WO2013011790A1 - Aqueous composition for metal surface treatment, method for metal surface treatment using composition, and method for producing metal material having film, as well as metal surface treatment film using same - Google Patents

Aqueous composition for metal surface treatment, method for metal surface treatment using composition, and method for producing metal material having film, as well as metal surface treatment film using same Download PDF

Info

Publication number
WO2013011790A1
WO2013011790A1 PCT/JP2012/065663 JP2012065663W WO2013011790A1 WO 2013011790 A1 WO2013011790 A1 WO 2013011790A1 JP 2012065663 W JP2012065663 W JP 2012065663W WO 2013011790 A1 WO2013011790 A1 WO 2013011790A1
Authority
WO
WIPO (PCT)
Prior art keywords
surface treatment
metal
metal surface
film
aqueous composition
Prior art date
Application number
PCT/JP2012/065663
Other languages
French (fr)
Japanese (ja)
Inventor
幸誠 屋部
真純 原
岡田 栄作
Original Assignee
日本パーカライジング株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本パーカライジング株式会社 filed Critical 日本パーカライジング株式会社
Priority to CN201280033230.7A priority Critical patent/CN103717686A/en
Publication of WO2013011790A1 publication Critical patent/WO2013011790A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/08Processes
    • C08G18/16Catalysts
    • C08G18/22Catalysts containing metal compounds
    • C08G18/24Catalysts containing metal compounds of tin
    • C08G18/244Catalysts containing metal compounds of tin tin salts of carboxylic acids
    • C08G18/246Catalysts containing metal compounds of tin tin salts of carboxylic acids containing also tin-carbon bonds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/40High-molecular-weight compounds
    • C08G18/64Macromolecular compounds not provided for by groups C08G18/42 - C08G18/63
    • C08G18/6415Macromolecular compounds not provided for by groups C08G18/42 - C08G18/63 having nitrogen
    • C08G18/643Reaction products of epoxy resins with at least equivalent amounts of amines
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/70Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the isocyanates or isothiocyanates used
    • C08G18/72Polyisocyanates or polyisothiocyanates
    • C08G18/80Masked polyisocyanates
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D175/00Coating compositions based on polyureas or polyurethanes; Coating compositions based on derivatives of such polymers
    • C09D175/04Polyurethanes
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D5/00Coating compositions, e.g. paints, varnishes or lacquers, characterised by their physical nature or the effects produced; Filling pastes
    • C09D5/44Coating compositions, e.g. paints, varnishes or lacquers, characterised by their physical nature or the effects produced; Filling pastes for electrophoretic applications
    • C09D5/4419Coating compositions, e.g. paints, varnishes or lacquers, characterised by their physical nature or the effects produced; Filling pastes for electrophoretic applications with polymers obtained otherwise than by polymerisation reactions only involving carbon-to-carbon unsaturated bonds
    • C09D5/443Polyepoxides
    • C09D5/4434Polyepoxides characterised by the nature of the epoxy binder
    • C09D5/4438Binder based on epoxy/amine adducts, i.e. reaction products of polyepoxides with compounds containing amino groups only

