WO2013013344A1 - 一种乙烯裂解炉 - Google Patents

一种乙烯裂解炉 Download PDF

Info

Publication number
WO2013013344A1
WO2013013344A1 PCT/CN2011/001239 CN2011001239W WO2013013344A1 WO 2013013344 A1 WO2013013344 A1 WO 2013013344A1 CN 2011001239 W CN2011001239 W CN 2011001239W WO 2013013344 A1 WO2013013344 A1 WO 2013013344A1
Authority
WO
WIPO (PCT)
Prior art keywords
furnace
tube
tubes
upstream
plane
Prior art date
Application number
PCT/CN2011/001239
Other languages
English (en)
French (fr)
Inventor
何细藕
刘敬坤
李昌力
申海女
郭玉萍
邵晨
Original Assignee
中国石油化工股份有限公司
中国石化工程建设公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中国石油化工股份有限公司, 中国石化工程建设公司 filed Critical 中国石油化工股份有限公司
Priority to MYPI2014000246A priority Critical patent/MY167725A/en
Priority to PCT/CN2011/001239 priority patent/WO2013013344A1/zh
Priority to BR112014002075-2A priority patent/BR112014002075B1/pt
Priority to KR1020147005332A priority patent/KR101896028B1/ko
Priority to RU2014106935/04A priority patent/RU2576387C2/ru
Priority to US14/235,225 priority patent/US9205400B2/en
Priority to MYPI2017703648A priority patent/MY177140A/en
Priority to SG2014011019A priority patent/SG2014011019A/en
Publication of WO2013013344A1 publication Critical patent/WO2013013344A1/zh
Priority to US14/925,579 priority patent/US9604193B2/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G9/00Thermal non-catalytic cracking, in the absence of hydrogen, of hydrocarbon oils
    • C10G9/14Thermal non-catalytic cracking, in the absence of hydrogen, of hydrocarbon oils in pipes or coils with or without auxiliary means, e.g. digesters, soaking drums, expansion means
    • C10G9/18Apparatus
    • C10G9/20Tube furnaces
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J19/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J19/24Stationary reactors without moving elements inside
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J19/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J19/24Stationary reactors without moving elements inside
    • B01J19/2415Tubular reactors
    • B01J19/2425Tubular reactors in parallel
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C11/00Aliphatic unsaturated hydrocarbons
    • C07C11/02Alkenes
    • C07C11/04Ethylene
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C4/00Preparation of hydrocarbons from hydrocarbons containing a larger number of carbon atoms
    • C07C4/02Preparation of hydrocarbons from hydrocarbons containing a larger number of carbon atoms by cracking a single hydrocarbon or a mixture of individually defined hydrocarbons or a normally gaseous hydrocarbon fraction
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C4/00Preparation of hydrocarbons from hydrocarbons containing a larger number of carbon atoms
    • C07C4/02Preparation of hydrocarbons from hydrocarbons containing a larger number of carbon atoms by cracking a single hydrocarbon or a mixture of individually defined hydrocarbons or a normally gaseous hydrocarbon fraction
    • C07C4/04Thermal processes
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D7/00Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall
    • F28D7/06Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits having a single U-bend
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F1/00Tubular elements; Assemblies of tubular elements
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00049Controlling or regulating processes
    • B01J2219/00051Controlling the temperature
    • B01J2219/00074Controlling the temperature by indirect heating or cooling employing heat exchange fluids
    • B01J2219/00076Controlling the temperature by indirect heating or cooling employing heat exchange fluids with heat exchange elements inside the reactor
    • B01J2219/00083Coils
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00049Controlling or regulating processes
    • B01J2219/00051Controlling the temperature
    • B01J2219/00157Controlling the temperature by means of a burner
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/24Stationary reactors without moving elements inside
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D21/00Heat-exchange apparatus not covered by any of the groups F28D1/00 - F28D20/00
    • F28D2021/0019Other heat exchangers for particular applications; Heat exchange systems not otherwise provided for
    • F28D2021/0059Other heat exchangers for particular applications; Heat exchange systems not otherwise provided for for petrochemical plants
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F2210/00Heat exchange conduits
    • F28F2210/02Heat exchange conduits with particular branching, e.g. fractal conduit arrangements

