JP5535718B2 - Composite, photoelectrode, dye-sensitized solar cell, and dye-sensitized solar cell module - Google Patents

Composite, photoelectrode, dye-sensitized solar cell, and dye-sensitized solar cell module Download PDF

Info

Publication number
JP5535718B2
JP5535718B2 JP2010068723A JP2010068723A JP5535718B2 JP 5535718 B2 JP5535718 B2 JP 5535718B2 JP 2010068723 A JP2010068723 A JP 2010068723A JP 2010068723 A JP2010068723 A JP 2010068723A JP 5535718 B2 JP5535718 B2 JP 5535718B2
Authority
JP
Japan
Prior art keywords
dye
semiconductor layer
solar cell
sensitized solar
type semiconductor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2010068723A
Other languages
Japanese (ja)
Other versions
JP2011204789A (en
Inventor
真也 森部
直彦 加藤
和夫 樋口
裕香 伊藤
克芳 水元
竜生 豊田
友紀 田端
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Central R&D Labs Inc
Aisin Corp
Original Assignee
Aisin Seiki Co Ltd
Toyota Central R&D Labs Inc
Aisin Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Aisin Seiki Co Ltd, Toyota Central R&D Labs Inc, Aisin Corp filed Critical Aisin Seiki Co Ltd
Priority to JP2010068723A priority Critical patent/JP5535718B2/en
Publication of JP2011204789A publication Critical patent/JP2011204789A/en
Application granted granted Critical
Publication of JP5535718B2 publication Critical patent/JP5535718B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/542Dye sensitized solar cells

Description

本発明は、複合体、光電極、色素増感型太陽電池及び色素増感型太陽電池モジュールに関する。   The present invention relates to a composite, a photoelectrode, a dye-sensitized solar cell, and a dye-sensitized solar cell module.

色素増感型太陽電池は、半導体材料に吸着されている増感色素が光を受けたときに励起され、この増感色素から半導体材料へ電子が注入されることによって光電流を生じる太陽電池である。この色素増感型太陽電池は、グレッツェルらにより提案されて以来、使用する材料が安価であること、比較的シンプルなプロセスで製造できること等の利点から、その実用化が期待されている。この色素増感型太陽電池は、その実用化のために、電池寿命を十分に長くするための耐久性や、高いエネルギー変換効率を有することが求められている。色素増感型太陽電池の耐久性を向上するためには、増感色素として耐熱性、耐光性及び化学的安定性に優れるものを用いることが有効であり、そのような増感色素として、例えば、2,2’−ビピリジル等の2座配位子同士を2価の基を介して結合した4座配位子を金属に配位させた金属錯体色素が、これまでに提案されている(特許文献1)。   A dye-sensitized solar cell is a solar cell that is excited when a sensitizing dye adsorbed on a semiconductor material receives light, and generates a photocurrent by injecting electrons from the sensitizing dye into the semiconductor material. is there. Since this dye-sensitized solar cell has been proposed by Gretzel et al., It is expected to be put to practical use because of the advantages that the material used is inexpensive and that it can be manufactured by a relatively simple process. The dye-sensitized solar cell is required to have durability for sufficiently extending the battery life and high energy conversion efficiency for practical use. In order to improve the durability of the dye-sensitized solar cell, it is effective to use a sensitizing dye having excellent heat resistance, light resistance and chemical stability. As such a sensitizing dye, for example, Metal complex dyes in which a bidentate ligand in which bidentate ligands such as 2,2′-bipyridyl and the like are bonded to each other via a divalent group are coordinated to the metal have been proposed ( Patent Document 1).

特開2003−3083号公報JP 2003-3083 A

しかしながら、上述の特許文献1の色素増感型太陽電池では、耐熱性等に優れた金属錯体色素を用いており、色素増感型太陽電池の耐久性をより向上することができたものの、まだ改善の余地があった。また、光電変換特性などにおいてもまだ十分でなく、光電変換特性の向上が求められていた。   However, the dye-sensitized solar cell of Patent Document 1 described above uses a metal complex dye excellent in heat resistance and the like, and although the durability of the dye-sensitized solar cell can be further improved, There was room for improvement. In addition, photoelectric conversion characteristics and the like are still not sufficient, and improvement of photoelectric conversion characteristics has been demanded.

本発明は、このような課題に鑑みなされたものであり、有機色素の光吸収特性をより向上することができる複合体、光電極、色素増感型太陽電池及び色素増感型太陽電池モジュールを提供することを主目的とする。   This invention is made | formed in view of such a subject, The composite body which can improve the light absorption characteristic of an organic pigment | dye more, a photoelectrode, a dye-sensitized solar cell, and a dye-sensitized solar cell module The main purpose is to provide.

上述した目的を達成するために鋭意研究したところ、本発明者らは、CN基やロダニン分子構造を有する有機色素分子とCuを含む半導体とを複合化させると、有機色素分子の光吸収特性が長波長側に拡大することを見いだし、本発明を完成するに至った。   As a result of diligent research to achieve the above-described object, the present inventors have found that when an organic dye molecule having a CN group or rhodanine molecular structure is combined with a semiconductor containing Cu, the light absorption characteristics of the organic dye molecule are reduced. It has been found that the wavelength is extended to the long wavelength side, and the present invention has been completed.

即ち、本発明の複合体は、S及びNのうち少なくとも一方を含む電子受容部位を有する有機色素分子と、Cu,Ag,Au,Ni,Co,Cr,Pt,Pdのうち少なくとも1以上を含んでいる半導体及び導電体のうち少なくとも一方である金属含有材料と、を含有したものである。   That is, the complex of the present invention includes an organic dye molecule having an electron accepting site containing at least one of S and N, and at least one of Cu, Ag, Au, Ni, Co, Cr, Pt, and Pd. And a metal-containing material that is at least one of the semiconductor and the conductor.

本発明の光電極は、色素増感型太陽電池に用いられる光電極であって、S及びNのうち少なくとも一方を含む電子受容部位を有する有機色素分子とCu,Ag,Au,Ni,Co,Cr,Pt,Pdのうち少なくとも1以上を含んでいる半導体及び導電体のうち少なくとも一方である金属含有材料とを含有した複合体と、該複合体の有機色素分子が吸着しているn型半導体層と、前記n型半導体層が形成されている導電性基板と、を備えたものである。   The photoelectrode of the present invention is a photoelectrode used for a dye-sensitized solar cell, and an organic dye molecule having an electron accepting site containing at least one of S and N, and Cu, Ag, Au, Ni, Co, A composite containing a semiconductor containing at least one of Cr, Pt, and Pd and a metal-containing material that is at least one of conductors, and an n-type semiconductor on which organic dye molecules of the composite are adsorbed And a conductive substrate on which the n-type semiconductor layer is formed.

本発明の色素増感型太陽電池は、光が透過し透明導電膜が形成されている透明基板と、前記透明基板に隣接して設けられS及びNのうち少なくとも一方を含む電子受容部位を有する有機色素分子とCu,Ag,Au,Ni,Co,Cr,Pt,Pdのうち少なくとも1以上を含んでいる半導体及び導電体のうち少なくとも一方である金属含有材料とを含有した複合体と該複合体の有機色素分子が吸着しているn型半導体層と前記n型半導体層が形成されている導電性基板とを備えた光電極と、前記光電極に隣接して設けられた対極と、を備えたものである。   The dye-sensitized solar cell of the present invention has a transparent substrate through which light is transmitted and a transparent conductive film is formed, and an electron accepting site that is provided adjacent to the transparent substrate and includes at least one of S and N A composite containing an organic dye molecule, a semiconductor containing at least one of Cu, Ag, Au, Ni, Co, Cr, Pt, and Pd, and a metal-containing material that is at least one of conductors, and the composite A photoelectrode comprising an n-type semiconductor layer on which organic dye molecules of the body are adsorbed and a conductive substrate on which the n-type semiconductor layer is formed, and a counter electrode provided adjacent to the photoelectrode It is provided.

本発明の色素増感型太陽電池モジュールは、光が透過し透明導電膜が形成されている透明基板と、前記透明基板に隣接して設けられS及びNのうち少なくとも一方を含む電子受容部位を有する有機色素分子とCu,Ag,Au,Ni,Co,Cr,Pt,Pdのうち少なくとも1以上を含んでいる半導体及び導電体のうち少なくとも一方である金属含有材料とを含有した複合体と該複合体の有機色素分子が吸着しており受光側に配設されるn型半導体層と前記n型半導体層が形成されている導電性基板とを備えた光電極と、前記光電極に隣接して設けられた対極と、を備えた色素増感型太陽電池を複数備えたものである。   The dye-sensitized solar cell module of the present invention includes a transparent substrate on which light is transmitted and a transparent conductive film is formed, and an electron accepting site that is provided adjacent to the transparent substrate and includes at least one of S and N. A composite containing an organic dye molecule having a semiconductor containing at least one of Cu, Ag, Au, Ni, Co, Cr, Pt, and Pd and a metal-containing material that is at least one of conductors; A photoelectrode comprising an n-type semiconductor layer on which the organic dye molecules of the complex are adsorbed and disposed on the light-receiving side; and a conductive substrate on which the n-type semiconductor layer is formed; and adjacent to the photoelectrode And a plurality of dye-sensitized solar cells provided with a counter electrode provided.

本発明は、有機色素の光吸収特性をより向上することができる。このような効果が得られる理由は明らかではないが、例えば、CN基やロダニン分子構造など電子受容部位を有する有機色素分子の分子内電荷移動相互作用が、半導体及び導電体のうち少なくとも一方である金属含有材料(例えばCuIなどのCu系材料)との相互作用により変化し、有機色素分子の光吸収特性が長波長側に拡大するためであると推測される。また、色素増感型太陽電池においては、金属含有材料(例えば、Cu系材料)が固体電解質として機能することから、電解液などを用いる必要がなく、液漏れや電解液の変質などをより抑制することができ、耐久性の向上やひいては光電変換特性をより向上することができる。また、有機色素の光吸収特性がより向上するため、従来のRuなどの金属錯体と固体電解質とを用いる色素増感型太陽電池に比して、光電変換特性をより向上することができるものと推察される。   The present invention can further improve the light absorption characteristics of organic dyes. The reason why such an effect is obtained is not clear, but for example, the intramolecular charge transfer interaction of an organic dye molecule having an electron accepting site such as a CN group or a rhodanine molecular structure is at least one of a semiconductor and a conductor. It is presumed that the change is caused by the interaction with a metal-containing material (for example, Cu-based material such as CuI), and the light absorption characteristics of the organic dye molecules are expanded to the long wavelength side. In dye-sensitized solar cells, metal-containing materials (for example, Cu-based materials) function as solid electrolytes, so there is no need to use electrolytes, which can further suppress liquid leakage and electrolyte alteration. Thus, the durability can be improved and the photoelectric conversion characteristics can be further improved. In addition, since the light absorption characteristics of organic dyes are further improved, the photoelectric conversion characteristics can be further improved as compared with conventional dye-sensitized solar cells using a metal complex such as Ru and a solid electrolyte. Inferred.