Definitions

  • the present invention relates to an aqueous composition for metal surface treatment capable of forming a film capable of imparting excellent corrosion resistance and coating appearance to a metal material, particularly a metal structure having a complicated shape, and a metal using the same.
  • the present invention relates to a surface treatment method, a method for producing a metal material with a coating, and a metal surface treatment coating using these.
  • electrodeposition coating having high throwing power has been generally used as a method for imparting excellent corrosion resistance to various metal materials, particularly metal structures having complicated shapes.
  • the desired corrosion resistance cannot be obtained only with the electrodeposition coating film obtained by electrodeposition coating. Processing was applied.
  • Electrodeposition coating consists of an anionic electrodeposition coating in which a coating is deposited by anodic electrolysis in an aqueous paint containing an anionic resin emulsion, and an aqueous coating containing a cationic resin emulsion.
  • Cathodic electrolysis can be broadly divided into cationic electrodeposition coating in which a coating film is deposited.
  • cationic electrolysis which does not cause the base metal to elute into the paint during electrolytic treatment, is possible.
  • Electrodeposition coating is advantageous, and cationic electrodeposition coating is widely applied to automobile bodies, automobile parts, home appliances, building materials, etc., which are metal components mainly composed of iron-based materials.
  • Cation electrodeposition coating has a long history in the market, and once it was rust-proof by blending chromium and lead compounds. However, since this also has insufficient rust prevention properties, a ground treatment such as a zinc phosphate chemical conversion treatment was essential.
  • a ground treatment such as a zinc phosphate chemical conversion treatment was essential.
  • chromium and lead compounds have become virtually unusable due to environmental regulations, especially the European ELV regulations, so alternative components have been studied and their effects have been found in bismuth compounds. Is disclosed.
  • Patent Document 1 Japanese Patent Application Laid-Open No. 5-329159 discloses a resin composition for electrodeposition paints containing at least one pigment coated with a bismuth compound.
  • Patent Document 2 discloses a cationic electrodeposition coating composition comprising an aqueous dispersion paste containing an aqueous dispersion in which an organic acid-modified bismuth compound is present in a water-insoluble form. ing.
  • Patent Document 3 Japanese Patent Application Laid-Open No. 2004-137367 discloses a cationic electrodeposition coating characterized by comprising a colloidal bismuth metal and a resin composition having a sulfonium group and a propargyl group.
  • Patent Document 4 Japanese Patent Application Laid-Open No. 2007-197688 discloses an electrodeposition coating comprising particles of at least one metal compound selected from bismuth hydroxide, a zirconium compound and a tungsten compound, wherein the metal compound is 1 to An electrodeposition paint characterized by being 1000 nm is disclosed.
  • Patent Document 5 Japanese Patent Laid-Open No. 11-80621 discloses a cationic electrodeposition coating composition characterized by containing an aqueous solution of an aliphatic alkoxycarboxylic acid bismuth salt.
  • Patent Document 6 Japanese Patent Laid-Open No. 11-80622 contains an aqueous solution of bismuth salt with two or more organic acids, wherein at least one of the organic acids is an aliphatic hydroxycarboxylic acid.
  • a cationic electrodeposition coating composition characterized by the above is disclosed.
  • Patent Document 7 Japanese Patent Laid-Open No. 11-100533 discloses a cationic electrodeposition coating composition characterized by containing bismuth lactate using lactic acid containing 80% or more of L isomers among optical isomers. Has been.
  • Patent Document 8 Japanese Patent Laid-Open No. 11-106687 includes an aqueous solution of an organic acid bismuth salt containing two or more organic acids, wherein at least one of the organic acids is an aliphatic alkoxycarboxylic acid.
  • a cationic electrodeposition coating composition characterized by the above is disclosed.
  • Patent Documents 1 to 4 are those in which a bismuth compound or metal bismuth insoluble in an aqueous paint is dispersed, and Patent Documents 5 to 8 dissolve at least the bismuth compound until there is no remaining solids, that is, Bi. It is characterized by being added to the paint after being in an ionic state.
  • Patent Document 9 Japanese Patent Application Laid-Open No. 2008-274392 discloses a method of forming a film by coating a metal base material with a film forming agent in at least two stages of multi-stage energization methods, and (i) a film forming agent Is at least one selected from a zirconium compound and, optionally, titanium, cobalt, vanadium, tungsten, molybdenum, copper, zinc, indium, aluminum, bismuth, yttrium, lanthanoid metal, alkali metal and alkaline earth metal A compound containing metal (a) comprising 30 to 20,000 ppm in terms of total metal (in terms of mass) and 1 to 40% by mass of a resin component, and (ii) a first stage using a metal substrate as a cathode Is applied by energizing for 10 to 360 seconds at a voltage (V1) of 1 to 50 V, and then 2 with a metal substrate as a cathode.
  • V1 voltage
  • V2 a voltage of 50 to 400 V
  • V1 the difference between the voltage (V2) and the voltage (V1) is at least 10 V
  • Patent Document 10 Japanese Patent Application Laid-Open No. 2008-538383 discloses an aqueous coating composition containing (A) a rare earth metal compound, (B) a base resin having a cationic group, and (C) a curing agent, The coating material is immersed in an aqueous coating composition in which the amount of (A) rare earth metal compound contained in the coating composition is 0.05 to 10% by weight in terms of the rare earth metal relative to the solid content of the coating.
  • a dipping step applying a voltage of less than 50 V as the cathode in the aqueous coating composition, and a pretreatment step, and applying a voltage of 50 to 450 V as the cathode in the aqueous coating composition.
  • a method for forming a multilayer coating film including an electrodeposition coating step in which a voltage is applied is disclosed.
  • Patent Document 11 Japanese Patent Laid-Open No. 2010-24471 discloses that a bismuth compound is obtained by immersing a metal substrate in an aqueous solution containing an organic acid salt or inorganic acid salt of bismuth and electrolyzing the metal substrate as a cathode as a first step.
  • a multilayer coating film forming method is disclosed in which a coating film is formed and an electrodeposition coating film is formed on the coating film by cationic electrodeposition coating as a second step.
  • a treatment liquid composition applied on the base treatment such as zinc phosphate-based chemical conversion treatment described in Patent Documents 1 to 8 is sufficient without the base treatment such as zinc phosphate-based chemical conversion treatment described in Patent Documents 9 to 11.
  • the treatment liquid composition that can ensure corrosion resistance contains a catalyst for accelerating the crosslinking and curing reaction of aqueous resin as a common technique, and has contributed to the improvement of the crosslinking density and the lowering of the curing temperature. .
  • lead compounds and tin compounds are generally used.
  • the use of tin compounds is common due to the toxicity of lead compounds, and compounds that can be expected to have a catalytic effect can also be used in combination, as in the present invention and Patent Document 9.
  • the contained tin compounds can be roughly divided into two types.
  • Patent Documents 1, 4, 9, and 11 and Patent Documents 12 to 14 show the use of solid tin compounds.
  • Patent Documents 5 to 8 and Patent Documents 15 to 17 show the use of liquid tin compounds.
  • solid tin compounds include use of dibutyltin oxide, dioctyltin oxide, monobutyltin oxide, monooctyltin oxide, and the like.
  • liquid tin compound examples include dibutyltin diacetate, alkyltin aromatic carboxylic acid ester, alkyltin fatty acid salt, and alkyltin (alkyl mercaptan).
  • the anticorrosive action of the base metal must be on the surface where Bi contacts with the metal, that is, the interface between the base metal surface and the coating, but in the prior art, the Bi component is uniformly dispersed in the coating and exhibits corrosion resistance. It was estimated that sufficient Bi was not previously present on the surface of the base metal.
  • the present inventors reduced and precipitated Bi by low-voltage cathode electrolysis in the same bath, and then, at the stage where the diffusion of Bi ions became insufficient by high-voltage cathode electrolysis, this pH increase caused the cationic resin. It was confirmed that the reaction mechanism of precipitation was optimal.
  • the coating obtained by this can sufficiently improve the corrosion resistance of the base metal by Bi present at a high concentration on the surface of the base metal as well as the curing catalyst ability of the resin of Bi. did.
  • the conventional method has the following problems.
  • this method multistage electrolysis method
  • Bi is reduced and deposited by low-voltage cathode electrolysis, and then a step in which a cationic resin is deposited is taken.
  • improving the Bi precipitation property leads to obtaining a Bi precipitation amount sufficient to obtain the necessary corrosion resistance at an early stage, which shortens the time required for the low voltage processing state, that is, improves the productivity and costs. It is possible to reduce. Therefore, this invention makes it the 1st subject to provide the means which improves the precipitation nature of Bi dramatically.
  • this system multi-stage electrolysis system
  • the appearance of the coating film such as repellency and irregularity may deteriorate depending on conditions and the like. Therefore, this invention makes it a 2nd subject to provide the means which prevents the coating-film external appearance deterioration, such as a repellency and a flaw.
  • the present inventors have verified various cationic resins, curing agents, and curing catalysts, and verified combinations that can achieve the first and second problems.
  • the present inventors adopted a cationic emulsion as a composition, and dispersed a specific cationic resin / curing agent / curing catalyst combination in the emulsion while bismuth ions were present in the dispersion medium of the emulsion. It has been found that the above-mentioned problems can be achieved by selecting as a quality component, and the present invention has been completed.
  • the present inventions are the following inventions (1) to (10).
  • the present invention (1) An aqueous composition for metal surface treatment containing a cationic resin emulsion, wherein the dispersoid of the cationic resin emulsion is an aminated product of a modified epoxy resin (particularly a bisphenol type is preferred), a block polyisocyanate, and a formula 1: (Wherein, in Formula 1, m is 4 or more, n is 0 or more and 10 or less), and the dispersion medium of the cationic resin emulsion contains Bi ions.
  • This is an aqueous composition for surface treatment.
  • you may contain a pigment particle as needed.
  • the dispersoid of the emulsion may contain a resin other than the aminated product of the modified epoxy resin (for example, other cationic resin or nonionic resin).
  • the present invention (2) is the aqueous composition for metal surface treatment according to the invention (1), wherein m in Formula 1 is 7 or more.
  • the present invention (3) is the aqueous composition for metal surface treatment according to the invention (1) or (2), wherein m in the formula 1 is 7.
  • the present invention (4) is the aqueous composition for metal surface treatment according to the invention (3), wherein m in the formula 1 is 7 and n is 0.
  • the present invention (5) is characterized in that the content of the tin compound in the total composition is 0.01 to 1% by weight as the Sn amount, according to any one of the inventions (1) to (4), It is an aqueous composition for metal surface treatment.
  • the present invention (6) is the aqueous composition for metal surface treatment according to any one of the inventions (1) to (5), characterized in that the composition is used for a multistage energization method in the same bath. is there.
  • a metal material is coated in an electrolytic treatment process using the metal material to be treated as a cathode by immersing the metal material to be treated in any one of the aqueous compositions of the inventions (1) to (6). It is a metal surface treatment method characterized by depositing.
  • the metal material whose surface is cleaned is immersed in the aqueous composition according to any one of the inventions (1) to (6), or is immersed.
  • the first step of electrolysis for 10 to 120 seconds at a voltage of 15 V or less, and the electrolysis for 30 to 300 seconds at a voltage of 50 to 400 V was carried out in the same bath following the first step.
  • the present invention (9) is a process for producing a coated metal material characterized by having the electrolytic treatment step of the invention (7) or (8).
  • the present invention (10) is a film obtained by the production method of the invention (9), wherein metal Bi and oxidized Bi are deposited as Bi in an amount of 20 to 250 mg / m 2 and the total film thickness is 5 to 40 ⁇ m. Further, the metal is characterized in that the Bi adhesion amount on the metal material side from the center of the film thickness: B is a Bi adhesion distribution in which the total Bi adhesion amount is 55% or more (B / A ⁇ 55%) with respect to A. It is a surface treatment film.
  • FIG. 1 is a diagram showing the relationship between the amount of Bi deposition and the application time when a constant voltage is applied to the aqueous compositions according to Examples and Comparative Examples.
  • FIG. 2 is a diagram showing a B / A profile when the aqueous composition according to Example 1 is used.
  • the aqueous composition for metal surface treatment according to the present invention is used for the purpose of preventing various metals from corrosion.
  • the metal material is not particularly limited, but steel materials such as cold-rolled steel plates, hot-rolled steel plates, cast materials, steel pipes, etc., and zinc-based plating treatment and / or aluminum-based plating are performed on those steel materials. Materials, aluminum alloy plates, aluminum castings, magnesium alloy plates, magnesium castings, and the like. It is particularly suitable for use in metal structures having complicated shapes, for example, automobile bodies, automobile parts, home appliances, building materials, etc., which are metal structures mainly composed of iron-based materials.
  • the metal surface treatment method according to the present invention includes a step of depositing a film on the surface of the metal material in an electrolytic treatment step using the above-described aqueous composition for metal surface treatment and using the metal material to be treated as a cathode. More preferably, the metal surface treatment method according to the present invention is performed after the electrolytic treatment step, and an electrolytic treatment step of performing electrolytic treatment on the metal material whose surface is cleaned in order to deposit a film on the metallic material. Including washing and baking processes.
  • the electrolytic treatment process and baking process characteristic of this method will be described in detail.
  • This electrolytic treatment step includes a first step of electrolysis for 10 to 120 seconds at a voltage of 15 V or less in a state where the metal material is immersed in an aqueous composition for metal surface treatment, and an aqueous solution for metal surface treatment.
  • a second step carried out after the first step, in which the metal material is immersed in the composition and electrolyzed at a voltage of 50 to 400 V for 30 to 300 seconds, wherein the second step Is carried out in the same bath following the first step.
  • the first step is a step mainly performed for preferentially attaching Bi
  • the second step is a step mainly performed for preferentially depositing the cationic resin.
  • Bi that is in direct contact with the metal material, that is, the interface Bi that exists at the interface between the metal material and the coating.
  • the order of the first step and the second step is required. And conditions are extremely important.
  • the voltage in the first step is 15 V or less (the lower limit is not particularly limited, but 0.01 V, for example), and electrolysis is preferably performed for 10 to 120 seconds.
  • the voltage is lower than 0 V, that is, when electrolysis is performed using a metal material as an anode, the metal material is eluted into the composition, not only reducing the stability of the composition, but also having an interface Bi necessary for improving the corrosion resistance. It will not adhere enough. Even when the upper limit is exceeded, resin deposition starts before Bi is preferentially deposited on the metal surface, so that sufficient corrosion resistance cannot be obtained.
  • the voltage in the second step is 50 to 400 V, and electrolysis is preferably performed for 30 to 300 seconds.
  • the voltage is lower than the lower limit, the amount of the resin film deposited is insufficient.
  • the voltage is higher than the upper limit, the resin film is excessively deposited, which is economically disadvantageous, and the finished appearance of the film may be impaired.
  • the baking method is not particularly limited, and examples thereof include a baking method in an oven.
  • the baking temperature is, for example, 100 ° C. to 200 ° C.
  • the baking time depends on the shape, size and material of the metal material to be treated, it is usually 10 to 30 minutes.
  • An aqueous composition for metal surface treatment according to the present invention is an aqueous composition for metal surface treatment containing a cationic resin emulsion, wherein the dispersoid of the cationic resin emulsion is an aminated product of a modified epoxy resin as a base resin, A blocked polyisocyanate as a curing agent and a tin compound having a specific structure as a curing catalyst (or as a co-catalyst) are essential, and the dispersion medium of the cationic resin emulsion contains Bi ions (for example, It corresponds to F2 agent used as an electrodeposition paint).
  • Bi ions for example, It corresponds to F2 agent used as an electrodeposition paint
  • a pigment component in the aqueous composition for metal surface treatment according to the present invention, for example, a pigment component can be arbitrarily blended.
  • this pigment component corresponds to, for example, an F1 agent used as an electrodeposition paint.
  • F1 agent used as an electrodeposition paint.
  • composition component Dispersoid of cationic resin emulsion> (Composition component: Dispersoid of cationic resin emulsion / cationic resin) * Ingredient
  • the base resin according to the present invention essentially contains a base resin of a modified epoxy resin that is cationized with an amine as a cationic resin.
  • a modified epoxy resin that is cationized with an amine as a cationic resin.
  • bisphenol type and novolac type modified epoxy resins are preferred, and bisphenol type is most preferred.
  • the reason for using the modified component is as follows. Usually, when only these base resin components are used, the performance of the obtained film is not satisfied. Therefore, a method of adding and modifying a compound having a structure different from that of the base resin is employed.
  • the rigidity is very rich, but conversely, it lacks flexibility and sufficient performance cannot be obtained.
  • a film having both hardness and softness can be obtained by adding a polyol compound (detailed later) and the like.
  • a particularly preferred aminated product of a modified bisphenol A type epoxy resin is a modified resin, an epoxy resin having an epoxy equivalent of 180 to 2500, a primary and / or secondary amino group-containing compound, or bisphenol A as a raw material. It is an aminated product of a modified epoxy resin obtained by reacting them.
  • each component will be described.
  • a polyol compound is usually used as the modified resin. These are applied for the purpose of improving the plasticity of the epoxy resin. Specific examples thereof include polyol resins such as polyester polyol, polyether polyol, polyurethane polyol, and acrylic polyol, and aromatic condensed compounds having a hydroxyl group by adding phenol to the terminal. More specifically, polycaprolactone diol, polyethylene glycol, polypropylene glycol, xylene formaldehyde resin having a phenolic hydroxyl group and the like can be mentioned.
  • the modification with these compounds is a technique that has been used conventionally since the hydroxyl groups of these compounds and the glycidyl ether portion of the epoxy resin can easily react.
  • these modified resins are contained in an amount of 5 to 30% by weight.
  • an epoxy resin having an epoxy equivalent of 180 to 2500 an epoxy resin obtained by a reaction between a polyphenol compound and an epihalohydrin, for example, epichlorohydrin, is particularly preferable from the viewpoint of the corrosion resistance of the coating film.
  • an epoxy resin obtained by polymerizing bisphenol A as a basic structure exhibits the same effect, and an epoxy equivalent having an epoxy equivalent of 180 to 2500, preferably 180 to 2000, more preferably 180 to 1500 is optimal.
  • these epoxy resins are contained in an amount of 5 to 30% by weight.
  • bisphenol A is used to control the skeleton molecular weight of the epoxy resin.
  • the epoxy equivalent can be controlled by this content (addition amount).
  • addition amount 5 to 30% by weight of bisphenol A is contained.
  • the primary and / or secondary amino group-containing compound is a cationic component for introducing an amino group into the epoxy resin substrate to cationize the epoxy resin.
  • the amine used here contains at least one active hydrogen that reacts with an epoxy group.
  • the amino group-containing compound used for such purpose include mono- or di-alkylamines such as monomethylamine, dimethylamine, monoethylamine, diethylamine, monoisopropylamine, diisopropylamine, monobutylamine, dibutylamine and the like.
  • Alkanolamines such as monoethanolamine, diethanolamine, mono (2-hydroxypropyl) amine, di (2-hydroxypropyl) amine, monomethylaminoethanol, monoethylaminoethanol; ethylenediamine, propylenediamine, butylenediamine, hexamethylenediamine, Alkylene such as tetraethylenepentamine, pentaethylenehexamine, diethylaminopropylamine, diethylenetriamine, triethylenetetramine Riamin and ketimine of these polyamines; ethyleneimine, alkylene imine such as propylene imine; piperazine, a cyclic amine such as morpholine, and the like.
  • the primary and / or secondary amino group-containing compound is contained in an amount of 0.5 to 20% by weight.
  • a predetermined amount of a modified resin and an epoxy resin are mixed and heated and stirred.
  • the heating temperature is preferably 70 to 100 ° C.
  • a catalyst is added, the heating temperature is increased, and synthesis is performed.
  • a tertiary amine such as dimethylbenzylamine is usually used.
  • the synthesis temperature is generally controlled at 120 ° C to 170 ° C.
  • a modified epoxy resin having a predetermined epoxy equivalent can be synthesized.
  • the epoxy equivalent is calculated by the epoxy equivalent measurement defined in JIS K7236.
  • the epoxy equivalent at this time is preferably 800 to 10,000, more preferably 800 to 5000, and most preferably 800 to 3000. As the epoxy equivalent increases, emulsification at the time of preparing the emulsion becomes more difficult.
  • a primary and / or secondary amino group-containing compound is added to the synthesized modified epoxy resin.
  • An aminated product of the modified epoxy resin can be obtained by adding a primary and / or secondary amino group-containing compound while maintaining the modified epoxy resin at 60 ° C. to 110 ° C. and performing synthesis for 1 to 3 hours.
  • a neutralized acid is added to the aminated product of the modified epoxy resin, mixed with stirring, and diluted with water to prepare a resin emulsion having a predetermined concentration.
  • the neutralizing acid formic acid, acetic acid, lactic acid, sulfamic acid and the like are used.
  • a curing agent it is preferable to add a curing agent, a curing catalyst, an organic solvent, etc. before adding the neutralizing acid.
  • a uniform emulsion can be obtained.
  • the content of the cationic resin (especially the aminated product of the modified epoxy resin) in the dispersoid of the emulsion is based on the total weight of the dispersoid (total weight including the organic solvent). Is preferably 30 to 80% by weight.
  • composition component Dispersoid of cationic resin emulsion / curing agent
  • curing agent contained in the dispersoid of the cationic resin emulsion which concerns on this invention is block polyisocyanate.
  • Block polyisocyanate is an addition reaction product of approximately the theoretical amount of a polyisocyanate compound and an isocyanate blocking agent.
  • polyisocyanate compound used here examples include tolylene diisocyanate, xylylene diisocyanate, phenylene diisocyanate, diphenylmethane-2,4′-diisocyanate, diphenylmethane-4,4′-diisocyanate (usually referred to as “MDI”), Aromatic, aliphatic or alicyclic polyisocyanate compounds such as crude MDI, bis (isocyanate methyl) cyclohexane, tetramethylene diisocyanate, hexamethylene diisocyanate, methylene diisocyanate, isophorone diisocyanate; cyclized polymers of these polyisocyanate compounds; Isocyanate biuret; ethylene glycol, propylene glycol, trimethylolpropane in excess of these isocyanate compounds Hexanetriol, and the like terminal isocyanate-containing compounds obtained by reacting a low molecular weight active hydrogen-containing
  • the isocyanate blocking agent is blocked by adding to the isocyanate group of the polyisocyanate compound, and the blocked polyisocyanate compound produced by the addition is stable at room temperature, but the baking temperature of the coating film (usually about 100). When heated to about 200 ° C., it is desirable that the blocking agent dissociates to regenerate free isocyanate groups.
  • Examples of the blocking agent satisfying such requirements include lactam compounds such as ⁇ -caprolactam and ⁇ -butyrolactam; oxime compounds such as methyl ethyl ketoxime and cyclohexanone oxime; phenols such as phenol, para-t-butylphenol and cresol Compounds; aliphatic alcohols such as n-butanol and 2-ethylhexanol; aromatic alkyl alcohols such as phenyl carbinol and methyl phenyl carbinol; ether alcohol compounds such as ethylene glycol monobutyl ether and diethylene glycol monoethyl ether Can be mentioned. These blocking agents can be used alone or in combination of two or more.
  • the block polyisocyanate in the dispersoid of the emulsion is preferably 5 to 40% by weight based on the total weight of the dispersoid (total weight including the organic solvent). is there.
  • composition component Dispersoid of cationic resin emulsion / tin compound
  • Component The tin compound contained in the dispersoid of the cationic resin emulsion according to the present invention contains a tin compound represented by Formula 1.
  • the use of the tin compound alone represented by formula 1 is not limited, but a tin compound such as a dibutyltin compound having a m of 3 or less, a solid tin compound, other curing catalysts, Can be used in combination.
  • the dispersoid of the resin emulsion is composed of a cationic resin, a curing agent, a curing catalyst, an organic solvent, and the like.
  • a compound having m of 4 or more shown in Formula 1 is preferable.
  • a tin compound having a high hydrophobicity m of 7 or more is preferable, and among them, a dioctyl tin compound having a high catalytic ability of m 7 is most preferable.
  • the upper limit is 12, for example.
  • compounds having n of 11 or more are not suitable because they have poor compatibility with the resin, resulting in poor stability of the emulsion, insufficient curability, and generation of repellency and blisters.
  • a particularly preferred combination of m and n is 4 ⁇ m ⁇ 10 (more preferably 6 ⁇ m ⁇ 8) and 0 ⁇ n ⁇ 5 (more preferably, 0 ⁇ n ⁇ 3).
  • a more preferable combination is a total number of m and n of 7 to 10, and a most preferable combination is a total of m and n of 7 (for example, dialkyltin diacetate).
  • the aminated product of the modified epoxy resin can obtain an affinity with water as a medium due to the cationization ability of the amine moiety that it has (emulsification). ).
  • the blocked polyisocyanate that is a curing agent and the tin compound that is a curing catalyst have low affinity with water due to chemical structural characteristics, and are difficult to exist on the surface of the dispersoid, and are likely to exist inside the dispersoid. . That is, it can be easily expected to have a core-shell structure in which an aminated product of a modified epoxy resin is used as a shell and a blocked polyisocyanate or tin compound is used as a core.
  • the surface state of the dispersoid changes depending on the hydrophobicity / hydrophilicity of the core component.
  • the emulsion is concentrated, the degree of instability increases, and in some cases, precipitation of a resin component that is a dispersoid may occur.
  • Bi deposition is hindered, which is inconvenient.
  • Bi precipitation is made difficult to be inhibited by using a tin compound having high hydrophobicity that can exist in the core portion. That is, Bi precipitation property improves.
  • the hydrophobicity of the tin compound greatly contributes to its structure, particularly the numerical value of m in Formula 1.
  • the dialkyl tin difatty acid ester represented by Formula 1 is liquid at room temperature and has excellent compatibility with the resin. In addition, there is no occurrence of repellency or flutter due to these.
  • the tin compound present on the outermost surface comes into contact with moisture, and in that case, the dialkyltin difatty acid ester in contact with moisture Is preferably hydrolyzed to easily form a dialkyltin oxide. That is, in addition to the easy removal of the fatty acid moiety, it is preferably a fatty acid root that is easy to move to the aqueous phase after removal (high hydrophilicity). Thereby, the excess component contained in a coating film reduces by moving to the water phase side, and implement
  • n is equal to or less than the above-described numerical value.
  • the higher fatty acid ester portion and the like are not easily hydrolyzed and are likely to remain in the coating film, which may cause a decrease in curability and a decrease in corrosion resistance.
  • the appearance of the coating film is confirmed on the appearance of the coating film.
  • the amount of tin compound in the dispersoid of the emulsion is preferably 0.05 to 3% by weight as Sn based on the total weight of the dispersoid (total weight including the organic solvent). 2% by weight is more preferable, and 0.05 to 1% by weight is most preferable.
  • the amount of tin compounds in the aqueous composition for metal surface treatment or the dispersoid can be grasped as the amount of Sn.
  • the components such as the resin are burned, and all the tin compounds are in a tin oxide state.
  • the tin oxide obtained here is dissolved with hot concentrated sulfuric acid or the like to prepare an aqueous solution, and this is subjected to ICP emission analysis or ICP mass spectrometry, whereby the Sn amount can be measured.
  • composition component Dispersion medium of cationic resin emulsion> (Composition component: dispersion medium / liquid medium of cationic resin emulsion)
  • the liquid medium of the aqueous composition for metal surface treatment according to the present invention an aqueous medium is preferable, and water is more preferable.
  • the liquid medium is water
  • the liquid medium may contain an aqueous solvent other than water (for example, water-soluble alcohols) (for example, 10% by weight based on the weight of the total liquid medium). Less than).
  • Composition component dispersion medium of cationic resin emulsion / trivalent bismuth ion
  • Bi ion refers to the Bi component which does not solidify in a composition, specifically comprises a chelate by aminopolycarboxylic acid etc. which will be described later, and is in a completely dissolved state.
  • the ions are present in the dispersion medium of the emulsion.
  • the Bi ion supply source is not particularly limited as long as it is a trivalent bismuth compound.
  • inorganic bismuth compounds such as bismuth nitrate, bismuth phosphate, bismuth sulfate, bismuth oxide, and bismuth hydroxide, fluoride
  • examples thereof include halogenated bismuth compounds such as bismuth, bismuth chloride, bismuth bromide, and bismuth iodide, and organic acid bismuth compounds such as bismuth acetate, bismuth formate, bismuth lactate, and bismuth citrate.
  • aminopolycarboxylic acid may be contained.
  • Aminopolycarboxylic acid is a general term for chelating agents having an amino group and a plurality of carboxyl groups in the molecule.
  • the aminopolycarboxylic acid can contain the aminopolycarboxylic acid in order to make the trivalent Bi ions in the composition more water-soluble.
  • Specific examples include EDTA (ethylenediaminetetraacetic acid), HEDTA (hydroxyethylethylenediaminetriacetic acid), NTA (nitrilotriacetic acid), DTPA (diethylenetriaminepentaacetic acid), TTHA (triethylenetetraminehexaacetic acid), and the like. From the viewpoint of chelate stability with ions, EDTA, HEDTA, and NTA are more preferable.
  • composition component Other ingredients>
  • additives usually used in the paint field such as a pigment, an organic solvent, a pigment dispersant, and a surfactant can be further applied as necessary.
  • the pigment include colored pigments such as titanium white and carbon black, extender pigments such as clay, talc, and barita, and rust preventive pigments such as aluminum tripolyphosphate and zinc phosphate.
  • the components in the dispersoid of the cationic resin emulsion cationic resin, blocked polyisocyanate, tin compound
  • the components in the dispersion medium liquid medium, bismuth ions
  • dispersoid or dispersion medium it means that it exists in the dispersoid or dispersion medium, and does not mean that it exists only in the dispersoid or only in the dispersion medium. For example, even if a part of the cationic resin is dissolved in a small amount in the dispersion medium, it is within the scope of the present invention.
  • composition of the aqueous composition for metal surface treatment according to the present invention will be described.
  • the metal surface treatment aqueous composition according to the present invention can be adjusted to a desired concentration by appropriately diluting a high concentration product with water.
  • the suitable concentration of each component in the aqueous composition will be described.
  • the composition preferably contains 5-30% by weight (solid content) of the cationic resin, more preferably 5-20% by weight, and more preferably 5-15% by weight based on the total weight of the composition. % Is included.
  • the composition contains 2 to 20 wt% (solid content) of blocked isocyanate, more preferably 2 to 15 wt%, more preferably 2 to 10 wt% based on the total weight of the composition.
  • the content of the tin compound in the composition is preferably 0.01 to 1% by weight, more preferably 0.01 to 0.5% by weight as the Sn amount, Most preferred is ⁇ 0.2% by weight. If the content of the tin compound is too low, the expected curing catalyst ability will be reduced and the curability will not be satisfied, and if the acetone reciprocation test is performed as described above, it will be confirmed that the coating has been peeled off. It becomes.
  • Trivalent Bi ion in aqueous composition contains 100 to 5000 ppm of trivalent Bi ions. More preferred is 500 to 4000 ppm, and most preferred is 1000 to 3000 ppm. If the Bi ion concentration is too low, it is disadvantageous for the precipitation of Bi. If the Bi ion concentration is too high, the electrical conductivity of the composition becomes too high, and the coverage of the film on a metal material having a complicated shape deteriorates, and Bi adheres. Excessive amount may impair film adhesion.
  • the Bi ion concentration in the composition can be determined by solid-liquid separation of the composition using an ultracentrifuge, and the liquid phase can be quantified using high frequency inductively coupled plasma emission spectrometry (ICP) or atomic absorption spectrometry (AA). .
  • ICP inductively coupled plasma emission spectrometry
  • AA atomic absorption spectrometry
  • the pH of the aqueous composition for metal surface treatment according to the present invention is not particularly limited, but is usually adjusted to 2.0 to 7.0, preferably 3.0 to 6.5. Can do.
  • the temperature of the aqueous composition for metal surface treatment according to the present invention is not particularly limited, but when the film is deposited by electrolytic treatment, it is usually used within the range of 15 to 40 ° C, preferably 20 to 35 ° C. Can do.
  • the metal surface treatment film according to the present invention is obtained by the treatment method of the present invention using the aqueous composition for metal surface treatment of the present invention.
  • Bi which exists in a film
  • membrane exists with the form of a metal and an oxide.
  • Bi deposited by cathodic electrolysis is basically reduced Bi metal Bi, but a part of it is oxidized in particular in the coating baking process to become an oxide.
  • Bi stabilization by the aminopolycarboxylic acid is insufficient due to an increase in pH on the surface of the film, so that it also precipitates as oxidized Bi especially on the film surface side.
  • Bi coating weight is preferably 20 ⁇ 500mg / m 2, more preferably 30 ⁇ 400mg / m 2, and most preferably 50 ⁇ 300mg / m 2. If the amount of Bi deposited is too low, sufficient corrosion resistance cannot be obtained. If it is too high, improvement in corrosion resistance can no longer be expected, and film adhesion may be impaired. The amount of Bi attached can be quantified by fluorescent X-ray analysis.
  • the “metal Bi adhesion amount” and “oxidized Bi adhesion amount” in the claims and in the present specification are values determined by the fluorescent X-ray analysis.
  • the total film thickness of the obtained film is preferably 5 to 40 ⁇ m, more preferably 5 to 30 ⁇ m, and most preferably 7 to 25 ⁇ m. If it is too thin, sufficient corrosion resistance cannot be obtained, and if it is too thick, not only is it economically disadvantageous, but the throwing power may be lowered.
  • the film thickness can be measured by an electromagnetic induction type film thickness meter if the base metal is a magnetic metal, or by an eddy current film thickness meter if the base metal is a non-magnetic metal.
  • the Bi adhesion amount B on the metal material side from the center of the film thickness is a Bi adhesion distribution in which the total Bi adhesion amount: 55% or more (B / A ⁇ 55%) with respect to A. preferable. It is more preferably 58% or more, and most preferably 60% or more. If it is too low, sufficient corrosion resistance cannot be obtained. Note that if it exceeds 90%, the Bi concentration on the surface side of the film is extremely lowered and the function of Bi as a curing catalyst is lost.
  • the Bi adhesion distribution in the film can be measured by performing a line analysis on the film cross section using EPMA.
  • the position of the base metal / film interface and the film surface is specified from the backscattered electron image taken at the same time, and the integrated value of Bi intensity in the film by EPMA line analysis: the integrated value of only the base metal side from the center of A and film thickness: B can be obtained and B / A can be calculated.
  • Production Example 2 In Production Example 1, 1.6 g of dioctyltin diacetate and 1.6 g of dibutyltin diacetate (Neostan U200 manufactured by Nitto Kasei Kogyo Co., Ltd.) are used instead of dioctyltin diacetate, and a similar reaction is performed. A cationic resin emulsion (A2) was obtained.
  • Production Example 3 In Production Example 1, instead of dioctyltin diacetate, 3.2 g of dioctyltin dilaurate (Neostan U810 manufactured by Nitto Kasei Kogyo Co., Ltd.) is used, and a similar reaction is performed to obtain a cationic resin emulsion (A3). It was.
  • Production Example 4 In Production Example 1, instead of dioctyltin diacetate, 3.2 g of dibutyltin diacetate (Neostan U200 manufactured by Nitto Kasei Kogyo Co., Ltd.) was used, and the same reaction was carried out to obtain a cationic resin emulsion (A4). Obtained.
  • Production Example 5 In Production Example 1, 3.2 g of dioctyltin distearate (Neostan U500 manufactured by Nitto Kasei Kogyo Co., Ltd.) is used instead of dioctyltin diacetate, and a cationic resin emulsion (A5) is obtained by performing the same reaction. It was.
  • pigment dispersion paste Production Example 6 To 16.6 parts of 30% quaternary salt type epoxy resin, 7.0 parts of purified clay, 0.3 part of carbon black, 3.0 parts of tertiary zinc phosphate and deionized water were added. Dispersion was carried out for 20 hours to obtain a pigment dispersion paste having a solid content of 50% by weight.
  • Bi ionic liquid HEDTA 13.3 g was dissolved in distilled water: 500 g and heated to 60 ° C., then bismuth nitrate pentahydrate: 23.2 g was added and stirred until the solid content was completely dissolved. . Distilled water was further added so that the total amount finally became 1.0 L, and Bi ion aqueous solution was produced.
  • Examples 1-3 and Comparative Examples 1-2 Preparation of Composition A pigment dispersion paste and an aqueous Bi ion solution having an inorganic solid content of 4.0% by weight were blended in a resin emulsion having an amount of solid content of 16.0% by weight in the combinations shown in Table 1.
  • Example 1 To 3 and Comparative Examples 1 to 2 Bi concentration in the composition: 1000 ppm; pH: 6.0; Cationic resin in the dispersoid: 58 wt%; Block isocyanate in the dispersoid: 27% by weight). Each concentration was adjusted by diluting with deionized water.
  • Electrolytic conditions After electrolysis at 8V for 90 seconds as an electrolytic step (1), an electrolytic treatment was immediately performed at 180V for 180 seconds as an electrolytic step (2).
  • test plate A cold rolled steel plate: SPCC (JIS 3141) 70 ⁇ 150 ⁇ 0.8 mm (hereinafter abbreviated as SPC) was used as a test plate, and its surface was preliminarily a strong alkaline degreasing agent “FC-E2001” manufactured by Nihon Parkerizing Co., Ltd. Was degreased by spraying for 120 seconds. After the degreasing treatment, it was washed with spray water for 30 seconds, immersed in the compositions shown in Examples and Comparative Examples, and subjected to cathode electrolytic treatment under the electrolytic conditions shown in Examples and Comparative Examples. The test plate after completion of electrolysis was immediately rinsed with deionized water for 30 seconds and baked at 180 ° C. for 20 minutes in an electric oven.
  • FC-E2001 strong alkaline degreasing agent
  • film thickness measurement Measured using an electromagnetic induction film thickness meter.
  • Bi adhesion amount quantified by fluorescent X-ray spectroscopic analysis.
  • Bi adhesion distribution Sample cross section was analyzed by EPMA line analysis. See below for specific methods.
  • a line analysis profile is an average value of characteristic X-ray intensity calculated in an arbitrary width in the one-dimensional direction of an analysis area based on mapping analysis data, and can be interpreted as a line analysis having a width.
  • the measurement conditions are as follows.
  • Measuring instrument EPMA-1610 type manufactured by Shimadzu Corporation
  • Electron gun CeB6 cathode type
  • Beam current 50 nA
  • beam voltage 15 kV
  • beam diameter 1 ⁇ m ⁇ or less
  • Integration count once
  • sampling time per point 100 ms
  • Spectroscopic crystal PET (Bi M ⁇ )
  • FIG. 2 shows the analysis result of the film obtained in Example 1 as a representative profile.
  • Bi precipitation property As Bi precipitation property, the time required for the Bi precipitation amount to reach 50 mg / m 2 was evaluated from the result of fluorescent X-ray spectroscopic analysis over time. Evaluation criteria were within 45 seconds: A, 45-60 seconds: B, 60 seconds or more: X. The results are shown in Table 1, and the transition of the precipitation amount is shown in FIG. In the Bi precipitation test, electrolysis was performed at 8 V for 30, 60, and 90 seconds, washed with deionized water, and then air-dried.
  • Coating film curability Gauze with plenty of acetone was pressed against a resin-coated plate produced by cathodic electrolysis, and after 30 reciprocations, the appearance of the coating film was visually confirmed.
  • the evaluation criteria were as follows: no mark: ⁇ , mark: ⁇ , visible state: x. The results are shown in Table 1.
  • Resin deposition time (resin deposition property): Electrolytic treatment was performed at 15 V for 90 seconds, and the time when a decrease in current value was observed was determined as the time when coating film resistance was expressed, that is, the time when resin deposition occurred. The processing time up to was defined as resin deposition time. The results are shown in Table 1.
  • Hashiki, Futsu The presence or absence was confirmed visually.
  • Adhesiveness 100 square grid cuts with a width of 1 mm were put on the coating film, and the portion was extruded with an Eriksen tester. After extrusion, tape peeling was performed, and the number of cells remaining without peeling was counted. Extrusion distance: 4 mm Remaining mass number 80-100: A, 80-60: A, 60-20: A, 20-0: X
  • the compositions according to the examples can improve the precipitation of Bi, prevent deterioration of the appearance of the coating film such as repellency and blistering, and have excellent coating film curability and adhesion. It was confirmed that That is, it was confirmed that the compositions according to the examples can form a film in the same bath and can form a film satisfying important properties as a film. On the other hand, it can be seen that the composition according to the comparative example is remarkably inferior in any property and cannot be used as a practical product.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Polymers & Plastics (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Wood Science & Technology (AREA)
  • Molecular Biology (AREA)
  • Paints Or Removers (AREA)
  • Polyurethanes Or Polyureas (AREA)

