WO2013011786A1 - Dye for dye-sensitized solar cell, photoelectric conversion element including said dye, and dye-sensitized solar cell - Google Patents

Dye for dye-sensitized solar cell, photoelectric conversion element including said dye, and dye-sensitized solar cell Download PDF

Info

Publication number
WO2013011786A1
WO2013011786A1 PCT/JP2012/065561 JP2012065561W WO2013011786A1 WO 2013011786 A1 WO2013011786 A1 WO 2013011786A1 JP 2012065561 W JP2012065561 W JP 2012065561W WO 2013011786 A1 WO2013011786 A1 WO 2013011786A1
Authority
WO
WIPO (PCT)
Prior art keywords
dye
sensitized solar
solar cell
tio
electrode
Prior art date
Application number
PCT/JP2012/065561
Other languages
French (fr)
Japanese (ja)
Inventor
伊藤 省吾
高橋 薫
昌幸 齊藤
利幸 重富
Original Assignee
田中貴金属工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 田中貴金属工業株式会社 filed Critical 田中貴金属工業株式会社
Publication of WO2013011786A1 publication Critical patent/WO2013011786A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G9/00Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
    • H01G9/20Light-sensitive devices
    • H01G9/2059Light-sensitive devices comprising an organic dye as the active light absorbing material, e.g. adsorbed on an electrode or dissolved in solution
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09BORGANIC DYES OR CLOSELY-RELATED COMPOUNDS FOR PRODUCING DYES, e.g. PIGMENTS; MORDANTS; LAKES
    • C09B57/00Other synthetic dyes of known constitution
    • C09B57/10Metal complexes of organic compounds not being dyes in uncomplexed form
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G9/00Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
    • H01G9/20Light-sensitive devices
    • H01G9/2027Light-sensitive devices comprising an oxide semiconductor electrode
    • H01G9/2031Light-sensitive devices comprising an oxide semiconductor electrode comprising titanium oxide, e.g. TiO2
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • H10K71/10Deposition of organic active material
    • H10K71/12Deposition of organic active material using liquid deposition, e.g. spin coating
    • H10K71/15Deposition of organic active material using liquid deposition, e.g. spin coating characterised by the solvent used
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/30Coordination compounds
    • H10K85/341Transition metal complexes, e.g. Ru(II)polypyridine complexes
    • H10K85/344Transition metal complexes, e.g. Ru(II)polypyridine complexes comprising ruthenium
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/542Dye sensitized solar cells

Abstract

[Problem] To provide a dye for dye-sensitized solar cells which is useful as a sensitizing dye for improving thermal durability, a photoelectric conversion element including the dye, and a dye-sensitized solar cell. [Solution] Ru(4,4'-di(9-nonenyl)-2,2'-bipyridine)(4,4'- dicarboxy-2,2'-bipyridine)(NCS)2 is used as a sensitizing dye.

