実施例1
 粉状の酸化タングステンと、粉状ジルコニア及びジルコニウム塩の水溶液とを含む水素燃焼触媒を製造し、得られた触媒の物性評価及び水素燃焼試験を行った。
Example 1
A hydrogen combustion catalyst containing powdered tungsten oxide and an aqueous solution of powdered zirconia and a zirconium salt was produced, and physical properties of the obtained catalyst were evaluated and a hydrogen combustion test was performed.
 99.5wt%の粉状酸化タングステンを7gと、99.5wt%の粉状ジルコニア9.33gと、47wt%硝酸ジルコニウム水溶液(ジルコニア固形分25%)121.3gとを乳鉢でよく混合し、適度な粘性を持たせる為に水を100g加え、ウォッシュコート水溶液を調製した(粉末酸化タングステン:粉末ジルコニア:ジルコニウム塩由来のジルコニア=15:20:65(wt%))。このウォッシュコート水溶液に、直径25mm、長さ50mm、容量24.5mLのステンレス製ハニカムを浸漬させた。その後、120℃で1時間乾燥し、700℃の電気炉で2時間焼成した。以上の工程により、ハニカムにウォッシュコート層を80g/L付着させた。焼成後のハニカムは、直ちに炉から取り出し150℃/分の冷却速度で急冷し、水素燃焼触媒を得た。焼成後の急冷は、マルテンサイト変態を引き起こし、単斜晶ジルコニアのみならず、正方晶又は立方晶ジルコニアを含む触媒になりやすいと考えられる 7 g of 99.5 wt% powdered tungsten oxide, 9.33 g of 99.5 wt% powdered zirconia, and 121.3 g of 47 wt% zirconium nitrate aqueous solution (25% zirconia solid content) were mixed well in a mortar. 100 g of water was added to give a proper viscosity to prepare a washcoat aqueous solution (powdered tungsten oxide: powdered zirconia: zirconia derived from zirconium salt = 15: 20: 65 (wt%)). A stainless honeycomb having a diameter of 25 mm, a length of 50 mm, and a capacity of 24.5 mL was immersed in this washcoat aqueous solution. Then, it dried at 120 degreeC for 1 hour, and baked in the 700 degreeC electric furnace for 2 hours. Through the above steps, a washcoat layer was adhered to the honeycomb at 80 g / L. The fired honeycomb was immediately removed from the furnace and rapidly cooled at a cooling rate of 150 ° C./min to obtain a hydrogen combustion catalyst. The rapid cooling after calcination is considered to cause martensitic transformation and easily become a catalyst containing not only monoclinic zirconia but also tetragonal or cubic zirconia .
 8%ジニトロジアミン白金水溶液1.23gを、水100gで希釈して触媒金属溶液を調整した。この触媒金属溶液に、ウォッシュコート層を付着させたハニカムを含浸させ、120℃で1時間乾燥させた。乾燥後、700℃の電気炉で2時間焼成して触媒金属を担持させた。焼成後のハニカムは、直ちに炉から取り出し150℃/分の冷却速度で急冷し、水素燃焼触媒を得た。得られた触媒について、物性を測定したところ、表面積65m/g、平均細孔径2nm、白金粒子の平均粒径72nmであった。 A catalytic metal solution was prepared by diluting 1.23 g of 8% dinitrodiamine platinum aqueous solution with 100 g of water. The catalyst metal solution was impregnated with a honeycomb having a washcoat layer attached thereto, and dried at 120 ° C. for 1 hour. After drying, the catalyst metal was supported by firing for 2 hours in an electric furnace at 700 ° C. The fired honeycomb was immediately removed from the furnace and rapidly cooled at a cooling rate of 150 ° C./min to obtain a hydrogen combustion catalyst. When the physical properties of the obtained catalyst were measured, the surface area was 65 m 2 / g, the average pore diameter was 2 nm, and the average particle diameter of platinum particles was 72 nm.
実施例2
 実施例1における、ウォッシュコート中の粉末酸化タングステン、粉末ジルコニア及びジルコニウム塩由来のジルコニアの割合を変化させた触媒を製造した。ウォッシュコート水溶液の調整において、粉末酸化タングステンを9.33gと、粉末ジルコニアを23.3gと、47wt%硝酸ジルコニウム水溶液(ジルコニア固形分25%)を56g混合した(粉末酸化タングステン:粉末ジルコニア:ジルコニウム塩由来のジルコニア=20:50:30(wt%))こと以外は、実施例1の触媒と同様の製造条件とした。得られた触媒について、物性を測定したところ、表面積87m/g、平均細孔径2nm、白金粒子の平均粒径45nmであった。
