WO2013014780A1 - Linear motor - Google Patents

Linear motor Download PDF

Info

Publication number
WO2013014780A1
WO2013014780A1 PCT/JP2011/067196 JP2011067196W WO2013014780A1 WO 2013014780 A1 WO2013014780 A1 WO 2013014780A1 JP 2011067196 W JP2011067196 W JP 2011067196W WO 2013014780 A1 WO2013014780 A1 WO 2013014780A1
Authority
WO
WIPO (PCT)
Prior art keywords
linear motor
permanent magnet
armature
coils
motor
Prior art date
Application number
PCT/JP2011/067196
Other languages
French (fr)
Japanese (ja)
Inventor
憲昭 吉村
Original Assignee
株式会社安川電機
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社安川電機 filed Critical 株式会社安川電機
Priority to DE112011105473.4T priority Critical patent/DE112011105473T5/en
Priority to CN201180072496.8A priority patent/CN103718437A/en
Priority to PCT/JP2011/067196 priority patent/WO2013014780A1/en
Priority to JP2013525512A priority patent/JP5972876B2/en
Priority to KR1020137034487A priority patent/KR20140015588A/en
Publication of WO2013014780A1 publication Critical patent/WO2013014780A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K41/00Propulsion systems in which a rigid body is moved along a path due to dynamo-electric interaction between the body and a magnetic field travelling along the path
    • H02K41/02Linear motors; Sectional motors
    • H02K41/03Synchronous motors; Motors moving step by step; Reluctance motors
    • H02K41/031Synchronous motors; Motors moving step by step; Reluctance motors of the permanent magnet type
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K41/00Propulsion systems in which a rigid body is moved along a path due to dynamo-electric interaction between the body and a magnetic field travelling along the path
    • H02K41/02Linear motors; Sectional motors
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K41/00Propulsion systems in which a rigid body is moved along a path due to dynamo-electric interaction between the body and a magnetic field travelling along the path
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K2213/00Specific aspects, not otherwise provided for and not covered by codes H02K2201/00 - H02K2211/00
    • H02K2213/03Machines characterised by numerical values, ranges, mathematical expressions or similar information