Description

色素増感型太陽電池用色素、当該色素を用いた光電変換素子、及び色素増感型太陽電池Dye for dye-sensitized solar cell, photoelectric conversion element using the dye, and dye-sensitized solar cell
 本発明は、色素増感型太陽電池の熱耐久性を向上させるための色素増感型太陽電池用色素、当該色素を用いた光電変換素子、及び色素増感型太陽電池に関する。 The present invention relates to a dye for a dye-sensitized solar cell for improving the thermal durability of a dye-sensitized solar cell, a photoelectric conversion element using the dye, and a dye-sensitized solar cell.
 近年、石油や天然ガスなどの化石燃料の枯渇問題や温室効果ガスによる地球温暖化問題等を解決するために、クリーンで安全な自然エネルギーを活用する太陽光発電に注目が集まっており、光電変換素子の研究開発が活発に行われている。現在、シリコン光電変換素子はシリコン系太陽電池として実用化されているが、価格や材料供給等の制約から、普及拡大は困難であるとの見方がある。そこで、太陽電池の普及拡大に向けての取り組みとして、シリコン以外の材料を用いる太陽電池の研究開発が進められており、安価な原料と簡便なプロセスで製造される低価格の次世代太陽電池の候補として、色素増感型太陽電池が期待されている。 In recent years, in order to solve the problem of exhaustion of fossil fuels such as oil and natural gas and the global warming problem due to greenhouse gases, attention has been focused on photovoltaic power generation using clean and safe natural energy. Research and development of devices are actively conducted. At present, silicon photoelectric conversion elements are put into practical use as silicon-based solar cells, but there is a view that it is difficult to spread them due to restrictions such as price and material supply. Therefore, research and development of solar cells using materials other than silicon is being promoted as an effort to expand the use of solar cells, and low-cost next-generation solar cells that are manufactured using inexpensive raw materials and simple processes. As a candidate, a dye-sensitized solar cell is expected.
 色素増感型太陽電池については、1991年にスイスのローザンヌ工科大学のグレッツェル教授らのグループが、ルテニウム色素を担持させた多孔質酸化チタン(TiO)電極と対極との間にヨウ素系電解液を封入した色素増感型太陽電池により、10%という高い変換効率が得られることを発表して以来、多大な関心が寄せられている。色素増感型太陽電池の特徴は、原料と製造面において低コストであることに加え、カラフル化といったデザイン性の高さや蛍光灯下での出力の高さが挙げられる。色素増感型太陽電池は植物の光合成に似た化学反応に基づいて発電する太陽電池であり、可視光の照射により、増感色素が光吸収して励起状態となり、励起された増感色素の電子は酸化チタン半導体の伝導帯へ注入され、注入された電子は外部回路を通って対極に移動し、移動した電子は電解液中のイオンによって運ばれて増感色素に戻り、このような過程が繰り返されることによって電気エネルギーが取り出される。 As for dye-sensitized solar cells, a group of Prof. Gretzel of Lausanne University of Technology in Switzerland in 1991 found an iodine-based electrolyte between a porous titanium oxide (TiO 2 ) electrode carrying a ruthenium dye and a counter electrode. Since the announcement that a dye-sensitized solar cell encapsulating bismuth can provide a conversion efficiency as high as 10%, much attention has been paid. Dye-sensitized solar cells are characterized by low cost in terms of raw materials and manufacturing, high designability such as colorfulization, and high output under fluorescent lamps. A dye-sensitized solar cell is a solar cell that generates electricity based on a chemical reaction similar to plant photosynthesis, and when irradiated with visible light, the sensitizing dye absorbs light and enters an excited state. The electrons are injected into the conduction band of the titanium oxide semiconductor, the injected electrons move to the counter electrode through an external circuit, and the transferred electrons are carried by the ions in the electrolyte and return to the sensitizing dye. Is repeated to extract electric energy.
色素増感型太陽電池の普及拡大に向けた課題の1つとして、熱耐久性の向上が挙げられる。色素増感型太陽電池の劣化環境因子として温度が指摘されており、高温によって生じる電極での色素脱離現象が太陽電池特性低下の要因の1つとされている。従来、色素増感型太陽電池の熱耐久性を向上させるべく、数多くの努力がなされている。例えば、K19色素(Ru(4,4’-ジカルボン酸-2,2’-ビピリジン)(4,4’-ビス(p-ヘキシルオキシスチリル)―2,2’―ビピリジン)(NCS)2)を増感色素として用い、電解液として、1―プロピルー3-メチルイミダゾリウムヨージド、ヨウ素、グアニジンチオシアネート及びN-メチルベンゾイミダゾールを含む3-メトキシプロピオニトリル溶液を採用し、多孔質TiO膜の表面に1-デシルホスホン酸を当該増感色素に共グラフト化させたナノ結晶TiO色素増感型太陽電池が、80℃で1000時間の熱応力後において8%以上の変換効率を示したことが報告されている(非特許文献1参照)。 One of the issues for the widespread use of dye-sensitized solar cells is the improvement of thermal durability. Temperature has been pointed out as a degradation environment factor of dye-sensitized solar cells, and the phenomenon of dye detachment at electrodes caused by high temperatures is considered to be one of the causes of deterioration of solar cell characteristics. Conventionally, many efforts have been made to improve the thermal durability of dye-sensitized solar cells. For example, a K19 dye (Ru (4,4′-dicarboxylic acid-2,2′-bipyridine) (4,4′-bis (p-hexyloxystyryl) -2,2′-bipyridine) (NCS) 2 ) used as a sensitizing dye, as an electrolytic solution, 1 Puropiru 3- methylimidazolium iodide, iodine, employing 3-methoxy propionitrile solution containing guanidine thiocyanate and N- methylbenzimidazole, the porous TiO 2 film The nanocrystalline TiO 2 dye-sensitized solar cell co-grafted with 1-decylphosphonic acid on the surface of the sensitizing dye showed a conversion efficiency of 8% or more after 1000 hours of thermal stress at 80 ° C. Has been reported (see Non-Patent Document 1).
また、配線保護層を強化した複層化配線保護層、及び水分の混入を避ける耐湿性パッケージを用いて作製された集電配線型イオン液体色素増感型太陽電池が、85℃、85%RH、1000時間といった、JISに定められる耐久性評価項目をクリアできることが報告されている(非特許文献2参照)。 In addition, a current collector wiring type ionic liquid dye-sensitized solar cell manufactured using a multi-layer wiring protective layer having a reinforced wiring protective layer and a moisture-resistant package that prevents moisture from entering is 85 ° C., 85% RH. It has been reported that the durability evaluation items defined in JIS such as 1000 hours can be cleared (see Non-Patent Document 2).
 色素増感型太陽電池に使用される増感色素を、多孔質TiO電極上で重合可能な架橋性オレフィン基を含むルテニウム色素に改良し、このルテニウム色素を含むアセトニトリル/tert-ブタノール混合溶液をフッ素ドープ酸化スズ(FTO)基板上のTiO層に塗布し、メタクリル酸とともに、重合開始剤であるアゾビスイソブチロニトリル(AIBN)溶液を加えて、紫外線照射により光共重合し、当該ルテニウム色素とメタクリル酸との架橋体を作製して多孔質TiO膜の表面に結合させ、また、ヨウ化リチウム、リチウム、及び4-tert-ブチルピリジンを含むアセトニトリル溶液にポリメタクリル酸粉末を加えて加熱ゲル化させたポリメタクリレート系ゲル電解質を電解液として用いて、これを電極間に封入し、シート状ホットメルトシーリング材により電解液の注入口を封止した色素増感型太陽電池が、架橋性オレフィン基を含まないN3色素(Ru(4,4’-ジカルボキシー2,2'-ビピリジン)(NCS))を用いたものよりも、5%以上の変換効率の向上と貯蔵寿命の長期化が達成され、耐久性が向上したことを報告する論文が発表されている(非特許文献3参照)。しかし、その耐久性試験はあくまで室温での劣化状況を報告するものであった The sensitizing dye used in the dye-sensitized solar cell is improved to a ruthenium dye containing a crosslinkable olefin group polymerizable on a porous TiO 2 electrode, and an acetonitrile / tert-butanol mixed solution containing this ruthenium dye is prepared. It is applied to a TiO 2 layer on a fluorine-doped tin oxide (FTO) substrate, and together with methacrylic acid, an azobisisobutyronitrile (AIBN) solution, which is a polymerization initiator, is added and photocopolymerized by ultraviolet irradiation, and the ruthenium A crosslinked product of a dye and methacrylic acid is prepared and bonded to the surface of the porous TiO 2 film, and polymethacrylic acid powder is added to an acetonitrile solution containing lithium iodide, lithium, and 4-tert-butylpyridine. Heat-gelled polymethacrylate gel electrolyte is used as the electrolyte solution, and this is sealed between the electrodes. DOO-like hot melt by sealant dye-sensitized solar cell sealing the inlet of the electrolyte solution, N3 dye containing no crosslinkable olefinic groups (Ru (4,4' Jikarubokishi 2,2'-bipyridine) 2 (NCS) 2 ) papers have been published that report that the conversion efficiency is improved by 5% or more, the shelf life is prolonged, and the durability is improved (Non-patent Document 3). reference). However, the durability test only reported the deterioration at room temperature.
 また、色素増感型太陽電池において、テトラシアノボレートアニオンと有機カチオンとをベースとしたイオン性液体を電解液として用いたところ、80℃における1000時間の熱履歴後に変換効率の初期値の90%超を保留したことが報告されている(特許文献1参照)。  Further, in the dye-sensitized solar cell, when an ionic liquid based on tetracyanoborate anion and organic cation was used as an electrolyte, 90% of the initial value of conversion efficiency after 1000 hours of heat history at 80 ° C. It has been reported that the supermarket has been suspended (see Patent Document 1). *
特表2009-527074号公報Special table 2009-527074
Figure JPOXMLDOC01-appb-I000001
Figure JPOXMLDOC01-appb-I000001
 上述したように、従来の色素増感型太陽電池の熱耐久性は85℃を限度としており、太陽電池製品として市販化するには、まだまだ不十分な熱耐久性であることから、熱安定性の向上は克服すべき課題の1つであった。
 そこで、本発明は、こうした状況に鑑み、色素増感型太陽電池の熱耐久性を向上させるための色素増感型太陽電池用色素、当該色素を用いた光電変換素子、及び色素増感型太陽電池を提供することを目的とする。
As described above, the thermal durability of the conventional dye-sensitized solar cell is limited to 85 ° C., and the thermal durability is still insufficient for commercialization as a solar cell product. The improvement of this was one of the issues to be overcome.
Accordingly, in view of such circumstances, the present invention provides a dye for a dye-sensitized solar cell for improving the thermal durability of a dye-sensitized solar cell, a photoelectric conversion element using the dye, and a dye-sensitized solar. An object is to provide a battery.
 本発明者等は、前記課題を解決すべく検討を重ねた結果、増感色素として、末端にビニル基を導入した長いアルキル基を持つ新規のルテニウム錯体色素を合成し、また、電解液として、アセトニトリルのような有機溶剤ではなく、熱耐久性の高いイオン性液体を用いて、従来の100~120℃の範囲よりも高い温度の加熱処理を行うことで色素増感型太陽電池を作製したところ、その熱耐久性が従来の85℃から120℃にまで向上することを見出し、かかる知見に基づいて本発明を完成するに至った。 As a result of repeated studies to solve the above problems, the present inventors synthesized a novel ruthenium complex dye having a long alkyl group having a vinyl group introduced at the terminal as a sensitizing dye, and as an electrolyte, A dye-sensitized solar cell was fabricated by heat treatment at a temperature higher than the conventional range of 100 to 120 ° C using an ionic liquid with high heat durability instead of an organic solvent such as acetonitrile. The present inventors have found that the thermal durability is improved from 85 ° C. to 120 ° C., and have completed the present invention based on such knowledge.
 すなわち、本発明は、Ru(4,4'-ジ(9-ノネニル)-2,2'-ビピリジン)(4,4'-ジカルボキシ-2,2'-ビピリジン)(NCS)からなる色素増感型太陽電池用色素である。 That is, the present invention relates to a dye comprising Ru (4,4′-di (9-nonenyl) -2,2′-bipyridine) (4,4′-dicarboxy-2,2′-bipyridine) (NCS) 2 It is a dye for sensitized solar cells.
 また、本発明は、透明導電基板と、この透明導電基板上に形成された多孔質膜とを備えた光電変換素子であって、当該多孔質膜が上記色素増感型太陽電池用色素を吸着したTiO粒子で構成されている光電変換素子である。 The present invention also provides a photoelectric conversion element comprising a transparent conductive substrate and a porous film formed on the transparent conductive substrate, wherein the porous film adsorbs the dye for dye-sensitized solar cells. a photoelectric conversion element is composed of TiO 2 particles.
 さらに、本発明は、上記光電変換素子を用いた色素増感型太陽電池である。 Furthermore, the present invention is a dye-sensitized solar cell using the photoelectric conversion element.
 本発明によれば、高温環境下で生じる色素脱離が従来の色素に比べて大幅に抑制されるため、色素増感型太陽電池の熱耐久性が飛躍的に向上する。したがって、本発明は、色素増感型太陽電池の今後の普及拡大に多大なる貢献をする。
According to the present invention, dye detachment that occurs in a high-temperature environment is significantly suppressed as compared with conventional dyes, so that the thermal durability of the dye-sensitized solar cell is dramatically improved. Therefore, the present invention greatly contributes to the future spread of dye-sensitized solar cells.