色素増感型太陽電池モジュール10の構成の概略の一例を示す断面図。FIG. 3 is a cross-sectional view showing an example of a schematic configuration of the dye-sensitized solar cell module 10. CN基を有する有機色素分子の一例である色素1〜6の説明図。Explanatory drawing of the pigment | dyes 1-6 which are an example of the organic pigment | dye molecule | numerator which has CN group. ロダニン構造を有する有機色素分子の一例である色素7〜9の説明図。Explanatory drawing of the pigment | dyes 7-9 which is an example of the organic pigment | dye molecule | numerator which has a rhodanine structure. 色素の一例である色素10,11の説明図。Explanatory drawing of the pigment | dye 10 and 11 which is an example of a pigment | dye. 実施例1の複合体の吸収スペクトルの測定結果。The measurement result of the absorption spectrum of the composite_body | complex of Example 1. FIG. 実施例2の複合体の吸収スペクトルの測定結果。The measurement result of the absorption spectrum of the composite_body | complex of Example 2. FIG. 実施例3の複合体の吸収スペクトルの測定結果。The measurement result of the absorption spectrum of the composite_body | complex of Example 3. FIG. 実施例4の複合体の吸収スペクトルの測定結果。The measurement result of the absorption spectrum of the composite_body | complex of Example 4. FIG. 実施例5の複合体の吸収スペクトルの測定結果。The measurement result of the absorption spectrum of the composite_body | complex of Example 5. FIG. 実施例6の複合体の吸収スペクトルの測定結果。The measurement result of the absorption spectrum of the composite_body | complex of Example 6. FIG. 実施例7の複合体の吸収スペクトルの測定結果。The measurement result of the absorption spectrum of the composite_body | complex of Example 7. FIG. 実施例8の複合体の吸収スペクトルの測定結果。The measurement result of the absorption spectrum of the composite_body | complex of Example 8. FIG. 実施例9の複合体の吸収スペクトルの測定結果。The measurement result of the absorption spectrum of the composite_body | complex of Example 9. FIG. 比較例1の複合体の吸収スペクトルの測定結果。The measurement result of the absorption spectrum of the composite_body | complex of the comparative example 1. 比較例2の複合体の吸収スペクトルの測定結果。The measurement result of the absorption spectrum of the composite_body | complex of the comparative example 2. 実施例3の光電極の吸収スペクトルの測定結果。The measurement result of the absorption spectrum of the photoelectrode of Example 3. 実施例6の光電極の吸収スペクトルの測定結果。The measurement result of the absorption spectrum of the photoelectrode of Example 6. 実施例7の光電極の吸収スペクトルの測定結果。The measurement result of the absorption spectrum of the photoelectrode of Example 7. 実施例8の光電極の吸収スペクトルの測定結果。The measurement result of the absorption spectrum of the photoelectrode of Example 8. 実施例9の光電極の吸収スペクトルの測定結果。The measurement result of the absorption spectrum of the photoelectrode of Example 9. 比較例1の光電極の吸収スペクトルの測定結果。The measurement result of the absorption spectrum of the photoelectrode of Comparative Example 1. 比較例2の光電極の吸収スペクトルの測定結果。The measurement result of the absorption spectrum of the photoelectrode of Comparative Example 2. 実施例7のセルの波長に対するIPCE測定結果。The IPCE measurement result with respect to the wavelength of the cell of Example 7. 実施例8のセルの波長に対するIPCE測定結果。The IPCE measurement result with respect to the wavelength of the cell of Example 8. 実施例9のセルの波長に対するIPCE測定結果。The IPCE measurement result with respect to the wavelength of the cell of Example 9. 比較例1のセルの波長に対するIPCE測定結果。The IPCE measurement result with respect to the wavelength of the cell of the comparative example 1. 比較例2のセルの波長に対するIPCE測定結果。The IPCE measurement result with respect to the wavelength of the cell of Comparative Example 2. 実施例7,8及び比較例1の電流−電圧特性測定結果。The current-voltage characteristic measurement result of Examples 7 and 8 and Comparative Example 1.

本発明の色素増感型太陽電池モジュールの一実施形態を図面を用いて説明する。図1は、色素増感型太陽電池モジュール10の構成の概略の一例を示す断面図である。図1に示すように、本実施形態に係る色素増感型太陽電池モジュール10は、透明導電性基板14上に複数の色素増感型太陽電池40(以下セルとも称する)が順次配列した構成となっている。これらのセルは直列に接続されている。この色素増感型太陽電池モジュール10では、各セルの間を埋めるように、シール材32が形成されており、透明導電性基板14とは反対側のシール材32の面に平板状の保護部材34が形成されている。本実施形態に係る色素増感型太陽電池40は、光が透過する透明基板11の表面に透明導電膜12が形成されている透明導電性基板14と、下地層22を介して透明導電膜12に形成されている多孔質半導体層24と、多孔質半導体層24に対して固体p型半導体層26及びセパレータ29を介して設けられた対極30と、を備えている。光電極20は、透明導電性基板14と、透明基板11の受光面13の反対側の面に分離形成された透明導電膜12に配設された下地層22と、下地層22に配設され受光に伴い電子を放出する多孔質半導体層24とを備えている。この色素増感型太陽電池40では、光電極20と対極30とが固体p型半導体層26を介して接続されているいわゆる全固体型の色素増感型太陽電池として構成されている。このように、色素増感型太陽電池40では、有機溶媒やイオン性液体等の電解液を介さずに発電可能な構成となっている。   An embodiment of the dye-sensitized solar cell module of the present invention will be described with reference to the drawings. FIG. 1 is a cross-sectional view illustrating an example of a schematic configuration of a dye-sensitized solar cell module 10. As shown in FIG. 1, the dye-sensitized solar cell module 10 according to this embodiment has a configuration in which a plurality of dye-sensitized solar cells 40 (hereinafter also referred to as cells) are sequentially arranged on a transparent conductive substrate 14. It has become. These cells are connected in series. In this dye-sensitized solar cell module 10, a sealing material 32 is formed so as to fill between the cells, and a flat protective member is provided on the surface of the sealing material 32 on the side opposite to the transparent conductive substrate 14. 34 is formed. The dye-sensitized solar cell 40 according to this embodiment includes a transparent conductive substrate 12 having a transparent conductive film 12 formed on the surface of a transparent substrate 11 through which light is transmitted, and the transparent conductive film 12 via a base layer 22. And a counter electrode 30 provided to the porous semiconductor layer 24 with a solid p-type semiconductor layer 26 and a separator 29 interposed therebetween. The photoelectrode 20 is disposed on the transparent conductive substrate 14, the underlying layer 22 disposed on the transparent conductive film 12 formed separately on the surface opposite to the light receiving surface 13 of the transparent substrate 11, and the underlying layer 22. And a porous semiconductor layer 24 that emits electrons upon receiving light. This dye-sensitized solar cell 40 is configured as a so-called all-solid-type dye-sensitized solar cell in which the photoelectrode 20 and the counter electrode 30 are connected via a solid p-type semiconductor layer 26. As described above, the dye-sensitized solar cell 40 has a configuration capable of generating power without using an electrolyte such as an organic solvent or an ionic liquid.

透明導電性基板14は、透明基板11と透明導電膜12とにより構成され、光透過性及び導電性を有するものであり、シリコン太陽電池や液晶表示パネルに用いられているものを使用することができる。具体的には、フッ素ドープSnO2コートガラス、ITOコートガラス、ZnO:Alコートガラス、アンチモンドープ酸化スズ(SnO2−Sb)、等が挙げられる。また、酸化スズや酸化インジウムに原子価の異なる陽イオン若しくは陰イオンをドープした透明電極、メッシュ状、ストライプ状など光が透過できる構造にした金属電極をガラス基板等の基板上に設けたものも使用できる。この透明導電性基板14の透明導電膜12側の両端には、集電電極16,17が設けられており、この集電電極16,17を介して色素増感型太陽電池40で発電した電力を利用することができる。 The transparent conductive substrate 14 is composed of the transparent substrate 11 and the transparent conductive film 12, has light transparency and conductivity, and those used for silicon solar cells and liquid crystal display panels may be used. it can. Specific examples include fluorine-doped SnO 2 coated glass, ITO coated glass, ZnO: Al coated glass, and antimony-doped tin oxide (SnO 2 —Sb). Also, a transparent electrode obtained by doping tin oxide or indium oxide with cations or anions having different valences, or a metal electrode having a structure capable of transmitting light, such as a mesh shape or a stripe shape, provided on a substrate such as a glass substrate. Can be used. Current collecting electrodes 16 and 17 are provided at both ends of the transparent conductive substrate 14 on the transparent conductive film 12 side. Electric power generated by the dye-sensitized solar cell 40 via the current collecting electrodes 16 and 17 is provided. Can be used.

透明基板11としては、例えば、透明ガラス、透明プラスチック板、透明プラスチック膜、無機物透明結晶体などが挙げられ、このうち、透明ガラスが好ましい。この透明基板11は、透明なガラス基板、ガラス基板表面を適当に荒らすなどして光の反射を防止したもの、すりガラス状の半透明のガラス基板など光を透過するものなどとしてもよい。透明導電膜12は、例えば、透明基板11上に酸化スズを付着させることにより形成することができる。特に、フッ素をドープした酸化スズ(FTO)等の金属酸化物を用いれば、好適な透明導電膜12を形成することができる。透明導電膜12は、所定の間隔に溝18が形成されており、この溝18の幅に相当する間隔を隔てて複数の透明導電膜12の領域が分離形成されている。   Examples of the transparent substrate 11 include transparent glass, a transparent plastic plate, a transparent plastic film, and an inorganic transparent crystal, and among these, transparent glass is preferable. The transparent substrate 11 may be a transparent glass substrate, a glass substrate whose surface is appropriately roughened to prevent reflection of light, or a transparent glass substrate such as a ground glass-like translucent glass substrate. The transparent conductive film 12 can be formed, for example, by depositing tin oxide on the transparent substrate 11. In particular, if a metal oxide such as tin oxide (FTO) doped with fluorine is used, a suitable transparent conductive film 12 can be formed. In the transparent conductive film 12, grooves 18 are formed at predetermined intervals, and a plurality of regions of the transparent conductive film 12 are separately formed at intervals corresponding to the width of the grooves 18.