Abstract

[Problem] To provide means for dramatically improving Bi precipitation and preventing deterioration of metal film appearance in the form of fisheyes, dimples, and the like. [Solution] An aqueous composition for metal surface treatment is characterized in being an aqueous composition for metal surface treatment containing a cationic resin emulsion, wherein the dispersoid of the cationic resin emulsion comprises an amino compound of a modified epoxy resin, a block polyisocyanate, and a tin compound represented by formula 1 (1) (where in formula 1, m is 4 or greater and n is between 0 and 10), and the dispersion medium of the cationic resin emulsion contains Bi ions.

Description

金属表面処理用水性組成物、これを用いた金属表面処理方法及び皮膜付金属材料の製造方法並びにこれらを用いた金属表面処理皮膜Aqueous composition for metal surface treatment, metal surface treatment method using the same, method for producing metal material with film, and metal surface treatment film using these
 本発明は、金属材料、特に形状が複雑な金属構成体に対し、優れた耐食性及び塗膜外観を付与し得る皮膜を形成せしめることが可能な金属表面処理用水性組成物、これを用いた金属表面処理方法及び皮膜付金属材料の製造方法並びにこれらを用いた金属表面処理皮膜に関するものである。 The present invention relates to an aqueous composition for metal surface treatment capable of forming a film capable of imparting excellent corrosion resistance and coating appearance to a metal material, particularly a metal structure having a complicated shape, and a metal using the same. The present invention relates to a surface treatment method, a method for producing a metal material with a coating, and a metal surface treatment coating using these.
 従来、各種金属材料、特に形状が複雑な金属構成体に対して優れた耐食性を付与するための手法としては、高い付き廻り性を有する電着塗装が一般的に用いられてきた。しかし、電着塗装によって得られる電着塗膜のみでは、所望の耐食性が得られない場合が多いため、電着塗装の前段には標準的にリン酸亜鉛系化成処理等の化成型の塗装下地処理が適用されていた。 Conventionally, electrodeposition coating having high throwing power has been generally used as a method for imparting excellent corrosion resistance to various metal materials, particularly metal structures having complicated shapes. However, in many cases, the desired corrosion resistance cannot be obtained only with the electrodeposition coating film obtained by electrodeposition coating. Processing was applied.
 電着塗装は、アニオン性樹脂エマルジョンを含有する水性塗料中で被塗物をアノード電解することによって塗膜を析出させるアニオン電着塗装と、カチオン樹脂エマルジョンを含有する水性塗料中で被塗物をカソード電解することによって塗膜を析出させるカチオン電着塗装とに大別できるが、鉄系金属材料の耐食性向上に対しては、電解処理中に素地金属が塗料中に溶出する心配の無いカチオン電着塗装が有利であり、鉄系材料を主とする金属構成体である自動車車体、自動車部品、家電製品、建築材料等に対してはカチオン電着塗装が広く適用されている。 Electrodeposition coating consists of an anionic electrodeposition coating in which a coating is deposited by anodic electrolysis in an aqueous paint containing an anionic resin emulsion, and an aqueous coating containing a cationic resin emulsion. Cathodic electrolysis can be broadly divided into cationic electrodeposition coating in which a coating film is deposited. To improve the corrosion resistance of ferrous metal materials, cationic electrolysis, which does not cause the base metal to elute into the paint during electrolytic treatment, is possible. Electrodeposition coating is advantageous, and cationic electrodeposition coating is widely applied to automobile bodies, automobile parts, home appliances, building materials, etc., which are metal components mainly composed of iron-based materials.
 カチオン電着塗装の市場での歴史は長く、かつてはクロム化合物や鉛化合物を配合することによって防錆性を確保していた。但し、これによっても防錆性は不充分であったため、リン酸亜鉛系化成処理等の下地処理が必須であった。現在では環境規制、特に欧州におけるELV規制によりクロム化合物や鉛化合物が実質使用できなくなったため、代替成分が検討され、ビスマス化合物にその効果が見出されており、具体的には次に挙げる特許文献が開示されている。 Cation electrodeposition coating has a long history in the market, and once it was rust-proof by blending chromium and lead compounds. However, since this also has insufficient rust prevention properties, a ground treatment such as a zinc phosphate chemical conversion treatment was essential. Currently, chromium and lead compounds have become virtually unusable due to environmental regulations, especially the European ELV regulations, so alternative components have been studied and their effects have been found in bismuth compounds. Is disclosed.
 特許文献1(特開平5-32919)には、ビスマス化合物をコーティングした顔料を少なくとも1種含有することを特徴とする電着塗料用樹脂組成物が開示されている。 Patent Document 1 (Japanese Patent Application Laid-Open No. 5-32919) discloses a resin composition for electrodeposition paints containing at least one pigment coated with a bismuth compound.
 特許文献2(WO99/31187)には、有機酸変性ビスマス化合物が非水溶性の形態で存在する水性分散液を配合した水性分散ペーストからなることを特徴とするカチオン電着塗料組成物が開示されている。 Patent Document 2 (WO 99/31187) discloses a cationic electrodeposition coating composition comprising an aqueous dispersion paste containing an aqueous dispersion in which an organic acid-modified bismuth compound is present in a water-insoluble form. ing.
 特許文献3(特開2004-137367)には、コロイド状ビスマス金属、及び、スルホニウム基とプロパルギル基とを持つ樹脂組成物からなることを特徴とするカチオン電着塗料が開示されている。 Patent Document 3 (Japanese Patent Application Laid-Open No. 2004-137367) discloses a cationic electrodeposition coating characterized by comprising a colloidal bismuth metal and a resin composition having a sulfonium group and a propargyl group.
 特許文献4(特開2007-197688)には、水酸化ビスマス、ジルコニウム化合物及びタングステン化合物から選ばれる少なくとも1種の金属化合物の粒子を含んでなる電着塗料であって、該金属化合物が1~1000nmであることを特徴とする電着塗料が開示されている。 Patent Document 4 (Japanese Patent Application Laid-Open No. 2007-197688) discloses an electrodeposition coating comprising particles of at least one metal compound selected from bismuth hydroxide, a zirconium compound and a tungsten compound, wherein the metal compound is 1 to An electrodeposition paint characterized by being 1000 nm is disclosed.
 特許文献5(特開平11-80621)には、脂肪族アルコキシカルボン酸ビスマス塩水溶液を含有することを特徴とするカチオン電着塗料組成物が開示されている。 Patent Document 5 (Japanese Patent Laid-Open No. 11-80621) discloses a cationic electrodeposition coating composition characterized by containing an aqueous solution of an aliphatic alkoxycarboxylic acid bismuth salt.
 特許文献6(特開平11-80622)には、2種以上の有機酸によるビスマス塩の水溶液であって、該有機酸の少なくとも1種が脂肪族ヒドロキシカルボン酸である有機酸ビスマス塩水溶液を含有することを特徴とするカチオン電着塗料組成物が開示されている。 Patent Document 6 (Japanese Patent Laid-Open No. 11-80622) contains an aqueous solution of bismuth salt with two or more organic acids, wherein at least one of the organic acids is an aliphatic hydroxycarboxylic acid. A cationic electrodeposition coating composition characterized by the above is disclosed.
 特許文献7(特開平11-100533)には、光学異性体のうちのL体が80%以上含まれる乳酸を用いてなる乳酸ビスマスを含有することを特徴とするカチオン電着塗料組成物が開示されている。 Patent Document 7 (Japanese Patent Laid-Open No. 11-100533) discloses a cationic electrodeposition coating composition characterized by containing bismuth lactate using lactic acid containing 80% or more of L isomers among optical isomers. Has been.
 特許文献8(特開平11-106687)には、2種以上の有機酸によるビスマス塩の水溶液であって、該有機酸の少なくとも1種が脂肪族アルコキシカルボン酸である有機酸ビスマス塩水溶液を含有することを特徴とするカチオン電着塗料組成物が開示されている。 Patent Document 8 (Japanese Patent Laid-Open No. 11-106687) includes an aqueous solution of an organic acid bismuth salt containing two or more organic acids, wherein at least one of the organic acids is an aliphatic alkoxycarboxylic acid. A cationic electrodeposition coating composition characterized by the above is disclosed.
 これらの特許文献は特許文献1~4及び特許文献5~8に大別できる。すなわち、特許文献1~4は水性塗料に対して不溶性のビスマス化合物又は金属ビスマスを分散させたものであり、特許文献5~8は少なくともビスマス化合物を固形分の残存が無くなるまで溶解させる、つまりBiイオンの状態にしてから塗料に添加することを特徴としている。 These patent documents can be roughly classified into Patent Documents 1 to 4 and Patent Documents 5 to 8. That is, Patent Documents 1 to 4 are those in which a bismuth compound or metal bismuth insoluble in an aqueous paint is dispersed, and Patent Documents 5 to 8 dissolve at least the bismuth compound until there is no remaining solids, that is, Bi. It is characterized by being added to the paint after being in an ionic state.
 しかしながら、これらの特許文献におけるビスマス化合物は、あくまでクロム化合物や鉛化合物の代替として作用するものであり、リン酸亜鉛系化成処理等の下地処理無しには充分な耐食性は得られない。事実、これらの特許文献ではリン酸亜鉛系化成処理との組合せを前提とした実施例のみが開示されている。 However, the bismuth compounds in these patent documents only act as substitutes for chromium compounds and lead compounds, and sufficient corrosion resistance cannot be obtained without a base treatment such as a zinc phosphate chemical conversion treatment. In fact, these patent documents disclose only examples based on the combination with zinc phosphate chemical conversion treatment.
 一方、昨今ビスマス化合物以外の手法により耐食性を更に向上させ、リン酸亜鉛系化成処理等の下地処理を施さなくても、1コートにて充分な耐食性を確保し得る技術が検討されてきている。 On the other hand, recently, a technique that can further improve the corrosion resistance by a method other than a bismuth compound and can ensure sufficient corrosion resistance with one coat without applying a ground treatment such as a zinc phosphate chemical conversion treatment has been studied.
 例えば特許文献9(特開2008-274392)には、金属基材に、皮膜形成剤を少なくとも2段階の多段通電方式で塗装することによって皮膜を形成する方法であって、(i)皮膜形成剤が、ジルコニウム化合物と、必要に応じて、チタン、コバルト、バナジウム、タングステン、モリブデン、銅、亜鉛、インジウム、アルミニウム、ビスマス、イットリウム、ランタノイド金属、アルカリ金属及びアルカリ土類金属から選ばれる少なくとも1種の金属(a)を含有する化合物とを合計金属量(質量換算)で30~20,000ppmと、樹脂成分1~40質量%とを含んでなり、(ii)金属基材を陰極として1段目の塗装を1~50Vの電圧(V1)で10~360秒間通電することにより行い、次いで、金属基材を陰極として2段目以降の塗装を50~400Vの電圧(V2)で60~600秒間通電することにより行い、そして(iii)電圧(V2)と電圧(V1)の差が少なくとも10Vであることを特徴とする表面処理皮膜の形成方法が開示されている。 For example, Patent Document 9 (Japanese Patent Application Laid-Open No. 2008-274392) discloses a method of forming a film by coating a metal base material with a film forming agent in at least two stages of multi-stage energization methods, and (i) a film forming agent Is at least one selected from a zirconium compound and, optionally, titanium, cobalt, vanadium, tungsten, molybdenum, copper, zinc, indium, aluminum, bismuth, yttrium, lanthanoid metal, alkali metal and alkaline earth metal A compound containing metal (a) comprising 30 to 20,000 ppm in terms of total metal (in terms of mass) and 1 to 40% by mass of a resin component, and (ii) a first stage using a metal substrate as a cathode Is applied by energizing for 10 to 360 seconds at a voltage (V1) of 1 to 50 V, and then 2 with a metal substrate as a cathode. A surface characterized in that the coating after the first is performed by energizing for 60 to 600 seconds at a voltage (V2) of 50 to 400 V, and (iii) the difference between the voltage (V2) and the voltage (V1) is at least 10 V A method of forming a treatment film is disclosed.
 また、特許文献10(特開2008-538383)には、(A)希土類金属化合物、(B)カチオン基を有する基体樹脂、及び(C)硬化剤を含む水性塗料組成物であって、該水性塗料組成物に含まれる(A)希土類金属化合物の量が、塗料固形分に対して、希土類金属に換算して、0.05~10重量%である水性塗料組成物に、被塗物を浸漬する、浸漬工程、該水性塗料組成物中において、被塗物を陰極として50V未満の電圧を印加する、前処理工程、及び該水性塗料組成物中において、被塗物を陰極として50~450Vの電圧を印加する、電着塗装工程を包含する、複層塗膜形成方法が開示されている。 Patent Document 10 (Japanese Patent Application Laid-Open No. 2008-538383) discloses an aqueous coating composition containing (A) a rare earth metal compound, (B) a base resin having a cationic group, and (C) a curing agent, The coating material is immersed in an aqueous coating composition in which the amount of (A) rare earth metal compound contained in the coating composition is 0.05 to 10% by weight in terms of the rare earth metal relative to the solid content of the coating. A dipping step, applying a voltage of less than 50 V as the cathode in the aqueous coating composition, and a pretreatment step, and applying a voltage of 50 to 450 V as the cathode in the aqueous coating composition. A method for forming a multilayer coating film including an electrodeposition coating step in which a voltage is applied is disclosed.
 特許文献11(特開2010-24471)には、ビスマスの有機酸塩又は無機酸塩を含む水溶液に金属基材を浸漬し、第一工程として該金属基材を陰極として電解することによりビスマス化合物被膜を形成し、第二工程として該被膜の上にカチオン電着塗装により電着塗膜を形成する複層塗膜形成方法が開示されている。 Patent Document 11 (Japanese Patent Laid-Open No. 2010-24471) discloses that a bismuth compound is obtained by immersing a metal substrate in an aqueous solution containing an organic acid salt or inorganic acid salt of bismuth and electrolyzing the metal substrate as a cathode as a first step. A multilayer coating film forming method is disclosed in which a coating film is formed and an electrodeposition coating film is formed on the coating film by cationic electrodeposition coating as a second step.
 これら特許文献1~8記載のリン酸亜鉛系化成処理等の下地処理の上に施される処理液組成物、特許文献9~11記載のリン酸亜鉛系化成処理等の下地処理なしに充分な耐食性を確保し得る処理液組成物には、共通した技術として水系樹脂の架橋・硬化反応を促進するための触媒が含有されており、架橋密度の向上や硬化温度の低温化などに寄与してきた。 A treatment liquid composition applied on the base treatment such as zinc phosphate-based chemical conversion treatment described in Patent Documents 1 to 8 is sufficient without the base treatment such as zinc phosphate-based chemical conversion treatment described in Patent Documents 9 to 11. The treatment liquid composition that can ensure corrosion resistance contains a catalyst for accelerating the crosslinking and curing reaction of aqueous resin as a common technique, and has contributed to the improvement of the crosslinking density and the lowering of the curing temperature. .
 触媒としては、鉛化合物や錫化合物が一般的に使用されている。中でも近年では鉛化合物の有毒性から、錫化合物の使用が一般的であり、本発明や特許文献9のように、触媒効果を期待できる化合物を併用することもできる。 As the catalyst, lead compounds and tin compounds are generally used. Among them, in recent years, the use of tin compounds is common due to the toxicity of lead compounds, and compounds that can be expected to have a catalytic effect can also be used in combination, as in the present invention and Patent Document 9.
 含有している錫化合物は2種類に大別することができる。 The contained tin compounds can be roughly divided into two types.
 特許文献1、4、9、11の実施例、特許文献12~14には固体状の錫化合物の使用が示されている。 Examples of Patent Documents 1, 4, 9, and 11 and Patent Documents 12 to 14 show the use of solid tin compounds.
 特許文献5~8の実施例、特許文献15~17には液体状の錫化合物の使用が示されている。 Examples of Patent Documents 5 to 8 and Patent Documents 15 to 17 show the use of liquid tin compounds.
 固体状の錫化合物としては、ジブチル錫オキサイド、ジオクチル錫オキサイド、モノブチル錫オキサイド、モノオクチル錫オキサイドなどの使用が挙げられている。 Examples of solid tin compounds include use of dibutyltin oxide, dioctyltin oxide, monobutyltin oxide, monooctyltin oxide, and the like.
 液体状の錫化合物としては、ジブチル錫ジアセテート、アルキル錫の芳香族カルボン酸エステル、アルキル錫脂肪酸塩、アルキル錫(アルキルメルカプタン)などの使用が挙げられている。 Examples of the liquid tin compound include dibutyltin diacetate, alkyltin aromatic carboxylic acid ester, alkyltin fatty acid salt, and alkyltin (alkyl mercaptan).
特開平5-32919号公報Japanese Patent Laid-Open No. 5-32919 WO99/31187号公報WO99 / 31187 特開2004-137367号公報JP 2004-137367 A 特開2007-197688号公報JP 2007-197688 A 特開平11-80621号公報Japanese Patent Laid-Open No. 11-80621 特開平11-80622号公報Japanese Patent Laid-Open No. 11-80622 特開平11-100533号公報Japanese Patent Application Laid-Open No. 11-100533 特開平11-106687号公報Japanese Patent Laid-Open No. 11-106687 特開2008-274392号公報JP 2008-274392 A 特開2008-538383号公報JP 2008-538383 A 特開2010-24471号公報JP 2010-24471 A 特開平5-65438号公報Japanese Patent Laid-Open No. 5-65438 特開2008-231142号公報JP 2008-231142 A 特開2004-269582号公報JP 2004-269582 A 特公昭61-9986号公報Japanese Patent Publication No. 61-9986 特開平5-65439号公報JP-A-5-65439 特開2004-123942号公報JP 2004-123942 A
 本発明者らは、これら従来技術について種々検討した結果、やはりリン酸亜鉛系化成皮膜等の前処理無しに1コートで充分な耐食性を付与する皮膜を金属材料の上に形成させるためには、Biの適用が最も効果的であるとの結論に達した。そしてBiの作用効果について再検討することとした。 As a result of various studies on these conventional techniques, the present inventors have formed a coating that gives sufficient corrosion resistance on one metal without pretreatment such as a zinc phosphate-based chemical conversion coating on a metal material. A conclusion was reached that the application of Bi was most effective. And we decided to reconsider the effect of Bi.
 そして、Biの作用効果としては従来から、樹脂の硬化触媒としての機能と、素地金属の防食作用が注目されていたが、従来技術では、硬化触媒としての機能はある程度望めるものの、素地金属の防食作用については極めて不充分であり、この作用を最大限に発揮させることこそ課題解決につながるものとして検討を進めた。 And, as a function and effect of Bi, the function of the resin as a curing catalyst and the anticorrosion action of the base metal have been attracting attention, but the conventional technology can hope for some function as the curing catalyst, but the anticorrosion of the base metal. The action was extremely inadequate, and it was studied that maximizing this action would solve the problem.
 素地金属の防食作用はBiが金属に接触する面、すなわち素地金属表面と皮膜の界面に存在しなくてはならないが、従来技術ではBi成分が皮膜中に均一に分散してしまい、耐食性を発揮するに充分なBiが素地金属表面にあらかじめ存在していないものと推定した。 The anticorrosive action of the base metal must be on the surface where Bi contacts with the metal, that is, the interface between the base metal surface and the coating, but in the prior art, the Bi component is uniformly dispersed in the coating and exhibits corrosion resistance. It was estimated that sufficient Bi was not previously present on the surface of the base metal.
 そして、本発明者らは、同一浴内で低電圧カソード電解にてBiを還元析出させ、次いで高電圧カソード電解でBiイオンの拡散が不十分になった段階で、かかるpH上昇によってカチオン性樹脂が析出する反応機構が最適であることを確認した。 Then, the present inventors reduced and precipitated Bi by low-voltage cathode electrolysis in the same bath, and then, at the stage where the diffusion of Bi ions became insufficient by high-voltage cathode electrolysis, this pH increase caused the cationic resin. It was confirmed that the reaction mechanism of precipitation was optimal.
 具体的には、これによって得られた皮膜は、Biの持つ樹脂の硬化触媒能はもちろん、素地金属表面により高濃度で存在するBiにより、素地金属の耐食性をも充分に向上し得ることを確認した。 Specifically, it is confirmed that the coating obtained by this can sufficiently improve the corrosion resistance of the base metal by Bi present at a high concentration on the surface of the base metal as well as the curing catalyst ability of the resin of Bi. did.
 但し、従来法では以下の課題がある。前述の通り、本方式(多段階電解方式)においては、先ず低電圧カソード電解にてBiを還元析出させ、次いでカチオン性樹脂が析出する工程をとる。ここで、Bi析出性を向上させることは、必要な耐食性を獲得するために充分なBi析出量を早期に得ることに繋がり、それは低電圧処理状態の短時間化、すなわち生産性の向上やコストの削減を可能とさせる。よって、本発明は、Biの析出性を劇的に向上させる手段を提供することを第一の課題とする。更に、本方式(多段階電解方式)においては、条件等により、ハジキやブツなどの塗膜外観が悪化してしまうことがある。よって、本発明は、ハジキやブツなどの塗膜外観悪化を防止する手段を提供することを第二の課題とする。 However, the conventional method has the following problems. As described above, in this method (multistage electrolysis method), first, Bi is reduced and deposited by low-voltage cathode electrolysis, and then a step in which a cationic resin is deposited is taken. Here, improving the Bi precipitation property leads to obtaining a Bi precipitation amount sufficient to obtain the necessary corrosion resistance at an early stage, which shortens the time required for the low voltage processing state, that is, improves the productivity and costs. It is possible to reduce. Therefore, this invention makes it the 1st subject to provide the means which improves the precipitation nature of Bi dramatically. Furthermore, in this system (multi-stage electrolysis system), the appearance of the coating film such as repellency and irregularity may deteriorate depending on conditions and the like. Therefore, this invention makes it a 2nd subject to provide the means which prevents the coating-film external appearance deterioration, such as a repellency and a flaw.
 本発明者らは、様々なカチオン性樹脂、硬化剤及び硬化触媒を検証し、上記第一の課題及び第二の課題を達成し得る組み合わせについて検証した。その結果、本発明者らは、組成物としてカチオン性エマルションを採用した上、エマルションの分散媒中にビスマスイオンを存在させつつ、特定のカチオン性樹脂・硬化剤・硬化触媒の組み合わせをエマルションの分散質成分として選択することにより前記課題を達成し得ることを見出し、本発明を完成させた。具体的には、下記発明(1)~(10)である。 The present inventors have verified various cationic resins, curing agents, and curing catalysts, and verified combinations that can achieve the first and second problems. As a result, the present inventors adopted a cationic emulsion as a composition, and dispersed a specific cationic resin / curing agent / curing catalyst combination in the emulsion while bismuth ions were present in the dispersion medium of the emulsion. It has been found that the above-mentioned problems can be achieved by selecting as a quality component, and the present invention has been completed. Specifically, the present inventions are the following inventions (1) to (10).
 本発明(1)は、
 カチオン性樹脂エマルションを含有する金属表面処理用水性組成物であって、カチオン性樹脂エマルションの分散質が、変性エポキシ樹脂のアミノ化物(特に、ビスフェノール型が好適)、ブロックポリイソシアネート及び式1:
Figure JPOXMLDOC01-appb-I000002
(ここで、式1において、mは4以上、nは0以上10以下である)に示す錫化合物を含有し、カチオン性樹脂エマルションの分散媒が、Biイオンを含有する事を特徴とする金属表面処理用水性組成物である。尚、必要に応じて顔料粒子を含有してもよい。また、エマルションの分散質は、変性エポキシ樹脂のアミノ化物以外の樹脂(例えば、他のカチオン性樹脂やノニオン性樹脂等)を含有していてもよい。
The present invention (1)
An aqueous composition for metal surface treatment containing a cationic resin emulsion, wherein the dispersoid of the cationic resin emulsion is an aminated product of a modified epoxy resin (particularly a bisphenol type is preferred), a block polyisocyanate, and a formula 1:
Figure JPOXMLDOC01-appb-I000002
(Wherein, in Formula 1, m is 4 or more, n is 0 or more and 10 or less), and the dispersion medium of the cationic resin emulsion contains Bi ions. This is an aqueous composition for surface treatment. In addition, you may contain a pigment particle as needed. Further, the dispersoid of the emulsion may contain a resin other than the aminated product of the modified epoxy resin (for example, other cationic resin or nonionic resin).
 本発明(2)は、式1におけるmが7以上である事を特徴とする前記発明(1)の金属表面処理用水性組成物である。 The present invention (2) is the aqueous composition for metal surface treatment according to the invention (1), wherein m in Formula 1 is 7 or more.
 本発明(3)は、式1におけるmが7である事を特徴とする前記発明(1)又は(2)の金属表面処理用水性組成物である。 The present invention (3) is the aqueous composition for metal surface treatment according to the invention (1) or (2), wherein m in the formula 1 is 7.