Definitions

  • the disclosed embodiment relates to a linear motor.
  • Patent Document 1 discloses a cylinder type linear motor having a stator in which n ring-shaped coils are arranged in parallel in the axial direction, and a mover having a permanent magnet assembly having one or more permanent magnets. Describes a technique in which the stroke S is (n ⁇ CM) or less, where C is the axial length of the coil and M is the axial length of the permanent magnet assembly.
  • the axial length (3 ⁇ C) of three coils and the magnetic pole interval ( ⁇ ) of the permanent magnet are substantially equal.
  • N the number of permanent magnets
  • the total length of the motor is at least the thrust contribution length ( ⁇ ⁇ N) plus the length of three coils (3 ⁇ C)
  • the stroke S is calculated from the length of three coils (3 ⁇ C).
  • the total length of the motor is excessively increased by the length of (3 ⁇ C ⁇ S). As described above, the total length of the motor becomes unnecessarily long, resulting in a problem that the linear motor becomes larger and the weight and installation space increase.
  • the present invention has been made in view of such problems, and an object of the present invention is to provide a linear motor capable of reducing the overall length of the motor and reducing the size and weight. is there.
  • an armature having a cylindrical coil assembly formed by arranging a plurality of annular coils in parallel in the axial direction, and the shaft of the armature A linear motion shaft provided on the wire so as to be capable of reciprocating in the axial direction, and a field having a permanent magnet assembly including at least one permanent magnet provided on the linear motion shaft, and the armature,
  • a linear motor that reciprocally moves the mover relative to the stator with either one of the field magnets as a stator and the other as a mover, wherein the number of coils is n and the axial length of the coils is C, a linear motor in which the stroke S is set to be at least larger than
  • the overall length of the motor can be shortened, and the size and weight can be reduced.
  • the linear motor 1 of this embodiment is a cylinder type linear motor.
  • the linear motor 1 includes an armature 10 and a field 20.
  • the armature 10 has a cylindrical coil assembly 12 formed by juxtaposing a plurality (six in the example shown in FIG. 1) of annular coils 11 in the axial direction (left-right direction in FIG. 1). Yes.
  • the linear motor 1 is a three-phase AC motor, and the coil assembly 12 includes at least one set of three coils 11 corresponding to the U phase, V phase, and W phase (two sets in the example shown in FIG. 1).
  • the field 20 includes a linear motion shaft 21 provided on the axis of the armature 10 so as to be capable of reciprocating in the axial direction, and two permanent magnets 23 provided on the linear motion shaft 21 with a spacer 22 interposed therebetween. Including a permanent magnet assembly 24. Each permanent magnet 23 is magnetized in the axial direction.
  • the linear motor 1 includes a cylindrical or rectangular tube-shaped motor frame 2 provided on the outer peripheral side of the armature 10, and one side (left side in FIG. 1) and the other side (FIG. 1) of the motor frame 2 in the axial direction. Brackets 3 and 4 are provided at the ends of the middle right side). The brackets 3 and 4 are respectively provided with linear motion bearings 5 and 6 that support the linear motion shaft 21 so as to be capable of reciprocating in the axial direction.
  • the linear motor 1 having such a configuration reciprocates the mover with respect to the stator using either the armature 10 or the field 20 as a stator and the other as a mover.
  • the linear motor 1 is configured such that the axial length K of the coil assembly 12 and the axial length M of the permanent magnet assembly 24 are substantially equal.
  • the stroke S is set to be larger than at least
  • the linear motor 1 causes the permanent magnet 23 of the field 20 to protrude from the end face of the coil 11 of the armature 10 by a certain amount (half of the stroke S), as indicated by the one-dot chain line in FIG. Even in a range in which the permanent magnet 23 of the field magnet 20 and the coil 11 of the armature 10 do not overlap in the direction perpendicular to the axial direction (vertical direction in FIG. 1), the movable element is reciprocated.
  • the stroke S is set to be 1.6 times or less of the axial length of the three coils 11, that is, “1.6 ⁇ 3 ⁇ C” or less.
  • the setting range of the stroke S is derived from the results of analysis and examination with various models by the inventors of the present invention changing the axial length of the permanent magnet, the outer diameter, the presence or absence of a hollow, the presence or absence of pole pieces at both ends, and the like. It has been.
  • an example of a simulation result performed by the present inventors will be described with reference to FIGS. 2 and 3.
  • a linear motor 1 ′ as a comparative example includes an armature 10 ′ and a field 20.
  • the armature 10 ' is a cylinder formed by arranging three sets of three coils 11 corresponding to the U phase, V phase, and W phase, that is, nine coils 11 in parallel in the axial direction (left and right direction in FIG. 2).
  • the motor frame 2 ′ is formed to have a longer axial length than the motor frame 2 of the linear motor 1 described above, as the number of the coils 11 is increased.
  • Other configurations including the field 20 of the linear motor 1 ′ are the same as those of the linear motor 1 described above.
  • the stroke S is normally set to “n ⁇ CM” ( ⁇ 3C) or less. That is, the linear motor 1 ′ reciprocates the mover only within a range in which the permanent magnet 24 of the field 20 and the coil 11 of the armature 10 overlap in the direction perpendicular to the axial direction (up and down direction in FIG. 2).
  • FIG. 3 shows the relationship between the stroke S (mm) and the thrust (N) when the loss is the same in the linear motor 1 of the present embodiment shown in FIG. 1 and the linear motor 1 ′ of the comparative example shown in FIG. Show.
  • the magnitude of the thrust that can be output by the linear motors 1 and 1 ' is substantially the same.
  • the thrust is greatly reduced when the permanent magnet 23 protrudes axially outward from the end surface of the coil 11 (position where the stroke S is ⁇ 0.5 ⁇ 3C).
  • the thrust reduction can be suppressed until the protruding amount of the permanent magnet 23 from the coil end surface becomes 0.8 times the axial length 3 ⁇ / b> C of the three coils 11. Therefore, the applicable stroke range is 1.6 times 3C “1.6 ⁇ 3C”, which is particularly effective for a motor having a short stroke.
  • the stroke S is set to be at least larger than
  • the linear motor 1 of the present embodiment projects the permanent magnet 23 of the field 20 by a certain amount outward in the axial direction from the end face of the coil 11 of the armature 10. Even in a range where the permanent magnet 23 and the coil 11 of the armature 10 do not overlap in the direction perpendicular to the axial direction, the mover is reciprocated.
  • the armature 10 and the field 20 are particularly “n ⁇ C ⁇ M”, that is, the axial lengths of the coil assembly 12 and the permanent magnet assembly 24 are substantially equal. Yes.
  • “stroke S ⁇ 0” and the stroke cannot be secured. 1
  • the permanent magnet 23 of the field magnet 20 protrudes a certain amount outward from the end face of the coil 11 of the armature 10 in the axial direction to move the mover back and forth, so that the stroke can be ensured.
  • the permanent magnet 23 is projected outward in the axial direction from the end face of the coil 11.
  • the thrust is greatly reduced.
  • the permanent magnet 23 The reduction in thrust can be suppressed until the amount of protrusion from the coil end face becomes 0.8 times the axial length 3C of the three coils 11. Therefore, it is possible to reduce the size and weight of the motor while suppressing a reduction in thrust.
  • the field magnet 20 has a permanent magnet assembly 24 formed by a permanent magnet 23 magnetized in the axial direction.
  • the direction of the magnetic flux generated by the permanent magnet 23 can be set as the axial direction. Therefore, when the permanent magnet magnetized in the direction perpendicular to the axial direction is used for the field 20 (that is, the direction of the magnetic flux is perpendicular to the axial direction).
  • the permanent magnet 23 protrudes from the end face of the coil 11 and the permanent magnet 23 and the coil 11 are in a range that does not overlap in the direction perpendicular to the axial direction, the magnetic flux contributing to the thrust The decrease can be suppressed, and the decrease in thrust can be suppressed.
  • the linear motor 1A of the present modification has a mover on one side of the motor electromagnetic part 7 having the armature 10, the field 20, the motor frame 2, etc.
  • An encoder unit 30 for detecting the position is included.
  • the encoder unit 30 is configured as a magnetic linear encoder in this example.
  • the encoder unit 30 is provided on a scale mounting shaft 34 (left side in FIG. 4), a scale 31 on which a magnetic pattern is formed, a sensor 32 that detects a magnetic field by the magnetic pattern provided on the scale 31, and an encoder cover 33. And have.
  • a magnetic shielding plate 40 is provided on one end face of the permanent magnet assembly 24 in the linear motion shaft 21.
  • the magnetic shielding plate 40 is a plate-like member made of a ferromagnetic material such as iron, and extends in the radial direction from the outer peripheral surface of the linear motion shaft 21 to the vicinity of the inner peripheral surface of the motor frame 2.
  • the magnetic shielding plate 40 is provided with a scale mounting shaft 34 which is a nonmagnetic material, and suppresses the influence of the magnetic field generated from the field 20 of the motor electromagnetic unit 7 on the encoder unit 30.
  • Other configurations of the linear motor 1A are the same as those of the linear motor 1 described above.
  • the magnetic shielding plate 40 When the magnetic shielding plate 40 is provided on the encoder unit 30 side of the permanent magnet assembly 24 in the linear motion shaft 21 as in this modification, the magnetic shielding plate 40 has a permanent magnet assembly 24 in order to increase the magnetic shielding effect. It is preferable to provide as close as possible the gap with the inner peripheral surface of the motor frame 2 as small as possible.
  • the magnetic shielding plate is provided near the end face of the permanent magnet assembly 24.
  • the axial lengths of the coil assembly 12 of the armature 10 and the permanent magnet assembly 24 of the field magnet 20 are configured to be substantially equal, as shown in FIG.
  • the magnetic shielding plate 40 can be provided at a position separated from the end face of the permanent magnet assembly 24 by the stroke S / 2. Thereby, a magnetic shielding effect can be enlarged.
  • the armature 10 has six coils 11 and the field 20 has two permanent magnets 23.
  • the numbers of the coils 11 and the permanent magnets 23 are examples, and may be changed as appropriate. May be.
  • the armature 10 has one set of three coils 11 (three coils 11) corresponding to the U phase, V phase, and W phase, and the field 20 has three coils 11. It is good also as a structure which has the one permanent magnet 23 which is the length substantially equal to the axial direction length. In this case as well, the same effect as in the above embodiment can be obtained.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Electromagnetism (AREA)
  • Power Engineering (AREA)
  • Linear Motors (AREA)

Abstract

[Problem] To shorten the total length of a motor and make same more compact and lighter. [Solution] A linear motor (1) comprising: an armature (10) having a cylindrical coil assembly (12) formed by having a plurality of annular coils (11) arranged in parallel in the shaft direction; a linear motion shaft (21) provided on the armature (10) shaft so as to be reciprocally movable in the shaft direction; and a field magnet (20) having a permanent magnet assembly (24) including two permanent magnets (23) disposed in the linear motion shaft (21). The linear motor (1) reciprocally moves a movable element relative to a fixed element, using one of either the armature (10) or the field magnet (20) as the fixed element and the other as the movable element. The stroke (S) is set to be at least larger than |n × C-M|, when n is the number of coils (11), C is the length of the coil in the shaft direction, and M is the length of the permanent magnet assembly (24) in the shaft direction.