Definitions

  • the invention belongs to the field of petrochemical industry, and particularly relates to a radiant furnace tube structure in an ethylene cracking furnace used in petrochemical production. Background technique
  • the ethylene cracking technology used in petrochemical ethylene plants is mainly CBL cracking furnace developed by LUMMUS, Stone & Webster, Kellog & Braun Root, Germany's Linde, Technip (KTI) and Sinopec.
  • Figure 1A shows a typical ethylene cracking furnace 10 comprising a radiant zone 11, a convection zone 13, and a flue 12 disposed between the radiant zone 11 and the convection zone 13.
  • a radiant furnace tube 14 is disposed in the radiation zone 11, which is disposed in the longitudinal plane of the radiation zone 11 in the central plane P of the radiation zone.
  • a bottom burner 15 and/or a side wall burner 16 for heating are also provided in the radiation zone 11.
  • the ethylene cracking furnace 10 further includes components such as a quenching furnace 17, a high pressure steam drum 18, and an induced draft fan 19.
  • the first step uses a small-diameter furnace tube, which uses its large specific surface area to achieve rapid temperature rise.
  • the second stage uses a larger diameter furnace tube to reduce the effect on coking sensitivity.
  • the two-stage radiant section furnace tubes used are 1-1 type (U type), 2-1 type, 4-1 type, 6-1 type and other furnace tubes.
  • the two-pass type 1-1 furnace tube structure has a large specific surface area, can be matched with a linear quenching boiler, and has good mechanical properties, but the operating cycle is slightly poor.
  • Document EP 1 146 105 discloses a cracking furnace having a two-pass 2-1 furnace tube structure. As shown in Fig. 1B, the two-way radiant section furnace tubes, i.e., the first pass furnace tubes 51 (16) and the second pass furnace tubes 52 (8) are vertically arranged in the furnace section of the radiant section. All of these tubes are in the same plane, and all of the first tubes 51 are arranged together, and all of the second tubes 52 are arranged together.
  • the two first-pass furnace tubes 51 are merged into a single tube at a lower portion thereof via a Y-shaped collecting tube 53, and then connected to a second-way tube 52 through two S-shaped tubes 54 and a symmetrical curved tube 55.
  • Document CN1067669 discloses a cracking furnace having a two-pass type 6-1 furnace tube structure, wherein the first step There are 6 furnace tubes and 1 second furnace tube. The six first-pass furnace tubes are similarly combined into a single tube at a lower portion thereof through a rigid collecting tube, and then connected to the second furnace tube.
  • the object of the present invention is to solve the defects of the prior art, and propose a new two-way or multi-pass radiant furnace tube ethylene cracking furnace, the special arrangement structure of the radiant furnace tube can reduce the bending of the furnace tube and improve the furnace tube
  • the mechanical properties extend the life of the furnace tube and the operating cycle of the cracking furnace.
  • an ethylene cracking furnace comprising: at least one radiant zone in which a bottom burner and/or a side wall burner are disposed; and at least one set of radiant furnace tubes arranged in a longitudinal direction of the radiant zone.
  • the radiant furnace tube comprises at least two tubes having an N-1 type structure, N is preferably a natural number between 2 and 8, and a collecting tube is arranged at an inlet end of the downstream working tube in the at least two-way furnace tube.
  • the outlet end of the upstream process tube in the at least two-stage furnace tube is connected to the collecting tube through the elbow connection.
  • the radiant furnace tube is a two-pass furnace tube.
  • the upstream process furnace tube is the first process furnace tube
  • the downstream process furnace tube is the second process furnace tube.
  • the radiant tube is a multi-pass furnace tube of more than two passes.
  • the upstream furnace tube is the first and third odd-numbered furnace tubes
  • the downstream furnace tube is the first Second, the fourth even number of furnace tubes.
  • the upstream process tubes are arranged in two equal numbers on either side of the downstream process tubes, and all upstream and downstream tubes are coplanar.
  • the elbow connector comprises a symmetrical elbow and an S-bend. Wherein one of the symmetrical elbow and the S-shaped elbow is connected to the lower end of the upstream process tube, and the other of the symmetrical elbow and the S-shaped elbow The inputs of the manifold are connected.
  • the "connecting" of the elbow connector and the furnace tube or the collecting tube mentioned herein includes the case of direct connection and the case of forming a connection through a transition tube, which may be required according to the specific situation. select.
  • the associated S-bends are parallel to one another and/or the symmetrical bends associated therewith are on the same line.
  • all of the S-bends are parallel to each other.
  • all of the S-bends are divided into groups, and the S-bends in each group are parallel to each other.
  • the upstream process tubes are disposed on opposite sides of the downstream process tubes in two equal numbers.
  • the plane of the upstream process tube on one side of the downstream process tube and the upstream process tube on the other side of the downstream process tube are no longer coplanar with the plane of the downstream process tube, but It is mirror symmetrical with respect to the plane in which the downstream furnace tube is located.
  • the plane on which the upstream process tube on one side of the downstream process tube is located, the plane on which the upstream process tube on the other side of the downstream process tube is located, and the plane on which the downstream process tube is located are parallel to each other.
  • the upstream process tubes may also all be disposed on the same side of the upstream process tubes, and all of the upstream and downstream tubes are coplanar.
  • the elbow connectors of the adjacent two upstream furnace tubes are on either side of the plane in which the upstream and downstream tubes are located.
  • the upstream furnace tubes are not in the same plane as the downstream furnace tubes, but are disposed in two parallel planes, respectively, and are parallel to the plane in which the downstream furnace tubes are located.
  • the upstream furnace tubes are respectively disposed in two planes that are mirror symmetrical with respect to the plane in which the downstream furnace tubes are located.
  • the diameter of the S-shaped tube and the symmetric curved tube is smaller than the diameter when the lower part of the upstream tube is merged, so the flexibility is better, which is beneficial to the absorption of the adjacent process.
  • the difference in thermal expansion of the furnace tube avoids bending of the furnace tube and ultimately prolongs the service life of the radiant furnace tube;
  • DRAWINGS Figure 1A is a layout view of an ethylene cracking furnace according to the prior art
  • Figure 1B shows a typical two-pass 2-1 tube structure in accordance with the prior art
  • 2A, 2B, and 2C are respectively a front view, a plan view, and a side view showing an embodiment of a two-pass 2-1 type furnace tube structure according to the present invention, wherein the first pass furnace tube is divided into two parts in the same number.
  • FIG. 3A, 3B and 3C respectively show a front view, a top view and a side view of another embodiment of a two-pass 2-1 type furnace tube structure according to the present invention, wherein the first pass furnace tubes are all disposed in the second pass furnace tubes The same side;
  • Figures 4A, 4B and 4C show front, top and side views, respectively, of one embodiment of a two-pass Type 4-1 furnace tube structure in accordance with the present invention;
  • 5A-7C are front, plan and side views, respectively, showing several variations of a two-pass 2-1 furnace tube structure in accordance with the present invention, wherein the first pass furnace tubes are arranged in the same number of two portions. Two or all of the furnace tubes are arranged on the same side of the second process tube;
  • 8A-10C are respectively a front view, a top view and a side view showing three variations of a two-pass 2-1 type furnace tube structure according to the present invention, wherein the first pass furnace tubes are all arranged on the same side of the second pass furnace tube. ;
  • Figures 11A-11C show front, top and side views, respectively, of a variation of a two-pass Type 4-1 furnace tube structure in accordance with the present invention.
  • the present invention relates to improvements in radiant tubes in the radiant zone of an ethylene cracking furnace.
  • Other structures in the ethylene cracking furnace, such as convection zones, quench boilers, etc., are well known in the art.
  • the quenching boilers suitable for use in the present invention mainly employ a double-tube type quenching boiler (a linear quenching boiler, a U-type quenching boiler, a first-stage quenching boiler, etc.), and a conventional type of boiler.
  • the two-way radiant furnace tube of the present invention is mainly suitable for cracking liquid raw materials, but can also crack gas raw materials
  • the multi-pass radiant furnace tube of the present invention is mainly suitable for cracking gas raw materials, but can also crack liquid raw materials, and can be used for New cracking furnace or expansion of the cracking furnace.
  • FIG. 2A, 2B and 2C show a first embodiment according to the present invention which relates to a two-pass 2-1 type furnace tube structure.
  • two first pass furnace tubes 1 and one second pass furnace tube 2 are included in this embodiment.
  • the two first-stage furnace tubes 1 are respectively disposed on both sides of the second-stage furnace tube 2, and the center lines of all three furnace tubes are arranged in the same plane P, as shown in Fig. 2B. .
  • a collecting pipe 3 is provided at the lower end (i.e., the inlet end) of the second-stage furnace tube 2 for joining the two first-pass furnace tubes 1 and to the second-pass furnace tube 2.
  • the collecting tube 3 The inverted Y-shaped collecting tube has two input ends and one output end, wherein the output end is connected to the lower end of the second-pass furnace tube 2.
  • the lower ends (i.e., the outlet ends) of the two first-pass furnace tubes 1 are respectively connected to the two input ends of the manifold 3 via an elbow joint (consisting of the S-shaped tube 5 and the symmetrical elbow 4).
  • the manifold can be designed to have one input end and one output end, that is, in a form similar to a palm.
  • the elbow connectors can also be connected to the two inputs of the manifold 3 via a transition tube.
  • the transition tube has the same diameter as the elbow connector and may be a straight tube or a curved tube.
  • the collecting pipe 3 as a rigid connecting structure at the lower end of the second-pass furnace pipe 2 instead of the lower end of the first-pass furnace pipe 1
  • the first-pass furnace pipe 1 and the first pass can be made when the furnace pipe is thermally expanded.
  • the stress imbalance caused by the difference in expansion between the furnace tubes 2 and the difference in thermal expansion between the first-pass furnace tubes 1 is connected to the S-shaped tube 5 and the symmetrical bend at the lower end of the first-pass furnace tube 1.