Example 2
In Example 1, a catalyst in which the ratio of powdered tungsten oxide, powdered zirconia and zirconium salt-derived zirconia in the washcoat was changed was produced. In adjusting the washcoat aqueous solution, 9.33 g of powdered tungsten oxide, 23.3 g of powdered zirconia, and 56 g of 47 wt% zirconium nitrate aqueous solution (zirconia solid content 25%) were mixed (powdered tungsten oxide: powdered zirconia: zirconium salt). The production conditions were the same as those of the catalyst of Example 1, except that the origin was zirconia = 20: 50: 30 (wt%). When the physical properties of the obtained catalyst were measured, the surface area was 87 m 2 / g, the average pore diameter was 2 nm, and the average particle diameter of platinum particles was 45 nm.
実施例3
 実施例1における、ウォッシュコート中の粉末酸化タングステン、粉末ジルコニア及びジルコニウム塩由来のジルコニアの割合を変化させた触媒を製造した。ウォッシュコート溶液の調整において、粉末酸化タングステンを37.3gと、粉末ジルコニアを4.7gと、36.6wt%酢酸ジルコニウム水溶液(ジルコニア固形分20%)を23.4g混合した(粉末酸化タングステン:粉末ジルコニア:ジルコニウム塩由来のジルコニア=80:10:10(wt%))こと以外は、実施例1の触媒と同様の製造条件とした。得られた触媒について、物性を測定したところ、表面積46m/g、平均細孔径4nm、白金粒子の平均粒径109nmであった。
Example 3
In Example 1, a catalyst in which the ratio of powdered tungsten oxide, powdered zirconia and zirconium salt-derived zirconia in the washcoat was changed was produced. In preparation of the washcoat solution, 37.3 g of powdered tungsten oxide, 4.7 g of powdered zirconia, and 23.4 g of 36.6 wt% zirconium acetate aqueous solution (zirconia solid content 20%) were mixed (powdered tungsten oxide: powder) The production conditions were the same as in the catalyst of Example 1, except that zirconia: zirconia derived from zirconium salt = 80: 10: 10 (wt%)). When the physical properties of the obtained catalyst were measured, the surface area was 46 m 2 / g, the average pore diameter was 4 nm, and the average particle diameter of platinum particles was 109 nm.
比較例1、2
 ウォッシュコート溶液の調製において、ジルコニアの代わりにアルミナを用いた以外は、実施例1と同様の方法で水素燃焼触媒を製造した。比較例1では、硝酸ジルコニウム水溶液のみを硝酸アルミニウム水溶液に変更し、比較例2では、硝酸ジルコニウム水溶液及び粉末ジルコニアの両方を、硝酸アルミニウム水溶液及び粉末アルミナに変更した。アルミナとしては、37.5wt%硝酸アルミニウム水溶液(アルミナ固形分5.1%)を595g、99.5wt%の粉末アルミナを9.33g用いた。
Comparative Examples 1 and 2
A hydrogen combustion catalyst was produced in the same manner as in Example 1 except that alumina was used instead of zirconia in the preparation of the washcoat solution. In Comparative Example 1, only the zirconium nitrate aqueous solution was changed to an aluminum nitrate aqueous solution, and in Comparative Example 2, both the zirconium nitrate aqueous solution and the powdered zirconia were changed to the aluminum nitrate aqueous solution and the powdered alumina. As alumina, 595 g of 37.5 wt% aqueous aluminum nitrate solution (alumina solid content 5.1%) and 9.33 g of 99.5 wt% powdered alumina were used.
比較例3
 粉末酸化タングステンを添加せず、純度99.5%の粉末ジルコニア16.3gと、47wt%硝酸ジルコニウム水溶液(ジルコニア固形分25%)121.3gのみを混合して、ウォッシュコート溶液を調製した。その他の条件は、実施例1と同様とした。
Comparative Example 3