 本発明(4)は、式1におけるmが7でnが0である事を特徴とする前記発明(3)のの金属表面処理用水性組成物である。 The present invention (4) is the aqueous composition for metal surface treatment according to the invention (3), wherein m in the formula 1 is 7 and n is 0.
 本発明(5)は、全組成物中における錫化合物の含有量が、Sn量として0.01~1重量%である事を特徴とする前記発明(1)~(4)のいずれか一つの金属表面処理用水性組成物である。 The present invention (5) is characterized in that the content of the tin compound in the total composition is 0.01 to 1% by weight as the Sn amount, according to any one of the inventions (1) to (4), It is an aqueous composition for metal surface treatment.
 本発明(6)は、同一浴内での多段通電法に使用される組成物であることを特徴とする前記発明(1)~(5)のいずれか一つの金属表面処理用水性組成物である。 The present invention (6) is the aqueous composition for metal surface treatment according to any one of the inventions (1) to (5), characterized in that the composition is used for a multistage energization method in the same bath. is there.
 本発明(7)は、前記発明(1)~(6)のいずれか一つの水性組成物に被処理金属材料を浸漬し、被処理金属材料を陰極とした電解処理工程にて金属材料に皮膜を析出させることを特徴とする金属表面処理方法である。 According to the present invention (7), a metal material is coated in an electrolytic treatment process using the metal material to be treated as a cathode by immersing the metal material to be treated in any one of the aqueous compositions of the inventions (1) to (6). It is a metal surface treatment method characterized by depositing.
 本発明(8)は、電解処理工程が、表面が清浄化された金属材料を、前記発明(1)~(6)のいずれか一つの水性組成物中に浸漬させた後、又は、浸漬させながら、該金属材料を陰極とし、電圧15V以下にて10~120秒間電解する第一工程と、電圧50~400Vにて30~300秒電解する、前記第一工程に引き続いて同一浴内で実施する第二工程と、を有する事を特徴とする前記発明(7)の金属表面処理方法である。 In the present invention (8), in the electrolytic treatment step, the metal material whose surface is cleaned is immersed in the aqueous composition according to any one of the inventions (1) to (6), or is immersed. However, the first step of electrolysis for 10 to 120 seconds at a voltage of 15 V or less, and the electrolysis for 30 to 300 seconds at a voltage of 50 to 400 V, was carried out in the same bath following the first step. A metal surface treatment method according to the invention (7), further comprising: a second step.
 本発明(9)は、前記発明(7)又は(8)の電解処理工程を有する事を特徴とする皮膜付金属材料の製造方法である。 The present invention (9) is a process for producing a coated metal material characterized by having the electrolytic treatment step of the invention (7) or (8).
 本発明(10)は、前記発明(9)の製造方法により得られる皮膜であって、金属Bi及び酸化BiがBiとして20~250mg/m付着し、全皮膜厚が5~40μmであり、かつ皮膜厚の中心から金属材料側のBi付着量:Bが、全Bi付着量:Aに対して55%以上(B/A≧55%)となるBi付着分布であることを特徴とする金属表面処理皮膜である。 The present invention (10) is a film obtained by the production method of the invention (9), wherein metal Bi and oxidized Bi are deposited as Bi in an amount of 20 to 250 mg / m 2 and the total film thickness is 5 to 40 μm. Further, the metal is characterized in that the Bi adhesion amount on the metal material side from the center of the film thickness: B is a Bi adhesion distribution in which the total Bi adhesion amount is 55% or more (B / A ≧ 55%) with respect to A. It is a surface treatment film.
図1は、実施例及び比較例に係る水性組成物についての、一定電圧をかけた際のBi析出量と印加時間との関係を示した図である。FIG. 1 is a diagram showing the relationship between the amount of Bi deposition and the application time when a constant voltage is applied to the aqueous compositions according to Examples and Comparative Examples. 図2は、実施例1に係る水性組成物を用いた場合の、B/Aのプロファイルを示した図である。FIG. 2 is a diagram showing a B / A profile when the aqueous composition according to Example 1 is used.
≪金属表面処理方法≫
(適用対象)
 本発明に係る金属表面処理用水性組成物は、各種金属を腐食から防止する目的で使用される。金属材料は、特に限定されるものではないが、冷延鋼板、熱延鋼板、鋳物材、鋼管等の鉄鋼材料、それらの鉄鋼材料の上に亜鉛系めっき処理及び/又はアルミニウム系めっきが施された材料、アルミニウム合金板、アルミニウム系鋳物材、マグネシウム合金板、マグネシウム系鋳物材等が挙げられる。特に形状が複雑な金属構成体、例えば、鉄系材料を主とする金属構成体である自動車車体、自動車部品、家電製品、建築材料等への使用に適している。
≪Metal surface treatment method≫
(Applicable)
The aqueous composition for metal surface treatment according to the present invention is used for the purpose of preventing various metals from corrosion. The metal material is not particularly limited, but steel materials such as cold-rolled steel plates, hot-rolled steel plates, cast materials, steel pipes, etc., and zinc-based plating treatment and / or aluminum-based plating are performed on those steel materials. Materials, aluminum alloy plates, aluminum castings, magnesium alloy plates, magnesium castings, and the like. It is particularly suitable for use in metal structures having complicated shapes, for example, automobile bodies, automobile parts, home appliances, building materials, etc., which are metal structures mainly composed of iron-based materials.
(金属表面処理方法)
 本発明に係る金属表面処理方法は、前述した金属表面処理用水性組成物を用い、被処理金属材料を陰極とした電解処理工程にて金属材料表面に皮膜を析出させる工程を含む。より好適には、本発明に係る金属表面処理方法は、金属材料上に皮膜を析出させるべく、表面が清浄化された金属材料に対して電解処理を施す電解処理工程と、電解処理工程後に実行する水洗及び焼付け工程を含む。以下、本方法に特徴的な電解処理工程及び焼付け工程について詳述する。
(Metal surface treatment method)
The metal surface treatment method according to the present invention includes a step of depositing a film on the surface of the metal material in an electrolytic treatment step using the above-described aqueous composition for metal surface treatment and using the metal material to be treated as a cathode. More preferably, the metal surface treatment method according to the present invention is performed after the electrolytic treatment step, and an electrolytic treatment step of performing electrolytic treatment on the metal material whose surface is cleaned in order to deposit a film on the metallic material. Including washing and baking processes. Hereinafter, the electrolytic treatment process and baking process characteristic of this method will be described in detail.
<電解処理工程>
 この電解処理工程(カソード電解)は、金属表面処理用水性組成物中に前記金属材料を浸漬させた状態で、電圧15V以下にて10~120秒間電解する第一工程と、金属表面処理用水性組成物中に前記金属材料を浸漬させた状態で、電圧50~400Vにて30~300秒間電解する、前記第一工程の後に実施する第二工程とを有し、ここで、前記第二工程は、前記第一工程に引き続いて同一浴内で実施する。
<Electrolytic treatment process>
This electrolytic treatment step (cathodic electrolysis) includes a first step of electrolysis for 10 to 120 seconds at a voltage of 15 V or less in a state where the metal material is immersed in an aqueous composition for metal surface treatment, and an aqueous solution for metal surface treatment. A second step carried out after the first step, in which the metal material is immersed in the composition and electrolyzed at a voltage of 50 to 400 V for 30 to 300 seconds, wherein the second step Is carried out in the same bath following the first step.
 ここで、第一工程は主としてBiを優先的に付着させるために行われる工程であり、第二工程は主としてカチオン性樹脂を優先的に析出させるために行われる工程である。十分な耐食性を得るためには、金属材料に直接接触しているBi、つまり金属材料と皮膜の界面に存在する界面Biの存在が必要であり、そのためには第一工程と第二工程の順番と条件が極めて重要となってくる。 Here, the first step is a step mainly performed for preferentially attaching Bi, and the second step is a step mainly performed for preferentially depositing the cationic resin. In order to obtain sufficient corrosion resistance, it is necessary to have Bi that is in direct contact with the metal material, that is, the interface Bi that exists at the interface between the metal material and the coating. For this purpose, the order of the first step and the second step is required. And conditions are extremely important.
 第一工程の電圧は15V以下(下限値は特に限定されないが例えば0.01V)であり、10~120秒間電解することが好ましい。電圧が0Vを下回る場合、すなわち金属材料を陽極として電解した場合は、金属材料が組成物中に溶出してしまい、組成物の安定性を低下させるばかりか、耐食性の向上に必要な界面Biが十分付着しなくなる。上限を超える場合も、Biが金属表面に優先的に析出する前に樹脂析出が始まってしまうため、やはり充分な耐食性が得られなくなる。 The voltage in the first step is 15 V or less (the lower limit is not particularly limited, but 0.01 V, for example), and electrolysis is preferably performed for 10 to 120 seconds. When the voltage is lower than 0 V, that is, when electrolysis is performed using a metal material as an anode, the metal material is eluted into the composition, not only reducing the stability of the composition, but also having an interface Bi necessary for improving the corrosion resistance. It will not adhere enough. Even when the upper limit is exceeded, resin deposition starts before Bi is preferentially deposited on the metal surface, so that sufficient corrosion resistance cannot be obtained.
 処理時間が下限を下回る場合も充分な界面Biが析出せず、上限を上回る場合は界面Biの付着量が過多となり、皮膜の密着性が損なわれる場合がある。 When the treatment time is less than the lower limit, sufficient interface Bi is not deposited, and when it exceeds the upper limit, the adhesion amount of the interface Bi becomes excessive, and the adhesion of the film may be impaired.
 第二工程の電圧は50~400Vであり、30~300秒間電解することが好ましい。電圧が下限を下回る場合は、樹脂皮膜の析出量が不充分となり、上限を上回る場合は、樹脂皮膜の析出過多により経済的に不利であるばかりか、皮膜の仕上がり外観が損なわれる場合がある。 The voltage in the second step is 50 to 400 V, and electrolysis is preferably performed for 30 to 300 seconds. When the voltage is lower than the lower limit, the amount of the resin film deposited is insufficient. When the voltage is higher than the upper limit, the resin film is excessively deposited, which is economically disadvantageous, and the finished appearance of the film may be impaired.
 第一工程に次いで第二工程に移行する際、電圧を瞬時に増加させる必要は無く、緩やかに増加させても本発明の効果を損なうものではない。また、第一工程及び第二工程共、電圧は常時一定である必要は無い。 When shifting from the first step to the second step, there is no need to increase the voltage instantaneously, and even if it is increased slowly, the effect of the present invention is not impaired. In addition, the voltage need not always be constant in both the first step and the second step.
〈焼付け工程〉
 次に、焼付け工程について説明する。焼付け手法は特に限定されず、例えばオーブンで焼付ける手法を挙げることができる。また、焼き付け温度は、例えば100℃~200℃である。更に、焼付け時間は、被処理金属材料の形状、大きさ、材質にもよるが、通常は10~30分である。
<Baking process>
Next, the baking process will be described. The baking method is not particularly limited, and examples thereof include a baking method in an oven. The baking temperature is, for example, 100 ° C. to 200 ° C. Further, although the baking time depends on the shape, size and material of the metal material to be treated, it is usually 10 to 30 minutes.
 次に、本発明に係る金属表面処理用水性組成物について詳述する。 Next, the aqueous composition for metal surface treatment according to the present invention will be described in detail.
《金属表面処理用水性組成物》
 本発明に係る金属表面処理用水性組成物は、カチオン性樹脂エマルションを含有する金属表面処理用水性組成物であって、カチオン性樹脂エマルションの分散質が、ベース樹脂として変性エポキシ樹脂のアミノ化物、硬化剤としてブロック化ポリイソシアネート及び硬化触媒として(又は助触媒として)特定構造の錫化合物を必須的に含有し、カチオン樹脂エマルションの分散媒が、Biイオンを含有することを特徴とする(例えば、電着塗料として使用されるF2剤に相当する)。ここで、本発明に係る金属表面処理用水性組成物は、例えば顔料成分も任意に配合することができる。この際、この顔料成分は、例えば電着塗料として使用されるF1剤に相当する。以下、各成分を詳述する。
<< Aqueous composition for metal surface treatment >>
An aqueous composition for metal surface treatment according to the present invention is an aqueous composition for metal surface treatment containing a cationic resin emulsion, wherein the dispersoid of the cationic resin emulsion is an aminated product of a modified epoxy resin as a base resin, A blocked polyisocyanate as a curing agent and a tin compound having a specific structure as a curing catalyst (or as a co-catalyst) are essential, and the dispersion medium of the cationic resin emulsion contains Bi ions (for example, It corresponds to F2 agent used as an electrodeposition paint). Here, in the aqueous composition for metal surface treatment according to the present invention, for example, a pigment component can be arbitrarily blended. In this case, this pigment component corresponds to, for example, an F1 agent used as an electrodeposition paint. Hereinafter, each component will be described in detail.
<組成物構成成分:カチオン性樹脂エマルションの分散質>
(組成物構成成分:カチオン性樹脂エマルションの分散質/カチオン性樹脂)
※成分
 本発明に係るベース樹脂は、カチオン性樹脂として、変性エポキシ樹脂の基体樹脂をアミンでカチオン化したものを必須的に含有する。ここで、変性エポキシ樹脂のアミノ化物の中では、ビスフェノール型、ノボラック型の変性エポキシ樹脂が好適であり、ビスフェノール型が最も好適である。なお、変性させた成分を用いる理由は下記の通りである。通常はこれらの基体樹脂の成分のみを用いると、得られた皮膜の性能を満足しない。そのため、基体樹脂とは異なる構造の化合物を付加し、変性する方法がとられる。例として、変性をしないビスフェノールA型エポキシ樹脂を用いると、剛性には非常に富むものの、逆に柔軟性に欠け、充分な性能は得られない。具体的には、ポリオール化合物(後で詳述)などを付加させることで、硬さと柔らかさを併せ持った皮膜を得ることが可能となる。
<Composition component: Dispersoid of cationic resin emulsion>
(Composition component: Dispersoid of cationic resin emulsion / cationic resin)
* Ingredient The base resin according to the present invention essentially contains a base resin of a modified epoxy resin that is cationized with an amine as a cationic resin. Here, among the aminated products of modified epoxy resins, bisphenol type and novolac type modified epoxy resins are preferred, and bisphenol type is most preferred. The reason for using the modified component is as follows. Usually, when only these base resin components are used, the performance of the obtained film is not satisfied. Therefore, a method of adding and modifying a compound having a structure different from that of the base resin is employed. As an example, when a bisphenol A type epoxy resin that is not modified is used, the rigidity is very rich, but conversely, it lacks flexibility and sufficient performance cannot be obtained. Specifically, a film having both hardness and softness can be obtained by adding a polyol compound (detailed later) and the like.
 ここで、樹脂にカチオン性を付与するには、典型的にはアミノ基を樹脂骨格中(特に末端)に導入する手法(例えば、エポキシ樹脂では、末端のグリシジル基にアミノ基含有化合物を付加する手法)が採用されている。尚、これについては後で詳述する。 Here, in order to impart cationicity to the resin, typically, a method of introducing an amino group into the resin skeleton (especially the terminal) (for example, in an epoxy resin, an amino group-containing compound is added to the terminal glycidyl group). Method). This will be described in detail later.
 以下、カチオン性樹脂として特に好適である、ビスフェノール型の変性エポキシ樹脂のアミノ化物について詳述する。ここで、特に好適なビスフェノールA型の変性エポキシ樹脂のアミノ化物は、原料として、変性樹脂、エポキシ当量180~2500のエポキシ樹脂、1級及び/又は2級アミノ基含有化合物、或いは更にビスフェノールAを用い、これらを反応させることで得られる変性エポキシ樹脂のアミノ化物である。以下、各成分について説明する。 Hereinafter, an aminated product of a modified bisphenol type epoxy resin that is particularly suitable as a cationic resin will be described in detail. Here, a particularly preferred aminated product of a modified bisphenol A type epoxy resin is a modified resin, an epoxy resin having an epoxy equivalent of 180 to 2500, a primary and / or secondary amino group-containing compound, or bisphenol A as a raw material. It is an aminated product of a modified epoxy resin obtained by reacting them. Hereinafter, each component will be described.
*ビスフェノールA型の変性エポキシ樹脂の原料
 まず、変性樹脂としては、通常、ポリオール化合物が用いられる。これらは、エポキシ樹脂の可塑性向上などを目的として適用される。具体的には、ポリエステルポリオール、ポリエーテルポリオール、ポリウレタンポリオール、アクリルポリオール等のポリオール樹脂、末端にフェノールを付加し、水酸基を有する芳香族縮合化合物などが挙げられる。更に具体的には、ポリカプロラクトンジオール、ポリエチレングリコール、ポリプロピレングリコール、フェノール性水酸基を有するキシレンホルムアルデヒド樹脂等が挙げられる。これら化合物により変性を行うことは、これら化合物が有する水酸基とエポキシ樹脂のグリシジルエーテル部が容易に反応し得ることから、従来より用いられてきた技術である。変性エポキシ樹脂中において、これら変性樹脂は5~30重量%含まれる。
* Raw material of modified epoxy resin of bisphenol A type First, a polyol compound is usually used as the modified resin. These are applied for the purpose of improving the plasticity of the epoxy resin. Specific examples thereof include polyol resins such as polyester polyol, polyether polyol, polyurethane polyol, and acrylic polyol, and aromatic condensed compounds having a hydroxyl group by adding phenol to the terminal. More specifically, polycaprolactone diol, polyethylene glycol, polypropylene glycol, xylene formaldehyde resin having a phenolic hydroxyl group and the like can be mentioned. The modification with these compounds is a technique that has been used conventionally since the hydroxyl groups of these compounds and the glycidyl ether portion of the epoxy resin can easily react. In the modified epoxy resin, these modified resins are contained in an amount of 5 to 30% by weight.
 次に、エポキシ当量180~2500のエポキシ樹脂としては、塗膜の防食性等の観点から、特に、ポリフェノール化合物とエピハロヒドリン、例えば、エピクロルヒドリンとの反応により得られるエポキシ樹脂が好適である。中でも、ビスフェノールAとエピクロロヒドリンとの反応により得られるビスフェノールAジグリシジルエーテルが最適である。また、ビスフェノールAを基本構造として重合させたエポキシ樹脂も同様の効果を示し、エポキシ当量として180~2500、好ましくは180~2000、更に好ましくは180~1500のものが最適である。変性エポキシ樹脂中において、これらエポキシ樹脂は5~30重量%含まれる。 Next, as an epoxy resin having an epoxy equivalent of 180 to 2500, an epoxy resin obtained by a reaction between a polyphenol compound and an epihalohydrin, for example, epichlorohydrin, is particularly preferable from the viewpoint of the corrosion resistance of the coating film. Of these, bisphenol A diglycidyl ether obtained by reaction of bisphenol A and epichlorohydrin is most suitable. In addition, an epoxy resin obtained by polymerizing bisphenol A as a basic structure exhibits the same effect, and an epoxy equivalent having an epoxy equivalent of 180 to 2500, preferably 180 to 2000, more preferably 180 to 1500 is optimal. In the modified epoxy resin, these epoxy resins are contained in an amount of 5 to 30% by weight.
 次に、ビスフェノールAはエポキシ樹脂の骨格分子量をコントロールするために用いられる。この含有量(添加量)により、エポキシ当量をコントロールすることができる。変性エポキシ樹脂中において、ビスフェノールAは5~30重量%含まれる。 Next, bisphenol A is used to control the skeleton molecular weight of the epoxy resin. The epoxy equivalent can be controlled by this content (addition amount). In the modified epoxy resin, 5 to 30% by weight of bisphenol A is contained.
 次に、1級及び/又は2級アミノ基含有化合物は、エポキシ樹脂基体にアミノ基を導入して、該エポキシ樹脂をカチオン化するためのカチオン性付与成分である。ここで使用されるアミンはエポキシ基と反応する活性水素を少なくとも1個含有するものが用いられる。そのような目的で使用されるアミノ基含有化合物としては、例えば、モノメチルアミン、ジメチルアミン、モノエチルアミン、ジエチルアミン、モノイソプロピルアミン、ジイソプロピルアミン、モノブチルアミン、ジブチルアミンなどのモノ-、もしくはジ-アルキルアミン;モノエタノールアミン、ジエタノールアミン、モノ(2-ヒドロキシプロピル)アミン、ジ(2-ヒドロキシプロピル)アミン、モノメチルアミノエタノール、モノエチルアミノエタノールなどのアルカノールアミン;エチレンジアミン、プロピレンジアミン、ブチレンジアミン、ヘキサメチレンジアミン、テトラエチレンペンタミン、ペンタエチレンヘキサミン、ジエチルアミノプロピルアミン、ジエチレントリアミン、トリエチレンテトラミン等のアルキレンポリアミン及びこれらのポリアミンのケチミン化物;エチレンイミン、プロピレンイミンなどのアルキレンイミン;ピペラジン、モルホリン等の環状アミン等が挙げられる。変性エポキシ樹脂中において、1級及び/又は2級アミノ基含有化合物は0.5~20重量%含まれる。 Next, the primary and / or secondary amino group-containing compound is a cationic component for introducing an amino group into the epoxy resin substrate to cationize the epoxy resin. The amine used here contains at least one active hydrogen that reacts with an epoxy group. Examples of the amino group-containing compound used for such purpose include mono- or di-alkylamines such as monomethylamine, dimethylamine, monoethylamine, diethylamine, monoisopropylamine, diisopropylamine, monobutylamine, dibutylamine and the like. Alkanolamines such as monoethanolamine, diethanolamine, mono (2-hydroxypropyl) amine, di (2-hydroxypropyl) amine, monomethylaminoethanol, monoethylaminoethanol; ethylenediamine, propylenediamine, butylenediamine, hexamethylenediamine, Alkylene such as tetraethylenepentamine, pentaethylenehexamine, diethylaminopropylamine, diethylenetriamine, triethylenetetramine Riamin and ketimine of these polyamines; ethyleneimine, alkylene imine such as propylene imine; piperazine, a cyclic amine such as morpholine, and the like. In the modified epoxy resin, the primary and / or secondary amino group-containing compound is contained in an amount of 0.5 to 20% by weight.
*ビスフェノールA型の変性エポキシ樹脂のアミノ化物の製造方法
 先ず、変性樹脂、エポキシ樹脂、を所定量混合し、加熱撹拌を行う。加熱温度は70~100℃が好ましい。各原料が溶解した後、触媒を添加し、加熱温度を上げ、合成を行う。触媒は、通常、ジメチルベンジルアミンのような3級アミンが使用される。合成温度は120℃~170℃で制御するのが一般的である。
* Method for producing aminated product of modified epoxy resin of bisphenol A type First, a predetermined amount of a modified resin and an epoxy resin are mixed and heated and stirred. The heating temperature is preferably 70 to 100 ° C. After each raw material is dissolved, a catalyst is added, the heating temperature is increased, and synthesis is performed. As the catalyst, a tertiary amine such as dimethylbenzylamine is usually used. The synthesis temperature is generally controlled at 120 ° C to 170 ° C.
 合成温度と時間を調整することにより、所定のエポキシ当量を持った変性エポキシ樹脂を合成できる。エポキシ当量はJIS K7236に定められるエポキシ当量測定によって算出される。この時のエポキシ当量は800~10000が好適であり、800~5000がより好適であり、800~3000が最も好適である。エポキシ当量が大きくなるほど、エマルション作製時の乳化が困難となる。 By adjusting the synthesis temperature and time, a modified epoxy resin having a predetermined epoxy equivalent can be synthesized. The epoxy equivalent is calculated by the epoxy equivalent measurement defined in JIS K7236. The epoxy equivalent at this time is preferably 800 to 10,000, more preferably 800 to 5000, and most preferably 800 to 3000. As the epoxy equivalent increases, emulsification at the time of preparing the emulsion becomes more difficult.
 次に、この合成した変性エポキシ樹脂に1級及び/又は2級アミノ基含有化合物を付加する。変性エポキシ樹脂を60℃~110℃に保ちながら1級及び/又は2級アミノ基含有化合物を添加し、1~3時間合成を行うことで、変性エポキシ樹脂のアミノ化物が得られる。 Next, a primary and / or secondary amino group-containing compound is added to the synthesized modified epoxy resin. An aminated product of the modified epoxy resin can be obtained by adding a primary and / or secondary amino group-containing compound while maintaining the modified epoxy resin at 60 ° C. to 110 ° C. and performing synthesis for 1 to 3 hours.
*変性エポキシ樹脂のカチオン化
 合成した変性エポキシ樹脂のアミノ化物に中和酸を添加し、撹拌混合した後、水で希釈し、所定濃度の樹脂エマルションを作製する。中和酸は、蟻酸、酢酸、乳酸、スルファミン酸などが用いられる。
* Cationization of the modified epoxy resin A neutralized acid is added to the aminated product of the modified epoxy resin, mixed with stirring, and diluted with water to prepare a resin emulsion having a predetermined concentration. As the neutralizing acid, formic acid, acetic acid, lactic acid, sulfamic acid and the like are used.