  • Tube 4 is absorbed. Therefore, the deformation is reduced, thereby prolonging the life of the tube.
  • the first-stage furnace is substantially extended.
  • the specific surface area of the furnace tube is increased, and the cracking depth is the same when the cracking depth is the same, which is advantageous for increasing the product yield when the operating cycle of the cracking furnace is the same.
  • the pipe diameter of the elbow connector is equal to the pipe diameter of the first process pipe, the flexibility is better, which is advantageous for eliminating thermal stress, and is advantageous for reducing the deformation of the furnace pipe and prolonging the life of the furnace pipe.
  • the S-shaped tube 5 and the symmetrical elbow 4 connected to the lower end of the first-pass furnace tube 1 disposed on the left side of the second-stage furnace tube 2 are connected to the second-stage furnace tube.
  • the S-shaped tube 5 at the lower end of the first end of the furnace tube 1 and the symmetrical curved tube 4 are located on both sides of the plane ,, see Figs. 2A and 2C. In this way, the deformation due to thermal stress can be more uniformly absorbed, the surface temperature of the furnace tube is further reduced, and the service life of the furnace tube is extended.
  • the respective S-shaped tubes 5 of the two first-pass furnace tubes 1 are parallel to each other, and the respective symmetrical curved tubes 4 of the two first-pass furnace tubes 1 are on the same straight line. More preferably, the S-shaped tube 5 and the symmetric curved tube 4 on the plane P-side of the first-pass furnace tube 1 and the S-shaped tube 5 and the symmetric curved tube 4 on the other side of the plane P are opposite to the second-stage furnace
  • the center line of the tube 2 is 180° rotationally symmetric.
  • a straight tube of the same length as the one-pass tube may be retained for a certain length depending on the needs of the process or mechanical design.
  • the first-pass furnace tube 1 and the second-pass furnace tube 2 can be arranged so as not to be coplanar with each other, in which case the elbow connection can comprise only the symmetrical bend 4 And omitting the S shape
  • the elbow connection can comprise only the symmetrical bend 4 And omitting the S shape
  • FIG. 3A, 3B and 3C show a second embodiment in accordance with the present invention.
  • This second embodiment differs from the first embodiment in that both first-pass furnace tubes 1 are disposed on the same side of the second-pass furnace tube 2, as shown in the front view, which is shown in Fig. 3A.
  • This also achieves the advantages as described in the first embodiment and can be adapted to cracking furnaces of some specific configurations.
  • the S-shaped tube 5 and the symmetrical curved tube 4 connected to the lower end of one first-pass furnace tube 1 are opposed to the S-shaped tube 5 connected to the lower end of the other first-stage furnace tube 1.
  • the symmetrical elbow 4 is still divided on both sides of the plane P where all three furnace tubes are located (see Figs. 3B and 3C).
  • a set of S-shaped tubes 5 and symmetric bends 4 are mirror-symmetrical with respect to plane P of another set of S-shaped tubes 5 and symmetric bends 4, as shown in Figure 3C.
  • the two sets of elbow connectors may not be mirror symmetrical in order to ensure equal length and weight of the elbows on both sides.
  • the elbow joint may include only the symmetrical elbow 4, and the S-shaped tube 5 may be omitted.
  • FIG. 4A, 4B and 4C show a third embodiment in accordance with the present invention.
  • This third embodiment differs from the first embodiment in that it relates to a two-pass type 4-1 furnace tube structure.
  • two first-pass furnace tubes 1 are disposed on both sides of the second-stage furnace tube 2.
  • the two first-stage furnace tubes 1 on each side are first collected into a single tube through a collecting tube 6, and then connected to the S-shaped tube 5 and the symmetric curved tube 4, and finally connected to the collection set at the lower end of the second-stage furnace tube 2.
  • manifold 6 is a positive Y-tube with two inputs and one output.
  • the two first-pass furnace tubes 1 on each side can be firstly collected into one tube through a collecting tube 6, and then connected to the S-shaped tube 5 and the symmetric curved tube 4 through the connecting straight tube. Finally, it is connected to the collecting pipe 3 provided at the lower end of the second-stage furnace tube 2 by connecting a transition pipe (straight pipe or elbow pipe).
  • a transition pipe straight pipe or elbow pipe
  • the manifold 6 can be omitted while the manifold 3 is modified to have four inputs and one output.
  • the four first-pass furnace tubes 1 are directly connected to the four inputs via the necessary bends (symmetric bends 4 and S-tubes 5) or through a transition tube (straight tube or Elbow) is connected to these four inputs.
  • the fourth embodiment is still a two-way 2-1 type furnace tube structure, which adopts the same design concept as the first embodiment, except that it includes eight second-pass furnace tubes 2 arranged side by side, and There are 16 first-pass furnace tubes 1 which are disposed on both sides of the second-stage furnace tube 2 and 8 on each side.
  • the structure of this embodiment is equivalent to eight parallel structures as in the first embodiment Arranged together. As shown in Fig. 5B, all of the 16 S-shaped tubes 5 are parallel to each other.
  • the two symmetrical bends 4 associated therewith are on the same straight line.
  • the symmetrical bends 4 associated with each of the second pass furnace tubes 2 are parallel to each other.
  • connection regions of the respective S-shaped tubes 5 and the symmetrical curved tubes 4 are in the same plane Q, and the plane Q is parallel to the plane P.
  • FIG. 6A, 6B and 6C show a fifth embodiment according to the present invention.
  • This fifth embodiment is basically the same as the fourth embodiment except that all of the 16 S-shaped tubes 5 are not parallel to each other, but are grouped in parallel.
  • each of the two S-shaped tubes 5 is divided into a group from the inside to the outside, and the two S-shaped tubes 5 in each group are parallel to each other.
  • FIG. 7A, 7B and 7C show a sixth embodiment in accordance with the present invention.
  • This sixth embodiment is basically the same as the fourth embodiment except that the first pass furnace tube 1 is no longer disposed to be coplanar with the second pass furnace tube 2.
  • the planes M, M' where the first one-stage furnace tubes 1 on each side are located form an acute angle with the plane P where the second-stage furnace tubes 2 are located.
  • the plane ⁇ , ⁇ ' is mirror-symmetrical with respect to the plane P.
  • the axis L of each of the first-pass furnace tubes 1 is perpendicular to the plane ⁇ where the second-stage furnace tube 2 is located.
  • the plane ⁇ , ⁇ ' can be parallel to the plane! ⁇ That is to say, the plane ⁇ , M' and the plane ⁇ form an angle of zero. Further, it is easily conceivable by those skilled in the art that such a structure can also be applied to the case where all of the first-pass furnace tubes 1 are on the same side of the second-pass furnace tube 2 (e.g., the second embodiment).
  • FIGS 8A, 8B and 8C show a seventh embodiment in accordance with the present invention.
  • the seventh embodiment is basically the same as the second embodiment except that it includes five second-pass furnace tubes 2 arranged side by side, and ten roots disposed on the same side of the second-stage furnace tubes 2.
  • the structure of this embodiment is equivalent to arranging five structures as in the first embodiment in parallel.
  • the S-shaped tube 5 and the symmetrical curved tube 4 connected to the lower end of the first-stage furnace tube are alternately arranged with respect to the plane of the furnace tube, that is, the S connected to the lower end of the first first-stage furnace tube.
  • the tube 5 and the symmetrical tube 4 are disposed on one side of the plane ( (above the top view), and the S-shaped tube 5 and the symmetrical tube 4 connected to the lower end of the second first-stage tube are disposed on the other side of the plane raft (below the top view), and so on. Further, all of the S-shaped tubes 5 above the plan view of the plane are parallel to each other, and the symmetrical bends 4 are also parallel to each other; and all the S-shaped tubes 5 below the plan view of the plane are parallel to each other, and the symmetrical tubes 4 are also parallel to each other.
  • the S-shaped tube 5 and the symmetrical curved tube 4 which are located on both sides of the plane ⁇ are mirror-symmetrical with respect to the plane ⁇ .
  • the side projection is asymmetrical.
  • FIGS 9A, 9A and 9C show an eighth embodiment in accordance with the present invention.
  • the eighth embodiment is basically the same as the seventh embodiment, except that the lower end of the first-stage furnace tube 1 is first connected to the symmetric curved tube 4, The S-bend 5 is connected later and then connected to the collecting tube 3. That is, the arrangement order of the symmetrical elbow 4 and the S-bend 5 is different from the foregoing embodiment.
  • the S-bends 5 on either side of the plane P on which the furnace tubes are located are mirror-symmetrical with respect to the plane P in plan view.
  • the length of the tube connecting the first and second furnace tubes is the same as shown in Figure 9B.
  • FIGS. 10A, 10B and 10C show a ninth embodiment in accordance with the present invention.
  • the ninth embodiment is basically the same as the eighth embodiment except that all the symmetrical elbows are the same, but the S-shaped elbows on both sides of the plane P where the furnace tube is located are not mirror-symmetrical with respect to the plane P in plan view. .
  • the tenth embodiment is basically the same as the first embodiment, and is a two-way type 4-1 furnace tube structure, except that it comprises four second-pass furnace tubes 2 arranged side by side, and is divided into second 16 first-pass furnace tubes 1 on both sides of the furnace tube 2 and 8 on each side.
  • the structure of this embodiment is equivalent to arranging four structures as in the third embodiment in parallel.
  • the inner diameter of the first-stage furnace tube 1 may be 40 to 65 mm, and the inner diameter of the second-stage furnace tube 2 may be 55 to 130 mm.
  • the inner diameter of the connecting pipe between the first pass and the second pass pipe is 40 to 90 mm.
  • the length of the first pass tube 1 may be selected to be 8-18 m, and the length of the second pass tube 2 may be selected to be 6-14 m.
  • a reinforced heat transfer member such as a twisted tube as disclosed in CN1260469, may be provided in the radiant tube structure to increase the absorption of radiant heat.
  • the cracking furnace of the present invention has been described by taking a two-pass radiant furnace tube structure as described above, it will be understood that the present invention is equally applicable to a structure having more than two passes of radiant furnace tubes.
  • a manifold can be provided at the lower ends of the second and fourth furnace tubes. This is readily apparent to those skilled in the art after reading the present invention.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • General Chemical & Material Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Production Of Liquid Hydrocarbon Mixture For Refining Petroleum (AREA)
  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)
  • Gas Burners (AREA)