色素増感型太陽電池の開放電圧の経過時間に対する変化を示す図である。It is a figure which shows the change with respect to the elapsed time of the open circuit voltage of a dye-sensitized solar cell. 色素増感型太陽電池の短絡電流密度の経過時間に対する変化を示す図である。It is a figure which shows the change with respect to the elapsed time of the short circuit current density of a dye-sensitized solar cell. 色素増感型太陽電池のフィルファクターの経過時間に対する変化を示す図である。It is a figure which shows the change with respect to the elapsed time of the fill factor of a dye-sensitized solar cell. 色素増感型太陽電池の変換効率の経過時間に対する変化を示す図である。It is a figure which shows the change with respect to the elapsed time of the conversion efficiency of a dye-sensitized solar cell. N719色素を多孔質TiO膜に担持させた多孔質TiO電極の吸光度を示す図であり、横軸は波長で単位はnm、縦軸は吸光度を表す。Is a diagram showing the absorbance of the porous was supported in TiO 2 film porous TiO 2 electrode N719 dye, the horizontal axis represents units wavelength nm, the vertical axis represents the absorbance. Z907色素を多孔質TiO膜に担持させた多孔質TiO電極の吸光度を示す図であり、横軸は波長で単位はnm、縦軸は吸光度を表す。Is a diagram showing the absorbance of the porous was supported in TiO 2 film porous TiO 2 electrode Z907 dye, the horizontal axis represents units wavelength nm, the vertical axis represents the absorbance. SG1051色素を多孔質TiO膜に担持させた多孔質TiO電極の吸光度を示す図であり、横軸は波長で単位はnm、縦軸は吸光度を表す。Is a diagram showing the absorbance of the porous was supported in TiO 2 film porous TiO 2 electrode SG1051 dye, the horizontal axis represents units wavelength nm, the vertical axis represents the absorbance. 125℃で加熱したSG1051色素を多孔質TiO膜に担持させた多孔質TiO電極の吸光度を示す図であり、横軸は波長で単位はnm、縦軸は吸光度を表す。Is a diagram showing the absorbance of the porous was supported in TiO 2 film porous TiO 2 electrode SG1051 dye heated at 125 ° C., the horizontal axis represents units wavelength nm, the vertical axis represents the absorbance. 250℃で加熱したSG1051色素を多孔質TiO膜に担持させた多孔質TiO電極の吸光度を示す図であり、横軸は波長で単位はnm、縦軸は吸光度を表す。Is a diagram showing the absorbance of the porous was supported in TiO 2 film porous TiO 2 electrode SG1051 dye was heated at 250 ° C., the horizontal axis represents units wavelength nm, the vertical axis represents the absorbance.
 以下、本発明について詳細に説明する。
 本発明の色素増感型太陽電池用色素は、Ru(4,4'-ジ(9-ノネニル)-2,2'-ビピリジン)(4,4'-ジカルボキシ-2,2'-ビピリジン)(NCS)であり(以後、「SG1051色素」と略記する。)、以下の式で表される。
Figure JPOXMLDOC01-appb-I000002
Hereinafter, the present invention will be described in detail.
The dye for a dye-sensitized solar cell of the present invention is Ru (4,4′-di (9-nonenyl) -2,2′-bipyridine) (4,4′-dicarboxy-2,2′-bipyridine). (NCS) 2 (hereinafter abbreviated as “SG1051 dye”), which is represented by the following formula.
Figure JPOXMLDOC01-appb-I000002
 色素増感型太陽電池用色素は電解液に囲まれているため、TiO電極の表面から脱離しやすいが、本発明の前記色素は、多孔質TiO表面に強く結合しているため、高温環境下で生じる色素脱離が少なく、したがって、熱耐久性に優れた色素増感型太陽電池を得ることが可能となる。また、本発明の色素は、後述する所定のイオン性液体からなる電解液と組み合わせ、さらに当該色素を電極に吸着させた後に所定の温度範囲で加熱することで、色素増感型太陽電池の熱耐久性をより一層向上させることが可能となる。 Since the dye for a dye-sensitized solar cell is surrounded by an electrolyte solution, it is easily detached from the surface of the TiO 2 electrode. However, since the dye of the present invention is strongly bonded to the surface of the porous TiO 2 , It is possible to obtain a dye-sensitized solar cell that generates less dye in the environment and thus has excellent thermal durability. In addition, the dye of the present invention is combined with an electrolyte solution composed of a predetermined ionic liquid described later, and further, the dye is adsorbed on the electrode and then heated in a predetermined temperature range, thereby heating the dye-sensitized solar cell. Durability can be further improved.
 本発明の色素増感型太陽電池用色素の製造方法について説明する。本発明の色素増感型太陽電池用色素は、出発物質としてジクロロ(p-シメン)ルテニウム(II)ダイマーを用いて、4,4'―ジ(9―ノネニル)―2,2'―ビピリジン、4,4'―ジカルボキシー2,2'―ビピリジン、チオシアン酸ナトリウムとの反応を順次行うことにより調製することができる。なお、当該色素の製造方法は、これに限定されるものではない。 The method for producing the dye for a dye-sensitized solar cell of the present invention will be described. The dye for a dye-sensitized solar cell of the present invention comprises 4,4′-di (9-nonenyl) -2,2′-bipyridine, using dichloro (p-cymene) ruthenium (II) dimer as a starting material, It can be prepared by sequentially reacting with 4,4′-dicarboxy-2,2′-bipyridine and sodium thiocyanate. In addition, the manufacturing method of the said pigment | dye is not limited to this.
 4,4'―ジ(9―ノネニル)―2,2'―ビピリジンは、例えば、次のようにして調製することができる。まず、nーブチルリチウムのヘキサン溶液をジイソプロピルアミンのテトラヒドロフラン溶液に0~5℃で添加し、0.5~1.0時間撹拌した後、これに4,4'―ジメチルー2,2'―ビピリジンのテトラヒドロフラン溶液を滴下する。滴下した後は、-70~-60℃で3~4時間撹拌する。次いで、9-ヨウ化ノネンのテトラヒドロフラン溶液を-78~-60℃で添加して同温度で12~15時間反応させる。その後、メタノールを用いて冷却し、得られた黄褐色の溶液を冷水中に注入して、ジエチルエーテルで抽出した後、ジエチルエーテルを蒸発させて、ヘキサンから再結晶することにより、4,4'―ジ(9―ノネニル)―2,2'―ビピリジンが得られる。なお、9-ヨウ化ノネンは、アルコールをヨウ素化する公知技術を利用して作製すればよく、例えば、出発物質である9-ノネンー1-オールのジエチルエーテル/アセトニトリル混合溶液にトリフェニルホスフィン、イミダゾール、及びヨウ素を添加して、アルコールをヨウ素化することにより得られる。 4,4′-di (9-nonenyl) -2,2′-bipyridine can be prepared, for example, as follows. First, a hexane solution of n-butyllithium was added to a tetrahydrofuran solution of diisopropylamine at 0 to 5 ° C. and stirred for 0.5 to 1.0 hour, followed by addition of 4,4′-dimethyl-2,2′-bipyridine in tetrahydrofuran. Add the solution dropwise. After the dropwise addition, the mixture is stirred at -70 to -60 ° C for 3 to 4 hours. Next, a tetrahydrofuran solution of 9-iodinated nonene is added at −78 to −60 ° C. and reacted at the same temperature for 12 to 15 hours. Thereafter, the mixture was cooled with methanol, and the resulting tan solution was poured into cold water and extracted with diethyl ether, and then the diethyl ether was evaporated and recrystallized from hexane to obtain 4,4 ′. -Di (9-nonenyl) -2,2'-bipyridine is obtained. Incidentally, 9-iodinated nonene may be prepared by using a known technique for iodination of alcohol. For example, triphenylphosphine, imidazole is added to a mixed solution of starting material 9-nonen-1-ol in diethyl ether / acetonitrile. , And iodine to obtain alcohol by iodination.
 次に、市販の[(p-シメン)RuCl(μ-Cl)]のN,N-ジメチルホルムアミド(DMF)溶液に、4,4'―ジ(9-ノネニル) ー2,2'―ビピリジンを添加し、アルゴン雰囲気下、50~80℃で0.5~2.0時間撹拌した後、これに市販の4,4'―ジカルボキシー2,2'―ビピリジンを添加して、100~140℃で10~20時間加熱攪拌し反応させる。次いで、この反応生成物に過剰のNHNCSを添加し、120~140℃で2~10時間反応させた後、溶媒であるDMF溶液をロータリーエバポレーターで蒸発させる。その後、余分なNHNCSを水で除去し、不溶性生成物を水、ジエチルエーテルで洗浄した後、乾燥させる。得られた粗生成物をメタノールに溶解し、ゲルろ過クロマトグラフィー(溶離液:メタノール等)等を行って精製する。こうして、熱耐久性に優れた色素増感型太陽電池の作製を可能とする、本発明の色素増感型太陽電池用色素であるRu(4,4'-ジ(9-ノネニル)-2,2'-ビピリジン)(4,4'-ジカルボキシ-2,2'-ビピリジン)(NCS)を得ることができる。 Next, a commercially available [(p-cymene) RuCl (μ-Cl)] 2 solution in N, N-dimethylformamide (DMF) was added to 4,4′-di (9-nonenyl) -2,2′-bipyridine. After stirring at 50-80 ° C. for 0.5-2.0 hours under an argon atmosphere, commercially available 4,4′-dicarboxy-2,2′-bipyridine was added thereto, and the mixture was added at 100-140 ° C. For 10 to 20 hours with stirring. Next, excess NH 4 NCS is added to the reaction product and reacted at 120 to 140 ° C. for 2 to 10 hours, and then the DMF solution as a solvent is evaporated by a rotary evaporator. Thereafter, excess NH 4 NCS is removed with water, and the insoluble product is washed with water and diethyl ether and then dried. The obtained crude product is dissolved in methanol and purified by gel filtration chromatography (eluent: methanol or the like). Thus, Ru (4,4′-di (9-nonenyl) -2, which is a dye for dye-sensitized solar cells of the present invention, which makes it possible to produce a dye-sensitized solar cell with excellent heat durability. 2′-bipyridine) (4,4′-dicarboxy-2,2′-bipyridine) (NCS) 2 can be obtained.
 本発明の光電変換素子は、前述した色素を用いるものであり、例えば、以下の方法により製造することができる。
まず、電極基板上に透明導電膜を形成させた透明導電基板を用意する。電極基板は光透過性を有するものが好ましく、ガラス、セラミックス、プラスチック等からなる板、フィルムが挙げられる。
The photoelectric conversion element of the present invention uses the above-described dye, and can be produced, for example, by the following method.
First, a transparent conductive substrate having a transparent conductive film formed on an electrode substrate is prepared. The electrode substrate is preferably light transmissive, and examples thereof include plates and films made of glass, ceramics, plastics, and the like.
 上記透明導電膜としては、酸化スズにフッ素をドープした膜(FTO膜)、酸化インジウムに少量の酸化スズを添加した膜(ITO膜)、酸化スズにアンチモンをドープした膜(ATO膜)、酸化スズ等が挙げられる。
 透明導電基板は、電極基板の片面、両面又は全面に、透明導電膜をスプレー熱分解法、蒸着法、スパッタリング法、イオンプレーティング法、加水分解法等で形成することにより作製される。
As the transparent conductive film, a film in which tin oxide is doped with fluorine (FTO film), a film in which a small amount of tin oxide is added to indium oxide (ITO film), a film in which tin oxide is doped with antimony (ATO film), oxidation Tin etc. are mentioned.
The transparent conductive substrate is produced by forming a transparent conductive film on one surface, both surfaces, or the entire surface of the electrode substrate by a spray pyrolysis method, a vapor deposition method, a sputtering method, an ion plating method, a hydrolysis method, or the like.
 次に、透明導電基板の透明導電膜上に多孔質膜を作製する。多孔質膜としては、酸化チタン等からなるn型金属酸化物半導体膜が好ましく、特にTiOペーストを塗布して焼成することにより得られる多孔質TiO膜が好ましい。TiOペーストは、TiO粒子を水溶媒に添加混合して分散液を調製し、この分散液に増粘剤や分散剤等を加えて均一に混合することにより調製する。 Next, a porous film is produced on the transparent conductive film of the transparent conductive substrate. As the porous film, an n-type metal oxide semiconductor film made of titanium oxide or the like is preferable, and a porous TiO 2 film obtained by applying and baking a TiO 2 paste is particularly preferable. The TiO 2 paste is prepared by adding and mixing TiO 2 particles in an aqueous solvent to prepare a dispersion, and adding a thickener, a dispersant, and the like to the dispersion and mixing them uniformly.
 次に、多孔質膜の形成方法を説明する。透明導電基板の透明導電膜上に、例えば、上記TiOペーストをドクターブレード法、スキージ法、スピンコート法、スクリーン印刷法、電着法、スプレー法等により塗布し乾燥した後に、電気炉に入れて大気中で300~700℃に10~60分間保持して焼成し、透明導電膜上に多孔質膜を形成する。この多孔質膜は透明導電基板及び色素とともに光電変換素子を構成する。焼成温度が300℃未満ではTiO粒子の焼結が不十分となるため、色素の吸着が阻害され、高い光電変換特性が得られなくなり、700℃を超えると透明導電基板に不具合が生じるおそれがある。また、焼成時間が10分未満では焼結が不十分となり、60分を超えると焼成による粒成長が進行し過ぎて比表面積が低下するおそれがある。 Next, a method for forming a porous film will be described. On the transparent conductive film of the transparent conductive substrate, for example, the TiO 2 paste is applied by a doctor blade method, a squeegee method, a spin coating method, a screen printing method, an electrodeposition method, a spray method, and the like, dried, and then placed in an electric furnace. The porous film is formed on the transparent conductive film by firing at 300 to 700 ° C. for 10 to 60 minutes in the air. This porous film constitutes a photoelectric conversion element together with the transparent conductive substrate and the dye. If the firing temperature is less than 300 ° C., sintering of the TiO 2 particles becomes insufficient, so that the adsorption of the dye is hindered and high photoelectric conversion characteristics cannot be obtained, and if it exceeds 700 ° C., the transparent conductive substrate may be defective. is there. Further, if the firing time is less than 10 minutes, the sintering becomes insufficient, and if it exceeds 60 minutes, the grain growth due to firing proceeds so much that the specific surface area may be lowered.
 透明導電膜上の多孔質膜は、単層とするだけでなく、二層以上の多層構造とすることができる。例えば、多孔質膜を二層とする場合、透明導電基板の透明導電膜上に設ける一層目の膜として、投影面積を円に換算したときの直径を用いた平均粒径で一次粒子として5~200nmのTiO粒子からなる透明層を形成させ、その上に平均粒径100~600nmのTiO粒子からなる光散乱層を形成させる。このような二層構造のTiO膜を形成することにより、変換効率をより一層向上させることができる。 The porous film on the transparent conductive film can be not only a single layer but also a multilayer structure of two or more layers. For example, when the porous film has two layers, as the first layer film provided on the transparent conductive film of the transparent conductive substrate, the average particle diameter using the diameter when the projected area is converted into a circle is 5 to 5 as primary particles. A transparent layer composed of 200 nm TiO 2 particles is formed, and a light scattering layer composed of TiO 2 particles having an average particle diameter of 100 to 600 nm is formed thereon. By forming such a two-layer TiO 2 film, the conversion efficiency can be further improved.