Without adding powdered tungsten oxide, 16.3 g of powdered zirconia having a purity of 99.5% and only 121.3 g of a 47 wt% zirconium nitrate aqueous solution (25% zirconia solid content) were mixed to prepare a washcoat solution. Other conditions were the same as in Example 1.
比較例4
 粉末ジルコニアを添加せず、粉末酸化タングステン16.3gと、47wt%硝酸ジルコニウム水溶液(ジルコニア固形分25%)121.3gのみを混合して、ウォッシュコート溶液を調製した。その他の条件は、実施例1と同様とした。
Comparative Example 4
Without adding powdered zirconia, only 16.3 g of powdered tungsten oxide and 121.3 g of 47 wt% zirconium nitrate aqueous solution (zirconia solid content 25%) were mixed to prepare a washcoat solution. Other conditions were the same as in Example 1.
[物性評価]
上記で製造した水素燃焼触媒についてX線回折分析を行った(図1、図2)。また、アンモニア吸着昇温脱離法(TPD)により酸点測定を行った(図3)。
[Evaluation of the physical properties]
X-ray diffraction analysis was performed on the hydrogen combustion catalyst produced above (FIGS. 1 and 2). Further, acid point measurement was performed by ammonia adsorption temperature programmed desorption (TPD) (FIG. 3).
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 X線回折の結果(表1、図1)より、粉状酸化タングステン、粉状ジルコニア及びジルコニウム塩の水溶液を含む実施例1~3の触媒は、2θ=23.2°、23.6°、24.4°の酸化タングステンに由来するピークと、2θ=28.3、30.3、31.5°付近の単斜晶及び正方晶又は立方晶ジルコニアに由来する3つのピークとを有していた。 From the results of X-ray diffraction (Table 1, FIG. 1), the catalysts of Examples 1 to 3 containing an aqueous solution of powdered tungsten oxide, powdered zirconia and zirconium salt showed 2θ = 23.2 °, 23.6 °, It has a peak derived from 24.4 ° tungsten oxide and three peaks derived from monoclinic and tetragonal or cubic zirconia near 2θ = 28.3, 30.3, 31.5 °. It was.
 これに対し、ジルコニウム塩の水溶液を含まない比較例1の触媒(表1、図2)は、2θ=30.3°の正方晶又は立方晶ジルコニアに由来するピークを有しておらず、粉状ジルコニア及びジルコニウム塩の水溶液を含まない比較例2の触媒は2θ=28.3、30.3、31.5°の単斜晶及び正方晶又は立方晶ジルコニアに由来するピークを全く有していなかった。また、粉状酸化タングステンを含まない比較例3の触媒は、2θ=23.2°、23.6°、24.4°の酸化タングステンに由来するピークを有しておらず、粉状ジルコニアを含まない比較例4の触媒は、2θ=28.3及び2θ=31.5°の単斜晶ジルコニアに由来するピークを有していなかった。 On the other hand, the catalyst of Comparative Example 1 that does not contain an aqueous solution of zirconium salt (Table 1, FIG. 2) does not have a peak derived from tetragonal or cubic zirconia at 2θ = 30.3 °, and the powder The catalyst of Comparative Example 2 which does not contain an aqueous solution of zirconia and zirconium salt has no peaks derived from monoclinic and tetragonal or cubic zirconia at 2θ = 28.3, 30.3, 31.5 °. There wasn't. Further, the catalyst of Comparative Example 3 that does not contain powdered tungsten oxide does not have peaks derived from 2θ = 23.2 °, 23.6 °, and 24.4 ° tungsten oxide, and powdery zirconia is used. The catalyst of Comparative Example 4 which was not included did not have peaks derived from monoclinic zirconia at 2θ = 28.3 and 2θ = 31.5 °.
 以上の結果より、ウォッシュコート溶液として、ジルコニアとして粉状ジルコニアを用いることで、単斜晶ジルコニアを含む触媒とすることができ、ジルコニウム塩の水溶液を用いることで、正方晶又は立方晶ジルコニアを含む触媒となることが分かった。 From the above results, it is possible to obtain a catalyst containing monoclinic zirconia by using powdered zirconia as the washcoat solution, and containing tetragonal or cubic zirconia by using an aqueous solution of zirconium salt. It turned out to be a catalyst.