Abstract

提供了一种乙烯裂解炉,包括:至少一个辐射区,其中设置底部燃烧器和/或侧壁燃烧器;以及沿辐射区的纵向布置的至少一组辐射炉管。其中,辐射炉管包括至少两程具有N-1型结构的炉管,N优选2至8之间的自然数,在该至少两程炉管中的下游程炉管的下端设置了集合管,该至少两程炉管中的上游程炉管的下端通过弯管连接件连接到集合管。通过这种设置,可减小炉管中存在的由于第一程炉管之间的膨胀不等和上游程炉管和下游程炉管之间的膨胀差而引起的应力,避免炉管发生弯曲,延长辐射炉管使用寿命。

Description

一种乙烯裂解炉 技术领域
本发明属于石油化工领域, 具体涉及一种在石油化工生产中使用的乙烯裂解 炉中的辐射炉管结构。 背景技术
石油化工乙烯装置中所采用的乙烯裂解技术主要为美国 LUMMUS 公司、 Stone& Webster 公司、 Kellog & Braun Root 公司, 欧洲的德国 Linde 公司、 Technip(KTI)公司以及中国石化所开发的 CBL裂解炉。
图 1A显示了一种典型的乙烯裂解炉 10, 其包括辐射区 11、对流区 13、 以及 设置在辐射区 11和对流区 13之间的烟道 12。在辐射区 11内设置了辐射炉管 14, 其沿辐射区 11的纵向布置在辐射区的中心面 P内。 在辐射区 11内还设置了用于 加热的底部燃烧器 15和 /或侧壁燃烧器 16。 此外, 乙烯裂解炉 10还包括急冷锅 炉 17、 高压汽包 18和引风机 19等部件。
为使原料消耗大大降低、 维持适当的运转周期和具有较好的原料适应性, 目 前大多数现有技术均采用两程分枝变径或两程不分支变径高选择性炉管。 第一程 采用小直径炉管, 利用它比表面积大的特点达到快速升温的目的, 第二程采用较 大直径的炉管以降低对结焦敏感性的影响。所采用的两程辐射段炉管有 1-1型(U 型)、 2-1型、 4-1型、 6-1型等炉管。
两程 1-1型的炉管结构具有比表面积大、 能与线性急冷锅炉匹配、 具有较好 的机械性能, 但运转周期稍差。
对于 N-1型炉管结构(N〉l )来说, 第一程炉管数量为第二程炉管数量的 N 倍, 因此第一程炉管需要先由 N根炉管合并成一根炉管, 再与相应的一根第二程 炉管相连。 文献 EP1146105公开了一种具有两程 2-1型炉管结构的裂解炉。 如图 1B所示, 两程辐射段炉管即第一程炉管 51 ( 16根) 和第二程炉管 52 ( 8根) 垂 直排列在辐射段的炉膛里。 所有这些炉管均处于同一平面里, 并且所有第一程管 51布置在一起, 所有第二程管 52布置在一起。 其中, 两根第一程炉管 51在其下 部经一个 Y形集合管 53合并成一根管,然后通过两个 S形管 54与一个对称弯管 55连接到一根第二程管 52上。
文献 CN1067669公开了一种具有两程 6-1型炉管结构的裂解炉,其中第一程 炉管为 6根, 第二程炉管为 1根。 这 6根第一程炉管类似地在其下部通过一个刚 性集合管合并成一根管, 之后与第二炉程管连接。
在这种结构中, 由于第一程炉管的数量是第二程炉管的数量的若干倍, 因此 在炉管受热膨胀时, 第二程炉管先向下膨胀, 而第一程炉管在第二程炉管的牵引 下向下运动。 其中, 第一程炉管中的每根炉管受力不同, 容易导致炉管弯曲。 由 于连接在第一程炉管下部的集合管为刚性连接件, 导致这种膨胀差无法被 S形管 (如果有的话) 所吸收, 这便使得炉管容易发生弯曲。 因此, 炉管的机械性能下 降, 其使用寿命以及裂解炉的运行周期也缩短。 发明内容
本发明的目的是针对现有技术的缺陷, 提出一种新的两程或多程辐射炉管的 乙烯裂解炉, 其辐射炉管的特殊排布结构能够减小炉管的弯曲, 改善炉管的机械 性能, 延长炉管的使用寿命和裂解炉的运行周期。
根据本发明提供了一种乙烯裂解炉, 包括: 至少一个辐射区, 其中设置有底 部燃烧器和 /或侧壁燃烧器;以及沿辐射区的纵向布置的至少一组辐射炉管。其中, 辐射炉管包括至少两程具有 N-1型结构的炉管, N优选 2至 8之间的自然数, 在 该至少两程炉管中的下游程炉管的入口端设置了集合管, 而该至少两程炉管中的 上游程炉管的出口端通过弯管连接件连接到集合管。
在本文中, 用语 "N-1 型结构的炉管"是指在相邻的两程炉管中, 上游程炉 管的数量是下游程炉管的数量的 N倍。 容易理解, 对于 N-1型结构的两程炉管, 集合管可以具有 N个输入端和一个输出端。 根据一个优选实施例, 该集合管为具 有两个输入端和一个输出端的倒 Y形管, 并且 N等于 2或 4。 当 N=4时, 每两 个上游程炉管先通过一个 Y形管合并, 再连接到弯管连接件上。根据另一个实施 例, 集合管为具有多个输入端和一个输出端的掌形管。 在大于两程的炉管中 N-1 则表示 N个入口和一个出口, 所有两程 N-1型结构炉管的连接方式均可适用。
在一个优选实施例中, 该辐射炉管为两程炉管。 此时, 上游程炉管为第一程 炉管, 下游程炉管为第二程炉管。 在另一实施例中, 该辐射炉管为超过两程的多 程炉管, 在这种情况下, 上游程炉管为第一、 第三等奇数程炉管, 而下游程炉管 为第二、 第四等偶数程炉管。
根据一个实施例, 上游程炉管以两个数量相等的部分分别排列在下游程炉管 的两侧, 并且所有上游程炉管和下游程炉管设置成共面。
根据一个实施例, 弯管连接件包括对称弯管和 S形弯管。 其中, 对称弯管和 S形弯管中之一与上游程炉管的下端相连, 而对称弯管和 S形弯管中的另一个与 集合管的输入端相连。 需要说明的是, 在本文中所提及的弯管连接件与炉管或集 合管的 "相连"包括直接连接的情况以及通过一过渡管来形成连接的情况, 这可 根据具体情况的需要加以选择。 在一些优选实施例中, 弯管连接件的管径等于上 游程炉管的管径, 这例如尤其适合于 N=2的情况, 以及 N大于 2且集合管为掌 形管时的情况。
根据一个实施例, 从俯视图中看去, 对于各下游程炉管来说, 与之相关的 S 形弯管彼此间平行, 和 /或与之相关的对称弯管处于同一直线上。优选地, 所有的 S形弯管均彼此间平行。 或者, 所有的 S形弯管分成若干组, 每组内的 S形弯管 均彼此间平行。
根据一个实施例, 上游程炉管以两个数量相等的部分分别设置在下游程炉管 的两侧。 然而在此例中下游程炉管一侧的上游程炉管所处平面和下游程炉管另一 侧的上游程炉管所处平面不再与下游程炉管所处平面共面, 而是相对于下游程炉 管所处平面镜像对称。 在一个备选实施例中, 下游程炉管一侧的上游程炉管所处 平面、 下游程炉管另一侧的上游程炉管所处平面以及下游程炉管所处平面彼此间 平行。
根据本发明, 上游程炉管也可以全部设置在上游程炉管的同一侧, 并且所有 上游程炉管和下游程炉管设置成共面。 根据一个实施例, 相邻两根上游程炉管的 弯管连接件分处于上游程炉管和下游程炉管所处平面的两侧。 在一个实施例中, 上游程炉管不与下游程炉管处于同一平面内, 而分别布置在两个平行的平面中, 并与下游程炉管所处的平面平行。 在另一个实施例中, 上游程炉管分别布置在两 个平面中, 这两个平面相对于下游程炉管所处平面镜像对称。
与现有技术相比, 本发明的有益效果是:
( 1 ) 由于第一程炉管最终在第二程炉管的下部合并, 并且采用了 s 形管和 对称弯管, 因此有效地减小了 2-1、 4-1型等炉管中存在的由于第一程炉管间的膨 胀不等而引起的应力, 避免炉管发生弯曲, 最终延长了辐射炉管使用寿命;
(2) 上游程炉管在下游程炉管下部合并时其 S 形管和对称弯管的管径小于 在上游程管下部合并时的管径, 因此其柔性更好, 有利于吸收相邻程炉管的热膨 胀差, 避免炉管发生弯曲, 最终延长了辐射炉管使用寿命;
(3 ) 由于第一程炉管的管径小, 其比表面积大, 当第一程炉管长度加长后, 因此整个炉管的比表面积增加。 这在裂解深度相同时有利于延长裂解炉运行周 期, 而在运行周期相同时有利于提高烯烃收率。 附图说明 图 1A为根据现有技术的乙烯裂解炉的布置图;
图 1B显示了根据现有技术的典型两程 2-1型炉管结构;
图 2A、 2B、 2C分别显示了根据本发明的两程 2-1型炉管结构的一个实施例 的正视图、 俯视图和侧视图, 其中第一程炉管以相同数量的两个部分分设于第二 程炉管的两侧;
图 3A、3B和 3C分别显示了根据本发明的两程 2-1型炉管结构的另一实施例 的正视图、 俯视图和侧视图, 其中第一程炉管全部设置在第二程炉管的同一侧; 图 4A、4B和 4C分别显示了根据本发明的两程 4-1型炉管结构的一个实施例 的正视图、 俯视图和侧视图;
图 5A-7C 分别显示了根据本发明的两程 2-1 型炉管结构的几种变型的正视 图、 俯视图和侧视图, 其中第一程炉管以相同数量的两个部分排列第二程炉管的 两侧或全部排列在第二程炉管的同一侧;
图 8A-10C分别显示了根据本发明的两程 2-1型炉管结构的三种变型的正视 图、 俯视图和侧视图, 其中第一程炉管全部排列在第二程炉管的同一侧;
图 11A-11C分别显示了根据本发明的两程 4-1型炉管结构的一种变型的正视 图、 俯视图和侧视图。
在各幅图中, 相同的附图标记显示相同的部件或结构。 具体实施方式
下面将参照附图来对本发明进行详细的介绍。 需要说明的是, 本发明涉及的 是对乙烯裂解炉的辐射区内的辐射炉管的改进。 乙烯裂解炉中的其它结构如对流 区、 急冷锅炉等均属于在现有技术中公知的内容。 例如, 适用于本发明的急冷锅 炉主要采用双套管式急冷锅炉 (线性急冷锅炉、 U型急冷锅炉、 二级急冷锅炉的 第一级等), 也可采用传统式等型式的锅炉。 另外, 本发明的两程辐射炉管主要 适合于裂解液体原料, 但也可以裂解气体原料, 而本发明的多程辐射炉管主要适 合于裂解气体原料, 但也可以裂解液体原料, 都可用于新建裂解炉或对裂解炉进 行扩能改造。 这些都是本领域的技术人员所熟知的, 因此相关的介绍在此略去。
图 2A、 2B和 2C显示了根据本发明的第一实施例, 其涉及两程 2-1型炉管结 构。 如图所示, 在该实施例中包括两根第一程炉管 1和一根第二程炉管 2。 如正 视图即图 2A所示, 两根第一程炉管 1分别设置在第二程炉管 2的两侧, 并且所 有三根炉管的中心线布置在同一平面 P内, 如图 2B所示。
根据本发明, 在第二程炉管 2的下端 (即入口端) 设置有一个集合管 3, 用 来将两根第一程炉管 1合并且与第二程炉管 2相连。 在该具体例子中, 集合管 3 为倒 Y形的集合管, 即具有两个输入端和一个输出端, 其中输出端与第二程炉管 2的下端相连。 两根第一程炉管 1的下端 (即出口端) 分别通过一个弯管连接件 (由 S形管 5和对称弯管 4构成) 而分别连接到该集合管 3的两个输入端上。 容 易理解, 对于 Ν大于 2的 N-1型炉管结构来说, 该集合管可以设计成具有 Ν个 输入端和一个输出端的形式, 即构造成类似手掌的形式。 另外, 根据工艺及机械 设计的需要, 弯管连接件也可以通过一过渡管分别连接到该集合管 3的两个输入 端上。 在一个具体例子中, 过渡管的管径与弯管连接件相同, 可以是直管或者是 弯管。
通过将作为刚性连接结构的集合管 3布置在第二程炉管 2的下端而不是第一 程炉管 1的下端, 就可以使得在炉管受热膨胀时第一程炉管 1及第一程炉管 2之 间的膨胀差所产生的应力以及第一程炉管 1之间的热膨胀差所产生的应力不平衡 被连接在第一程炉管 1的下端处的 S形管 5和对称弯管 4所吸收。 因此, 减小了 的变形, 进而延长了炉管的寿命。
另外, 根据本发明, 由于 S形管 5和对称弯管 4连接在第一程炉管 1的下端 并与第一程炉管 1具有相同的管径, 因此实质上地延长了第一程炉管 1的长度。 这样, 炉管的比表面积增加, 在裂解深度相同时有利于延长裂解炉的运行周期, 在裂解炉的运行周期相同时有利于提高产品的收率。 此外, 由于弯管连接件的管 径等于第一程炉管的管径, 因此其柔性更佳, 有利于消除热应力, 对减小炉管的 变形和延长炉管的寿命有利。
有利地是, 连接在布置于第二程炉管 2左侧(图 2Α)的第一程炉管 1的下端 的 S形管 5和对称弯管 4相对于连接在布置于第二程炉管 2右侧 (图 2Α) 的第 一程炉管 1的下端的 S形管 5和对称弯管 4分处平面 Ρ的两侧, 见图 2Β和 2C。 通过这种方式, 能更均匀地吸收因热应力而产生的变形, 进一步降低炉管的表面 温度, 延伸炉管的使用寿命。
在一个优选的例子中, 在俯视图 2B中, 两根第一程炉管 1各自的 S形管 5 相互间平行,而两根第一程炉管 1各自的对称弯管 4处于同一直线上。更优选地, 第一程炉管 1中的处于平面 P—侧的 S形管 5和对称弯管 4与处于平面 P另一侧 的 S形管 5和对称弯管 4相对于第二程炉管 2的中心线 180°旋转对称。
而且, 在集合管 3和弯管连接件之间, 根据工艺或机械设计的需要, 也可以 保留一定长度的与一程管直径相同的直管。
根据该第一实施例的一种变型, 可以将第一程炉管 1和第二程炉管 2设置成 彼此不共面, 在这种情况下, 弯管连接件可以仅包括对称弯管 4, 而省略掉 S形 下面将介绍根据本发明的其它实施例。 为节约篇幅起见, 在下文中将仅描述 那些与上面已经介绍的实施例中不同的特征或部分及其功能, 而相同的特征或部 分及其功能不再赘述。
图 3A、 3B和 3C显示了根据本发明的第二实施例。 该第二实施例与第一实 施例的不同之处在于, 两根第一程炉管 1均设置在第二程炉管 2的同一侧, 如正 视图即图 3A所示。 这同样可以实现如第一实施例中所述的优点, 并且能适应于 一些特定结构的裂解炉。 在该第二实施例中, 连接在一根第一程炉管 1的下端的 S形管 5和对称弯管 4相对于连接在另一根第一程炉管 1的下端的 S形管 5和对 称弯管 4仍然分处于所有三根炉管所处平面 P的两侧 (见图 3B和 3C)。
在一个实施例子中, 从侧视图中看去, 一组 S形管 5和对称弯管 4与另一组 S形管 5和对称弯管 4相对于平面 P呈镜像对称, 如图 3C所示。 然而在一个未 示出的例子中, 为了保证两侧弯管的长度和重量相等, 这两组弯管连接件也可以 不是镜像对称的。
同样, 在第一程炉管 1和第二程炉管 2设置成不共面的情况下, 弯管连接件 可以仅包括对称弯管 4, 而省略掉 S形管 5。
