WO2013013457A1 - 前馈式卫星电视天线及其卫星电视接收系统 - Google Patents
前馈式卫星电视天线及其卫星电视接收系统 Download PDFInfo
- Publication number
- WO2013013457A1 WO2013013457A1 PCT/CN2011/082429 CN2011082429W WO2013013457A1 WO 2013013457 A1 WO2013013457 A1 WO 2013013457A1 CN 2011082429 W CN2011082429 W CN 2011082429W WO 2013013457 A1 WO2013013457 A1 WO 2013013457A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- core layer
- layer
- refractive index
- satellite television
- artificial
- Prior art date
Links
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01Q—ANTENNAS, i.e. RADIO AERIALS
- H01Q19/00—Combinations of primary active antenna elements and units with secondary devices, e.g. with quasi-optical devices, for giving the antenna a desired directional characteristic
- H01Q19/10—Combinations of primary active antenna elements and units with secondary devices, e.g. with quasi-optical devices, for giving the antenna a desired directional characteristic using reflecting surfaces
- H01Q19/104—Combinations of primary active antenna elements and units with secondary devices, e.g. with quasi-optical devices, for giving the antenna a desired directional characteristic using reflecting surfaces using a substantially flat reflector for deflecting the radiated beam, e.g. periscopic antennas
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01Q—ANTENNAS, i.e. RADIO AERIALS
- H01Q15/00—Devices for reflection, refraction, diffraction or polarisation of waves radiated from an antenna, e.g. quasi-optical devices
- H01Q15/0006—Devices acting selectively as reflecting surface, as diffracting or as refracting device, e.g. frequency filtering or angular spatial filtering devices
- H01Q15/0053—Selective devices used as spatial filter or angular sidelobe filter
Definitions
- the present invention relates to the field of communications, and more particularly to a feedforward satellite television antenna and satellite television receiving system therefor.
- the traditional satellite television receiving system is a satellite ground receiving station consisting of a parabolic antenna, a feed, a tuner, and a satellite receiver.
- the parabolic antenna is responsible for reflecting satellite signals into the feed and tuner at the focus.
- the feed is a horn that is used to collect satellite signals at the focus of the parabolic antenna, also known as a corrugated horn.
- the high-frequency head LNB also known as the down-converter
- the high-frequency head LNB is to down-convert and amplify the satellite signal sent from the feed to the satellite receiver.
- LNB ChoGHz-4.2GHz, 18-2 IV
- Ku-band frequency LNB (10.7GHz-12.75GHz, 12-14V)
- LNB's workflow is to first amplify the satellite high-frequency signal to hundreds of thousands of times and then use the local oscillator circuit to convert the high-frequency signal to the intermediate frequency 950MHz-2050MHz, which is conducive to the transmission of the coaxial cable and the demodulation and operation of the satellite receiver.
- the satellite receiver demodulates the satellite signal transmitted from the tuner to demodulate the satellite television image or digital signal and audio signal.
- the feed corresponding to the parabolic antenna is a horn antenna.
- the technical problem to be solved by the present invention is to provide a feedforward satellite television antenna which is simple in processing and low in manufacturing cost, in view of the drawbacks of the existing satellite television antennas which are difficult to process and costly.
- the technical solution adopted by the present invention to solve the technical problem thereof is: a feedforward satellite television antenna, the feedforward satellite television antenna comprising a metamaterial panel disposed behind the feed, the metamaterial panel
- the core layer includes a reflective plate disposed on a side surface of the core layer, the core layer includes at least one core layer layer, and the core layer layer includes a sheet-shaped substrate and a plurality of artificial micro-systems disposed on the substrate
- the structure or the pore structure, the refractive index of the core layer is circular, and the refractive index is the same at the same radius, and the refractive index gradually decreases as the radius increases.
- the core layer layer further includes a filling layer covering the artificial microstructure.
- the core layer includes a plurality of core layer sheets having the same refractive index distribution and parallel to each other.
- the metamaterial panel further includes a matching layer disposed on the other side of the core layer to achieve index matching from the air to the core layer.
- the refractive index of the core layer layer is circularly distributed with its center as a center, and the refractive index n distribution of the core layer layer satisfies the following formula:
- n(r) represents the refractive index value at a radius r of the core layer
- I is the distance from the feed to or close to the feed to the core
- d is the thickness of the core layer, .
- R represents the maximum radius
- the matching layer comprises a plurality of matching layer layers, each matching layer layer has a single refractive index, and the refractive indices of the plurality of matching layer layers of the matching layer satisfy the following formula:
- n(i) ( (" /2)
- m is the total number of layers of the matching layer
- i is the number of the matching layer, where the matching layer near the core layer is numbered m
- each of the matching layer layers includes a first substrate and a second substrate of the same material, and the first substrate and the second substrate are filled with air.
- a plurality of artificial microstructures of each core layer of the core layer have the same shape, and a plurality of artificial microstructures at the same radius have the same geometrical size, and the artificial micro-junction increases with the radius The geometry of the structure is gradually reduced.
- each of the core layer layers of the core layer has the same shape of a plurality of artificial holes, and the plurality of artificial hole structures are filled with a medium having a refractive index larger than that of the substrate, and a plurality of artificial pore structures at the same radius It has the same volume, and the volume of the artificial hole structure gradually decreases as the radius increases.
- each of the core layer layers of the core layer has the same shape of a plurality of artificial holes, and the plurality of artificial hole structures are filled with a medium having a refractive index smaller than that of the substrate, and a plurality of artificial pore structures at the same radius It has the same volume, and the volume of the artificial hole structure gradually increases as the radius increases.
- the artificial microstructure is a planar snowflake metal microstructure.
- the artificial hole structure is a cylindrical hole.
- a diverging element having an electromagnetic wave diverging function disposed behind the feeding source is disposed, and the metamaterial panel is disposed behind the diverging element.
- the diverging element is a concave lens or a divergent metamaterial panel, and the diverging metamaterial panel comprises at least one diverging sheet layer, the refractive index of the diverging sheet layer is circularly distributed at a center thereof, and the refraction at the same radius The rate is the same, and the refractive index gradually decreases as the radius increases.
- the conventional parabolic antenna is replaced by a sheet-shaped metamaterial panel, which is easier to manufacture and less expensive.
- the invention also provides a satellite television receiving system, comprising a feed, a tuner and a satellite receiver, the satellite television receiving system further comprising the feedforward satellite television antenna, the feedforward satellite television antenna setting Behind the feed.
- FIG. 1 is a schematic structural view of a feedforward satellite television antenna according to a first embodiment of the present invention
- FIG. 2a-2b are schematic perspective views of a super-material unit of two structures according to a first embodiment of the present invention
- FIG. 3 is a schematic view showing a refractive index distribution of a core layer of the first embodiment of the present invention
- 4 is a schematic structural view of a core layer layer of one form of the first embodiment of the present invention
- FIG. 5 is a schematic structural view of another form of a core layer according to the first embodiment of the present invention
- FIG. 6 is a schematic structural view of a core layer of still another form of the first embodiment of the present invention.
- FIG. 7 is a schematic structural view of a matching layer according to a first embodiment of the present invention.
- FIG. 8 is a schematic structural diagram of a feedforward satellite television antenna according to a second embodiment of the present invention.
- Figure 9 is a schematic view showing a refractive index distribution of a divergent sheet layer in a second embodiment of the present invention.
- Figure 10 is a schematic structural view of a form of a diverging sheet in a second embodiment of the present invention
- Figure 11 is a front elevational view of Figure 10 with the substrate removed
- Figure 12 is a schematic view showing the structure of a divergent metamaterial panel having a plurality of diverging sheets as shown in Figure 10;
- Figure 13 is a schematic view showing the structure of another form of the diverging sheet in the second embodiment of the present invention;
- a feedforward satellite television antenna includes a metamaterial panel 100 disposed behind the feed source 1, and the metamaterial panel 100 includes a core layer 10 and is disposed at a core. a reflecting plate 200 on one side of the layer, the core layer 10 comprising at least one core ply layer 11, the core ply layer comprising a sheet-like substrate 13 and a plurality of artificial microstructures disposed on the substrate 13. 12 (see Fig. 2a), the refractive index of the core layer 11 is circularly distributed at the center of its center, the refractive index at the same radius is the same, and the refractive index gradually decreases as the radius increases.
- the feed 1 is disposed on the central axis of the metamaterial panel, that is, the line connecting the center of the feed layer and the core layer 11 coincides with the central axis of the metamaterial panel.
- the feed 1 and the metamaterial panel 100 are supported by a bracket, and the bracket is not shown in the figure. It is not the core of the present invention, and the conventional support method can be used.
- the feed source is preferably a horn antenna.
- the core layer layer 11 in the figure has a square shape, and of course, other shapes such as a cylindrical shape.
- the reflecting plate is a metal reflecting plate having a smooth surface, and may be, for example, a polished copper plate, an aluminum plate or an iron plate or the like. As shown in FIGS.
- the core layer 10 includes a plurality of core layer layers 11 having the same refractive index distribution and parallel to each other.
- the plurality of core layer sheets 11 are closely adhered to each other, and may be bonded to each other by double-sided tape or fixedly by bolts or the like.
- the core layer layer 11 further includes a filling layer 15 covering the artificial microstructure 12, and the filling layer 15 may be air or other dielectric sheets, preferably a plate member made of the same material as the substrate 13.