Description

リニアモータLinear motor
 開示の実施形態は、リニアモータに関する。 The disclosed embodiment relates to a linear motor.
 特許文献1には、n個のリング状コイルを軸方向に並設した固定子と、永久磁石を1個以上有する永久磁石組立体を備えた可動子とを有するシリンダ型のリニアモータにおいて、リング状コイルの軸方向長さをC、永久磁石組立体の軸方向長さをMとしたとき、ストロークSを(n×C-M)以下とする技術が記載されている。 Patent Document 1 discloses a cylinder type linear motor having a stator in which n ring-shaped coils are arranged in parallel in the axial direction, and a mover having a permanent magnet assembly having one or more permanent magnets. Describes a technique in which the stroke S is (n × CM) or less, where C is the axial length of the coil and M is the axial length of the permanent magnet assembly.
特許第4551157号公報Japanese Patent No. 4551157
 上記従来技術のリニアモータでは、ストロークを確保するために(n×C>M)の関係とする必要がある。このため、次のような問題が生じる。 In the conventional linear motor, it is necessary to have a relationship of (n × C> M) in order to ensure a stroke. For this reason, the following problems arise.
 例えば、三相交流同期のリニアモータとする場合、一般にコイル3個の軸方向長さ(3×C)と永久磁石の磁極間隔(τ)が略等しい構成となる。このとき、永久磁石の個数をN個とすると、ストロークを確保するために(n/3>N)の関係とする必要がある(但し、nはコイル数で3の倍数、Nは永久磁石数で自然数)。その結果、モータ全長は少なくとも推力寄与長さ(τ×N)にコイル3個の長さ(3×C)を加えた長さとなり、ストロークSがコイル3個の長さ(3×C)よりも小さい場合には、モータ全長が(3×C-S)の長さだけ余分に長くなってしまう。このように、モータの全長が不要に長くなる結果、リニアモータが大型化し、重量や設置スペースが増大するという問題があった。 For example, when a three-phase AC-synchronized linear motor is used, generally the axial length (3 × C) of three coils and the magnetic pole interval (τ) of the permanent magnet are substantially equal. At this time, if the number of permanent magnets is N, it is necessary to have a relationship of (n / 3> N) in order to secure a stroke (where n is the number of coils and a multiple of 3, and N is the number of permanent magnets). In natural numbers). As a result, the total length of the motor is at least the thrust contribution length (τ × N) plus the length of three coils (3 × C), and the stroke S is calculated from the length of three coils (3 × C). If it is smaller, the total length of the motor is excessively increased by the length of (3 × C−S). As described above, the total length of the motor becomes unnecessarily long, resulting in a problem that the linear motor becomes larger and the weight and installation space increase.
 本発明はこのような問題点に鑑みてなされたものであり、本発明の目的とするところは、モータの全長を短くし、小型化及び軽量化を図ることができるリニアモータを提供することにある。 The present invention has been made in view of such problems, and an object of the present invention is to provide a linear motor capable of reducing the overall length of the motor and reducing the size and weight. is there.
 上記課題を解決するため、本発明の一の観点によれば、複数の環状のコイルを軸方向に並設して形成された筒状のコイル組立体を有する電機子と、前記電機子の軸線上に軸方向に往復移動可能に設けられた直動軸、及び、前記直動軸に設けられた少なくとも1つの永久磁石を含む永久磁石組立体を有する界磁と、を備え、前記電機子と前記界磁のいずれか一方を固定子、他方を可動子として、前記可動子を前記固定子に対し往復移動させるリニアモータであって、前記コイルの個数をn、前記コイルの軸方向長さをC、前記永久磁石組立体の軸方向長さをMとするとき、ストロークSが少なくとも|n×C-M|よりも大きくなるように設定されているリニアモータが適用される。 In order to solve the above-described problem, according to one aspect of the present invention, an armature having a cylindrical coil assembly formed by arranging a plurality of annular coils in parallel in the axial direction, and the shaft of the armature A linear motion shaft provided on the wire so as to be capable of reciprocating in the axial direction, and a field having a permanent magnet assembly including at least one permanent magnet provided on the linear motion shaft, and the armature, A linear motor that reciprocally moves the mover relative to the stator with either one of the field magnets as a stator and the other as a mover, wherein the number of coils is n and the axial length of the coils is C, a linear motor in which the stroke S is set to be at least larger than | n × CM |, where M is the axial length of the permanent magnet assembly, is applied.
 本発明のリニアモータによれば、モータの全長を短くし、小型化及び軽量化を図ることができる。 According to the linear motor of the present invention, the overall length of the motor can be shortened, and the size and weight can be reduced.
実施形態のリニアモータの概略構成を表す側断面図である。It is a sectional side view showing a schematic structure of a linear motor of an embodiment. 比較例のリニアモータの概略構成を表す側断面図である。It is a sectional side view showing the schematic structure of the linear motor of a comparative example. 本実施形態のリニアモータと比較例のリニアモータで、損失を同じとした場合におけるストロークと推力の関係を示す図である。It is a figure which shows the relationship between the stroke and thrust in the case of making the loss the same with the linear motor of this embodiment, and the linear motor of a comparative example. エンコーダ部及び磁気遮蔽板を有する変形例におけるリニアモータの概略構成を表す側断面図である。It is a sectional side view showing the schematic structure of the linear motor in the modification which has an encoder part and a magnetic shielding board.
 以下、一実施形態について図面を参照しつつ説明する。 Hereinafter, an embodiment will be described with reference to the drawings.
 図1に示すように、本実施形態のリニアモータ1はシリンダ型のリニアモータである。このリニアモータ1は、電機子10と、界磁20とを備えている。電機子10は、複数(図1に示す例では6個)の環状のコイル11を軸方向(図1中左右方向)に並設して形成された筒状のコイル組立体12を有している。本実施形態では、リニアモータ1は三相交流モータであり、コイル組立体12は、U相、V相、W相に対応する3つのコイル11を少なくとも1組(図1に示す例では2組)有している。界磁20は、電機子10の軸線上に軸方向に往復移動可能に設けられた直動軸21と、この直動軸21にスペーサ22を間に挟んで設けられた2つの永久磁石23を含む永久磁石組立体24とを有している。各永久磁石23は、軸方向に磁化されている。 As shown in FIG. 1, the linear motor 1 of this embodiment is a cylinder type linear motor. The linear motor 1 includes an armature 10 and a field 20. The armature 10 has a cylindrical coil assembly 12 formed by juxtaposing a plurality (six in the example shown in FIG. 1) of annular coils 11 in the axial direction (left-right direction in FIG. 1). Yes. In this embodiment, the linear motor 1 is a three-phase AC motor, and the coil assembly 12 includes at least one set of three coils 11 corresponding to the U phase, V phase, and W phase (two sets in the example shown in FIG. 1). ) The field 20 includes a linear motion shaft 21 provided on the axis of the armature 10 so as to be capable of reciprocating in the axial direction, and two permanent magnets 23 provided on the linear motion shaft 21 with a spacer 22 interposed therebetween. Including a permanent magnet assembly 24. Each permanent magnet 23 is magnetized in the axial direction.