图 4A、 4B和 4C显示了根据本发明的第三实施例。 该第三实施例与第一实 施例的不同之处在于, 它涉及的是一种两程 4-1型炉管结构。 如图所示, 在第二 程炉管 2的两侧都布置了两根第一程炉管 1。 每侧的两根第一程炉管 1先通过一 个集合管 6汇集成一根管, 然后再与 S形管 5和对称弯管 4相连, 最后连接到设 于第二程炉管 2下端的集合管 3上。 在该示例中, 集合管 6是一个正 Y形管, 具 有两个输入端和一个输出端。 此外, 根据工艺或机械设计的需要, 每侧的两根第 一程炉管 1可以先通过一个集合管 6汇集成一根管, 然后再通过连接一直管与 S 形管 5和对称弯管 4相连, 最后通过连接一过渡管 (直管或弯管) 连接到设于第 二程炉管 2下端的集合管 3上。
容易理解, 在一个未示出的例子中, 可以省略集合管 6, 同时将集合管 3修 改为具有四个输入端和一个输出端。 在这种情况下, 四根第一程炉管 1经必要的 弯管件 (对称弯管 4和 S形管 5 ) 而直接连接到这四个输入端, 或者通过一个过 渡管 (直管或弯管) 与这四个输入端连接。
图 5A、 5B和 5C显示了根据本发明的第四实施例。 该第四实施例仍为两程 2-1 型炉管结构, 其采用与第一实施例相同的设计思路, 不同之处是它包括并排 设置在一起的 8根第二程炉管 2, 以及分设于第二程炉管 2的两侧、 每侧各 8根 的 16根第一程炉管 1。该实施例的结构相当于将 8个如第一实施例的结构平行地 布置在一起。 如图 5B所示, 所有的 16根 S形管 5均彼此平行。 而且, 对于每一 根第二程炉管 2来说, 与之相关的两根对称弯管 4处于同一条直线上。 优选地, 与各根第二程炉管 2相关的对称弯管 4彼此间平行。
另外, 优选地是, 在平面 P的两侧, 各个 S形管 5与对称弯管 4的连接区处 于同一平面 Q内, 并且平面 Q平行于平面 P。
图 6A、 6B和 6C显示了根据本发明的第五实施例。 该第五实施例与第四实 施例基本相同, 不同之处是所有的 16根 S形管 5非均彼此平行, 而是分组式平 行。 根据图示例子, 每两根 S形管 5由里到外分成一组, 每组内的两根 S形管 5 彼此平行。
图 7A、 7B和 7C显示了根据本发明的第六实施例。 该第六实施例与第四实 施例基本相同, 不同之处在于, 第一程炉管 1不再设置成与第二程炉管 2共面。 如侧视图 7C所示, 每侧的 8根第一程炉管 1所处的平面 M, M'与第二程炉管 2 所处的平面 P均形成一个锐角。 优选地, 平面 Μ, Μ'相对于平面 P镜像对称。 另 外, 如俯视图 7Β所示, 每根第一程炉管 1的轴线 L均垂直于第二程炉管 2所处 的平面 Ρ。 容易理解, 在一个特定例子中, 平面 Μ, Μ'可以平行于平面!\ 也就是 说, 平面 Μ, M'与平面 Ρ所形成的夹角均为零。 此外, 本领域的技术人员容易想 到的是, 这种结构也可以应用于所有第一程炉管 1处于第二程炉管 2的同一侧的 情况 (例如第二实施例) 中。
图 8Α、 8Β和 8C显示了根据本发明的第七实施例。 该第七实施例与第二实 施例基本相同, 不同之处在于是它包括并排设置在一起的 5根第二程炉管 2, 以 及设于第二程炉管 2的同一侧的 10根第一程炉管 1。 该实施例的结构相当于将 5 个如第一实施例的结构平行地布置在一起。 如图 8Β所示, 连接于第一程炉管下 端的 S形管 5和对称弯管 4相对于炉管所处平面 Ρ交错地布置, 即连接于第一根 第一程炉管下端的 S形管 5和对称弯管 4设于平面 Ρ的一侧 (俯视图上方), 而 连接于第二根第一程炉管下端的 S形管 5和对称弯管 4设于平面 Ρ的另一侧(俯 视图下方), 以此类推。 此外, 所有处于平面 Ρ俯视图上方的 S形管 5彼此平行, 对称弯管 4也彼此平行; 而所有处于平面 Ρ俯视图下方的 S形管 5彼此平行, 对 称弯管 4也彼此平行。
另外, 在该实施例中, 从侧视图 (图 8C ) 看去, 分处于平面 Ρ两侧的 S形 管 5和对称弯管 4相对于平面 Ρ镜像对称。 然而在一个未示出的例子中, 为了保 证连接同一个集合管的两个弯管连接件的管长相同, 其侧视投影是不对称的。
图 9Α、 9Β和 9C显示了根据本发明的第八实施例。 该第八实施例与第七实 施例基本相同, 不同之处在于是第一程炉管 1的下端先连接在对称弯管 4上, 然 后连接 S形弯管 5, 之后连接到集合管 3。 也就是说, 对称弯管 4和 S形弯管 5 的布置顺序与前述实施例均不同。 优选地, 处于炉管所处平面 P两侧的 S形弯管 5在俯视图中相对于平面 P镜像对称。 同样优选地, 连接第一程与第二程炉管的 连接件的管长相同, 如图 9B所示。
图 10A、 10B和 10C显示了根据本发明的第九实施例。 该第九实施例与第八 实施例基本相同, 不同之处在于, 所有对称弯管相同, 但处于炉管所处平面 P两 侧的 S形弯管在俯视图中并未相对于平面 P镜像对称。
图 11A、 11B和 11C显示了根据本发明的第十实施例。 该第十实施例与第一 实施例基本相同, 为两程 4-1型炉管结构, 不同之处在于是它包括并排设置在一 起的 4根第二程炉管 2, 以及分设于第二程炉管 2的两侧、每侧各 8根的 16根第 一程炉管 1。 该实施例的结构相当于将 4个如第三实施例的结构平行地布置在一 起。
根据本发明, 第一程炉管 1的内径可以为 40〜65mm, 第二程炉管 2的内径 可以为 55〜130mm。 第一程与第二程管之间的连接管内径为 40〜90mm。 另夕卜, 通常来说, 第一程炉管 1的长度可选择为 8-18m, 第二程炉管 2的长度可选择为 6-14m。 这些参数, 包括各程炉管和连接管的长度和管内径的这些参数均可根据 具体结构的需要而加以选择, 不一定在上述范围之内, 也可以在以上范围之外, 这是本领域的技术人员所熟知的。
根据一个优选实施例, 在该辐射炉管结构中还可以设置强化传热构件, 如 CN1260469所公幵的扭曲管, 以便增加吸收辐射热。
尽管如上所述以两程辐射炉管结构为例对本发明的裂解炉进行了介绍, 然而 可以理解, 本发明同样可应用于具有多于两程的辐射炉管的结构。 例如, 对于一 种具有 8-4-2-1 型结构的四程炉管结构来说, 可以在第二程炉管和第四程炉管的 下端设置集合管。 这是本领域的技术人员在阅读了本发明之后容易想到的。
此外, 尽管在上文中以在一台裂解炉中设置一组辐射炉管为例对本发明进行 了描述, 然而可以理解, 在一台裂解炉中也可以设置更多组辐射炉管, 这完全取 决于具体情况的需要。 对于一台裂解炉通常布置以上实施例中的多组辐射炉管, 一种布置方式可以是按顺序布置, 另一种布置方式是以出口管集种方式布置, 此 时通常以镜像对称的方式布置。
虽然在上文中已经参考一些实施例对本发明进行了描述, 然而在不脱离本发 明的范围的情况下, 可以对其进行各种改进并且可以用等效物替换其中的部件。 尤其是, 只要不存在结构冲突, 本发明所披露的各个实施例中的各项特征均可通 过任意方式相互结合起来使用, 在本说明书中未对这些组合的情况进行穷举性的 描述仅仅是出于省略篇幅和节约资源的考虑。 因此, 本发明并不局限于文中公开 的特定实施例, 而是包括落入权利要求的范围内的所有技术方案。