 この際、中和酸を添加する前に硬化剤や硬化触媒、有機溶剤などを添加しておくことが好ましい。このようにあらかじめ添加することで、均一なエマルションを得ることができる。 In this case, it is preferable to add a curing agent, a curing catalyst, an organic solvent, etc. before adding the neutralizing acid. By adding in advance in this way, a uniform emulsion can be obtained.
※分散質中のカチオン性樹脂の含有量
 エマルションの分散質中におけるカチオン性樹脂(特に、変性エポキシ樹脂のアミノ化物)の含有量は、分散質の全重量(有機溶剤も含む全重量)を基準として、30~80重量%であることが好適である。
* Content of the cationic resin in the dispersoid The content of the cationic resin (especially the aminated product of the modified epoxy resin) in the dispersoid of the emulsion is based on the total weight of the dispersoid (total weight including the organic solvent). Is preferably 30 to 80% by weight.
(組成物構成成分:カチオン性樹脂エマルションの分散質/硬化剤)
※成分
 本発明に係るカチオン性樹脂エマルションの分散質に含まれる硬化剤は、ブロックポリイソシアネートである。ブロックポリイソシアネートは、ポリイソシアネート化合物とイソシアネートブロック剤とのほぼ化学理論量での付加反応生成物である。ここで使用されるポリイソシアネート化合物としては、例えば、トリレンジイソシアネート、キシリレンジイソシアネート、フェニレンジイソシアネート、ジフェニルメタン-2,4'-ジイソシアネート、ジフェニルメタン-4,4'-ジイソシアネート(通常「MDI」と呼ばれる)、クルードMDI、ビス(イソシアネートメチル)シクロヘキサン、テトラメチレンジイソシアネート、ヘキサメチレンジイソシアネート、メチレンジイソシアネート、イソホロンジイソシアネートなどの芳香族、脂肪族又は脂環族のポリイソシアネート化合物;これらのポリイシアネート化合物の環化重合体、イソシアネートビゥレット体;これらのイソシアネート化合物の過剰量にエチレングリコール、プロピレングリコール、トリメチロールプロパン、ヘキサントリオール、ヒマシ油などの低分子活性水素含有化合物を反応させて得られる末端イソシアネート含有化合物などを挙げることができる。これらはそれぞれ単独で又は2種以上組合わせて使用することができる。
(Composition component: Dispersoid of cationic resin emulsion / curing agent)
* Component The hardening | curing agent contained in the dispersoid of the cationic resin emulsion which concerns on this invention is block polyisocyanate. Block polyisocyanate is an addition reaction product of approximately the theoretical amount of a polyisocyanate compound and an isocyanate blocking agent. Examples of the polyisocyanate compound used here include tolylene diisocyanate, xylylene diisocyanate, phenylene diisocyanate, diphenylmethane-2,4′-diisocyanate, diphenylmethane-4,4′-diisocyanate (usually referred to as “MDI”), Aromatic, aliphatic or alicyclic polyisocyanate compounds such as crude MDI, bis (isocyanate methyl) cyclohexane, tetramethylene diisocyanate, hexamethylene diisocyanate, methylene diisocyanate, isophorone diisocyanate; cyclized polymers of these polyisocyanate compounds; Isocyanate biuret; ethylene glycol, propylene glycol, trimethylolpropane in excess of these isocyanate compounds Hexanetriol, and the like terminal isocyanate-containing compounds obtained by reacting a low molecular weight active hydrogen-containing compounds such as castor oil. These can be used alone or in combination of two or more.
 一方、前記イソシアネートブロック剤は、ポリイソシアネート化合物のイソシアネート基に付加してブロックするものであり、そして付加によって生成するブロックポリイソシアネート化合物は常温において安定であるが、塗膜の焼付け温度(通常約100~約200℃)に加熱した際、ブロック剤が解離して遊離のイソシアネート基を再生しうるものであることが望ましい。 On the other hand, the isocyanate blocking agent is blocked by adding to the isocyanate group of the polyisocyanate compound, and the blocked polyisocyanate compound produced by the addition is stable at room temperature, but the baking temperature of the coating film (usually about 100). When heated to about 200 ° C., it is desirable that the blocking agent dissociates to regenerate free isocyanate groups.
 このような要件を満たすブロック剤としては、例えば、ε-カプロラクタム、γ-ブチロラクタムなどのラクタム系化合物;メチルエチルケトオキシム、シクロヘキサノンオキシムなどのオキシム系化合物;フェノール、パラ-t-ブチルフェノール、クレゾールなどのフェノール系化合物;n-ブタノール、2-エチルヘキサノールなどの脂肪族アルコール類;フェニルカルビノール、メチルフェニルカルビノールなどの芳香族アルキルアルコール類;エチレングリコールモノブチルエーテル、ジエチレングリコールモノエチルエーテルなどのエーテルアルコール系化合物等を挙げることができる。これらのブロック剤はそれぞれ単独で又は2種以上組み合わせて使用することができる。また、ブロック剤の解離、硬化反応などを効率よく進め、また、意図する硬化反応物を生成させるために、あらかじめ、変性エポキシ樹脂の骨格にイソシアネート基の一部を付加し、かつ、残りのイソシアネート基をブロック剤でブロックする手法もとられる。 Examples of the blocking agent satisfying such requirements include lactam compounds such as ε-caprolactam and γ-butyrolactam; oxime compounds such as methyl ethyl ketoxime and cyclohexanone oxime; phenols such as phenol, para-t-butylphenol and cresol Compounds; aliphatic alcohols such as n-butanol and 2-ethylhexanol; aromatic alkyl alcohols such as phenyl carbinol and methyl phenyl carbinol; ether alcohol compounds such as ethylene glycol monobutyl ether and diethylene glycol monoethyl ether Can be mentioned. These blocking agents can be used alone or in combination of two or more. In addition, in order to efficiently advance the dissociation and curing reaction of the blocking agent, and to generate the intended curing reaction product, a part of the isocyanate group is added to the modified epoxy resin skeleton in advance, and the remaining isocyanate A method of blocking a group with a blocking agent is used.
※分散質中のブロックポリイソシアネートの含有量
 エマルションの分散質中におけるブロックポリイソシアネートは、分散質の全重量(有機溶剤も含む全重量)を基準として、5~40重量%であることが好適である。
* Content of blocked polyisocyanate in the dispersoid The block polyisocyanate in the dispersoid of the emulsion is preferably 5 to 40% by weight based on the total weight of the dispersoid (total weight including the organic solvent). is there.
(組成物構成成分:カチオン性樹脂エマルションの分散質/錫化合物)
※成分
 本発明に係るカチオン性樹脂エマルションの分散質に含まれる錫化合物は、式1に示す錫化合物を含む。尚、本発明においては式1に示す錫化合物単独での使用を限定しているわけではなく、ジブチル錫化合物のようなmが3以下の錫化合物や固体状の錫化合物、他の硬化触媒との併用も可能である。
(Composition component: Dispersoid of cationic resin emulsion / tin compound)
* Component The tin compound contained in the dispersoid of the cationic resin emulsion according to the present invention contains a tin compound represented by Formula 1. In the present invention, the use of the tin compound alone represented by formula 1 is not limited, but a tin compound such as a dibutyltin compound having a m of 3 or less, a solid tin compound, other curing catalysts, Can be used in combination.
 樹脂エマルションの分散質は、前述のように、カチオン性樹脂や硬化剤、硬化触媒、有機溶剤などから構成されているが、Biの析出性向上にはカチオン性樹脂以外の成分における疎水/親水性が大きく寄与していると考えられ、その点にて、式1に示すmが4以上の化合物は好ましい。更には疎水性の高いmが7以上である錫化合物が好適であり、中でも触媒能の高いmが7であるジオクチル錫化合物が最も好適である。尚、上限値は例えば12である。 As described above, the dispersoid of the resin emulsion is composed of a cationic resin, a curing agent, a curing catalyst, an organic solvent, and the like. For improving the precipitation of Bi, hydrophobic / hydrophilicity in components other than the cationic resin is used. Therefore, a compound having m of 4 or more shown in Formula 1 is preferable. Furthermore, a tin compound having a high hydrophobicity m of 7 or more is preferable, and among them, a dioctyl tin compound having a high catalytic ability of m 7 is most preferable. The upper limit is 12, for example.
 また、nが11以上の化合物は樹脂との相溶性が悪く、エマルションの安定性不良、硬化性不足、はじきやブツの発生があり、不適当である。 In addition, compounds having n of 11 or more are not suitable because they have poor compatibility with the resin, resulting in poor stability of the emulsion, insufficient curability, and generation of repellency and blisters.
 ここで、Biの析出性向上及びはじきやブツの発生防止の観点から、特に好適なmとnの組み合わせは、4≦m≦10(更に好適には、6≦m≦8)であり且つ0≦n≦5(更に好適には、0≦n≦3)である。そして、さらに好適な組み合わせは、mとnとの合計数が7~10であり、最も好適な組み合わせは、mとnとの合計が7である(例えば、ジアルキル錫ジアセテート)。例えば、実施例、比較例に示す通り、疎水性の低いジブチル錫ジアセテート(m=3、n=0)を用いた場合と比較し、疎水性の高いジオクチル錫ジアセテート(m=7、n=0)を用いた場合、Bi析出性は劇的に向上する。 Here, from the viewpoints of improving the precipitation of Bi and preventing the occurrence of repellency and bumps, a particularly preferred combination of m and n is 4 ≦ m ≦ 10 (more preferably 6 ≦ m ≦ 8) and 0 ≦ n ≦ 5 (more preferably, 0 ≦ n ≦ 3). A more preferable combination is a total number of m and n of 7 to 10, and a most preferable combination is a total of m and n of 7 (for example, dialkyltin diacetate). For example, as shown in Examples and Comparative Examples, dioctyltin diacetate (m = 7, n) having high hydrophobicity compared to the case of using dibutyltin diacetate (m = 3, n = 0) having low hydrophobicity. = 0), the Bi precipitation is dramatically improved.
※作用機序
 ところで、上記のように、特定の系にて前述した特定構造の錫化合物を使用した場合にBiの析出性が劇的に向上し且つはじきやブツの発生が防止できる作用機序を考察すると下記の通りであろうと推察される。
* Mechanism of action By the way, as described above, when a tin compound having a specific structure as described above is used in a specific system, the precipitation mechanism of Bi is dramatically improved and the occurrence of repellency and bumps can be prevented. Is considered as follows.
 カチオン性樹脂エマルション中の分散質成分の構成を考慮した場合、変性エポキシ樹脂のアミノ化物は自身が有するアミン部分のカチオン化能により、媒体である水との親和性を得ることが出来る(エマルション化)。一方、硬化剤であるブロック化ポリイソシアネートや硬化触媒である錫化合物は、化学構造的特徴から水との親和性が低く、分散質表面に存在することは難しく、分散質内部に存在しやすくなる。すなわち変性エポキシ樹脂のアミノ化物をシェルに、ブロック化ポリイソシアネートや錫化合物をコアにしたコアシェル構造を有しているものと容易に予想できる。 In consideration of the composition of the dispersoid component in the cationic resin emulsion, the aminated product of the modified epoxy resin can obtain an affinity with water as a medium due to the cationization ability of the amine moiety that it has (emulsification). ). On the other hand, the blocked polyisocyanate that is a curing agent and the tin compound that is a curing catalyst have low affinity with water due to chemical structural characteristics, and are difficult to exist on the surface of the dispersoid, and are likely to exist inside the dispersoid. . That is, it can be easily expected to have a core-shell structure in which an aminated product of a modified epoxy resin is used as a shell and a blocked polyisocyanate or tin compound is used as a core.
 この場合、コア成分の疎水/親水性により、分散質の表面状態が変わってくる。コア成分の疎水性が高いほど、分散質表面近傍への存在は難しく、よりコア部へ、一方、疎水性が低いほど、分散質表面近傍にも存在できることとなる。 In this case, the surface state of the dispersoid changes depending on the hydrophobicity / hydrophilicity of the core component. The higher the hydrophobicity of the core component, the more difficult it is to exist near the surface of the dispersoid, and the more the core component is, the lower the hydrophobicity, the closer to the surface of the dispersoid.
 通常時(無電解時)においては、変性エポキシ樹脂のアミノ化物における充分なカチオン化により、安定化したエマルション状態を実現していても、水との親和性が低く、しかしながらも疎水性の低い成分が分散質表面近傍に存在する場合においては、第一工程時での素地界面におけるカチオン化の微妙な変化において、エマルションの不安定度は増す。 Under normal conditions (electroless), even if a stable emulsion state is realized by sufficient cationization in the aminated product of the modified epoxy resin, it has a low affinity with water, but a component with low hydrophobicity. Is present in the vicinity of the surface of the dispersoid, the instability of the emulsion increases due to subtle changes in cationization at the substrate interface during the first step.
 具体的には、低電圧電解状態(第一工程)においても、エマルションは濃縮され、不安定度は増し、場合によっては、分散質である樹脂成分の析出が起こる場合もある。 Specifically, even in a low-voltage electrolysis state (first step), the emulsion is concentrated, the degree of instability increases, and in some cases, precipitation of a resin component that is a dispersoid may occur.
 本発明においては、低電圧電解状態において樹脂成分が析出してしまうと、Biの析出を阻害してしまうこととなり、不都合となる。逆に言うと、疎水性の低い錫化合物と比較し、よりコア部に存在し得る疎水性の高い錫化合物を用いることで、Bi析出を阻害しにくくさせる。すなわち、Bi析出性が向上する。 In the present invention, if the resin component is deposited in the low-voltage electrolysis state, Bi deposition is hindered, which is inconvenient. In other words, compared with a tin compound having low hydrophobicity, Bi precipitation is made difficult to be inhibited by using a tin compound having high hydrophobicity that can exist in the core portion. That is, Bi precipitation property improves.
 錫化合物の疎水性はその構造、特に式1におけるmの数値が大きく寄与する。このmの値が大きいほど、疎水性が高まり、よりコア部へ存在し、すなわち、Bi析出を阻害させ難くし、Bi析出性が向上することとなる。 The hydrophobicity of the tin compound greatly contributes to its structure, particularly the numerical value of m in Formula 1. The larger the value of m, the higher the hydrophobicity and the more it exists in the core portion, that is, it is difficult to inhibit the Bi precipitation, and the Bi precipitation is improved.
 式1に示すジアルキル錫ジ脂肪酸エステルは常温において液体状であり、樹脂との相溶性に優れる。また、これらに起因したはじきやブツの発生もない。 The dialkyl tin difatty acid ester represented by Formula 1 is liquid at room temperature and has excellent compatibility with the resin. In addition, there is no occurrence of repellency or flutter due to these.
 電解にて樹脂が析出し、エマルションの分散質が合一化された際に、最外面に存在した錫化合物は水分と接触することとなるが、その際、水分と接触したジアルキル錫ジ脂肪酸エステルは加水分解され、ジアルキル錫オキサイドの形態となり易いことが好ましい。すなわち、脂肪酸部位が容易に外れることに加え、外れた後に水相に移動し易い(高親水性)である脂肪酸根であることが好適である。これにより、水相側へ移ることで、塗膜中に含まれる余分な成分は減少し、硬化性向上、耐食性向上が実現する。この観点からもnが上述した数値以下であることが好適である。他方、高級脂肪酸エステル部などは加水分解されにくく、塗膜中に残存されやすいことで、硬化性低下、耐食性低下を招くことがある。例えば、硬化性を評価するにあたり、アセトンを潤沢にしめらしたガーゼを押しつけ、往復運動をさせた後、塗膜の外観を目視にて確認すると、硬化に寄与していない成分が存在した場合、その成分がアセトンに溶解してしまうことで、塗膜外観には、塗膜のはがれた跡が確認される。 When the resin is deposited by electrolysis and the dispersoid of the emulsion is united, the tin compound present on the outermost surface comes into contact with moisture, and in that case, the dialkyltin difatty acid ester in contact with moisture Is preferably hydrolyzed to easily form a dialkyltin oxide. That is, in addition to the easy removal of the fatty acid moiety, it is preferably a fatty acid root that is easy to move to the aqueous phase after removal (high hydrophilicity). Thereby, the excess component contained in a coating film reduces by moving to the water phase side, and implement | achieves sclerosis | hardenability improvement and corrosion resistance improvement. From this viewpoint, it is preferable that n is equal to or less than the above-described numerical value. On the other hand, the higher fatty acid ester portion and the like are not easily hydrolyzed and are likely to remain in the coating film, which may cause a decrease in curability and a decrease in corrosion resistance. For example, in evaluating curability, after pressing a gauze that has been enriched with acetone and reciprocating, and visually checking the appearance of the coating film, if there are components that do not contribute to curing, Since the component is dissolved in acetone, the appearance of the coating film is confirmed on the appearance of the coating film.
※エマルションの分散質中の錫化合物の含有量
 錫化合物の含有量が多すぎると、経済的に不利である。それだけでなく、コアシェル構造のコア部分が膨大な構造となり、エマルション化能を有するシェル部分とのバランスがとれなくなる。膨大なコア部分を包み込んでエマルション化するシェル部分が足りなくなることで、エマルションは凝集、合一を起こしやすくなり、樹脂エマルションの状態をとれなくなる。
* Content of tin compound in the dispersoid of the emulsion If the content of tin compound is too high, it is economically disadvantageous. In addition, the core part of the core-shell structure becomes a huge structure, and the balance with the shell part having the ability to emulsify cannot be achieved. The lack of a shell portion that wraps around the enormous core portion to form an emulsion makes it easier for the emulsion to agglomerate and coalesce, making it impossible to take the state of a resin emulsion.
 そのため、シェル部分となる樹脂成分との比率も重要となる。エマルションの分散質中における錫化合物量は、分散質の全重量(有機溶剤も含む全重量)を基準として、Sn量として0.05~3重量%であることが好適であり、0.05~2重量%であることが更に好適であり、0.05~1重量%であることが最も好適である。 Therefore, the ratio with the resin component that becomes the shell portion is also important. The amount of tin compound in the dispersoid of the emulsion is preferably 0.05 to 3% by weight as Sn based on the total weight of the dispersoid (total weight including the organic solvent). 2% by weight is more preferable, and 0.05 to 1% by weight is most preferable.
 尚、金属表面処理用水性組成物又は分散質中における錫化合物量は、Sn量として把握することができる。600℃程度の高温状態で長時間加熱すると、樹脂などの成分は燃焼してしまい、錫化合物はすべて錫酸化物状態になる。ここで得られた錫酸化物を熱濃硫酸などで溶解させ、水溶液を作製し、これについてICP発光分析やICP質量分析などに行うことより、Sn量が測定できる。 In addition, the amount of tin compounds in the aqueous composition for metal surface treatment or the dispersoid can be grasped as the amount of Sn. When heated at a high temperature of about 600 ° C. for a long time, the components such as the resin are burned, and all the tin compounds are in a tin oxide state. The tin oxide obtained here is dissolved with hot concentrated sulfuric acid or the like to prepare an aqueous solution, and this is subjected to ICP emission analysis or ICP mass spectrometry, whereby the Sn amount can be measured.
<組成物構成成分:カチオン性樹脂エマルションの分散媒>
(組成物構成成分:カチオン性樹脂エマルションの分散媒/液体媒体)
 本発明に係る金属表面処理用水性組成物の液体媒体(カチオン性樹脂エマルションの分散媒としての液体媒体)としては、水性媒体が好適であり、水がより好適である。尚、液体媒体が水である場合、液体媒体として水以外の他の水系溶媒(例えば、水溶性のアルコール類)を含有していてもよい(例えば、全液体媒体の重量を基準として10重量%以下)。
<Composition component: Dispersion medium of cationic resin emulsion>
(Composition component: dispersion medium / liquid medium of cationic resin emulsion)
As the liquid medium of the aqueous composition for metal surface treatment according to the present invention (the liquid medium as the dispersion medium of the cationic resin emulsion), an aqueous medium is preferable, and water is more preferable. When the liquid medium is water, the liquid medium may contain an aqueous solvent other than water (for example, water-soluble alcohols) (for example, 10% by weight based on the weight of the total liquid medium). Less than).
(組成物構成成分:カチオン性樹脂エマルションの分散媒/3価のビスマスイオン)
 本発明で言うBiイオンとは、組成物中で固体化せず、具体的には後述するアミノポリカルボン酸などによってキレートを構成し、完全に溶解状態になっているBi成分の事を指す。なお、当該イオンは、エマルションの分散媒に存在する。
(Composition component: dispersion medium of cationic resin emulsion / trivalent bismuth ion)
Bi ion as used in the field of this invention refers to the Bi component which does not solidify in a composition, specifically comprises a chelate by aminopolycarboxylic acid etc. which will be described later, and is in a completely dissolved state. The ions are present in the dispersion medium of the emulsion.
 Biイオンの供給源としては、3価のビスマス化合物であれば特に限定されるものではないが、例えば硝酸ビスマス、リン酸ビスマス、硫酸ビスマス、酸化ビスマス、水酸化ビスマスなどの無機ビスマス化合物、フッ化ビスマス、塩化ビスマス、臭化ビスマス、ヨウ化ビスマスなどのハロゲン化ビスマス化合物、酢酸ビスマス、蟻酸ビスマス、乳酸ビスマス、クエン酸ビスマスなどの有機酸ビスマス化合物が挙げられる。 The Bi ion supply source is not particularly limited as long as it is a trivalent bismuth compound. For example, inorganic bismuth compounds such as bismuth nitrate, bismuth phosphate, bismuth sulfate, bismuth oxide, and bismuth hydroxide, fluoride Examples thereof include halogenated bismuth compounds such as bismuth, bismuth chloride, bismuth bromide, and bismuth iodide, and organic acid bismuth compounds such as bismuth acetate, bismuth formate, bismuth lactate, and bismuth citrate.
 本発明には、アミノポリカルボン酸を含有させてもよい。アミノポリカルボン酸とは、分子中にアミノ基と複数のカルボキシル基を有するキレート剤の総称である。アミノポリカルボン酸は、組成物中の3価のBiイオンを、より安定的に水溶化された状態とするため、アミノポリカルボン酸を含有させることが出来る。具体的には、EDTA(エチレンジアミン四酢酸)、HEDTA(ヒドロキシエチルエチレンジアミン三酢酸)、NTA(ニトリロ三酢酸)、DTPA(ジエチレントリアミン五酢酸)、TTHA(トリエチレンテトラミン六酢酸)等が該当するが、Biイオンとのキレート安定度の観点からEDTA、HEDTA、NTAがより好ましい。 In the present invention, aminopolycarboxylic acid may be contained. Aminopolycarboxylic acid is a general term for chelating agents having an amino group and a plurality of carboxyl groups in the molecule. The aminopolycarboxylic acid can contain the aminopolycarboxylic acid in order to make the trivalent Bi ions in the composition more water-soluble. Specific examples include EDTA (ethylenediaminetetraacetic acid), HEDTA (hydroxyethylethylenediaminetriacetic acid), NTA (nitrilotriacetic acid), DTPA (diethylenetriaminepentaacetic acid), TTHA (triethylenetetraminehexaacetic acid), and the like. From the viewpoint of chelate stability with ions, EDTA, HEDTA, and NTA are more preferable.
<組成物構成成分:他の成分>
 本発明の組成物には、更に必要に応じて顔料、有機溶剤、顔料分散剤、界面活性剤等、塗料分野で通常使用されている添加剤を適用することもできる。顔料としては、チタン白、カーボンブラック等の着色顔料、クレー、タルク、バリタ等の体質顔料、トリポリリン酸アルミニウム、リン酸亜鉛等の防錆顔料などが挙げられる。尚、上記では、カチオン性樹脂エマルションの分散質における成分(カチオン性樹脂、ブロック化ポリイソシアネート、錫化合物)と分散媒における成分(液体媒体、ビスマスイオン)に分けて説明したが、これら成分は実質的に分散質又は分散媒中に存在することを意味し、分散質にのみ又は分散媒にのみ存在することを意味しない。例えば、カチオン性樹脂の一部が分散媒中に微量溶解していたとしても、本発明の範囲内である。
<Composition component: Other ingredients>
In the composition of the present invention, additives usually used in the paint field such as a pigment, an organic solvent, a pigment dispersant, and a surfactant can be further applied as necessary. Examples of the pigment include colored pigments such as titanium white and carbon black, extender pigments such as clay, talc, and barita, and rust preventive pigments such as aluminum tripolyphosphate and zinc phosphate. In the above description, the components in the dispersoid of the cationic resin emulsion (cationic resin, blocked polyisocyanate, tin compound) and the components in the dispersion medium (liquid medium, bismuth ions) have been described. It means that it exists in the dispersoid or dispersion medium, and does not mean that it exists only in the dispersoid or only in the dispersion medium. For example, even if a part of the cationic resin is dissolved in a small amount in the dispersion medium, it is within the scope of the present invention.
<組成物の組成>
 次に、本発明に係る金属表面処理用水性組成物の組成について説明することとする。まず、本発明に係る金属表面処理用水性組成物は、高濃度の物を適宜水で希釈して所望の濃度に調整する事ができる。以下、当該水性組成物中における各成分の好適濃度を説明する。
<Composition of composition>
Next, the composition of the aqueous composition for metal surface treatment according to the present invention will be described. First, the metal surface treatment aqueous composition according to the present invention can be adjusted to a desired concentration by appropriately diluting a high concentration product with water. Hereinafter, the suitable concentration of each component in the aqueous composition will be described.
(水性組成物中のカチオン性樹脂)
 当該組成物は、組成物の全重量を基準としてカチオン性樹脂を好適には5~30重量%(固形分)含み、より好適には5~20重量%含み、更に好適には5~15重量%含む。
(Cationic resin in aqueous composition)
The composition preferably contains 5-30% by weight (solid content) of the cationic resin, more preferably 5-20% by weight, and more preferably 5-15% by weight based on the total weight of the composition. % Is included.
(水性組成物中のブロックイソシアネート)
 当該組成物は、組成物の全重量を基準としてブロックイソシアネートを2~20重量%(固形分)含み、より好適には2~15重量%含み、より好適には2~10重量%含む。
(Blocked isocyanate in aqueous composition)
The composition contains 2 to 20 wt% (solid content) of blocked isocyanate, more preferably 2 to 15 wt%, more preferably 2 to 10 wt% based on the total weight of the composition.
(水性組成物中の錫化合物)
 当該組成物における錫化合物の含有量は、Sn量として0.01~1重量%であることが好適であり、0.01~0.5重量%であることが更に好適であり、0.01~0.2重量%であることが最も好適である。錫化合物の含有量が低すぎると、期待している硬化触媒能が低下し、硬化性を満足しなくなり、前述のようにアセトン往復試験を行うと、塗膜のはがれた跡が確認されることとなる。
(Tin compound in aqueous composition)
The content of the tin compound in the composition is preferably 0.01 to 1% by weight, more preferably 0.01 to 0.5% by weight as the Sn amount, Most preferred is ˜0.2% by weight. If the content of the tin compound is too low, the expected curing catalyst ability will be reduced and the curability will not be satisfied, and if the acetone reciprocation test is performed as described above, it will be confirmed that the coating has been peeled off. It becomes.
(水性組成物中の3価のBiイオン)
 当該組成物は、3価のBiイオンを100~5000ppm含有する。500~4000ppmが更に好ましく、1000~3000ppmが最も好ましい。Biイオン濃度が低過ぎる場合Biの析出性に不利となり、高過ぎると組成物の電気伝導度が高くなり過ぎ、複雑な形状を有する金属材料への皮膜の付き廻り性が劣化すると共に、Bi付着量過多となり皮膜密着性を損なう恐れがある。組成物中のBiイオン濃度は、超遠心機により組成物を固液分離し、液相を高周波誘導結合プラズマ発光分光分析(ICP)もしくは原子吸光分光分析(AA)を用いて定量することができる。
(Trivalent Bi ion in aqueous composition)
The composition contains 100 to 5000 ppm of trivalent Bi ions. More preferred is 500 to 4000 ppm, and most preferred is 1000 to 3000 ppm. If the Bi ion concentration is too low, it is disadvantageous for the precipitation of Bi. If the Bi ion concentration is too high, the electrical conductivity of the composition becomes too high, and the coverage of the film on a metal material having a complicated shape deteriorates, and Bi adheres. Excessive amount may impair film adhesion. The Bi ion concentration in the composition can be determined by solid-liquid separation of the composition using an ultracentrifuge, and the liquid phase can be quantified using high frequency inductively coupled plasma emission spectrometry (ICP) or atomic absorption spectrometry (AA). .
<金属表面処理用水性組成物の物性>
(pH)
 本発明に係る金属表面処理用水性組成物のpHは特に制限されるものではないが、通常2.0~7.0、好ましくは3.0~6.5の範囲に調整して使用することができる。
<Physical properties of aqueous composition for metal surface treatment>
(PH)
The pH of the aqueous composition for metal surface treatment according to the present invention is not particularly limited, but is usually adjusted to 2.0 to 7.0, preferably 3.0 to 6.5. Can do.
(温度)
 本発明に係る金属表面処理用水性組成物の温度についても特に制約は無いが、電解処理によって皮膜を析出させる際は、通常15~40℃、好ましくは20~35℃の範囲内で使用することができる。
(temperature)
The temperature of the aqueous composition for metal surface treatment according to the present invention is not particularly limited, but when the film is deposited by electrolytic treatment, it is usually used within the range of 15 to 40 ° C, preferably 20 to 35 ° C. Can do.
≪金属表面処理皮膜≫
 本発明に係る金属表面処理皮膜は、本発明の金属表面処理用水性組成物を用い、本発明の処理方法によって得られる。ここで、皮膜中に存在するBiは金属及び酸化物の形態で存在する。カソード電解によって析出するBiは、基本的に還元析出した金属Biであるが、その一部は特に皮膜の焼付け工程で酸化されて酸化物となる。また、第二工程において高電圧がかかった場合、皮膜表面のpH上昇により、アミノポリカルボン酸によるBiの安定化が不充分となるため、特に皮膜表面側では酸化Biとしても析出する。
≪Metal surface treatment film≫
The metal surface treatment film according to the present invention is obtained by the treatment method of the present invention using the aqueous composition for metal surface treatment of the present invention. Here, Bi which exists in a film | membrane exists with the form of a metal and an oxide. Bi deposited by cathodic electrolysis is basically reduced Bi metal Bi, but a part of it is oxidized in particular in the coating baking process to become an oxide. In addition, when a high voltage is applied in the second step, Bi stabilization by the aminopolycarboxylic acid is insufficient due to an increase in pH on the surface of the film, so that it also precipitates as oxidized Bi especially on the film surface side.
 Bi付着量は20~500mg/mが好ましく、30~400mg/mが更に好ましく、50~300mg/mが最も好ましい。Bi付着量が低過ぎると充分な耐食性が得られず、高過ぎるともはや耐食性の向上が望めないばかりか皮膜密着性を損なう場合もある。尚、Bi付着量は蛍光X線分析により定量可能である。尚、本特許請求の範囲及び本明細書における「金属Bi付着量」及び「酸化Bi付着量」は、当該蛍光X線分析で定量された値とする。尚、その他の形態として水酸化物の存在も否定できないが、当該測定方法で「金属Bi」又は「酸化Bi」として定量された場合には、その数値は「金属Bi付着量」又は「酸化Bi付着量」とすることとする。 Bi coating weight is preferably 20 ~ 500mg / m 2, more preferably 30 ~ 400mg / m 2, and most preferably 50 ~ 300mg / m 2. If the amount of Bi deposited is too low, sufficient corrosion resistance cannot be obtained. If it is too high, improvement in corrosion resistance can no longer be expected, and film adhesion may be impaired. The amount of Bi attached can be quantified by fluorescent X-ray analysis. The “metal Bi adhesion amount” and “oxidized Bi adhesion amount” in the claims and in the present specification are values determined by the fluorescent X-ray analysis. In addition, the presence of hydroxides cannot be denied as other forms, but when quantified as “metal Bi” or “oxidized Bi” by the measurement method, the numerical value is “metal Bi adhesion amount” or “oxidized Bi”. It shall be referred to as “attachment amount”.
 得られる皮膜の全皮膜厚は5~40μmが好ましく、5~30μmが更に好ましく、7~25μmが最も好ましい。薄過ぎると充分な耐食性が得られず、厚過ぎると経済的に不利なばかりか付き廻り性が低下する場合がある。皮膜厚は、素地金属が磁性金属であれば電磁誘導式膜厚計、素地金属が非磁性金属であれば渦電流式膜厚計により、測定可能である。 The total film thickness of the obtained film is preferably 5 to 40 μm, more preferably 5 to 30 μm, and most preferably 7 to 25 μm. If it is too thin, sufficient corrosion resistance cannot be obtained, and if it is too thick, not only is it economically disadvantageous, but the throwing power may be lowered. The film thickness can be measured by an electromagnetic induction type film thickness meter if the base metal is a magnetic metal, or by an eddy current film thickness meter if the base metal is a non-magnetic metal.
 皮膜中のBiは、皮膜表面よりも素地金属側により多く存在する必要がある。具体的には、皮膜厚の中心から金属材料側のBi付着量:Bが、全Bi付着量:Aに対して55%以上(B/A≧55%)となるBi付着分布であることが好ましい。58%以上が更に好ましく、60%以上が最も好ましい。低過ぎると充分な耐食性が得られない。なお、90%を越えると皮膜表面側のBi濃度が極端に低下し、Biの持つ硬化触媒としての機能を失うので好ましくない。 More Bi in the coating must be present on the base metal side than the coating surface. Specifically, the Bi adhesion amount B on the metal material side from the center of the film thickness is a Bi adhesion distribution in which the total Bi adhesion amount: 55% or more (B / A ≧ 55%) with respect to A. preferable. It is more preferably 58% or more, and most preferably 60% or more. If it is too low, sufficient corrosion resistance cannot be obtained. Note that if it exceeds 90%, the Bi concentration on the surface side of the film is extremely lowered and the function of Bi as a curing catalyst is lost.
 皮膜中のBi付着分布については、EPMAを用いて皮膜断面を線分析することにより測定可能である。同時に撮影した反射電子像によって素地金属と皮膜の界面及び皮膜表面の位置を特定し、EPMA線分析による皮膜中のBi強度の積分値:A及び皮膜厚の中心から素地金属側のみの積分値:Bを求め、B/Aを算出することができる。 The Bi adhesion distribution in the film can be measured by performing a line analysis on the film cross section using EPMA. The position of the base metal / film interface and the film surface is specified from the backscattered electron image taken at the same time, and the integrated value of Bi intensity in the film by EPMA line analysis: the integrated value of only the base metal side from the center of A and film thickness: B can be obtained and B / A can be calculated.
ブロック化イソシアネートの作製
 コスモネートM200(三井化学株式会社製):678.4gにメチルイソブチルケトン:115.6gを加え、70℃に昇温した後、ジエチレングリコールモノエチルエーテル:706.0gをゆっくり滴下し、滴下終了後、90℃に昇温した。90℃の条件下で12時間反応させ、ブロック化イソシアネートを得た。赤外吸収スペクトル測定を行ったところ、未反応のイソシアネート基由来の吸収が見られず、イソシアネートが完全にブロック化されたことが確認できた。
Preparation of blocked isocyanate Cosmonate M200 (manufactured by Mitsui Chemicals): methyl isobutyl ketone: 115.6 g was added to 678.4 g, the temperature was raised to 70 ° C., and then diethylene glycol monoethyl ether: 706.0 g was slowly added dropwise. After completion of the dropping, the temperature was raised to 90 ° C. The reaction was carried out at 90 ° C. for 12 hours to obtain a blocked isocyanate. When infrared absorption spectrum measurement was performed, absorption derived from unreacted isocyanate groups was not observed, and it was confirmed that the isocyanate was completely blocked.
30%第四級塩型エポキシ樹脂の作製
 温度計、コンデンサ、攪拌機を備えた1000mlセパラブルフラスコにエポキシ樹脂・jER#828(三菱化学株式会社製、エポキシ当量:180):134.9g、ビスフェノールA:80.94g、ジメチルベンジルアミン0.1gを加え、130℃でエポキシ当量1200になるまで反応を行った。反応終了後にブチルセロソルブ71.7gを加え、更にジメチルアミノエタノール13.16g、90%乳酸を14.79g加えて90℃で1時間反応を行った。反応後、脱イオン水613.36gを強く撹拌しながら約1時間かけて滴下し、固形分30%の第四級塩型エポキシ樹脂を作製した。
Preparation of 30% Quaternary Salt Type Epoxy Resin A 1000 ml separable flask equipped with a thermometer, a condenser, and a stirrer was mixed with epoxy resin / jER # 828 (manufactured by Mitsubishi Chemical Corporation, epoxy equivalent: 180): 134.9 g, bisphenol A : 80.94 g and 0.1 g of dimethylbenzylamine were added, and the reaction was performed at 130 ° C. until an epoxy equivalent of 1200 was reached. After completion of the reaction, 71.7 g of butyl cellosolve was added, 13.16 g of dimethylaminoethanol and 14.79 g of 90% lactic acid were added, and the reaction was carried out at 90 ° C. for 1 hour. After the reaction, 613.36 g of deionized water was added dropwise over about 1 hour with vigorous stirring to produce a quaternary salt type epoxy resin having a solid content of 30%.
カチオン性樹脂エマルションの作製
製造例1
 温度計、コンデンサ、攪拌機を備えた1000mlセパラブルフラスコにエポキシ樹脂・jER#828(三菱化学株式会社製、エポキシ当量:180):114.0g、変性樹脂としてポリカプロラクトンジオール・プラクセル208(ダイセル化学株式会社製):41.5g、ビスフェノールA:45.6g、ジメチルベンジルアミン0.1gを加え、130℃でエポキシ当量1000になるまで反応を行った。反応終了後にブチルセロソルブ55.5gを加え、更にジエタノールアミン:12.6g、ジエチレントリアミンのケチミン化物:8.0gを加え、90℃で2時間反応を行った。ここにブロック化イソシアネート:105.5g、ジオクチル錫ジアセテート(日東化成工業株式会社製ネオスタンU820):3.2g、酢酸5.4gを加え、均一になるまで撹拌を行った後、脱イオン水578.1gを強く撹拌しながら約1時間かけて滴下し、固形分濃度33%のカチオン性樹脂エマルション(A1)を得た。
Production of cationic resin emulsion Production Example 1
A 1000 ml separable flask equipped with a thermometer, a condenser, and a stirrer was mixed with epoxy resin / jER # 828 (manufactured by Mitsubishi Chemical Corporation, epoxy equivalent: 180): 114.0 g, polycaprolactone diol / Placcel 208 (Daicel Chemical Co., Ltd.) as a modified resin. 41.5 g, bisphenol A: 45.6 g, and 0.1 g of dimethylbenzylamine were added, and the reaction was performed at 130 ° C. until the epoxy equivalent was 1000. After completion of the reaction, 55.5 g of butyl cellosolve was added, and 12.6 g of diethanolamine and 8.0 g of diethylenetriamine ketimine were added, and the reaction was carried out at 90 ° C. for 2 hours. Blocked isocyanate: 105.5 g, dioctyltin diacetate (Neostan U820 manufactured by Nitto Kasei Kogyo Co., Ltd.): 3.2 g and acetic acid 5.4 g were added and stirred until uniform, and then deionized water 578. 0.1 g was added dropwise over about 1 hour with vigorous stirring to obtain a cationic resin emulsion (A1) having a solid concentration of 33%.
製造例2
 製造例1において、ジオクチル錫ジアセテートの代わりに、ジオクチル錫ジアセテート1.6g、ジブチル錫ジアセテート(日東化成工業株式会社製ネオスタンU200)1.6gを使用し、同様な反応を行うことで、カチオン性樹脂エマルション(A2)を得た。
Production Example 2
In Production Example 1, 1.6 g of dioctyltin diacetate and 1.6 g of dibutyltin diacetate (Neostan U200 manufactured by Nitto Kasei Kogyo Co., Ltd.) are used instead of dioctyltin diacetate, and a similar reaction is performed. A cationic resin emulsion (A2) was obtained.
製造例3
 製造例1において、ジオクチル錫ジアセテートの代わりに、ジオクチル錫ジラウレート(日東化成工業株式会社製ネオスタンU810)3.2gを使用し、同様な反応を行うことで、カチオン性樹脂エマルション(A3)を得た。
Production Example 3
In Production Example 1, instead of dioctyltin diacetate, 3.2 g of dioctyltin dilaurate (Neostan U810 manufactured by Nitto Kasei Kogyo Co., Ltd.) is used, and a similar reaction is performed to obtain a cationic resin emulsion (A3). It was.
製造例4
 製造例1において、ジオクチル錫ジアセテートの代わりに、ジブチル錫ジアセテート(日東化成工業株式会社製ネオスタンU200)3.2gを使用し、同様な反応を行うことで、カチオン性樹脂エマルション(A4)を得た。
Production Example 4
In Production Example 1, instead of dioctyltin diacetate, 3.2 g of dibutyltin diacetate (Neostan U200 manufactured by Nitto Kasei Kogyo Co., Ltd.) was used, and the same reaction was carried out to obtain a cationic resin emulsion (A4). Obtained.
製造例5
 製造例1において、ジオクチル錫ジアセテートの代わりに、ジオクチル錫ジステアレート(日東化成工業株式会社製ネオスタンU500)3.2gを使用し、同様な反応を行うことで、カチオン性樹脂エマルション(A5)を得た。
Production Example 5
In Production Example 1, 3.2 g of dioctyltin distearate (Neostan U500 manufactured by Nitto Kasei Kogyo Co., Ltd.) is used instead of dioctyltin diacetate, and a cationic resin emulsion (A5) is obtained by performing the same reaction. It was.
顔料分散ペーストの作製
製造例6
 30%の第四級塩型エポキシ樹脂16.6部に対し、精製クレー7.0部、カーボンブラック0.3部、第三リン酸亜鉛3.0部及び脱イオン水を加え、ボールミルにて20時間分散し、固形分50重量%の顔料分散ペーストを得た。
Preparation of pigment dispersion paste Production Example 6
To 16.6 parts of 30% quaternary salt type epoxy resin, 7.0 parts of purified clay, 0.3 part of carbon black, 3.0 parts of tertiary zinc phosphate and deionized water were added. Dispersion was carried out for 20 hours to obtain a pigment dispersion paste having a solid content of 50% by weight.
Biイオン液の作製
 蒸留水:500gにHEDTA:13.3gを溶解させ、60℃に加温した後、硝酸ビスマス5水和物:23.2gを加えて固形分が完全に溶解するまで撹拌した。最終的に全量が1.0Lとなるように更に蒸留水を加え、Biイオン水溶液を作製した。
Preparation of Bi ionic liquid HEDTA: 13.3 g was dissolved in distilled water: 500 g and heated to 60 ° C., then bismuth nitrate pentahydrate: 23.2 g was added and stirred until the solid content was completely dissolved. . Distilled water was further added so that the total amount finally became 1.0 L, and Bi ion aqueous solution was produced.
実施例1~3及び比較例1~2
組成物の作製
 表1に示す組合せの固形分16.0重量%になる量の樹脂エマルジョンに無機固形分4.0重量%になる量の顔料分散ペースト及びBiイオン水溶液を配合し、実施例1~3及び比較例1~2に係る組成物を作製した(組成物中のBi濃度:1000ppm;pH:6.0;分散質中のカチオン性樹脂:58重量%;分散質中のブロックイソシアネート:27重量%)。なお、それぞれの濃度は脱イオン水を用いて希釈し調整した。
Examples 1-3 and Comparative Examples 1-2
Preparation of Composition A pigment dispersion paste and an aqueous Bi ion solution having an inorganic solid content of 4.0% by weight were blended in a resin emulsion having an amount of solid content of 16.0% by weight in the combinations shown in Table 1. Example 1 To 3 and Comparative Examples 1 to 2 (Bi concentration in the composition: 1000 ppm; pH: 6.0; Cationic resin in the dispersoid: 58 wt%; Block isocyanate in the dispersoid: 27% by weight). Each concentration was adjusted by diluting with deionized water.
電解条件
 電解工程(1)として8Vにて90秒間電解後、直ちに電解工程(2)として180Vにて180秒間電解処理を行った。
Electrolytic conditions After electrolysis at 8V for 90 seconds as an electrolytic step (1), an electrolytic treatment was immediately performed at 180V for 180 seconds as an electrolytic step (2).
試験板の作製
 試験板として、冷延鋼板:SPCC(JIS3141)70×150×0.8mm(以下、SPCと略す)を用い、あらかじめその表面を日本パーカライジング社製強アルカリ脱脂剤「FC-E2001」を使用して、120秒間スプレー処理することにより脱脂処理した。脱脂処理後は30秒間スプレー水洗し、実施例及び比較例に示す組成物に浸漬させ、実施例及び比較例に示す電解条件にてカソード電解処理を実施した。電解終了後の試験板は直ちに脱イオン水にて30秒間スプレー水洗し、電気オーブン中で180℃にて20分間焼付けを行った。
Preparation of test plate A cold rolled steel plate: SPCC (JIS 3141) 70 × 150 × 0.8 mm (hereinafter abbreviated as SPC) was used as a test plate, and its surface was preliminarily a strong alkaline degreasing agent “FC-E2001” manufactured by Nihon Parkerizing Co., Ltd. Was degreased by spraying for 120 seconds. After the degreasing treatment, it was washed with spray water for 30 seconds, immersed in the compositions shown in Examples and Comparative Examples, and subjected to cathode electrolytic treatment under the electrolytic conditions shown in Examples and Comparative Examples. The test plate after completion of electrolysis was immediately rinsed with deionized water for 30 seconds and baked at 180 ° C. for 20 minutes in an electric oven.
皮膜特性の調査
 試験板の上に析出した皮膜の皮膜特性を以下の方法で調査した。
皮膜厚測定:電磁誘導式膜厚計を用いて測定した。
Bi付着量:蛍光X線分光分析によって定量した。
Bi付着分布:試料断面をEPMAの線分析にて分析した。具体的方法は下記参照。
Investigation of film characteristics The film characteristics of the film deposited on the test plate were investigated by the following method.
Film thickness measurement: Measured using an electromagnetic induction film thickness meter.
Bi adhesion amount: quantified by fluorescent X-ray spectroscopic analysis.
Bi adhesion distribution: Sample cross section was analyzed by EPMA line analysis. See below for specific methods.
 皮膜中のBi付着量分布測定は、EPMAを用いて分析した。皮膜処理後の金属材料を、埋め込み樹脂によって固定し、断面を研磨し、素地金属方向から析出皮膜表面方向にBiの線分析プロファイルを求めた。線分析プロファイルとは、マッピング分析データを基に、分析エリアの1次元方向に任意の幅で特性X線強度の平均値を算出したもので、幅を持った線分析と解することができる。測定条件は以下の通り。 The distribution distribution of Bi in the film was analyzed using EPMA. The metal material after the film treatment was fixed with an embedded resin, the cross section was polished, and a line analysis profile of Bi was obtained from the base metal direction to the deposited film surface direction. A line analysis profile is an average value of characteristic X-ray intensity calculated in an arbitrary width in the one-dimensional direction of an analysis area based on mapping analysis data, and can be interpreted as a line analysis having a width. The measurement conditions are as follows.
 測定機器:島津製作所製EPMA-1610型
 電子銃:CeB6カソード型
 ビーム電流:50nA、ビーム電圧:15kV、ビーム径:1μmφ以下
 積算回数:1回、1点あたりのサンプリング時間:100ms
 分光結晶:PET(Bi Mα)
Measuring instrument: EPMA-1610 type manufactured by Shimadzu Corporation Electron gun: CeB6 cathode type Beam current: 50 nA, beam voltage: 15 kV, beam diameter: 1 μmφ or less Integration count: once, sampling time per point: 100 ms
Spectroscopic crystal: PET (Bi Mα)
 同時に撮影した反射電子像によって素地金属と皮膜の界面及び皮膜表面の位置を特定し、皮膜中のBi強度の積分値:A及び皮膜厚の中心から素地金属側のみの積分値:Bを求め、B/Aを算出した。なお、参考のため代表的なプロファイルとして実施例1で得られた皮膜の分析結果を図2に示す。 The position of the interface between the base metal and the film and the surface of the film is identified from the backscattered electron image taken at the same time, and the integrated value of Bi intensity in the film: A and the integrated value only on the base metal side from the center of the film thickness: B are obtained, B / A was calculated. For reference, FIG. 2 shows the analysis result of the film obtained in Example 1 as a representative profile.
 Bi析出性:Bi析出性として、経時における蛍光X線分光分析結果より、Bi析出量が50mg/mまで達する時間を評価した。評価基準は45秒以内:◎、45~60秒:○、60秒以上:×とした。結果を表1、析出量の推移を図1に示す。尚、Bi析出性試験は、8Vにて30、60、90秒間電解し、脱イオン水にて水洗後、風乾した。 Bi precipitation property: As Bi precipitation property, the time required for the Bi precipitation amount to reach 50 mg / m 2 was evaluated from the result of fluorescent X-ray spectroscopic analysis over time. Evaluation criteria were within 45 seconds: A, 45-60 seconds: B, 60 seconds or more: X. The results are shown in Table 1, and the transition of the precipitation amount is shown in FIG. In the Bi precipitation test, electrolysis was performed at 8 V for 30, 60, and 90 seconds, washed with deionized water, and then air-dried.
 塗膜硬化性:カソード電解処理により作製された樹脂塗装板に対し、アセトンを潤沢にしめらしたガーゼを押しつけ、30回の往復運動をさせた後、塗膜の外観を目視にて確認した。評価基準は、跡なし:◎、跡あり:○、素地まで見える状態:×とした。結果を表1に示す。 Coating film curability: Gauze with plenty of acetone was pressed against a resin-coated plate produced by cathodic electrolysis, and after 30 reciprocations, the appearance of the coating film was visually confirmed. The evaluation criteria were as follows: no mark: ◎, mark: ◯, visible state: x. The results are shown in Table 1.
 樹脂析出時間(樹脂析出性):15Vにて90秒間電解処理を行い、電流値の低下が見られた時点を塗膜抵抗が発現した時点、すなわち樹脂析出が起こった時点と判断し、その時点までの処理時間を樹脂析出時間とした。結果を表1に示す。 Resin deposition time (resin deposition property): Electrolytic treatment was performed at 15 V for 90 seconds, and the time when a decrease in current value was observed was determined as the time when coating film resistance was expressed, that is, the time when resin deposition occurred. The processing time up to was defined as resin deposition time. The results are shown in Table 1.
 はじき、ブツ:目視にて有無を確認した。 Hashiki, Futsu: The presence or absence was confirmed visually.
 密着性:塗膜上に1mm幅での碁盤目カットを100マスぶん入れ、その部分をエリクセン試験器にて押し出した。押し出し後、テープ剥離を行い、剥離せずに残存した部分のマス数を数えた。押し出し距離:4mm 残存マス数 80~100:◎、80~60:○、60~20:△、20~0:× Adhesiveness: 100 square grid cuts with a width of 1 mm were put on the coating film, and the portion was extruded with an Eriksen tester. After extrusion, tape peeling was performed, and the number of cells remaining without peeling was counted. Extrusion distance: 4 mm Remaining mass number 80-100: A, 80-60: A, 60-20: A, 20-0: X
 表1から明らかなように、実施例に係る組成物は、Biの析出性向上とはじきやブツ等の塗膜外観の悪化防止を図ることができ、更には優れた塗膜硬化性と密着性を付与することが確認された。即ち、実施例に係る組成物は、同一浴にて皮膜が形成できる上、皮膜として重要な性質を満足する皮膜を形成できることが確認された。他方、比較例に係る組成物は、いずれかの性質において著しく劣っており、実用品としては使用し得ないことが分かる。
Figure JPOXMLDOC01-appb-T000003
As is clear from Table 1, the compositions according to the examples can improve the precipitation of Bi, prevent deterioration of the appearance of the coating film such as repellency and blistering, and have excellent coating film curability and adhesion. It was confirmed that That is, it was confirmed that the compositions according to the examples can form a film in the same bath and can form a film satisfying important properties as a film. On the other hand, it can be seen that the composition according to the comparative example is remarkably inferior in any property and cannot be used as a practical product.
Figure JPOXMLDOC01-appb-T000003

Claims (10)

  1.  カチオン性樹脂エマルションを含有する金属表面処理用水性組成物であって、カチオン性樹脂エマルションの分散質が、変性エポキシ樹脂のアミノ化物、ブロックポリイソシアネート及び式1:
    Figure JPOXMLDOC01-appb-I000001
    (ここで、式1において、mは4以上、nは0以上10以下である)に示す錫化合物を含有し、カチオン性樹脂エマルションの分散媒が、Biイオンを含有する事を特徴とする金属表面処理用水性組成物。
    An aqueous composition for metal surface treatment containing a cationic resin emulsion, wherein the dispersoid of the cationic resin emulsion comprises an aminated product of a modified epoxy resin, a block polyisocyanate, and a formula 1:
    Figure JPOXMLDOC01-appb-I000001
    (Wherein, in Formula 1, m is 4 or more, n is 0 or more and 10 or less), and the dispersion medium of the cationic resin emulsion contains Bi ions. An aqueous composition for surface treatment.
  2.  式1におけるmが7以上である事を特徴とする請求項1に記載の金属表面処理用水性組成物。 M in Formula 1 is 7 or more, The aqueous composition for metal surface treatment of Claim 1 characterized by the above-mentioned.
  3.  式1におけるmが7である事を特徴とする請求項1又は2に記載の金属表面処理用水性組成物。 M in Formula 1 is 7, The aqueous composition for metal surface treatment of Claim 1 or 2 characterized by the above-mentioned.
  4.  式1におけるmが7でnが0である事を特徴とする請求項3に記載の金属表面処理用水性組成物。 The aqueous composition for metal surface treatment according to claim 3, wherein m in Formula 1 is 7 and n is 0.
  5.  全組成物中における錫化合物の含有量が、Sn量として0.01~1重量%である事を特徴とする請求項1~4のいずれかに記載の金属表面処理用水性組成物。 The aqueous composition for metal surface treatment according to any one of claims 1 to 4, wherein the content of the tin compound in the whole composition is 0.01 to 1% by weight as Sn amount.
  6.  同一浴内での多段通電法に使用される組成物であることを特徴とする請求項1~5のいずれかに記載の金属表面処理用水性組成物。 The aqueous composition for metal surface treatment according to any one of claims 1 to 5, which is a composition used for a multistage energization method in the same bath.
  7.  請求項1~6のいずれか一項に記載の水性組成物に被処理金属材料を浸漬し、被処理金属材料を陰極とした電解処理工程にて金属材料に皮膜を析出させることを特徴とする金属表面処理方法。 A metal material to be treated is immersed in the aqueous composition according to any one of claims 1 to 6, and a film is deposited on the metal material in an electrolytic treatment process using the metal material to be treated as a cathode. Metal surface treatment method.
  8.  電解処理工程が、表面が清浄化された金属材料を、請求項1~6のいずれか一項に記載の水性組成物中に浸漬させた後、又は、浸漬させながら、該金属材料を陰極とし、電圧15V以下にて10~120秒間電解する第一工程と、電圧50~400Vにて30~300秒電解する、前記第一工程に引き続いて同一浴内で実施する第二工程と、を有する事を特徴とする請求項7に記載の金属表面処理方法。 In the electrolytic treatment step, the metal material having a cleaned surface is immersed in the aqueous composition according to any one of claims 1 to 6 or while the metal material is used as a cathode. A first step of electrolysis at a voltage of 15 V or less for 10 to 120 seconds, and a second step of electrolysis for 30 to 300 seconds at a voltage of 50 to 400 V, which is carried out in the same bath following the first step. The metal surface treatment method according to claim 7, wherein:
  9.  請求項7又は8に記載の電解処理工程を有する事を特徴とする皮膜付金属材料の製造方法。 A method for producing a coated metal material, comprising the electrolytic treatment step according to claim 7 or 8.
  10.  請求項9記載の製造方法により得られる皮膜であって、金属Bi及び酸化BiがBiとして20~250mg/m付着し、全皮膜厚が5~40μmであり、かつ皮膜厚の中心から金属材料側のBi付着量:Bが、全Bi付着量:Aに対して55%以上(B/A≧55%)となるBi付着分布であることを特徴とする金属表面処理皮膜。 10. A film obtained by the production method according to claim 9, wherein the metal Bi and the oxidized Bi adhere as 20 to 250 mg / m 2 as Bi, the total film thickness is 5 to 40 μm, and the metal material from the center of the film thickness A metal surface treatment film characterized in that the Bi adhesion amount on the side: B is a Bi adhesion distribution that is 55% or more (B / A ≧ 55%) with respect to the total Bi adhesion amount: A.
PCT/JP2012/065663 2011-07-19 2012-06-19 Aqueous composition for metal surface treatment, method for metal surface treatment using composition, and method for producing metal material having film, as well as metal surface treatment film using same WO2013011790A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201280033230.7A CN103717686A (en) 2011-07-19 2012-06-19 Aqueous composition for metal surface treatment, method for metal surface treatment using composition, and method for producing metal material having film, as well as metal surface treatment film using same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011-157635 2011-07-19
JP2011157635A JP5718753B2 (en) 2011-07-19 2011-07-19 Aqueous composition for metal surface treatment, metal surface treatment method using the same, method for producing metal material with film, and metal surface treatment film using these