下地層22は、透明導電性基板14から固体p型半導体層26へのリーク電流(逆電子移動)を抑制もしくは防止する層であり、例えば、透光性及び導電性のある材料が好ましく、例えば、酸化チタンや酸化亜鉛、酸化スズなどのn型半導体などが挙げられ、このうち酸化チタンがより好ましい。酸化チタンは、リーク電流を抑制・防止し、且つ多孔質半導体層24から透明導電性基板14へ電子を流しやすいからである。下地層22では、多孔質半導体層24に比してより緻密な材料とすることが好ましい。なお、この下地層22を形成しないものとしても色素増感型太陽電池40として十分機能することから、この下地層22を省略しても構わない。   The underlayer 22 is a layer that suppresses or prevents leakage current (reverse electron transfer) from the transparent conductive substrate 14 to the solid p-type semiconductor layer 26. For example, a light-transmitting and conductive material is preferable. In addition, n-type semiconductors such as titanium oxide, zinc oxide, and tin oxide can be used, and among these, titanium oxide is more preferable. This is because titanium oxide suppresses and prevents leakage current and easily allows electrons to flow from the porous semiconductor layer 24 to the transparent conductive substrate 14. The underlayer 22 is preferably made of a denser material than the porous semiconductor layer 24. Even if the base layer 22 is not formed, the base layer 22 may be omitted because it functions sufficiently as the dye-sensitized solar cell 40.

多孔質半導体層24は、S及びNのうち少なくとも一方を含む電子受容部位を有する有機色素分子と、半導体及び導電体のうち少なくとも一方である金属含有材料と、を含む複合体28と、この複合体28の有機色素分子が吸着しているn型半導体層とにより形成されている。即ち、この多孔質半導体層24は、複合体28とn型半導体層とが複合化されている層となっている。有機色素分子は、詳しくは後述するが、受光に伴い電子を放出する色素である。また、金属含有材料としては、例えば、Cu,Ag,Au,Ni,Co,Cr,Pt,Pdなどが挙げられ、このうち、Cuを含む半導体及びCuを含む導電体のうち少なくとも一方を含むCu系材料であることがより好ましい。Cu系材料としては、例えば、CuI、CuSCN、CuO、Cu2O、Cuのうちいずれか1以上が挙げられ、このうちCuIが有機色素分子と相互作用しやすくより好ましい。以下、説明の便宜のため、金属含有材料としてCu系材料を用いて説明する。n型半導体としては、金属酸化物半導体や金属硫化物半導体などが適しており、例えば、酸化チタン(TiO2)、酸化スズ(SnO2)、酸化亜鉛(ZnO)、硫化カドミウム(CdS)、硫化亜鉛(ZnS)のうち少なくとも1以上であることが好ましく、このうち多孔質の酸化チタンがより好ましい。これらの半導体材料を微結晶又は多結晶状態にして薄膜化することにより、良好な多孔質のn型半導体層を形成することができる。特に、多孔質の酸化チタン層は、光電極20が有するn型半導体層として好適である。有機色素は、多孔質のn型半導体の表面に吸着させるものとしてもよい。この吸着は、化学吸着や物理吸着等によって行うことができる。具体的には、多孔質のn型半導体層を透明導電性基板14上に形成したのち、このn型半導体層へ有機色素を含む溶液を滴下して乾燥する方法や、色素溶液に浸漬し乾燥したあとにCu系材料の溶液を滴下して乾燥する方法などにより作製することができる。ここで、この光電極20では、多孔質半導体層24に含まれる有機色素とCu系材料とが相互作用した複合体28となっている。この相互作用によって、有機色素分子の光吸収特性が長波長側に拡大し、ひいてはより高い光電変換特性を得ることができると考えられる。この複合体28は、有機色素分子とCu系材料とが複合していると考えられるが、その形態は、例えば、錯体となっていてもよい。この複合体28について、特に有機色素分子について、以下詳述する。 The porous semiconductor layer 24 includes a composite 28 including an organic dye molecule having an electron accepting site including at least one of S and N, and a metal-containing material that is at least one of a semiconductor and a conductor, and the composite The n-type semiconductor layer to which the organic dye molecules of the body 28 are adsorbed is formed. That is, the porous semiconductor layer 24 is a layer in which the composite 28 and the n-type semiconductor layer are combined. The organic dye molecules are dyes that emit electrons upon receiving light, as will be described in detail later. Examples of the metal-containing material include Cu, Ag, Au, Ni, Co, Cr, Pt, and Pd. Among these, a Cu containing at least one of a semiconductor containing Cu and a conductor containing Cu. More preferably, it is a system material. Examples of the Cu-based material include one or more of CuI, CuSCN, CuO, Cu 2 O, and Cu, and among these, CuI is more preferable because it easily interacts with organic dye molecules. Hereinafter, for convenience of explanation, a Cu-based material will be used as the metal-containing material. As the n-type semiconductor, a metal oxide semiconductor or a metal sulfide semiconductor is suitable. For example, titanium oxide (TiO 2 ), tin oxide (SnO 2 ), zinc oxide (ZnO), cadmium sulfide (CdS), sulfide It is preferable that it is at least 1 or more among zinc (ZnS), and among these, porous titanium oxide is more preferable. By thinning these semiconductor materials into a microcrystalline or polycrystalline state, a good porous n-type semiconductor layer can be formed. In particular, the porous titanium oxide layer is suitable as an n-type semiconductor layer included in the photoelectrode 20. The organic dye may be adsorbed on the surface of the porous n-type semiconductor. This adsorption can be performed by chemical adsorption or physical adsorption. Specifically, after forming a porous n-type semiconductor layer on the transparent conductive substrate 14, a method of dropping an organic dye-containing solution onto the n-type semiconductor layer and drying it, or dipping in a dye solution and drying After that, a Cu-based material solution can be dropped and dried. Here, the photoelectrode 20 is a composite 28 in which an organic dye contained in the porous semiconductor layer 24 interacts with a Cu-based material. It is considered that this interaction expands the light absorption characteristics of the organic dye molecules to the longer wavelength side, and as a result, higher photoelectric conversion characteristics can be obtained. Although this complex 28 is considered to be a complex of organic dye molecules and Cu-based material, the form may be, for example, a complex. The complex 28, particularly the organic dye molecule, will be described in detail below.

有機色素分子は、S及びNのうち少なくとも一方を含む電子受容部位を有している。例えば、有機色素分子は、CN基を有するものとしてもよいし、式(1)に示すCN基が結合しているエチレン構造を有することが好ましい。あるいは、有機色素分子は、式(2)に示すロダニン構造を有するものとしてもよい。式(1),(2)において、置換基R1〜R6は、それぞれ同じでも異なっていてもよく、例えば、水素、アルキル基、シクロアルキル基、複素環基、アルケニル基、シクロアルケニル基、アルキニル基、アルコキシ基、アルキルチオ基、アリールエーテル基、アリールチオエーテル基、アリール基、ヘテロアリール基、ハロゲン、シアノ基、カルボニル基、カルボキシル基、オキシカルボニル基、カルバモイル基、アミノ基、ホスフィンオキサイド基、隣接置換基との間に形成される縮合環及び硫黄などの中から選ばれるものとしてもよい。これらの置換基のうち、アルキル基とは、例えば、メチル基、エチル基、n−プロピル基、イソプロピル基、n−ブチル基、sec−ブチル基、tert−ブチル基などの飽和脂肪族炭化水素基を示し、これは置換基を有していても有していなくてもよい。置換されている場合の追加の置換基には特に制限は無く、例えば、アルキル基、アリール基、ヘテロアリール基等を挙げることができ、この点は、他の上記置換基などについても共通する。また、アルキル基など、置換基の炭素数は特に限定されないが、作製の容易性やコストの点から、通常1以上20以下、より好ましくは1以上12以下の範囲である。 The organic dye molecule has an electron accepting site containing at least one of S and N. For example, the organic dye molecule may have a CN group, and preferably has an ethylene structure to which a CN group represented by Formula (1) is bonded. Alternatively, the organic dye molecule may have a rhodanine structure represented by the formula (2). In the formulas (1) and (2), the substituents R 1 to R 6 may be the same or different, for example, hydrogen, alkyl group, cycloalkyl group, heterocyclic group, alkenyl group, cycloalkenyl group, Alkynyl group, alkoxy group, alkylthio group, aryl ether group, aryl thioether group, aryl group, heteroaryl group, halogen, cyano group, carbonyl group, carboxyl group, oxycarbonyl group, carbamoyl group, amino group, phosphine oxide group, adjacent It may be selected from a condensed ring formed between the substituent and sulfur. Among these substituents, the alkyl group is, for example, a saturated aliphatic hydrocarbon group such as a methyl group, an ethyl group, an n-propyl group, an isopropyl group, an n-butyl group, a sec-butyl group, or a tert-butyl group. This may or may not have a substituent. There are no particular limitations on the additional substituent when it is substituted, and examples include an alkyl group, an aryl group, a heteroaryl group, and the like, and this point is common to the other substituents. The number of carbon atoms of the substituent such as an alkyl group is not particularly limited, but is usually in the range of 1 to 20 and more preferably 1 to 12 from the viewpoint of ease of production and cost.