Claims

权利要求书
1 . 一种乙烯裂解炉, 包括- 至少一个辐射区, 其中设置有底部燃烧器和 /或侧壁燃烧器, 以及沿辐射区的 纵向布置的至少一组辐射炉管,
其中, 所述辐射炉管包括至少两程具有 N-1型结构的炉管, N优选为 2到 8 之间的自然数, 在所述至少两程炉管中的下游程炉管的入口端设置了集合管, 而 所述至少两程炉管中的上游程炉管的出口端通过弯管连接件连接到所述集合管。
2. 根据权利要求 1 所述的乙烯裂解炉, 其特征在于, 所述集合管为具有 N 输入端和一个输出端的倒 Y形管或掌型管, 并且 N等于 2或 4。
3. 根据权利要求 1或 2所述的乙烯裂解炉, 其特征在于, 所述弯管连接件 包括对称弯管和 S形弯管, 其中所述对称弯管和 S形弯管中之一与所述上游程炉 管的出口端相连, 而所述对称弯管和 S形弯管中的另一个与所述集合管的入口端 相连。
4. 根据权利要求 3 所述的乙烯裂解炉, 其特征在于, 所述上游程炉管以两 个数量相等的部分分别排列在所述下游程炉管的两侧, 并且所有上游程炉管和下 游程炉管设置成共面。
5. 根据权利要求 4所述的乙烯裂解炉, 其特征在于, 从俯视图中看去, 对 于各下游程炉管来说, 与之相关的 S形弯管分处于炉管所处平面的两侧且彼此间 平行, 和 /或与之相关的对称弯管分处于炉管所处平面的两侧且处于同一直线上。
6. 根据权利要求 5所述的乙烯裂解炉, 其特征在于, 所有的 S形弯管均彼 此间平行。
7. 根据权利要求 5所述的乙烯裂解炉, 其特征在于, 所有的 S形弯管分成 若干组, 每组内的 S形弯管均彼此间平行。
8. 根据权利要求 2所述的乙烯裂解炉, 其特征在于, 当 N=4时, 每两个上 游程炉管先通过一个 Y形管合并, 再连接到弯管连接件上。
9. 根据权利要求 1或 2所述的乙烯裂解炉, 其特征在于, 所述上游程炉管 以两个数量相等的部分分别排列在所述下游程炉管平面的两侧, 所述下游程炉管 一侧的上游程炉管所处平面和所述下游程炉管另一侧的上游程炉管所处平面相 对于下游程炉管所处平面镜像对称。
10. 根据权利要求 9所述的乙烯裂解炉, 其特征在于, 所述下游程炉管一侧 的上游程炉管所处平面、 所述下游程炉管另一侧的上游程炉管所处平面以及下游 程炉管所处平面彼此平行。
11 . 根据权利要求 3所述的乙烯裂解炉, 其特征在于, 所述上游程炉管均设 置在所述下游程炉管的同一侧。
12. 根据权利要求 11 所述的乙烯裂解炉, 其特征在于, 所有上游程炉管和 下游程炉管设置成共面。
13. 根据权利要求 12所述的乙烯裂解炉, 其特征在于, 从俯视图中看去, 相邻上游程炉管的弯管连接件分处于炉管所处平面的两侧。
14. 根据权利要求 13所述的乙烯裂解炉, 其特征在于, S形弯管与上游程炉 管的出口端相连, 而对称弯管与集合管的入口端相连, 并且处于所述平面同侧的 S形弯管相互平行, 处于所述平面同侧的对称弯管相互平行。
15. 根据权利要求 13所述的乙烯裂解炉, 其特征在于, S形弯管与集合管的 入口端相连, 而对称弯管与上游程炉管的出口端相连, 分处于炉管所处平面的两 侧的 S形弯管相对于炉管所处平面镜像对称。
16. 根据权利要求 13 所述的乙烯裂解炉, 其特征在于, 相邻上游程炉管的 弯管连接件具有相同的长度。
17. 根据权利要求 11 所述的乙烯裂解炉, 其特征在于, 所有上游程炉管分 处于两个平面, 它们相对于下游程炉管所处的平面镜像对称。
18. 根据权利要求 1或 2所述的乙烯裂解炉, 其特征在于, 所述弯管连接件 的管径等于所述上游程炉管的管径。
19. 根据权利要求 1到 18中任一项所述的乙烯裂解炉, 其特征在于, 所述 辐射炉管为两程炉管, 其中所述上游程炉管为第一程炉管, 下游程炉管为第二程 炉管。
20. 根据权利要求 1到 18中任一项所述的乙烯裂解炉, 其特征在于, 所述 辐射炉管为超过两程的多程炉管, 其中所述上游程炉管为奇数程炉管, 而所述下 游程炉管为偶数程炉管。
PCT/CN2011/001239 2011-07-28 2011-07-28 一种乙烯裂解炉 WO2013013344A1 (zh)

Priority Applications (9)

Application Number Priority Date Filing Date Title
MYPI2014000246A MY167725A (en) 2011-07-28 2011-07-28 Ethylene cracking furnace
PCT/CN2011/001239 WO2013013344A1 (zh) 2011-07-28 2011-07-28 一种乙烯裂解炉
BR112014002075-2A BR112014002075B1 (pt) 2011-07-28 2011-07-28 Forno de craqueamento de etileno
KR1020147005332A KR101896028B1 (ko) 2011-07-28 2011-07-28 에틸렌 분해로
RU2014106935/04A RU2576387C2 (ru) 2011-07-28 2011-07-28 Крекинговая печь для получения этилена
US14/235,225 US9205400B2 (en) 2011-07-28 2011-07-28 Ethylene cracking furnace
MYPI2017703648A MY177140A (en) 2011-07-28 2011-07-28 Ethylene cracking furnace
SG2014011019A SG2014011019A (en) 2011-07-28 2011-07-28 Ethylene cracking furnace
US14/925,579 US9604193B2 (en) 2011-07-28 2015-10-28 Ethylene cracking furnace