 また酸点測定の結果(表1、図3)、実施例1、3及び比較例3の触媒は、温度180℃付近の単斜晶ジルコニアに由来するピークと、600℃付近の正方晶又は立方晶ジルコニアに由来するピークとを有していた。一方、比較例1、2の触媒は、150℃付近の単斜晶ジルコニアに由来するピークのみ有するものであり、比較例4は、700℃付近の正方晶又は立方晶ジルコニアに由来するピークを有するのみであった。 In addition, as a result of acid point measurement (Table 1, FIG. 3), the catalysts of Examples 1, 3 and Comparative Example 3 have a peak derived from monoclinic zirconia at a temperature of about 180 ° C. And a peak derived from crystal zirconia. On the other hand, the catalysts of Comparative Examples 1 and 2 have only peaks derived from monoclinic zirconia around 150 ° C., and Comparative Example 4 has peaks derived from tetragonal or cubic zirconia around 700 ° C. It was only.
[水素燃焼試験]
 以下の要領で水素燃焼試験を行った。上記により得られた触媒を充填した触媒層(触媒体積24.5mL)に水素、空気混合ガスを導入し、触媒層通過前後の混合ガス中における水素の減少割合を分解効率として計算した。次式より分解効率を算出し、各実施例の触媒性能を評価した。
<(1-(出口濃度/入口濃度))×100>(%)
[Hydrogen combustion test]
The hydrogen combustion test was conducted as follows. Hydrogen and air mixed gas were introduced into the catalyst layer (catalyst volume 24.5 mL) filled with the catalyst obtained above, and the reduction rate of hydrogen in the mixed gas before and after passing through the catalyst layer was calculated as decomposition efficiency. The decomposition efficiency was calculated from the following formula, and the catalyst performance of each example was evaluated.
<(1- (Outlet concentration / Inlet concentration)) × 100> (%)
 触媒層入口及び触媒層出口の混合ガス中における水素濃度は、ガスクロマトグラフを用いて測定した。本実施形態では、分解効率の有効測定上限値が99.9%であるガスクロマトグラフを使用した。水素濃度測定試験は、以下の条件下で行った。
・触媒層通過前の混合ガス中の水素濃度 10000ppm
・触媒層入口温度 25℃
・触媒層内触媒量 24.5mL
・混合ガス流量 2000mL/min
The hydrogen concentration in the mixed gas at the catalyst layer inlet and the catalyst layer outlet was measured using a gas chromatograph. In this embodiment, the gas chromatograph whose effective measurement upper limit of decomposition efficiency is 99.9% was used. The hydrogen concentration measurement test was performed under the following conditions.
・ Hydrogen concentration in mixed gas before passing through catalyst layer is 10000ppm
・ Catalyst layer inlet temperature 25 ℃
・ Catalyst layer catalyst volume 24.5mL
・ Mixed gas flow rate 2000mL / min
 また、上記水素燃焼触媒を、室温・大気圧において空気中で1~10日間保管し、触媒活性の長期間の経時変化を測定した。同様に、4ヶ月経過後の触媒活性も評価した。 The hydrogen combustion catalyst was stored in air at room temperature and atmospheric pressure for 1 to 10 days, and the long-term change in catalyst activity over time was measured. Similarly, the catalytic activity after 4 months was also evaluated.
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 以上の結果(表2、図4)、実施例1~3の触媒では、4ヶ月経過後も高い触媒活性を維持することができた。これに対し、比較例1~4の触媒は、保管期間の経過とともに触媒活性が低下した。 From the above results (Table 2, FIG. 4), the catalysts of Examples 1 to 3 were able to maintain high catalytic activity even after 4 months. On the other hand, the catalyst activities of Comparative Examples 1 to 4 decreased with the passage of the storage period.
 本発明の水素燃焼触媒は、水素製造プラントや水素雰囲気炉等で排ガス中の水素を燃焼処理するために好適である。 The hydrogen combustion catalyst of the present invention is suitable for burning hydrogen in exhaust gas in a hydrogen production plant or a hydrogen atmosphere furnace.