図2は、本実施形態のCN基を有する有機色素分子の一例である色素1〜6の説明図であり、図3は、本実施形態のロダニン構造を有する有機色素分子の一例である色素7〜9の説明図である。まず、CN基を有する有機色素分子について説明する(図2の色素1〜6参照)。この有機色素分子は、式(3)に示すように、カルボキシル基が結合していることが好ましい。例えば、酸化チタンのような金属酸化物への固定は、色素のカルボキシル基と金属酸化物の化学吸着によってより強固になり、電子移動の効率も高くなるためである。また、有機色素分子は、NとSとの少なくとも一方を含む芳香環及び、NとSとの少なくとも一方が結合した芳香環のうち少なくとも一方に、エチレン構造を介してCN基が結合していることがより好ましい。例えば、NとSとの少なくとも一方を含む芳香環の例としては、式(4)に示すように、1以上のチオフェン構造(Sを含む芳香環)がエチレン構造の二重結合を有する炭素に結合した構造などが挙げられる(図2の色素1〜3参照)。なお、式(4)では、式(1)における置換基R1がチオフェン構造を有するものとしたが、置換基R1〜R3のいずれの置換基がチオフェン構造を有するものとしてもよい(以下同様である)。このチオフェン構造は、nが1以上5以下であることが好ましい。チオフェン構造の末端となる置換基R8は、例えば、式(5)に示す置換基としてもよいし、式(6)に示す置換基としてもよい。置換基R7は、例えば、水素、炭素数1以上20以下のアルキル基のいずれかとしてもよい。また、NとSとの少なくとも一方が結合した芳香環としては、式(5)〜(7)に示すように、Nが結合した芳香環を有する置換基などが挙げられる(図2の色素1〜5参照)。CN基を有する有機色素分子において、2以上のエチレン構造が連なる構成、共役構造、としてもよい。即ち、式(1)の置換基R1及びR2の少なくとも一方にエチレン構造が含まれていることが好ましい。このとき、式(1)の置換基R1及びR2の少なくとも一方の末端には、式(7)に示す置換基が結合していることが好ましい(図2の色素4,5参照)。これらの構成のうち、いずれか1つの態様を採用すると、固体p型半導体層26のCu系材料との相互作用が惹起され、有機色素分子の光吸収特性がより向上しやすく、好ましい。 FIG. 2 is an explanatory diagram of dyes 1 to 6 which are examples of organic dye molecules having a CN group according to this embodiment, and FIG. 3 is a dye 7 which is an example of organic dye molecules having a rhodanine structure according to this embodiment. It is explanatory drawing of -9. First, organic dye molecules having a CN group will be described (see dyes 1 to 6 in FIG. 2). As for this organic pigment | dye molecule | numerator, it is preferable that the carboxyl group has couple | bonded as shown in Formula (3). For example, the fixation to a metal oxide such as titanium oxide becomes stronger due to the chemical adsorption of the carboxyl group of the dye and the metal oxide, and the efficiency of electron transfer is also increased. Further, in the organic dye molecule, a CN group is bonded to at least one of an aromatic ring containing at least one of N and S and an aromatic ring bonded with at least one of N and S via an ethylene structure. It is more preferable. For example, as an example of an aromatic ring containing at least one of N and S, as shown in the formula (4), one or more thiophene structures (aromatic rings containing S) are bonded to carbon having a double bond of an ethylene structure. Examples include a bonded structure (see dyes 1 to 3 in FIG. 2). In the formula (4), the substituent R 1 in the formula (1) has a thiophene structure, but any of the substituents R 1 to R 3 may have a thiophene structure (hereinafter referred to as “substituent R 1”). The same). In this thiophene structure, n is preferably 1 or more and 5 or less. The substituent R 8 serving as the terminal of the thiophene structure may be, for example, a substituent represented by the formula (5) or a substituent represented by the formula (6). The substituent R 7 may be, for example, any one of hydrogen and an alkyl group having 1 to 20 carbon atoms. Examples of the aromatic ring to which at least one of N and S are bonded include a substituent having an aromatic ring to which N is bonded as shown in formulas (5) to (7) (Dye 1 in FIG. 2). ~ 5). The organic dye molecule having a CN group may have a structure in which two or more ethylene structures are linked, or a conjugated structure. That is, it is preferable that at least one of the substituents R 1 and R 2 in the formula (1) contains an ethylene structure. At this time, it is preferable that a substituent represented by the formula (7) is bonded to at least one terminal of the substituents R 1 and R 2 of the formula (1) (see dyes 4 and 5 in FIG. 2). Adopting any one of these configurations is preferable because interaction with the Cu-based material of the solid p-type semiconductor layer 26 is induced, and the light absorption characteristics of the organic dye molecules are easily improved.

次に、ロダニン構造を有する有機色素分子について説明する(図3の色素1〜3参照)。この有機色素分子は、式(2)において、ロダニン構造のNに結合した置換基R4が炭素数3以上20以下であるアルキル基及び炭素数1以上20以下の炭素鎖に結合したカルボキシル基のうちいずれか一方であることが好ましい。置換基R4がアルキル基である場合、炭素数3以上では化学的により安定であり好ましく、炭素数20以下では有機色素分子をより容易に製造可能であり、好ましい。この置換基R4の炭素数は、5以上12以下であることがより好ましい。また、有機色素分子は、ロダニン構造の置換基R5及びR6の少なくとも一方が更に同様のロダニン構造を有していることが好ましい。例えば、置換基R5にロダニン構造を有するものとしては、式(8)に示すものなどが挙げられる。また、有機色素分子は、ロダニン構造の置換基R4、R5及びR6のうち少なくとも1つが、NとSとの少なくとも一方を含む芳香環及び、NとSとの少なくとも一方が結合した芳香環、のうち少なくとも一方を含んでいることが好ましい。NとSとの少なくとも一方が結合した芳香環としては、例えば式(8)に示すものなどが挙げられる。この式(8)に示す有機色素分子は、置換基R6がSであり、置換基R5におけるロダニン構造のNには、酢酸基が結合した構造を有している。これらの構成のうち、いずれかの態様を採用すると、有機色素分子とCu系材料との相互作用が惹起され、有機色素分子の光吸収特性がより向上しやすく、好ましい。 Next, organic dye molecules having a rhodanine structure will be described (see dyes 1 to 3 in FIG. 3). This organic dye molecule is represented by the formula (2) wherein the substituent R 4 bonded to N of the rhodanine structure is an alkyl group having 3 to 20 carbon atoms and a carboxyl group bonded to a carbon chain having 1 to 20 carbon atoms. Any one of them is preferable. When the substituent R 4 is an alkyl group, it is preferable that the number of carbon atoms is 3 or more, which is chemically more stable, and the number of carbon atoms of 20 or less is preferable because an organic dye molecule can be easily produced. The number of carbon atoms of the substituent R 4 is more preferably 5 or more and 12 or less. Further, in the organic dye molecule, it is preferable that at least one of the substituents R 5 and R 6 of the rhodanine structure further has a similar rhodanine structure. For example, examples of the substituent R 5 having a rhodanine structure include those represented by formula (8). Further, the organic dye molecule has an aromatic ring in which at least one of the substituents R 4 , R 5 and R 6 having a rhodanine structure includes at least one of N and S, and an aromatic in which at least one of N and S is bonded. It is preferable that at least one of the rings is included. Examples of the aromatic ring in which at least one of N and S are bonded include those represented by the formula (8). The organic dye molecule represented by the formula (8) has a structure in which the substituent R 6 is S, and an acetic acid group is bonded to N of the rhodanine structure in the substituent R 5 . Among these configurations, it is preferable to employ any one of the modes because an interaction between the organic dye molecule and the Cu-based material is induced, and the light absorption characteristics of the organic dye molecule are easily improved.

固体p型半導体層26は、Cuを含む半導体により形成された層としてもよい。このCuを含む半導体としては、上記Cu系材料と同様に、例えば、CuI、CuSCN、CuO及びCu2Oのうちいずれか1以上を用いることが好ましく、CuIを用いるのがより好ましい。あるいは、固体p型半導体層26は、Cuを含む導電体により形成された導電体層としてもよい。また、この固体p型半導体層26は、上記複合体28のCu系材料と異なる材質で作製されていてもよいが、同じ材質で形成されていることが、作製が容易であり、より好ましい。 The solid p-type semiconductor layer 26 may be a layer formed of a semiconductor containing Cu. As the semiconductor containing Cu, for example, one or more of CuI, CuSCN, CuO, and Cu 2 O are preferably used, and CuI is more preferably used, like the Cu-based material. Alternatively, the solid p-type semiconductor layer 26 may be a conductor layer formed of a conductor containing Cu. The solid p-type semiconductor layer 26 may be made of a material different from the Cu-based material of the composite 28, but is preferably made of the same material because it is easy to produce.

セパレータ29は、下地層22、多孔質半導体層24及び固体p型半導体層26が積層された光電極20の1つの側面に隣接するように断面I字状に形成されている。セパレータ29の一端は透明導電性基板14上の溝18と接触している。これにより、光電極20と対極30との直接接触が回避される。セパレータ29は、絶縁性の材料からなり、例えば、ガラスビーズ、二酸化ケイ素(シリカ)及びルチル型の酸化チタンなどで形成されていてもよい。このセパレータ29としては、シリカ粒子を焼結した絶縁体が好ましい。シリカ粒子は、屈折率が低く光散乱が小さく、良好な透明性を有するため、セパレータに好ましい。このセパレータ29は、良好な透明性を確保する観点から、平均粒径が5〜200nmであることが好ましい。   The separator 29 is formed in an I-shaped cross section so as to be adjacent to one side surface of the photoelectrode 20 on which the base layer 22, the porous semiconductor layer 24 and the solid p-type semiconductor layer 26 are laminated. One end of the separator 29 is in contact with the groove 18 on the transparent conductive substrate 14. Thereby, the direct contact with the photoelectrode 20 and the counter electrode 30 is avoided. The separator 29 is made of an insulating material, and may be formed of, for example, glass beads, silicon dioxide (silica), rutile titanium oxide, or the like. The separator 29 is preferably an insulator in which silica particles are sintered. Silica particles are preferable for the separator because they have a low refractive index, low light scattering, and good transparency. The separator 29 preferably has an average particle size of 5 to 200 nm from the viewpoint of ensuring good transparency.

対極30は、セパレータ29の外面と固体p型半導体層26の裏面27とに接触するよう、断面L字状に形成されている。この対極30は、一端が固体p型半導体層26の裏面に接続されていると共に、他端が接続部21を介して隣側の透明導電膜12に接続されている。この対極30の裏面27と接触する面は、光電極20に対して所定の間隔を隔てて対向している。対極30としては、導電性及び固体p型半導体層26との接合性を有するものであれば特に限定されず、例えば、Pt,Au,カーボンなどが挙げられ、このうちカーボンが好ましい。   The counter electrode 30 is formed in an L-shaped cross section so as to contact the outer surface of the separator 29 and the back surface 27 of the solid p-type semiconductor layer 26. The counter electrode 30 has one end connected to the back surface of the solid p-type semiconductor layer 26 and the other end connected to the adjacent transparent conductive film 12 via the connection portion 21. The surface of the counter electrode 30 that is in contact with the back surface 27 faces the photoelectrode 20 at a predetermined interval. The counter electrode 30 is not particularly limited as long as it has conductivity and bondability to the solid p-type semiconductor layer 26, and examples thereof include Pt, Au, and carbon. Among these, carbon is preferable.

シール材32は、絶縁性の部材であれば特に限定されずに用いることができる。このシール材32としては、例えば、ポリエチレン等の熱可塑性樹脂フィルム、あるいはエポキシ系接着剤を使用することができる。   The sealing material 32 can be used without particular limitation as long as it is an insulating member. As the sealing material 32, for example, a thermoplastic resin film such as polyethylene or an epoxy adhesive can be used.

保護部材34は、色素増感型太陽電池40の保護を図る部材であり、例えば、防湿フィルムや保護ガラスなどとすることができる。   The protection member 34 is a member that protects the dye-sensitized solar cell 40, and can be, for example, a moisture-proof film or protective glass.

