WO2013011949A1 - Heat-resistant electret material and condenser microphone - Google Patents

Heat-resistant electret material and condenser microphone Download PDF

Info

Publication number
WO2013011949A1
WO2013011949A1 PCT/JP2012/067953 JP2012067953W WO2013011949A1 WO 2013011949 A1 WO2013011949 A1 WO 2013011949A1 JP 2012067953 W JP2012067953 W JP 2012067953W WO 2013011949 A1 WO2013011949 A1 WO 2013011949A1
Authority
WO
WIPO (PCT)
Prior art keywords
electret
resin layer
heat
base resin
layer
Prior art date
Application number
PCT/JP2012/067953
Other languages
French (fr)
Japanese (ja)
Inventor
伴幸 白川
博幸 長尾
Original Assignee
三菱樹脂株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱樹脂株式会社 filed Critical 三菱樹脂株式会社
Publication of WO2013011949A1 publication Critical patent/WO2013011949A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R19/00Electrostatic transducers
    • H04R19/01Electrostatic transducers characterised by the use of electrets
    • H04R19/016Electrostatic transducers characterised by the use of electrets for microphones
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G7/00Capacitors in which the capacitance is varied by non-mechanical means; Processes of their manufacture
    • H01G7/02Electrets, i.e. having a permanently-polarised dielectric
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G7/00Capacitors in which the capacitance is varied by non-mechanical means; Processes of their manufacture
    • H01G7/02Electrets, i.e. having a permanently-polarised dielectric
    • H01G7/021Electrets, i.e. having a permanently-polarised dielectric having an organic dielectric
    • H01G7/023Electrets, i.e. having a permanently-polarised dielectric having an organic dielectric of macromolecular compounds