Claims (5)

  1. ウォッシュコート層を備える担体に、触媒金属が担持されてなる水素燃焼触媒において、
    ウォッシュコート層は、ジルコニアと酸化タングステンとからなり、
    前記ジルコニアは、単斜晶ジルコニアを必須成分とし、更に、立方晶ジルコニア又は正方晶ジルコニアの少なくともいずれかを含むことを特徴とする水素燃焼触媒。
    In a hydrogen combustion catalyst in which a catalyst metal is supported on a carrier having a washcoat layer,
    The washcoat layer consists of zirconia and tungsten oxide,
    The zirconia contains monoclinic zirconia as an essential component, and further contains at least one of cubic zirconia and tetragonal zirconia.
  2. X線回折において2θ=23.2°、23.6°、24.4°、28.3°、30.3°、及び31.5°にピークを有し、
    2θ=23.2°、23.6°、24.4°のうち最も高いピークの強度(A)と、2θ=30.3°のピーク強度(B)との比(B/A)が0.05~1.0である請求項1に記載の水素燃焼触媒。
    X-ray diffraction has peaks at 2θ = 23.2 °, 23.6 °, 24.4 °, 28.3 °, 30.3 °, and 31.5 °,
    The ratio (B / A) between the intensity (A) of the highest peak among 2θ = 23.2 °, 23.6 °, and 24.4 ° and the peak intensity (B) at 2θ = 30.3 ° is 0. The hydrogen combustion catalyst according to claim 1, wherein the hydrogen combustion catalyst is .05 to 1.0.
  3.  2θ=28.3°のピーク強度(C)と、2θ=30.3°のピーク強度(B)との比(B/C)が0.05~2.00である請求項2に記載の水素燃焼触媒。 The ratio (B / C) of the peak intensity (C) at 2θ = 28.3 ° and the peak intensity (B) at 2θ = 20.3 ° is 0.05 to 2.00. Hydrogen combustion catalyst.
  4.  アンモニア昇温脱離法による酸性測定において、温度150~250℃及び550~700℃にピークを有する請求項1~3のいずれかに記載の水素燃焼触媒。 The hydrogen combustion catalyst according to any one of claims 1 to 3, which has peaks at temperatures of 150 to 250 ° C and 550 to 700 ° C in acidity measurement by an ammonia temperature-programmed desorption method.
  5. 請求項1~4のいずれかに記載の水素燃焼触媒の製造方法であって、
    酸化タングステンとジルコニアとを含むウォッシュコート溶液に担体を含浸した後、乾燥し、焼成するウォッシュコート層の形成工程と、
    ウォッシュコート層を形成した担体を急冷する工程と、
    急冷した担体を触媒金属溶液に含浸又は吸着して触媒金属を担持する工程と、
    触媒金属の担持後、焼成し又は還元する工程とを含み、
    ウォッシュコート溶液には、ジルコニアとして粉状ジルコニアとジルコニウム塩の水溶液とを用いる水素燃焼触媒の製造方法。
    A method for producing a hydrogen combustion catalyst according to any one of claims 1 to 4,
    A step of forming a washcoat layer that is impregnated with a carrier in a washcoat solution containing tungsten oxide and zirconia, and then dried and fired;
    A step of rapidly cooling the carrier on which the washcoat layer has been formed;
    A step of impregnating or adsorbing a rapidly cooled carrier in a catalyst metal solution to support the catalyst metal;
    A step of calcining or reducing after supporting the catalytic metal,
    The method for producing a hydrogen combustion catalyst, wherein the washcoat solution uses powdered zirconia and an aqueous solution of zirconium salt as zirconia.
PCT/JP2012/068655 2011-07-28 2012-07-24 Hydrogen combustion catalyst WO2013015261A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011164889A JP5123417B1 (en) 2011-07-28 2011-07-28 Hydrogen combustion catalyst
JP2011-164889 2011-07-28