Publications (1)

Publication Number Publication Date
WO2013011790A1 true WO2013011790A1 (en) 2013-01-24

Family

ID=47557974

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/065663 WO2013011790A1 (en) 2011-07-19 2012-06-19 Aqueous composition for metal surface treatment, method for metal surface treatment using composition, and method for producing metal material having film, as well as metal surface treatment film using same

Country Status (3)

Country Link
JP (1) JP5718753B2 (en)
CN (1) CN103717686A (en)
WO (1) WO2013011790A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115261866A (en) * 2022-08-02 2022-11-01 黄山学院 Long-acting thick-film water-based antirust agent and preparation method thereof

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6406848B2 (en) * 2014-03-26 2018-10-17 日本ペイント・オートモーティブコーティングス株式会社 Electrodeposition coating composition
JP6367622B2 (en) * 2014-06-30 2018-08-01 株式会社ブリヂストン Composition for conductive member

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0711178A (en) * 1993-06-21 1995-01-13 Kansai Paint Co Ltd Cationic electrodeposition coating material and method for electrodepositing the same
JP2001288598A (en) * 2000-04-05 2001-10-19 Kansai Paint Co Ltd Cation electrodeposition coating method
JP2002188049A (en) * 2000-10-11 2002-07-05 Kansai Paint Co Ltd Cationic coating composition
JP2004225095A (en) * 2003-01-22 2004-08-12 Kansai Paint Co Ltd Method for forming coating film
JP2006501357A (en) * 2002-10-01 2006-01-12 ピーピージー インダストリーズ オハイオ, インコーポレイテッド Electrodepositable coating compositions and related methods
JP2008274392A (en) * 2006-08-04 2008-11-13 Kansai Paint Co Ltd Method for forming surface-treating film
WO2010100839A1 (en) * 2009-03-02 2010-09-10 日本パーカライジング株式会社 Composition for treating surface of metal, method for treating surface of metal using the composition, and coating film for treating surface of metal utilizing the composition and the method
JP2010214283A (en) * 2009-03-16 2010-09-30 Nippon Paint Co Ltd Method for forming multilayer coated film
WO2011030549A1 (en) * 2009-09-14 2011-03-17 日本パーカライジング株式会社 Composition for treatment of metal surface, metal surface treatment method using the composition, and metal surface-treating coating film produced using the composition or the method

Family Cites Families (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5813618A (en) * 1981-07-17 1983-01-26 Yoshitomi Pharmaceut Ind Ltd Preparation of polyurethane polymer
JPS6121167A (en) * 1984-07-09 1986-01-29 Dai Ichi Kogyo Seiyaku Co Ltd Resin composition for cationic electroplating
JPH0832840B2 (en) * 1987-09-09 1996-03-29 三共有機合成株式会社 Curing catalyst for cationic electrodeposition paint
JPH01175922A (en) * 1987-12-28 1989-07-12 Kobayashi Kose Co Ltd Production of solid powdery cosmetic
JP2983370B2 (en) * 1991-04-16 1999-11-29 関西ペイント株式会社 Electrodeposition coating composition
US5718817A (en) * 1993-07-28 1998-02-17 Elf Atochem North America, Inc. Catalyst for low temperature cure of blocked isocyanates
JPH10111401A (en) * 1996-08-14 1998-04-28 Daikin Ind Ltd Article with antireflection treatment
US5908912A (en) * 1996-09-06 1999-06-01 Ppg Industries Ohio, Inc. Electrodepositable coating composition containing bismuth and amino acid materials and electrodeposition method
JP3685297B2 (en) * 1998-06-24 2005-08-17 関西ペイント株式会社 Method for improving the exposure corrosion resistance of lead-free cationic electrodeposition coatings
JP3519702B2 (en) * 2000-05-31 2004-04-19 関西ペイント株式会社 Cationic resin composition
JP2001354910A (en) * 2000-06-12 2001-12-25 Mazda Motor Corp Cationic electrodeposition coating composition
US6660385B2 (en) * 2000-10-11 2003-12-09 Kansai Paint Co., Ltd. Cationic paint composition
JP4412450B2 (en) * 2001-10-05 2010-02-10 信越化学工業株式会社 Anti-reflective filter
JP2003138213A (en) * 2001-11-07 2003-05-14 Sony Corp Composition for surface modified film, surface modified film, filter for display and display
JP2005255740A (en) * 2004-03-09 2005-09-22 Sony Corp Hard-coating composition, surface-protective film, and optical disk
JP2006028256A (en) * 2004-07-13 2006-02-02 Fuji Photo Film Co Ltd Black ink composition, inkjet ink and inkjet ink set
JP2006274392A (en) * 2005-03-30 2006-10-12 Honda Motor Co Ltd BOLT MADE OF TITANIUM ALLOY AND METHOD FOR PRODUCING BOLT MADE OF TITANIUM ALLOY HAVING TENSILE STRENGTH OF AT LEAST 800 MPa
US8158264B2 (en) * 2006-10-20 2012-04-17 3M Innovative Properties Company Method for easy-to-clean substrates and articles therefrom
JP5060796B2 (en) * 2007-02-16 2012-10-31 関西ペイント株式会社 Method for forming surface treatment film
JP5131840B2 (en) * 2007-07-03 2013-01-30 信越化学工業株式会社 COATING COMPOSITION AND HIGH DRILLING FILM USING THE COMPOSITION
KR101330878B1 (en) * 2008-05-29 2013-11-18 니혼 파커라이징 가부시키가이샤 Metal material with a bismuth film attached and method for producing same, surface treatment liquid used in said method, and cationic electrodeposition coated metal material and method for producing same

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0711178A (en) * 1993-06-21 1995-01-13 Kansai Paint Co Ltd Cationic electrodeposition coating material and method for electrodepositing the same
JP2001288598A (en) * 2000-04-05 2001-10-19 Kansai Paint Co Ltd Cation electrodeposition coating method
JP2002188049A (en) * 2000-10-11 2002-07-05 Kansai Paint Co Ltd Cationic coating composition
JP2006501357A (en) * 2002-10-01 2006-01-12 ピーピージー インダストリーズ オハイオ, インコーポレイテッド Electrodepositable coating compositions and related methods
JP2004225095A (en) * 2003-01-22 2004-08-12 Kansai Paint Co Ltd Method for forming coating film
JP2008274392A (en) * 2006-08-04 2008-11-13 Kansai Paint Co Ltd Method for forming surface-treating film
WO2010100839A1 (en) * 2009-03-02 2010-09-10 日本パーカライジング株式会社 Composition for treating surface of metal, method for treating surface of metal using the composition, and coating film for treating surface of metal utilizing the composition and the method
JP2010214283A (en) * 2009-03-16 2010-09-30 Nippon Paint Co Ltd Method for forming multilayer coated film
WO2011030549A1 (en) * 2009-09-14 2011-03-17 日本パーカライジング株式会社 Composition for treatment of metal surface, metal surface treatment method using the composition, and metal surface-treating coating film produced using the composition or the method

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115261866A (en) * 2022-08-02 2022-11-01 黄山学院 Long-acting thick-film water-based antirust agent and preparation method thereof
CN115261866B (en) * 2022-08-02 2023-12-19 黄山学院 Long-acting thick film water-based antirust agent and preparation method thereof

Also Published As

Publication number Publication date
JP5718753B2 (en) 2015-05-13
JP2013023524A (en) 2013-02-04
CN103717686A (en) 2014-04-09

Similar Documents

Publication Publication Date Title
JP5462561B2 (en) Metal surface treatment composition, metal surface treatment method using the same, and metal surface treatment film using the same
JP5325610B2 (en) Metal surface treatment composition, metal surface treatment method using the same, and metal surface treatment film using the same
JP2008538383A (en) Multi-layer coating formation method
JP4825841B2 (en) Film formation method
JP2010095678A (en) Cationic electrodeposition coating composition and process for forming multilayer coating
JP2008195925A (en) Method for forming electrodeposition coating film
JP5718753B2 (en) Aqueous composition for metal surface treatment, metal surface treatment method using the same, method for producing metal material with film, and metal surface treatment film using these
JP2010214283A (en) Method for forming multilayer coated film
WO2016143707A1 (en) Cationic electrodeposition coating composition
JP5550580B2 (en) Metal surface treatment composition
JP4777098B2 (en) Multi-layer coating including a new composite chemical coating
JP2012233054A (en) Cationic electrodeposition coating material composition and coated article
JP2008174819A (en) Coating film formation method
JP5249819B2 (en) Electrodeposition coating composition and electrodeposition coating method
JP6406848B2 (en) Electrodeposition coating composition
WO2022014277A1 (en) Cationic electrodeposition coating composition
JP2022129794A (en) Cationic electro-deposition coating composition
JP2008231452A (en) Method for depositing multilayer coating film
JPH06340831A (en) Cationic electrodeposition coating method
JP6719185B2 (en) Method for preparing cationic electrodeposition coating composition
JP5607575B2 (en) Coating film forming method and coated steel sheet
JP5814520B2 (en) Film formation method
WO2020241590A1 (en) Method for preparing cationic electrodeposition coating composition
JP2021055166A (en) Method of improving coverage of electro-deposition coating film
JP2012057034A (en) Cationic electrodeposition paint composition

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12814629

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12814629

Country of ref document: EP

Kind code of ref document: A1