 次に、透明導電膜上に多孔質膜を作製した透明導電基板を色素溶液に浸漬することにより、多孔質膜に色素を吸着させて固定化する。色素溶液は、本発明の色素をヘキサン、オクタン、トルエン、キシレン等の炭化水素類、メタノール、エタノール、プロパノール、ノルマルブタノール等の脂肪族アルコール類、アセトニトリル、プロピオニトリル等のニトリル類、アセトン、メチルエチルケトン等のケトン類、酢酸エチル、酢酸ブチル等のエステル類、炭酸ジエチル、炭酸プロピレン等の炭酸エステル類、ジメチルカーボネート、ジエチルカーボネート等のカーボネート類、ラクトン類、ジメチルホルムアミド、ジメチルアセトアミド等のアミド類、カプロラクタム類、ジメチルスルホキシド、スルフォラン等のスルホン類などの単独溶媒又はこれらの混合溶媒に溶解することにより調製する。好ましくは脂肪族アルコール類、二トリル類が用いられる。色素溶液中の色素濃度は0.01mM以上であり、0.1~10mMが好ましい。色素溶液への上記透明導電基板の浸漬は、10~40℃で、1~24時間程度行う。また、超音波振動を与え多孔質膜への色素吸着効率を向上させることができ、その場合は室温にて5~60分の浸漬で行うこともできる。上記色素を吸着した多孔質膜表面は洗浄後、乾燥させる。これにより、光透過性を有する透明導電基板と、この透明導電基板上に形成された多孔質膜とを備えた光電変換素子であって、多孔質膜が、少なくとも本発明の色素を吸着したTiO粒子で構成された光電変換素子が得られる。 Next, a transparent conductive substrate having a porous film formed on the transparent conductive film is immersed in a dye solution, thereby adsorbing and fixing the dye to the porous film. The dye solution is obtained by mixing the dye of the present invention with hydrocarbons such as hexane, octane, toluene and xylene, aliphatic alcohols such as methanol, ethanol, propanol and normal butanol, nitriles such as acetonitrile and propionitrile, acetone and methyl ethyl ketone. Ketones such as ethyl acetate and butyl acetate, carbonates such as diethyl carbonate and propylene carbonate, carbonates such as dimethyl carbonate and diethyl carbonate, lactones, amides such as dimethylformamide and dimethylacetamide, caprolactam And a single solvent such as sulfones such as dimethyl sulfoxide and sulfolane or a mixed solvent thereof. Preferably, aliphatic alcohols and nitriles are used. The dye concentration in the dye solution is 0.01 mM or more, preferably 0.1 to 10 mM. The transparent conductive substrate is immersed in the dye solution at 10 to 40 ° C. for about 1 to 24 hours. In addition, ultrasonic vibration can be applied to improve the efficiency of dye adsorption to the porous film. In this case, the immersion can be performed at room temperature for 5 to 60 minutes. The porous membrane surface adsorbing the dye is washed and then dried. Thus, a photoelectric conversion element including a transparent conductive substrate having light transparency and a porous film formed on the transparent conductive substrate, wherein the porous film adsorbs at least the dye of the present invention. A photoelectric conversion element composed of two particles is obtained.
 透明導電基板を色素溶液に浸漬して、本発明の色素を多孔質膜に吸着させた後、120~300℃、好ましくは150~300℃の範囲で、0.5~60分間の時間範囲で加熱処理を施すことによって、多孔質膜の少なくとも一部を、本発明の色素が相互に重合して得られる反応物で構成させることにより、熱耐久性をより一層向上させることができる。この加熱処理は、後述するように、色素増感型太陽電池を作製する際のメインシール、又はエンドシールの処理として行ってもよい。上記加熱処理によって、本発明の色素間の重合が進み、SG1051色素がより脱離しない状態になり、色素増感型太陽電池の特性低下の主要因である色素脱離が少なくなると考えられる。なお、本発明の色素は、多孔質膜上で重合させる場合に、重合開始剤を用いた重合反応は不要である。 After immersing the transparent conductive substrate in a dye solution and adsorbing the dye of the present invention to the porous film, the temperature is 120 to 300 ° C., preferably 150 to 300 ° C., for 0.5 to 60 minutes. By performing the heat treatment, at least a part of the porous film is composed of a reaction product obtained by polymerizing the dyes of the present invention, whereby the thermal durability can be further improved. As will be described later, this heat treatment may be performed as a main seal or end seal treatment in producing a dye-sensitized solar cell. It is considered that the above heat treatment causes the polymerization between the dyes of the present invention to progress so that the SG1051 dye is not further desorbed, and the dye desorption, which is the main cause of the deterioration of the characteristics of the dye-sensitized solar cell, is reduced. In addition, when the pigment | dye of this invention is superposed | polymerized on a porous membrane, the polymerization reaction using a polymerization initiator is unnecessary.
 本発明の光電変換素子は、本発明の色素が適度な長さを有する2つの末端ビニル官能基により、色素分子間あるいは色素とTiO粒子表面との結合の形成により、TiO粒子に強固に吸着しているため、高温環境下で生じる色素脱離が従来の色素に比べて大幅に低下することから熱耐久性に優れる。また、多孔質膜への吸着に重合開始剤を用いた重合反応が不要である色素を使用しているため、容易に作製することができる。さらに、光電変換素子の継続的使用により色素が脱着しても元の状態に戻すのに煩雑な工程を必要としない。したがって、本発明の光電変換素子は、色素増感型太陽電池等の光電変換素子として非常に有用である。 The photoelectric conversion element of the present invention is strongly bonded to TiO 2 particles by forming a bond between the dye molecules or between the dye and the TiO 2 particle surface by two terminal vinyl functional groups having the appropriate length of the dye of the present invention. Since it is adsorbed, dye desorption that occurs in a high-temperature environment is greatly reduced as compared with conventional dyes, so that heat durability is excellent. Moreover, since the pigment | dye which does not require the polymerization reaction using a polymerization initiator for adsorption | suction to a porous membrane is used, it can produce easily. Furthermore, even if the dye is desorbed by continuous use of the photoelectric conversion element, a complicated process is not required to restore the original state. Therefore, the photoelectric conversion element of the present invention is very useful as a photoelectric conversion element such as a dye-sensitized solar cell.
 次に、上記光電変換素子を用いた色素増感型太陽電池の製造方法を説明する。
 まず、電極基板上に透明導電膜を形成した透明導電基板を用意し、この透明導電膜上に導電膜を形成することにより、対極を作製する。電極基板は光透過性を有するものが好ましく、ガラス、セラミックス、プラスチック等からなる板、フィルムが挙げられる。
Next, the manufacturing method of the dye-sensitized solar cell using the said photoelectric conversion element is demonstrated.
First, a transparent conductive substrate having a transparent conductive film formed on an electrode substrate is prepared, and a counter electrode is produced by forming a conductive film on the transparent conductive film. The electrode substrate is preferably light transmissive, and examples thereof include plates and films made of glass, ceramics, plastics, and the like.
 上記透明導電膜としては、酸化スズにフッ素をドープした膜(FTO膜)、酸化インジウムに少量の酸化スズを添加した膜(ITO膜)、酸化スズにアンチモンをドープした膜(ATO膜)、酸化スズ等が挙げられる。
 透明導電基板は、電極基板の片面、両面又は全面に、透明導電膜をスプレー熱分解法、蒸着法、スパッタリング法、イオンプレーティング法、加水分解法等で形成することにより作製される。
As the transparent conductive film, a film in which tin oxide is doped with fluorine (FTO film), a film in which a small amount of tin oxide is added to indium oxide (ITO film), a film in which tin oxide is doped with antimony (ATO film), oxidation Tin etc. are mentioned.
The transparent conductive substrate is produced by forming a transparent conductive film on one surface, both surfaces, or the entire surface of the electrode substrate by a spray pyrolysis method, a vapor deposition method, a sputtering method, an ion plating method, a hydrolysis method, or the like.
 透明導電膜上に形成する導電膜としては、白金、カーボン等からなる薄膜が挙げられる。導電膜は、蒸着法、スパッタリング法、イオンプレーティング法、加水分解法等により形成される。導電膜の厚みは数nmが一般的である。 Examples of the conductive film formed on the transparent conductive film include a thin film made of platinum, carbon, or the like. The conductive film is formed by a vapor deposition method, a sputtering method, an ion plating method, a hydrolysis method, or the like. The thickness of the conductive film is generally several nm.
 次に、上記光電変換素子と対極とを所定の間隔をあけて対向させた状態で、封止材(メインシール材)を介して貼り合わせ、電極間に電解液を注入して電解質層を形成させ、最後に電解液の注入口を封止材(エンドシール材)で封止し、さらに必要に応じて、エンドシール材をガラス等からなるカバー材で封着する。これにより色素増感型太陽電池が作製される。メインシール材としては、ホットメルト材、紫外線硬化樹脂、熱硬化樹脂、ガラスフリットなどが挙げられる。本発明では、特にホットメルト材からなるメインシール材を用いて、温度120~300℃、好ましくは150~300℃の範囲で、0.5~60分間の時間範囲で加熱して封止するのが、熱耐久性向上の点で好ましい。ホットメルト材からなるメインシール材の具体例としては、アイオノマー樹脂からなるホットメルトガスケット(Surlyn 1702、商品名、厚さ25μm、デュポン社製)、ポリエチレン系樹脂からなるホットメルトガスケット(Bynel、商品名、厚さ25μm、デュポン社製)が例示される。 Next, in a state where the photoelectric conversion element and the counter electrode are opposed to each other with a predetermined gap, they are bonded together via a sealing material (main sealing material), and an electrolyte solution is injected between the electrodes to form an electrolyte layer. Finally, the electrolyte inlet is sealed with a sealing material (end seal material), and if necessary, the end seal material is sealed with a cover material made of glass or the like. Thereby, a dye-sensitized solar cell is produced. Examples of the main sealing material include a hot melt material, an ultraviolet curable resin, a thermosetting resin, and a glass frit. In the present invention, sealing is performed by heating at a temperature of 120 to 300 ° C., preferably 150 to 300 ° C. for a time range of 0.5 to 60 minutes, using a main seal material made of a hot melt material. Is preferable from the viewpoint of improving thermal durability. Specific examples of the main seal material made of hot melt material include hot melt gasket made of ionomer resin (Surlyn 1702, trade name, thickness 25 μm, manufactured by DuPont), hot melt gasket made of polyethylene resin (Bynel, trade name) And a thickness of 25 μm, manufactured by DuPont).
 上記光電変換素子と対極との間に封入する電解液は、リチウムイオンなどの陽イオンやヨウ素イオンなどの陰イオンからなる支持電解質と、ヨウ素-ヨウ素化合物や臭素-臭素化合物などの酸化還元対と、溶媒とを混合して調製される。当該溶媒としては、水、アルコール類、ニトリル類、エーテル類、エステル類、ケトン類、ラクトン類、複素環化合物類、アミド類、ニトロメタン、ハロゲン化炭化水素、ジメチルスルホキシド、スルフォラン、N-メチルピロリドン、1,3-ジメチルイミダゾリジノン、3-メチルオキサゾリジノン、炭化水素などの単独溶媒又は混合溶媒が挙げられるが、本発明では、テトラアルキル系、ピリジニウム系、イミダゾリウム系のホウ酸塩、4級アンモニウム塩等のイオン性液体が好ましく、中でもイミダゾリウム系のホウ酸塩がより好ましい。特に1-エチルー3-メチルイミダゾリウムテトラシアノボレート、が熱安定性向上の点から好ましい。イオン性液体は、正・負イオンのみからなる塩で、融点が低いため室温で液状であり揮発性がなく、時間経過に伴う色素増感型太陽電池の特性劣化を防止するのに有効である。特に好適な電解液の組成としては、0.2~2Mの1-エチルー3-メチルイミダゾリウムヨージド、0.2~2Mの1,3-ジメチルイミダゾリウムヨージド、0.1~1Mのグアニジンチオシアネート、0.1~1MのN-ブチルベンゾイミダゾール、0.05~0.5Mのヨウ素を含む1-エチルー3-メチルイミダゾリウムテトラシアノボレート溶液が例示される。この電解液は熱安定性に優れ、電極の変質等を生じにくい。 The electrolytic solution sealed between the photoelectric conversion element and the counter electrode includes a supporting electrolyte made of a cation such as lithium ion or an anion such as iodine ion, and a redox pair such as iodine-iodine compound or bromine-bromine compound. It is prepared by mixing with a solvent. Examples of the solvent include water, alcohols, nitriles, ethers, esters, ketones, lactones, heterocyclic compounds, amides, nitromethane, halogenated hydrocarbons, dimethyl sulfoxide, sulfolane, N-methylpyrrolidone, Examples thereof include single solvents or mixed solvents such as 1,3-dimethylimidazolidinone, 3-methyloxazolidinone, and hydrocarbons. In the present invention, tetraalkyl-based, pyridinium-based, imidazolium-based borate, quaternary ammonium, and the like. An ionic liquid such as a salt is preferable, and an imidazolium borate is more preferable. In particular, 1-ethyl-3-methylimidazolium tetracyanoborate is preferable from the viewpoint of improving thermal stability. An ionic liquid is a salt composed only of positive and negative ions, and since it has a low melting point, it is liquid at room temperature, is not volatile, and is effective in preventing deterioration of the characteristics of a dye-sensitized solar cell over time. . Particularly suitable electrolyte compositions include 0.2-2M 1-ethyl-3-methylimidazolium iodide, 0.2-2M 1,3-dimethylimidazolium iodide, 0.1-1M guanidine. Examples are 1-ethyl-3-methylimidazolium tetracyanoborate solution containing thiocyanate, 0.1-1M N-butylbenzimidazole, 0.05-0.5M iodine. This electrolytic solution is excellent in thermal stability and hardly causes electrode alteration.
 光電変換素子と対極とを貼り合わせた後、それらの間の空隙に電解液を注入するには、例えば、光電変換素子と対極のうちの少なくとも一方に貫通孔(注入口)を開けておき、この貫通孔を通じて電解液を注入し、注入後は貫通孔を封止材(エンドシール材)で封止する。その他、例えば、電解液に浸漬した状態で減圧させ、その後常圧に解放する方法が例示され、これにより光電変換素子と対極の間の空隙部分に電解液を容易に充填することができる。 After injecting the electrolyte into the gap between the photoelectric conversion element and the counter electrode, for example, a through hole (injection port) is opened in at least one of the photoelectric conversion element and the counter electrode, The electrolytic solution is injected through the through hole, and after the injection, the through hole is sealed with a sealing material (end seal material). In addition, for example, a method of reducing the pressure in a state of being immersed in the electrolytic solution and then releasing the pressure to normal pressure is exemplified, and thus, the space between the photoelectric conversion element and the counter electrode can be easily filled with the electrolytic solution.
 電解液を注入した後、貫通孔(注入口)を封止する封止材(エンドシール材)の材料としては、ホットメルト材、紫外線硬化樹脂、熱硬化樹脂、ガラスフリットなどが挙げられる。        Examples of the material of the sealing material (end seal material) that seals the through hole (injection port) after injecting the electrolytic solution include a hot melt material, an ultraviolet curable resin, a thermosetting resin, and a glass frit. .
 このような構造を有する色素増感型太陽電池では、本発明の色素が適度な長さを有する2つの末端ビニル官能基により、色素分子間あるいは色素とTiO粒子表面との結合の形成により、TiO粒子に強固に化学吸着しているため熱耐久性に優れる。また、多孔質膜への吸着に重合開始剤を用いた重合反応が不要である色素を使用しているため、比較的容易に作製することができる。また、光電変換素子の継続的使用により色素が脱着しても元の状態に戻すのに煩雑な工程を必要としない。 In the dye-sensitized solar cell having such a structure, the dye of the present invention has two terminal vinyl functional groups having an appropriate length, thereby forming a bond between the dye molecules or between the dye and the TiO 2 particle surface. Excellent chemical durability due to strong chemical adsorption on TiO 2 particles. Moreover, since the pigment | dye which does not require the polymerization reaction using a polymerization initiator for adsorption | suction to a porous membrane is used, it can produce comparatively easily. Moreover, even if a pigment | dye remove | desorbs by continuous use of a photoelectric conversion element, a complicated process is not required to return to the original state.
 本発明の色素増感型太陽電池は、前述したサンドイッチ型構造だけでなく、複数集積させて、W型集積構造、Z型集積構造、モノリシック型集積構造などの任意の構造とすることができ、複数集積させることにより、出力を大きくすることができる。 The dye-sensitized solar cell of the present invention is not limited to the sandwich-type structure described above, but can be integrated into a plurality of structures to form an arbitrary structure such as a W-type integrated structure, a Z-type integrated structure, or a monolithic integrated structure. By accumulating a plurality, the output can be increased.
 以下、実施例により本発明をさらに具体的に説明するが、本発明はこれらの実施例に限定されるものではない。 Hereinafter, the present invention will be described more specifically with reference to examples, but the present invention is not limited to these examples.
[多孔質TiO電極の作製]
 FTO膜付きの導電性ガラス基板であるFTOガラス基板(LOF
Tec7、商品名、日本板硝子社製)を25mm×75mm角に切り出し、最超音波バスを使って50mMの塩酸で5分間、アセトンで5分間洗浄した後、再度、塩酸とアセトンで、それぞれ15分間ずつ洗浄した。洗浄が終わった後、水とエタノールで丁寧に洗い流し、乾燥させた後、18分間、UV-Oシステムにより残った有機物を処理した。そして、UV-O処理後のFTOガラス基板を40mMのTiCl水溶液の中に入れ、70℃で30分間保持した後、取り出して水とエタノールで洗い流すことにより、FTOガラス基板を作製した。
 次に、FTOガラス基板の上に、スクリーン印刷によって、粒子サイズ20~30nmのTiOのペースト(PST-30NRT、商品名、日揮触媒化成社製)を塗布し、乾燥・焼成して、透明層を形成した。この塗布、乾燥・焼成作業は、透明層の膜厚が最終的に9μmになるように3回にかけて行った。
 次に、前記透明層の上に、粒子サイズ400nmのTiOのペースト(PST-400C、商品名、日揮触媒化成社製)をスクリーン印刷によって塗布し、乾燥・焼成して、膜厚4-5μmの光散乱層を形成させた。次に、こうして作製したTiO電極を電気炉に入れて、325℃で5分間、375℃で5分間、450℃で15分間、最後に500℃で15分間、乾燥、焼成させて、FTOガラス基板の上に2層からなる多孔質TiO膜を形成させた。電気炉からTiO電極を取り出した後、再度、40mMのTiCl水溶液の中にTiO電極を入れ、70℃で30分間保持した後、取り出して水とエタノールで洗い流した後、使用するまで50mMの塩酸に浸して保存した。使用する際に塩酸から取り出したTiO電極はエタノールで塩酸を洗い流してから、ヒートガンを用いて500℃で30分間焼成させた。80℃まで空冷した後、焼成したTiO電極を、0.3mMのSG1051色素を含むアセトニトリル・バレロニトリル(1:1)混合溶液に、室温で1時間浸漬させて色素の吸着を行った。色素吸着後、電極を溶液から引き上げ、未吸着の色素を除去するためにアセトニトリルで洗浄した。これにより、SG1051色素をTiO粒子に担持させた多孔質TiO電極を作製した。
[Preparation of porous TiO 2 electrode]
FTO glass substrate (LOF) which is conductive glass substrate with FTO film
Tec7 (trade name, manufactured by Nippon Sheet Glass Co., Ltd.) is cut into a 25 mm × 75 mm square, washed with 50 mM hydrochloric acid for 5 minutes and with acetone for 5 minutes using the ultrasonic bath, and again with hydrochloric acid and acetone for 15 minutes each. Washed one by one. After the washing was completed, it was carefully washed with water and ethanol, dried, and treated with the UV-O 3 system for 18 minutes. The FTO glass substrate after the UV-O 3 treatment was placed in a 40 mM TiCl 4 aqueous solution, held at 70 ° C. for 30 minutes, and then taken out and washed with water and ethanol to prepare an FTO glass substrate.
Next, a TiO 2 paste (PST-30NRT, trade name, manufactured by JGC Catalysts & Chemicals Co., Ltd.) having a particle size of 20 to 30 nm is applied on the FTO glass substrate by screen printing, dried and fired, and then the transparent layer Formed. The coating, drying and baking operations were performed three times so that the film thickness of the transparent layer was finally 9 μm.
Next, a TiO 2 paste (PST-400C, trade name, manufactured by JGC Catalysts & Chemicals Co., Ltd.) having a particle size of 400 nm is applied on the transparent layer by screen printing, dried and fired, and a film thickness of 4-5 μm A light scattering layer was formed. Next, the TiO 2 electrode thus produced was put in an electric furnace, dried and fired at 325 ° C. for 5 minutes, 375 ° C. for 5 minutes, 450 ° C. for 15 minutes, and finally at 500 ° C. for 15 minutes, and FTO glass A porous TiO 2 film consisting of two layers was formed on the substrate. After removal of the TiO 2 electrode from the electric furnace, again, the TiO 2 electrodes were placed in a TiCl 4 aqueous solution of 40 mM, after maintaining at 70 ° C. 30 minutes, rinse with water and ethanol removed, 50 mM until use It was immersed in hydrochloric acid and stored. In use, the TiO 2 electrode taken out from hydrochloric acid was rinsed with ethanol and then baked at 500 ° C. for 30 minutes using a heat gun. After air cooling to 80 ° C., the baked TiO 2 electrode was immersed in an acetonitrile / valeronitrile (1: 1) mixed solution containing 0.3 mM SG1051 dye for 1 hour at room temperature to adsorb the dye. After dye adsorption, the electrode was lifted from the solution and washed with acetonitrile to remove unadsorbed dye. As a result, a porous TiO 2 electrode in which SG1051 dye was supported on TiO 2 particles was produced.
[Pt対極の作製]
 FTOガラス(LOF Tec7、商品名、日本板硝子社製、厚さmm)を12mm×12mm角の大きさに切り取った。ハンドドリル(U-hobby、商品名、浦和工業社製)でFTOガラスの1つの角から8mm×8mmの位置に直径1mmの貫通孔を開けた。この貫通孔を開けたFTOガラスからガラス片などのゴミを取り除くために水で10分間洗浄した。次に50mMの塩酸で5分間洗浄し、アセトンで洗い流した後にアセトンで5分間洗浄した。この洗浄の後、再び50mMの塩酸とアセトンでそれぞれ15分ずつ洗浄した。洗浄し終わったFTOガラスは水で丁寧に洗浄した後、使用するまで50mMの塩酸に浸して保存した。使用する際に塩酸から取り出したFTOガラスはクリーンボックスに置き、自然乾燥させた後、HPtCl溶液(1mlのエタノール中、2mgのPtを含む。)を1滴垂らしてFTOガラスに塗布し、ヒートガンを用いて400℃で15分間加熱して、PtをFTOガラスに0.5~5nm被覆したPt対極を作製した。
[Production of Pt counter electrode]
FTO glass (LOF Tec7, trade name, manufactured by Nippon Sheet Glass Co., Ltd., thickness mm) was cut into a size of 12 mm × 12 mm square. A through hole having a diameter of 1 mm was formed at a position 8 mm × 8 mm from one corner of the FTO glass with a hand drill (U-hoby, trade name, Urawa Kogyo Co., Ltd.). In order to remove dust such as glass pieces from the FTO glass having the through holes, the glass was washed with water for 10 minutes. Next, it was washed with 50 mM hydrochloric acid for 5 minutes, rinsed with acetone, and then washed with acetone for 5 minutes. After this washing, each was washed again with 50 mM hydrochloric acid and acetone for 15 minutes each. The washed FTO glass was carefully washed with water and then immersed in 50 mM hydrochloric acid until use. When used, the FTO glass taken out from hydrochloric acid is placed in a clean box and allowed to air dry. Then, one drop of H 2 PtCl 6 solution (containing 2 mg of Pt in 1 ml of ethanol) is dropped onto the FTO glass and applied. Then, a Pt counter electrode in which Pt was coated on FTO glass at 0.5 to 5 nm was prepared by heating at 400 ° C. for 15 minutes using a heat gun.
[色素増感型太陽電池の作製]
 前記多孔質TiO電極(サイズ:0.25cm)とPt対極を互いに向い合せ、それらの間に封止材(メインシール材)としてアイオノマー樹脂からなるホットメルトガスケット(Surlyn1702、商品名、厚さ25μm、デュポン社製)を挟み込み、これを温度250℃で1~3分間加熱して、前記多孔質TiO電極とPt対極を接着した。前記封止材の幅は1mmとし、設けられた開口はTiO電極よりも2mm大きいサイズとした。
 Pt対極の貫通孔は、ホットシーラーを用いて別の封止材を250℃で1~3分間加熱して封止した。この封止後、針を用いて当該封止材に貫通孔を開けた。そして、この貫通孔に電解液を1滴垂らし、小さいヴァキュームチャンバーに置き、その電解液を逆真空移入によってセルの中に入れた。最後に、貫通孔をホットメルトアイオノマーにより、温度250℃で1~3分間で封止し、さらにカバーガラスで封着して、サンドイッチ型の色素増感型太陽電池を作製した。
 なお、後述する各測定のセットアップとして、接続部のTiO膜を取り除き、電気接触を良くするために、FTOガラスの外端を紙やすり又はフィルムで少し削った。はんだはFTO電極の両方に塗った。はんだの位置は、前記ガスケットの端から1mm外側、すなわち、TiO層の端から4mm外側とした。また、散乱光を減少させるために、ブラックプラスチックタイプのマスクを、組み立てたセルに貼った。セル反射防止フィルム(アークトップ、商品名、旭硝子社製)フィルタに貼った。
[Production of dye-sensitized solar cell]
The porous TiO 2 electrode (size: 0.25 cm 2 ) and the Pt counter electrode face each other, and a hot melt gasket (Surlyn 1702, trade name, thickness) made of ionomer resin as a sealing material (main seal material) between them. 25 μm, manufactured by DuPont) was sandwiched and heated at a temperature of 250 ° C. for 1 to 3 minutes to bond the porous TiO 2 electrode and the Pt counter electrode. The width of the sealing material was 1 mm, and the opening provided was 2 mm larger than the TiO 2 electrode.
The through hole of the Pt counter electrode was sealed by heating another sealing material at 250 ° C. for 1 to 3 minutes using a hot sealer. After sealing, a through hole was opened in the sealing material using a needle. Then, one drop of the electrolytic solution was dropped in this through hole, placed in a small vacuum chamber, and the electrolytic solution was put into the cell by reverse vacuum transfer. Finally, the through hole was sealed with a hot melt ionomer at a temperature of 250 ° C. for 1 to 3 minutes, and further sealed with a cover glass to produce a sandwich type dye-sensitized solar cell.
Incidentally, as a setup for each measurement to be described later, remove the TiO 2 film of the connecting portion, in order to improve the electrical contact, shaved little outer end of the FTO glass with sandpaper or film. Solder was applied to both FTO electrodes. The position of the solder was 1 mm outside from the end of the gasket, that is, 4 mm outside from the end of the TiO 2 layer. In order to reduce scattered light, a black plastic type mask was attached to the assembled cell. A cell antireflection film (Arctop, trade name, manufactured by Asahi Glass Co., Ltd.) was applied to the filter.
 前記電解液には、0.75Mの1-エチルー3-メチルイミダゾリウムヨージド、0.75Mの1,3-ジメチルイミダゾリウムヨージド、0.2Mのグアニジンチオシアネート、0.2MのN-ブチルベンゾイミダゾール、0.1Mのヨウ素を含む1-エチルー3-メチルイミダゾリウムテトラシアノボレート溶液を用いた。 
The electrolyte includes 0.75M 1-ethyl-3-methylimidazolium iodide, 0.75M 1,3-dimethylimidazolium iodide, 0.2M guanidine thiocyanate, 0.2M N-butylbenzoate. A 1-ethyl-3-methylimidazolium tetracyanoborate solution containing imidazole and 0.1 M iodine was used.
[熱耐久性試験]
 SG1051色素を使用して作製した上記色素増感型太陽電池を120℃の恒温炉(AS ONE)に入れ、当該太陽電池の光電特性(開放電圧(open circuit voltage)(V)、短絡電流密度(short circuit current density)(mA/cm)、フィルファクター(fill factor)、変換効率(efficiency)(%))の経時変化を調べることにより、色素増感型太陽電池の熱耐久性を評価した。変換効率(%)は、(開放電圧×短絡電流×フィルファクター)/入射光のエネルギーにより求めた。また、SG1051色素の代わりに、Z907色素(Ru(4,4’-ジカルボキシレート-2,2’-ビピリジン)(4,4’-ジノニル-2,2’-ビピリジン)(NCS))を用いて、前記と同様にして作製した色素増感型太陽電池を比較対照とした。これらの結果を図1~図4に示す。図1は色素増感型太陽電池の開放電圧の経過時間に対する変化を示す図、図2は色素増感型太陽電池の短絡電流密度の経過時間に対する変化を示す図、図3は色素増感型太陽電池のフィルファクターの経過時間に対する変化を示す図、図4は色素増感型太陽電池の変換効率の経過時間に対する変化を示す図である。
[Thermal durability test]