Publications (1)

Publication Number Publication Date
WO2013015261A1 true WO2013015261A1 (en) 2013-01-31

Family

ID=47601106

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/068655 WO2013015261A1 (en) 2011-07-28 2012-07-24 Hydrogen combustion catalyst

Country Status (2)

Country Link
JP (1) JP5123417B1 (en)
WO (1) WO2013015261A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7337542B2 (en) * 2019-05-14 2023-09-04 三菱重工業株式会社 hydrogen combustion catalyst

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11333294A (en) * 1998-05-27 1999-12-07 Johnson Matthey Japan Inc Exhaust gas cleaning catalyst and exhaust gas cleaning
JP2001239162A (en) * 2000-02-29 2001-09-04 Osaka Gas Co Ltd Catalyst and method for removing aldehyde
JP2002113363A (en) * 2000-10-10 2002-04-16 Mitsubishi Heavy Ind Ltd Low-temperature oxidizing catalyst
JP2011139991A (en) * 2010-01-07 2011-07-21 Japan Atomic Energy Agency Hydrogen combustion catalyst, method for producing the same and hydrogen combustion method

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11333294A (en) * 1998-05-27 1999-12-07 Johnson Matthey Japan Inc Exhaust gas cleaning catalyst and exhaust gas cleaning
JP2001239162A (en) * 2000-02-29 2001-09-04 Osaka Gas Co Ltd Catalyst and method for removing aldehyde
JP2002113363A (en) * 2000-10-10 2002-04-16 Mitsubishi Heavy Ind Ltd Low-temperature oxidizing catalyst
JP2011139991A (en) * 2010-01-07 2011-07-21 Japan Atomic Energy Agency Hydrogen combustion catalyst, method for producing the same and hydrogen combustion method

Also Published As

Publication number Publication date
JP5123417B1 (en) 2013-01-23
JP2013027811A (en) 2013-02-07

Similar Documents

Publication Publication Date Title
CN112657487B (en) High porosity cerium and zirconium containing oxides
JP2008156130A (en) Delafossite type oxide, method for manufacturing the same and exhaust gas purification catalyst
JP5533783B2 (en) Catalyst for exhaust gas purification of internal combustion engine
JP2015077543A (en) Honeycomb structure, method of manufacturing the same, and exhaust emission control catalyst
JP5754691B2 (en) Exhaust gas purification three-way catalyst
JP5865110B2 (en) Methane oxidation catalyst and production method thereof
JP4688646B2 (en) Three-way catalyst and methane-containing gas purification method using the same
US20240058792A1 (en) Catalytic material with sulfur-tolerant support
JP5836149B2 (en) Methane oxidation removal catalyst and methane oxidation removal method
JP6684669B2 (en) Ammonia decomposition catalyst and method for producing hydrogen-containing gas using this catalyst
JP4296430B2 (en) Catalyst for water gas shift reaction and process for producing the same
JP5123417B1 (en) Hydrogen combustion catalyst
JP5503155B2 (en) Carbon monoxide removal filter
JP6614897B2 (en) Methane oxidation removal catalyst manufacturing method and methane oxidation removal method
JP5706476B2 (en) Carbon monoxide oxidation catalyst and production method thereof
JP7075794B2 (en) Manufacturing method of catalyst for ammonia synthesis
JP2007054685A (en) Catalyst for water gas shift reaction
JP2013215718A (en) Catalyst and method for oxidizing and removing methane
JP7160831B2 (en) NOx trap catalyst support material composition
EP3560576B1 (en) Use of a nitrogen oxide storage material and exhaust gas purification method
RU2712587C1 (en) Material for nitrogen oxide accumulation and exhaust gas purification method
JP5610805B2 (en) Exhaust gas purification catalyst and exhaust gas purification method
JP6448371B2 (en) Three-way catalyst and methane-containing gas purification method using the same
JP2013184125A (en) Catalyst for cleaning exhaust gas
JP2014155919A (en) Catalyst for oxidation removal of methane and method for oxidation removal of methane

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12816918

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12816918

Country of ref document: EP

Kind code of ref document: A1