- Each core layer layer 11 can be divided into a plurality of identical metamaterial units D, each of which comprises an artificial microstructure 12, a unit substrate V and a unit filling layer W, each core layer 1 1 There is only one metamaterial unit D in the thickness direction.
- Each metamaterial unit D can be an identical square, which can be a cube or a rectangular parallelepiped.
- the length, width and height of each metamaterial unit D are not more than one-fifth of the wavelength of the incident electromagnetic wave (usually incident electromagnetic waves). One tenth of the wavelength) such that the entire core layer has a continuous electric and/or magnetic field response to the electromagnetic waves.
- the metamaterial unit D is a cube whose side length is one tenth of the wavelength of the incident electromagnetic wave.
- the thickness of the filling layer can be adjusted, and the minimum value can be 0, that is, the filling layer is not required.
- the substrate and the artificial microstructure constitute a metamaterial unit, that is, the super material unit D at this time
- the thickness is equal to the thickness of the unit substrate V plus the thickness of the artificial microstructure, but at this time, the thickness of the metamaterial unit D also satisfies the requirement of one tenth of a wavelength, and therefore, actually, the thickness of the super material unit D is selected.
- the thickness of the material V is equal to the thickness of the unit filling layer W, and the material of the unit cell substrate V is the same as that of the filling layer W.
- the artificial microstructure 12 is preferably a metal microstructure consisting of one or more metal wires.
- the wire itself has a certain width and thickness.
- the metal microstructure of the present invention is preferably a metal microstructure having isotropic electromagnetic parameters, such as a planar snowflake metal microstructure as described in Figure 2a.
- isotropic means that for any electromagnetic wave incident at any angle on the two-dimensional plane, the electric field response and the magnetic field response of the artificial microstructure on the plane are the same, That is, the dielectric constant and the magnetic permeability are the same; for an artificial microstructure having a three-dimensional structure, isotropic refers to the electric field response of each of the above-mentioned artificial microstructures in three-dimensional space for electromagnetic waves incident in any direction in three-dimensional space. The magnetic field response is the same.
- the artificial microstructure is a 90 degree rotationally symmetric knot At the time of construction, the artificial microstructure is characterized by isotropy.
- 90 degree rotational symmetry means that it aligns with the original structure arbitrarily rotated 90 degrees around a plane perpendicular to the plane and passing its symmetry center on the plane; for a three-dimensional structure, if there are two or two vertical And the three rotation axes of the intersection point (the intersection point is the rotation center), so that the structure rotates 90 degrees around any rotation axis and overlaps with the original structure or is symmetrical with the original structure, the structure is 90 degree rotation symmetry. structure.
- the planar snowflake-shaped metal microstructure shown in FIG. 2a is a form of an isotropic artificial microstructure having a first metal line 121 and a second metal line that are vertically bisected with each other. 122.
- Two first metal branches 1211 of the same length are connected to the two ends of the first metal wire 121.
- the two ends of the first metal wire 121 are connected at a midpoint of the two first metal branches 1211.
- Two second metal branches 1221 of the same length are connected to both ends of the two metal wires 122, and two ends of the second metal wires 122 are connected at a midpoint of the two second metal branches 1221.
- ⁇ is the relative magnetic permeability
- ⁇ is the relative dielectric constant
- ⁇ and ⁇ are collectively referred to as the electromagnetic parameters.
- the refractive index distribution allows the electromagnetic waves emitted by the satellite to be concentrated on the feed after the first convergence, the reflection of the reflector, and the second convergence.
- the electromagnetic parameter distribution inside the metamaterial can be obtained by designing the shape of the artificial microstructure, the geometric size and/or the arrangement of the artificial microstructure on the substrate, thereby The refractive index of each metamaterial unit is designed. Firstly, the spatial distribution of electromagnetic parameters inside the metamaterial (ie, the electromagnetic parameters of each metamaterial unit) is calculated from the effect required by the metamaterial, and the artificial microstructure on each metamaterial unit is selected according to the spatial distribution of the electromagnetic parameters.
- Shape, geometric size (a variety of artificial microstructure data is stored in the computer in advance), the design of each metamaterial unit can be exhaustive, for example, first select an artificial microstructure with a specific shape, calculate the electromagnetic parameters, will The result is compared with what we want, looping many times, until we find Until we want the electromagnetic parameters, if found, complete the design parameters of the artificial microstructure; if not found, then change the shape of the artificial microstructure, repeat the above cycle, until we find what we want Electromagnetic parameters up to now. If it is still not found, the above process will not stop. That is to say, only when the artificial microstructure of the electromagnetic parameters we need is found, the program will stop. Since this process is done by a computer, it seems complicated and can be completed very quickly.
- the metal microstructure 12 is a metal wire such as a copper wire or a silver wire.
- the above metal wires may be attached to the substrate by etching, plating, drilling, photolithography, electron engraving or ion etching. Of course, a three-dimensional laser processing process can also be employed.
- the metamaterial panel further includes a matching layer 20 disposed on the other side of the core layer to realize air from the air.
- the index of refraction to the core layer 10 is matched.
- the rate n ⁇ , where ⁇ is the relative permeability, ⁇ is the relative dielectric constant, and ⁇ and ⁇ are called electromagnetic parameters.
- the refractive index of air is 1.
- the matching layer is designed such that the refractive index of the side close to the air is substantially the same as that of the air, and the refractive index of the side close to the core layer and the refractive index of the core layer adjacent thereto are basically the same. In this way, the refractive index matching from the air to the core layer is achieved, and the reflection is reduced, that is, the energy loss can be greatly reduced, so that the electromagnetic waves can be transmitted farther.
- the refractive index of the core layer layer 11 is circularly distributed with the center 0 thereof as a center, and the refractive index n (r) distribution of the core layer 11 is distributed.
- n(r) represents the refractive index value at a radius r of the core layer; that is, the refractive index of the supermaterial element D having a radius r on the core layer; where the radius refers to each unit basis
- l is the distance from the feed 1 to the matching layer 20 adjacent thereto;
- d is the thickness of the core layer, (2);
- R represents the maximum radius
- the thickness of the core layer layer 11 is constant, usually less than one fifth of the wavelength A of the incident electromagnetic wave, and preferably one tenth of the wavelength A of the incident electromagnetic wave.
- the thickness d of the core layer is already determined, and therefore, for feedforward satellite television antennas of different frequencies (wavelengths are different), by the formula ( 2)
- the C-band frequency range is from 3400MHz to 4200MHz Ku-band frequency 10.7 ⁇ 12.75GHz, which can be divided into 10.7 ⁇ 11.7GHz 11.7 ⁇ 12.2GHz 12.2 ⁇ 12.75GHz.
- the matching layer 20 includes a plurality of matching layer layers 21 , each matching layer layer 21 has a single refractive index, and a plurality of matching layer layers of the matching layer
- the refractive index satisfies the following formula:
- n(i) ((H )/2) (4);
- m denotes the total number of layers of the matching layer
- i denotes the number of the matching layer
- the number of the matching layer adjacent to the core is m.
- the matching layer 20 may be made of a plurality of materials having a single refractive index existing in nature, or may be a matching layer as shown in FIG. 7, which includes a plurality of matching layer layers 21, each matching layer layer 21
- the first substrate 22 and the second substrate 23 having the same material are included, and the first substrate 21 and the second substrate 22 are filled with air.
- a change in the refractive index from 1 (the refractive index of air) to the refractive index of the first substrate can be achieved, so that the refraction of each matching layer can be rationally designed. Rate, achieving index matching from air to core layer.
- a core layer layer 11 in which a plurality of artificial microstructures 12 of each core layer layer 11 have the same shape, are planar snowflake-shaped metal microstructures, and metal microstructures
- the center point coincides with the midpoint of the unit substrate V, and the plurality of artificial microstructures at the same radius have the same geometrical size, and the geometry of the artificial microstructure 12 gradually decreases as the radius increases. Since the refractive index of each metamaterial unit decreases as the size of the metal microstructure decreases, the larger the geometry of the artificial microstructure is, the larger the corresponding refractive index is. Therefore, it can be realized by this method.
- the refractive index distribution of the core layer is distributed according to formula (1).
- the core layer 10 may include different layers of the core layer layer 11 as shown in FIG. 4 according to different needs (different electromagnetic waves) and different design requirements.
- the microstructure 12 disposed on the substrate 13 is replaced by a plurality of artificial hole structures 12', and the core layer 11 is distributed according to a refractive index. It may be divided into a circular area Y located at an intermediate position and a plurality of annular areas distributed around the circular area Y and co-centered with the circular area (represented by HI, H2, H3, H4, H5, respectively),
- the circular region Y and the annular region have the same refractive index at the same radius, and the refractive index gradually decreases with increasing radius in the respective regions of the circular region and the annular region, and the refractive index of the circular region
- the minimum value of the refractive index is smaller than the maximum value of the refractive index of the annular region adjacent thereto, and the minimum value of the refractive index of the annular region in the inner side is smaller than the maximum value of the refractive index of the annular region in the outer side.
- the manhole structure 12' can be formed on the substrate by high temperature sintering, injection molding, stamping or numerically punching.
- the generation method of the artificial hole structure 12' will be different.
- the artificial pore structure 12 is preferably formed on the substrate in the form of high temperature sintering.
- a polymer material such as polytetrafluoroethylene or epoxy resin
- the artificial pore structure 12' is preferably formed on the substrate by injection molding or stamping.
- the artificial hole structure 12' of the present invention may be one or a combination of a cylindrical hole, a tapered hole, a circular hole, a trapezoidal hole or a square hole. Of course, other forms of holes can also be used.