The above dye-sensitized solar cell prepared using SG1051 dye is placed in a constant temperature oven (AS ONE) at 120 ° C., and the photoelectric characteristics (open circuit voltage (V), short-circuit current density ( The thermal durability of the dye-sensitized solar cell was evaluated by examining the time course of short circuit current density (mA / cm 2 ), fill factor, and conversion efficiency (%). The conversion efficiency (%) was determined by (open circuit voltage × short circuit current × fill factor) / energy of incident light. Further, instead of SG1051 dye, Z907 dye (Ru (4,4′-dicarboxylate-2,2′-bipyridine) (4,4′-dinonyl-2,2′-bipyridine) (NCS) 2 ) was used. A dye-sensitized solar cell produced in the same manner as described above was used as a comparative control. These results are shown in FIGS. FIG. 1 is a diagram showing a change in the open circuit voltage of the dye-sensitized solar cell with respect to the elapsed time, FIG. 2 is a diagram showing a change in the short-circuit current density of the dye-sensitized solar cell with respect to the elapsed time, and FIG. The figure which shows the change with respect to the elapsed time of the fill factor of a solar cell, FIG. 4 is a figure which shows the change with respect to the elapsed time of the conversion efficiency of a dye-sensitized solar cell.
[光電特性の測定]
 色素増感型太陽電池の光電特性は、450Wキセノンランプの装備されたAM 1.5のソーラーシミュレーター(山下電装社製)を使用して、色素増感型太陽電池の電極間の負荷を変化させたときの電流値と電極間電圧をプロットして得られる電流-電圧曲線により測定した。擬似光とAM 1.5の誤差を2%以下に抑えるために、IRカットオフフィルター装備の参照Si光ダイオード(分光計器社製)を使用し、擬似光の出力は100mW/cmとした。電流-電圧曲線は、外部バイアスを色素増感型太陽電池に印加し、発生した光電流をデジタルソースメーター(ADCMT)で測定することによって作成した。電圧ステップは10mVに設定した。また、光電流の遅延時間は500msに設定した。
[Measurement of photoelectric characteristics]
The photoelectric characteristics of the dye-sensitized solar cell are obtained by changing the load between the electrodes of the dye-sensitized solar cell using an AM 1.5 solar simulator (manufactured by Yamashita Denso Co., Ltd.) equipped with a 450 W xenon lamp. The current value and the voltage between the electrodes were plotted on a current-voltage curve obtained by plotting. In order to suppress the error between simulated light and AM 1.5 to 2% or less, a reference Si photodiode equipped with an IR cut-off filter (manufactured by Spectrometer Co., Ltd.) was used, and the output of simulated light was 100 mW / cm 2 . The current-voltage curve was created by applying an external bias to the dye-sensitized solar cell and measuring the generated photocurrent with a digital source meter (ADMT). The voltage step was set to 10 mV. The photocurrent delay time was set to 500 ms.
[光電特性の評価]
 図1~図4に示した結果からわかるように、加熱開始より約30時間後までは、Z907色素とSG1051色素をそれぞれ用いた色素増感型太陽電池は同様の光電特性を示しているが、200時間を超えると、Z907色素から作製した色素増感型太陽電池の性能が著しく低下することが判明した。また、SG1051色素においては、500時間程度ならば120℃でも動作することが判明した。これらの結果から、SG1051色素の方が、Z907色素よりも優れた熱耐久性を示すことが確認できた。120℃の高温環境下で、Z907色素は多孔質TiO膜から脱離しているが、SG1051色素は相互に重合することで、一部の色素が多孔質TiO膜から脱離しても色素同士で結合しているために、多孔質TiO膜から完全に脱離することがなかったと考えられる。
[Evaluation of photoelectric characteristics]
As can be seen from the results shown in FIGS. 1 to 4, the dye-sensitized solar cells using the Z907 dye and the SG1051 dye each show similar photoelectric characteristics until about 30 hours after the start of heating. When it exceeded 200 hours, it turned out that the performance of the dye-sensitized solar cell produced from Z907 dye falls remarkably. SG1051 dye was found to operate at 120 ° C. for about 500 hours. From these results, it was confirmed that the SG1051 dye showed better thermal durability than the Z907 dye. In a high temperature environment of 120 ° C., the Z907 dye is detached from the porous TiO 2 film, but the SG1051 dye is polymerized with each other, so that even if some of the dye is detached from the porous TiO 2 film, Therefore, it is considered that they were not completely detached from the porous TiO 2 film.
[色素の吸着力試験]
N719色素(RuL(NCS)・2TBA:L=2,2’-ビピリジル-4,4’-ジカルボキシレート、TBA=テトラ-nーブチルアンモニウム) 、Z907色素、SG1051色素がそれぞれ担持された多孔質TiO電極について、後述するように、水酸化ナトリウム水溶液(又は水酸化ナトリウム水溶液及びアセトニトリル)による処理の前後の吸光度を測定して、各色素と多孔質TiO電極の吸着力の強さを比較検討した。TiO電極の吸光度測定は、吸光度測定器で波長(380-800nm)の単色光を照射し、その単色光に対する反射を測定することにより行った。
 TiO電極の吸光度を測定して、吸光度が減少していれば、色素が脱離していることを示し、吸光度の変化の程度により、色素と多孔質TiO電極の吸着力の強さを比較することができる。なお、水酸化ナトリウムは色素をTiO表面から脱離することに有効な試薬である。
[Dye adsorption test]
N719 dye (RuL 2 (NCS) 2 · 2TBA: L = 2,2′-bipyridyl-4,4′-dicarboxylate, TBA = tetra-n-butylammonium), Z907 dye and SG1051 dye were supported, respectively. For the porous TiO 2 electrode, as will be described later, the absorbance before and after the treatment with the aqueous sodium hydroxide solution (or the aqueous sodium hydroxide solution and acetonitrile) is measured, and the strength of the adsorptive power of each dye and the porous TiO 2 electrode is measured. Were compared. The absorbance of the TiO 2 electrode was measured by irradiating monochromatic light having a wavelength (380 to 800 nm) with an absorbance meter and measuring the reflection of the monochromatic light.
When the absorbance of the TiO 2 electrode is measured, if the absorbance decreases, it indicates that the dye is desorbed, and the strength of adsorption between the dye and the porous TiO 2 electrode is compared according to the degree of change in absorbance. can do. Sodium hydroxide is an effective reagent for removing the dye from the TiO 2 surface.
[N719色素の吸着力]
 0.5mMのN719色素を含むアセトニトリル/tert-ブタノール(1:1(体積比))の混合溶液に、前述と同様にして作製した色素吸着前のTiO電極(1cm×1cm角)を20℃で24時間浸漬させることにより、N719色素を多孔質TiO膜に担持させた多孔質TiO電極を作製した。その後、このTiO電極の吸光度を測定した。次に0.1Mの水酸化ナトリウム溶液に浸漬させた後、水で洗浄し乾燥させたTiO電極の吸光度を測定した。水酸化ナトリウム溶液への浸漬は、30秒間行った。結果を図5に示す(横軸は波長で単位はnm、縦軸は吸光度を表す)。
[Adsorption power of N719 dye]
To a mixed solution of acetonitrile / tert-butanol (1: 1 (volume ratio)) containing 0.5 mM N719 dye, a TiO 2 electrode (1 cm × 1 cm square) before dye adsorption prepared in the same manner as described above was placed at 20 ° C. The porous TiO 2 electrode in which the N719 dye was supported on the porous TiO 2 film was prepared by soaking for 24 hours. Thereafter, the absorbance of the TiO 2 electrode was measured. Next, after immersing in a 0.1 M sodium hydroxide solution, the absorbance of the TiO 2 electrode washed with water and dried was measured. Immersion in a sodium hydroxide solution was performed for 30 seconds. The results are shown in FIG. 5 (the horizontal axis represents wavelength, the unit is nm, and the vertical axis represents absorbance).
[Z907色素の吸着力]
 0.3mMのZ907色素を含むアセトニトリル/tert-ブタノール(1:1(体積比))の混合溶液に、前述と同様にして作製した色素吸着前のTiO電極(1cm×1cm角)を室温で20時間浸漬させることにより、Z907色素を多孔質TiO膜に担持させた多孔質TiO電極を作製した。その後、このTiO電極の吸光度を測定した。次に0.1Mの水酸化ナトリウム溶液に浸漬させた後、水で洗浄し乾燥させたTiO電極の吸光度を測定した。水酸化ナトリウム溶液への浸漬は、30秒間行った。結果を図6に示す(横軸は波長で単位はnm、縦軸は吸光度を表す)。
[Adsorption power of Z907 dye]
To a mixed solution of acetonitrile / tert-butanol (1: 1 (volume ratio)) containing 0.3 mM of Z907 dye, a TiO 2 electrode (1 cm × 1 cm square) before dye adsorption prepared in the same manner as described above at room temperature. By soaking for 20 hours, a porous TiO 2 electrode in which the Z907 dye was supported on the porous TiO 2 film was produced. Thereafter, the absorbance of the TiO 2 electrode was measured. Next, after immersing in a 0.1 M sodium hydroxide solution, the absorbance of the TiO 2 electrode washed with water and dried was measured. Immersion in a sodium hydroxide solution was performed for 30 seconds. The results are shown in FIG. 6 (the horizontal axis represents wavelength, the unit is nm, and the vertical axis represents absorbance).
[SG1051色素の吸着力]
 0.3mMのSG1051色素を含むアセトニトリル/tert-ブタノール(1:1(体積比))の混合溶液に、前述と同様にして作製した色素吸着前のTiO電極(1cm×1cm角)を室温で1時間浸漬させることにより、SG1051色素を多孔質TiO膜に担持させた多孔質TiO電極を作製した。その後、このTiO電極の吸光度を測定した。次に0.1Mの水酸化ナトリウム溶液に浸漬させた後、水で洗浄し乾燥させたTiO電極の吸光度を測定した。水酸化ナトリウム溶液への浸漬は、30秒間行った。さらに、水酸化ナトリウム溶液への当該浸漬後、アセトニトリルで洗浄し乾燥させたTiO電極の吸光度を測定した。結果を図7に示す(横軸は波長で単位はnm、縦軸は吸光度を表す)。
[Adsorption power of SG1051 dye]
In a mixed solution of acetonitrile / tert-butanol (1: 1 (volume ratio)) containing 0.3 mM SG1051 dye, a TiO 2 electrode (1 cm × 1 cm square) before dye adsorption prepared in the same manner as described above was used at room temperature. By soaking for 1 hour, a porous TiO 2 electrode in which SG1051 dye was supported on the porous TiO 2 film was produced. Thereafter, the absorbance of the TiO 2 electrode was measured. Next, after immersing in a 0.1 M sodium hydroxide solution, the absorbance of the TiO 2 electrode washed with water and dried was measured. Immersion in a sodium hydroxide solution was performed for 30 seconds. Further, after the immersion in the sodium hydroxide solution, the absorbance of the TiO 2 electrode washed with acetonitrile and dried was measured. The results are shown in FIG. 7 (the horizontal axis represents wavelength, the unit is nm, and the vertical axis represents absorbance).
[125℃で加熱したSG1051色素の吸着力]
 0.3mMのSG1051色素を含むアセトニトリル/tert-ブタノール(1:1(体積比))の混合溶液に、前述と同様にして作製した色素吸着前のTiO電極(1cm×1cm角)を20℃で1時間浸漬させることにより、SG1051色素を多孔質TiO膜に担持させた多孔質TiO電極を作製した。その後、このTiO電極を125℃で1分間加熱してTiO電極の吸光度を測定した。次に0.1Mの水酸化ナトリウム溶液に浸漬させた後、水で洗浄し乾燥させたTiO電極の吸光度を測定した。水酸化ナトリウム溶液への浸漬は、30秒間行った。さらに、水酸化ナトリウム溶液への当該浸漬後、アセトニトリルで洗浄し乾燥させたTiO電極の吸光度を測定した。結果を図8に示す(横軸は波長で単位はnm、縦軸は吸光度を表す)。
[Adsorption power of SG1051 dye heated at 125 ° C.]
To a mixed solution of acetonitrile / tert-butanol (1: 1 (volume ratio)) containing 0.3 mM SG1051 dye, a TiO 2 electrode (1 cm × 1 cm square) before dye adsorption prepared in the same manner as described above was placed at 20 ° C. The porous TiO 2 electrode in which SG1051 dye was supported on the porous TiO 2 film was produced by immersing for 1 hour. Thereafter, absorbance was measured of the TiO 2 electrode the TiO 2 electrode was heated for 1 minute at 125 ° C.. Next, after immersing in a 0.1 M sodium hydroxide solution, the absorbance of the TiO 2 electrode washed with water and dried was measured. Immersion in a sodium hydroxide solution was performed for 30 seconds. Further, after the immersion in the sodium hydroxide solution, the absorbance of the TiO 2 electrode washed with acetonitrile and dried was measured. The results are shown in FIG. 8 (the horizontal axis represents wavelength, the unit is nm, and the vertical axis represents absorbance).
[250℃で加熱したSG1051色素の吸着力]
 0.3mMのSG1051色素を含むアセトニトリル/tert-ブタノール(1:1(体積比))の混合溶液に、前述と同様にして作製した色素吸着前のTiO電極(1cm×1cm角)を室温で1時間浸漬させることにより、SG1051色素を多孔質TiO膜に担持させた多孔質TiO電極を作製した。その後、このTiO電極を250℃で1分間加熱してTiO電極の吸光度を測定した。次に0.1Mの水酸化ナトリウム溶液に浸漬させた後、水で洗浄し乾燥させたTiO電極の吸光度を測定した。水酸化ナトリウム溶液への浸漬は、30秒間行った。さらに、水酸化ナトリウム溶液への当該浸漬後、アセトニトリルで洗浄し乾燥させたTiO電極の吸光度を測定した。結果を図9に示す(横軸は波長で単位はnm、縦軸は吸光度を表す)。
[Adsorption power of SG1051 dye heated at 250 ° C.]
To a mixed solution of acetonitrile / tert-butanol (1: 1 (volume ratio)) containing 0.3 mM SG1051 dye, a TiO 2 electrode (1 cm × 1 cm square) before dye adsorption prepared in the same manner as described above at room temperature. By soaking for 1 hour, a porous TiO 2 electrode in which SG1051 dye was supported on the porous TiO 2 film was produced. Thereafter, absorbance was measured of the TiO 2 electrode the TiO 2 electrode was heated for 1 minute at 250 ° C.. Next, after immersing in a 0.1 M sodium hydroxide solution, the absorbance of the TiO 2 electrode washed with water and dried was measured. Immersion in a sodium hydroxide solution was performed for 30 seconds. Further, after the immersion in the sodium hydroxide solution, the absorbance of the TiO 2 electrode washed with acetonitrile and dried was measured. The results are shown in FIG. 9 (the horizontal axis represents wavelength, the unit is nm, and the vertical axis represents absorbance).
[色素吸着力の評価]
 図5~図9に示した結果から、SG1051色素は、N719色素やZ907色素とは異なり、水酸化ナトリウム溶液では脱離しないことがわかるが、その後さらに有機溶媒(アセトニトリル)で洗浄するとSG1051色素は脱離することが判明した。さらに、水酸化ナトリウム溶液及び有機溶媒(アセトニトリル)で洗浄する前に、一度250℃で加熱することでSG1051色素間の重合が進み、SG1051色素がより脱離しない状態になることが判明した。本発明のSG1051色素は、多孔質TiO電極に強く吸着されているため、色素増感型太陽電池の特性低下の主要因である色素脱離が少なく、したがって、色素増感型太陽電池の熱耐久性を向上させる色素として非常に有用であることが確認された。
 