Definitions

  • the present invention relates to a heat-resistant electret material capable of exhibiting high interlayer adhesion and charge retention characteristics even when high-heat-resistant polytetrafluoroethylene (PTFE) is used as the fluororesin of the electret layer, and the heat-resistant electret
  • PTFE polytetrafluoroethylene
  • the present invention relates to a condenser-type microphone using a material.
  • An electret condenser microphone is known as one type of microphone.
  • Electret type condenser microphones are relatively easy to miniaturize, but when they are used in mobile phones that have been further thinned in recent years, in addition to miniaturization, they are thinned. It is desirable to do. Further, as a characteristic of the condenser microphone using the electret material, the sensitivity is improved when the thickness of the electret layer (insulating resin layer) is reduced.
  • Electrets are ferroelectric materials, which have the property that they accumulate charge semi-permanently (charge electrets) or have semi-permanent electrical polarity due to oriented dipoles (dipole electrets).
  • charge electrets charge semi-permanently
  • dipole electrets semi-permanent electrical polarity due to oriented dipoles
  • the electret is incorporated for the purpose of converting acoustic energy into a corresponding electrical signal by a potential difference displacement that occurs when either the electret fixed electrode or the counter electrode is vibrated by sound waves.
  • a fluororesin having a larger charge amount than other resins is used.
  • fluororesins tetrafluoroethylene-hexafluoropropylene copolymer (FEP) is known to have little charge decay, and FEP fused to a metal plate is a condenser for microphones that is an electronic component.
  • FEP tetrafluoroethylene-hexafluoropropylene copolymer
  • the electrets based on fluorine-containing polymers are generally charged by, for example, negative corona discharge in air.
  • solder that has been conventionally used for joining electronic components is required to be lead-free, that is, joined with solder that does not contain lead.
  • solder containing no lead has a higher melting point than conventional solder, and the soldering temperature needs to be 20 to 30 ° C. higher than conventional solder. Therefore, FEP is used for the insulating resin layer of the electret fixed electrode. If this is the case, there has been a problem that the FEP melts due to the soldering temperature, making it impossible to obtain good charging characteristics.
  • a resin material for the electret fixed electrode a material having heat resistance with respect to the soldering temperature of lead-free solder and excellent charging characteristics is required.
  • PTFE polytetrafluoroethylene
  • PTFE is preferable as a resin material for electret fixed electrodes because it has a large amount of charge and little charge decay, and since it has a higher melting point than FEP, it is also heat resistant to the soldering temperature of lead-free solder
  • the PTFE film has a problem that it is difficult to adhere to a metal substrate.
  • an adhesive layer made of a thermoplastic resin other than PTFE is provided between the metal substrate and the PTFE film.
  • the adhesive layer when the adhesive layer is provided, the sensitivity as a fixed electrode may be impaired, and there is a problem that charging characteristics are deteriorated (charging attenuation is increased) by using a thermoplastic resin other than PTFE. Further, in order to improve the adhesion to a metal substrate with a PTFE film alone without providing an adhesive layer, it must be heat-sealed at a temperature greatly exceeding the melting point of PTFE (about 327 ° C.). When fused at a high temperature, there is a problem in that the charge decay increases.
  • Japanese Patent Application Laid-Open No. 2002-125297 describes an electret laminate in which a single thermoplastic resin film is adhered to the surface of a metal plate, but only an example using an FEP film as the thermoplastic resin film is disclosed. However, it is not clear how the PTFE film is adhered to the surface of the metal plate.
  • Japanese Patent No. 3692090 describes a multi-layer electret material in which an FEP film and a PTFE film are sequentially melt bonded on a metal plate. In this electret material, charge retention is achieved by laminating a fluororesin layer. There are disadvantages that are impaired. In addition, when FEP is used for the adhesive layer, the adhesive layer cannot be obtained unless the adhesive layer is thick, and the adhesive layer becomes thick. Has the disadvantage of not being suitable.
  • Japanese Patent Application Laid-Open No. 2010-279024 discloses a method of adding electric conductivity by adding carbon to a base resin layer provided between a metal substrate and an electret layer to enhance charge retention. ing.
  • this method has a problem that the interlaminar adhesion between the metal substrate and the base resin layer is reduced due to the low metal affinity of carbon itself, and the interlaminar adhesion between the base resin layer and the electret layer is insufficient. is there.
  • JP 2002-125297 A Japanese Patent No. 3692090 JP 2010-279024 A
  • the present invention solves such problems of the prior art, and has a large charge holding power and low charge attenuation, and further from a metal substrate and a fluororesin, particularly polytetrafluoroethylene (PTFE). It is an object of the present invention to provide a heat-resistant electret material having excellent adhesiveness with an electret layer.
  • PTFE polytetrafluoroethylene
  • the present inventor made a base resin within a range that does not impair the charge retention characteristics of silicon (Si), a silicon compound, or a mixture thereof having high metal affinity as an electret material. It was found that the interlayer adhesion of the metal substrate / underlying resin layer / electret layer can be improved by introducing it into the layer.
  • the present invention has been achieved on the basis of such knowledge, and the gist thereof is as follows.
  • An electret layer made of a fluororesin is formed on a metal base material through a base resin layer containing a fluororesin, silicon, a silicon compound, or a mixture thereof, and conductive carbon. Characteristic heat-resistant electret material.
  • the thickness of the metal substrate is 10 to 500 ⁇ m
  • the thickness of the base resin layer is 1 to 50 ⁇ m
  • the thickness of the electret layer is 8 to 50 ⁇ m.
  • the proportion of silicon element in the total 100 mol% of fluorine element, silicon element and carbon element contained in the base resin layer is 1 to 50 mol%, A heat-resistant electret material having a ratio of 5 to 10 mol%.
  • the ratio of silicon element and carbon element contained in the base resin layer is smaller than the ratio of carbon element on the metal substrate side, and on the electret layer side.
  • the metal base plate is made of stainless steel, aluminum, brass, iron, or an oxide thereof, and an alloy containing one or more of them. Or nickel, gold, silver, copper, tin, zinc, and platinum on the surface of a thin metal plate made of stainless steel, aluminum, brass, iron, or an oxide thereof, and an alloy containing one or more of these.
  • a heat-resistant electret material comprising a thin metal plate coated with at least one conductive metal selected from the group consisting of:
  • the volume resistance value of the surface of the base resin layer on the electret layer side is 10 10 ⁇ ⁇ m to 10 13 ⁇ ⁇ m, and the volume of the electret layer A heat-resistant electret material having a resistance value of 10 15 ⁇ ⁇ m or more.
  • silicon (Si) having a high metal affinity, a silicon compound, or a mixture thereof (hereinafter sometimes referred to as “Si component”) into the base resin layer
  • Si component silicon
  • Interlayer adhesion of the metal substrate / underlying resin layer / electret layer can be enhanced. That is, as is clear from the periodic table of elements, silicon is a substance that is closer to metal than carbon and has a higher metal affinity, and also has a higher affinity for fluorine (fluoride ions). Therefore, by including such a Si component in the base resin layer, the interlayer adhesion between the base resin layer and the metal base material can be improved. As a result, the interlayer of the metal base material / base resin layer / electret layer can be improved. It becomes possible to realize a heat-resistant electret material having excellent adhesion.
  • the electret layer fluorine resin is preferable as a resin material for the electret fixed electrode because it has a large charge amount and little charge attenuation, and further has a higher melting point than FEP.
  • PTFE thermoplastic urethane resin
  • the electret layer fluorine resin is preferable as a resin material for the electret fixed electrode because it has a large charge amount and little charge attenuation, and further has a higher melting point than FEP.
  • FIG. It is a graph which shows the displacement of the mol% of the silicon element and carbon element in the thickness direction of the base resin layer of the sample of Example 2. It is a graph which shows the displacement of the volume resistance value in the thickness direction of a base resin layer.
  • FIG. 1 is a cross-sectional view showing an example of an embodiment of the heat-resistant electret material of the present invention, wherein 1 is a metal substrate, 2 is a base resin layer, and 3 is an electret layer.
  • the metal substrate used in the present invention is a thin metal plate made of stainless steel, aluminum, titanium, brass, copper, iron, or an oxide thereof, and an alloy containing one or more of these, or stainless steel, aluminum, It is selected from nickel, gold, silver, copper, tin, zinc, and platinum on the surface of a thin metal plate made of titanium, brass, copper, iron, oxides thereof, or an alloy containing one or more of these. It is preferably a thin metal plate coated (plated or vapor-deposited) with at least one conductive metal.
  • the thickness of the metal substrate is not particularly limited in terms of charge retention, but is usually 10 to 500 ⁇ m, and is 50 to 200 ⁇ m from the viewpoint of workability and the recent demand for smaller and lighter electronic devices.
  • charge retention usually 10 to 500 ⁇ m, and is 50 to 200 ⁇ m from the viewpoint of workability and the recent demand for smaller and lighter electronic devices.
  • the volume resistance value in the temperature range of 10 ° C. to 350 ° C. of the metal substrate used in the present invention is more than 60 ⁇ 10 ⁇ 8 ⁇ ⁇ m and less than 100 ⁇ 10 ⁇ 8 ⁇ ⁇ m. preferable.
  • the volume resistivity of the metal substrate is equal to or less than 60 ⁇ 10 -8 ⁇ ⁇ m is not preferable because can not retain the charge long stably holding the electret layer, 100 ⁇ 10 -8 ⁇ ⁇ In the case of m or more, the absolute amount of charges that can be held in the electret layer is reduced, which is not preferable.
  • the fluororesin used in the base resin layer and electret layer of the present invention may be either heat-meltable or non-heat-meltable, and is an unsaturated fluorinated hydrocarbon, unsaturated fluorinated chlorinated hydrocarbon, ether
  • examples thereof include polymers or copolymers such as group-containing unsaturated fluorinated hydrocarbons, or copolymers of these unsaturated fluorinated hydrocarbons with ethylene.
  • these can also be used independently and can also be used as 2 or more types of mixtures.
  • a tetrafluoroethylene polymer a copolymer of tetrafluoroethylene and less than 2% by mass of a copolymerizable fluorine-containing monomer (modified PTFE), tetrafluoroethylene / perfluoro ( Alkyl vinyl ether) copolymer (PFA), tetrafluoroethylene / hexafluoropropylene copolymer (FEP), ethylene / tetrafluoroethylene copolymer (ETFE), polychlorotrifluoroethylene (CTFE), polyvinylidene fluoride ( PVDF), tetrafluoroethylene / hexafluoropropylene / perfluoro (alkyl vinyl ether) copolymer, polyvinylidene fluoride, and chlorotrifluoroethylene / ethylene copolymer are preferable.
  • PTFE tetrafluoroethylene polymer
  • PVDF polyvinyliden
  • Ruoroechiren polymer polytetrafluoroethylene
  • / or tetrafluoroethylene and copolymers of copolymerizable fluorinated monomers of less than 2 wt% modified PTFE
  • a treatment for increasing the crystallinity may be added after the electret layer is formed.
  • the method for increasing the crystallinity of the PTFE resin layer is not particularly limited, and examples thereof include rolling, annealing, electron beam irradiation, and the like.
  • a method of slow cooling after heat treatment using an oven or a heating furnace is the simplest and most common.
  • Japanese Patent Application Laid-Open No. 2007-039672 There is a method by EB (electron beam) irradiation described in the publication.
  • the crystallinity of the PTFE layer is preferably in the range of 20 to 80%. If the degree of crystallinity is less than 20%, the charge retention becomes worse, whereas if it exceeds 80%, the elasticity of the material decreases and becomes hard and brittle, so various post-processing (bending, cutting, punching, punching, etc.) sexuality gets worse.
  • Examples of the conductive carbon used in the base resin layer of the present invention include carbon black (Ketjen Black EC, furnace black, channel black, acetylene black, etc.), black pearl, carbon nanofiber, carbon nanotube, carbon nanohorn, and carbon nanoballoon. , Graphene, fullerene, and the like can be used. These may be used alone or in combination of two or more.
  • Si component material As a material for introducing the Si component into the base resin layer (hereinafter sometimes referred to as “Si component material”), a siloxane bond (—O—Si—O—) is formed in the coating film by heat curing.
  • a silane coupling agent such as triethylsilanol, an alkoxysilane, a silicone, a metal alkoxide, an organic siloxane, an aqueous silicate solution, or the like used in Examples described later can be used.
  • silane coupling agent triethylsilanol, hydrolyzable organosilane, vinyl silane, methacryl silane, epoxy silane, amino silane, isocyanate silane and the like can be used.
  • alkoxysilane represented by the formula (1) when n is 0, that is, Si (OR 2 ) 4 is referred to as tetrafunctional alkoxysilane, and when n is 1, that is, R 1 (Si). (OR 2 ) 3 is a trifunctional alkoxysilane, and n is 2, that is, R 1 2 (Si) (OR 2 ) 2 is a bifunctional alkoxysilane, and n is 3, that is, R 1 3 ( Si) (OR 2 ) is a monofunctional alkoxysilane.
  • trifunctional alkoxysilanes include trimethoxysilane, triethoxysilane, methyltrimethoxysilane, methyltriethoxysilane, ethyltrimethoxysilane, ethyltriethoxysilane, propyltrimethoxysilane, propyltriethoxysilane, Examples include isobutyltriethoxysilane, cyclohexyltrimethoxysilane, phenyltrimethoxysilane, phenyltriethoxysilane, vinyltrimethoxysilane, vinyltriethoxysilane, allyltrimethoxysilane, and allyltriethoxysilane.
  • the bifunctional alkoxysilane include dimethyldimethoxysilane, dimethyldiethoxysilane, diphenyldimethoxysilane, and diphenyldiethoxysilane.
  • tetramethoxysilane, tetraethoxysilane, trimethoxysilane, triethoxysilane, methyltrimethoxysilane, methyltriethoxysilane, dimethyldimethoxysilane, dimethyldiethoxysilane and the like are particularly preferable.
  • silicone polyether-modified silicone, epoxy-modified silicone, amino-modified silicone, and the like can be used in addition to straight silicon having only a methyl group or phenyl group as a substituent.
  • metal alkoxide tetraethyl titanate, tetraethyl zirconate, aluminum isopropionate, or the like can be used.
  • organic siloxane polydimethylsiloxane, polymethylvinylsiloxane, or the like can be used.
  • silicate of the silicate aqueous solution atrium silicate, potassium silicate, hafnium silicate, or the like can be used.
  • the above Si component materials may be used alone or in any combination of two or more at any ratio.
  • the base resin layer of the heat-resistant electret material of the present invention is a base resin layer forming coating solution containing fluororesin, Si component material and conductive carbon, bar coating, spray coating, dip coating, spin coating, roller coating, impregnation coating. , Electrostatic coating, curtain flow coating (screen coating), gravure coating, die coating, slide coating, wire bar coating, knife coating, spin flow coating, etc. And can be obtained by drying and / or baking at a temperature of about room temperature to about 400 ° C. for 5 to 60 minutes. It can also be obtained by screen printing, gravure printing, or a method of laminating (thermocompression bonding) a previously prepared base resin layer film. In the case of the coating (coating) method, the heat-resistant electret material can be made thinner and thinner than the film laminating method.
  • the coating solution for forming the base resin layer can contain a binder resin, and the mass ratio of the binder resin to the fluororesin is preferably 5 to 50:95 to 50.
  • a binder resin for example, a resin having heat resistance equivalent to that of a fluororesin, that is, a thermal decomposition starting temperature of 300 ° C. or more and having adhesion to a metal substrate is preferable.
  • Particularly suitable as such a binder resin are polyimide resin (PI), polyamideimide resin (PAI), polyphenylene sulfide resin (PPS), polyethersulfone resin (PES), polyetheretherketone (PEEK), polyether. Imide (PEI), polybenzimidazole (PBI), epoxy resin, or a mixture thereof. More preferably, it is PAI.
  • the binder resin may be dissolved in the liquid medium or may be uniformly dispersed in the liquid medium as fine particles.
  • Liquid media that can be used include water, polar organic solvents, non-polar organic solvents, and mixtures thereof. When water is used as the liquid medium, it is preferable to add a surfactant to the liquid medium in order to reduce the surface tension of the liquid medium and improve the dispersibility of the binder resin and fluororesin powder.
  • the binder resin is PI, PAI, PES, or the like and is relatively easily dissolved in an organic solvent such as N-methylpyrrolidone or a mixture of N-methylpyrrolidone and diacetone alcohol or xylene
  • the binder resin It is preferable to use by dissolving in a liquid medium.
  • water containing a surfactant is used as the liquid medium, and the binder resin is used in the liquid medium. It is preferable to uniformly disperse and use.
  • the thickness of the base resin layer thus obtained is not particularly limited, but is preferably 1 to 50 ⁇ m. Thickness of the base resin layer that has conductivity and contributes to interlayer adhesion is desirable from the viewpoint of charge retention and interlayer adhesion. However, even if it is too large, the interlayer adhesion is caused by cohesive peeling in the layer. Sex is reduced. In general, a charge retention rate of 80% or more is sufficient when a heat-resistant electret material is used as a condenser microphone. Therefore, the film thickness of the base resin layer is particularly preferably in the range of 3 to 30 ⁇ m. A range of 5 to 20 ⁇ m is more preferable.
  • the volume resistance value of the surface of the base resin layer on the electret layer side in the temperature range of 10 ° C. to 350 ° C. is preferably 10 10 to 10 13 ⁇ ⁇ m. If the volume resistance value of the surface of the base resin layer on the electret layer side is too small, it is not preferable because the charge retained in the electret layer cannot be stably maintained for a long time, and if it is too large, it is retained in the electret layer. This is not preferable because the absolute amount of charge that can be generated is reduced.
  • the base resin layer has a feature that the volume resistance value sequentially increases from the metal substrate side to the electret layer side in the thickness direction, and the volume resistance value at the thickness 1/2 of the base resin layer is 10 It is larger than 9 ⁇ ⁇ m and not more than 10 12 ⁇ ⁇ m, and the volume resistance value on the surface of the base resin layer on the electret layer side is not less than 10 10 ⁇ ⁇ m, more preferably not less than 10 11 ⁇ ⁇ m and not more than 10 13 ⁇ ⁇ m. It becomes.
  • the proportion of conductive carbon (carbon element) contained in the base resin layer is a metal group as will be described later. This is thought to be due to the fact that the proportion of insulating silicon element decreases with increasing from the material side to the electret layer side.
  • the base resin layer of the heat-resistant electret material of the present invention has an elemental analysis for obtaining a good balance between the improvement in interlayer adhesion due to the inclusion of the Si component and the improvement in conductivity due to the inclusion of conductive carbon.
  • the ratio of silicon element to the total of 100 mol% of fluorine element, silicon element and carbon element contained in the base resin layer determined by 1 is 1 to 5 mol%, and the ratio of carbon element is 5 to 10 mol%. Is preferred. If the ratio of silicon element is less than this range, the effect of improving interlayer adhesion by introducing the Si component into the base resin layer cannot be sufficiently obtained, and if it is too high, the conductivity of the base resin layer is lowered. As a result, the charge retention characteristics deteriorate.
  • the ratio of the carbon element corresponds to the total of the carbon element derived from the fluororesin and the carbon element derived from the conductive carbon and the carbon element derived from other carbon-containing components such as the binder resin in the base resin layer.
  • this ratio is too less than the above range, the conductivity of the base resin layer is insufficient, not only the charge retention characteristics are lowered, but also the flexibility is impaired, due to shear stress at the time of bending and punching, Problems such as film breakage (chips) and cracks occur. If the amount is too large, the heat resistance at high temperatures during soldering is reduced.
  • the base resin layer of the heat-resistant electret material of the present invention is such that the ratio of silicon element and carbon element contained is smaller than the ratio of carbon element on the metal substrate side, and the electret layer On the side, the proportion of silicon element is higher than the proportion of carbon element.
  • the component gradient occurs in the process of volatilization of the solvent due to the specific gravity difference between the carbon element and the silicon element, so that more carbon elements gather than the silicon element on the metal substrate side, And since there is a tendency that more silicon element collects than carbon element on the electret layer side, adhesion between the base resin layer and the electret layer can be improved, and conductivity can be imparted to the base resin layer. It is thought that it will become.
  • the content of the Si component material in the above-described coating resin for forming the base resin layer is based on the fluororesin in the coating solution for forming the base resin layer.
  • 1.0 to 115.0 mass%, particularly 1.1 to 111.0 mass% is preferable.
  • the conductive carbon content is preferably 10.0 to 20.0% by mass, particularly 11.0 to 15.0% by mass, based on the fluororesin in the base resin layer forming coating solution.
  • the electret layer of the heat-resistant electret material of the present invention is a fluororesin-containing electret layer-forming coating solution prepared in the same manner as the base resin layer-forming coating solution except that it does not contain conductive carbon and Si component materials. And can be formed on the base resin layer in the same manner as the base resin layer.
  • the above base resin layer-forming coating solution is applied onto a metal substrate and the temperature is about 100 to 200 ° C. for about 1 to 10 minutes. Then, the electret layer forming coating solution is applied onto the dried coating film, dried at about 100 to 200 ° C. for about 1 to 10 minutes, and finally heated and fired at about 350 to 450 ° C. for about 1 to 10 minutes.
  • the base resin layer and the electret layer are preferably laminated on the metal substrate.
  • the thickness of the electret layer thus obtained is not particularly limited, but is preferably 8 to 50 ⁇ m, particularly preferably 15 to 45 ⁇ m.
  • the volume resistance value of the electret layer in the temperature range of 10 ° C. to 350 ° C. is preferably 10 15 ⁇ ⁇ m or more. When the volume resistance value of the electret layer is less than 10 15 ⁇ ⁇ m, the absolute amount of charges held in the electret layer is reduced, and the long-term holding stability of the held charges is also deteriorated. Absent.
  • the heat-resistant electret material of the present invention preferably has a metal substrate thickness of 50 to 500 ⁇ m, more preferably 80 to 300 ⁇ m, a base resin layer thickness of 1 to 50 ⁇ m, more preferably 2 to 20 ⁇ m, and an electret layer thickness.
  • the volume resistance value in the temperature range from 350 ° C.
  • a laminated member satisfying 100 ⁇ 10 ⁇ 8 ⁇ ⁇ m, 10 10 ⁇ ⁇ m ⁇ B ⁇ 10 13 ⁇ ⁇ m, and C ⁇ 10 15 ⁇ ⁇ m is preferable.
  • the heat-resistant electret material of the present invention is a conductive metal substrate and electret layer containing a fluororesin, an Si component and conductive carbon between a metal thin plate base material and a fluororesin layer which is an electret layer.
  • Such a heat-resistant electret material according to the present invention can be manufactured by only a wet process, not a dry process that requires a high level of dustproof equipment, so that the electret material can be provided at a low cost. Moreover, since the heat-resistant electret material of the present invention is a thin-film electret material with high charge retention, the members (earphones, headphones, microphones, etc.) that use this material can be made more compact.
  • a liquid A consisting of 0.5% by mass of 2-mass% 2- (diethylamino) ethanol was prepared.
  • a solution prepared by adjusting triethylsilanol (silane coupling agent) manufactured by Tokyo Chemical Industry Co., Ltd. with distilled water to 10% by mass is liquid B.
  • a liquid and B liquid were mixed by the compounding quantity shown in Table 1, and it was set as the coating liquid for base resin layer formation.
  • Table 1 the ratio of carbon black to the PTFE in the prepared coating solution for forming the base resin layer and the ratio of pure triethylsilanol are shown together.
  • a coating solution for forming an electret layer consisting of 0.3% by mass of 5-trimethylbenzene was prepared.
  • the laminated member is subjected to a charging process by performing a corona discharge of -1,000 V using a high voltage power source amplification / control device (MODEL610-C manufactured by Trek Japan Co., Ltd.) in the atmosphere of normal temperature and normal pressure.
  • a high voltage power source amplification / control device MODEL610-C manufactured by Trek Japan Co., Ltd.
  • samples of electret materials were produced.
  • the thickness of the base resin layer of each sample is 5 ⁇ m, and the thickness of the electret layer is 25 ⁇ m.
  • ⁇ Coating hardness> Each sample was evaluated for coating film hardness. The results are shown in Table 5. The hardness was measured on the surface of the electret layer based on JIS-K5400 using “553-M1” manufactured by Yasuda Seiki Co., Ltd. The value of the coating film hardness indicates that the coating film hardness is higher in the order of B ⁇ HB ⁇ F ⁇ B ⁇ H ⁇ 2H ⁇ .
  • the peeling failure rate is high, and when the thickness is 60 ⁇ m or more, cohesive peeling occurs in the layer and the peeling failure rate tends to increase. It is in. Accordingly, it can be seen that a thickness range of 1 to 50 ⁇ m is appropriate for the base resin layer.
  • the thickness of the electret layer is less than 5 ⁇ m, the charge retention performance is remarkably deteriorated. Energy is needed, material and energy are wasted. It is generally said that the thinner the electret layer is, the better the S / N ratio is.
  • the thickness range of the electret layer for which reduction in thickness and cost is required is 8 to It can be seen that 50 ⁇ m is suitable.
  • the etching conditions were 2 kV and 20 mA with Ar + , and the etching rate was 5.0 nm / min.
  • Mg—K ⁇ was used as the light source, and the measurement was performed under the conditions of an output of 8 kW ⁇ 30 mA and a degree of vacuum of 5 ⁇ 10 ⁇ 6 Pa. The results are shown in FIG. 5 (Example 1) and FIG. 6 (Example 2).

Abstract

Provided is a heat-resistant electret material with which charge retention is large, charge attenuation is small, and bonding between a metallic substrate and an electret layer formed from a fluorine resin, particularly polytetrafluoroethylene (PTFE), is superior. A heat-resistant electret material (10) comprises, upon a metallic substrate (1), an electret (3) which is formed from a fluorine resin, with a grounding resin layer (2) therebetween including a fluorine resin, silicon and/or a silicon compound, and conductive carbon. By introducing highly metallophilic silicon and/or a compound thereof into the grounding resin layer in a range which does not impair the electret material charge retention characteristics thereof, it is possible to improve adhesion between the metallic substrate, the grounding resin layer, and the electret layer.