- the shape of the artificial hole structure 12' on each metamaterial unit D may be the same or different depending on the needs. Of course, in order to make it easier to manufacture, the entire metamaterial, preferably, the same shape of the hole.
- the core layer 10 includes a plurality of core layer layers 11 having the same refractive index distribution and parallel to each other.
- the plurality of core layer sheets 11 are closely adhered to each other, and may be bonded to each other by a double-sided tape or by bolts or the like.
- the substrate 13 of each core layer 11 may be divided into a plurality of identical substrate units V, each of which is provided with an artificial hole structure 12', and each substrate unit V and its corresponding artificial hole structure 12' constitutes a metamaterial unit D, and each core layer sheet 11 has only one metamaterial unit 0 in the thickness direction.
- Each substrate unit D may be an identical square, which may be a cube or a rectangular parallelepiped.
- the length, width and volume of each substrate unit V are not more than one-fifth of the wavelength of the incident electromagnetic wave (usually the wavelength of the incident electromagnetic wave). One tenth of a) so that the entire core layer has a continuous electric and/or magnetic field response to electromagnetic waves.
- the base unit V is a cube whose side length is one tenth of the wavelength of the incident electromagnetic wave.
- the electromagnetic parameters inside the metamaterial can be obtained by designing the shape, volume and/or arrangement of the artificial hole structure 12' on the substrate. Distribution, thereby designing the refractive index of each metamaterial unit. First of all Calculate the spatial distribution of electromagnetic parameters inside the metamaterial (ie, the electromagnetic parameters of each metamaterial unit) from the effect required by the metamaterial, and select the artificial pore structure 12' on each metamaterial unit according to the spatial distribution of the electromagnetic parameters.
- the shape and volume (there are a variety of artificial hole structure data stored in the computer in advance).
- the design can be exhaustive. For example, first select a man-made hole structure with a specific shape and calculate the electromagnetic parameters.
- a core layer 10 of still another form of the first embodiment of the present invention wherein the plurality of artificial hole structures 12 of each core layer layer 11 of the core layer have the same shape, the plurality of artificial holes
- the structure 12' is filled with a medium having a refractive index smaller than that of the substrate 13, and the plurality of artificial hole structures 12' at the same radius in the circular region and the annular region have the same volume, and are respectively in the circular region and the annular region.
- the volume of the artificial hole structure 12' gradually increases as the radius increases, and the volume of the largest volume of the artificial hole structure 12' in the circular area is larger than the smallest volume of the artificial hole structure in the adjacent annular area.
- the volume of 'the adjacent two annular regions, the largest volume of the artificial hole structure 12' in the inner annular region is larger than the smallest volume of the artificial hole structure 12' in the outer annular region. Since the artificial hole structure 12' is filled with a medium having a refractive index smaller than that of the substrate, the larger the volume of the artificial hole structure 12' is, the more the medium is filled, and the corresponding refractive index is smaller, so that it is also possible by this method.
- the distribution of the refractive index distribution of the core layer is calculated according to formula (1).
- FIGS. 5 and 5 are identical in appearance, and the refractive index distribution is also the same, except that the manner in which the above refractive index distribution is realized is different (the filling medium is different), and the core layer 10 in FIGS. 5 and 5 is four layers.
- the structure, which is only schematic, can have different layers depending on different needs (different incident electromagnetic waves) and different design requirements.
- the core layer layer 11 is not limited to the above two forms, for example, each of the artificial hole structures 12' It can be divided into a plurality of unit holes of the same volume, and the same purpose can be achieved by controlling the volume of the manhole structure 12' on each of the metamaterial units D by the number of unit holes on each of the substrate units V.
- the core layer layer 11 may be in the form of gp, all of the artificial pore structures of the same core layer are of the same volume, but the refractive index of the filled medium corresponds to the formula (1).
- Z in the refractive index n distribution formula of the core layer sheet 11 represents the distance from the feed to the core layer (in the first embodiment, Z represents the feed to the matching layer adjacent thereto) distance).
- the substrate of the core layer is made of a ceramic material, a polymer material, a ferroelectric material, a ferrite material or a ferromagnetic material.
- Polymer materials such as polytetrafluoroethylene, epoxy resin, F4B composite material, and FR-4 composite material can be used.
- polytetrafluoroethylene has excellent electrical insulation, so it does not interfere with the electric field of electromagnetic waves, and has excellent chemical stability, corrosion resistance, and long service life.
- a feedforward satellite television antenna according to a second embodiment of the present invention is further provided with a diverging component having an electromagnetic wave diverging function behind the feed, based on the structure of the first embodiment.
- a metamaterial panel is disposed behind the diverging element.
- the diverging element 200 may be a concave lens or a divergent metamaterial panel 300 as shown in FIG. 12 or FIG. 14, the diverging metamaterial panel 300 including at least one diverging sheet layer 301, and the refractive index of the diverging sheet layer 301 is as shown in FIG. As shown in FIG. 9, the refractive index of the diverging sheet layer 301 is circularly distributed with its center 03 as a center, and the refractive index at the same radius is the same, and the refractive index gradually decreases as the radius increases.
- a diverging element having an electromagnetic wave diverging function provided between the metamaterial panel and the feed has the following effects: SP, in a case where the range of the electromagnetic wave received by the feed is constant (that is, the range of the received electromagnetic wave of the super material panel is constant) ), the distance between the feed and the metamaterial panel is reduced compared to the absence of the diverging element, so that the volume of the antenna can be greatly reduced.
- the refractive index minimum that is, the refractive index at the center 03 of the diverging sheet layer 301.
- the diverging sheet layer 400 includes a sheet-like substrate 401 attached to a substrate 401.
- the upper metal microstructure 402 and the support layer 403 covering the metal microstructure 402, the diverging sheet layer 400 can be divided into a plurality of identical first divergent units 404, each of the first divergent units including a metal microstructure 402 and its occupation
- the substrate unit 405 and the support layer unit 406 each of the diverging sheet layers 400 has only one first diverging unit 404 in the thickness direction, and each of the first diverging units 404 may be exactly the same square, and may be a cube or a rectangular parallelepiped.
- each first diverging unit 404 are not more than one-fifth of the wavelength of the incident electromagnetic wave (usually one tenth of the wavelength of the incident electromagnetic wave), so that the entire diverging layer has a continuous electric field to the electromagnetic wave. And / or magnetic field response.
- the first diverging unit 404 is a cube whose side length is one tenth of the wavelength of the incident electromagnetic wave.
- the first diverging unit 404 of the present invention has the same structural form as the metamaterial unit D shown in Fig. 2.
- Figure 11 is a front elevational view of Figure 10 with the substrate removed.
- the spatial arrangement of the plurality of metal microstructures 402 can be clearly seen from Figure 11, centered on the center 03 of the diverging layer 400 (here 03 is At the midpoint of the most intermediate metal microstructure, the metal microstructures 402 on the same radius have the same geometry, and the geometry of the metal microstructures 402 gradually decreases as the radius increases.
- the radius here refers to the distance from the center of each metal microstructure 402 to the center 03 of the divergent sheet 400.
- the base material 401 of the diverging sheet layer 400 is made of a ceramic material, a polymer material, a ferroelectric material, a ferrite material, a ferromagnetic material, or the like.
- Polytetrafluoroethylene, epoxy resin, F4B composite material, FR-4 composite material, etc. can be selected for the polymer material.
- PTFE has excellent electrical insulation, so it does not interfere with the electric field of electromagnetic waves, and has excellent chemical stability, corrosion resistance, and long service life.
- the metal microstructure 402 is a metal wire such as a copper wire or a silver wire.
- the above metal wires may be attached to the substrate by etching, plating, drilling, photolithography, electron engraving or ion etching. Of course, a three-dimensional laser processing process can also be employed.
- the metal microstructure 402 can adopt a flat snowflake shape as shown in FIG. Metal microstructure. Of course, it is also a derivative structure of a planar snowflake-shaped metal microstructure. It can also be a metal line such as "work" and "ten".
- Figure 12 shows a divergent metamaterial panel 300 formed using a plurality of diverging sheets 400 as shown in Figure 10.
- the diverging metamaterial panel 300 may be composed of other layers of diverging sheets 400.
- the plurality of diverging sheet layers 400 are closely adhered to each other, and may be bonded to each other by a double-sided tape or fixedly by bolts or the like.
- a matching layer as shown in Fig. 7 is further provided to achieve matching of the refractive index, reduce reflection of electromagnetic waves, and enhance signal reception.
- FIG. 13 is another form of the diverging sheet layer 500 that realizes the refractive index profile shown in FIG. 9.
- the diverging sheet layer 500 includes a sheet-like substrate 501 and a manhole structure 502 disposed on the substrate 501, diverging
- the sheet layer 500 can be divided into a plurality of identical second diverging units 504, each of which includes an artificial hole structure 502 and a substrate unit 505 that it occupies, and each diverging sheet layer 500 is only in the thickness direction.
- a second diverging unit 504, each of the second diverging units 504 may be identical squares, and may be a cube or a rectangular parallelepiped, and each of the second diverging units 504 has a length, a width, and a high volume that are not greater than a wavelength of the incident electromagnetic wave.
- the second diverging unit 504 is a cube whose side length is one tenth of the wavelength of the incident electromagnetic wave.