この色素増感型太陽電池40に対して、透明基板11の受光面13側から光を照射すると、透明導電膜12の受光面15及び下地層22の受光面23を介して光が多孔質半導体層24へ到達し、有機色素が光を吸収して電子と正孔が発生する。正孔は多孔質半導体層24から固体p型半導体層26へ移動する。一方、電子は光電極20から透明導電膜12、接続部21を経由して隣の対極30へ移動する。色素増感型太陽電池40では、この電子と正孔の移動により起電力が発生し、電池の発電作用が得られる。この色素増感型太陽電池モジュール10では、複合体28において、有機色素とCu系材料との相互作用が惹起されており、有機色素分子の光吸収特性がより向上し、より高い光電変換特性を示す。   When this dye-sensitized solar cell 40 is irradiated with light from the light-receiving surface 13 side of the transparent substrate 11, the light is transmitted through the light-receiving surface 15 of the transparent conductive film 12 and the light-receiving surface 23 of the base layer 22 into the porous semiconductor. Reaching the layer 24, the organic dye absorbs light and generates electrons and holes. Holes move from the porous semiconductor layer 24 to the solid p-type semiconductor layer 26. On the other hand, electrons move from the photoelectrode 20 to the adjacent counter electrode 30 via the transparent conductive film 12 and the connection portion 21. In the dye-sensitized solar cell 40, an electromotive force is generated by the movement of the electrons and holes, and the power generation action of the battery can be obtained. In this dye-sensitized solar cell module 10, the interaction between the organic dye and the Cu-based material is induced in the composite 28, and the light absorption characteristics of the organic dye molecules are further improved, resulting in higher photoelectric conversion characteristics. Show.

この色素増感型太陽電池モジュール10は、製造方法として、基板作製工程、多孔質半導体層形成工程、p型半導体層形成工程、セパレータ形成工程、対極形成工程及び保護部材形成工程を経て製造することができる。基板作製工程では、複数の透明導電膜12の間に溝18を形成しつつ透明導電膜12を透明基板11上に形成する。多孔質半導体層形成工程では、透明導電膜12上に下地層22を介してn型半導体層を形成し、有機色素をn型半導体層へ吸着させたのち、Cu系材料を添加して複合体28を形成させ、多孔質半導体層24を形成する。ここでは、有機色素として、上述した、S及びNのうち少なくとも一方を含む電子受容部位を有する有機色素分子、例えばCN基やロダニン構造を有するものを用いるものとした。また、n型半導体層として、多孔質の酸化チタンを用いるものとした。また、Cu系材料として、Cuを含む半導体(例えばCuI、CuSCN、CuO及びCu2Oのうちいずれか1以上)を用いるものとした。この多孔質半導体層24を形成するときに、多孔質半導体層24に含まれる、S及びNのうち少なくとも一方を含む電子受容部位を有する有機色素分子とCu系材料とが相互作用し、有機色素分子の光吸収特性が長波長側に拡大するものと考えられる。この長波長シフトにより、光電変換に利用可能な波長領域が広がることによって、色素増感型太陽電池40の光電変換特性が向上するものと考えられる。次に、p型半導体層形成工程では、多孔質半導体層24の裏面25へ固体p型半導体を供給し、その後乾燥させて固体p型半導体層26を形成してもよい。ここでは、固体p型半導体として、Cuを含む半導体を用いるものとした。続いて、セパレータ形成工程では、溝18に合わせて光電極20の側面にセパレータ29を形成する。対極形成工程では、セパレータ29と固体p型半導体層26とに接するように対極30を形成する。対極30は、例えばカーボンとしてもよい。保護部材形成工程では、各セルを覆うようにシール材32を形成すると共にシール材32に保護部材34を形成する。このようにして、発電特性が向上した色素増感型太陽電池40及び色素増感型太陽電池モジュール10を作製することができる。 The dye-sensitized solar cell module 10 is manufactured through a substrate manufacturing process, a porous semiconductor layer forming process, a p-type semiconductor layer forming process, a separator forming process, a counter electrode forming process, and a protective member forming process as a manufacturing method. Can do. In the substrate manufacturing process, the transparent conductive film 12 is formed on the transparent substrate 11 while forming the grooves 18 between the plurality of transparent conductive films 12. In the porous semiconductor layer forming step, an n-type semiconductor layer is formed on the transparent conductive film 12 via the base layer 22, and an organic dye is adsorbed to the n-type semiconductor layer, and then a Cu-based material is added to form a composite. 28 is formed, and the porous semiconductor layer 24 is formed. Here, as the organic dye, the organic dye molecule having an electron accepting site including at least one of S and N described above, for example, one having a CN group or a rhodanine structure is used. Further, porous titanium oxide is used as the n-type semiconductor layer. In addition, a semiconductor containing Cu (for example, any one or more of CuI, CuSCN, CuO, and Cu 2 O) is used as the Cu-based material. When the porous semiconductor layer 24 is formed, an organic dye molecule having an electron accepting site containing at least one of S and N contained in the porous semiconductor layer 24 interacts with a Cu-based material, and the organic dye It is considered that the light absorption characteristics of the molecules expand to the long wavelength side. This long wavelength shift is considered to improve the photoelectric conversion characteristics of the dye-sensitized solar cell 40 by expanding the wavelength region that can be used for photoelectric conversion. Next, in the p-type semiconductor layer formation step, the solid p-type semiconductor layer 26 may be formed by supplying a solid p-type semiconductor to the back surface 25 of the porous semiconductor layer 24 and then drying it. Here, a semiconductor containing Cu is used as the solid p-type semiconductor. Subsequently, in the separator forming step, a separator 29 is formed on the side surface of the photoelectrode 20 in alignment with the groove 18. In the counter electrode forming step, the counter electrode 30 is formed in contact with the separator 29 and the solid p-type semiconductor layer 26. The counter electrode 30 may be carbon, for example. In the protective member forming step, the sealing material 32 is formed so as to cover each cell, and the protective member 34 is formed on the sealing material 32. In this manner, the dye-sensitized solar cell 40 and the dye-sensitized solar cell module 10 with improved power generation characteristics can be produced.

なお、本発明は上述した実施形態に何ら限定されることはなく、本発明の技術的範囲に属する限り種々の態様で実施し得ることはいうまでもない。   It should be noted that the present invention is not limited to the above-described embodiment, and it goes without saying that the present invention can be implemented in various modes as long as it belongs to the technical scope of the present invention.

例えば上述した実施形態では、色素増感型太陽電池モジュール10としたが、特にこれに限定されず、色素増感型太陽電池40としてもよいし、受光に伴い電子を放出する有機色素とn型半導体層とCu系材料とにより形成される光電極20としてもよいし、有機色素とCu系材料とを含有した複合体28としてもよい。色素増感型太陽電池40を単体とする場合は、対極30の断面をL字状ではなく、平板状に形成するものとしてもよい。   For example, in the above-described embodiment, the dye-sensitized solar cell module 10 is used. However, the dye-sensitized solar cell module 10 is not particularly limited thereto, and the dye-sensitized solar cell 40 may be used. The photoelectrode 20 may be formed of a semiconductor layer and a Cu-based material, or may be a composite 28 containing an organic dye and a Cu-based material. When the dye-sensitized solar cell 40 is used alone, the counter electrode 30 may be formed in a flat plate shape instead of an L shape.

以下には、本発明の複合体、光電極及び色素増感型太陽電池を具体的に作製した例を実施例として説明する。   Hereinafter, examples in which the composite, the photoelectrode, and the dye-sensitized solar cell of the present invention were specifically manufactured will be described as examples.

[複合体の光吸収特性評価]
固体p型半導体層としてCuIを用い、有機色素分子として色素1〜11(図2〜4参照)を用いて本発明の複合体を作製し、光の吸収スペクトルを検討した。ここでは、色素のみ、CuIのみ、CuIと色素との複合体の3種を測定し、複合体の吸収スペクトルからCuIの吸収スペクトルを差し引き、色素のみで得られる吸収スペクトルと複合体に含まれる色素で得られる吸収スペクトルとの対比を行い、その特性を評価した。
吸収スペクトルは、分光光度計(日立製作所社製U−3400)により、290nm〜900nmの波長領域で測定した。
[Evaluation of light absorption characteristics of composite]
The composite of the present invention was prepared using CuI as the solid p-type semiconductor layer and dyes 1 to 11 (see FIGS. 2 to 4) as organic dye molecules, and the light absorption spectrum was examined. Here, the dye alone, CuI only, and the complex of CuI and dye are measured, the absorption spectrum of CuI is subtracted from the absorption spectrum of the complex, and the absorption spectrum obtained only with the dye and the dye contained in the complex The properties were evaluated by comparing with the absorption spectrum obtained in (1).
The absorption spectrum was measured with a spectrophotometer (U-3400 manufactured by Hitachi, Ltd.) in a wavelength region of 290 nm to 900 nm.

[実施例1〜9(複合体)]
色素が5μM、CuIが30mMとなるように色素とCuIとを溶媒としてのアセトニトリル(AcCN)に混合して複合体を作製した。図2,3に示した色素1〜9を用いて作製した複合体をそれぞれ実施例1〜9の複合体とした。
[Examples 1 to 9 (complex)]
The complex was prepared by mixing the dye and CuI in acetonitrile (AcCN) as a solvent so that the dye was 5 μM and CuI was 30 mM. The composites produced using the dyes 1 to 9 shown in FIGS. 2 and 3 were used as composites of Examples 1 to 9, respectively.

[比較例1,2(複合体)]
図4に示す、Ru錯体を色素10とした。この色素10が10μM、CuIが30mMとなるように色素10とCuIとをアセトニトリル(AcCN)に混合し、得られたものを比較例1の複合体とした。また、図4に示す、S及びNを含むが電子受容部位を有さない有機色素分子を色素11とした。この色素11が5μM、CuIが30mMとなるように色素とCuIとをアセトニトリル(AcCN)に混合し、得られたものを比較例2の複合体とした。
[Comparative Examples 1 and 2 (composite)]
The Ru complex shown in FIG. The dye 10 and CuI were mixed with acetonitrile (AcCN) so that the dye 10 was 10 μM and CuI was 30 mM, and the resultant was used as the composite of Comparative Example 1. An organic dye molecule containing S and N but having no electron accepting site shown in FIG. The dye and CuI were mixed with acetonitrile (AcCN) so that the dye 11 was 5 μM and CuI was 30 mM, and the resultant was used as the composite of Comparative Example 2.