Description

耐熱エレクトレット材及びコンデンサー型マイクロホンHeat-resistant electret material and condenser microphone
 本発明は、エレクトレット層のフッ素樹脂として高耐熱性のポリテトラフルオロエチレン(PTFE)を用いた場合であっても、高い層間密着性と電荷保持特性を発現し得る耐熱エレクトレット材と、この耐熱エレクトレット材を用いたコンデンサー型マイクロホンに関する。 The present invention relates to a heat-resistant electret material capable of exhibiting high interlayer adhesion and charge retention characteristics even when high-heat-resistant polytetrafluoroethylene (PTFE) is used as the fluororesin of the electret layer, and the heat-resistant electret The present invention relates to a condenser-type microphone using a material.
 マイクロホンの一形式として、エレクトレット型のコンデンサマイクロホンが知られている。エレクトレット型のコンデンサマイクロホンは、小型化が比較的容易であるが、これを、近年更なる薄型化が進んでいる携帯電話機等に搭載して使用する場合には、小型化に加えて、薄型化することが望まれる。また、エレクトレット材を使用したコンデンサマイクロホンの特性として、エレクトレット層(絶縁性樹脂層)の膜厚を薄くした方が感度も向上する。 An electret condenser microphone is known as one type of microphone. Electret type condenser microphones are relatively easy to miniaturize, but when they are used in mobile phones that have been further thinned in recent years, in addition to miniaturization, they are thinned. It is desirable to do. Further, as a characteristic of the condenser microphone using the electret material, the sensitivity is improved when the thickness of the electret layer (insulating resin layer) is reduced.
 エレクトレットは強誘電性材料であり、これらは電荷を半恒久的に蓄積する(電荷エレクトレット)か若しくは配向された双極子により半恒久的電気極性を有する(ダイポールエレクトレット)という特性を持つ。マクロホンの場合には、エレクトレットは、エレクトレット固定電極若しくは対電極のいずれかが音波によって振動する際に生じる電位差変位によって、音響エネルギーを相応する電気信号に変換する目的で組み込まれる。 Electrets are ferroelectric materials, which have the property that they accumulate charge semi-permanently (charge electrets) or have semi-permanent electrical polarity due to oriented dipoles (dipole electrets). In the case of a macrophone, the electret is incorporated for the purpose of converting acoustic energy into a corresponding electrical signal by a potential difference displacement that occurs when either the electret fixed electrode or the counter electrode is vibrated by sound waves.
 エレクトレット固定電極に用いられるエレクトレット材料としては、帯電量が他の樹脂に比べて大きいフッ素樹脂が用いられている。フッ素樹脂の中でも特にテトラフルオロエチレン-ヘキサフルオロプロピレン共重合体(FEP)は、帯電減衰が少ないことが知られており、FEPを金属板に融着させたものが、電子部品であるマイクロホン用コンデンサとして、現在広く使われている。フッ素含有ポリマーをベースとするエレクトレットの帯電は、例えば空気中での負のコロナ放電により行われることが一般的である。 As the electret material used for the electret fixed electrode, a fluororesin having a larger charge amount than other resins is used. Among fluororesins, tetrafluoroethylene-hexafluoropropylene copolymer (FEP) is known to have little charge decay, and FEP fused to a metal plate is a condenser for microphones that is an electronic component. As currently used widely. The electrets based on fluorine-containing polymers are generally charged by, for example, negative corona discharge in air.
 近年、エレクトロニクス産業界は、環境問題の点から、有害物質の使用削減に取り組んでおり、その一つに「鉛フリー化」がある。このため、従来、電子部品同士を接合するために使用されてきた半田においても、鉛フリー化、即ち、鉛を含まない半田で接合することが要求されている。しかし、鉛を含有しない半田は、従来の半田に比べ、融点が高く、半田付け温度を従来より20~30℃高くする必要があるため、エレクトレット固定電極の絶縁性樹脂層にFEPが用いられていると、半田付けの温度によりFEPが溶け出し、良好な帯電特性を得ることができなくなるという問題があった。 In recent years, the electronics industry has been working to reduce the use of hazardous substances from the viewpoint of environmental issues, one of which is “lead-free”. For this reason, even solder that has been conventionally used for joining electronic components is required to be lead-free, that is, joined with solder that does not contain lead. However, solder containing no lead has a higher melting point than conventional solder, and the soldering temperature needs to be 20 to 30 ° C. higher than conventional solder. Therefore, FEP is used for the insulating resin layer of the electret fixed electrode. If this is the case, there has been a problem that the FEP melts due to the soldering temperature, making it impossible to obtain good charging characteristics.
 そこで、エレクトレット固定電極の樹脂材料として、鉛非含有の半田の半田付け温度に対して耐熱性を有し、かつ優れた帯電特性を有する材料が求められている。そのような材料として、ポリテトラフルオロエチレン(PTFE)が提案されている。PTFEは帯電量が大きく、かつ帯電減衰も少ないことから、エレクトレット固定電極の樹脂材料として好ましく、さらにFEPに比べて融点が高いことから、鉛非含有の半田の半田付け温度に対しても耐熱性を有する。しかしながら、PTFEフィルムは金属基材に対して接着し難いという問題があった。その接着性を高めるために、金属基材とPTFEフィルムとの間にPTFE以外の熱可塑性樹脂からなる接着層を設ける技術がある。 Therefore, as a resin material for the electret fixed electrode, a material having heat resistance with respect to the soldering temperature of lead-free solder and excellent charging characteristics is required. As such a material, polytetrafluoroethylene (PTFE) has been proposed. PTFE is preferable as a resin material for electret fixed electrodes because it has a large amount of charge and little charge decay, and since it has a higher melting point than FEP, it is also heat resistant to the soldering temperature of lead-free solder Have However, the PTFE film has a problem that it is difficult to adhere to a metal substrate. In order to improve the adhesiveness, there is a technique in which an adhesive layer made of a thermoplastic resin other than PTFE is provided between the metal substrate and the PTFE film.
 しかしながら、接着層を設けると、固定電極としての感度が損なわれる場合があり、さらにPTFE以外の熱可塑性樹脂の使用により帯電特性が劣化する(帯電減衰が大きくなる)という問題があった。また、接着層を設けないでPTFEフィルム単独で金属基材に対する接着性を向上させるには、PTFEの融点(約327℃)を大きく超えた温度で熱融着しなければならず、そのような高い温度で融着すると逆に帯電減衰が大きくなってしまう問題があった。 However, when the adhesive layer is provided, the sensitivity as a fixed electrode may be impaired, and there is a problem that charging characteristics are deteriorated (charging attenuation is increased) by using a thermoplastic resin other than PTFE. Further, in order to improve the adhesion to a metal substrate with a PTFE film alone without providing an adhesive layer, it must be heat-sealed at a temperature greatly exceeding the melting point of PTFE (about 327 ° C.). When fused at a high temperature, there is a problem in that the charge decay increases.
 特開2002-125297号公報には、1枚の熱可塑性樹脂フィルムを金属板の表面に付着させたエレクトレット用積層板が記載されているが、熱可塑性樹脂フィルムとしてFEPフィルムを用いた例しか開示されておらず、PTFEフィルムを用いた場合に、どのようにして金属板の表面に接着させるかは明らかにされていない。 Japanese Patent Application Laid-Open No. 2002-125297 describes an electret laminate in which a single thermoplastic resin film is adhered to the surface of a metal plate, but only an example using an FEP film as the thermoplastic resin film is disclosed. However, it is not clear how the PTFE film is adhered to the surface of the metal plate.
 特許第3692090号公報には、金属板上にFEPフィルムとPTFEフィルムを順次溶融接着した多層エレクトレット材が記載されているが、このエレクトレット材では、フッ素樹脂層を積層することにより、電荷保持性が損なわれる欠点がある。また、接着層にFEPを用いると、接着層を厚くしないと充分な接着力と電荷保持姓を得られないばかりか、接着層が厚くなるため、小型・薄型低コストが求められる携帯機器等には向かないという欠点がある。 Japanese Patent No. 3692090 describes a multi-layer electret material in which an FEP film and a PTFE film are sequentially melt bonded on a metal plate. In this electret material, charge retention is achieved by laminating a fluororesin layer. There are disadvantages that are impaired. In addition, when FEP is used for the adhesive layer, the adhesive layer cannot be obtained unless the adhesive layer is thick, and the adhesive layer becomes thick. Has the disadvantage of not being suitable.
 特開2010-279024号公報には、金属基材とエレクトレット層との間に設けた下地樹脂層にカーボン(炭素)を添加することにより導電性を付与して電荷保持性を高める方法が示されている。しかし、この方法では、カーボン自体の金属親和性が低いために金属基材と下地樹脂層との層間密着力が低下し、また、下地樹脂層とエレクトレット層との層間密着力も不足するという問題がある。 Japanese Patent Application Laid-Open No. 2010-279024 discloses a method of adding electric conductivity by adding carbon to a base resin layer provided between a metal substrate and an electret layer to enhance charge retention. ing. However, this method has a problem that the interlaminar adhesion between the metal substrate and the base resin layer is reduced due to the low metal affinity of carbon itself, and the interlaminar adhesion between the base resin layer and the electret layer is insufficient. is there.
特開2002-125297号公報JP 2002-125297 A 特許第3692090号公報Japanese Patent No. 3692090 特開2010-279024号公報JP 2010-279024 A
 本発明は、このような従来技術の問題点を解決するものであって、帯電保持力が大きく、かつ帯電減衰も少なく、さらに金属基材と、フッ素樹脂、特にポリテトラフルオロエチレン(PTFE)からなるエレクトレット層との接着性にも優れた耐熱エレクトレット材を提供することを課題とする。 The present invention solves such problems of the prior art, and has a large charge holding power and low charge attenuation, and further from a metal substrate and a fluororesin, particularly polytetrafluoroethylene (PTFE). It is an object of the present invention to provide a heat-resistant electret material having excellent adhesiveness with an electret layer.
 本発明者は、上記課題を解決すべく鋭意検討を重ねた結果、金属親和性の高いケイ素(Si)、ケイ素化合物、又はこれらの混合物をエレクトレット材としての電荷保持特性を損なわない範囲で下地樹脂層中に導入することで、金属基材/下地樹脂層/エレクトレット層の層間密着性を向上させることができることを見出した。 As a result of intensive studies to solve the above-mentioned problems, the present inventor made a base resin within a range that does not impair the charge retention characteristics of silicon (Si), a silicon compound, or a mixture thereof having high metal affinity as an electret material. It was found that the interlayer adhesion of the metal substrate / underlying resin layer / electret layer can be improved by introducing it into the layer.
 本発明はこのような知見に基いて達成されたものであり、以下を要旨とする。 The present invention has been achieved on the basis of such knowledge, and the gist thereof is as follows.
[1] 金属基材上に、フッ素樹脂と、ケイ素、ケイ素化合物、又はこれらの混合物と、導電性カーボンとを含む下地樹脂層を介して、フッ素樹脂からなるエレクトレット層を形成してなることを特徴とする耐熱エレクトレット材。 [1] An electret layer made of a fluororesin is formed on a metal base material through a base resin layer containing a fluororesin, silicon, a silicon compound, or a mixture thereof, and conductive carbon. Characteristic heat-resistant electret material.
[2] [1]において、前記金属基材の厚さが10~500μmで、前記下地樹脂層の厚さが1~50μmで、前記エレクトレット層の厚さが8~50μmであることを特徴とする耐熱エレクトレット材。 [2] In [1], the thickness of the metal substrate is 10 to 500 μm, the thickness of the base resin layer is 1 to 50 μm, and the thickness of the electret layer is 8 to 50 μm. Heat-resistant electret material to be used.
[3] [1]又は[2]において、前記下地樹脂層に含まれるフッ素元素、ケイ素元素及び炭素元素の合計100モル%に占めるケイ素元素の割合が1~50モル%であり、炭素元素の割合が5~10モル%であることを特徴とする耐熱エレクトレット材。 [3] In [1] or [2], the proportion of silicon element in the total 100 mol% of fluorine element, silicon element and carbon element contained in the base resin layer is 1 to 50 mol%, A heat-resistant electret material having a ratio of 5 to 10 mol%.
[4] [3]において、前記下地樹脂層に含まれるケイ素元素と炭素元素の割合が前記金属基材側ではケイ素元素の割合の方が炭素元素の割合より少なく、かつ、前記エレクトレット層側ではケイ素元素の割合の方が炭素元素の割合より多いことを特徴とする耐熱エレクトレット材。 [4] In [3], the ratio of silicon element and carbon element contained in the base resin layer is smaller than the ratio of carbon element on the metal substrate side, and on the electret layer side. A heat-resistant electret material characterized in that the proportion of silicon element is larger than the proportion of carbon element.
[5] [1]ないし[4]のいずれかにおいて、前記下地樹脂層のフッ素樹脂がポリテトラフルオロエチレン(「PTFE」と称す)を主成分とすることを特徴とする耐熱エレクトレット材。 [5] The heat-resistant electret material according to any one of [1] to [4], wherein the fluororesin of the base resin layer contains polytetrafluoroethylene (referred to as “PTFE”) as a main component.
[6] [1]ないし[5]のいずれかにおいて、前記エレクトレット層のフッ素樹脂がPTFEを主成分とすることを特徴とする耐熱エレクトレット材。 [6] The heat-resistant electret material according to any one of [1] to [5], wherein the fluororesin of the electret layer contains PTFE as a main component.
[7] [1]ないし[6]のいずれかにおいて、前記金属基材が、ステンレス鋼、アルミニウム、真鍮、鉄、あるいはそれらの酸化物、及びこれらの内1種類以上を含む合金からなる金属薄板、またはステンレス鋼、アルミニウム、真鍮、鉄、あるいはそれらの酸化物、及びこれらの内1種類以上を含む合金からなる金属薄板の表面にニッケル、金、銀、銅、錫、亜鉛、及び白金の中から選ばれる少なくとも1種の導電性金属を被覆した金属薄板からなることを特徴とする耐熱エレクトレット材。 [7] In any one of [1] to [6], the metal base plate is made of stainless steel, aluminum, brass, iron, or an oxide thereof, and an alloy containing one or more of them. Or nickel, gold, silver, copper, tin, zinc, and platinum on the surface of a thin metal plate made of stainless steel, aluminum, brass, iron, or an oxide thereof, and an alloy containing one or more of these. A heat-resistant electret material comprising a thin metal plate coated with at least one conductive metal selected from the group consisting of:
[8] [1]ないし[7]のいずれかにおいて、前記エレクトレット層側の前記下地樹脂層表面の体積抵抗値が1010Ω・m以上1013Ω・m以下であり、前記エレクトレット層の体積抵抗値が1015Ω・m以上であることを特徴とする耐熱エレクトレット材。 [8] In any one of [1] to [7], the volume resistance value of the surface of the base resin layer on the electret layer side is 10 10 Ω · m to 10 13 Ω · m, and the volume of the electret layer A heat-resistant electret material having a resistance value of 10 15 Ω · m or more.
[9] [1]ないし[8]のいずれかにおいて、前記下地樹脂層の厚さ方向の体積抵抗値が前記金属基材側より前記エレクトレット層側の方が大きいことを特徴とする耐熱エレクトレット材。 [9] The heat-resistant electret material according to any one of [1] to [8], wherein the volume resistance value in the thickness direction of the base resin layer is larger on the electret layer side than on the metal substrate side .
[10] [9]において、前記下地樹脂層の厚さ1/2における体積抵抗値が10Ω・mより大きく1012Ω・m以下であることを特徴とする耐熱エレクトレット材。 [10] The heat-resistant electret material according to [9], wherein a volume resistance value at a thickness 1/2 of the base resin layer is greater than 10 9 Ω · m and not more than 10 12 Ω · m.
[11] [1]ないし[10]のいずれかに記載の耐熱エレクトレット材を用いたコンデンサー型マイクロホン。 [11] A condenser microphone using the heat-resistant electret material according to any one of [1] to [10].
 本発明によれば、金属親和性の高いケイ素(Si)、ケイ素化合物、又はこれらの混合物(以下、これらを「Si成分」と称す場合がある。)を下地樹脂層中に導入することにより、金属基材/下地樹脂層/エレクトレット層の層間密着性を高めることができる。即ち、ケイ素は、元素周期表からも明らかなように、炭素よりも金属に近く、より金属親和性が高い物質であるとともに、フッ素(フッ化物イオン)とも親和性が高い物質である。従って、このようなSi成分を下地樹脂層に含有させることによって、下地樹脂層と金属基材との層間密着性を高めることができ、この結果、金属基材/下地樹脂層/エレクトレット層の層間密着性に優れた耐熱エレクトレット材を実現することが可能となる。 According to the present invention, by introducing silicon (Si) having a high metal affinity, a silicon compound, or a mixture thereof (hereinafter sometimes referred to as “Si component”) into the base resin layer, Interlayer adhesion of the metal substrate / underlying resin layer / electret layer can be enhanced. That is, as is clear from the periodic table of elements, silicon is a substance that is closer to metal than carbon and has a higher metal affinity, and also has a higher affinity for fluorine (fluoride ions). Therefore, by including such a Si component in the base resin layer, the interlayer adhesion between the base resin layer and the metal base material can be improved. As a result, the interlayer of the metal base material / base resin layer / electret layer can be improved. It becomes possible to realize a heat-resistant electret material having excellent adhesion.
 本発明によれば、エレクトレット層のフッ素樹脂として、帯電量が大きく、かつ帯電減衰も少ないことから、エレクトレット固定電極の樹脂材料として好ましく、さらにFEPに比べて融点が高いことから、鉛非含有の半田の半田付け温度に対しても耐熱性を有するPTFEを用いて、層間密着性と電荷保持特性に優れた耐熱エレクトレット材を提供することができる。 According to the present invention, the electret layer fluorine resin is preferable as a resin material for the electret fixed electrode because it has a large charge amount and little charge attenuation, and further has a higher melting point than FEP. By using PTFE having heat resistance even at the soldering temperature of the solder, it is possible to provide a heat resistant electret material having excellent interlayer adhesion and charge retention characteristics.