 また、リニアモータ1は、電機子10の外周側に設けられた円筒状又は角筒状のモータフレーム2と、このモータフレーム2の軸方向一方側(図1中左側)及び他方側(図1中右側)の端部にそれぞれ設けられたブラケット3,4とを有している。これらブラケット3,4には、直動軸21を軸方向に往復移動可能に支持する直動軸受5,6がそれぞれ設けられている。 The linear motor 1 includes a cylindrical or rectangular tube-shaped motor frame 2 provided on the outer peripheral side of the armature 10, and one side (left side in FIG. 1) and the other side (FIG. 1) of the motor frame 2 in the axial direction. Brackets 3 and 4 are provided at the ends of the middle right side). The brackets 3 and 4 are respectively provided with linear motion bearings 5 and 6 that support the linear motion shaft 21 so as to be capable of reciprocating in the axial direction.
 このような構成であるリニアモータ1は、電機子10と界磁20のいずれか一方を固定子、他方を可動子として、可動子を固定子に対し往復移動させる。 The linear motor 1 having such a configuration reciprocates the mover with respect to the stator using either the armature 10 or the field 20 as a stator and the other as a mover.
 ここで、コイル11の個数をn(図1に示す例ではn=6)、各コイル11の軸方向長さをCとした場合、コイル組立体12の軸方向長さKは「n×C」(図1に示す例ではK=6×C)となる。リニアモータ1では、このコイル組立体12の軸方向長さKと、永久磁石組立体24の軸方向長さMとが、略等しくなるように構成されている。そして、ストロークSが少なくとも「n×C-M」の絶対値である|n×C-M|(≒0)よりも大きくなるように設定されている。すなわち、リニアモータ1は、図1中一点鎖線にて示すように、界磁20の永久磁石23を電機子10のコイル11の端面より軸方向外側に一定量(ストロークSの半分)突出させ、界磁20の永久磁石23と電機子10のコイル11とが軸方向と垂直な方向(図1中上下方向)に重ならない範囲においても、可動子を往復移動させる構成となっている。 Here, when the number of coils 11 is n (n = 6 in the example shown in FIG. 1) and the axial length of each coil 11 is C, the axial length K of the coil assembly 12 is “n × C. (K = 6 × C in the example shown in FIG. 1). The linear motor 1 is configured such that the axial length K of the coil assembly 12 and the axial length M of the permanent magnet assembly 24 are substantially equal. The stroke S is set to be larger than at least | n × CM | (≈0), which is an absolute value of “n × CM”. That is, the linear motor 1 causes the permanent magnet 23 of the field 20 to protrude from the end face of the coil 11 of the armature 10 by a certain amount (half of the stroke S), as indicated by the one-dot chain line in FIG. Even in a range in which the permanent magnet 23 of the field magnet 20 and the coil 11 of the armature 10 do not overlap in the direction perpendicular to the axial direction (vertical direction in FIG. 1), the movable element is reciprocated.
 さらに、ストロークSは、コイル11の3個分の軸方向長さの1.6倍以下、すなわち「1.6×3×C」以下となるように設定されている。このストロークSの設定範囲は、本願発明者等が永久磁石の軸方向長さ、外径、中空の有無、両端のポールピースの有無等を変更し、様々なモデルで解析、検討した結果、導き出されたものである。以下、図2及び図3を用いて本願発明者等が行ったシミュレーション結果の一例について説明する。 Further, the stroke S is set to be 1.6 times or less of the axial length of the three coils 11, that is, “1.6 × 3 × C” or less. The setting range of the stroke S is derived from the results of analysis and examination with various models by the inventors of the present invention changing the axial length of the permanent magnet, the outer diameter, the presence or absence of a hollow, the presence or absence of pole pieces at both ends, and the like. It has been. Hereinafter, an example of a simulation result performed by the present inventors will be described with reference to FIGS. 2 and 3.
 図2に示すように、比較例としてのリニアモータ1′は、電機子10′と、界磁20とを備えている。電機子10′は、U相、V相、W相に対応する3つのコイル11を3組、すなわち9個のコイル11を軸方向(図2中左右方向)に並設して形成された筒状のコイル組立体12′を有している。またモータフレーム2′は、コイル11の数が増えた分、上述したリニアモータ1のモータフレーム2よりも軸方向長さが長く形成されている。リニアモータ1′の界磁20を含むその他の構成は、上述のリニアモータ1と同様である。 As shown in FIG. 2, a linear motor 1 ′ as a comparative example includes an armature 10 ′ and a field 20. The armature 10 'is a cylinder formed by arranging three sets of three coils 11 corresponding to the U phase, V phase, and W phase, that is, nine coils 11 in parallel in the axial direction (left and right direction in FIG. 2). A coil assembly 12 '. Further, the motor frame 2 ′ is formed to have a longer axial length than the motor frame 2 of the linear motor 1 described above, as the number of the coils 11 is increased. Other configurations including the field 20 of the linear motor 1 ′ are the same as those of the linear motor 1 described above.
 このような構成であるリニアモータ1′では、ストロークSが「n×C-M」(≒3C)以下に設定されるのが通常である。すなわち、リニアモータ1′は、界磁20の永久磁石24と電機子10のコイル11とが軸方向と垂直な方向(図2中上下方向)に重なる範囲内でのみ可動子を往復移動させる。 In the linear motor 1 ′ having such a configuration, the stroke S is normally set to “n × CM” (≈3C) or less. That is, the linear motor 1 ′ reciprocates the mover only within a range in which the permanent magnet 24 of the field 20 and the coil 11 of the armature 10 overlap in the direction perpendicular to the axial direction (up and down direction in FIG. 2).
 図3に、図1に示す本実施形態のリニアモータ1と、図2に示す比較例のリニアモータ1′における、損失を同じとした場合におけるストロークS(mm)と推力(N)の関係を示す。図3に示すように、損失を同じとした場合、リニアモータ1,1′で出力可能な推力の大きさはほぼ同じであることが分かる。また、比較例のリニアモータ1′では、永久磁石23がコイル11の端面(ストロークSが±0.5×3Cの位置)より軸方向外側に突出すると推力が大幅に低下するが、本実施形態のリニアモータ1では、永久磁石23のコイル端面からの突出量がコイル11の3個分の軸方向長さ3Cの0.8倍となるまで推力の低下を抑制できることが分かる。したがって、適用ストローク範囲は3Cの1.6倍「1.6×3C」となり、特にストロークの短いモータに有効であると言える。 FIG. 3 shows the relationship between the stroke S (mm) and the thrust (N) when the loss is the same in the linear motor 1 of the present embodiment shown in FIG. 1 and the linear motor 1 ′ of the comparative example shown in FIG. Show. As shown in FIG. 3, when the loss is the same, the magnitude of the thrust that can be output by the linear motors 1 and 1 'is substantially the same. Further, in the linear motor 1 ′ of the comparative example, the thrust is greatly reduced when the permanent magnet 23 protrudes axially outward from the end surface of the coil 11 (position where the stroke S is ± 0.5 × 3C). In the linear motor 1, it can be seen that the thrust reduction can be suppressed until the protruding amount of the permanent magnet 23 from the coil end surface becomes 0.8 times the axial length 3 </ b> C of the three coils 11. Therefore, the applicable stroke range is 1.6 times 3C “1.6 × 3C”, which is particularly effective for a motor having a short stroke.