(複合体の実験結果)
実施例1〜9の複合体の吸収スペクトルの測定結果を図5〜13に示し、比較例1,2の吸収スペクトルの測定結果を図14,15に示した。まず、実施例1〜9では、複合体の作製において、色素とCuIとを混合した時点で溶液の発色が変化し、何らかの相互作用が起きていることが予想された。これに対して、比較例1,2では、溶液の発色に変化はなかった。図14に示すように、比較例10の色素10では、吸収スペクトルのピークが短波長側にシフトした、即ち色素増感型太陽電池としては不利な方向にシフトした。これは、色素10のようなSCN基を持つRu錯体の場合、Ru(Metal)−配位子(Ligand)間のMLCT(Metal to Ligand Charge Transfer)が、配位子SCN基のSとCuIとの相互作用により変化し、短波長側にシフトするものと推察された。また、図15に示すように、比較例11の色素11では、吸収スペクトルのピーク位置に変化はなかった。このため、色素11とCuIとの間で明確な相互作用はないものと推察された。これに対して、実施例1〜9の色素1〜9の複合体では、吸収スペクトルのピークが長波長側にシフトした、即ち色素増感型太陽電池としては有利な方向にシフトした。このように、色素1〜9とCuIとの間で相互作用が明確に認められた。
(Experimental result of complex)
The measurement results of the absorption spectra of the composites of Examples 1 to 9 are shown in FIGS. 5 to 13, and the measurement results of the absorption spectra of Comparative Examples 1 and 2 are shown in FIGS. First, in Examples 1 to 9, it was predicted that the color development of the solution changed at the time when the dye and CuI were mixed, and some kind of interaction occurred in the production of the composite. On the other hand, in Comparative Examples 1 and 2, there was no change in the color of the solution. As shown in FIG. 14, in the dye 10 of Comparative Example 10, the peak of the absorption spectrum shifted to the short wavelength side, that is, shifted in a disadvantageous direction as a dye-sensitized solar cell. This is because, in the case of a Ru complex having an SCN group such as the dye 10, MLCT (Metal to Ligand Charge Transfer) between Ru (Metal) -ligand (Ligand) is determined by S and CuI of the ligand SCN group. It was inferred that it changed due to the interaction of and shifted to the short wavelength side. Moreover, as shown in FIG. 15, in the pigment | dye 11 of the comparative example 11, there was no change in the peak position of an absorption spectrum. For this reason, it was guessed that there was no clear interaction between the pigment | dye 11 and CuI. On the other hand, in the composites of dyes 1 to 9 in Examples 1 to 9, the absorption spectrum peak shifted to the longer wavelength side, that is, shifted in an advantageous direction as a dye-sensitized solar cell. Thus, the interaction was clearly recognized between the pigment | dyes 1-9 and CuI.

[光電極の光吸収特性評価]
TCOガラス基板上に、多孔質半導体層24のn型半導体層として多孔質酸化チタン膜をスクリーン印刷法で塗布し、150℃で乾燥したのち、電気炉内で450℃に加熱して、酸化チタン膜基板を作製した。次に、色素1〜11を各々含む色素溶液を調製した。上述した色素1,2,4〜9,11を0.4mM溶解したアセトニトリルとtert−ブチルアルコールとを混合した混合溶液を調製し、各々の色素溶液とした。また、上述した色素3を0.4mM溶解したトルエンを調製し、色素溶液とした。また、上述した色素10を0.3mM溶解したアセトニトリルとtert−ブチルアルコールとを混合した混合溶液を調製し、色素溶液とした。続いて、上記作製した色素1〜11を各々含む色素溶液に上記酸化チタン膜基板をそれぞれ浸漬し、25℃の温度条件の下で15時間放置した。このように、酸化チタン膜基板に色素1〜11を吸着させた基板をそれぞれ作製した。続いて、アセトニトリルにCuIを飽和させ、1−メチル3−エチルイミダゾリウムチオシアネート(EMISCN)を添加してCuI溶液を調製した。40℃〜120℃のホットプレート上に、上記得られた色素吸着酸化チタン膜基板を酸化チタン膜が上になるように静置した。調製したCuI溶液を色素吸着酸化チタン膜上に10μL滴下し、CuIが色素吸着した酸化チタン膜内の色素と複合体を形成させ、CuI溶液に含まれる溶媒を蒸発させることによりCuIを充填させた。このようにして、光電極を作製した。色素1〜9を用いて得られたものをそれぞれ実施例1〜9の光電極とし、色素10,11を用いて得られたものをそれぞれ比較例1,2の光電極とした。ここでは、TiO2のみ、TiO2と色素とを含むもの、TiO2と色素とCuIとを含む光電極、の3種を測定し、TiO2と色素とを含むものの吸収スペクトルとTiO2と色素とCuIとを含む光電極の吸収スペクトルとの対比を行い、その特性を評価した。
[Evaluation of light absorption characteristics of photoelectrode]
On the TCO glass substrate, a porous titanium oxide film is applied as an n-type semiconductor layer of the porous semiconductor layer 24 by a screen printing method, dried at 150 ° C., and then heated to 450 ° C. in an electric furnace. A membrane substrate was prepared. Next, a dye solution containing each of the dyes 1 to 11 was prepared. A mixed solution prepared by mixing acetonitrile and tert-butyl alcohol in which 0.4 mM of the above-described dyes 1, 2, 4 to 9, 11 was dissolved was prepared and used as each dye solution. In addition, toluene in which 0.4 mM of the above-described dye 3 was dissolved was prepared and used as a dye solution. Moreover, the mixed solution which mixed acetonitrile and tert- butyl alcohol which melt | dissolved 0.3 mM of the pigment | dyes 10 mentioned above was prepared, and it was set as the pigment | dye solution. Subsequently, the titanium oxide film substrate was respectively immersed in the dye solutions containing the prepared dyes 1 to 11 and allowed to stand for 15 hours under a temperature condition of 25 ° C. Thus, the board | substrate which adsorb | sucked the pigment | dyes 1-11 to the titanium oxide film board | substrate was each produced. Subsequently, CuI was saturated with acetonitrile, and 1-methyl 3-ethylimidazolium thiocyanate (EMISCN) was added to prepare a CuI solution. The dye-adsorbed titanium oxide film substrate obtained above was placed on a hot plate at 40 ° C. to 120 ° C. so that the titanium oxide film was on top. 10 μL of the prepared CuI solution was dropped on the dye-adsorbed titanium oxide film to form a complex with the dye in the titanium oxide film adsorbed by CuI, and the solvent contained in the CuI solution was evaporated to fill the CuI. . In this way, a photoelectrode was produced. Those obtained using the dyes 1 to 9 were used as the photoelectrodes of Examples 1 to 9, respectively, and those obtained using the dyes 10 and 11 were used as the photoelectrodes of Comparative Examples 1 and 2, respectively. Here, only TiO 2, those containing TiO 2 and a dye, the optical electrode comprising TiO 2 and dye and CuI, the three measures, the absorption spectrum and TiO 2 and a dye of those containing TiO 2 and dye Was compared with the absorption spectrum of a photoelectrode containing CuI, and its characteristics were evaluated.

(光電極の実験結果)
実施例3,6〜9の光電極の吸収スペクトルの測定結果を図16〜20に示し、比較例1,2の吸収スペクトルの測定結果を図21,22に示した。図21に示すように、比較例10の色素10を用いた光電極では、TiO2と色素とを含むものに対して、TiO2と色素とCuIとを含む光電極の吸収スペクトルが短波長側にシフトした、即ち色素増感型太陽電池としては不利な方向にシフトした。また、図22に示すように、比較例11の色素11を用いた光電極では、光電極の吸収スペクトルのピーク位置に変化はなかった。これに対して、図16〜20に示した実施例3,6〜9の色素の光電極では、TiO2と色素とを含むものに対して、TiO2と色素とCuIとを含む光電極の吸収スペクトルのピークが長波長側にシフトした、即ち色素増感型太陽電池としては有利な方向にシフトした。これらの結果は、複合体での結果を支持するものである。なお、図17の下段には、実施例6の(TiO2/色素)の測定結果からTiO2の測定結果を差し引いたスペクトルと、(TiO2/色素/CuI)の測定結果からTiO2との測定結果を差し引いたスペクトルを示した。CuIの添加によって光の透過率が変化することから、図17では吸収量の絶対値では比較できないが、吸収スペクトルのピーク位置については後者の方が長波長側にシフトしていることがわかった。これらの結果より、実施例3,6〜9の光電極では、TiO2と色素とCuIとを組み合わせて光電極とすることで、光電変換特性をより高めることができることがわかった。なお、その他の実施例の光電極でも同様であった。
(Photoelectrode experiment results)
The measurement results of the absorption spectra of the photoelectrodes of Examples 3 and 6 to 9 are shown in FIGS. 16 to 20, and the measurement results of the absorption spectra of Comparative Examples 1 and 2 are shown in FIGS. As shown in FIG. 21, in the optical electrode using a dye 10 in Comparative Example 10, relative to those containing TiO 2 and a dye, the absorption spectrum of the photoelectrode containing TiO 2 and a dye and CuI are short wavelength side That is, it shifted in a disadvantageous direction as a dye-sensitized solar cell. Moreover, as shown in FIG. 22, in the photoelectrode using the pigment | dye 11 of the comparative example 11, there was no change in the peak position of the absorption spectrum of a photoelectrode. In contrast, in Example 3,6~9 shown in FIG. 16 to 20 in the photoelectrode of a dye, with respect to those containing TiO 2 and a dye, the photoelectrode including the TiO 2 and the dye and CuI The peak of the absorption spectrum was shifted to the longer wavelength side, that is, shifted in an advantageous direction as a dye-sensitized solar cell. These results support the results with the complex. In the lower part of FIG. 17, the spectrum obtained by subtracting the measurement result of TiO 2 from the measurement result of (TiO 2 / dye) in Example 6 and the measurement result of (TiO 2 / dye / CuI) of TiO 2 are shown. The spectrum obtained by subtracting the measurement results is shown. Since the light transmittance changes due to the addition of CuI, the absolute value of the amount of absorption cannot be compared in FIG. 17, but the latter is shifted to the longer wavelength side for the peak position of the absorption spectrum. . From these results, it was found that in the photoelectrodes of Examples 3 and 6 to 9, the photoelectric conversion characteristics can be further improved by combining TiO 2 , a dye, and CuI to form a photoelectrode. The same applies to the photoelectrodes of the other examples.