本発明の耐熱エレクトレット材の実施の形態を示す断面図である。It is sectional drawing which shows embodiment of the heat-resistant electret material of this invention. 実施例1,2、比較例1,2及び参考例1,2の電荷保持特性の評価結果を示すグラフである。It is a graph which shows the evaluation result of the electric charge retention characteristic of Examples 1, 2, Comparative Examples 1, 2, and Reference Examples 1, 2. 下地樹脂層の厚さと不良率との関係を示すグラフである。It is a graph which shows the relationship between the thickness of a base resin layer, and a defect rate. エレクトレット層の厚さと電荷保持率との関係を示すグラフである。It is a graph which shows the relationship between the thickness of an electret layer, and a charge retention. 実施例1のサンプルの下地樹脂層の厚さ方向におけるケイ素元素と炭素元素のモル%の変位を示すグラフである。3 is a graph showing displacement in mol% of silicon element and carbon element in the thickness direction of the base resin layer of the sample of Example 1. FIG. 実施例2のサンプルの下地樹脂層の厚さ方向におけるケイ素元素と炭素元素のモル%の変位を示すグラフである。It is a graph which shows the displacement of the mol% of the silicon element and carbon element in the thickness direction of the base resin layer of the sample of Example 2. 下地樹脂層の厚さ方向における体積抵抗値の変位を示すグラフである。It is a graph which shows the displacement of the volume resistance value in the thickness direction of a base resin layer.
 以下に図面を参照して本発明の実施の形態を詳細に説明する。
 図1は本発明の耐熱エレクトレット材の実施の形態の一例を示す断面図であり、1は金属基材、2は下地樹脂層、3はエレクトレット層を示す。
Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.
FIG. 1 is a cross-sectional view showing an example of an embodiment of the heat-resistant electret material of the present invention, wherein 1 is a metal substrate, 2 is a base resin layer, and 3 is an electret layer.
 本発明に用いられる金属基材は、ステンレス鋼、アルミニウム、チタン、真鍮、銅、鉄、あるいはそれらの酸化物、及びこれらの内1種類以上を含む合金からなる金属薄板、またはステンレス鋼、アルミニウム、チタン、真鍮、銅、鉄、あるいはそれらの酸化物、及びこれらの内1種類以上を含む合金からなる金属薄板の表面に、ニッケル、金、銀、銅、錫、亜鉛、白金の中から選ばれる少なくとも1種の導電性金属を被覆(めっきまたは蒸着)した金属薄板であることが好ましい。 The metal substrate used in the present invention is a thin metal plate made of stainless steel, aluminum, titanium, brass, copper, iron, or an oxide thereof, and an alloy containing one or more of these, or stainless steel, aluminum, It is selected from nickel, gold, silver, copper, tin, zinc, and platinum on the surface of a thin metal plate made of titanium, brass, copper, iron, oxides thereof, or an alloy containing one or more of these. It is preferably a thin metal plate coated (plated or vapor-deposited) with at least one conductive metal.
 金属基材の厚さは電荷保持の点においては特に限定しないが、通常10~500μmであり、加工性の点と昨今では電子機器に対して小型軽量化が求められる点からは50~200μmとするのが好ましい The thickness of the metal substrate is not particularly limited in terms of charge retention, but is usually 10 to 500 μm, and is 50 to 200 μm from the viewpoint of workability and the recent demand for smaller and lighter electronic devices. Preferably
 本発明に用いられる金属基材の10℃から350℃の温度範囲に於ける体積抵抗値は、60×10-8Ω・mを超え、且つ100×10-8Ω・m未満であることが好ましい。
 金属基材の体積抵抗値が、60×10-8Ω・m以下である場合には、エレクトレット層中に保持した電荷の長期安定して保持できなくなるため好ましくなく、100×10-8Ω・m以上の場合には、エレクトレット層中に保持できる電荷の絶対量が少なくなってしまうため好ましくない。
The volume resistance value in the temperature range of 10 ° C. to 350 ° C. of the metal substrate used in the present invention is more than 60 × 10 −8 Ω · m and less than 100 × 10 −8 Ω · m. preferable.
The volume resistivity of the metal substrate is equal to or less than 60 × 10 -8 Ω · m is not preferable because can not retain the charge long stably holding the electret layer, 100 × 10 -8 Ω · In the case of m or more, the absolute amount of charges that can be held in the electret layer is reduced, which is not preferable.
 本発明の下地樹脂層及びエレクトレット層に用いられるフッ素樹脂は、熱溶融性であっても非熱溶融性であってもよく、不飽和フッ素化炭化水素、不飽和フッ素化塩素化炭化水素、エーテル基含有不飽和フッ素化炭化水素などの重合体又は共重合体、或はこれら不飽和フッ素化炭化水素類とエチレンの共重合体などが挙げられる。例えば、テトラフルオロエチレン、ヘキサフルオロプロピレン、パーフルオロ(アルキルビニルエーテル)、ビニリデンフルオライド及びビニルフルオライドから選ばれるモノマーの重合体又は共重合体、或いはこれらモノマーとエチレンの共重合体などを挙げることができる。これらは勿論単独で使用することもできるし、2種以上の混合物として使用することもできる。 The fluororesin used in the base resin layer and electret layer of the present invention may be either heat-meltable or non-heat-meltable, and is an unsaturated fluorinated hydrocarbon, unsaturated fluorinated chlorinated hydrocarbon, ether Examples thereof include polymers or copolymers such as group-containing unsaturated fluorinated hydrocarbons, or copolymers of these unsaturated fluorinated hydrocarbons with ethylene. For example, a polymer or copolymer of a monomer selected from tetrafluoroethylene, hexafluoropropylene, perfluoro (alkyl vinyl ether), vinylidene fluoride and vinyl fluoride, or a copolymer of these monomers and ethylene. it can. Of course, these can also be used independently and can also be used as 2 or more types of mixtures.
 より具体的には、テトラフルオロエチレン重合体(PTFE)、テトラフルオロエチレンと2質量%未満の共重合可能な含フッ素単量体との共重合体(変性PTFE)、テトラフルオロエチレン/パーフルオロ(アルキルビニルエーテル)共重合体(PFA)、テトラフルオロエチレン/ヘキサフルオロプロピレン共重合体(FEP)、エチレン/テトラフルオロエチレン共重合体(ETFE)、ポリクロロトリフルオロエチレン(CTFE)、ポリビニリデンフルオライド(PVDF)、テトラフルオロエチレン・ヘキサフルオロプロピレン・パーフルオロ(アルキルビニルエーテル)共重合体、ポリビニリデンフルオライド、クロロトリフルオロエチレン・エチレン共重合体から選ばれる少なくとも1種であることが好ましく、テトラフルオロエチレン重合体(ポリテトラフルオロエチレン)及び/またはテトラフルオロエチレンと2質量%未満の共重合可能な含フッ素単量体との共重合体(変性PTFE)であることがより好ましい。 More specifically, a tetrafluoroethylene polymer (PTFE), a copolymer of tetrafluoroethylene and less than 2% by mass of a copolymerizable fluorine-containing monomer (modified PTFE), tetrafluoroethylene / perfluoro ( Alkyl vinyl ether) copolymer (PFA), tetrafluoroethylene / hexafluoropropylene copolymer (FEP), ethylene / tetrafluoroethylene copolymer (ETFE), polychlorotrifluoroethylene (CTFE), polyvinylidene fluoride ( PVDF), tetrafluoroethylene / hexafluoropropylene / perfluoro (alkyl vinyl ether) copolymer, polyvinylidene fluoride, and chlorotrifluoroethylene / ethylene copolymer are preferable. More preferably Ruoroechiren polymer (polytetrafluoroethylene) and / or tetrafluoroethylene and copolymers of copolymerizable fluorinated monomers of less than 2 wt% (modified PTFE).
 エレクトレット層が、PTFE及び/または変性PTFEである場合、エレクトレット層の形成後に結晶化度を高める処理を加えても良い。PTFE樹脂層の結晶化度を高める方法は特に限定されず、例えば、圧延、アニーリング、電子線照射等の手段が挙げられる。オーブンや加熱炉により加熱処理後の徐冷する方法が最も簡易的で一般的であるが、この方法では長時間の処理を必要とするために、近年では他の方法として特開2007-039672号公報に記載されているEB(電子線)照射による方法がある。PTFE層(エレクトレット層)の結晶化度としては、20~80%の範囲が好ましい。結晶化度が20%未満では電荷保持性が悪くなる反面、80%を超える場合には材料の弾性が低下して硬く脆くなる為に各種の後加工(折り曲げ、切断、打ち抜き、孔明け等)性が悪くなる。 When the electret layer is PTFE and / or modified PTFE, a treatment for increasing the crystallinity may be added after the electret layer is formed. The method for increasing the crystallinity of the PTFE resin layer is not particularly limited, and examples thereof include rolling, annealing, electron beam irradiation, and the like. A method of slow cooling after heat treatment using an oven or a heating furnace is the simplest and most common. However, since this method requires long-time treatment, recently, as another method, Japanese Patent Application Laid-Open No. 2007-039672 There is a method by EB (electron beam) irradiation described in the publication. The crystallinity of the PTFE layer (electret layer) is preferably in the range of 20 to 80%. If the degree of crystallinity is less than 20%, the charge retention becomes worse, whereas if it exceeds 80%, the elasticity of the material decreases and becomes hard and brittle, so various post-processing (bending, cutting, punching, punching, etc.) Sexuality gets worse.
 本発明の下地樹脂層に用いられる導電性カーボンとしては、カーボンブラック(ケッチェンブラックEC、ファーネスブラック、チャンネルブラック、アセチレンブラック等)、ブラックパール、カーボンナノファイバー、カーボンナノチューブ、カーボンナノホーン、カーボンナノバルーン、グラフェン、フラーレンなどを用いることができる。これらは1種を単独で用いてもよく、2種以上を混合して用いてもよい。 Examples of the conductive carbon used in the base resin layer of the present invention include carbon black (Ketjen Black EC, furnace black, channel black, acetylene black, etc.), black pearl, carbon nanofiber, carbon nanotube, carbon nanohorn, and carbon nanoballoon. , Graphene, fullerene, and the like can be used. These may be used alone or in combination of two or more.
 また、下地樹脂層中にSi成分を導入するための材料(以下「Si成分材料」と称す場合がある。)としては、加熱硬化によって塗膜中でシロキサン結合(-O-Si-O-)を形成するものが好ましく用いられ、後述の実施例において使用したトリエチルシラノール等のシランカップリング剤や、アルコキシシラン、シリコーン、金属アルコキシド、有機シロキサン、ケイ酸塩水溶液などを用いることができる。 In addition, as a material for introducing the Si component into the base resin layer (hereinafter sometimes referred to as “Si component material”), a siloxane bond (—O—Si—O—) is formed in the coating film by heat curing. A silane coupling agent such as triethylsilanol, an alkoxysilane, a silicone, a metal alkoxide, an organic siloxane, an aqueous silicate solution, or the like used in Examples described later can be used.
 より具体的には、シランカップリング剤としては、トリエチルシラノール、加水分解性オルガノシラン、ビニルシラン、メタクリルシラン、エポキシシラン、アミノシラン、イソシアネートシラン等を用いることができる。 More specifically, as the silane coupling agent, triethylsilanol, hydrolyzable organosilane, vinyl silane, methacryl silane, epoxy silane, amino silane, isocyanate silane and the like can be used.
 アルコキシシランとしては、下記式(1)で表されるものを用いることができる。
            R (Si)(OR)4-n  (1)
(式中、R1はHまたは炭素数1~8の直鎖状、分岐状および環状のアルキル基またはアリール基を表し、R2は炭素数1~6の直鎖状または分岐状アルキル基を表す。またnは0~2の整数である)。
As alkoxysilane, what is represented by following formula (1) can be used.
R 1 n (Si) (OR 2 ) 4-n (1)
(Wherein R 1 represents H or a linear, branched or cyclic alkyl group or aryl group having 1 to 8 carbon atoms, and R 2 represents a linear or branched alkyl group having 1 to 6 carbon atoms. And n is an integer from 0 to 2).
 ここで、式(1)で表されるアルコキシシランにおいて、nが0の場合、即ちSi(OR2)を4官能性のアルコキシシランといい、nが1の場合、即ちR1(Si)(OR2)を3官能性のアルコキシシラン、nが2の場合、即ちR1 2(Si)(OR2)を2官能性のアルコキシシラン、nが3の場合、即ちR1 3(Si)(OR2)を1官能性のアルコキシシランとする。 Here, in the alkoxysilane represented by the formula (1), when n is 0, that is, Si (OR 2 ) 4 is referred to as tetrafunctional alkoxysilane, and when n is 1, that is, R 1 (Si). (OR 2 ) 3 is a trifunctional alkoxysilane, and n is 2, that is, R 1 2 (Si) (OR 2 ) 2 is a bifunctional alkoxysilane, and n is 3, that is, R 1 3 ( Si) (OR 2 ) is a monofunctional alkoxysilane.
 本発明において用いることができる4官能性のアルコキシシランの具体的な例として、テトラメトキシシラン、テトラエトキシシラン、テトラ(n-プロポキシ)シラン、テトラ(i-プロポキシ)シラン、テトラ(n-ブトキシ)シラン、テトラ(t-ブトキシ)シランなどが挙げられる。 Specific examples of the tetrafunctional alkoxysilane that can be used in the present invention include tetramethoxysilane, tetraethoxysilane, tetra (n-propoxy) silane, tetra (i-propoxy) silane, and tetra (n-butoxy). Examples thereof include silane and tetra (t-butoxy) silane.
 3官能性のアルコキシシランの具体的な例としてトリメトキシシラン、トリエトキシシラン、メチルトリメトキシシラン、メチルトリエトキシシラン、エチルトリメトキシシラン、エチルトリエトキシシラン、プロピルトリメトキシシラン、プロピルトリエトキシシラン、イソブチルトリエトキシシラン、シクロヘキシルトリメトキシシラン、フェニルトリメトキシシラン、フェニルトリエトキシシラン、ビニルトリメトキシシラン、ビニルトリエトキシシラン、アリルトリメトキシシラン、アリルトリエトキシシランなどが挙げられる。
 2官能性のアルコキシシランの具体的な例として、ジメチルジメトキシシラン、ジメチルジエトキシシラン、ジフェニルジメトキシシラン、ジフェニルジエトキシシランなどが挙げられる。
Specific examples of trifunctional alkoxysilanes include trimethoxysilane, triethoxysilane, methyltrimethoxysilane, methyltriethoxysilane, ethyltrimethoxysilane, ethyltriethoxysilane, propyltrimethoxysilane, propyltriethoxysilane, Examples include isobutyltriethoxysilane, cyclohexyltrimethoxysilane, phenyltrimethoxysilane, phenyltriethoxysilane, vinyltrimethoxysilane, vinyltriethoxysilane, allyltrimethoxysilane, and allyltriethoxysilane.
Specific examples of the bifunctional alkoxysilane include dimethyldimethoxysilane, dimethyldiethoxysilane, diphenyldimethoxysilane, and diphenyldiethoxysilane.
 これらの中でも特に好ましいのがテトラメトキシシラン、テトラエトキシシラン、トリメトキシシラン、トリエトキシシラン、メチルトリメトキシシラン、メチルトリエトキシシラン、ジメチルジメトキシシラン、ジメチルジエトキシシラン等である。 Of these, tetramethoxysilane, tetraethoxysilane, trimethoxysilane, triethoxysilane, methyltrimethoxysilane, methyltriethoxysilane, dimethyldimethoxysilane, dimethyldiethoxysilane and the like are particularly preferable.
 シリコーンとしては、置換基にメチル基もしくはフェニル基のみからなるストレートシリコン以外にもポリエーテル変性シリコーン、エポキシ変性シリコーン、アミノ変性シリコーン、等を用いることができる。 As the silicone, polyether-modified silicone, epoxy-modified silicone, amino-modified silicone, and the like can be used in addition to straight silicon having only a methyl group or phenyl group as a substituent.
 金属アルコキシドとしては、テトラエチルチタネート、テトラエチルジルコネート、アルミニウムイソプロピオネート等を用いることができる。 As the metal alkoxide, tetraethyl titanate, tetraethyl zirconate, aluminum isopropionate, or the like can be used.
 有機シロキサンとしては、ポリジメチルシロキサン、ポリメチルビニルシロキサン、等を用いることができる。 As the organic siloxane, polydimethylsiloxane, polymethylvinylsiloxane, or the like can be used.
 ケイ酸塩水溶液のケイ酸塩としては、ケイ酸アトリウム、ケイ酸カリウム、ケイ酸ハフニウム等を用いることができる。 As the silicate of the silicate aqueous solution, atrium silicate, potassium silicate, hafnium silicate, or the like can be used.
 上記Si成分材料は1種を単独で用いてもよく、任意の2種以上を任意の比率で組み合わせて用いてもよい。 The above Si component materials may be used alone or in any combination of two or more at any ratio.
 本発明の耐熱エレクトレット材の下地樹脂層は、フッ素樹脂、Si成分材料及び導電性カーボンを含む下地樹脂層形成用塗布液を、バーコート、スプレーコート、ディップコート、スピンコート、ローラーコート、含浸塗装、静電塗装、カーテンフローコート(スクリーンコート)、グラビアコート、ダイコート、スライドコート、ワイヤーバーコート、ナイフコート、スピンフローコート等任意の塗装方法で金属基材上に塗布し、慣用の装置を用いて室温~400℃程度の温度で、5~60分間乾燥及び/又は焼成することにより得ることができる。また、スクリーン印刷、グラビア印刷、或いは予め用意した下地樹脂層のフィルムをラミネート(熱圧着)するなどの方法によっても得ることができる。コーティング(塗工)方式による場合には、フィルムラミネート方式よりも、耐熱エレクトレット材を薄膜・薄型化することが可能となる。 The base resin layer of the heat-resistant electret material of the present invention is a base resin layer forming coating solution containing fluororesin, Si component material and conductive carbon, bar coating, spray coating, dip coating, spin coating, roller coating, impregnation coating. , Electrostatic coating, curtain flow coating (screen coating), gravure coating, die coating, slide coating, wire bar coating, knife coating, spin flow coating, etc. And can be obtained by drying and / or baking at a temperature of about room temperature to about 400 ° C. for 5 to 60 minutes. It can also be obtained by screen printing, gravure printing, or a method of laminating (thermocompression bonding) a previously prepared base resin layer film. In the case of the coating (coating) method, the heat-resistant electret material can be made thinner and thinner than the film laminating method.
 上記下地樹脂層形成用塗布液は、バインダー樹脂を含むことができ、バインダー樹脂と、フッ素樹脂との質量比は、5~50:95~50であることが好ましい。
 バインダー樹脂としては、例えば、フッ素樹脂と同等の耐熱性、即ち熱分解開始温度300℃以上を有し、金属基材に接着性を有するものが好ましい。このようなバインダー樹脂として特に好適なものは、ポリイミド樹脂(PI)、ポリアミドイミド樹脂(PAI)、ポリフェニレンサルファイド樹脂(PPS)、ポリエーテルスルホン樹脂(PES)、ポリエーテルエーテルケトン(PEEK)、ポリエーテルイミド(PEI)、ポリベンズイミダゾール(PBI)、エポキシ樹脂、或いはこれらの混合物である。より好ましくは、PAIである。
The coating solution for forming the base resin layer can contain a binder resin, and the mass ratio of the binder resin to the fluororesin is preferably 5 to 50:95 to 50.
As the binder resin, for example, a resin having heat resistance equivalent to that of a fluororesin, that is, a thermal decomposition starting temperature of 300 ° C. or more and having adhesion to a metal substrate is preferable. Particularly suitable as such a binder resin are polyimide resin (PI), polyamideimide resin (PAI), polyphenylene sulfide resin (PPS), polyethersulfone resin (PES), polyetheretherketone (PEEK), polyether. Imide (PEI), polybenzimidazole (PBI), epoxy resin, or a mixture thereof. More preferably, it is PAI.