 
[Evaluation of dye adsorption power]
From the results shown in FIGS. 5 to 9, it can be seen that SG1051 dye is not desorbed with sodium hydroxide solution, unlike N719 dye and Z907 dye, but after further washing with organic solvent (acetonitrile), SG1051 dye is It was found that it was detached. Furthermore, before washing with a sodium hydroxide solution and an organic solvent (acetonitrile), it was found that by heating once at 250 ° C., polymerization between SG1051 dyes progressed, and SG1051 dyes were not further detached. Since the SG1051 dye of the present invention is strongly adsorbed to the porous TiO 2 electrode, there is little dye desorption that is the main cause of the deterioration of the characteristics of the dye-sensitized solar cell, and therefore the heat of the dye-sensitized solar cell It was confirmed that it is very useful as a pigment for improving durability.

Claims (6)

  1. Ru(4,4'-ジ(9-ノネニル)-2,2'-ビピリジン)(4,4'-ジカルボキシ-2,2'-ビピリジン)(NCS)からなる色素増感型太陽電池用色素。 Ru (4,4′-di (9-nonenyl) -2,2′-bipyridine) (4,4′-dicarboxy-2,2′-bipyridine) (NCS) 2 for dye-sensitized solar cell Pigment.
  2. 透明導電基板と、この透明導電基板上に形成された多孔質膜とを備えた光電変換素子であって、当該多孔質膜が、請求項1に記載の色素増感型太陽電池用色素を吸着したTiO粒子で構成されている光電変換素子。 A photoelectric conversion element comprising a transparent conductive substrate and a porous film formed on the transparent conductive substrate, wherein the porous film adsorbs the dye for dye-sensitized solar cells according to claim 1. the photoelectric conversion element that consists of the TiO 2 particles.
  3. 透明導電基板と、この透明導電基板上に形成された多孔質膜とを備えた光電変換素子であって、当該多孔質膜の少なくとも一部が、請求項1に記載の色素増感型太陽電池用色素を120~300℃の加熱処理により得られる反応物を吸着したTiO粒子で構成されている光電変換素子。 2. A dye-sensitized solar cell according to claim 1, comprising a transparent conductive substrate and a porous film formed on the transparent conductive substrate, wherein at least a part of the porous film is a dye-sensitized solar cell according to claim 1. A photoelectric conversion element composed of TiO 2 particles adsorbing a reaction product obtained by heat treatment at 120 to 300 ° C.
  4. 請求項2又は3に記載の光電変換素子を用いた色素増感型太陽電池。 A dye-sensitized solar cell using the photoelectric conversion element according to claim 2.
  5. ヨウ素を含むイオン性液体を含む請求項4に記載の色素増感型太陽電池。 The dye-sensitized solar cell according to claim 4, comprising an ionic liquid containing iodine.
  6. イオン性液体が、1-エチルー3-メチルイミダゾリウムテトラシアノボレートである請求項5に記載の色素増感型太陽電池。
     