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2011/001239 WO2013013344A1 (zh) 2011-07-28 2011-07-28 一种乙烯裂解炉

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US14/235,225 A-371-Of-International US9205400B2 (en) 2011-07-28 2011-07-28 Ethylene cracking furnace
US14/925,579 Division US9604193B2 (en) 2011-07-28 2015-10-28 Ethylene cracking furnace

Publications (1)

Publication Number Publication Date
WO2013013344A1 true WO2013013344A1 (zh) 2013-01-31

Family

ID=47600438

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2011/001239 WO2013013344A1 (zh) 2011-07-28 2011-07-28 一种乙烯裂解炉

Country Status (7)

Country Link
US (2) US9205400B2 (zh)
KR (1) KR101896028B1 (zh)
BR (1) BR112014002075B1 (zh)
MY (2) MY177140A (zh)
RU (1) RU2576387C2 (zh)
SG (1) SG2014011019A (zh)
WO (1) WO2013013344A1 (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107532820B (zh) * 2015-06-30 2020-05-12 环球油品公司 用于火焰工艺加热器的膜温度优化器
KR102320510B1 (ko) * 2020-02-28 2021-11-03 효성화학 주식회사 가열 튜브 모듈 및 이를 포함하는 파이어 히터
CA3199413A1 (en) * 2020-11-17 2022-05-27 Stephen J. Stanley Multi row radiant coil arrangement of a cracking heater for olefin production

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4361478A (en) * 1978-12-14 1982-11-30 Linde Aktiengesellschaft Method of preheating hydrocarbons for thermal cracking
JPH10103624A (ja) * 1996-09-26 1998-04-21 Taihei Kinzoku Kogyo Kk 加熱炉用ラジアントチューブ
CN1260469A (zh) * 1998-09-16 2000-07-19 中国石油化工集团公司 一种热交换管及其制造方法和应用
CN1405273A (zh) * 2001-09-19 2003-03-26 中国石油化工股份有限公司 新型辐射区盘管布置的裂解炉及其用途
CN102050696A (zh) * 2009-10-27 2011-05-11 中国石油化工股份有限公司 一种烃类蒸汽裂解制乙烯裂解炉
CN102051197A (zh) * 2009-10-27 2011-05-11 中国石油化工股份有限公司 一种多管程乙烯裂解炉
CN102146011A (zh) * 2010-02-10 2011-08-10 中国石油化工股份有限公司 一种烃类蒸汽裂解制乙烯裂解炉

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4160701A (en) * 1973-04-25 1979-07-10 Linde Aktiengesellschaft Tube furnace for the cracking of organic feed stock
DE3865785D1 (de) 1987-09-01 1991-11-28 Lummus Crest Inc Pyrolyseerhitzer.
JPH0631323B2 (ja) 1988-09-30 1994-04-27 三井造船株式会社 分解炉
EP0519230A1 (en) 1991-06-17 1992-12-23 Abb Lummus Crest Inc. Pyrolysis heater
US5151158A (en) 1991-07-16 1992-09-29 Stone & Webster Engineering Corporation Thermal cracking furnace
GB2340911B (en) 1998-08-20 2000-11-15 Doncasters Plc Alloy pipes and methods of making same
DE10018201A1 (de) 2000-04-12 2001-10-25 Linde Ag Pyrolyseofen zum thermischen Spalten von Kohlenwasserstoffen
EP1561796A1 (en) 2004-02-05 2005-08-10 Technip France Cracking furnace
RU2345122C1 (ru) * 2008-01-09 2009-01-27 Федеральное Государственное Унитарное Предприятие "Центральный Научно-Исследовательский Институт Конструкционных Материалов "Прометей" (Фгуп "Цнии Км "Прометей") Печь пиролиза для производства непредельных углеводородов
CN201520747U (zh) 2009-10-27 2010-07-07 中国石油化工股份有限公司 一种多管程乙烯裂解炉

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4361478A (en) * 1978-12-14 1982-11-30 Linde Aktiengesellschaft Method of preheating hydrocarbons for thermal cracking
JPH10103624A (ja) * 1996-09-26 1998-04-21 Taihei Kinzoku Kogyo Kk 加熱炉用ラジアントチューブ
CN1260469A (zh) * 1998-09-16 2000-07-19 中国石油化工集团公司 一种热交换管及其制造方法和应用
CN1405273A (zh) * 2001-09-19 2003-03-26 中国石油化工股份有限公司 新型辐射区盘管布置的裂解炉及其用途
CN102050696A (zh) * 2009-10-27 2011-05-11 中国石油化工股份有限公司 一种烃类蒸汽裂解制乙烯裂解炉
CN102051197A (zh) * 2009-10-27 2011-05-11 中国石油化工股份有限公司 一种多管程乙烯裂解炉
CN102146011A (zh) * 2010-02-10 2011-08-10 中国石油化工股份有限公司 一种烃类蒸汽裂解制乙烯裂解炉

Also Published As

Publication number Publication date
RU2014106935A (ru) 2015-09-10
US20140199214A1 (en) 2014-07-17
SG2014011019A (en) 2014-06-27
US9604193B2 (en) 2017-03-28
US20160045889A1 (en) 2016-02-18
RU2576387C2 (ru) 2016-03-10
MY167725A (en) 2018-09-24
KR20140064810A (ko) 2014-05-28
KR101896028B1 (ko) 2018-09-06
MY177140A (en) 2020-09-08
BR112014002075B1 (pt) 2019-05-28
US9205400B2 (en) 2015-12-08
BR112014002075A2 (pt) 2017-02-21

Similar Documents

Publication Publication Date Title
KR101831341B1 (ko) 다중 패스 복사로 튜브를 구비한 에틸렌 분해로
CN102146011B (zh) 一种烃类蒸汽裂解制乙烯裂解炉
CN201520747U (zh) 一种多管程乙烯裂解炉
CN108474588A (zh) 设置有热交换装置的冷凝热交换器
WO2013013344A1 (zh) 一种乙烯裂解炉
JP6911295B2 (ja) ボイラ
CN102050696B (zh) 一种烃类蒸汽裂解制乙烯裂解炉
CN101723784B (zh) 一种乙烯裂解炉
CN100487079C (zh) 新型结构及排布的裂解炉用两程辐射炉管
CN201276507Y (zh) 一种乙烯裂解炉
JP2021134971A (ja) 熱交換器およびこれを備えた温水装置
US9833762B2 (en) Ethylene cracking furnace
CN205676422U (zh) 一种乙烯裂解炉
TWI467000B (zh) A double row of radiant furnace tube cracking furnace
CN102911706B (zh) 一种采用分支变径炉管的乙烯裂解炉
JP2006516661A (ja) 2重炎加熱処理炉
CN209276456U (zh) 乙烯裂解炉
CN109423321A (zh) 一种乙烯裂解炉
CN201634601U (zh) 一种烃类蒸汽裂解制乙烯裂解炉
CN202509042U (zh) 一种多管程乙烯裂解炉
CN110057209A (zh) 一种列管式光管蒸发器及其焊接方法
CN109486507A (zh) 一种乙烯裂解炉
CN105579557A (zh) 用于过程流体的传热单元
TWI540120B (zh) An ethylene cracking furnace
CN204325256U (zh) 一种乙烯裂解炉用椭圆形截面的2-1-1型辐射炉管

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11870066

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20147005332

Country of ref document: KR

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2014106935

Country of ref document: RU

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 14235225

Country of ref document: US

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112014002075

Country of ref document: BR

122 Ep: pct application non-entry in european phase

Ref document number: 11870066

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 112014002075

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20140128