 バインダー樹脂は、液状媒体中に溶解されていても、微粒子として液状媒体中に均一に分散されていても良い。使用できる液状媒体としては、水、極性有機溶媒、非極性有機溶媒、及びこれらの混合物が挙げられる。液状媒体として水を使用する場合には、液状媒体の表面張力を低下させ、バインダー樹脂及びフッ素樹脂粉末等の分散性を向上させるため、界面活性剤を液状媒体に添加することが好ましい。 The binder resin may be dissolved in the liquid medium or may be uniformly dispersed in the liquid medium as fine particles. Liquid media that can be used include water, polar organic solvents, non-polar organic solvents, and mixtures thereof. When water is used as the liquid medium, it is preferable to add a surfactant to the liquid medium in order to reduce the surface tension of the liquid medium and improve the dispersibility of the binder resin and fluororesin powder.
 バインダー樹脂がPI、PAI、及びPES等で、有機溶媒、例えばN-メチルピロリドン、或いはN-メチルピロリドンとジアセトンアルコール又はキシレン等の混合物等に比較的容易に溶解する場合には、バインダー樹脂を液状媒体中に溶解して用いることが好ましく、バインダー樹脂がPPS等で、有機溶媒に溶解が困難な場合には、液状媒体として界面活性剤を添加した水を使用し、バインダー樹脂を液状媒体中に均一に分散して用いることが好ましい。 If the binder resin is PI, PAI, PES, or the like and is relatively easily dissolved in an organic solvent such as N-methylpyrrolidone or a mixture of N-methylpyrrolidone and diacetone alcohol or xylene, the binder resin It is preferable to use by dissolving in a liquid medium. When the binder resin is PPS or the like and it is difficult to dissolve in an organic solvent, water containing a surfactant is used as the liquid medium, and the binder resin is used in the liquid medium. It is preferable to uniformly disperse and use.
 この様にして得られる下地樹脂層の厚さは特に限定されないが、1~50μmであることが望ましい。導電性を有し、かつ層間密着性に寄与する下地樹脂層の厚さは厚い方が電荷保持性及び層間密着性の点から望ましいが、過度に大きくてもかえって層内の凝集剥離で層間密着性が低下する。また、一般的に耐熱エレクトレット材をコンデンサー型マイクロホンとして使用する際の電荷保持率としては、80%以上あれば十分であることから、下地樹脂層の膜厚としては特に3~30μmの範囲が好ましく、5~20μmの範囲がより好ましい。 The thickness of the base resin layer thus obtained is not particularly limited, but is preferably 1 to 50 μm. Thickness of the base resin layer that has conductivity and contributes to interlayer adhesion is desirable from the viewpoint of charge retention and interlayer adhesion. However, even if it is too large, the interlayer adhesion is caused by cohesive peeling in the layer. Sex is reduced. In general, a charge retention rate of 80% or more is sufficient when a heat-resistant electret material is used as a condenser microphone. Therefore, the film thickness of the base resin layer is particularly preferably in the range of 3 to 30 μm. A range of 5 to 20 μm is more preferable.
 また、10℃から350℃の温度範囲に於けるエレクトレット層側の下地樹脂層表面の体積抵抗値は、1010~1013Ω・mであることが好ましい。エレクトレット層側の下地樹脂層表面の体積抵抗値が、小さ過ぎる場合には、エレクトレット層中に保持した電荷の長期安定して保持できなくなるため好ましくなく、大き過ぎる場合には、エレクトレット層中に保持できる電荷の絶対量が少なくなってしまうため好ましくない。 Further, the volume resistance value of the surface of the base resin layer on the electret layer side in the temperature range of 10 ° C. to 350 ° C. is preferably 10 10 to 10 13 Ω · m. If the volume resistance value of the surface of the base resin layer on the electret layer side is too small, it is not preferable because the charge retained in the electret layer cannot be stably maintained for a long time, and if it is too large, it is retained in the electret layer. This is not preferable because the absolute amount of charge that can be generated is reduced.
 また、下地樹脂層は、厚さ方向において、金属基材側からエレクトレット層側に向かって順次体積抵抗値が増加する特徴を有し、下地樹脂層の厚さ1/2における体積抵抗値は10Ω・mより大きく1012Ω・m以下であり、エレクトレット層側の下地樹脂層表面における体積抵抗値は1010Ω・m以上、より好ましくは1011Ω・m以上1013Ω・m以下となる。
 下地樹脂層の体積抵抗値が金属基材側よりエレクトレット層側の方が大きくなる理由は明らかではないが、後述するように下地樹脂層に含まれる導電性カーボン(炭素元素)の割合が金属基材側からエレクトレット層側に亘り増大することに伴い絶縁性のケイ素元素の割合が減少することに起因すると考えられる。
In addition, the base resin layer has a feature that the volume resistance value sequentially increases from the metal substrate side to the electret layer side in the thickness direction, and the volume resistance value at the thickness 1/2 of the base resin layer is 10 It is larger than 9 Ω · m and not more than 10 12 Ω · m, and the volume resistance value on the surface of the base resin layer on the electret layer side is not less than 10 10 Ω · m, more preferably not less than 10 11 Ω · m and not more than 10 13 Ω · m. It becomes.
The reason why the volume resistance value of the base resin layer is larger on the electret layer side than on the metal substrate side is not clear, but the proportion of conductive carbon (carbon element) contained in the base resin layer is a metal group as will be described later. This is thought to be due to the fact that the proportion of insulating silicon element decreases with increasing from the material side to the electret layer side.
 なお、本発明の耐熱エレクトレット材の下地樹脂層は、Si成分を含むことによる層間密着性の向上効果と、導電性カーボンを含むことによる導電性の向上効果とをバランスよく得る上で、元素分析により求められる、下地樹脂層に含まれるフッ素元素、ケイ素元素及び炭素元素の合計100モル%に占めるケイ素元素の割合が1~5モル%で、炭素元素の割合が5~10モル%であることが好ましい。この範囲よりもケイ素元素の割合が少な過ぎると下地樹脂層にSi成分を導入することによる層間密着性の向上効果を十分に得ることができず、多過ぎると下地樹脂層の導電性が低下して電荷保持特性が低下する。また、上記炭素元素の割合は、フッ素樹脂由来の炭素元素と導電性カーボン由来の炭素元素と、その他、下地樹脂層中のバインダー樹脂等の他の炭素含有成分由来の炭素元素の合計に相当するが、この割合が上記範囲よりも少な過ぎると下地樹脂層の導電性が不十分であり、電荷保持特性が低下するばかりか、柔軟性が損なわれてしまい、曲げや打抜き時の剪断応力により、膜の破損(欠け)やクラックが入るといった問題が生じる。多過ぎるとハンダ付け時の高温下での耐熱性が低下するという不具合が生じる。 The base resin layer of the heat-resistant electret material of the present invention has an elemental analysis for obtaining a good balance between the improvement in interlayer adhesion due to the inclusion of the Si component and the improvement in conductivity due to the inclusion of conductive carbon. The ratio of silicon element to the total of 100 mol% of fluorine element, silicon element and carbon element contained in the base resin layer determined by 1 is 1 to 5 mol%, and the ratio of carbon element is 5 to 10 mol%. Is preferred. If the ratio of silicon element is less than this range, the effect of improving interlayer adhesion by introducing the Si component into the base resin layer cannot be sufficiently obtained, and if it is too high, the conductivity of the base resin layer is lowered. As a result, the charge retention characteristics deteriorate. Further, the ratio of the carbon element corresponds to the total of the carbon element derived from the fluororesin and the carbon element derived from the conductive carbon and the carbon element derived from other carbon-containing components such as the binder resin in the base resin layer. However, if this ratio is too less than the above range, the conductivity of the base resin layer is insufficient, not only the charge retention characteristics are lowered, but also the flexibility is impaired, due to shear stress at the time of bending and punching, Problems such as film breakage (chips) and cracks occur. If the amount is too large, the heat resistance at high temperatures during soldering is reduced.
 また、本発明の耐熱エレクトレット材の下地樹脂層は、含まれているケイ素元素と炭素元素の割合が、金属基材側ではケイ素元素の割合の方が炭素元素の割合より少なく、かつ、エレクトレット層側ではケイ素元素の割合の方が炭素元素の割合より多くなる。その理由は明らかではないが、炭素元素とケイ素元素の比重差により溶剤が揮発していく過程にて成分傾斜が生じていくことにより金属基材側にケイ素元素より炭素元素の方が多く集まり、かつエレクトレット層側に炭素元素よりケイ素元素の方が多く集まる傾向があるため、下地樹脂層とエレクトレット層との密着性を向上することができ、かつ下地樹脂層に導電性を付与することができるようになると考えられる。 Further, the base resin layer of the heat-resistant electret material of the present invention is such that the ratio of silicon element and carbon element contained is smaller than the ratio of carbon element on the metal substrate side, and the electret layer On the side, the proportion of silicon element is higher than the proportion of carbon element. The reason for this is not clear, but the component gradient occurs in the process of volatilization of the solvent due to the specific gravity difference between the carbon element and the silicon element, so that more carbon elements gather than the silicon element on the metal substrate side, And since there is a tendency that more silicon element collects than carbon element on the electret layer side, adhesion between the base resin layer and the electret layer can be improved, and conductivity can be imparted to the base resin layer. It is thought that it will become.
 特に、上述のような層間密着性と電荷保持特性の両立のために、前述の下地樹脂層形成用塗布液におけるSi成分材料の含有量は、下地樹脂層形成用塗布液中のフッ素樹脂に対して1.0~115.0質量%、特に1.1~111.0質量%であることが好ましい。また、導電性カーボンの含有量は、下地樹脂層形成用塗布液中のフッ素樹脂に対して10.0~20.0質量%、特に11.0~15.0質量%であることが好ましい。 In particular, in order to achieve both the above-mentioned interlayer adhesion and charge retention characteristics, the content of the Si component material in the above-described coating resin for forming the base resin layer is based on the fluororesin in the coating solution for forming the base resin layer. 1.0 to 115.0 mass%, particularly 1.1 to 111.0 mass% is preferable. The conductive carbon content is preferably 10.0 to 20.0% by mass, particularly 11.0 to 15.0% by mass, based on the fluororesin in the base resin layer forming coating solution.
 本発明の耐熱エレクトレット材のエレクトレット層は、導電性カーボン及びSi成分材料を含まないこと以外は、上記下地樹脂層形成用塗布液と同様にして調製されたフッ素樹脂含有エレクトレット層形成用塗布液を用いて、下地樹脂層上に、下地樹脂層と同様の方法にて形成することが出来る。 The electret layer of the heat-resistant electret material of the present invention is a fluororesin-containing electret layer-forming coating solution prepared in the same manner as the base resin layer-forming coating solution except that it does not contain conductive carbon and Si component materials. And can be formed on the base resin layer in the same manner as the base resin layer.
 なお、下地樹脂層とエレクトレット層との積層製膜工程を簡略化するために、金属基材上に前述の下地樹脂層形成用塗布液を塗布して100~200℃程度で1~10分程度乾燥し、この乾燥塗膜上にエレクトレット層形成用塗布液を塗布して100~200℃程度で1~10分程度乾燥し、最後に350~450℃程度で1~10分程度加熱焼成して、金属基材上にこれら下地樹脂層とエレクトレット層とを積層形成することが好ましい。 In order to simplify the lamination process of the base resin layer and the electret layer, the above base resin layer-forming coating solution is applied onto a metal substrate and the temperature is about 100 to 200 ° C. for about 1 to 10 minutes. Then, the electret layer forming coating solution is applied onto the dried coating film, dried at about 100 to 200 ° C. for about 1 to 10 minutes, and finally heated and fired at about 350 to 450 ° C. for about 1 to 10 minutes. The base resin layer and the electret layer are preferably laminated on the metal substrate.
 このようにして得られるエレクトレット層の膜厚は特に限定されないが、8~50μm、特に15~45μmであることが好ましい。また、エレクトレット層の10℃から350℃の温度範囲に於ける体積抵抗値は、1015Ω・m以上であることが好ましい。エレクトレット層の体積抵抗値が、1015Ω・m未満である場合には、エレクトレット層中に保持する電荷の絶対量が少なくなり、また、保持した電荷の長期の保持安定性も悪くなるため好ましくない。 The thickness of the electret layer thus obtained is not particularly limited, but is preferably 8 to 50 μm, particularly preferably 15 to 45 μm. Further, the volume resistance value of the electret layer in the temperature range of 10 ° C. to 350 ° C. is preferably 10 15 Ω · m or more. When the volume resistance value of the electret layer is less than 10 15 Ω · m, the absolute amount of charges held in the electret layer is reduced, and the long-term holding stability of the held charges is also deteriorated. Absent.
 本発明の耐熱エレクトレット材は、好ましくは金属基材の厚さが50~500μm、より好ましくは80~300μm、下地樹脂層の厚さが1~50μm、より好ましくは2~20μm、エレクトレット層の厚さが8~50μm、より好ましくは15~45μmである積層部材であって、且つ金属基材上に、体積抵抗値の小さい樹脂層を順次形成した積層部材である。即ち、体積抵抗値Aの金属基材上に、体積抵抗値Bの下地樹脂層を形成し、更にその上に体積抵抗値Cのエレクトレット層を最表層として形成した積層部材であって、10℃から350℃の温度範囲に於ける体積抵抗値の値はA<B<Cを満たし、且つ10℃から350℃の温度範囲に於ける体積抵抗値が60×10-8Ω・m<A<100×10-8Ω・m、1010Ω・m<B<1013Ω・m、C≧1015Ω・mを満たす積層部材であることが好ましい。 The heat-resistant electret material of the present invention preferably has a metal substrate thickness of 50 to 500 μm, more preferably 80 to 300 μm, a base resin layer thickness of 1 to 50 μm, more preferably 2 to 20 μm, and an electret layer thickness. A laminated member having a thickness of 8 to 50 μm, more preferably 15 to 45 μm, and a resin layer having a small volume resistance value formed sequentially on a metal substrate. That is, a laminated member in which a base resin layer having a volume resistance value B is formed on a metal substrate having a volume resistance value A, and an electret layer having a volume resistance value C is further formed thereon as an outermost layer. The volume resistance value in the temperature range from 350 ° C. to 350 ° C. satisfies A <B <C, and the volume resistance value in the temperature range from 10 ° C. to 350 ° C. is 60 × 10 −8 Ω · m <A <. A laminated member satisfying 100 × 10 −8 Ω · m, 10 10 Ω · m <B <10 13 Ω · m, and C ≧ 10 15 Ω · m is preferable.
 本発明の耐熱エレクトレット材は、金属製の薄板基材とエレクトレット層であるフッ素樹脂層の間に、フッ素樹脂とSi成分と導電性カーボンを含む、導電性を有しかつ金属基材及びエレクトレット層の双方に対する接着性に優れた下地樹脂層を設けることで、コロナ放電によりチャージした電荷の安定的な長期保持が可能となると共に、層間密着性に優れ、耐久性に優れたものとなるため、エレクトレット材の薄膜化が可能となる。 The heat-resistant electret material of the present invention is a conductive metal substrate and electret layer containing a fluororesin, an Si component and conductive carbon between a metal thin plate base material and a fluororesin layer which is an electret layer. By providing a base resin layer with excellent adhesion to both of the above, it becomes possible to stably hold the charge charged by corona discharge for a long period of time, as well as excellent interlayer adhesion and durability, It is possible to reduce the thickness of the electret material.
 このような本発明の耐熱エレクトレット材は、高度な防塵設備を必要とするドライプロセスではなくウェットプロセスのみにより製造可能なのでエレクトレット材を低コストで提供する事が出来る。また、本発明の耐熱エレクトレット材は、電荷保持性が高く薄膜のエレクトレット材であるため、これを使用する部材(イヤホン、ヘッドホン、マイクロホン等)をよりコンパクト化することができる。 Such a heat-resistant electret material according to the present invention can be manufactured by only a wet process, not a dry process that requires a high level of dustproof equipment, so that the electret material can be provided at a low cost. Moreover, since the heat-resistant electret material of the present invention is a thin-film electret material with high charge retention, the members (earphones, headphones, microphones, etc.) that use this material can be made more compact.
 以下、実施例、参考例及び比較例を挙げて、本発明を更に詳しく説明するが、本発明は、これらの例に限定されるものではない。 Hereinafter, the present invention will be described in more detail with reference to examples, reference examples, and comparative examples, but the present invention is not limited to these examples.
[実施例1,2、参考例1,2、比較例1,2]
<下地樹脂層形成用塗布液の調製>
 固形分としてPTFE(ダイキン工業社製、商品名「ポリフロンM-112」)を9.0質量%、カーボンブラック(東海カーボン社製、商品名「トーカブラック#5500」)を1.0質量%、溶媒として蒸留水を80.0質量%、フルフリルアミンを4.0質量%、N-メチル-2-ピロリドンを2.0質量%、ノニオン界面活性剤を2.0質量%、トリエチルアミンを1.5質量%、2-(ジエチルアミノ)エタノールを0.5質量%からなるA液を調製した。
 別に、下地樹脂層にケイ素(Si)ないしケイ素化合物を導入する目的で、東京化成工業社製トリエチルシラノール(シランカップリング剤)を蒸留水にて10質量%となる様に調整した液をB液として使用した。
 A液とB液を表1に示す配合量で混合して下地樹脂層形成用塗布液とした。
 なお、表1には、調製された下地樹脂層形成用塗布液中のPTFEに対するカーボンブラックの割合とトリエチルシラノールの純分の割合を併記する。
[Examples 1 and 2, Reference Examples 1 and 2, Comparative Examples 1 and 2]
<Preparation of coating solution for base resin layer formation>
As solids, PTFE (trade name “Polyflon M-112” manufactured by Daikin Industries, Ltd.) is 9.0% by mass, carbon black (trade name “Toka Black # 5500” manufactured by Tokai Carbon Co., Ltd.) is 1.0% by mass, As a solvent, distilled water was 80.0% by mass, furfurylamine was 4.0% by mass, N-methyl-2-pyrrolidone was 2.0% by mass, nonionic surfactant was 2.0% by mass, and triethylamine was 1.5% by mass. A liquid A consisting of 0.5% by mass of 2-mass% 2- (diethylamino) ethanol was prepared.
Separately, for the purpose of introducing silicon (Si) or silicon compound into the base resin layer, a solution prepared by adjusting triethylsilanol (silane coupling agent) manufactured by Tokyo Chemical Industry Co., Ltd. with distilled water to 10% by mass is liquid B. Used as.