 以上説明した実施形態のリニアモータ1では、ストロークSが少なくとも|n×C-M|よりも大きくなるように設定されている。すなわち、ストロークSを「n×C-M」以下に設定し、界磁20の永久磁石23と電機子10のコイル11とが軸方向と垂直な方向に重なる範囲内でのみ可動子を往復移動させていた従来のリニアモータとは異なり、本実施形態のリニアモータ1では、界磁20の永久磁石23を電機子10のコイル11の端面より軸方向外側に一定量突出させ、界磁20の永久磁石23と電機子10のコイル11とが軸方向と垂直な方向に重ならない範囲においても、可動子を往復移動させる。 In the linear motor 1 of the embodiment described above, the stroke S is set to be at least larger than | n × CM |. That is, the stroke S is set to “n × CM” or less, and the mover is reciprocated only within a range where the permanent magnet 23 of the field magnet 20 and the coil 11 of the armature 10 overlap in the direction perpendicular to the axial direction. Unlike the conventional linear motor, the linear motor 1 of the present embodiment projects the permanent magnet 23 of the field 20 by a certain amount outward in the axial direction from the end face of the coil 11 of the armature 10. Even in a range where the permanent magnet 23 and the coil 11 of the armature 10 do not overlap in the direction perpendicular to the axial direction, the mover is reciprocated.
 これにより、同じストロークを得るのに従来構造と比べて電機子10のコイル11の個数を少なくすることができる。その結果、リニアモータ1の全長を短くすることが可能となり、モータの小型化及び軽量化を図ることができる。また、電機子10のコイル11が少なくなる分、モータの設置スペースが小さくなり、そのスペースを他の目的に使用することができる。 This makes it possible to reduce the number of coils 11 of the armature 10 compared to the conventional structure to obtain the same stroke. As a result, the overall length of the linear motor 1 can be shortened, and the motor can be reduced in size and weight. Further, since the coil 11 of the armature 10 is reduced, the installation space for the motor is reduced, and the space can be used for other purposes.
 また、本実施形態では特に、電機子10と界磁20が「n×C≒M」、すなわち、コイル組立体12と永久磁石組立体24の軸方向長さが略等しくなるように構成されている。このような構成においては、ストロークSを|n×C-M|以下に設定していた従来のリニアモータでは「ストロークS≒0」となりストロークを確保することができないが、本実施形態のリニアモータ1では、界磁20の永久磁石23を電機子10のコイル11の端面より軸方向外側に一定量突出させて可動子を往復移動させるため、ストロークを確保することができる。 In the present embodiment, the armature 10 and the field 20 are particularly “n × C≈M”, that is, the axial lengths of the coil assembly 12 and the permanent magnet assembly 24 are substantially equal. Yes. In such a configuration, with the conventional linear motor in which the stroke S is set to be less than or equal to | n × CM |, “stroke S≈0” and the stroke cannot be secured. 1, the permanent magnet 23 of the field magnet 20 protrudes a certain amount outward from the end face of the coil 11 of the armature 10 in the axial direction to move the mover back and forth, so that the stroke can be ensured.
 また、図3に示すシミュレーション結果に示すように、「n×C>M」の関係を満たす構成であるリニアモータ1′において永久磁石23をコイル11の端面より軸方向外側に突出させて可動子を往復移動させる場合、永久磁石23がコイル端面より突出すると推力が大幅に低下するが、「n×C≒M」の関係を満たす構成である本実施形態のリニアモータ1においては、永久磁石23のコイル端面からの突出量がコイル11の3個分の軸方向長さ3Cの0.8倍となるまで推力の低下を抑制できる。したがって、推力低下を抑制しつつ、モータの小型化及び軽量化を図ることができる。 Further, as shown in the simulation result shown in FIG. 3, in the linear motor 1 ′ having a configuration satisfying the relationship “n × C> M”, the permanent magnet 23 is projected outward in the axial direction from the end face of the coil 11. When the permanent magnet 23 protrudes from the end face of the coil, the thrust is greatly reduced. However, in the linear motor 1 of the present embodiment having a configuration satisfying the relationship of “n × C≈M”, the permanent magnet 23 The reduction in thrust can be suppressed until the amount of protrusion from the coil end face becomes 0.8 times the axial length 3C of the three coils 11. Therefore, it is possible to reduce the size and weight of the motor while suppressing a reduction in thrust.
 また、本実施形態では特に、界磁20は、軸方向に磁化された永久磁石23により形成された永久磁石組立体24を有している。これにより、永久磁石23により生じる磁束の向きを軸方向とすることができるので、軸方向と垂直な方向に磁化された永久磁石を界磁20に用いる場合(すなわち磁束の向きが軸方向と垂直である場合)に比べて、永久磁石23をコイル11の端面から突出させて、永久磁石23とコイル11とが軸方向と垂直な方向に重ならない範囲となる際に、推力に寄与する磁束の減少を抑え、推力の低下を抑制することができる。 In the present embodiment, the field magnet 20 has a permanent magnet assembly 24 formed by a permanent magnet 23 magnetized in the axial direction. As a result, the direction of the magnetic flux generated by the permanent magnet 23 can be set as the axial direction. Therefore, when the permanent magnet magnetized in the direction perpendicular to the axial direction is used for the field 20 (that is, the direction of the magnetic flux is perpendicular to the axial direction). When the permanent magnet 23 protrudes from the end face of the coil 11 and the permanent magnet 23 and the coil 11 are in a range that does not overlap in the direction perpendicular to the axial direction, the magnetic flux contributing to the thrust The decrease can be suppressed, and the decrease in thrust can be suppressed.
 なお、上記実施形態に限られるものではなく、その趣旨及び技術的思想を逸脱しない範囲内で種々の変形が可能である。以下、そのような変形例を説明する。 In addition, it is not restricted to the said embodiment, A various deformation | transformation is possible within the range which does not deviate from the meaning and technical idea. Hereinafter, such modifications will be described.
 (1)リニアモータがエンコーダ部及び磁気遮蔽板を有する場合
 本変形例のリニアモータ1Aは、電機子10及び界磁20並びにモータフレーム2等を有するモータ電磁部7の一方側に、可動子の位置を検出するエンコーダ部30を有している。
(1) When the linear motor has an encoder part and a magnetic shielding plate The linear motor 1A of the present modification has a mover on one side of the motor electromagnetic part 7 having the armature 10, the field 20, the motor frame 2, etc. An encoder unit 30 for detecting the position is included.
 エンコーダ部30は、この例では磁気式のリニアエンコーダとして構成されている。このエンコーダ部30は、スケール取付軸34(図4中左側)に設けられ、磁気パターンが形成されたスケール31と、スケール31に設けられた磁気パターンによる磁界を検出するセンサ32と、エンコーダカバー33とを有している。 The encoder unit 30 is configured as a magnetic linear encoder in this example. The encoder unit 30 is provided on a scale mounting shaft 34 (left side in FIG. 4), a scale 31 on which a magnetic pattern is formed, a sensor 32 that detects a magnetic field by the magnetic pattern provided on the scale 31, and an encoder cover 33. And have.
 一方、モータ電磁部7においては、直動軸21における永久磁石組立体24の一方側端面に磁気遮蔽板40が設けられている。この磁気遮蔽板40は、鉄等の強磁性体で構成された板状部材であり、直動軸21の外周面よりモータフレーム2の内周面近傍まで半径方向に沿って延設されている。さらに、磁気遮蔽板40には、非磁性材であるスケール取付軸34が設けられ、モータ電磁部7の界磁20より発生する磁界がエンコーダ部30に及ぼす影響を抑制する。リニアモータ1Aの他の構成は、前述のリニアモータ1と同様である。 On the other hand, in the motor electromagnetic unit 7, a magnetic shielding plate 40 is provided on one end face of the permanent magnet assembly 24 in the linear motion shaft 21. The magnetic shielding plate 40 is a plate-like member made of a ferromagnetic material such as iron, and extends in the radial direction from the outer peripheral surface of the linear motion shaft 21 to the vicinity of the inner peripheral surface of the motor frame 2. . Furthermore, the magnetic shielding plate 40 is provided with a scale mounting shaft 34 which is a nonmagnetic material, and suppresses the influence of the magnetic field generated from the field 20 of the motor electromagnetic unit 7 on the encoder unit 30. Other configurations of the linear motor 1A are the same as those of the linear motor 1 described above.
 次に、本変形例の効果について説明する。本変形例のように直動軸21における永久磁石組立体24のエンコーダ部30側に磁気遮蔽板40を設ける場合、磁気遮蔽板40は、磁気遮蔽効果を大きくするために、永久磁石組立体24になるべく近い位置に、モータフレーム2の内周面との隙間がなるべく小さくなるように設けるのが好ましい。 Next, the effect of this modification will be described. When the magnetic shielding plate 40 is provided on the encoder unit 30 side of the permanent magnet assembly 24 in the linear motion shaft 21 as in this modification, the magnetic shielding plate 40 has a permanent magnet assembly 24 in order to increase the magnetic shielding effect. It is preferable to provide as close as possible the gap with the inner peripheral surface of the motor frame 2 as small as possible.
 このとき、例えば図2に示すようなストロークSを「n×C-M」以下に設定する従来のリニアモータ1′では、磁気遮蔽板を永久磁石組立体24の端面近傍に設けようとした場合には、永久磁石組立体24の端面より少なくともストロークS分離れた位置に設ける必要があり、永久磁石組立体24に近い位置に設けることができない。 At this time, for example, in the conventional linear motor 1 ′ in which the stroke S as shown in FIG. 2 is set to “n × CM” or less, the magnetic shielding plate is provided near the end face of the permanent magnet assembly 24. In this case, it is necessary to provide at least a stroke S from the end face of the permanent magnet assembly 24, and it cannot be provided at a position close to the permanent magnet assembly 24.
 これに対し、本変形例においては、電機子10のコイル組立体12と界磁20の永久磁石組立体24の軸方向長さが略等しくなるように構成されているため、図4に示すように、磁気遮蔽板40を永久磁石組立体24の端面よりストロークS/2分離れた位置に設けることができる。これにより、磁気遮蔽効果を大きくすることができる。 On the other hand, in the present modification, the axial lengths of the coil assembly 12 of the armature 10 and the permanent magnet assembly 24 of the field magnet 20 are configured to be substantially equal, as shown in FIG. In addition, the magnetic shielding plate 40 can be provided at a position separated from the end face of the permanent magnet assembly 24 by the stroke S / 2. Thereby, a magnetic shielding effect can be enlarged.
 (2)その他
 以上では、コイル組立体12と永久磁石組立体24の軸方向長さが略等しくなるように構成されたリニアモータを説明したが、必ずしも等しくする必要はない。例えば図2に示すような「n×C>M」となるようなリニアモータ1′において、界磁20の永久磁石23を電機子10のコイル11の端面より軸方向外側に一定量(ストロークSの半分)突出させて用いてもよい。但し、この場合には推力低下が許容範囲内となるようにストロークSを設定する必要がある。
(2) Others In the above description, the linear motors configured so that the axial lengths of the coil assembly 12 and the permanent magnet assembly 24 are substantially equal have been described. For example, in a linear motor 1 ′ such as “n × C> M” as shown in FIG. 2, the permanent magnet 23 of the field 20 is set to a certain amount (stroke S) on the axially outer side from the end face of the coil 11 of the armature 10. Half) and may be used by protruding. However, in this case, it is necessary to set the stroke S so that the thrust drop is within the allowable range.
 また以上では、電機子10が6個のコイル11を有し、界磁20が2個の永久磁石23を有する構成としたが、このコイル11及び永久磁石23の数は一例であり、適宜変更してもよい。例えば、最も簡素な構成としては、電機子10がU相、V相、W相に対応する3つのコイル11を1組(コイル11は3個)有し、界磁20が3個のコイル11の軸方向長さと略等しい長さである1つの永久磁石23を有する構成としてもよい。この場合にも上記実施形態と同様の効果を得ることができる。 In the above description, the armature 10 has six coils 11 and the field 20 has two permanent magnets 23. However, the numbers of the coils 11 and the permanent magnets 23 are examples, and may be changed as appropriate. May be. For example, in the simplest configuration, the armature 10 has one set of three coils 11 (three coils 11) corresponding to the U phase, V phase, and W phase, and the field 20 has three coils 11. It is good also as a structure which has the one permanent magnet 23 which is the length substantially equal to the axial direction length. In this case as well, the same effect as in the above embodiment can be obtained.
 また、以上既に述べた以外にも、上記実施形態や各変形例による手法を適宜組み合わせて利用しても良い。 In addition to those already described above, the methods according to the above-described embodiments and modifications may be used in appropriate combination.
 その他、一々例示はしないが、その趣旨を逸脱しない範囲内において、種々の変更が加えられて実施されるものである。 Other than that, although not exemplified one by one, the present invention is implemented with various modifications within a range not departing from the gist thereof.
 1        リニアモータ
 2        モータフレーム
 10       電機子
 11       コイル
 12       コイル組立体
 20       界磁
 21       直動軸
 23       永久磁石
 24       永久磁石組立体
 30       エンコーダ部
 34       スケール取付軸
 40       磁気遮蔽板
DESCRIPTION OF SYMBOLS 1 Linear motor 2 Motor frame 10 Armature 11 Coil 12 Coil assembly 20 Field magnet 21 Linear motion shaft 23 Permanent magnet 24 Permanent magnet assembly 30 Encoder part 34 Scale mounting shaft 40 Magnetic shielding board

Claims (5)

  1.  複数の環状のコイルを軸方向に並設して形成された筒状のコイル組立体を有する電機子と、
     前記電機子の軸線上に軸方向に往復移動可能に設けられた直動軸、及び、前記直動軸に設けられた少なくとも1つの永久磁石を含む永久磁石組立体を有する界磁と、を備え、
     前記電機子と前記界磁のいずれか一方を固定子、他方を可動子として、前記可動子を前記固定子に対し往復移動させるリニアモータであって、
     前記コイルの個数をn、前記コイルの軸方向長さをC、前記永久磁石組立体の軸方向長さをMとするとき、ストロークSが少なくとも|n×C-M|よりも大きくなるように設定されている
    ことを特徴とするリニアモータ。
    An armature having a cylindrical coil assembly formed by juxtaposing a plurality of annular coils in the axial direction;
    A linear motion shaft provided on the axis of the armature so as to be capable of reciprocating in the axial direction, and a field having a permanent magnet assembly including at least one permanent magnet provided on the linear motion shaft. ,
    A linear motor that reciprocally moves the mover relative to the stator with either the armature or the field as a stator and the other as a mover,
    When the number of the coils is n, the axial length of the coils is C, and the axial length of the permanent magnet assembly is M, the stroke S is at least larger than | n × CM |. Linear motor characterized by being set.
  2.  前記電機子及び前記界磁は、
     (n×C≒M)となるように構成されている
    ことを特徴とする請求項1に記載のリニアモータ。
    The armature and the field are
    The linear motor according to claim 1, wherein the linear motor is configured to satisfy (n × C≈M).
  3.  前記永久磁石は、
     軸方向に磁化されている
    ことを特徴とする請求項2に記載のリニアモータ。
    The permanent magnet is
    The linear motor according to claim 2, wherein the linear motor is magnetized in an axial direction.
  4.  前記電機子の外周側に設けられたモータフレームの一方側に位置し、前記可動子の位置を検出する磁気式のエンコーダ部と、
     前記直動軸における前記永久磁石組立体の一方側端面近傍に位置し、前記直動軸の外周面より前記モータフレームの内周面近傍まで半径方向に沿って延設された磁気遮蔽板と、をさらに備える
    ことを特徴とする請求項2又は3に記載のリニアモータ。
    A magnetic encoder unit which is located on one side of a motor frame provided on the outer peripheral side of the armature and detects the position of the mover;
    A magnetic shielding plate located in the vicinity of one end face of the permanent magnet assembly in the linear motion shaft and extending in the radial direction from the outer peripheral surface of the linear motion shaft to the vicinity of the inner peripheral surface of the motor frame; The linear motor according to claim 2, further comprising:
  5.  前記電機子の前記コイル組立体が、U相、V相、W相に対応する3つの前記コイルを少なくとも1組有する三相交流モータであり、
     前記ストロークSは、(1.6×3×C)以下となるように設定されている
    ことを特徴とする請求項2乃至4のいずれか1項に記載のリニアモータ。
    The coil assembly of the armature is a three-phase AC motor having at least one set of three coils corresponding to the U phase, the V phase, and the W phase;
    5. The linear motor according to claim 2, wherein the stroke S is set to be equal to or less than (1.6 × 3 × C).
PCT/JP2011/067196 2011-07-28 2011-07-28 Linear motor WO2013014780A1 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
DE112011105473.4T DE112011105473T5 (en) 2011-07-28 2011-07-28 linear motor
CN201180072496.8A CN103718437A (en) 2011-07-28 2011-07-28 Linear motor
PCT/JP2011/067196 WO2013014780A1 (en) 2011-07-28 2011-07-28 Linear motor
JP2013525512A JP5972876B2 (en) 2011-07-28 2011-07-28 Linear motor
KR1020137034487A KR20140015588A (en) 2011-07-28 2011-07-28 Linear motor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2011/067196 WO2013014780A1 (en) 2011-07-28 2011-07-28 Linear motor