     
     
     
     
     
    6. The dye-sensitized solar cell according to claim 5, wherein the ionic liquid is 1-ethyl-3-methylimidazolium tetracyanoborate.





PCT/JP2012/065561 2011-07-15 2012-06-19 Dye for dye-sensitized solar cell, photoelectric conversion element including said dye, and dye-sensitized solar cell WO2013011786A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011-156984 2011-07-15
JP2011156984A JP5939661B2 (en) 2011-07-15 2011-07-15 Dye for dye-sensitized solar cell, photoelectric conversion element using the dye, and dye-sensitized solar cell

Publications (1)

Publication Number Publication Date
WO2013011786A1 true WO2013011786A1 (en) 2013-01-24

Family

ID=47557971

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/065561 WO2013011786A1 (en) 2011-07-15 2012-06-19 Dye for dye-sensitized solar cell, photoelectric conversion element including said dye, and dye-sensitized solar cell

Country Status (3)

Country Link
JP (1) JP5939661B2 (en)
TW (1) TW201318247A (en)
WO (1) WO2013011786A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109679582B (en) * 2018-12-17 2021-12-07 中国人民大学 Liquid photo-thermal conversion material and preparation method and application thereof

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010055471A1 (en) * 2008-11-11 2010-05-20 Ecole Polytechnique Federale De Lausanne (Epfl) Novel anchoring ligands for sensitizers of dye-sensitized photovoltaic devices
JP4576494B2 (en) * 2006-02-08 2010-11-10 島根県 Photosensitizing dye
JP2011023344A (en) * 2009-06-19 2011-02-03 Panasonic Electric Works Co Ltd Photoelectric element

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007231171A (en) * 2006-03-01 2007-09-13 Mitsubishi Paper Mills Ltd Sensitizing dye monomer, sensitizing dye polymer, photoelectric conversion material, semiconductor electrode and photoelectric transducer
JP5153215B2 (en) * 2007-06-08 2013-02-27 京セラ株式会社 Photoelectric conversion device

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4576494B2 (en) * 2006-02-08 2010-11-10 島根県 Photosensitizing dye
WO2010055471A1 (en) * 2008-11-11 2010-05-20 Ecole Polytechnique Federale De Lausanne (Epfl) Novel anchoring ligands for sensitizers of dye-sensitized photovoltaic devices
JP2011023344A (en) * 2009-06-19 2011-02-03 Panasonic Electric Works Co Ltd Photoelectric element

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
LIU KEN-YEN ET AL.: "Synthesis and Characterization of Cross-Linkable Ruthenium Complex Dye and Its Application on Dye-Sensitized Solar Cells", JOURNAL OF POLYMER SCIENCE. PART A, vol. 48, no. 2, 2010, pages 366 - 372 *

Also Published As

Publication number Publication date
TW201318247A (en) 2013-05-01
JP5939661B2 (en) 2016-06-22
JP2013025895A (en) 2013-02-04

Similar Documents

Publication Publication Date Title
Odobel et al. New photovoltaic devices based on the sensitization of p-type semiconductors: challenges and opportunities
Chen et al. Bis-imidazolium based poly (ionic liquid) electrolytes for quasi-solid-state dye-sensitized solar cells
Ren et al. Effect of cations in coadsorbate on charge recombination and conduction band edge movement in dye-sensitized solar cells
KR101430139B1 (en) Manufacturing technology perovskite-based mesoporous thin film solar cell
Islam et al. Synthesis and characterization of new efficient tricarboxyterpyridyl (β-diketonato) ruthenium (II) sensitizers and their applications in dye-sensitized solar cells
Wang et al. Exploitation of ionic liquid electrolyte for dye-sensitized solar cells by molecular modification of organic-dye sensitizers
US20100116340A1 (en) Dye sensitized photoelectric conversion device and manufacturing method thereof, electronic equipment, and semiconductor electrode and manufacturing method thereof
JP5620316B2 (en) Photoelectric conversion element, photoelectrochemical cell and dye
US20080210296A1 (en) Dye-Sensitized Photovoltaic Device, Method for Making the Same, Electronic Device, Method for Making the Same, and Electronic Apparatus
Wu et al. Open-circuit voltage enhancement on the basis of polymer gel electrolyte for a highly stable dye-sensitized solar cell
US10014122B2 (en) Photoelectric conversion element and photoelectric conversion element module
Mikroyannidis et al. Novel broadly absorbing sensitizers with cyanovinylene 4-nitrophenyl segments and various anchoring groups: synthesis and application for high-efficiency dye-sensitized solar cells
JP4963165B2 (en) Dye-sensitized solar cell and dye-sensitized solar cell module
Lee et al. Mass transport effect on the photovoltaic performance of ruthenium-based quasi-solid dye sensitized solar cells using cobalt based redox couples
JP2007066526A (en) Semiconductor electrode, dye-sensitized solar cell, and its manufacturing method
Molla et al. Transparent conductive oxide‐less back contact dye‐sensitized solar cells using cobalt electrolyte
Martineau et al. Tuning of ruthenium complex properties using pyrrole-and pyrrolidine-containing polypyridine ligands
KR101627161B1 (en) Dye-sensitized solar cell including polymer support layer, and preparing method of the same
JP2004241378A (en) Dye sensitized solar cell
JP5535718B2 (en) Composite, photoelectrode, dye-sensitized solar cell, and dye-sensitized solar cell module
Wang et al. A light-scattering co-adsorbent for performance improvement of dye-sensitized solar cells
Chang et al. Effective improvement of the photovoltaic performance of black dye sensitized quasi-solid-state solar cells
JP5939661B2 (en) Dye for dye-sensitized solar cell, photoelectric conversion element using the dye, and dye-sensitized solar cell
JP2014186995A (en) Transparent dye-sensitized solar cell and dye-sensitized solar cell module
JP2011042650A (en) Zwitterionic organic salt

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12815282

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12815282

Country of ref document: EP

Kind code of ref document: A1