A liquid and B liquid were mixed by the compounding quantity shown in Table 1, and it was set as the coating liquid for base resin layer formation.
In Table 1, the ratio of carbon black to the PTFE in the prepared coating solution for forming the base resin layer and the ratio of pure triethylsilanol are shown together.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
<エレクトレット層形成用塗布液>
 固形分としてPTFE樹脂(ダイキン工業社製、商品名「ポリフロンM-112」)を50.0質量%、及び溶媒として水を35.0質量%と、トリエタノールアミン5.0質量%、芳香族重質油3.0質量%、ジエチレングリコールモノ-n-ブチルエーテル3.0質量%、ノニオン界面活性剤を3.0質量%、1,2,4-トリメチルベンゼン0.7質量%、1,3,5-トリメチルベンゼン0.3質量%からなるエレクトレット層形成用塗布液を調製した。
<Electret layer forming coating solution>
50.0% by mass of PTFE resin (trade name “Polyflon M-112”, manufactured by Daikin Industries, Ltd.) as a solid content, 35.0% by mass of water as a solvent, 5.0% by mass of triethanolamine, aromatic Heavy oil 3.0 mass%, diethylene glycol mono-n-butyl ether 3.0 mass%, nonionic surfactant 3.0 mass%, 1,2,4-trimethylbenzene 0.7 mass%, 1,3,3 A coating solution for forming an electret layer consisting of 0.3% by mass of 5-trimethylbenzene was prepared.
<耐熱エレクトレット材の製造>
 金属基材として厚さ100μmのステンレス304鋼板(25℃における体積抵抗値72.7×10-8Ω・m、260℃における体積抵抗値90.0×10-8Ω・m)を用い、このステンレス304鋼板に、下地樹脂層形成用塗布液をバーコーターにより塗布した後、100℃で20分間乾燥し、次いで形成された下地樹脂層用の塗膜上にエレクトレット層形成用塗布液を同じくバーコーターにて塗布して100℃で20分間乾燥し、更に420℃で5分間加熱焼成して、図1に示すように、金属基材上に下地樹脂層とエレクトレット層を積層形成した積層部材を得た。
 次いで、この積層部材を常温、常圧の大気中において、高圧電源増幅・制御装置(トレックジャパン株式会社製 MODEL610-C)を用いて、-1,000Vのコロナ放電を行うことにより着電処理を行って、それぞれエレクトレット材のサンプルを製造した。
 各サンプルの下地樹脂層の厚さは5μmであり、エレクトレット層の厚さは25μmである。
<Manufacture of heat-resistant electret materials>
Using a stainless steel plate having a thickness of 100 μm (volume resistance value 72.7 × 10 −8 Ω · m at 25 ° C., volume resistance value 90.0 × 10 −8 Ω · m at 260 ° C.) After applying the base resin layer forming coating solution to the stainless steel 304 steel plate with a bar coater, drying at 100 ° C. for 20 minutes, and then applying the electret layer forming coating solution onto the formed base resin layer coating film. A laminated member in which a base resin layer and an electret layer are laminated on a metal substrate as shown in FIG. 1 by applying with a coater, drying at 100 ° C. for 20 minutes, and further heating and baking at 420 ° C. for 5 minutes. Obtained.
Next, the laminated member is subjected to a charging process by performing a corona discharge of -1,000 V using a high voltage power source amplification / control device (MODEL610-C manufactured by Trek Japan Co., Ltd.) in the atmosphere of normal temperature and normal pressure. In each case, samples of electret materials were produced.
The thickness of the base resin layer of each sample is 5 μm, and the thickness of the electret layer is 25 μm.
<電荷保持特性の評価>
 260℃に設定したホットプレート上に、各サンプルを載せて加熱した。加熱時間は30秒間を5回(ホットプレート上にサンプルを30秒載置した後取り上げて室温まで冷却した後、荷電量を測定し、その後再びホットプレート上にサンプルを30秒載置し、載置と測定の工程を5回繰り返す。)、以降は、常温・常湿・常圧下に24時間静置、荷電量測定、48時間静置、荷電量測定とした。荷電量は表面電位計(トレックジャパン株式会社製 MODEL344)により測定した。
 初期の着電量に対する電荷の残存量を電荷保持率として算出し、結果を図2に示した。
<Evaluation of charge retention characteristics>
Each sample was placed on a hot plate set at 260 ° C. and heated. Heating time is 5 times for 30 seconds (the sample is placed on the hot plate for 30 seconds and then picked up and cooled to room temperature, then the charge amount is measured, and then the sample is placed on the hot plate again for 30 seconds and loaded. The process of placing and measuring is repeated 5 times.) After that, standing at normal temperature, normal humidity, and normal pressure for 24 hours, measuring the charge amount, standing for 48 hours, and measuring the charge amount. The charge amount was measured with a surface potential meter (MODEL 344 manufactured by Trek Japan Co., Ltd.).
The residual charge amount relative to the initial charge amount was calculated as the charge retention rate, and the results are shown in FIG.
<層間密着力の評価>
 径φ300mmの金属ロール間を線圧10kgf/cmの荷重にて各サンプルを通過させて、初期の厚さ(金属基材=100μm、下地樹脂層=5μm、エレクトレット層=25μm;総厚=130μm)に対して80%厚さ(総厚=104μm)まで圧延した後、JIS-K5400に記載の方法によりクロスカットセロテープ剥離試験を行った。その結果(100個のマス目のうち、セロテープを密着させて引き剥したときに下地樹脂層が剥離せずに金属基材上に残ったマス目の数)を表2に示す。
<Evaluation of interlayer adhesion>
Each sample is passed through a metal roll having a diameter of 300 mm with a load of linear pressure 10 kgf / cm, and the initial thickness (metal substrate = 100 μm, base resin layer = 5 μm, electret layer = 25 μm; total thickness = 130 μm) After rolling to 80% thickness (total thickness = 104 μm), a cross-cut cello tape peel test was performed by the method described in JIS-K5400. Table 2 shows the results (the number of squares remaining on the metal base material without peeling off the base resin layer when the cellophane was adhered and peeled out of the 100 squares).
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
<下地樹脂層中の元素比の分析>
 蛍光X線測定(島津製作所「EDX-720」による)により、各サンプルの下地樹脂層を構成する元素割合を分析した。結果を表3に示す。
<Analysis of element ratio in base resin layer>
The ratio of elements constituting the base resin layer of each sample was analyzed by fluorescent X-ray measurement (by Shimadzu “EDX-720”). The results are shown in Table 3.
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
<体積抵抗値・表面抵抗値>
 各サンプルの下地樹脂層について、ハイレスタUP(三菱化学社製)により体積抵抗値と表面抵抗値を測定した。結果を表4に示す。なお、エレクトレット層の体積抵抗値は、いずれも1015Ω・m以上であった。
<Volume resistance value / Surface resistance value>
About the base resin layer of each sample, volume resistance value and surface resistance value were measured by Hiresta UP (made by Mitsubishi Chemical Corporation). The results are shown in Table 4. The volume resistance value of the electret layer was 10 15 Ω · m or more.
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004
 また、XPS装置「PHI-5600」(アルバック・ファイ(株)製)を用い、アルゴンプラズマを用いたエッチングにより、実施例1、実施例2及び比較例1で得られた下地樹脂層を厚さ0.5μm間隔で切削し、体積抵抗値の変位を測定した。結果を図7に示す。 In addition, by using an XPS apparatus “PHI-5600” (manufactured by ULVAC-PHI Co., Ltd.) and etching using argon plasma, the base resin layers obtained in Example 1, Example 2 and Comparative Example 1 were thickened. Cutting was performed at intervals of 0.5 μm, and the displacement of the volume resistance value was measured. The results are shown in FIG.
<塗膜硬度>
 各サンプルについて、塗膜硬度の評価を行った。結果を表5に示す。なお、硬度の測定は、安田精機社製「553-M1」にてJIS-K5400に基いて、エレクトレット層表面に対して行った。塗膜硬度の値は、B → HB → F → B → H → 2H →・・・4Hの順に塗膜硬度が高いことを表す。
<Coating hardness>
Each sample was evaluated for coating film hardness. The results are shown in Table 5. The hardness was measured on the surface of the electret layer based on JIS-K5400 using “553-M1” manufactured by Yasuda Seiki Co., Ltd. The value of the coating film hardness indicates that the coating film hardness is higher in the order of B → HB → F → B → H → 2H →.
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000005
<以上の結果のまとめ>
(1)図2の結果から、下地樹脂層中にSi成分を含むと、若干の電荷保持性能低下が見られるものの、Si成分の含有量が元素比に換算して50モル%程度までであれば大幅な電荷保持性能の低下はないことが実施例2の結果から分かる。また、参考例2から、60モル%を超えてSi成分添加すると電荷保持性能の低下が顕著となることが分かる。
(2)表2より、下地樹脂層中にSi成分を含むと、層間密着力が上がることが分かる。但し、実施例2と参考例2の結果から、Si含有量50モル%を超えると顕著な差異は見られないことが分かる。
(3)表2の参考例1より、下地樹脂層のSi成分の含有量が1モル%未満では、層間密着力の顕著な向上効果は見られないことが分かる。
(4)表5の結果より、下地樹脂層がSi成分を含有することにより、塗膜の硬度が向上することが確認できる。但し、Si成分の含有量が多過ぎる場合は、上記(1)の電荷保持性能の観点から好ましくない。
<Summary of the above results>
(1) From the results shown in FIG. 2, when the Si component is included in the base resin layer, although a slight decrease in charge retention performance is observed, the Si component content is up to about 50 mol% in terms of element ratio. It can be seen from the results of Example 2 that there is no significant decrease in charge retention performance. In addition, it can be seen from Reference Example 2 that when the Si component is added in excess of 60 mol%, the charge retention performance is significantly reduced.
(2) From Table 2, it can be seen that when the Si resin component is included in the base resin layer, the interlayer adhesion is increased. However, from the results of Example 2 and Reference Example 2, it can be seen that no significant difference is observed when the Si content exceeds 50 mol%.
(3) From Reference Example 1 in Table 2, it can be seen that when the content of the Si component in the base resin layer is less than 1 mol%, a remarkable improvement effect in interlayer adhesion is not observed.
(4) From the results in Table 5, it can be confirmed that the hardness of the coating film is improved when the base resin layer contains the Si component. However, when there is too much content of Si component, it is unpreferable from a viewpoint of the electric charge retention performance of said (1).
<下地樹脂層の厚さの効果>
 実施例1で用いたものと同じ下地樹脂層形成塗布液及びエレクトレット層形成用塗布液を用い、バーコーターの番手を変更して下地樹脂層形成用塗布液の塗布量を変え、下地樹脂層の厚さのみが異なるサンプルを作製した。作製したサンプルの下地樹脂層の厚さは、0.1,0.5,1,3,5,10,25,50,60μmであり、エレクトレット層膜厚は全て25μmとした。
 それぞれのサンプルについて、φ5mmの径に打抜きプレスによって100個抜いた際に打抜き刃との摩擦や衝撃によって端部が剥離する個数の割合(剥離不良率)を求めた。結果を表6とそれを図示したグラフを図3に示す。
 図3より明らかなように、下地樹脂層の厚さが1μm未満では、剥離不良率が高く、60μm以上の厚さでは層内での凝集剥離が生じてしまい逆に剥離不良率は高くなる傾向にある。
 従って、下地樹脂層の厚さの範囲としては、1~50μmが適当であることが分かる。
<Effect of thickness of base resin layer>
Using the same base resin layer-forming coating solution and electret layer-forming coating solution as used in Example 1, changing the number of the bar coater and changing the coating amount of the base resin layer-forming coating solution, Samples with different thickness only were produced. The thickness of the base resin layer of the prepared sample was 0.1, 0.5, 1, 3, 5, 10, 25, 50, 60 μm, and the electret layer thickness was all 25 μm.
For each sample, the ratio of the number of peeled end portions due to friction and impact with the punching blade when 100 pieces were punched to a diameter of 5 mm by a punching press (peeling failure rate) was obtained. The results are shown in Table 6 and a graph illustrating the results is shown in FIG.
As is clear from FIG. 3, when the thickness of the base resin layer is less than 1 μm, the peeling failure rate is high, and when the thickness is 60 μm or more, cohesive peeling occurs in the layer and the peeling failure rate tends to increase. It is in.
Accordingly, it can be seen that a thickness range of 1 to 50 μm is appropriate for the base resin layer.
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000006
<エレクトレット層の厚さの効果>
 実施例1で用いたものと同じ下地樹脂層形成塗布液及びエレクトレット層形成用塗布液を用い、バーコーター番手を変更してエレクトレット層形成用塗布液の塗布量を変え、エレクトレット層の厚さのみが異なるサンプルを作製した。作製したサンプルの下地樹脂層の厚さは、全て5μmで、エレクトレット層の厚さは、1,2,5,6,10,20,30,40,60μmであった。それぞれのエレクトレット層厚さのサンプルについて前述の<電荷保持特性の評価>と同様に、5回の加熱と冷却(ホットプレート上にサンプルを30秒載置した後取り上げて室温まで冷却)を繰返し、更に48時間静置後の電荷保持性能を測定した。その結果を図4に示す。
 図4より明らかなように、エレクトレット層の厚さが5μmを下回ると、電荷保持性能が顕著に悪くなり、逆に50μmを超えると、顕著な向上もなくなるばかりか、乾燥と焼成工程にも熱エネルギーが必要となり、材料とエネルギーが無駄になる。エレクトレット層の膜厚は薄い方がS/N比も良いと一般的に言われているが、本発明のエレクトレット材では、薄型化と低コストが求められるエレクトレット層の厚さの範囲として8~50μmが適当であることが分かる。
<Effect of thickness of electret layer>
Using the same base resin layer forming coating solution and electret layer forming coating solution as used in Example 1, changing the bar coater count and changing the coating amount of the electret layer forming coating solution, only the thickness of the electret layer Different samples were produced. The thicknesses of the base resin layers of the prepared samples were all 5 μm, and the thicknesses of the electret layers were 1, 2, 5, 6, 10, 20, 30, 40, 60 μm. For each electret layer thickness sample, similar to the above <Evaluation of charge retention characteristics>, repeated heating and cooling 5 times (the sample was placed on a hot plate for 30 seconds and then cooled to room temperature), Further, the charge retention performance after standing for 48 hours was measured. The result is shown in FIG.
As is apparent from FIG. 4, when the thickness of the electret layer is less than 5 μm, the charge retention performance is remarkably deteriorated. Energy is needed, material and energy are wasted. It is generally said that the thinner the electret layer is, the better the S / N ratio is. However, in the electret material of the present invention, the thickness range of the electret layer for which reduction in thickness and cost is required is 8 to It can be seen that 50 μm is suitable.
<下地樹脂層に含まれるケイ素元素と炭素元素の分布>
 X線光電子分光分析装置(島津製作所製「ESCA-3400」)により、実施例1及び実施例2の各サンプルの下地樹脂層を構成する元素(C,Si,F)のうち、ケイ素元素と炭素元素の割合(モル%)を以下の手順で測定した。
 下地樹脂層をエレクトレット層側から金属基材層の深さ方向にArプラズマエッチングにより0.5μm単位で削り、表層元素を分析した。ここで検出された各深さでの元素比を下式によりモル%に換算した。エッチングの条件としては、Arによる2kV,20mAとし、エッチングレートは、5.0nm/minとした。元素比の分析条件としては、光源にはMg-Kαを使用し、出力8kW×30mA、真空度5×10-6Paの条件下で測定した。
 結果を図5(実施例1)及び図6(実施例2)に示す。
<Distribution of silicon and carbon elements contained in the base resin layer>
Among the elements (C, Si, F) constituting the base resin layer of each sample of Example 1 and Example 2 using an X-ray photoelectron spectrometer (“ESCA-3400” manufactured by Shimadzu Corporation), silicon element and carbon The ratio of elements (mol%) was measured by the following procedure.
The underlying resin layer was shaved from the electret layer side in the depth direction of the metal substrate layer by Ar + plasma etching in units of 0.5 μm, and surface layer elements were analyzed. The element ratio at each depth detected here was converted to mol% by the following formula. The etching conditions were 2 kV and 20 mA with Ar + , and the etching rate was 5.0 nm / min. As the analysis conditions of the element ratio, Mg—Kα was used as the light source, and the measurement was performed under the conditions of an output of 8 kW × 30 mA and a degree of vacuum of 5 × 10 −6 Pa.
The results are shown in FIG. 5 (Example 1) and FIG. 6 (Example 2).
Figure JPOXMLDOC01-appb-M000007
Figure JPOXMLDOC01-appb-M000007
 図5,6より、下地樹脂層の厚さ(深さ)方向には、金属基材層側からエレクトレット層側に向かって炭素元素とケイ素元素の含有率に分布が存在することが分かる。すなわち、下地樹脂層では、添加したシランカップリング剤に由来するケイ素元素の含有率が金属基材側からエレクトレット層側に向かって連続的に増加するのに対し、導電性カーボンに由来する炭素元素の含有率が連続的に減少する傾斜があることが分かる。 5 and 6, it can be seen that in the thickness (depth) direction of the base resin layer, there is a distribution in the content of carbon element and silicon element from the metal substrate layer side to the electret layer side. That is, in the base resin layer, the silicon element content derived from the added silane coupling agent continuously increases from the metal substrate side toward the electret layer side, whereas the carbon element derived from conductive carbon. It can be seen that there is a slope in which the content of is continuously reduced.
 本発明を特定の態様を用いて詳細に説明したが、本発明の意図と範囲を離れることなく様々な変更が可能であることは当業者に明らかである。
 なお、本出願は、2011年7月15日付で出願された日本特許出願(特願2011-156677)に基づいており、その全体が引用により援用される。
Although the present invention has been described in detail using specific embodiments, it will be apparent to those skilled in the art that various modifications can be made without departing from the spirit and scope of the invention.
This application is based on a Japanese patent application filed on July 15, 2011 (Japanese Patent Application No. 2011-156677), which is incorporated by reference in its entirety.