Publications (1)

Publication Number Publication Date
WO2013014780A1 true WO2013014780A1 (en) 2013-01-31

Family

ID=47600669

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/067196 WO2013014780A1 (en) 2011-07-28 2011-07-28 Linear motor

Country Status (5)

Country Link
JP (1) JP5972876B2 (en)
KR (1) KR20140015588A (en)
CN (1) CN103718437A (en)
DE (1) DE112011105473T5 (en)
WO (1) WO2013014780A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014192959A (en) * 2013-03-26 2014-10-06 Sanyo Denki Co Ltd Linear motor
DE102018004905A1 (en) 2017-07-19 2019-01-24 Fanuc Corporation Engine configuration selector, engine configuration selection method and program
DE102018215911A1 (en) 2017-09-22 2019-03-28 Fanuc Corporation Device for selecting a motor configuration, method for selecting a motor configuration and program.
US11270826B2 (en) * 2019-10-02 2022-03-08 Honda Motor Co., Ltd. Electric suspension device

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105553147A (en) * 2016-01-28 2016-05-04 北京明正维元电机技术有限公司 Alternating-current permanent magnet synchronous motor rotor for axial motion
CN107896020B (en) * 2017-12-20 2024-04-12 浙江宝龙机电有限公司 Driving motor

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008013053A1 (en) * 2006-07-26 2008-01-31 Kabushiki Kaisha Yaskawa Denki Cylindrical linear motor armature, cylindrical linear motor field pole, and cylindrical linear motor using them
JP2008067462A (en) * 2006-09-06 2008-03-21 Mitsubishi Electric Corp Linear motor and mounting device using the same
JP2009100617A (en) * 2007-10-19 2009-05-07 Nippon Thompson Co Ltd Mounting head with built-in shaft type linear motor
JP2009194991A (en) * 2008-02-13 2009-08-27 Iai:Kk Linear motor an actuator

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100365009B1 (en) * 2000-05-20 2002-12-16 미래산업 주식회사 Arrangement Structure of a Group of Coils in Tubular Linear Motor
JP2008048565A (en) * 2006-08-21 2008-02-28 Murata Mach Ltd Linear motor and machine tool mounting it

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008013053A1 (en) * 2006-07-26 2008-01-31 Kabushiki Kaisha Yaskawa Denki Cylindrical linear motor armature, cylindrical linear motor field pole, and cylindrical linear motor using them
JP2008067462A (en) * 2006-09-06 2008-03-21 Mitsubishi Electric Corp Linear motor and mounting device using the same
JP2009100617A (en) * 2007-10-19 2009-05-07 Nippon Thompson Co Ltd Mounting head with built-in shaft type linear motor
JP2009194991A (en) * 2008-02-13 2009-08-27 Iai:Kk Linear motor an actuator

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014192959A (en) * 2013-03-26 2014-10-06 Sanyo Denki Co Ltd Linear motor
DE102018004905A1 (en) 2017-07-19 2019-01-24 Fanuc Corporation Engine configuration selector, engine configuration selection method and program
JP2019022365A (en) * 2017-07-19 2019-02-07 ファナック株式会社 Motor configuration selection device, motor configuration selection method, and program
US10387610B2 (en) 2017-07-19 2019-08-20 Fanuc Corporation Motor configuration selection device, motor configuration selection method, and recording medium
DE102018215911A1 (en) 2017-09-22 2019-03-28 Fanuc Corporation Device for selecting a motor configuration, method for selecting a motor configuration and program.
US10673314B2 (en) 2017-09-22 2020-06-02 Fanuc Corporation Motor configuration selection device, motor configuration selection method, and non-transitory computer-readable medium storing program
US11270826B2 (en) * 2019-10-02 2022-03-08 Honda Motor Co., Ltd. Electric suspension device

Also Published As

Publication number Publication date
JPWO2013014780A1 (en) 2015-02-23
JP5972876B2 (en) 2016-08-17
CN103718437A (en) 2014-04-09
DE112011105473T5 (en) 2014-04-17
KR20140015588A (en) 2014-02-06

Similar Documents

Publication Publication Date Title
RU2371828C1 (en) Magnetic power rotary device
JP5972876B2 (en) Linear motor
US20080174185A1 (en) Detent Force Correcting
CN1368779A (en) Stator structure of reciprocating electric machine
JP2008193760A (en) Linear motor
JP5642692B2 (en) Multi-armature linear motor / alternator with magnetic spring, high output and no leakage magnetic field
JP7079444B2 (en) Cylindrical linear motor
JP2010158140A (en) Linear motor
JP2009065755A (en) Vibrating-type motor and vibrating-type compressor using the same
JP2007318859A (en) Actuator
JP5738609B2 (en) Variable field rotating electric machine
JP5589507B2 (en) Mover and stator of linear drive unit
JP5525416B2 (en) Linear actuator
JP5637458B2 (en) Linear motor
JP5300381B2 (en) DC series motor and starter
TW200711264A (en) Axial type motor
JP6340219B2 (en) Linear motor
JP2010035296A (en) Magnet skew structure for cylindrical linear motor
RU2543512C1 (en) Linear electric motor
JP4116642B2 (en) Reciprocating motor
JP2006074882A (en) Mover of cylinder type linear motor
JP2009183041A (en) Linear motor
WO2015136761A1 (en) Linear motor
JP2008271753A (en) Armature for cylindrical linear motor, and the cylindrical linear motor
JP2022135254A (en) Cylindrical linear motor

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11870151

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2013525512

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20137034487

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 112011105473

Country of ref document: DE

Ref document number: 1120111054734

Country of ref document: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11870151

Country of ref document: EP

Kind code of ref document: A1