[色素増感型太陽電池IPCE特性及び太陽電池特性評価]
上記光電極の作製と同様に、酸化チタン膜基板、色素溶液、CuI溶液を調製し、40℃〜120℃のホットプレート上に、上記得られた色素吸着酸化チタン膜基板を酸化チタン膜が上になるように静置した。次に、調製したCuI溶液を色素吸着酸化チタン膜上に500μL滴下し、CuIが色素吸着した酸化チタン膜内の色素と複合体を形成させ、CuI溶液に含まれる溶媒を蒸発させることによりCuIを充填させ、且つ酸化チタン膜の上部にもCuI層(固体p型半導体層)を形成した。そして、このCuI層の上に、対極としてのPt薄膜を配置し、色素増感型太陽電池を作製した。まず、ヨウ素レドックス電解液を用いた色素増感型太陽電池に対する、CuIを用いた本発明の色素増感型太陽電池の特性を検討した。ヨウ素レドックスには、ヨウ素、ヨウ化1,2−ジメチル−3−プロピルイミダゾリウムを溶解したγ−ブチロラクトン溶液を用いた。評価は、IPCE値と短絡電流密度JSC値で行った。ヨウ素レドックス反応を用いた色素増感型太陽電池の短絡電流密度JSC値を「1」とし、実施例及び比較例の色素増感型太陽電池の短絡電流密度JSC値を比として求めた。ここでは、実施例7,8及び比較例1,2の色素増感型太陽電池を評価した。また、CuIを用いた場合の色素増感型太陽電池の特性に対する色素の比較を行った。ここでは、比較例1の色素10を用いた色素増感型太陽電池の短絡電流密度JSC値、開放電圧VOC、変換効率ηを「1」として、実施例7,8との比較を行った。なお、IPCEとは、照射光量(又は光子数)に対して得られた電子数から単色光あたりの光電変換効率(外部量子収率)を算出して得られた値をいう。
[Dye-sensitized solar cell IPCE characteristic and solar cell characteristic evaluation]
Similar to the production of the photoelectrode, a titanium oxide film substrate, a dye solution, and a CuI solution are prepared, and the titanium oxide film is placed on the obtained dye-adsorbed titanium oxide film substrate on a hot plate at 40 ° C. to 120 ° C. Left to stand. Next, 500 μL of the prepared CuI solution is dropped on the dye-adsorbed titanium oxide film to form a complex with the dye in the titanium oxide film adsorbed by CuI, and the CuI solution is evaporated by evaporating the solvent contained in the CuI solution. A CuI layer (solid p-type semiconductor layer) was also formed on the titanium oxide film. And the Pt thin film as a counter electrode was arrange | positioned on this CuI layer, and the dye-sensitized solar cell was produced. First, the characteristics of the dye-sensitized solar cell of the present invention using CuI with respect to the dye-sensitized solar cell using the iodine redox electrolyte were examined. For iodine redox, a γ-butyrolactone solution in which iodine and 1,2-dimethyl-3-propylimidazolium iodide were dissolved was used. The evaluation was performed using the IPCE value and the short-circuit current density J SC value. The short-circuit current density J SC value of the dye-sensitized solar cell using the iodine redox reaction to "1" to determine the short-circuit current density J SC value of the dye-sensitized solar cells of Examples and Comparative Examples as a ratio. Here, the dye-sensitized solar cells of Examples 7 and 8 and Comparative Examples 1 and 2 were evaluated. Moreover, the pigment | dye was compared with the characteristic of the pigment | dye sensitized solar cell at the time of using CuI. Here, the short-circuit current density J SC value, the open circuit voltage V OC , and the conversion efficiency η of the dye-sensitized solar cell using the dye 10 of Comparative Example 1 are set to “1” and compared with Examples 7 and 8. It was. IPCE refers to a value obtained by calculating the photoelectric conversion efficiency (external quantum yield) per monochromatic light from the number of electrons obtained with respect to the irradiation light quantity (or the number of photons).

(色素増感型太陽電池の実験結果)
実施例7〜9のセルの波長に対するIPCE測定結果を図23〜25に示し、比較例1,2のセルの波長に対するIPCE測定結果を図26,27に示し、CuIを用いた場合のセルの実施例7,8及び比較例1の電流−電圧特性測定結果を図28に示した。また、ヨウ素レドックス電解液に対するCuI電解質の短絡電流密度比を表1に示し、比較例1に対する実施例7,8の短絡電流密度比、開放電圧比、変換効率比を表2に示す。図26に示すように、比較例10の色素10を用いたセルでは、ヨウ素レドックスの電解液を用いたセルに比してIPCEスペクトルが短波長側にシフトした、即ち色素増感型太陽電池としては不利な方向にシフトした。また、図27に示すように、比較例11の色素11を用いたセルでは、IPCEスペクトルのピーク位置に変化はなかった。これに対して、実施例7〜9の複合体を用いたセルでは、ヨウ素レドックス電解液を用いたものに対して、複合体を含むセルの吸収スペクトルが長波長側にシフトした、即ち色素増感型太陽電池としては有利な方向にシフトした。これらの結果は、複合体での結果を支持するものである。表1に示すように、ヨウ素レドックス電解液を用いたセルの短絡電流密度(JSC)に対する複合体を用いたセルの短絡電流密度(JSC)の比が、比較例1のセルでは0.8と低い値であるのに対し、実施例7,8のセルでは1.7及び1.2と高い値を示した。このように、実施例7〜9のセルでは、光電変換特性をより高めることができることがわかった。なお、その他の実施例のセルにおいても同様であった。また、表2及び図28に示すように、CuIを用いた場合のセルの短絡電流密度JSC値については、上述のIPCE向上の効果により、比較例1の色素10よりも実施例7,8の色素7,8を用いた色素増感型太陽電池の方が増大した。また、CuIを用いた場合のセルの開放電圧VOCについても、色素10に比して色素7,8が酸化チタンとCuIとの界面を有利に制御するなどの効果を奏すると推察され、比較例1の色素10よりも実施例7,8の色素7,8を用いた色素増感型太陽電池の方が増大した。また、CuIを用いた場合のセルの変換効率ηは、比較例1に比して実施例7,8の色素増感型太陽電池が向上することがわかった。
(Experimental result of dye-sensitized solar cell)
The IPCE measurement results with respect to the wavelengths of the cells of Examples 7 to 9 are shown in FIGS. 23 to 25, the IPCE measurement results with respect to the wavelengths of the cells of Comparative Examples 1 and 2 are shown in FIGS. The current-voltage characteristic measurement results of Examples 7 and 8 and Comparative Example 1 are shown in FIG. Further, the short-circuit current density ratio of the CuI electrolyte to the iodine redox electrolyte is shown in Table 1, and the short-circuit current density ratio, open-circuit voltage ratio, and conversion efficiency ratio of Examples 7 and 8 relative to Comparative Example 1 are shown in Table 2. As shown in FIG. 26, in the cell using the dye 10 of Comparative Example 10, the IPCE spectrum was shifted to the short wavelength side as compared with the cell using the iodine redox electrolyte, that is, as a dye-sensitized solar cell. Shifted in a disadvantageous direction. Moreover, as shown in FIG. 27, in the cell using the pigment | dye 11 of the comparative example 11, there was no change in the peak position of an IPCE spectrum. On the other hand, in the cells using the composites of Examples 7 to 9, the absorption spectrum of the cell containing the composites was shifted to the longer wavelength side compared to the cells using the iodine redox electrolyte solution, that is, the dye increase. It shifted to an advantageous direction as a sensitive solar cell. These results support the results with the complex. As shown in Table 1, the ratio of the short-circuit current density (J SC ) of the cell using the composite to the short-circuit current density (J SC ) of the cell using iodine redox electrolyte was 0. In contrast to the low value of 8, the cells of Examples 7 and 8 showed high values of 1.7 and 1.2. Thus, it was found that the photoelectric conversion characteristics can be further improved in the cells of Examples 7 to 9. The same applies to the cells of the other examples. Further, as shown in Table 2 and FIG. 28, the short circuit current density J SC value of the cell when using CuI was found to be higher than that of the dye 10 of Comparative Example 1 in Examples 7 and 8 due to the above-mentioned IPCE improvement effect. The dye-sensitized solar cells using the dyes 7 and 8 were increased. In addition, regarding the open-circuit voltage V OC of the cell when CuI is used, it is presumed that the dyes 7 and 8 have an advantageous effect of controlling the interface between titanium oxide and CuI as compared with the dye 10. The dye-sensitized solar cell using the dyes 7 and 8 of Examples 7 and 8 increased more than the dye 10 of Example 1. It was also found that the cell conversion efficiency η when using CuI was improved in the dye-sensitized solar cells of Examples 7 and 8 as compared with Comparative Example 1.

本発明は、色素増感型太陽電池及び色素増感型太陽電池モジュールに好適に利用可能である。   The present invention can be suitably used for a dye-sensitized solar cell and a dye-sensitized solar cell module.

10 色素増感型太陽電池モジュール、11 透明基板、12 透明導電膜、13 受光面、14 透明導電性基板、15 受光面、16,17 集電電極、18 溝、20 光電極、21 接続部、22 下地層、23 受光面、24 多孔質半導体層、25 裏面、26 固体p型半導体層、27 裏面、28 複合体、29 セパレータ、30 対極、32 シール材、34 保護部材、40 色素増感型太陽電池。   10 Dye-sensitized solar cell module, 11 Transparent substrate, 12 Transparent conductive film, 13 Light receiving surface, 14 Transparent conductive substrate, 15 Light receiving surface, 16, 17 Current collecting electrode, 18 Groove, 20 Photo electrode, 21 Connection portion, 22 Underlayer, 23 Light-receiving surface, 24 Porous semiconductor layer, 25 Back surface, 26 Solid p-type semiconductor layer, 27 Back surface, 28 Composite, 29 Separator, 30 Counter electrode, 32 Sealing material, 34 Protection member, 40 Dye-sensitized type Solar cell.

Claims (15)