Claims (11)

  1.  金属基材上に、フッ素樹脂と、ケイ素、ケイ素化合物、又はこれらの混合物と、導電性カーボンとを含む下地樹脂層を介して、フッ素樹脂からなるエレクトレット層を形成してなることを特徴とする耐熱エレクトレット材。 An electret layer made of a fluororesin is formed on a metal substrate via a base resin layer containing a fluororesin, silicon, a silicon compound, or a mixture thereof, and conductive carbon. Heat-resistant electret material.
  2.  請求項1において、前記金属基材の厚さが10~500μmで、前記下地樹脂層の厚さが1~50μmで、前記エレクトレット層の厚さが8~50μmであることを特徴とする耐熱エレクトレット材。 2. The heat-resistant electret according to claim 1, wherein the metal substrate has a thickness of 10 to 500 μm, the base resin layer has a thickness of 1 to 50 μm, and the electret layer has a thickness of 8 to 50 μm. Wood.
  3.  請求項1又は2において、前記下地樹脂層に含まれるフッ素元素、ケイ素元素及び炭素元素の合計100モル%に占めるケイ素元素の割合が1~50モル%であり、炭素元素の割合が5~10モル%であることを特徴とする耐熱エレクトレット材。 3. The ratio of silicon element to 100 mol% in total of fluorine element, silicon element and carbon element contained in the base resin layer is 1 to 50 mol%, and the ratio of carbon element is 5 to 10 in claim 1 or 2. A heat-resistant electret material characterized by being mol%.
  4.  請求項3において、前記下地樹脂層に含まれるケイ素元素と炭素元素の割合が前記金属基材側ではケイ素元素の割合の方が炭素元素の割合より少なく、かつ、前記エレクトレット層側ではケイ素元素の割合の方が炭素元素の割合より多いことを特徴とする耐熱エレクトレット材。 In Claim 3, the ratio of the silicon element contained in the said base resin layer and the ratio of a silicon element is smaller than the ratio of a carbon element in the said metal base material side, and the silicon element is contained in the said electret layer side. A heat-resistant electret material characterized in that the proportion is higher than the proportion of carbon element.
  5.  請求項1ないし4のいずれか1項において、前記下地樹脂層のフッ素樹脂がポリテトラフルオロエチレン(「PTFE」と称す)を主成分とすることを特徴とする耐熱エレクトレット材。 5. The heat-resistant electret material according to claim 1, wherein the fluororesin of the base resin layer contains polytetrafluoroethylene (referred to as “PTFE”) as a main component.
  6.  請求項1ないし5のいずれか1項において、前記エレクトレット層のフッ素樹脂がPTFEを主成分とすることを特徴とする耐熱エレクトレット材。 6. The heat-resistant electret material according to claim 1, wherein the fluororesin of the electret layer contains PTFE as a main component.
  7.  請求項1ないし6のいずれか1項において、前記金属基材が、ステンレス鋼、アルミニウム、真鍮、鉄、あるいはそれらの酸化物、及びこれらの内1種類以上を含む合金からなる金属薄板、またはステンレス鋼、アルミニウム、真鍮、鉄、あるいはそれらの酸化物、及びこれらの内1種類以上を含む合金からなる金属薄板の表面にニッケル、金、銀、銅、錫、亜鉛、及び白金の中から選ばれる少なくとも1種の導電性金属を被覆した金属薄板からなることを特徴とする耐熱エレクトレット材。 The metal thin plate according to any one of claims 1 to 6, wherein the metal substrate is made of stainless steel, aluminum, brass, iron, or an oxide thereof, and an alloy containing one or more of these, or stainless steel. It is selected from nickel, gold, silver, copper, tin, zinc, and platinum on the surface of a thin metal plate made of steel, aluminum, brass, iron, or an oxide thereof, and an alloy containing one or more of these. A heat-resistant electret material comprising a thin metal plate coated with at least one conductive metal.
  8.  請求項1ないし7のいずれか1項において、前記エレクトレット層側の前記下地樹脂層表面の体積抵抗値が1010Ω・m以上1013Ω・m以下であり、前記エレクトレット層の体積抵抗値が1015Ω・m以上であることを特徴とする耐熱エレクトレット材。 8. The volume resistance value of the surface of the base resin layer on the electret layer side is 10 10 Ω · m or more and 10 13 Ω · m or less, and the volume resistance value of the electret layer is any one of claims 1 to 7. A heat-resistant electret material characterized by being 10 15 Ω · m or more.
  9.  請求項1ないし8のいずれか1項において、前記下地樹脂層の厚さ方向の体積抵抗値が前記金属基材側より前記エレクトレット層側の方が大きいことを特徴とする耐熱エレクトレット材。 9. The heat-resistant electret material according to claim 1, wherein a volume resistance value in a thickness direction of the base resin layer is larger on the electret layer side than on the metal substrate side.
  10.  請求項9において、前記下地樹脂層の厚さ1/2における体積抵抗値が10Ω・mより大きく1012Ω・m以下であることを特徴とする耐熱エレクトレット材。 10. The heat-resistant electret material according to claim 9, wherein a volume resistance value at a thickness ½ of the base resin layer is greater than 10 9 Ω · m and less than or equal to 10 12 Ω · m.
  11.  請求項1ないし10のいずれかに記載の耐熱エレクトレット材を用いたコンデンサー型マイクロホン。 A condenser microphone using the heat-resistant electret material according to any one of claims 1 to 10.
PCT/JP2012/067953 2011-07-15 2012-07-13 Heat-resistant electret material and condenser microphone WO2013011949A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011-156677 2011-07-15
JP2011156677 2011-07-15

Publications (1)

Publication Number Publication Date
WO2013011949A1 true WO2013011949A1 (en) 2013-01-24

Family

ID=47558127

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/067953 WO2013011949A1 (en) 2011-07-15 2012-07-13 Heat-resistant electret material and condenser microphone

Country Status (2)

Country Link
JP (1) JP2013042484A (en)
WO (1) WO2013011949A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018101359A1 (en) * 2016-11-30 2018-06-07 株式会社ユポ・コーポレーション Piezoelectric element and musical instrument

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6381390B2 (en) * 2014-09-30 2018-08-29 株式会社アコー Sound / vibration detection sensor

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005262497A (en) * 2004-03-16 2005-09-29 Nippon Valqua Ind Ltd Laminated sheet for electret fixing electrode
WO2009128503A1 (en) * 2008-04-17 2009-10-22 旭硝子株式会社 Electret and electrostatic induction conversion device
JP2010279024A (en) * 2009-04-27 2010-12-09 Nitto Denko Corp Electret material and electrostatic acoustic transducer

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005262497A (en) * 2004-03-16 2005-09-29 Nippon Valqua Ind Ltd Laminated sheet for electret fixing electrode
WO2009128503A1 (en) * 2008-04-17 2009-10-22 旭硝子株式会社 Electret and electrostatic induction conversion device
JP2010279024A (en) * 2009-04-27 2010-12-09 Nitto Denko Corp Electret material and electrostatic acoustic transducer

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018101359A1 (en) * 2016-11-30 2018-06-07 株式会社ユポ・コーポレーション Piezoelectric element and musical instrument
CN109983593A (en) * 2016-11-30 2019-07-05 优泊公司 Piezoelectric element and musical instrument
JPWO2018101359A1 (en) * 2016-11-30 2019-10-24 株式会社ユポ・コーポレーション Piezoelectric element and musical instrument
US11176918B2 (en) 2016-11-30 2021-11-16 Yupo Corporation Piezoelectric element and musical instrument

Also Published As

Publication number Publication date
JP2013042484A (en) 2013-02-28

Similar Documents

Publication Publication Date Title
JP6870200B2 (en) Elements and power generators
US8971553B2 (en) Electret material and electrostatic-type acoustic transducer
US7022402B2 (en) Dielectric substrates comprising a polymide core layer and a high temperature fluoropolymer bonding layer, and methods relating thereto
JP5310744B2 (en) Film capacitor film and film capacitor
JP4231899B2 (en) Metal integrated conductive rubber parts
KR20160016385A (en) Multi-layer ceramic capacitor
WO2010032521A1 (en) Electroconductive rubber component
JP2011222334A (en) Heat conductive sealing member and device
JP2017002115A (en) Fluorine resin film, laminated body, and method for producing the laminated body
JP2014102491A (en) Fixing member, fixing apparatus, and image forming apparatus
WO2013011949A1 (en) Heat-resistant electret material and condenser microphone
TW201840415A (en) Gas-barrier film and sealed object
EP2595220A2 (en) Negative electrode for a secondary battery
JP2008227384A (en) Dielectric rubber laminate
JP2004128361A (en) Charging member, charging member manufacturing method and manufacturing method of electret microphone assembly
JP3621700B1 (en) Heat-resistant electret material, heat-resistant electret using the same, method for producing the same, and electrostatic acoustic sensor
JP7319554B2 (en) Composition and laminate
JP2019062124A (en) Thermally resistive piezoelectric wire, and piezoelectric device with thermally resistive piezoelectric wire
WO2010119869A1 (en) Process for production of electret material
JP2012201949A5 (en)
KR100879279B1 (en) Electret for high temperature, process for preparing the same, and microphone comprising the electret
CN107852828B (en) Substrate for printed wiring board, and method for manufacturing substrate for printed wiring board
JP2015129995A (en) Touch panel sensor and manufacturing method thereof
TW201314815A (en) Electrostatic chuck and manufacturing method thereof
JP6886440B2 (en) Composite member and adhesive composition

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12814719

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12814719

Country of ref document: EP

Kind code of ref document: A1