- the artificial hole structure on the divergent sheet layer 500 is a cylindrical hole, and the center 03 of the divergent sheet layer 500 is centered (the 03 is on the central axis of the most intermediate artificial hole structure), and the same
- the manhole structure 502 on the radius has the same volume, and the volume of the manhole structure 402 gradually decreases as the radius increases.
- the radius herein refers to the vertical distance from the central axis of each manhole structure 502 to the central axis of the most intermediate manhole structure of the divergent sheet 500. Therefore, the refractive index distribution shown in Fig. 9 can be achieved when each cylindrical hole is filled with a dielectric material (e.g., air) having a refractive index smaller than that of the substrate.
- a dielectric material e.g., air
- each of the artificial hole structures may be divided into a plurality of unit holes of the same volume, and each second diverging unit is controlled by the number of unit holes on each of the substrate units.
- the volume of the artificial pore structure on the top can also achieve the same purpose.
- the diverging sheet layer may also be in the form of gp, all the artificial pore structures of the same divergent sheet layer have the same volume, but the refractive index of the filled medium satisfies the distribution shown in FIG. 9, that is, the medium filled on the same radius.
- the refractive index of the material is the same, and the refractive index of the dielectric material filled with the increase of the radius gradually decreases.
- the base material 501 of the diverging sheet layer 500 is made of a ceramic material, a polymer material, a ferroelectric material, a ferrite material, a ferromagnetic material, or the like.
- Polytetrafluoroethylene, epoxy resin, F4B composite material, FR-4 composite material, etc. can be selected for the polymer material.
- PTFE has excellent electrical insulation, so it does not interfere with the electric field of electromagnetic waves, and has excellent chemical stability, corrosion resistance, and long service life.
- the manhole structure 502 can be formed on the substrate by high temperature sintering, injection molding, stamping or numerically controlled punching.
- the formation of the artificial pore structure may be different for substrates of different materials.
- a ceramic material is selected as the substrate, it is preferable to form a pore structure on the substrate by using a high-temperature sintering form.
- a polymer material is used as the substrate, such as polytetrafluoroethylene or epoxy resin, it is preferred to form an artificial pore structure on the substrate by injection molding or stamping.
- the above-mentioned artificial hole structure 502 may be one or a combination of a cylindrical hole, a tapered hole, a circular hole, a trapezoidal hole or a square hole. Of course, other forms of holes can also be used.
- the shape of the artificial hole structure on each of the second divergent units may be the same or different depending on different needs. Of course, in order to make the manufacturing process easier, the entire metamaterial, preferably, the same shape of the hole.
- Figure 14 shows a diverging metamaterial panel 300 formed using a plurality of diverging sheet layers 500 as shown in Figure 13.
- the diverging metamaterial panel 300 may be composed of other layers of the diverging sheet layer 500.
- the plurality of diverging sheet layers 500 are closely adhered to each other, and may be bonded to each other by double-sided tape or fixedly by bolts or the like.
- a matching layer as shown in FIG. 7 is further disposed on both sides of the divergent metamaterial panel 300 shown in FIG. 14 to achieve matching of the refractive index, reduce reflection of electromagnetic waves, and enhance signal reception.
- the present invention further provides a satellite television receiving system, including a feed, a tuner, and a satellite receiver, the satellite television receiving system further comprising the feedforward satellite television antenna, the front The feed satellite TV antenna is placed behind the feed.
- Feeds, tuner and satellite receivers are all existing technologies and will not be described here.
Landscapes
- Aerials With Secondary Devices (AREA)
Abstract
本发明公开了一种前馈式卫星电视天线,包括设置在馈源后方的超材料面板,所述超材料面板包括核心层及设置在核心层一侧表面的反射板,所述核心层包括至少一个核心层片层,所述核心层片层包括片状的基材以及设置在基材上的多个人造微结构,所述核心层片层的折射率呈圆形分布,且相同半径处的折射率相同,随着半径的增大折射率逐渐减小。根据本发明的前馈式卫星电视天线,由片状的超材料面板代替了传统的抛物面天线,制造加工更加容易,成本更加低廉。另外,本发明还提供了一种具有上述前馈式卫星电视天线的卫星电视接收系统。
Description
前馈式卫星电视天线及其卫星电视接收系统
【技术领域】
本发明涉及通信领域, 更具体地说, 涉及一种前馈式卫星电视天线及其卫 星电视接收系统。
【背景技术】
传统的卫星电视接收系统是由抛物面天线、 馈源、 高频头、 卫星接收机组 成的卫星地面接收站。 抛物面天线负责将卫星信号反射到位于焦点处的馈源和 高频头内。 馈源是在抛物面天线的焦点处设置的一个用于收集卫星信号的喇叭, 又称波紋喇叭。 其主要功能有两个: 一是将天线接收的电磁波信号收集起来, 变换成信号电压,供给高频头。二是对接收的电磁波进行极化转换。高频头 LNB (亦称降频器) 是将馈源送来的卫星信号进行降频和信号放大然后传送至卫星 接收机。一般可分为 C波段频率 LNB(3.7GHz-4.2GHz、 18-2 IV)和 Ku波段频率 LNB(10.7GHz-12.75GHz、 12-14V)。 LNB 的工作流程就是先将卫星高频讯号放 大至数十万倍后再利用本地振荡电路将高频讯号转换至中频 950MHz-2050MHz, 以利于同轴电缆的传输及卫星接收机的解调和工作。 卫星接收机是将高频头输 送来的卫星信号进行解调, 解调出卫星电视图像或数字信号和伴音信号。
接收卫星信号时, 平行的电磁波通过抛物面天线反射后, 汇聚到馈源上。 通常, 抛物面天线对应的馈源是一个喇叭天线。
但是由于抛物面天线的反射面的曲面加工难度大, 精度要求也高, 因此, 制造麻烦, 且成本较高。
【发明内容】
本发明所要解决的技术问题是, 针对现有的卫星电视天线加工不易、 成本 高的缺陷, 提供一种加工简单、 制造成本低的前馈式卫星电视天线。
本发明解决其技术问题所采用的技术方案是: 一种前馈式卫星电视天线, 所述前馈式卫星电视天线包括设置在馈源后方的超材料面板, 所述超材料面板
包括核心层及设置在核心层一侧表面的反射板, 所述核心层包括至少一个核心 层片层, 所述核心层片层包括片状的基材以及设置在基材上的多个人造微结构 或孔结构,所述核心层片层的折射率呈圆形分布,且相同半径处的折射率相同, 随着半径的增大折射率逐渐减小。
进一步地, 所述核心层片层还包括覆盖人造微结构的填充层。
进一步地, 所述核心层包括多个折射率分布相同且相互平行的核心层片层。 进一步地, 所述超材料面板还包括设置在核心层另一侧的匹配层, 以实现 从空气到核心层的折射率匹配。
其中, n(r)表示核心层片层上半径为 r处的折射率值;
I为馈源到与其靠近的 或 为馈源到核心层的距离;
d为核心层的厚度, .
R表示最大半径;
«皿表示核心层片层上的折射率最大值;
/^皿表示核心层片层上的折射率最小值。 进一步地, 所述匹配层包括多个匹配层片层, 每一匹配层片层具有单一的 折射率, 所述匹配层的多个匹配层片层的折射率均满足以下公式:
n(i) = ( (" /2)
其中, m表示匹配层的总层数, i表示匹配层片层的编号, 其中, 靠近核心 层的匹配层片层的编号为 m
进一步地, 所述每一匹配层片层包括材料相同的第一基板及第二基板, 所 述第一基板与第二基板之间填充空气。
进一步地, 所述核心层的每一核心层片层的多个人造微结构形状相同, 相 同半径处的多个人造微结构具有相同的几何尺寸, 且随着半径的增大人造微结
构的几何尺寸逐渐减小。
进一步的, 所述核心层的每一核心层片层的多个人造孔结构形状相同, 所 述多个人造孔结构中填充有折射率大于基材的介质, 相同半径处的多个人造孔 结构具有相同的体积, 且随着半径的增大人造孔结构的体积逐渐减小。
进一步地, 所述核心层的每一核心层片层的多个人造孔结构形状相同, 所 述多个人造孔结构中填充有折射率小于基材的介质, 相同半径处的多个人造孔 结构具有相同的体积, 且随着半径的增大人造孔结构的体积逐渐增大。
进一步地, 所述人造微结构为平面雪花状的金属微结构。
进一步地, 所述人造孔结构为圆柱孔。
进一步地, 包括一设置在馈源后方的具有电磁波发散功能的发散元件, 所 述超材料面板设置在所述发散元件的后方。 所述发散元件为凹透镜或为发散超 材料面板, 所述发散超材料面板包括至少一个发散片层, 所述发散片层的折射 率以其中心为圆心呈圆形分布, 且相同半径处的折射率相同, 随着半径的增大 折射率逐渐减小。
根据本发明的前馈式卫星电视天线, 由片状的超材料面板代替了传统的抛 物面天线, 制造加工更加容易, 成本更加低廉。
本发明还提供了一种卫星电视接收系统,包括馈源、高频头及卫星接收机, 所述卫星电视接收系统还包括上述的前馈式卫星电视天线, 所述前馈式卫星电 视天线设置在馈源的后方。
【附图说明】
为了更清楚地说明本发明实施例中的技术方案, 下面将对实施例描述中所 需要使用的附图作简单地介绍, 显而易见地, 下面描述中的附图仅仅是本发明 的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下, 还可以根据这些附图获得其他的附图。 其中:
图 1是本发明第一实施例的前馈式卫星电视天线的结构示意图;
图 2a-2b是本发明第一实施例的两种结构的超材料单元的透视示意图; 图 3是本发明第一实施例的核心层片层的折射率分布示意图;
图 4是本发明第一实施例的一种形式的核心层片层的结构示意图; 图 5是本发明第一实施例的另一种形式的核心层的结构示意图;
图 6是本发明第一实施例的又一种形式的核心层的结构示意图;
图 7是本发明第一实施例的匹配层的结构示意图;
图 8是本发明第二实施例的前馈式卫星电视天线的结构示意图;
图 9是本发明第二实施例中的发散片层的折射率分布示意图;
图 10是本发明第二实施例中一种形式的的发散片层的结构示意图; 图 11是图 10去掉基材后的正视图;
图 12是具有多个如图 10所示的发散片层的发散超材料面板的结构示意图; 图 13是本发明第二实施例中另一种形式的发散片层的结构示意图; 图 14是具有多个如图 13所示的发散片层的发散超材料面板的结构示意图。
【具体实施方式】
以下结合说明书附图详细介绍本发明的具体内容。
如图 1至图 7所示, 根据本发明第一实施例的前馈式卫星电视天线包括设 置在馈源 1后方的超材料面板 100, 所述超材料面板 100包括核心层 10及设置 在核心层一侧表面上的反射板 200,所述核心层 10包括至少一个核心层片层 11, 所述核心层片层包括片状的基材 13以及设置在基材 13上的多个人造微结构 12 (参见图 2a), 所述核心层片层 11 的折射率以其中心为圆心呈圆形分布, 相同 半径处的折射率相同, 且随着半径的增大折射率逐渐减小。 本发明中, 馈源 1 设置在超材料面板的中轴线上, 即馈源与核心层片层 11的中心的连线与超材料 面板的中轴线重合。 馈源 1与超材料面板 100均有支架支撑, 图中并未示出支 架, 其不是本发明的核心, 采用传统的支撑方式即可。 另外馈源优选为喇叭天 线。 图中的核心层片层 11呈方形, 当然, 也可以是其它形状, 例如圆柱形。 另 外, 反射板为具有光滑的表面的金属反射板, 例如可以是抛光的铜板、 铝板或 铁板等。
如图 1至图 4所示, 所述核心层 10包括多个折射率分布相同且相互平行的 核心层片层 11。 多个核心层片层 11紧密贴合, 相互之间可以通过双面胶粘接, 或者通过螺栓等固定连接。另外, 所述核心层片层 11还包括覆盖人造微结构 12 的填充层 15, 填充层 15可以空气, 也可以是其它介质板, 优选为与基材 13相 同的材料制成的板状件。每一核心层片层 11可以划分为多个相同超材料单元 D , 每一超材料单元 D由一个人造微结构 12、 单元基材 V及单元填充层 W构成, 每 一核心层片层 1 1在厚度方向上只有一个超材料单元 D。 每一超材料单元 D可以 是完全相同的方块, 可以是立方体, 也可是长方体, 每一超材料单元 D 的长、 宽、 高几何尺寸不大于入射电磁波波长的五分之一 (通常为入射电磁波波长的 十分之一), 以使得整个核心层对电磁波具有连续的电场和 /或磁场响应。 优选 情况下,所述超材料单元 D为边长是入射电磁波波长十分之一的立方体。当然, 填充层的厚度是可以调节的, 其最小值可以至 0, 也就是说不需要填充层, 此种 情况下, 基材与人造微结构组成超材料单元, 即此时超材料单元 D 的厚度等于 单元基材 V的厚度加上人造微结构的厚度, 但是此时, 超材料单元 D的厚度也 要满足十分之一波长的要求, 因此, 实际上, 在超材料单元 D 的厚度选定在十 分之一波长的情况下, 单元基材 V的厚度越大, 则单元填充层 W的厚度越小, 当然最优的情况下, 即是如图 2a所示的情况, 即单元基材 V的厚度等于单元填 充层 W的厚度, 且元单元基材 V的材料与填充层 W的相同。
该人造微结构 12优选为金属微结构, 所述金属微结构由一条或多条金属线 组成。 金属线本身具有一定的宽度及厚度。 本发明的金属微结构优选为具有各 向同性的电磁参数的金属微结构, 如图 2a所述的平面雪花状的金属微结构。
对于具有平面结构的人造微结构, 各向同性, 是指对于在该二维平面上以 任一角度入射的任一电磁波, 上述人造微结构在该平面上的电场响应和磁场响 应均相同, 也即介电常数和磁导率相同; 对于具有三维结构的人造微结构, 各 向同性是指对于在三维空间的任一方向上入射的电磁波, 每个上述人造微结构 在三维空间上的电场响应和磁场响应均相同。 当人造微结构为 90度旋转对称结
构时, 人造微结构即具有各向同性的特征。
对于二维平面结构, 90度旋转对称是指其在该平面上绕一垂直于该平面且 过其对称中心的旋转轴任意旋转 90度后与原结构重合; 对于三维结构, 如果具 有两两垂直且共交点 (交点为旋转中心) 的 3 条旋转轴, 使得该结构绕任一旋 转轴旋转 90度后均与原结构重合或者与原结构以一分界面对称,则该结构为 90 度旋转对称结构。
图 2a所示的平面雪花状的金属微结构即为各向同性的人造微结构的一种形 式, 所述的雪花状的金属微结构具有相互垂直平分的第一金属线 121 及第二金 属线 122,所述第一金属线 121两端连接有相同长度的两个第一金属分支 1211, 所述第一金属线 121两端连接在两个第一金属分支 1211的中点上, 所述第二金 属线 122两端连接有相同长度的两个第二金属分支 1221, 所述第二金属线 122 两端连接在两个第二金属分支 1221的中点上。
已知折射率 n= ^, 其中 μ 为相对磁导率, ε 为相对介电常数, μ 与 ε 合称为电磁参数。 实验证明, 电磁波通过折射率非均匀的介质材料时, 会向折 射率大的方向偏折 (向折射率大的超材料单元偏折)。 因此, 本发明的核心层对 电磁波具有汇聚作用, 卫星发出的电磁波首先通过核心层的第一次汇聚作用, 经过反射板反射, 再通过核心层的第二次汇聚作用, 因此, 合理设计核心层的 折射率分布, 可以使得卫星发出的电磁波依次经过第一次汇聚、 反射板反射及 第二汇聚后, 可以汇聚到馈源上。 在基材的材料以及填充层的材料选定的情况 下, 可以通过设计人造微结构的形状、 几何尺寸和 /或人造微结构在基材上的排 布获得超材料内部的电磁参数分布, 从而设计出每一超材料单元的折射率。 首 先从超材料所需要的效果出发计算出超材料内部的电磁参数空间分布 (即每一 超材料单元的电磁参数), 根据电磁参数的空间分布来选择每一超材料单元上的 人造微结构的形状、 几何尺寸 (计算机中事先存放有多种人造微结构数据), 对 每一超材料单元的设计可以用穷举法, 例如先选定一个具有特定形状的人造微 结构, 计算电磁参数, 将得到的结果和我们想要的对比, 循环多次, 一直到找
到我们想要的电磁参数为止,若找到了,则完成了人造微结构的设计参数选择; 若没找到, 则换一种形状的人造微结构, 重复上面的循环, 一直到找到我们想 要的电磁参数为止。 如果还是未找到, 则上述过程也不会停止。 也就是说只有 找到了我们需要的电磁参数的人造微结构, 程序才会停止。 由于这个过程都是 由计算机完成的, 因此, 看似复杂, 其实很快就能完成。
所述金属微结构 12 为铜线或银线等金属线。 上述的金属线可以通过蚀刻、 电镀、 钻刻、 光刻、 电子刻或离子刻的方法附着在基材上。 当然, 也可以采用 三维的激光加工工艺。
如图 1 所示, 为本发明第一实施例的超材料面板的结构示意图, 在本实施 例中, 所述超材料面板还包括设置在核心层另一侧的匹配层 20, 以实现从空气 到核心层 10的折射率匹配。 我们知道, 介质之间的折射率相差越大, 则电磁波 从一介质入射到另一介质时, 反射越大, 反射大, 意味着能量的损失, 这时候 就需要折射率的匹配, 已知折射率 n=^, 其中 μ 为相对磁导率, ε 为相对 介电常数, μ 与 ε 合称为电磁参数。 我们知道空气的折射率为 1, 因此, 这样 设计匹配层, 即靠近空气的一侧的折射率与空气基本相同, 靠近核心层的一侧 的折射率与其相接的核心层片层折射率基本相同。 这样, 就实现了从空气到核 心层的折射率匹配, 减小了反射, 即能量损失可以大大的降低, 这样电磁波可 以传输的更远。
其中, n(r)表示核心层片层上半径为 r处的折射率值; 也即核心层片层上半 径为 r的超材料单元 D的折射率; 此处半径指的是每一单元基材 V的中点到核 心层片层的中心 0 (圆心) 的距离, 此处的单元基材 V的中点, 指的是单元基 材 V与中点 0同一平面的一表面的中点。
l为馈源 1到与其靠近的匹配层 20的距离;
d为核心层的厚度, (2);
R表示最大半径;
«皿表示核心层片层 11上的折射率最大值; ;11表示核心层片层 11上的折射率最小值; 由公式 (1 )、 公式(2)所确定的核心层 10, 能够保证卫星发出的电磁波汇 聚到馈源处。 这个通过计算机模拟仿真, 或者利用光学原理可以得到 (即利用 光程相等计算)。
本实施例中, 核心层片层 11 的厚度是一定的, 通常在入射电磁波波长 A的 五分之一以下, 优选是入射电磁波波长 A的十分之一。 这样, 在设计时, 如果选 定了核心层片层 11的层数, 则核心层的厚度 d就已经确定了, 因此, 对于不同 频率的前馈式卫星电视天线 (波长不同), 由公式 (2 ) 我们知道, 通过合理设 计 (n - nmm ) 的值, 就可以得到任意我们想要的频率的前馈式卫星电视天线。 例如, C波段和 Ku波段。 C波段的频率范围是 3400MHz~4200MHz Ku波段 的频率 10.7~12.75GHz,其中可分为 10.7~11.7GHz 11.7~12.2GHz 12.2~12.75GHz 等频段。
如图 1所示, 本实施例中, 所述匹配层 20包括多个匹配层片层 21, 每一匹 配层片层 21具有单一的折射率, 所述匹配层的多个匹配层片层的折射率均满足 以下公式:
n(i) = ((H )/2) (4);
其中, m表示匹配层的总层数, i表示匹配层片层的编号, 其中, 靠近核心 层的匹配层片层的编号为 m。 从公式 (4 ) 我们可以看出, 匹配层的设置 (总层 数 m)与核心层的最大折射率《 与最小折射率 Wmm有直接关系; 当 i=l时, 表示 第 1层的折射率,由于其要基本等于空气的折射率 1,因此,只要 W皿与 m确定,
则可以确定总层数 m。
匹配层 20可以是由自然界中存在的多个具有单一折射率的材料制成, 也可 是用如图 7所示的匹配层, 其包括多个匹配层片层 21, 每一匹配层片层 21包括 材料相同的第一基板 22及第二基板 23,所述第一基板 21与第二基板 22之间填 充空气。 通过控制空气的体积与匹配层片层 21的体积的比例, 可以实现折射率 从 1 (空气的折射率)到第一基板的折射率的变化, 从而可以合理设计每一匹配 层片层的折射率, 实现从空气到核心层的折射率匹配。
图 4为一种形式的核心层片层 11,所述核心层的每一核心层片层 11的多个 人造微结构 12形状相同, 均为平面雪花状的金属微结构, 且金属微结构的中心 点与单元基材 V的中点重合, 相同半径处的多个人造微结构具有相同的几何尺 寸, 且随着半径的增大人造微结构 12的几何尺寸逐渐减小。 由于每一超材料单 元的折射率是随着金属微结构的尺寸减小而逐渐减小的, 因此人造微结构几何 尺寸越大, 则其对应的折射率越大, 因此, 通过此方式可以实现核心层片层的 折射率分布按公式 (1 ) 的分布。
根据不同的需要 (不同的电磁波), 以及不同的设计需要, 核心层 10可以 包括不同层数的如图 4所示的核心层片层 11。
参阅图 2b, 作为本发明第一实施例的一种替代结构, 上述设置在基材 13上 的微结构 12被替代为多个人造孔结构 12', 所述核心层片层 11按照折射率分布 可划分为位于中间位置的圆形区域 Y以及分布在圆形区域 Y周围且与所述圆形 区域共圆心的多个环形区域 (图中分别用 HI , H2, H3, H4, H5表示), 所述 圆形区域 Y及环形区域内相同半径处的折射率相同, 且在圆形区域及环形区域 各自的区域内随着半径的增大折射率逐渐减小, 所述圆形区域的折射率的最小 值小于与其相邻的环形区域的折射率的最大值, 相邻两个环形区域, 处于内侧 的环形区域的折射率的最小值小于处于外侧的环形区域的折射率的最大值。
所述人造孔结构 12'可以通过高温烧结、 注塑、 冲压或数控打孔的方式形成 在基材上。当然对于不同材料的基材,人造孔结构 12'的生成方式也会有所不同,
例如, 当选用陶瓷材料作为基材时, 优选采用高温烧结的形式在基材上生成人 造孔结构 12,。 当选用高分子材料作为基材时, 例如聚四氟乙烯、 环氧树脂, 则 优选采用注塑或冲压的形式在基材上生成人造孔结构 12'。
本发明的所述人造孔结构 12'可以是圆柱孔、 圆锥孔、 圆台孔、 梯形孔或方 形孔一种或组合。 当然也可以是其它形式的孔。 每一超材料单元 D上的人造孔 结构 12'的形状根据不同的需要, 可以相同, 也可以不同。 当然, 为了更加容易 加工制造, 整个超材料, 优选情况下, 采用同一种形状的孔。
请参阅图 5, 为本发明第一实施例的又一种核心层结构, 该核心层 10包括 多个折射率分布相同且相互平行的核心层片层 11。多个核心层片层 11紧密贴合, 相互之间可以通过双面胶粘接, 或者通过螺栓等固定连接。 另外相邻的两个核 心层片层 11之间还可以有间隔, 间隔中填充空气或其它介质, 以改善核心层的 性能。 每一核心层片层 11 的基材 13可以划分为多个相同的基材单元 V, 每一 个基材单元 V上设置有人造孔结构 12', 每一个基材单元 V与其对应的人造孔 结构 12'构成一个超材料单元 D, 每一核心层片层 11在厚度方向上只有一个超 材料单元0。 每一基材单元 D可以是完全相同的方块, 可以是立方体, 也可是 长方体, 每一基材单元 V的长、 宽、 高体积不大于入射电磁波波长的五分之一 (通常为入射电磁波波长的十分之一), 以使得整个核心层对电磁波具有连续的 电场和 /或磁场响应。 优选情况下, 所述基材单元 V为边长是入射电磁波波长十 分之一的立方体。
已知折射率 n= ^, 其中 μ为相对磁导率, ε为相对介电常数, 与£合称 为电磁参数。 实验证明, 电磁波通过折射率非均匀的介质材料时, 会向折射率 大的方向偏折 (向折射率大的超材料单元偏折)。 因此本发明的核心层对电磁波 具有汇聚作用, 合理设计核心层的折射率分布, 可以使得卫星发出的电磁波通 过核心层后汇聚到馈源上。 在基材的材料以及填充介质的材料选定的情况下, 可以通过设计人造孔结构 12'的形状、 体积和 /或人造孔结构 12'在基材上的排布 获得超材料内部的电磁参数分布, 从而设计出每一超材料单元的折射率。 首先
从超材料所需要的效果出发计算出超材料内部的电磁参数空间分布 (即每一超 材料单元的电磁参数), 根据电磁参数的空间分布来选择每一超材料单元上的人 造孔结构 12'的形状、 体积 (计算机中事先存放有多种人造孔结构数据), 对每 一超材料单元的设计可以用穷举法, 例如先选定一个具有特定形状的人造孔结 构, 计算电磁参数, 将得到的结果和我们想要的对比, 循环多次, 一直到找到 我们想要的电磁参数为止,若找到了,则完成了人造孔结构 12'的设计参数选择; 若没找到, 则换一种形状的人造孔结构 12', 重复上面的循环, 一直到找到我们 想要的电磁参数为止。 如果还是未找到, 则上述过程也不会停止。 也就是说只 有找到了我们需要的电磁参数的人造孔结构 12', 程序才会停止。 由于这个过程 都是由计算机完成的, 因此, 看似复杂, 其实很快就能完成。
请参阅图 6, 为本发明第一实施例的又一种形式的核心层 10, 所述核心层 的每一核心层片层 11的多个人造孔结构 12形状相同, 所述多个人造孔结构 12' 中填充有折射率小于基材 13的介质, 所述圆形区域及环形区域内相同半径处的 多个人造孔结构 12'具有相同的体积, 且在圆形区域及环形区域各自的区域内随 着半径的增大人造孔结构 12'的体积逐渐增大, 所述圆形区域内体积最大的人造 孔结构 12'的体积大于与其相邻的环形区域内体积最小的人造孔结构 12'的体积, 相邻两个环形区域, 处于内侧的环形区域内体积最大的人造孔结构 12'的体积大 于处于外侧的环形区域内体积最小的人造孔结构 12'的体积。由于人造孔结构 12' 中填充有折射率小于基材的介质, 因此人造孔结构 12'体积越大, 则填充的介质 越多, 其对应的折射率反而越小, 因此, 通过此方式也可以实现核心层片层的 折射率分布按公式 (1 ) 的分布。
图 5与图 6从外观上看完全相同, 折射率分布也相同, 只是其实现上述折 射率分布的方式有所不同 (填充介质不同), 图 5与图 5中的核心层 10均为四 层的结构, 这里只是示意性的, 根据不同的需要 (不同的入射电磁波), 以及不 同的设计需要, 可以有不同的层数。
当然, 核心层片层 11 并不限于上述两种形式, 例如, 每个人造孔结构 12'
可以分成若干个体积相同的单元孔, 通过每个基材单元 V上的单元孔的数量来 控制每一超材料单元 D上的人造孔结构 12'的体积也可以实现相同的目的。再例 如, 核心层片层 11可以是如下的形式, gp, 同一核心层片层所有的人造孔结构 体积相同, 但是其填充的介质的折射率对应于公式 (1 )。
作为替代, 本发明第一实施例中: 核心层片层 11的折射率 n 分布公式中 的 Z表示馈源到核心层的距离 (第一实施例中 Z表示馈源到与其靠近的匹配层的 距离)。
本发明第一实施例中, 所述核心层的基材由陶瓷材料、 高分子材料、 铁电 材料、 铁氧材料或铁磁材料等制得。 高分子材料可选用的有聚四氟乙烯、 环氧 树脂、 F4B复合材料、 FR-4复合材料等。例如,聚四氟乙烯的电绝缘性非常好, 因此不会对电磁波的电场产生干扰, 并且具有优良的化学稳定性、 耐腐蚀性, 使用寿命长。
请参阅图 8-14, 本发明第二实施例的前馈式卫星电视天线, 其在上述第一 实施例结构的基础上, 进一步设置有一具有电磁波发散功能的发散元件于馈源 后方, 所述超材料面板设置在所述发散元件的后方。
所述发散元件 200可以是凹透镜也可是图 12或图 14所示的发散超材料面 板 300,所述发散超材料面板 300包括至少一个发散片层 301,所述发散片层 301 的折射率如图 9所示,所述发散片层 301的折射率以其中心 03为圆心呈圆形分 布, 且相同半径处的折射率相同, 随着半径的增大折射率逐渐减小。 超材料面 板与馈源之间设置的具有电磁波发散功能的发散元件, 具有如下效果: SP , 在 馈源接收电磁波的范围一定的情况下 (即超材料面板的接收电磁波辐射的范围 一定的情况下), 相较于不加发散元件, 馈源与超材料面板之间的距离减小, 从 而可以大大缩小天线的体积。
发散片层 301 上的折射率分布规律可以为线性变化, 即 nR=nmin+KR, K 为常数, R为半径 (以发散片层 301的中心 03为圆心), nmin为发散片层 301 上的折射率最小值, 也即发散片层 301的中心 03处的折射率。 另外, 发散片层
301上的折射率分布规律亦可为平方率变化, 即 nR=nmin+KR2; 或为立方率变 化即 nR=nmin+KR3; 或为冥函数变化, g卩 nR=nmin*KR等。
图 10是实现图 9所示的折射率分布的一种形式的发散片层 400,如图 11及 图 10所示, 所述发散片层 400包括片状的基材 401、 附着在基材 401上的金属 微结构 402及覆盖金属微结构 402的支撑层 403,发散片层 400可划分为多个相 同的第一发散单元 404,每一第一发散单元包括一金属微结构 402以及其所占据 的基材单元 405及支撑层单元 406,每一发散片层 400在厚度方向上只有一个第 一发散单元 404,每一第一发散单元 404可以是完全相同的方块,可以是立方体, 也可是长方体, 每一第一发散单元 404 的长、 宽、 高体积不大于入射电磁波波 长的五分之一 (通常为入射电磁波波长的十分之一), 以使得整个发散片层对电 磁波具有连续的电场和 /或磁场响应。 优选情况下, 所述第一发散单元 404为边 长是入射电磁波波长十分之一的立方体。 优选情况下, 本发明的所述第一发散 单元 404的结构形式与图 2所示的超材料单元 D相同。
图 11所示为图 10去掉基材后的正视图, 从图 11中可以清楚地看出多个金 属微结构 402的空间排布, 以发散片层 400中心 03为圆心 (此处的 03在最中 间的金属微结构的中点上),相同半径上的金属微结构 402具有相同的几何尺寸, 并且随着半径的增大金属微结构 402 的几何尺寸逐渐减小。 此处的半径, 是指 每一金属微结构 402的中心到发散片层 400中心 03的距离。
所述发散片层 400的基材 401 由陶瓷材料、 高分子材料、 铁电材料、 铁氧 材料或铁磁材料等制得。 高分子材料可选用的有聚四氟乙烯、 环氧树脂、 F4B 复合材料、 FR-4复合材料等。 例如, 聚四氟乙烯的电绝缘性非常好, 因此不会 对电磁波的电场产生干扰, 并且具有优良的化学稳定性、 耐腐蚀性, 使用寿命 长。
所述金属微结构 402为铜线或银线等金属线。上述的金属线可以通过蚀刻、 电镀、 钻刻、 光刻、 电子刻或离子刻的方法附着在基材上。 当然, 也可以采用 三维的激光加工工艺。 所述金属微结构 402可以采用如图 11所示的平面雪花状
的金属微结构。当然也可是平面雪花状的金属微结构的衍生结构。还可以是"工" 字形、 "十"字形等金属线。
图 12所示为利用多个图 10所示的发散片层 400所形成的发散超材料面板 300。 图中有三层, 当然根据不同需要, 发散超材料面板 300可以是由其它层数 的发散片层 400构成。 所述的多个发散片层 400紧密贴合, 相互之间可以通过 双面胶粘接, 或者通过螺栓等固定连接。 另外, 在图 12所示的发散超材料面板 300的两侧还要以设置如图 7所示的匹配层, 以实现折射率的匹配, 降低电磁波 的反射, 增强信号接收。
图 13是实现图 9所示的折射率分布的另一种形式的发散片层 500, 所述发 散片层 500包括片状的基材 501及设置在基材 501上的人造孔结构 502,发散片 层 500可划分为多个相同的第二发散单元 504,每一第二发散单元 504包括一人 造孔结构 502以及其所占据的基材单元 505,每一发散片层 500在厚度方向上只 有一个第二发散单元 504, 每一第二发散单元 504可以是完全相同的方块, 可以 是立方体, 也可是长方体, 每一第二发散单元 504 的长、 宽、 高体积不大于入 射电磁波波长的五分之一 (通常为入射电磁波波长的十分之一), 以使得整个发 散片层对电磁波具有连续的电场和 /或磁场响应。 优选情况下, 所述第二发散单 元 504为边长是入射电磁波波长十分之一的立方体。
如图 13所示, 所述发散片层 500上的人造孔结构均为圆柱孔, 以发散片层 500中心 03为圆心(此处的 03在最中间的人造孔结构的中轴线上), 相同半径 上的人造孔结构 502具有相同的体积, 并且随着半径的增大人造孔结构 402的 体积逐渐减小。 此处的半径, 是指每一人造孔结构 502 的中心轴线到发散片层 500最中间的人造孔结构的中轴线的垂直距离。 因此, 当每一圆柱孔中填充折射 率小于基材的介质材料 (例如空气), 即可实现图 9所示的折射率分布。 当然, 如果以发散片层 500中心 03为圆心,相同半径上的人造孔结构 502具有相同的 体积, 并且随着半径的增大人造孔结构 402 的体积逐渐增大, 则需要在每一圆 柱孔中填充折射率大于基材的介质材料, 才能实现图 9所示的折射率分布。
当然, 发散片层并不限于上述此种形式, 例如, 每个人造孔结构可以分成 若干个体积相同的单元孔, 通过每个基材单元上的单元孔的数量来控制每一第 二发散单元上的人造孔结构的体积也可以实现相同的目的。 再例如, 发散片层 还可以是如下的形式, gp, 同一发散片层所有的人造孔结构体积相同, 但是其 填充的介质的折射率满足图 9所示的分布, 即相同半径上填充的介质材料折射 率相同, 并且随着半径的增大填充的介质材料折射率逐渐减小。
所述发散片层 500的基材 501 由陶瓷材料、 高分子材料、 铁电材料、 铁氧 材料或铁磁材料等制得。 高分子材料可选用的有聚四氟乙烯、 环氧树脂、 F4B 复合材料、 FR-4复合材料等。 例如, 聚四氟乙烯的电绝缘性非常好, 因此不会 对电磁波的电场产生干扰, 并且具有优良的化学稳定性、 耐腐蚀性, 使用寿命 长。
所述人造孔结构 502 可以通过高温烧结、 注塑、 冲压或数控打孔的方式形 成在基材上。当然对于不同材料的基材,人造孔结构的生成方式也会有所不同, 例如, 当选用陶瓷材料作为基材时, 优选采用高温烧结的形式在基材上生成人 造孔结构。 当选用高分子材料作为基材时, 例如聚四氟乙烯、 环氧树脂, 则优 选采用注塑或冲压的形式在基材上生成人造孔结构。
上述的人造孔结构 502可以是圆柱孔、 圆锥孔、 圆台孔、 梯形孔或方形孔 一种或组合。 当然也可以是其它形式的孔。 每一第二发散单元上的人造孔结构 的形状根据不同的需要, 可以相同, 也可以不同。 当然, 为了更加容易加工制 造, 整个超材料, 优选情况下, 采用同一种形状的孔。
图 14所示为利用多个图 13所示的发散片层 500所形成的发散超材料面板 300。 图中有三层, 当然根据不同需要, 发散超材料面板 300可以是由其它层数 的发散片层 500构成。 所述的多个发散片层 500紧密贴合, 相互之间可以通过 双面胶粘接, 或者通过螺栓等固定连接。 另外, 在图 14所示的发散超材料面板 300的两侧还要以设置如图 7所示的匹配层, 以实现折射率的匹配, 降低电磁波 的反射, 增强信号接收。
另外, 本发明还提供本发明还提供了一种卫星电视接收系统, 包括馈源、 高频头及卫星接收机, 所述卫星电视接收系统还包括上述的前馈式卫星电视天 线, 所述前馈式卫星电视天线设置在馈源的后方。
馈源、 高频头及卫星接收机均为现有的技术, 此处不再述说。
上面结合附图对本发明的实施例进行了描述, 但是本发明并不局限于上述 的具体实施方式, 上述的具体实施方式仅仅是示意性的, 而不是限制性的, 本 领域的普通技术人员在本发明的启示下, 在不脱离本发明宗旨和权利要求所保 护的范围情况下, 还可做出很多形式, 这些均属于本发明的保护之内。
Claims
1、 一种前馈式卫星电视天线, 其特征在于, 所述前馈式卫星电视天线包括 设置在馈源后方的超材料面板, 所述超材料面板包括核心层及设置在核心层一 侧表面的反射板, 所述核心层包括至少一个核心层片层, 所述核心层片层包括 片状的基材以及设置在基材上的多个人造微结构或孔结构, 所述核心层片层的 折射率呈圆形分布, 且相同半径处的折射率相同, 随着半径的增大折射率逐渐 减小。
2、 根据权利要求 1所述的前馈式卫星电视天线, 其特征在于, 所述核心层 片层还包括覆盖人造微结构的填充层。
3、 根据权利要求 2所述的前馈式卫星电视天线, 其特征在于, 所述核心层 包括多个折射率分布相同且相互平行的核心层片层。
4、 根据权利要求 3所述的前馈式卫星电视天线, 其特征在于, 所述超材料 面板还包括设置在核心层另一侧的匹配层, 以实现从空气到核心层的折射率匹 配。
其中, n(r)表示核心层片层上半径为 r处的折射率值;
I为馈源到与其靠近的匹配层的距离, 或 为馈源到核心层的距离; d为核心层的厚度, d = ¥~[
2(nmax - nmin )
R表示最大半径; ax表示核心层片层上的折射率最大值;
«皿表示核心层片层上的折射率最小值。
6、 根据权利要求 5所述的前馈式卫星电视天线, 其特征在于, 所述每一匹 配层片层具有单一的折射率, 所述匹配层的多个匹配层片层的折射率均满足以 下公式:
n(i) = ((H )/2) ; 其中, m表示匹配层的总层数, i表示匹配层片层的编号, 其中, 靠近核心 层的匹配层片层的编号为 m。
7、 根据权利要求 6所述的前馈式卫星电视天线, 其特征在于, 所述每一匹 配层片层包括材料相同的第一基板及第二基板, 所述第一基板与第二基板之间 填充空气。
8、 根据权利要求 2所述的前馈式卫星电视天线, 其特征在于, 所述核心层 的每一核心层片层的多个人造微结构形状相同, 相同半径处的多个人造微结构 具有相同的几何尺寸, 且随着半径的增大人造微结构的几何尺寸逐渐减小。
9、 根据权利要求 1所述的前馈式卫星电视天线, 其特征在于, 所述核心层 的每一核心层片层的多个人造孔结构形状相同, 所述多个人造孔结构中填充有 折射率大于基材的介质, 相同半径处的多个人造孔结构具有相同的体积, 且随 着半径的增大人造孔结构的体积逐渐减小。
10、 根据权利要求 1 所述的前馈式卫星电视天线, 其特征在于, 所述核心 层的每一核心层片层的多个人造孔结构形状相同, 所述多个人造孔结构中填充 有折射率小于基材的介质, 相同半径处的多个人造孔结构具有相同的体积, 且 随着半径的增大人造孔结构的体积逐渐增大。
11、 根据权利要求 1 所述的前馈式卫星电视天线, 其特征在于, 所述人造 微结构为平面雪花状的金属微结构。
12、 根据权利要求 1 所述的前馈式卫星电视天线, 其特征在于, 所述人造 孔结构为圆柱孔。
13、 根据权利要求 1 所述的前馈式卫星电视天线, 其特征在于进一步包括 一设置在馈源后方的具有电磁波发散功能的发散元件, 所述超材料面板设置在 所述发散元件的后方。
14、 根据权利要求 13所述的前馈式卫星电视天线, 其特征在于, 所述发散 元件为凹透镜。
15、 根据权利要求 13所述的前馈式卫星电视天线, 其特征在于, 所述发散 元件为发散超材料面板, 所述发散超材料面板包括至少一个发散片层, 所述发 散片层的折射率以其中心为圆心呈圆形分布, 且相同半径处的折射率相同, 随 着半径的增大折射率逐渐减小。
16、 一种卫星电视接收系统, 包括馈源、 高频头及卫星接收机, 其特征在 于, 所述卫星电视接收系统还包括一前馈式卫星电视天线, 所述前馈式卫星电 视天线设置在馈源的后方, 包括: 设置在馈源后方的超材料面板, 所述超材料 面板包括核心层及设置在核心层一侧表面的反射板, 所述核心层包括至少一个 核心层片层, 所述核心层片层包括片状的基材以及设置在基材上的多个人造微 结构或孔结构, 所述核心层片层的折射率呈圆形分布, 且相同半径处的折射率 相同, 随着半径的增大折射率逐渐减小。
Applications Claiming Priority (8)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201110210205.9 | 2011-07-26 | ||
CN 201110210348 CN102480064B (zh) | 2011-07-26 | 2011-07-26 | 一种前馈式卫星电视天线及其卫星电视接收系统 |
CN201110210348.X | 2011-07-26 | ||
CN201110210205.9A CN102904033B (zh) | 2011-07-26 | 2011-07-26 | 一种前馈式卫星电视天线及其卫星电视接收系统 |
CN201110242623.6 | 2011-08-23 | ||
CN201110242604.3 | 2011-08-23 | ||
CN 201110242604 CN102480041B (zh) | 2011-08-23 | 2011-08-23 | 一种前馈式卫星电视天线及其卫星电视接收系统 |
CN201110242623.6A CN103066394B (zh) | 2011-08-23 | 2011-08-23 | 一种前馈式卫星电视天线及其卫星电视接收系统 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2013013457A1 true WO2013013457A1 (zh) | 2013-01-31 |
Family
ID=47600497
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2011/082429 WO2013013457A1 (zh) | 2011-07-26 | 2011-11-18 | 前馈式卫星电视天线及其卫星电视接收系统 |
Country Status (1)
Country | Link |
---|---|
WO (1) | WO2013013457A1 (zh) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2015170969A (ja) * | 2014-03-06 | 2015-09-28 | 日本電信電話株式会社 | アンテナ装置 |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20050062673A1 (en) * | 2003-09-19 | 2005-03-24 | National Taiwan University Of Science And Technology | Method and apparatus for improving antenna radiation patterns |
CN1658433A (zh) * | 2004-12-30 | 2005-08-24 | 东南大学 | 变极化微带反射阵天线 |
CN101867094A (zh) * | 2010-05-02 | 2010-10-20 | 兰州大学 | 一种聚焦平板天线 |
-
2011
- 2011-11-18 WO PCT/CN2011/082429 patent/WO2013013457A1/zh active Application Filing
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20050062673A1 (en) * | 2003-09-19 | 2005-03-24 | National Taiwan University Of Science And Technology | Method and apparatus for improving antenna radiation patterns |
CN1658433A (zh) * | 2004-12-30 | 2005-08-24 | 东南大学 | 变极化微带反射阵天线 |
CN101867094A (zh) * | 2010-05-02 | 2010-10-20 | 兰州大学 | 一种聚焦平板天线 |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2015170969A (ja) * | 2014-03-06 | 2015-09-28 | 日本電信電話株式会社 | アンテナ装置 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2013013453A1 (zh) | 后馈式卫星电视天线及其卫星电视接收系统 | |
CN102480021B (zh) | 一种前馈式卫星电视天线及其卫星电视接收系统 | |
WO2013060118A1 (zh) | 一种混合透反射微波天线及通讯装置 | |
CN102480064B (zh) | 一种前馈式卫星电视天线及其卫星电视接收系统 | |
CN102480027B (zh) | 一种偏馈式卫星电视天线及其卫星电视接收系统 | |
WO2013013458A1 (zh) | 前馈式卫星电视天线及其卫星电视接收系统 | |
WO2013013457A1 (zh) | 前馈式卫星电视天线及其卫星电视接收系统 | |
CN103682665A (zh) | 一种超材料微波天线 | |
WO2013013456A1 (zh) | 偏馈式卫星电视天线及其卫星电视接收系统 | |
CN102480022B (zh) | 一种后馈式卫星电视天线及其卫星电视接收系统 | |
WO2013013455A1 (zh) | 偏馈式卫星电视天线及其卫星电视接收系统 | |
WO2013013454A1 (zh) | 后馈式卫星电视天线及其卫星电视接收系统 | |
CN102480063B (zh) | 一种偏馈式卫星电视天线及其卫星电视接收系统 | |
CN102480028B (zh) | 一种后馈式卫星电视天线及其卫星电视接收系统 | |
CN102723581B (zh) | 一种超材料卫星天线及卫星接收系统 | |
CN102723582B (zh) | 一种超材料卫星天线及卫星接收系统 | |
CN102709701B (zh) | 一种偏馈式卫星电视天线及其卫星电视接收系统 | |
CN103682661A (zh) | 一种超材料微波天线 | |
WO2013013468A1 (zh) | 偏馈式雷达天线 | |
CN103682663A (zh) | 一种超材料微波天线 | |
CN102904033B (zh) | 一种前馈式卫星电视天线及其卫星电视接收系统 | |
CN102904034A (zh) | 一种前馈式卫星电视天线及其卫星电视接收系统 | |
WO2013013466A1 (zh) | 后馈式雷达天线 | |
CN102904032A (zh) | 一种后馈式卫星电视天线及其卫星电视接收系统 | |
CN102904035A (zh) | 一种偏馈式卫星电视天线及其卫星电视接收系统 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 11870127 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 11870127 Country of ref document: EP Kind code of ref document: A1 |