S及びNのうち少なくとも一方を含む電子受容部位を有する有機色素分子と、
Cu,Ag,Au,Ni,Co,Cr,Pt,Pdのうち少なくとも1以上を含んでいる半導体及び導電体のうち少なくとも一方である金属含有材料と、を含有し
前記有機色素分子は、式(1)〜(3)に示すいずれかの構造を有する化合物である(但し、式(1)の化合物の置換基の末端には式(4)の構造を有していてもよく、式(3)の化合物の置換基の末端には、式(5)、(6)のいずれかの構造を有していてもよい)、複合体。
An organic dye molecule having an electron accepting site containing at least one of S and N;
A metal-containing material that is at least one of a semiconductor and a conductor containing at least one of Cu, Ag, Au, Ni, Co, Cr, Pt, and Pd ,
The organic dye molecule is a compound having any one of the structures represented by formulas (1) to (3) (provided that the substituent of the compound of formula (1) has the structure of formula (4)). even if well, the end of the substituents of the compounds of formula (3), equation (5) may have any structure of (6)), multiple combined.
前記金属含有材料は、Cuを含む半導体及びCuを含む導電体のうち少なくとも一方を含むCu系材料である、請求項1に記載の複合体。   The composite according to claim 1, wherein the metal-containing material is a Cu-based material including at least one of a semiconductor including Cu and a conductor including Cu. 前記Cu系材料は、CuI、CuSCN、CuO、Cu2O、Cuのうちいずれか1以上を含む、請求項2に記載の複合体。 The composite according to claim 2, wherein the Cu-based material includes one or more of CuI, CuSCN, CuO, Cu 2 O, and Cu. 前記有機色素分子は、前記式(2)に示すロダニン構造のNに結合した置換基R4が炭素数3以上20以下であるアルキル基及び炭素数1以上20以下の炭素鎖に結合したカルボキシル基のうちいずれか一方である、請求項1〜3のいずれか1項に記載の複合体。 The organic dye molecule includes an alkyl group having 3 to 20 carbon atoms and a carboxyl group having 1 to 20 carbon atoms and a substituent R 4 bonded to N of the rhodanine structure represented by the formula (2). The complex according to any one of claims 1 to 3, which is any one of the above. 前記有機色素分子は、前記ロダニン構造の置換基R5及びR6の少なくとも一方が更に前記ロダニン構造を有している、請求項1〜4のいずれか1項に記載の複合体。 The organic dye molecules, the rhodanine at least one of the substituents R 5 and R 6 of the structure further comprises the rhodanine structure composite according to any one of claims 1 to 4. 前記有機色素分子は、前記ロダニン構造の置換基R4、R5及びR6のうち少なくとも1つが、NとSとの少なくとも一方を含む芳香環及び、NとSとの少なくとも一方が結合した芳香環、のうち少なくとも一方を含んでいる、請求項1〜5のいずれか1項に記載の複合体。 The organic dye molecule includes an aromatic ring in which at least one of the substituents R 4 , R 5 and R 6 of the rhodanine structure includes at least one of N and S, and an aromatic in which at least one of N and S is bonded. The complex according to any one of claims 1 to 5 , comprising at least one of rings. 色素増感型太陽電池に用いられる光電極であって、
請求項1〜のいずれか1項に記載の複合体と、該複合体の有機色素分子が吸着しているn型半導体層と、前記n型半導体層が形成されている導電性基板と、を備えた光電極。
A photoelectrode used in a dye-sensitized solar cell,
The composite according to any one of claims 1 to 6 , an n-type semiconductor layer on which organic dye molecules of the composite are adsorbed, a conductive substrate on which the n-type semiconductor layer is formed, A photoelectrode.
前記n型半導体層は、酸化チタン、酸化スズ、酸化亜鉛、硫化カドミウム、硫化亜鉛のうち少なくとも1以上を含む、請求項に記載の光電極。 The photoelectrode according to claim 7 , wherein the n-type semiconductor layer contains at least one of titanium oxide, tin oxide, zinc oxide, cadmium sulfide, and zinc sulfide. 前記n型半導体層は、酸化チタンである、請求項に記載の光電極。 The photoelectrode according to claim 8 , wherein the n-type semiconductor layer is titanium oxide. 光が透過し透明導電膜が形成されている透明基板と、
前記透明基板に隣接して設けられ、請求項1〜のいずれか1項に記載の複合体と該複合体の有機色素分子が吸着しているn型半導体層と前記n型半導体層が形成されている導電性基板とを備えた光電極と、
前記光電極に隣接して設けられた対極と、
を備えた色素増感型太陽電池。
A transparent substrate through which light is transmitted and a transparent conductive film is formed;
An n-type semiconductor layer provided adjacent to the transparent substrate and adsorbed with the complex according to any one of claims 1 to 6 and an organic dye molecule of the complex and the n-type semiconductor layer are formed. A photoelectrode comprising a conductive substrate,
A counter electrode provided adjacent to the photoelectrode;
A dye-sensitized solar cell comprising:
前記n型半導体層は、酸化チタン、酸化スズ、酸化亜鉛、硫化カドミウム、硫化亜鉛のうち少なくとも1以上を含む、請求項10に記載の色素増感型太陽電池。 The dye-sensitized solar cell according to claim 10 , wherein the n-type semiconductor layer includes at least one of titanium oxide, tin oxide, zinc oxide, cadmium sulfide, and zinc sulfide. 前記n型半導体層は、酸化チタンである、請求項11に記載の色素増感型太陽電池。 The dye-sensitized solar cell according to claim 11 , wherein the n-type semiconductor layer is titanium oxide. 光が透過し透明導電膜が形成されている透明基板と、前記透明基板に隣接して設けられ、請求項1〜のいずれか1項に記載の複合体と該複合体の有機色素分子が吸着しているn型半導体層と前記n型半導体層が形成されている導電性基板とを備えた光電極と、前記光電極に隣接して設けられた対極と、を備えた色素増感型太陽電池を複数備えている、色素増感型太陽電池モジュール。 A transparent substrate on which light is transmitted and a transparent conductive film is formed, and provided adjacent to the transparent substrate. The complex according to any one of claims 1 to 6 and an organic dye molecule of the complex Dye-sensitized type comprising a photoelectrode comprising an adsorbing n-type semiconductor layer and a conductive substrate on which the n-type semiconductor layer is formed, and a counter electrode provided adjacent to the photoelectrode A dye-sensitized solar cell module comprising a plurality of solar cells. 前記n型半導体層は、酸化チタン、酸化スズ、酸化亜鉛、硫化カドミウム、硫化亜鉛のうち少なくとも1以上を含む、請求項13に記載の色素増感型太陽電池モジュール。 The dye-sensitized solar cell module according to claim 13 , wherein the n-type semiconductor layer includes at least one of titanium oxide, tin oxide, zinc oxide, cadmium sulfide, and zinc sulfide. 前記n型半導体層は、酸化チタンである、請求項14に記載の色素増感型太陽電池モジュール。 The dye-sensitized solar cell module according to claim 14 , wherein the n-type semiconductor layer is titanium oxide.
JP2010068723A 2010-03-24 2010-03-24 Composite, photoelectrode, dye-sensitized solar cell, and dye-sensitized solar cell module Expired - Fee Related JP5535718B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010068723A JP5535718B2 (en) 2010-03-24 2010-03-24 Composite, photoelectrode, dye-sensitized solar cell, and dye-sensitized solar cell module

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010068723A JP5535718B2 (en) 2010-03-24 2010-03-24 Composite, photoelectrode, dye-sensitized solar cell, and dye-sensitized solar cell module

Publications (2)

Publication Number Publication Date
JP2011204789A JP2011204789A (en) 2011-10-13
JP5535718B2 true JP5535718B2 (en) 2014-07-02

Family

ID=44881165

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010068723A Expired - Fee Related JP5535718B2 (en) 2010-03-24 2010-03-24 Composite, photoelectrode, dye-sensitized solar cell, and dye-sensitized solar cell module

Country Status (1)

Country Link
JP (1) JP5535718B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6188330B2 (en) * 2012-01-24 2017-08-30 保土谷化学工業株式会社 Sensitizing dye for photoelectric conversion, photoelectric conversion element using the same, and dye-sensitized solar cell
JP6035966B2 (en) * 2012-08-03 2016-11-30 株式会社豊田中央研究所 Composite, photoelectrode, dye-sensitized solar cell, and dye-sensitized solar cell module
US10253421B2 (en) * 2012-12-31 2019-04-09 Chad William Mason Electrochemical cell, method of fabricating the same and method of generating current
JP6069022B2 (en) * 2013-02-22 2017-01-25 保土谷化学工業株式会社 Sensitizing dye for photoelectric conversion, photoelectric conversion element using the same, and dye-sensitized solar cell
JP6224403B2 (en) * 2013-05-21 2017-11-01 三菱製紙株式会社 Dye for dye-sensitized solar cell, semiconductor electrode, and dye-sensitized solar cell

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4260765B2 (en) * 2005-04-25 2009-04-30 独立行政法人科学技術振興機構 Dye-sensitized solar cell using blue copper model complex as redox couple
US7973172B2 (en) * 2006-03-31 2011-07-05 National Institute Of Advanced Industrial Science And Technology Organic compound, semiconductor film electrode employing the organic compound, photoelectric conversion element employing the organic compound, and photoelectrochemical solar cell employing the organic compound
JP4770728B2 (en) * 2006-12-21 2011-09-14 セイコーエプソン株式会社 Photoelectric conversion element and electronic device

Also Published As

Publication number Publication date
JP2011204789A (en) 2011-10-13

Similar Documents

Publication Publication Date Title
Carella et al. Research progress on photosensitizers for DSSC
Zhou et al. Ladder-type pentaphenylene dyes for dye-sensitized solar cells
KR20100038077A (en) Coloring matter-sensitized photoelectric conversion element, process for producing the coloring matter-sensitized photoelectric conversion element, electronic equipment, semiconductor electrode, and process for rpoducing the semiconductor electrode
JP5629625B2 (en) Method for producing dye-sensitized solar cell, dye-sensitized solar cell, and dye-sensitized solar cell module
JP2001320068A (en) Transparent photoelectric converting element, photo cell using the same, optical sensor and window glass
US20140137945A1 (en) Pigment sensitization solar cell
JP5535718B2 (en) Composite, photoelectrode, dye-sensitized solar cell, and dye-sensitized solar cell module
Lee et al. Phenomenally high molar extinction coefficient sensitizer with “donor− acceptor” ligands for dye-sensitized solar cell applications
JP2012204275A (en) Method for manufacturing dye-sensitized solar cell, dye-sensitized solar cell, and dye-sensitized solar cell module
KR20150048317A (en) Dye-sensitized solar cell including polymer support layer, and preparing method of the same
JP5550238B2 (en) Metal complex dye and dye-sensitized solar cell using the same
KR20100115629A (en) Metal oxide semiconductor electrodes comprising hyper-hydrophobic compounds and manufacturing methods thereof
KR101551074B1 (en) Solid-state dye-sensitized solar cell with long-term stability containing pyridine compound as an adhesive
JP6490035B2 (en) Electrolyte, solar cell and solar cell module
JP2014186995A (en) Transparent dye-sensitized solar cell and dye-sensitized solar cell module
JP6591691B2 (en) Photoelectric conversion element, dye-sensitized solar cell, and dipyrromethene complex compound
JP6391080B2 (en) Ruthenium complex dye, dye solution, photoelectric conversion element and dye-sensitized solar cell
WO2018047498A1 (en) Photoelectric conversion element, dye-sensitized solar cell and dipyrromethene complex compound
JP6300337B2 (en) Photoelectric conversion element, dye-sensitized solar cell, ruthenium complex dye and dye solution
JP6472665B2 (en) Dye-sensitized solar cell, dye-sensitized solar cell module, and method for producing dye-sensitized solar cell
JP6035966B2 (en) Composite, photoelectrode, dye-sensitized solar cell, and dye-sensitized solar cell module
JP2018074039A (en) Solar battery, solar battery module, and method for manufacturing solar battery
KR101465454B1 (en) Photosensitizer for photovoltaic cell, and photovoltaic cell including same
JP2018046101A (en) Solar cell and solar cell module
KR101264083B1 (en) Novel asymmetric quinacridone photosensitizer for photovoltaic cell and photovoltaic cell including same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130111

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20131030

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140121

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140220

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140401

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140423

R150 Certificate of patent or registration of utility model

Ref document number: 5535718

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees