WO2013011731A1 - Device for detecting amount of surface inclination, processing position control device, and laser processing apparatus - Google Patents

Device for detecting amount of surface inclination, processing position control device, and laser processing apparatus Download PDF

Info

Publication number
WO2013011731A1
WO2013011731A1 PCT/JP2012/061611 JP2012061611W WO2013011731A1 WO 2013011731 A1 WO2013011731 A1 WO 2013011731A1 JP 2012061611 W JP2012061611 W JP 2012061611W WO 2013011731 A1 WO2013011731 A1 WO 2013011731A1
Authority
WO
WIPO (PCT)
Prior art keywords
electrode
surface tilt
galvanometer mirror
distance
voltage
Prior art date
Application number
PCT/JP2012/061611
Other languages
French (fr)
Japanese (ja)
Inventor
俊之 鉾館
研吾 内山
尚弘 高橋
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Publication of WO2013011731A1 publication Critical patent/WO2013011731A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/08Devices involving relative movement between laser beam and workpiece
    • B23K26/082Scanning systems, i.e. devices involving movement of the laser beam relative to the laser head
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/70Auxiliary operations or equipment
    • B23K26/702Auxiliary equipment
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/70Auxiliary operations or equipment
    • B23K26/702Auxiliary equipment
    • B23K26/707Auxiliary equipment for monitoring laser beam transmission optics

Definitions

  • the present invention relates to a surface tilt detection device, a processing position control device, and a laser processing device that detect surface tilt of a galvano scanner.
  • a laser processing apparatus that performs laser processing on a workpiece controls a laser beam irradiation position (processing position) on the workpiece by a galvano scanner.
  • processing position a laser beam irradiation position
  • the galvano scanner repeatedly moves the machining position at the same pitch, the surface tilt resonance of the rotor and the mirror is induced depending on the movement cycle of the machining position movement.
  • resonance occurs, the processing position is displaced in the direction orthogonal to the moving direction of the processing position by the galvano scanner.
  • the surface tilt resonance phenomenon cannot be detected only by detecting the angular position of the galvano scanner using an encoder.
  • the excitation force increases. It has become difficult to obtain positioning accuracy.
  • a method for detecting such surface-inclined resonance there is a method for detecting surface-inclined resonance based on the beam position of laser light (see, for example, Patent Documents 1 and 2).
  • the former and latter conventional techniques have a problem that it is difficult to actually detect the surface tilt of the galvanometer mirror because the configuration of the apparatus for detecting the beam position of the laser light is complicated and expensive. .
  • the present invention has been made in view of the above, and an object thereof is to obtain a surface tilt amount detection device, a processing position control device, and a laser processing device that easily detect the surface tilt of a galvanometer mirror with a simple configuration. .
  • the present invention is arranged on a rotation axis of a galvano mirror that deflects laser light to a processing position set in a processing area and performs the same operation as the galvano mirror.
  • a voltage detector that detects an interelectrode voltage between the first electrode and the second electrode; a surface tilt amount detector that detects a surface tilt amount of the galvanometer mirror based on the interelectrode voltage;
  • the surface tilt amount detection unit calculates an inter-electrode distance that is a distance between the first electrode and the second electrode as the surface tilt amount of the galvanometer mirror.
  • the surface tilt amount of the galvano mirror is calculated as the first electrode and the second electrode. Since the distance between the electrodes, which is the distance between the two, is calculated, it is possible to easily detect the surface tilt of the galvanometer mirror with a simple configuration.
  • FIG. 1 is a diagram illustrating a configuration of a laser processing apparatus according to an embodiment.
  • FIG. 2 is a block diagram illustrating a configuration of the control device.
  • FIG. 3 is a diagram showing the configuration of the galvanometer mirror.
  • FIG. 4 is a diagram illustrating a configuration of the surface tilt amount detection unit.
  • FIG. 5 is a diagram illustrating another configuration of the surface tilt amount detection unit.
  • FIG. 6 is a diagram illustrating the configuration of the galvano scanner.
  • FIG. 7 is a diagram for explaining the surface tilt resonance phenomenon.
  • FIG. 8 is a diagram for explaining the deviation amount of the reflection angle.
  • FIG. 9 is a diagram for explaining the relationship between the displacement amount of the inter-electrode distance and the tilt angle of the mirror surface.
  • FIG. 9 is a diagram for explaining the relationship between the displacement amount of the inter-electrode distance and the tilt angle of the mirror surface.
  • FIG. 10 is a diagram for explaining the relationship between the deviation amount of the reflection angle and the deviation amount of the laser light irradiation position.
  • FIG. 11 is a diagram for explaining the relationship between the deflection angle of the galvanometer mirror and the deviation amount of the reflection angle.
  • FIG. 12 is a diagram showing a laser beam irradiation position when there is no deviation in the reflection angle.
  • FIG. 13 is a diagram showing a laser beam irradiation position when there is a deviation in the reflection angle.
  • FIG. 14 is a diagram for explaining the amount of positional deviation in the X direction.
  • FIG. 15 is a diagram for explaining positional deviation correction in the X direction.
  • FIG. 16 is a diagram illustrating a connection configuration between the detected portion and the fixed electrode.
  • FIG. 17 is a diagram illustrating a configuration example of a capacitance detection sensor.
  • FIG. 18 is a diagram for explaining a method for calculating the distance between the detected portion and the fixed electrode.
  • FIG. 19 is a diagram illustrating the relationship between the capacitance and the inter-electrode distance.
  • FIG. 20 is a diagram showing the relationship between the interelectrode voltage and the interelectrode distance.
  • FIG. 21 is a diagram illustrating a configuration of the surface tilt amount detection unit when the interelectrode distance is calculated using the interelectrode voltage.
  • FIG. 22 is a diagram illustrating a configuration example of a current source circuit.
  • FIG. 23 is a diagram illustrating another configuration example of the capacitance detection sensor.
  • FIG. 24 is a diagram illustrating a circuit configuration example of a circuit that performs voltage detection according to the distance between the electrodes.
  • FIG. 25 is a diagram for explaining a conversion method from the detection voltage to the inter-electrode distance.
  • FIG. 26 is a diagram illustrating a hardware configuration of the control device.
  • FIG. 27 is a diagram for explaining an example of processing for creating instruction information to be sent to the galvanometer mirror.
  • FIG. 28 is a diagram for explaining the change period of the surface tilt amount.
  • FIG. 29 is a diagram for explaining another example of processing for creating instruction information to be sent to the galvanometer mirror.
  • FIG. 30 is a diagram illustrating another configuration example of the fixed electrode.
  • FIG. 31A is a diagram illustrating a configuration example of shield wiring.
  • FIG. 31-2 is an enlarged view of the fixed electrode.
  • FIG. 1 is a diagram illustrating a configuration of a laser processing apparatus according to an embodiment.
  • the laser processing apparatus 100 is an apparatus that forms a minute hole in the workpiece W by irradiation (cycle pulse mode) with laser light (pulse laser light) L1.
  • an electrostatic capacitance type distance sensor is attached to each of the X-axis and Y-axis galvanometer mirrors, and the amount of displacement (deviation amount) of the mirror surface due to surface tilt resonance of the galvanometer mirror is detected. Then, the positional deviation of the laser beam irradiation position (processing position) with respect to the displacement of the galvano mirror is canceled by the galvano mirror on which the mirror surface of the galvano mirror is not displaced, thereby improving the positioning accuracy of the processing position.
  • a laser processing apparatus 100 performs laser processing of a laser oscillator 1 that oscillates a laser beam L0, an image transfer optical mechanism 2 that shapes the laser beam L0 and adjusts it to a desired beam shape and beam energy, and a workpiece (workpiece) W.
  • a laser processing unit 4 and a control device 20 are provided.
  • a plurality of drilling positions set on the workpiece W are sequentially scanned, and a laser beam is irradiated to each hole in a plurality of cycles (a cycle in which laser light is irradiated one shot at a time). Is processed multiple times).
  • Laser oscillator 1 oscillates laser beam L0 and sends it to image transfer optical mechanism 2.
  • the image transfer optical mechanism 2 includes a collimation lens 2C and a mask 2M.
  • the collimation lens 2C collects the laser beam L0 from the laser oscillator 1 and adjusts (parallelizes) the optical axis, and the mask 2M shapes the beam shape of the laser beam L0.
  • the laser processing unit 4 includes galvanometer mirrors 3X and 3Y, galvanometer scanners 5X and 5Y, an f ⁇ lens 6, an XY table 8, and a surface tilt amount detection unit 10A.
  • the galvano scanners 5X and 5Y have a function (positioning function) for changing the trajectory of the laser light L0 to move the irradiation position on the workpiece W, and for scanning the laser light L0 in the XY direction. Then, the galvanometer mirrors 3X and 3Y are rotated to a predetermined angle. Accordingly, the galvano scanners 5X and 5Y cause the galvanometer mirrors 3X and 3Y to deflect the laser light L1 to the processing position set in the processing area.
  • the galvanometer mirrors 3X and 3Y reflect the laser beam (light beam) L0 emitted from the mask 2M of the image transfer optical mechanism 2 and deflect it at an arbitrary angle.
  • the galvanometer mirror 3X deflects the laser beam L0 in the X direction
  • the galvanometer mirror 3Y deflects the laser beam L0 in the Y direction.
  • the f ⁇ lens 6 deflects the laser beam L0 in a direction perpendicular to the surface of the workpiece W, and condenses (irradiates) the laser beam L0 on the processing position (surface) of the workpiece W.
  • the galvanometer mirrors 3X and 3Y are respectively provided with detected parts (detected parts 11X and 11Y to be described later) that are used for detection of surface tilt resonance (wobbling).
  • the detected part 11X included in the galvano mirror 3X is used for detecting the surface tilt resonance of the galvano mirror 3X
  • the detected part 11Y included in the galvano mirror 3Y is used for detecting the surface tilt resonance of the galvano mirror 3Y.
  • fixed electrodes fixed electrodes (fixed electrodes 14X and 14Y described later) are arranged in the vicinity of the detected portions 11X and 11Y in order to detect surface tilt resonance that occurs during laser processing.
  • the surface tilt amount detection unit 10 ⁇ / b> A detects the amount of mirror surface displacement (surface tilt amount) due to surface tilt resonance of the galvanometer mirrors 3 ⁇ / b> X and 3 ⁇ / b> Y, and sends the detection result to the control device 20.
  • the surface tilt amount detection unit 10A is configured to detect the detected unit 11X based on the capacitance between the detected unit 11X and the fixed electrode 14X that changes according to the distance between the detected unit 11X and the fixed electrode 14X. The distance to the fixed electrode 14X is detected. Similarly, the surface tilt amount detection unit 10A detects the detection target based on the capacitance between the detection unit 11Y and the fixed electrode 14Y that changes according to the distance between the detection unit 11Y and the fixed electrode 14Y. The distance between the part 11Y and the fixed electrode 14Y is detected. The distance between the detected part 11X and the fixed electrode 14X and the distance between the detected part 11Y and the fixed electrode 14Y vary according to the surface tilt amount of the galvanometer mirrors 3X and 3Y, respectively.
  • the control device 20 is based on the detection result (the distance between the detected part 11X and the fixed electrode 14X, the distance between the detected part 11Y and the fixed electrode 14Y) sent from the surface tilt amount detecting part 10A.
  • the position of the galvanometer mirrors 3X and 3Y is corrected.
  • the control device 20 is configured by a computer such as a personal computer, and controls the laser oscillator 1, the image transfer optical mechanism 2, and the laser processing unit 4 by NC (Numerical Control) control or the like.
  • the workpiece W is a printed circuit board or the like, and a plurality of drilling processes are performed.
  • the XY table 8 is used to place a workpiece W, and freely moves in a two-dimensional X-axis / Y-axis plane by driving an X-axis motor and a Y-axis motor (not shown).
  • the XY table 8 moves the processing area irradiated with the laser light L1 in the XY direction.
  • FIG. 2 is a block diagram showing the configuration of the control device.
  • the control device 20 is connected to the surface tilt amount detection unit 10A, and the surface tilt amount detection unit 10A is connected to the detected portions 11X and 11Y and the fixed electrodes 14X and 14Y.
  • the control device 20 is connected to the XY table 8, the laser oscillator 1, and the galvano scanners 5X and 5Y.
  • the control device 20 includes an input unit 21, a machining program storage unit 22, a correction amount calculation unit 23, an instruction creation unit 24, and an output unit 25.
  • the input unit 21 receives the detection result (distance between electrodes corresponding to the surface tilt amount of the galvano mirrors 3X and 3Y) from the surface tilt amount detection unit 10A and sends it to the correction amount calculation unit 23.
  • the machining program storage unit 22 is a memory that stores a machining program used for laser machining of the workpiece W. In the machining program, a machining position (coordinates) on the workpiece W is set.
  • the correction amount calculation unit 23 calculates a correction amount of the laser beam irradiation position (hereinafter referred to as a processing position correction amount) based on the surface tilt amount of the galvanometer mirrors 3X and 3Y.
  • a processing position correction amount a correction amount of the laser beam irradiation position
  • the relationship between the machining position correction amount and the surface tilt amount is stored in advance in the machining program storage unit 22, and the correction amount calculation unit 23 detects the relationship between the machining position correction amount and the surface tilt amount and the detection.
  • a machining position correction amount is calculated based on the surface tilt amount.
  • the correction amount calculation unit 23 sends the calculated machining position correction amount to the instruction creation unit 24.
  • the instruction creating unit 24 creates instruction information for the XY table 8 and the laser oscillator 1 based on the machining program in the machining program storage unit 22. In addition, the instruction creation unit 24 creates instruction information for the galvano scanners 5X and 5Y based on the machining program. In addition, the instruction creating unit 24 according to the present embodiment creates a corrected position command for correcting the position command to the galvano scanners 5X and 5Y using the machining position correction amount calculated by the correction amount calculating unit 23. The instruction creating unit 24 creates a correction position command so that the positional deviation of the laser beam irradiation position caused by the surface tilt resonance is canceled (so that the desired laser beam irradiation position is irradiated with the laser beam). The instruction creating unit 24 creates instruction information (position instruction) for the galvano scanners 5X and 5Y using the position instruction based on the machining program and the corrected position instruction.
  • the instruction creating unit 24 sends the created instruction information to the output unit 25.
  • the output unit 25 sends instruction information to the galvano scanners 5X and 5Y to the galvano scanners 5X and 5Y, and sends instruction information to the XY table 8 and the laser oscillator 1 to the XY table 8 and the laser oscillator 1, respectively.
  • the configuration of the galvanometer mirrors 3X and 3Y will be described. Since the galvano mirror 3X and the galvano mirror 3Y have the same configuration, the configuration of the galvano mirror 3Y will be described below. Since the galvano scanner 5X and the galvano scanner 5Y have the same configuration, the galvano scanner 5Y will be described when describing the galvano scanner.
  • FIG. 3 is a diagram showing the configuration of the galvanometer mirror.
  • the detected part 11Y is arranged on the rotation axis of the galvanometer mirror 3Y (substantially on the same axis as the rotor 52) and performs the same operation as the galvanometer mirror 3Y.
  • the detected portion 11Y and the galvanometer mirror 3Y rotate with the axial direction of the rotor 52 as the rotation axis when positioning the machining position in the Y direction (operation a), and in the case of surface tilt resonance, the galvanometer mirror 3Y Move in a direction substantially perpendicular to the mirror surface (operation b).
  • the galvano mirror 3Y has a substantially flat plate shape.
  • the detected portion 11Y is arranged at one end (front end) in the longitudinal direction of the main surface, and is configured by a rod-like member at the other end (rear end).
  • the rotor 52 is joined.
  • the detected portion 11Y has, for example, a cylindrical shape, and is joined to the galvanometer mirror 3Y so that its column axis is in the same direction as the column axis of the rotor 52.
  • the detected part 11Y is formed using a conductor.
  • the rotor 52 is configured to be able to rotate with its column axis as a rotation axis.
  • the galvano mirror 3Y rotates, so that the detected part 11Y has a shaft similar to the galvano mirror 3Y. Rotate.
  • the fixed electrode 14Y is arranged at a position separated by a predetermined distance so as not to contact the detected part 11Y even when there is a surface-inclined resonance.
  • the mirror surface of the galvano mirror 3Y tilts.
  • the fixed electrode 14Y is fixedly disposed at a position facing the detected portion 11Y so that the distance between the fixed electrode 14Y and the detected portion 11Y that changes according to the tilt amount of the mirror surface can be detected.
  • the fixed electrode 14Y has a parallel curved surface that is substantially parallel to a part of the side surface (curved surface) of the detected part 11Y, and the curved surface of the detected part 11Y and the curved surface of the fixed electrode 14Y face each other at substantially equal distances.
  • the fixed electrode 14Y is arranged.
  • the fixed electrode 14Y has a shape in which a part (bottom surface) of a rectangular parallelepiped is cut off.
  • the shape cut out from the rectangular parallelepiped is a columnar shape having a substantially meniscus upper surface and bottom surface, and the columnar curved surface forms a parallel curved surface surrounding a part of the curved surface of the detected portion 11Y.
  • the opposing surface that faces the fixed electrode 14Y in the detected portion 11Y has a part of a cylindrical side surface
  • the opposing surface that faces the detected portion 11Y in the fixed electrode 14Y is a cylindrical inner wall surface.
  • the to-be-detected part 11Y and the fixed electrode 14Y are arrange
  • the detected portion 11Y and the fixed electrode 14Y may have a configuration in which the shape of the fixed electrode 14Y and the shape of the detected portion 11Y illustrated in FIG. 3 are interchanged.
  • the to-be-detected part 11Y was provided in the front-end
  • FIG. 4 is a diagram illustrating a configuration of the surface tilt amount detection unit.
  • the surface tilt amount detection unit 10A includes a capacitance detection sensor 15 and a displacement amount calculation unit 16A.
  • the electrostatic capacity detection sensor 15 is connected to the detected part 11Y and the fixed electrode 14Y, and detects the electrostatic capacity between the detected part 11Y and the fixed electrode 14Y.
  • the capacitance detection sensor 15 sends the detected capacitance to the displacement amount calculation unit 16A.
  • the displacement amount calculation unit 16A converts the capacitance into a distance between the detected unit 11Y and the fixed electrode 14Y, and sends the conversion result (distance information) to the control device 20.
  • the distance information is a distance (distance between the electrodes) between the detected portion 11Y and the fixed electrode 14Y according to the surface tilt amount (tilt amount) of the galvanometer mirror 3Y, and according to the angle deviation amount of the galvanometer mirror 3Y. Change.
  • the displacement amount calculation unit 16A may convert the distance information into a surface tilt amount and use the surface tilt amount as the distance information.
  • the surface tilt amount is a displacement amount of the distance between the electrodes, and corresponds to an angle deviation amount from the reference position of the mirror surface.
  • the control device 20 creates instruction information (galvano command) to the galvano scanner 5X using the distance information from the displacement amount calculation unit 16A, and sends it to the galvano scanner 5X.
  • instruction information galvano command
  • a correction value is included in the axis (galvano mirror 3X) orthogonal to the axis (galvano mirror 3Y) where the surface tilt resonance occurs in order to cancel the surface tilt amount.
  • the displacement amount calculation unit 16A may convert the capacitance into a capacitance according to the distance between the detected portion 11Y and the fixed electrode 14Y using the galvano angle position. This makes it possible to calculate an accurate capacitance.
  • FIG. 5 is a diagram showing another configuration of the surface tilt amount detection unit. Note that description of components having the same configuration as the surface tilt amount detection unit 10A of FIG. 4 is omitted.
  • the surface tilt amount detection unit 10B here includes a displacement amount calculation unit 16B instead of the displacement amount calculation unit 16A.
  • the displacement amount calculation unit 16 ⁇ / b> B includes a correction unit 17.
  • the detected surface tilt amount is added to (or subtracted from) the detected angle of the orthogonal axis to correct the misalignment due to surface tilt. Can do.
  • canceling the amount of surface tilt may result in addition or subtraction of a correction amount for the command position or detection position There is a case. For this reason, the sign for the correction calculation is set so that the cancel mechanism works appropriately.
  • the galvano angle position detected by an angle detector (encoder) 58 described later is input to the displacement amount calculation unit 16B.
  • the correction unit 17 converts the electrostatic capacitance into a distance between the detected unit 11Y and the fixed electrode 14Y using the galvano angle position. In other words, the correction unit 17 corrects the distance between the detected portion 11Y corresponding to the capacitance and the fixed electrode 14Y to a distance according to the galvano angle position.
  • the surface tilt amount detection unit 10B includes the displacement amount calculation unit 16B will be described.
  • FIG. 6 is a diagram showing the configuration of the galvano scanner.
  • the galvano scanner 5Y includes a part of the rotor 52 extending from the galvano mirror 3Y side.
  • bearings 55, 57, a mirror driving unit 56, and an angle detector 58 are arranged on the rotor 52.
  • the rotor 52 is rotatably supported by bearings 55 and 57.
  • the bearing 55 is disposed between the mirror driving unit 56 and the galvano mirror 3Y, and the bearing 57 is disposed between the mirror driving unit 56 and the angle detector 58.
  • the rotor 52 expands and contracts in the axial direction due to the temperature change. For this reason, the bearing 55 is not completely fixed in the axial direction with respect to the rotor 52, and the rotor 52 is configured to pass through the bearing 55 when the rotor 52 expands and contracts.
  • the bearing 57 fixes the rotor 52 in the axial direction.
  • the mirror driving unit 56 rotates the galvanometer mirror 3Y about the column axis of the rotor 52 as a rotation axis.
  • the mirror drive unit 56 is configured using, for example, a magnet and a coil, and generates a torque with the magnet by flowing a current through the coil. As a result, the rotor 52 and thus the galvanometer mirror 3Y work so as to rotate.
  • the angle detector 58 is an encoder, for example, and detects the rotation angle (galvano angle position) of the galvanometer mirror 3Y. The angle detector 58 sends the detected galvano rotation angle to the displacement amount calculation unit 16B and the control device 20.
  • FIG. 7 is a diagram for explaining the surface tilt resonance phenomenon.
  • the surface tilt resonance phenomenon is a phenomenon in which the galvanometer mirror 3Y swings in a direction substantially perpendicular to the mirror surface.
  • the galvanometer mirror 3Y since the bearing 57 fixes the rotor 52 in the axial direction, a surface tilt resonance phenomenon occurs on the end side (galvanometer mirror 3Y side) of the bearing 57.
  • the surface tilt resonance phenomenon is a phenomenon in which the angle of the mirror surface of the galvano mirror 3Y is changed by the deflection of the rotor 52 and the galvano mirror 3Y with the bearing 57 as a fixed part, and the traveling direction of the deflected laser light L0 is deviated. .
  • the surface tilt resonance of the rotor 52 and the galvano mirror 3Y occurs at a certain movement cycle.
  • the surface tilt resonance occurs when the moving period is close to the reciprocal of the surface tilt resonance frequency of the rotor 52 including the galvano mirror 3Y when the machining position is moved in the same direction at an equal pitch.
  • Surface tilt resonance is a natural vibration of mechanical bending of the rotor 52 including the galvanometer mirror 3Y.
  • the acceleration / deceleration of the rotation of the galvano mirror 3Y occurs periodically.
  • the galvanometer mirror 3Y and the rotor 52 are unbalanced in weight from the center of this rotational motion, a shaft swing phenomenon occurs, and the rotational acceleration is converted into a shaft bending force.
  • this bending force becomes an excitation force, and the period is close to the period of the face-to-face resonance frequency, the face-to-face vibration gradually increases and a large position shift (position shift of the laser beam irradiation position) occurs at the machining point. Will occur.
  • the position shift due to the surface tilt resonance appears, for example, in a direction perpendicular to the traveling direction of the machining position.
  • the rotor 52 and the galvanometer mirror 3Y swing in a direction substantially perpendicular to the mirror surface of the galvanometer mirror 3Y with the bearing 55 and the bearing 57 as fixed positions.
  • the reflection angle of the laser beam L0 at the galvano mirror 3Y is deviated by a predetermined amount from the desired reflection angle.
  • the laser beam L0 is reflected by the reflection angle (+ ⁇ 1) in the X direction and reflected as the laser beam L2.
  • the laser beam L0 is reflected by the reflection angle ( ⁇ 1) in the X direction and reflected as the laser beam L3.
  • the reflection angle of the laser beam L0 with respect to the X direction causes a shift amount corresponding to the bending amount.
  • the deviation amount of the reflection angle in the X direction of the laser light L0 is also maximized.
  • the positional deviation (processing) of the laser light irradiation position is based on the capacitance between the detected portion 11X and the fixed electrode 14X and the capacitance between the detected portion 11Y and the fixed electrode 14Y. (Positional deviation) is corrected.
  • FIG. 8 is a diagram for explaining the deviation amount of the reflection angle.
  • the reflection angle in the X direction is shifted and reflected as the laser light L2 or the laser light L3.
  • FIG. 9 is a diagram for explaining the relationship between the displacement amount of the inter-electrode distance and the tilt angle of the mirror surface.
  • the displacement amount Dx of the inter-electrode distance is a deviation amount from the initial value of the inter-electrode distance, and changes according to the deflection amount of the rotor 52 and the galvano mirror 3Y due to surface tilt resonance.
  • the surface tilt amount is detected by detecting a displacement amount Dx of the detected portion 11Y (mirror tip) in the surface tilt direction. Surface tilt occurs when the rotor 52 and the galvanometer mirror 3Y are bent with the bearing 55 and the bearing 57 as fulcrums.
  • FIG. 10 is a diagram for explaining the relationship between the deviation amount of the reflection angle and the deviation amount of the laser light irradiation position.
  • the galvanometer mirror 3Y, deviated laser beam L0 only the reflection angle theta 2 in the X-direction shows a laser beam irradiation position P1 when it is reflected as the laser beam L4.
  • the laser beam irradiation position on the workpiece W is shifted to the desired laser beam irradiation position P0 in the X direction.
  • the inclination of the galvanometer mirror 3Y in the surface tilt direction appears as an angle shift of the reflection angle of the laser light L0.
  • FIG. 11 is a diagram for explaining how much the position to be processed is shifted when the galvanometer mirror is generally changed in angle ⁇ .
  • the galvanometer mirror 3Y bends at the deflection angle ⁇ , the laser light L0 is reflected by the reflection angle (2 ⁇ ) in the X direction and reflected as the laser light L4.
  • the laser beam irradiation position when the deflection angle of the galvano mirror 3Y is 0 is defined as the laser beam irradiation position P2
  • the laser beam irradiation position when the galvano mirror 3Y is bent at the deflection angle ⁇ is defined as the laser beam irradiation position P3.
  • the distance between the laser beam irradiation position P2 and the laser beam irradiation position P3 becomes the irradiation position deviation amount ⁇ x.
  • ⁇ x 2f ⁇ .
  • the actual surface tilt includes not only the linear deflection from the bearing 57 but also the curvature of the shaft (rotor 52) and the galvanometer mirror 3Y. For this reason, not only the irradiation position deviation amount ⁇ x and the inter-electrode distance displacement amount Dx are treated as a linearly proportional relationship, but a higher-order equation that matches the actual phenomenon may be used.
  • the laser processing apparatus 100 may correct the position command to the galvano scanners 5X and 5Y based on the relationship between the deflection angle ⁇ of the galvano mirror 3Y and the irradiation position deviation amount ⁇ x.
  • the relationship between the deflection angle ⁇ of the galvano mirror 3Y and the irradiation position deviation amount ⁇ x is stored in advance in the surface tilt amount detection unit 10B.
  • the surface tilt amount detection unit 10B calculates the deflection angle ⁇ based on the displacement amount Dx of the interelectrode distance. Further, based on the stored relationship and the deflection angle ⁇ of the galvano mirror 3Y, the surface tilt amount detection unit 10B calculates the irradiation position deviation amount ⁇ x.
  • control device 20 may calculate the irradiation position deviation amount ⁇ x.
  • the relationship between the deflection angle ⁇ of the galvano mirror 3Y and the irradiation position deviation amount ⁇ x is stored in advance in a memory such as the machining program storage unit 22. Then, based on the stored relationship and the deflection angle ⁇ of the galvano mirror 3Y, the control device 20 calculates a machining position correction amount corresponding to the irradiation position deviation amount ⁇ x.
  • FIG. 12 is a diagram showing a laser beam irradiation position when there is no deviation in the reflection angle
  • FIG. 13 is a diagram showing a laser beam irradiation position when there is a deviation in the reflection angle.
  • 12 and 13 show the laser beam irradiation position when the laser beam L1 is irradiated at an interval d (pitch d) in the Y direction on the workpiece W from the negative to the positive direction.
  • the laser beam L1 is irradiated in the order of the first laser beam irradiation position H1, the second laser beam irradiation position H2, and the nth laser beam irradiation position Hn (n is a natural number of 3 or more). Is done.
  • the laser beam L5 is irradiated with a gap d in the Y direction on the workpiece W and with a positional shift amount corresponding to the shift amount of the reflection angle in the X direction.
  • the workpiece W may be irradiated with the laser beam L5 at a predetermined cycle (frequency), and the galvano mirror 3Y may be surface-reared and resonated at a predetermined cycle. In this case, in each laser beam irradiation position, a positional deviation amount in the X direction according to the emission frequency of the laser beam L5 and the surface tilt resonance frequency of the galvanometer mirror 3Y is generated.
  • FIG. 14 is a diagram for explaining the amount of positional deviation in the X direction.
  • Instruction information (Y mirror position command) for moving the laser light irradiation position by a predetermined distance d (here 2 mm) in the Y direction is sent to the galvanometer mirror 3Y.
  • the laser oscillator 1 is sent with instruction information for emitting a pulse of the laser beam L0 at each laser beam irradiation position.
  • the laser oscillator 1 is controlled so that the laser output P has a predetermined peak value.
  • instruction information is sent to the galvanometer mirror 3Y and the laser oscillator 1 so that the laser beam L0 is irradiated to eight laser beam irradiation positions.
  • the surface tilt resonance of the galvanometer mirror 3Y is a surface tilt resonance in which the laser beam irradiation position is shifted in the X direction.
  • the surface tilt amount of the galvanometer mirror 3Y also changes at a predetermined cycle.
  • the galvano mirror 3Y resonates with a predetermined period, the laser beam L5 is irradiated to a position on the workpiece W according to the resonance position of the mirror surface of the galvano mirror 3Y at the timing when the laser beam L0 is emitted. .
  • the amount of positional deviation in the X direction of the laser light irradiation position changes at a predetermined cycle.
  • FIG. 15 is a diagram for explaining positional deviation correction in the X direction.
  • the positional deviation correction with respect to the positional deviation amount in the X direction described with reference to FIG. 14 will be described.
  • the correction amount calculation unit 23 of the control device 20 calculates a processing position correction amount for correcting the irradiation position deviation amount ⁇ x corresponding to the surface tilt amount of the galvanometer mirror 3Y.
  • the laser beam irradiation position is shifted in the X direction by the surface tilt resonance generated in the galvanometer mirror 3Y. Therefore, the correction amount calculation unit 23 calculates the processing position correction amount for the galvano mirror 3X.
  • the processing position correction amount for the galvanometer mirror 3X is a correction amount for the position command to the galvanometer mirror 3X.
  • the galvanometer mirror 3X When the position command to the galvanometer mirror 3X is 0, the surface tilt amount of the galvanometer mirror 3X is also zero. In this case, the galvanometer mirror 3X is controlled based on the machining position correction amount calculated by the correction amount calculation unit 23. Therefore, instruction information (X mirror position command) for moving the laser light irradiation position by the position correction amount corresponding to the machining position correction amount with respect to the X direction is sent to the galvanometer mirror 3X.
  • FIG. 16 is a diagram illustrating a connection configuration between the detected portion and the fixed electrode.
  • the detected part 11Y and the fixed electrode 14Y are arranged apart from each other by a predetermined distance.
  • the to-be-detected part 11Y and the fixed electrode 14Y are each connected to the current source 61 which is an alternating current source.
  • the current source 61 is disposed, for example, in the aforementioned capacitance detection sensor 15.
  • FIG. 17 is a diagram illustrating a configuration example of a capacitance detection sensor.
  • the capacitance of the capacitor 62 formed by the detected portion 11Y and the fixed electrode 14Y is indicated by a capacitance Cx.
  • the wiring connected to the OP amplifier 64 for example, the fixed electrode 14Y and the current source 61. Is shielded by a shield wire 60 or the like.
  • a current of i is supplied to the capacitor 62 at a voltage of Vx (interelectrode voltage).
  • the non-inverting input side of the OP amplifier 64 is connected to the wiring between the detected portion 11Y and the current source 61 or the wiring between the fixed electrode 14Y and the current source 61.
  • a shield line 60 is connected to the inverting input side and the output side of the OP amplifier 64.
  • the calculation unit 63 of the capacitance detection sensor 15 detects the interelectrode voltage Vx that changes according to the capacitance Cx, calculates the capacitance Cx using the value of the interelectrode voltage Vx, and calculates the displacement amount calculation unit. 16B calculates the inter-electrode distance D between the detected portion 11Y and the fixed electrode 14Y using the capacitance Cx.
  • FIG. 18 is a diagram for explaining a method for calculating the distance between the detected portion and the fixed electrode.
  • the detected portion 11Y is indicated by a disk-like electrode 63A
  • the fixed electrode 14Y is indicated by a disk-like electrode 63B.
  • is the dielectric constant between the electrodes. Therefore, since the capacitance Cx is inversely proportional to the interelectrode distance D, the change in the interelectrode distance D can be measured by determining the change in the capacitance Cx.
  • the displacement amount calculation unit 16B stores the relationship between the interelectrode distance D and the capacitance Cx in advance, and calculates the interelectrode distance D based on the relationship between the interelectrode distance D and the capacitance Cx. Also good.
  • FIG. 19 is a diagram illustrating the relationship between the capacitance and the inter-electrode distance. For example, the displacement amount calculation unit 16B calculates the inter-electrode distance D using the relationship between the capacitance Cx and the inter-electrode distance D illustrated in FIG.
  • the displacement amount calculation unit 16B stores in advance the relationship between the displacement amount Dx of the inter-electrode distance and the capacitance Cx, and based on the relationship between the displacement amount Dx of the inter-electrode distance and the capacitance Cx, A distance displacement amount Dx may be calculated.
  • the displacement amount calculation unit 16B stores in advance the relationship between the interelectrode voltage Vx and the interelectrode distance D applied between the electrodes, and based on the relationship between the interelectrode voltage Vx and the interelectrode distance D, the interelectrode distance D is stored. May be calculated.
  • FIG. 20 is a diagram showing the relationship between the interelectrode voltage and the interelectrode distance.
  • the displacement amount calculation unit 16B calculates the interelectrode distance D using, for example, the relationship between the interelectrode voltage Vx and the interelectrode distance D shown in FIG.
  • the relationship between the interelectrode distance D and the capacitance Cx shown in FIG. 19 and the relationship between the interelectrode voltage Vx and the interelectrode distance D shown in FIG. 20 are stored in the displacement amount calculation unit 16B, for example.
  • the displacement amount calculation unit 16B stores in advance the relationship between the interelectrode voltage Vx applied between the electrodes and the displacement amount Dx of the interelectrode distance, and is based on the relationship between the interelectrode voltage Vx and the displacement amount Dx of the interelectrode distance. Thus, the displacement amount Dx of the interelectrode distance may be calculated.
  • FIG. 21 is a diagram illustrating a configuration of the surface tilt amount detection unit when the interelectrode distance is calculated using the interelectrode voltage.
  • the surface tilt amount detection unit 10 ⁇ / b> C includes a high impedance voltage detection unit 68, a rectifier circuit 69, an A / D conversion unit 70, an interelectrode distance calculation unit 71, and a correction unit 17.
  • the high impedance voltage detector 68 detects the voltage between the electrodes of the capacitor 62 (interelectrode voltage), and the detected interelectrode voltage is converted into a direct current by the rectifier circuit 69.
  • the direct current voltage converted into direct current by the rectifier circuit 69 is subjected to A / D conversion (conversion from an analog signal to a digital signal) by the A / D conversion unit 70.
  • the interelectrode distance calculation unit 71 calculates the interelectrode distance D using the A / D converted signal.
  • the interelectrode distance calculation unit 71 calculates the interelectrode distance D using, for example, the relationship between the interelectrode voltage Vx and the interelectrode distance D shown in FIG.
  • the correction unit 17 corrects the interelectrode distance D to the interelectrode distance D corresponding to the galvano angle position.
  • the correction unit 17 sends the corrected inter-electrode distance D to the control device 10.
  • the correction amount calculation unit 23 of the control device 20 calculates the machining position correction amount for correcting the position command to the galvano scanners 5X and 5Y using the inter-electrode distance D calculated by the displacement amount calculation unit 16B.
  • the relationship between the inter-electrode distance D and the machining position correction amount is stored in advance in the machining program storage unit 22 or the like.
  • the correction amount calculation unit 23 calculates the machining position correction amount using the relationship between the interelectrode distance D and the machining position correction amount.
  • the relationship between the interelectrode voltage Vx and the machining position correction amount may be stored in advance, and the machining position correction amount may be calculated based on the relationship between the interelectrode voltage Vx and the machining position correction amount.
  • the displacement amount calculation unit 16B may calculate the machining position correction amount, or the correction amount calculation unit 23 may calculate the machining position correction amount.
  • the displacement amount calculation unit 16B calculates the machining position correction amount
  • the relationship between the interelectrode voltage and the machining position correction amount is stored in, for example, the displacement amount calculation unit 16B.
  • the correction amount calculation unit 23 calculates the machining position correction amount
  • the relationship between the interelectrode voltage and the machining position correction amount is stored in the machining program storage unit 22, for example.
  • FIG. 22 is a diagram illustrating a configuration example of a current source circuit.
  • the current source circuit of the current source 61 includes an AC voltage source 65 that generates a voltage of E 0 sin ⁇ t, an OP amplifier 72, and a resistor 73 having a resistance value R.
  • FIG. 23 is a diagram showing another configuration example of the capacitance detection sensor. The description of the same components as those of the capacitance detection sensor shown in FIG. 17 is omitted.
  • One electrode of the capacitor 62 is connected to the ground, and the other electrode is connected to the non-inverting input side of the OP amplifier 64 and the current source 61.
  • the shield line 60 is connected to the inverting input side and the output side of the OP amplifier 64.
  • FIG. 24 is a diagram illustrating a circuit configuration example of a circuit that performs voltage detection according to the distance between the electrodes.
  • the voltage detection circuit shown in FIG. 24 includes an AC voltage source 77, a constant current amplifier circuit 79, a phase shift circuit 83, a voltage detection circuit 80, a synchronous rectification circuit 81, and a low-pass filter 82.
  • One electrode of the capacitor 62, the constant current amplification circuit 79, and the voltage detection circuit 80 are connected.
  • the fixed electrode 14Y, which is one electrode of the capacitor 62, is connected to the constant current amplifier circuit 79 and the voltage detection circuit 80, and the detected part 11Y, which is the other electrode, is connected to the ground will be described. To do.
  • the AC voltage source 77 is used as a reference waveform generation source, and the constant current amplifier circuit 79 outputs an AC current proportional to the input voltage.
  • the voltage detection circuit 80 detects a voltage (voltage drop) generated in the fixed electrode 14Y.
  • the phase shift circuit 83 shifts the phase of the input AC voltage source 77 to advance the phase to a predetermined phase or process the phase to be output.
  • the AC voltage source 77 and the constant current amplifier circuit 79 generate an input signal
  • the phase shift circuit 83 and the synchronous rectifier circuit 81 have an AC signal detected by the voltage detection circuit 80 and an AC signal generated by the AC voltage source 77. And the frequency and phase of these are matched.
  • the AC constant voltage sin2 ⁇ ft generated by the AC voltage source 77 is input to the constant current amplifier circuit 79.
  • the constant current amplifier circuit 79 outputs an AC current proportional to the input voltage and is fixed. Supply to the electrode 14Y.
  • the voltage detected by the voltage detection circuit 80 is input to the synchronous rectification circuit 81.
  • the synchronous rectifier circuit 81 synchronously rectifies the detection signal of the voltage detection circuit 80 based on the phase information of the signal of the phase shift circuit 83, rectifies a signal of only a specific frequency that has passed through the phase shift circuit 83, Remove frequency components.
  • the output of the synchronous rectifier circuit 81 is input to the low pass filter 82.
  • the low-pass filter 82 removes unnecessary high frequency components and obtains an accurate detection output (interelectrode voltage Vx) as a distance information output.
  • the voltage generated at both ends of the capacitance Cx is delayed by 90 ° with respect to the applied current i, but the phase is matched by the phase shift circuit 83 so that a synchronous detection output is obtained. Yes.
  • the synchronous rectification circuit 81 can extract the detection signal of the voltage detection circuit 80 by synchronous rectification based on the phase information of the signal of the phase shift circuit 83.
  • the low-pass filter 82 can remove unnecessary high-frequency components from the signal input as the output of the synchronous rectification circuit 81 and output an accurate detection output as distance information.
  • the noise components can be removed because the frequencies do not match. As a result, it is possible to detect a voltage that ignores the influence of noise components.
  • FIG. 25 is a diagram for explaining a conversion method from the detection voltage to the inter-electrode distance. Since the relationship between the displacement of the interelectrode distance D and the interelectrode voltage Vx is not linear as shown in FIG. 20, an interelectrode distance calculation unit 71 is provided so that it is convenient for subsequent processing. The signal is converted so that the displacement of the distance D is proportional to the output signal.
  • the interelectrode distance calculation unit 71 receives an A / D converted signal (A / D conversion value X of the interelectrode voltage).
  • the interelectrode distance calculation unit 71 converts the A / D conversion value X of the interelectrode voltage into the interelectrode distance D using a correction formula such as AX 4 + BX 3 + CX 2 + DX + E.
  • the interelectrode distance calculation unit 71 converts the interelectrode voltage Vx into the interelectrode distance D by using a fourth-order polynomial approximation formula or the like.
  • the correction formula used when the A / D conversion value X of the interelectrode voltage is converted into the inter-electrode distance D is not limited to the quartic formula, and may be a correction formula of the third order or lower, or the fifth order or higher. It may be a correction formula.
  • FIG. 26 is a diagram illustrating a hardware configuration of the control device.
  • the control device 20 includes a processing machine control unit 88, galvano control units 90X and 90Y, and a table drive control unit 92.
  • the processing machine control unit 88 is based on the surface tilt amount of the galvano scanners 5X and 5Y sent from the processing program and the surface tilt amount detection unit 10B, and the galvano control units 90X and 90Y, the table drive control unit 92, and the laser oscillator 1 Send instruction information to.
  • the processing machine control unit 88 sends a position command in the X direction to the galvano control unit 90X, and sends a position command in the Y direction to the galvano control unit 90Y. Specifically, the processing machine control unit 88 sends commands for positioning target coordinates to the galvano scanners 5X and 5Y to the galvano control units 90X and 90Y.
  • the galvano mirror 3X when the galvano mirror 3X is tilted and resonates, the irradiation position of the laser beam L5 is shifted in the Y direction, so that a position command including a machining position correction amount is sent to the galvano controller 90Y.
  • the galvano mirror 3Y when the galvano mirror 3Y resonates and resonates, the irradiation position of the laser beam L5 shifts in the X direction, and therefore a position command including the machining position correction amount is sent to the galvano control unit 90X.
  • the galvano control unit 90X controls the galvano scanner 5X in accordance with the instruction information from the processing machine control unit 88. Further, the galvano control unit 90Y controls the galvano scanner 5Y according to the instruction information from the processing machine control unit 88. Specifically, the galvano controllers 90X and 90Y perform positioning servo operations on the galvano scanners 5X and 5Y, respectively. Then, the galvano scanners 5X and 5Y rotate the galvanometer mirrors 3X and 3Y, respectively, by a predetermined angle with the rotor 52 as the rotation axis.
  • the galvano mirrors 3X and 3Y are made of, for example, lightweight and highly rigid beryllium, and the galvano scanners 5X and 5Y are designed to have high rigidity. Therefore, the positioning operation can be completed at a much higher speed than when the machining position is controlled only by driving the XY table 8.
  • the laser processing apparatus 100 performs positioning about 3000 times per second, for example.
  • the processing machine control unit 88 instructs the laser oscillator 1 on conditions and timing for irradiating a laser pulse having a desired laser output and pulse width. Thereby, the laser oscillator 1 can emit a laser pulse at a timing required for processing.
  • the laser processing apparatus 100 includes an XY table 8 on which the workpiece W is placed, and the control apparatus 20 controls a table drive control unit that controls the positioning of the XY table 8. 92.
  • the table drive control unit 92 controls the drive of the servo amplifiers 93X and 93Y in order to control the positioning of the XY table 8 in the XY direction.
  • the motors M94 and M94 operate to move the XY table 8 in the XY direction.
  • the table drive control unit 92 performs positioning drive control on the vertical height direction (Z direction) of the f ⁇ lens 6 and the vertical height direction of the Z-axis head portion on which the galvano scanners 5X and 5Y are mounted.
  • the table drive control unit 92 drives and controls the servo amplifier 93Z.
  • the motor M96 operates to move the f ⁇ lens 6 and the Z-axis head portion in the Z direction.
  • FIG. 27 is a diagram for explaining an example of processing for creating instruction information to be sent to the galvano mirror. Since the galvano scanners 5X and 5Y have the same configuration, the configuration of the galvano scanner 5X will be described here.
  • the instruction creating unit 24 of the control device 20 uses a position command (position command in the X direction) based on the machining program and a corrected position command corresponding to the machining position correction amount to a position command ( Instruction information) is created.
  • the instruction information sent from the control device 20 to the galvano scanner 5X is not limited to the position command but may be an angle command.
  • the instruction information sent from the control device 20 to the galvano scanner 5X is an angle command will be described.
  • the instruction creating unit 24 converts the created position command into an angle command to the galvano mirror 3X, and the output unit 25 sends the converted angle command to the galvano scanner 5X.
  • the galvano scanner 5X sends an angle command to the feed forward gain (Kff) 101. Further, the feedback gain (K) 102 is inputted by subtracting the angle command sent to the galvanometer mirror 3X from the angle command sent from the control device 20.
  • the acceleration (current signal) of the angle command output from the feedforward gain 101 is added to the angle command (current signal) output from the feedback gain 102 and input to the notch filter 103.
  • the torsional resonance frequency component of the rotor 52 and the galvanometer mirror 3X is removed.
  • the angle command from which the torsional resonance frequency is removed is sent to the torque conversion circuit 105 via the current amplifier gain (Ki) 104.
  • the torque conversion circuit 105 multiplies the current by a torque constant K T to convert it into torque, and further divides by the inertia J S to output acceleration.
  • the inertia here is the sum of the inertia of the rotor 52 and the inertia of the galvano mirror 3X.
  • Acceleration output from the torque conversion circuit 105 is sent to the integration circuits 106A and 106B and integrated by the integration circuits 106A and 106B.
  • an angle command is output from the integrating circuit 106B to the galvanometer mirror 3X.
  • This angle command is used for feedback control. Specifically, the angle command sent to the galvanometer mirror 3X is subtracted from the angle command sent from the control device 20 and sent to the feedback gain 102.
  • the correction position command may be created based on the change period of the surface tilt amount of the galvano mirror 3Y.
  • the change cycle of the surface tilt amount of the galvanometer mirror 3Y is detected in advance, and the change cycle is set in the machining program storage unit 22 in the control device 20 or the like.
  • the correction amount calculation unit 23 issues a correction position command based on the change period of the surface tilt amount of the galvanometer mirror 3Y and the surface tilt amount of the galvanometer mirror 3Y detected by the surface tilt capacitance detection sensor 15. create.
  • the correction amount calculation unit 23 creates a correction position command for correcting, for example, the surface tilt amount detected in the previous cycle.
  • the conventional galvano control system is a galvano scanner in the X-axis direction
  • a control system that feeds back a signal from a sensor (such as a rotary encoder) that detects the rotation angle of the axis, in order to perform positioning at high speed Assuming a model to be controlled in advance, positioning operation was performed using feedforward control.
  • the configuration is not configured to suppress the surface collapse phenomenon that the shaft generates.
  • the displacement amount of the machining position is obtained from the detected surface tilt amount. Then, the correction is performed by adding the displacement amount of the processing position to the position command to the galvano scanner 5X having the orthogonal axis. For this reason, it is configured to correct each other's position command so that mutual tilting of the surfaces in the X direction and the Y direction are similarly canceled.
  • the surface tilt amount ⁇ y generated in the galvano mirror 3Y that controls the position in the X-axis direction is canceled by the galvanometer mirror 3Y in the Y-axis direction, and corresponds to the surface tilt amount generated in the galvano mirror 3Y in the Y-axis direction.
  • the irradiation position deviation amount ⁇ x can be canceled by the galvanometer mirror 3X in the X-axis direction. Therefore, even if the surface tilt phenomenon occurs, the laser beam L0 can be deflected to a desired target position, and laser processing with high accuracy can be performed.
  • FIG. 28 is a diagram for explaining a change cycle of the amount of surface collapse.
  • the horizontal axis represents time (t)
  • the vertical axis represents the surface tilt amount (dy) of the galvanometer mirror 3Y.
  • the surface tilt amount of the galvanometer mirror 3Y changes at a predetermined cycle.
  • FIG. 29 is a diagram for explaining another example of processing for creating instruction information to be sent to the galvanometer mirror.
  • instruction information angle command
  • FIG. 29 a case where instruction information (angle command) to be sent to the galvanometer mirror 3X is created using the change period of the surface tilt amount will be described.
  • the correction accuracy may be improved by performing time difference compensation that performs delay processing for correcting the delay time. Since the surface tilt frequency is determined by the mechanical configuration and is substantially constant, if the distance detection delay time is corrected so as to have a specific time difference, the canceling effect works well. Therefore, the time difference compensation unit 107 is provided in the correction amount calculation unit 23. Then, the time difference compensation unit 107 adjusts the time difference of the correction processing in consideration of the delay with respect to the laser processing apparatus 100.
  • the time difference compensation unit 107 has a function of creating a correction position command for compensating for a delay time due to capacitance detection.
  • the time difference compensation unit 107 creates a correction position command for correcting the amount of surface tilt detected in a cycle before a predetermined cycle (for example, one cycle).
  • the time difference compensation unit 107 may create a correction position command based on the interelectrode voltage Vx before a predetermined period, the capacitance Cx before the predetermined period, and the distortion angle ⁇ before the predetermined period.
  • the correction accuracy of the amount of surface tilt can be increased by performing the cancel operation in the state of surface tilt one cycle before.
  • the instruction creating unit 24 uses the position command (position command in the X direction) based on the machining program and the corrected position command for correcting the surface tilt amount detected in the previous cycle to the galvano scanner 5X. Position command is created. Thereafter, in the galvano scanner 5X, an angle command to be sent to the galvanometer mirror 3X is created by a process similar to the process described in FIG.
  • the fixed electrode 14Y has a parallel curved surface substantially parallel to a part of the side surface (curved surface) of the detected portion 11Y has been described.
  • the detected portion 11Y of the fixed electrode 14Y The facing surface that faces is not limited to a curved surface.
  • the opposed surface of the fixed electrode 14Y that faces the detected portion 11Y may be a flat surface.
  • FIG. 30 is a diagram illustrating another configuration example of the fixed electrode.
  • the fixed electrode 108 has a flat surface facing the detected portion 11Y.
  • the case where the fixed electrode 108 is disc-shaped and the disc-shaped bottom surface is a facing surface facing the detected portion 11Y is shown.
  • FIG. 31A is a diagram illustrating a configuration example of the shield wiring
  • FIG. 31-2 is an enlarged view of the fixed electrode.
  • the shield wire 60 is an outer conductor of a coaxial cable, for example.
  • the center of the coaxial cable is a central conductor (wiring between the fixed electrode 108 and the current source 61), and the periphery of the central conductor is covered with insulating endothelium (not shown).
  • the periphery of the insulating inner skin is covered with an outer conductor (shield wire 60), and the outer conductor is covered with an insulating outer skin (not shown).
  • the periphery of the fixed electrode 108 is covered with an insulator, and the periphery of the insulator is covered with a conductor 110.
  • the fixed electrode 14Y may be covered with an insulator and the insulator may be covered with the conductor 110.
  • the processing position correction amount is calculated based on the interelectrode voltage Vx, and the correction position command is generated from the processing position correction amount.
  • the correction position command is generated from the interelectrode voltage Vx. May be.
  • a corrected position command may be created from any one of the capacitance Cx, the interelectrode distance D, the interelectrode distance displacement amount Dx, and the deflection angle ⁇ .
  • the interelectrode voltage (potential difference) between the detected portion 11Y and the fixed electrode 14Y and the interelectrode voltage (potential difference) between the detected portion 11X and the fixed electrode 14X Since the amount of surface tilt is detected, the amount of surface tilt can be easily detected with a simple configuration. Moreover, since the amount of surface tilt is detected based on the interelectrode voltage Vx corresponding to the capacitance Cx, the amount of surface tilt can be accurately detected. Therefore, even when surface tilt resonance occurs, the position command to the galvanometer mirrors 3X and 3Y can be accurately corrected based on the surface tilt amount, and the laser beam L1 is irradiated to a desired position. It becomes possible.
  • the opposing surfaces of the fixed electrode 14Y and the detected portion 11Y are parallel curved surfaces, it is possible to detect an accurate surface tilt amount regardless of the rotation angle of the galvanometer mirror 3Y.
  • the opposing surface that faces the fixed electrode 14Y in the detected portion 11Y has a part of a cylindrical side surface, and the opposing surface that faces the detected portion 11Y in the fixed electrode 14Y is one of the inner wall surfaces of the cylinder. Since it has a portion, it is possible to detect an accurate amount of surface tilt.
  • the interelectrode distance (surface fall amount) is detected using the relationship between the interelectrode distance and the capacitance shown in FIG. 19, it is possible to easily detect the surface fall amount. Further, since the inter-electrode distance (surface fall amount) is detected using the relationship between the inter-electrode voltage and the inter-electrode distance shown in FIG. 20, it is possible to easily detect the surface fall amount.
  • the correction position command is created based on the change period of the surface tilt amount of the galvano mirror 3Y, even if it takes time to detect the capacitance Cx, the position correction amount for the surface tilt is accurately performed. It becomes possible.
  • the surface tilt amount detection device, the processing position control device, and the laser processing device according to the present invention are suitable for laser processing while positioning to the processing position.

Landscapes

  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Engineering & Computer Science (AREA)
  • Plasma & Fusion (AREA)
  • Mechanical Engineering (AREA)
  • Laser Beam Processing (AREA)
  • Mechanical Optical Scanning Systems (AREA)

Abstract

A device for detecting an amount of surface inclination is provided with: a part to be detected (11Y) as a first electrode that carries out the same movement as a galvano mirror (3Y) disposed on a rotating axis for the galvano mirror (3Y), which makes laser light deviate to a processing position set in a processing area; a fixed electrode (14Y) as a second electrode fixed and disposed so as to be separated by a prescribed distance from the part to be detected (11Y); a voltage detection part that detects a voltage across the electrodes corresponding to the electrostatic capacity between the part to be detected (11Y) and the fixed electrode (14Y); and an detection part for the amount of surface inclination that detects the amount of inclination of the galvano mirror (3Y) based on the voltage across the electrodes. The part for detecting the amount of surface inclination calculates the distance between the electrodes, which is the distance between the part to be detected (11Y) and the fixed electrode (14Y) as the amount of inclination of the galvano mirror (3Y).

Description

面倒れ量検出装置、加工位置制御装置およびレーザ加工装置Surface tilt amount detection device, processing position control device, and laser processing device
 本発明は、ガルバノスキャナの面倒れを検出する面倒れ量検出装置、加工位置制御装置およびレーザ加工装置に関する。 The present invention relates to a surface tilt detection device, a processing position control device, and a laser processing device that detect surface tilt of a galvano scanner.
 被加工物へのレーザ加工を行うレーザ加工装置は、ガルバノスキャナによって被加工物へのレーザ光照射位置(加工位置)を制御している。ガルバノスキャナは、同じピッチの加工位置移動を繰り返すと、加工位置移動の移動周期によってはロータおよびミラーの面倒れ共振を誘発する。そして、共振が発生すると、ガルバノスキャナによる加工位置の移動方向と直交する方向に加工位置の位置ずれが生じる。 A laser processing apparatus that performs laser processing on a workpiece controls a laser beam irradiation position (processing position) on the workpiece by a galvano scanner. When the galvano scanner repeatedly moves the machining position at the same pitch, the surface tilt resonance of the rotor and the mirror is induced depending on the movement cycle of the machining position movement. When resonance occurs, the processing position is displaced in the direction orthogonal to the moving direction of the processing position by the galvano scanner.
 ところが、エンコーダによるガルバノスキャナの角度位置検出だけでは、面倒れ共振現象を検出することができない。また、ロータの重量バランス調整を厳密に実施することにより、面倒れ共振現象を軽減する方法があるが、要求される位置決め速度が上昇するに伴って加振力も増大し、バランス調整のみでは必要な位置決め精度を得ることが困難になってきている。このような、面倒れ共振を検出する方法として、レーザ光のビーム位置に基づいて面倒れ共振を検出する方法がある(例えば、特許文献1,2参照)。 However, the surface tilt resonance phenomenon cannot be detected only by detecting the angular position of the galvano scanner using an encoder. In addition, there is a method of reducing the surface tilt resonance phenomenon by strictly adjusting the weight balance of the rotor. However, as the required positioning speed increases, the excitation force increases. It has become difficult to obtain positioning accuracy. As a method for detecting such surface-inclined resonance, there is a method for detecting surface-inclined resonance based on the beam position of laser light (see, for example, Patent Documents 1 and 2).
特開昭63-285512号公報JP-A 63-285512 特開昭61-128222号公報JP-A-61-128222
 しかしながら、上記前者および後者の従来技術では、レーザ光のビーム位置を検出する装置の構成が複雑で高価になるので、実際にガルバノミラーの面倒れを検出することは困難であるという問題があった。 However, the former and latter conventional techniques have a problem that it is difficult to actually detect the surface tilt of the galvanometer mirror because the configuration of the apparatus for detecting the beam position of the laser light is complicated and expensive. .
 本発明は、上記に鑑みてなされたものであって、簡易な構成で容易にガルバノミラーの面倒れを検出する面倒れ量検出装置、加工位置制御装置およびレーザ加工装置を得ることを目的とする。 The present invention has been made in view of the above, and an object thereof is to obtain a surface tilt amount detection device, a processing position control device, and a laser processing device that easily detect the surface tilt of a galvanometer mirror with a simple configuration. .
 上述した課題を解決し、目的を達成するために、本発明は、レーザ光を加工エリアに設定された加工位置に偏向させるガルバノミラーの回転軸上に配置されて前記ガルバノミラーと同じ動作を行う第1の電極と、前記第1の電極から所定の距離だけ離されて固定配置された第2の電極と、前記第1の電極と前記第2の電極との間の静電容量に応じた前記第1の電極と前記第2の電極との間の電極間電圧を検出する電圧検出部と、前記電極間電圧に基づいて前記ガルバノミラーの面倒れ量を検出する面倒れ量検出部と、を備え、前記面倒れ量検出部は、前記ガルバノミラーの面倒れ量として、前記第1の電極と前記第2の電極との間の距離である電極間距離を算出することを特徴とする。 In order to solve the above-described problems and achieve the object, the present invention is arranged on a rotation axis of a galvano mirror that deflects laser light to a processing position set in a processing area and performs the same operation as the galvano mirror. According to the capacitance between the first electrode, the second electrode fixedly spaced from the first electrode by a predetermined distance, and the capacitance between the first electrode and the second electrode A voltage detector that detects an interelectrode voltage between the first electrode and the second electrode; a surface tilt amount detector that detects a surface tilt amount of the galvanometer mirror based on the interelectrode voltage; The surface tilt amount detection unit calculates an inter-electrode distance that is a distance between the first electrode and the second electrode as the surface tilt amount of the galvanometer mirror.
 本発明によれば、第1の電極と第2の電極との間の静電容量に応じた電極間電圧に基づいて、ガルバノミラーの面倒れ量として、第1の電極と第2の電極との間の距離である電極間距離を算出するので、簡易な構成で容易にガルバノミラーの面倒れを検出することが可能になるという効果を奏する。 According to the present invention, based on the inter-electrode voltage corresponding to the capacitance between the first electrode and the second electrode, the surface tilt amount of the galvano mirror is calculated as the first electrode and the second electrode. Since the distance between the electrodes, which is the distance between the two, is calculated, it is possible to easily detect the surface tilt of the galvanometer mirror with a simple configuration.
図1は、実施の形態に係るレーザ加工装置の構成を示す図である。FIG. 1 is a diagram illustrating a configuration of a laser processing apparatus according to an embodiment. 図2は、制御装置の構成を示すブロック図である。FIG. 2 is a block diagram illustrating a configuration of the control device. 図3は、ガルバノミラーの構成を示す図である。FIG. 3 is a diagram showing the configuration of the galvanometer mirror. 図4は、面倒れ量検出部の構成を示す図である。FIG. 4 is a diagram illustrating a configuration of the surface tilt amount detection unit. 図5は、面倒れ量検出部の他の構成を示す図である。FIG. 5 is a diagram illustrating another configuration of the surface tilt amount detection unit. 図6は、ガルバノスキャナの構成を示す図である。FIG. 6 is a diagram illustrating the configuration of the galvano scanner. 図7は、面倒れ共振現象を説明するための図である。FIG. 7 is a diagram for explaining the surface tilt resonance phenomenon. 図8は、反射角度のずれ量を説明するための図である。FIG. 8 is a diagram for explaining the deviation amount of the reflection angle. 図9は、電極間距離の変位量とミラー面の倒れ角との関係を説明するための図である。FIG. 9 is a diagram for explaining the relationship between the displacement amount of the inter-electrode distance and the tilt angle of the mirror surface. 図10は、反射角度のずれ量とレーザ光照射位置のずれ量の関係を説明するための図である。FIG. 10 is a diagram for explaining the relationship between the deviation amount of the reflection angle and the deviation amount of the laser light irradiation position. 図11は、ガルバノミラーの撓み角と反射角のずれ量の関係を説明するための図である。FIG. 11 is a diagram for explaining the relationship between the deflection angle of the galvanometer mirror and the deviation amount of the reflection angle. 図12は、反射角度にずれが無い場合のレーザ光照射位置を示す図である。FIG. 12 is a diagram showing a laser beam irradiation position when there is no deviation in the reflection angle. 図13は、反射角度にずれが有る場合のレーザ光照射位置を示す図である。FIG. 13 is a diagram showing a laser beam irradiation position when there is a deviation in the reflection angle. 図14は、X方向の位置ずれ量を説明するための図である。FIG. 14 is a diagram for explaining the amount of positional deviation in the X direction. 図15は、X方向の位置ずれ補正を説明するための図である。FIG. 15 is a diagram for explaining positional deviation correction in the X direction. 図16は、被検出部と固定電極の接続構成を示す図である。FIG. 16 is a diagram illustrating a connection configuration between the detected portion and the fixed electrode. 図17は、静電容量検出センサの構成例を示す図である。FIG. 17 is a diagram illustrating a configuration example of a capacitance detection sensor. 図18は、被検出部と固定電極との間の距離の算出方法を説明するための図である。FIG. 18 is a diagram for explaining a method for calculating the distance between the detected portion and the fixed electrode. 図19は、静電容量と電極間距離の関係を示す図である。FIG. 19 is a diagram illustrating the relationship between the capacitance and the inter-electrode distance. 図20は、電極間電圧と電極間距離の関係を示す図である。FIG. 20 is a diagram showing the relationship between the interelectrode voltage and the interelectrode distance. 図21は、電極間電圧を用いて電極間距離を算出する場合の面倒れ量検出部の構成を示す図である。FIG. 21 is a diagram illustrating a configuration of the surface tilt amount detection unit when the interelectrode distance is calculated using the interelectrode voltage. 図22は、電流源回路の構成例を示す図である。FIG. 22 is a diagram illustrating a configuration example of a current source circuit. 図23は、静電容量検出センサの他の構成例を示す図である。FIG. 23 is a diagram illustrating another configuration example of the capacitance detection sensor. 図24は、電極間距離に応じた電圧検出を行う回路の回路構成例を示す図である。FIG. 24 is a diagram illustrating a circuit configuration example of a circuit that performs voltage detection according to the distance between the electrodes. 図25は、検出電圧から電極間距離への換算方法を説明するための図である。FIG. 25 is a diagram for explaining a conversion method from the detection voltage to the inter-electrode distance. 図26は、制御装置のハードウェア構成を示す図である。FIG. 26 is a diagram illustrating a hardware configuration of the control device. 図27は、ガルバノミラーへ送る指示情報の作成処理例を説明するための図である。FIG. 27 is a diagram for explaining an example of processing for creating instruction information to be sent to the galvanometer mirror. 図28は、面倒れ量の変化周期を説明するための図である。FIG. 28 is a diagram for explaining the change period of the surface tilt amount. 図29は、ガルバノミラーへ送る指示情報の他の作成処理例を説明するための図である。FIG. 29 is a diagram for explaining another example of processing for creating instruction information to be sent to the galvanometer mirror. 図30は、固定電極の他の構成例を示す図である。FIG. 30 is a diagram illustrating another configuration example of the fixed electrode. 図31-1は、シールド配線の構成例を示す図である。FIG. 31A is a diagram illustrating a configuration example of shield wiring. 図31-2は、固定電極の拡大図である。FIG. 31-2 is an enlarged view of the fixed electrode.
 以下に、本発明の実施の形態に係る面倒れ量検出装置、加工位置制御装置およびレーザ加工装置を図面に基づいて詳細に説明する。なお、この実施の形態によりこの発明が限定されるものではない。 Hereinafter, the surface tilt amount detection device, the processing position control device, and the laser processing device according to the embodiment of the present invention will be described in detail with reference to the drawings. Note that the present invention is not limited to the embodiments.
実施の形態.
 図1は、実施の形態に係るレーザ加工装置の構成を示す図である。レーザ加工装置100は、レーザ光(パルスレーザ光)L1の照射(サイクルパルスモード)によって被加工物Wに微細穴を穴開け加工する装置である。
Embodiment.
FIG. 1 is a diagram illustrating a configuration of a laser processing apparatus according to an embodiment. The laser processing apparatus 100 is an apparatus that forms a minute hole in the workpiece W by irradiation (cycle pulse mode) with laser light (pulse laser light) L1.
 本実施の形態では、静電容量式の距離センサをX軸、Y軸の各ガルバノミラーに取り付けておき、ガルバノミラーの面倒れ共振によるミラー面の変位量(ずれ量)を検出する。そして、ガルバノミラーの変位に対するレーザ光照射位置(加工位置)の位置ずれを、ガルバノミラーのミラー面が変位していない方のガルバノミラーでキャンセルし、これにより加工位置の位置決め精度を向上させる。 In this embodiment, an electrostatic capacitance type distance sensor is attached to each of the X-axis and Y-axis galvanometer mirrors, and the amount of displacement (deviation amount) of the mirror surface due to surface tilt resonance of the galvanometer mirror is detected. Then, the positional deviation of the laser beam irradiation position (processing position) with respect to the displacement of the galvano mirror is canceled by the galvano mirror on which the mirror surface of the galvano mirror is not displaced, thereby improving the positioning accuracy of the processing position.
 レーザ加工装置100は、レーザ光L0を発振するレーザ発振器1、レーザ光L0を整形するとともに所望のビーム形状、ビームエネルギーに調整する像転写光学機構2、被加工物(ワーク)Wのレーザ加工を行うレーザ加工部4、制御装置20を備えている。なお、ここでのサイクルパルスモードは、被加工物Wに設定された複数の穴あけ加工位置を順次走査し、各穴に対するレーザ照射を複数サイクルで行なう加工処理(レーザ光を1ショットずつ照射するサイクルを複数回繰り返す加工処理)である。 A laser processing apparatus 100 performs laser processing of a laser oscillator 1 that oscillates a laser beam L0, an image transfer optical mechanism 2 that shapes the laser beam L0 and adjusts it to a desired beam shape and beam energy, and a workpiece (workpiece) W. A laser processing unit 4 and a control device 20 are provided. In this cycle pulse mode, a plurality of drilling positions set on the workpiece W are sequentially scanned, and a laser beam is irradiated to each hole in a plurality of cycles (a cycle in which laser light is irradiated one shot at a time). Is processed multiple times).
 レーザ発振器1は、レーザ光L0を発振し、像転写光学機構2に送出する。像転写光学機構2は、コリメーションレンズ2C、マスク2Mを備えている。コリメーションレンズ2Cは、レーザ発振器1からのレーザ光L0を集光して光軸を調整(平行化)し、マスク2Mはレーザ光L0のビーム形状を整形する。 Laser oscillator 1 oscillates laser beam L0 and sends it to image transfer optical mechanism 2. The image transfer optical mechanism 2 includes a collimation lens 2C and a mask 2M. The collimation lens 2C collects the laser beam L0 from the laser oscillator 1 and adjusts (parallelizes) the optical axis, and the mask 2M shapes the beam shape of the laser beam L0.
 レーザ加工部4は、ガルバノミラー3X,3Y、ガルバノスキャナ5X,5Y、fθレンズ6、XYテーブル8、面倒れ量検出部10Aを備えている。ガルバノスキャナ5X,5Yは、レーザ光L0の軌道を変化させて被加工物Wへの照射位置を移動させる機能(位置決め機能)を有しており、レーザ光L0をX-Y方向に走査するため、ガルバノミラー3X,3Yを所定の角度に回動させる。これにより、ガルバノスキャナ5X,5Yは、ガルバノミラー3X,3Yに、レーザ光L1を加工エリアに設定された加工位置に偏向させる。 The laser processing unit 4 includes galvanometer mirrors 3X and 3Y, galvanometer scanners 5X and 5Y, an fθ lens 6, an XY table 8, and a surface tilt amount detection unit 10A. The galvano scanners 5X and 5Y have a function (positioning function) for changing the trajectory of the laser light L0 to move the irradiation position on the workpiece W, and for scanning the laser light L0 in the XY direction. Then, the galvanometer mirrors 3X and 3Y are rotated to a predetermined angle. Accordingly, the galvano scanners 5X and 5Y cause the galvanometer mirrors 3X and 3Y to deflect the laser light L1 to the processing position set in the processing area.
 ガルバノミラー3X,3Yは、像転写光学機構2のマスク2Mから出射されたレーザ光(光ビーム)L0を反射させるとともに任意の角度に偏向させる。ガルバノミラー3Xは、レーザ光L0をX方向に偏向させ、ガルバノミラー3Yは、レーザ光L0をY方向に偏向させる。fθレンズ6は、レーザ光L0を被加工物Wの表面に対して垂直な方向に偏向させるとともに、レーザ光L0を被加工物Wの加工位置(表面)に集光(照射)させる。 The galvanometer mirrors 3X and 3Y reflect the laser beam (light beam) L0 emitted from the mask 2M of the image transfer optical mechanism 2 and deflect it at an arbitrary angle. The galvanometer mirror 3X deflects the laser beam L0 in the X direction, and the galvanometer mirror 3Y deflects the laser beam L0 in the Y direction. The fθ lens 6 deflects the laser beam L0 in a direction perpendicular to the surface of the workpiece W, and condenses (irradiates) the laser beam L0 on the processing position (surface) of the workpiece W.
 ガルバノミラー3X,3Yは、それぞれ面倒れ共振(ウォブリング)の検出に用いられる被検出部(後述の被検出部11X,11Y)を備えている。ガルバノミラー3Xが備える被検出部11Xは、ガルバノミラー3Xの面倒れ共振検出に用いられ、ガルバノミラー3Yが備える被検出部11Yは、ガルバノミラー3Yの面倒れ共振検出に用いられる。本実施の形態では、レーザ加工中に発生する面倒れ共振を検出するため、被検出部11X,11Yの各近傍に固定電極(後述の固定電極14X,14Y)を配置しておく。 The galvanometer mirrors 3X and 3Y are respectively provided with detected parts (detected parts 11X and 11Y to be described later) that are used for detection of surface tilt resonance (wobbling). The detected part 11X included in the galvano mirror 3X is used for detecting the surface tilt resonance of the galvano mirror 3X, and the detected part 11Y included in the galvano mirror 3Y is used for detecting the surface tilt resonance of the galvano mirror 3Y. In the present embodiment, fixed electrodes (fixed electrodes 14X and 14Y described later) are arranged in the vicinity of the detected portions 11X and 11Y in order to detect surface tilt resonance that occurs during laser processing.
 被検出部11Xおよび固定電極14Xに接続されるとともに、被検出部11Yおよび固定電極14Yに接続されている。面倒れ量検出部10Aは、ガルバノミラー3X,3Yの面倒れ共振によるミラー面の位置ずれ量(面倒れ量)を検出し、検出結果を制御装置20に送る。 It is connected to the detected part 11X and the fixed electrode 14X, and is connected to the detected part 11Y and the fixed electrode 14Y. The surface tilt amount detection unit 10 </ b> A detects the amount of mirror surface displacement (surface tilt amount) due to surface tilt resonance of the galvanometer mirrors 3 </ b> X and 3 </ b> Y, and sends the detection result to the control device 20.
 面倒れ量検出部10Aは、被検出部11Xと固定電極14Xとの間の距離に応じて変化する被検出部11Xと固定電極14Xとの間の静電容量に基づいて、被検出部11Xと固定電極14Xとの間の距離を検出する。同様に、面倒れ量検出部10Aは、被検出部11Yと固定電極14Yとの間の距離に応じて変化する被検出部11Yと固定電極14Yとの間の静電容量に基づいて、被検出部11Yと固定電極14Yとの間の距離を検出する。被検出部11Xと固定電極14Xとの間の距離、被検出部11Yと固定電極14Yとの間の距離は、それぞれガルバノミラー3X,3Yの面倒れ量に応じて変化する。 The surface tilt amount detection unit 10A is configured to detect the detected unit 11X based on the capacitance between the detected unit 11X and the fixed electrode 14X that changes according to the distance between the detected unit 11X and the fixed electrode 14X. The distance to the fixed electrode 14X is detected. Similarly, the surface tilt amount detection unit 10A detects the detection target based on the capacitance between the detection unit 11Y and the fixed electrode 14Y that changes according to the distance between the detection unit 11Y and the fixed electrode 14Y. The distance between the part 11Y and the fixed electrode 14Y is detected. The distance between the detected part 11X and the fixed electrode 14X and the distance between the detected part 11Y and the fixed electrode 14Y vary according to the surface tilt amount of the galvanometer mirrors 3X and 3Y, respectively.
 制御装置20は、面倒れ量検出部10Aから送られてくる検出結果(被検出部11Xと固定電極14Xとの間の距離、被検出部11Yと固定電極14Yとの間の距離)に基づいて、ガルバノミラー3X,3Yの位置を補正する。制御装置20は、パーソナルコンピュータ等のコンピュータによって構成されており、レーザ発振器1、像転写光学機構2、レーザ加工部4をNC(Numerical Control)制御等によって制御する。 The control device 20 is based on the detection result (the distance between the detected part 11X and the fixed electrode 14X, the distance between the detected part 11Y and the fixed electrode 14Y) sent from the surface tilt amount detecting part 10A. The position of the galvanometer mirrors 3X and 3Y is corrected. The control device 20 is configured by a computer such as a personal computer, and controls the laser oscillator 1, the image transfer optical mechanism 2, and the laser processing unit 4 by NC (Numerical Control) control or the like.
 被加工物Wは、プリント基板等であり、複数の穴あけ加工が行なわれる。XYテーブル8は、被加工物Wを載置するものであり、図示しないX軸モータおよびY軸モータの駆動によってX軸-Y軸2次元平面を自在に移動する。XYテーブル8は、レーザ光L1が照射される加工エリアをXY方向に移動させる。 The workpiece W is a printed circuit board or the like, and a plurality of drilling processes are performed. The XY table 8 is used to place a workpiece W, and freely moves in a two-dimensional X-axis / Y-axis plane by driving an X-axis motor and a Y-axis motor (not shown). The XY table 8 moves the processing area irradiated with the laser light L1 in the XY direction.
 図2は、制御装置の構成を示すブロック図である。制御装置20は、面倒れ量検出部10Aに接続されており、面倒れ量検出部10Aは、被検出部11X,11Yと固定電極14X,14Yに接続されている。また、制御装置20は、XYテーブル8、レーザ発振器1、ガルバノスキャナ5X,5Yに接続されている。 FIG. 2 is a block diagram showing the configuration of the control device. The control device 20 is connected to the surface tilt amount detection unit 10A, and the surface tilt amount detection unit 10A is connected to the detected portions 11X and 11Y and the fixed electrodes 14X and 14Y. The control device 20 is connected to the XY table 8, the laser oscillator 1, and the galvano scanners 5X and 5Y.
 制御装置20は、入力部21、加工プログラム記憶部22、補正量算出部23、指示作成部24、出力部25を備えている。入力部21は、面倒れ量検出部10Aから検出結果(ガルバノミラー3X,3Yの面倒れ量に対応する電極間距離)を入力し、補正量算出部23に送る。 The control device 20 includes an input unit 21, a machining program storage unit 22, a correction amount calculation unit 23, an instruction creation unit 24, and an output unit 25. The input unit 21 receives the detection result (distance between electrodes corresponding to the surface tilt amount of the galvano mirrors 3X and 3Y) from the surface tilt amount detection unit 10A and sends it to the correction amount calculation unit 23.
 加工プログラム記憶部22は、被加工物Wのレーザ加工に用いる加工プログラムを記憶するメモリなどである。加工プログラム内には、被加工物W上の加工位置(座標)などが設定されている。 The machining program storage unit 22 is a memory that stores a machining program used for laser machining of the workpiece W. In the machining program, a machining position (coordinates) on the workpiece W is set.
 補正量算出部23は、ガルバノミラー3X,3Yの面倒れ量に基づいて、レーザ工照射位置の補正量(以下、加工位置補正量という)を算出する。制御装置20では、予め面倒れ量に対する加工位置補正量の関係を加工プログラム記憶部22内などで記憶しておき、補正量算出部23は、面倒れ量に対する加工位置補正量の関係と、検出された面倒れ量と、に基づいて、加工位置補正量を算出する。補正量算出部23は、算出した加工位置補正量を指示作成部24に送る。 The correction amount calculation unit 23 calculates a correction amount of the laser beam irradiation position (hereinafter referred to as a processing position correction amount) based on the surface tilt amount of the galvanometer mirrors 3X and 3Y. In the control device 20, the relationship between the machining position correction amount and the surface tilt amount is stored in advance in the machining program storage unit 22, and the correction amount calculation unit 23 detects the relationship between the machining position correction amount and the surface tilt amount and the detection. A machining position correction amount is calculated based on the surface tilt amount. The correction amount calculation unit 23 sends the calculated machining position correction amount to the instruction creation unit 24.
 指示作成部24は、加工プログラム記憶部22内の加工プログラムに基づいて、XYテーブル8、レーザ発振器1への指示情報を作成する。また、指示作成部24は、加工プログラムに基づいて、ガルバノスキャナ5X,5Yへの指示情報を作成する。また、本実施の形態の指示作成部24は、補正量算出部23が算出した加工位置補正量を用いて、ガルバノスキャナ5X,5Yへの位置指令を補正する補正位置指令を作成する。指示作成部24は、面倒れ共振によって生じるレーザ光照射位置の位置ずれが打ち消されるよう(所望のレーザ光照射位置にレーザ光が照射されるよう)補正位置指令を作成する。指示作成部24は、加工プログラムに基づいた位置指令と、補正位置指令と、を用いて、ガルバノスキャナ5X,5Yへの指示情報(位置指令)を作成する。 The instruction creating unit 24 creates instruction information for the XY table 8 and the laser oscillator 1 based on the machining program in the machining program storage unit 22. In addition, the instruction creation unit 24 creates instruction information for the galvano scanners 5X and 5Y based on the machining program. In addition, the instruction creating unit 24 according to the present embodiment creates a corrected position command for correcting the position command to the galvano scanners 5X and 5Y using the machining position correction amount calculated by the correction amount calculating unit 23. The instruction creating unit 24 creates a correction position command so that the positional deviation of the laser beam irradiation position caused by the surface tilt resonance is canceled (so that the desired laser beam irradiation position is irradiated with the laser beam). The instruction creating unit 24 creates instruction information (position instruction) for the galvano scanners 5X and 5Y using the position instruction based on the machining program and the corrected position instruction.
 指示作成部24は、作成した指示情報を出力部25に送る。出力部25は、ガルバノスキャナ5X,5Yへの指示情報をガルバノスキャナ5X,5Yに送り、XYテーブル8、レーザ発振器1への指示情報をそれぞれXYテーブル8、レーザ発振器1に送る。 The instruction creating unit 24 sends the created instruction information to the output unit 25. The output unit 25 sends instruction information to the galvano scanners 5X and 5Y to the galvano scanners 5X and 5Y, and sends instruction information to the XY table 8 and the laser oscillator 1 to the XY table 8 and the laser oscillator 1, respectively.
 ここで、ガルバノミラー3X,3Yの構成について説明する。なお、ガルバノミラー3Xとガルバノミラー3Yは、同様の構成を有するので、以下では、ガルバノミラー3Yの構成について説明する。また、ガルバノスキャナ5Xとガルバノスキャナ5Yは、同様の構成を有するので、ガルバノスキャナを説明する際には、ガルバノスキャナ5Yについて説明する。 Here, the configuration of the galvanometer mirrors 3X and 3Y will be described. Since the galvano mirror 3X and the galvano mirror 3Y have the same configuration, the configuration of the galvano mirror 3Y will be described below. Since the galvano scanner 5X and the galvano scanner 5Y have the same configuration, the galvano scanner 5Y will be described when describing the galvano scanner.
 図3は、ガルバノミラーの構成を示す図である。被検出部11Yは、ガルバノミラー3Yの回転軸上(ロータ52と略同軸軸上)に配置されてガルバノミラー3Yと同じ動作を行なう。被検出部11Y、ガルバノミラー3Yは、加工位置をY方向に位置決めする際には、ロータ52の軸方向を回転軸として回転し(動作a)、面倒れ共振の際には、ガルバノミラー3Yのミラー面に略垂直な方向に移動(動作b)する。 FIG. 3 is a diagram showing the configuration of the galvanometer mirror. The detected part 11Y is arranged on the rotation axis of the galvanometer mirror 3Y (substantially on the same axis as the rotor 52) and performs the same operation as the galvanometer mirror 3Y. The detected portion 11Y and the galvanometer mirror 3Y rotate with the axial direction of the rotor 52 as the rotation axis when positioning the machining position in the Y direction (operation a), and in the case of surface tilt resonance, the galvanometer mirror 3Y Move in a direction substantially perpendicular to the mirror surface (operation b).
 ガルバノミラー3Yは、概略平板状をなしており、例えば、主面の長手方向の一方の端部(先端)に被検出部11Yが配置され、他方の端部(後端)に棒状部材で構成されたロータ52が接合されている。 The galvano mirror 3Y has a substantially flat plate shape. For example, the detected portion 11Y is arranged at one end (front end) in the longitudinal direction of the main surface, and is configured by a rod-like member at the other end (rear end). The rotor 52 is joined.
 被検出部11Yは、例えば円柱状をなしており、その柱軸がロータ52の柱軸と同じ方向になるよう、ガルバノミラー3Yに接合されている。被検出部11Yは、導体を用いて形成されている。 The detected portion 11Y has, for example, a cylindrical shape, and is joined to the galvanometer mirror 3Y so that its column axis is in the same direction as the column axis of the rotor 52. The detected part 11Y is formed using a conductor.
 ロータ52は、その柱軸を回転軸として回転できるよう構成されており、ロータ52が軸回転することにより、ガルバノミラー3Yが回転し、これにより被検出部11Yは、ガルバノミラー3Yと同様に軸回転する。 The rotor 52 is configured to be able to rotate with its column axis as a rotation axis. When the rotor 52 rotates, the galvano mirror 3Y rotates, so that the detected part 11Y has a shaft similar to the galvano mirror 3Y. Rotate.
 被検出部11Yの近傍には、面倒れ共振があった場合でも被検出部11Yに接触しないよう所定の距離だけ離れた位置に固定電極14Yが配置されている。面倒れ共振が発生すると、ガルバノミラー3Yのミラー面が傾く。固定電極14Yは、ミラー面の傾斜量に応じて変化する固定電極14Yと被検出部11Yとの間の距離を検出できるよう、被検出部11Yに対向する位置に固定配置される。 In the vicinity of the detected part 11Y, the fixed electrode 14Y is arranged at a position separated by a predetermined distance so as not to contact the detected part 11Y even when there is a surface-inclined resonance. When surface tilt resonance occurs, the mirror surface of the galvano mirror 3Y tilts. The fixed electrode 14Y is fixedly disposed at a position facing the detected portion 11Y so that the distance between the fixed electrode 14Y and the detected portion 11Y that changes according to the tilt amount of the mirror surface can be detected.
 固定電極14Yは、被検出部11Yの側面(曲面)の一部と略平行な平行曲面を有しており、被検出部11Yの曲面と固定電極14Yの曲面とが略等距離間隔で互いに対向するよう、固定電極14Yが配置されている。固定電極14Yは、例えば、直方体の一部(底面)が切り取られた形状を有している。直方体から切り取られる形状は、略半月状の上面および底面を有した柱状形状であり、柱状形状の曲面は、被検出部11Yの曲面の一部を囲う平行曲面をなしている。 The fixed electrode 14Y has a parallel curved surface that is substantially parallel to a part of the side surface (curved surface) of the detected part 11Y, and the curved surface of the detected part 11Y and the curved surface of the fixed electrode 14Y face each other at substantially equal distances. Thus, the fixed electrode 14Y is arranged. For example, the fixed electrode 14Y has a shape in which a part (bottom surface) of a rectangular parallelepiped is cut off. The shape cut out from the rectangular parallelepiped is a columnar shape having a substantially meniscus upper surface and bottom surface, and the columnar curved surface forms a parallel curved surface surrounding a part of the curved surface of the detected portion 11Y.
 換言すると、被検出部11Yのうち固定電極14Yに対向する対抗面は、円柱の側面の一部を有し、固定電極14Yのうち被検出部11Yに対向する対抗面は、円筒の内壁面の一部を有している。そして、円筒の内壁面の一部が円柱の側面の一部を囲うよう、被検出部11Yおよび固定電極14Yが配置されている。 In other words, the opposing surface that faces the fixed electrode 14Y in the detected portion 11Y has a part of a cylindrical side surface, and the opposing surface that faces the detected portion 11Y in the fixed electrode 14Y is a cylindrical inner wall surface. Have some. And the to-be-detected part 11Y and the fixed electrode 14Y are arrange | positioned so that a part of inner wall surface of a cylinder may surround a part of side surface of a cylinder.
 なお、被検出部11Yおよび固定電極14Yは、図3に示した固定電極14Yの形状と被検出部11Yの形状とを入れ替えた構成としてもよい。また、ここではガルバノミラー3Yの先端に被検出部11Yを設ける場合について説明したが、被検出部11Yは、何れの位置に配置してもよい。 Note that the detected portion 11Y and the fixed electrode 14Y may have a configuration in which the shape of the fixed electrode 14Y and the shape of the detected portion 11Y illustrated in FIG. 3 are interchanged. Moreover, although the case where the to-be-detected part 11Y was provided in the front-end | tip of the galvanometer mirror 3Y was demonstrated here, you may arrange | position the to-be-detected part 11Y in any position.
 図4は、面倒れ量検出部の構成を示す図である。面倒れ量検出部10Aは、静電容量検出センサ15と、変位量算出部16Aと、を有している。静電容量検出センサ15は、被検出部11Yおよび固定電極14Yに接続されており、被検出部11Yと固定電極14Yとの間の静電容量を検出する。静電容量検出センサ15は、検出した静電容量を変位量算出部16Aに送る。 FIG. 4 is a diagram illustrating a configuration of the surface tilt amount detection unit. The surface tilt amount detection unit 10A includes a capacitance detection sensor 15 and a displacement amount calculation unit 16A. The electrostatic capacity detection sensor 15 is connected to the detected part 11Y and the fixed electrode 14Y, and detects the electrostatic capacity between the detected part 11Y and the fixed electrode 14Y. The capacitance detection sensor 15 sends the detected capacitance to the displacement amount calculation unit 16A.
 変位量算出部16Aは、静電容量を被検出部11Yと固定電極14Yとの間の距離に換算し、換算結果(距離情報)を制御装置20に送る。距離情報は、ガルバノミラー3Yの面倒れ量(傾斜量)に応じた、被検出部11Yと固定電極14Yとの間の距離(電極間距離)であり、ガルバノミラー3Yの角度ずれ量に応じて変化する。なお、変位量算出部16Aは、距離情報を面倒れ量に換算し、面倒れ量を距離情報としてもよい。面倒れ量は、電極間距離の変位量であり、ミラー面の基準位置からの角度ずれ量に対応している。 The displacement amount calculation unit 16A converts the capacitance into a distance between the detected unit 11Y and the fixed electrode 14Y, and sends the conversion result (distance information) to the control device 20. The distance information is a distance (distance between the electrodes) between the detected portion 11Y and the fixed electrode 14Y according to the surface tilt amount (tilt amount) of the galvanometer mirror 3Y, and according to the angle deviation amount of the galvanometer mirror 3Y. Change. Note that the displacement amount calculation unit 16A may convert the distance information into a surface tilt amount and use the surface tilt amount as the distance information. The surface tilt amount is a displacement amount of the distance between the electrodes, and corresponds to an angle deviation amount from the reference position of the mirror surface.
 制御装置20は、変位量算出部16Aからの距離情報を用いてガルバノスキャナ5Xへの指示情報(ガルバノ指令)を作成し、ガルバノスキャナ5Xに送る。このように、面倒れ共振が発生した場合には、面倒れ量をキャンセルするために、面倒れ共振が発生した軸(ガルバノミラー3Y)に直交する軸(ガルバノミラー3X)に補正値を含んだガルバノ指令を送る。 The control device 20 creates instruction information (galvano command) to the galvano scanner 5X using the distance information from the displacement amount calculation unit 16A, and sends it to the galvano scanner 5X. As described above, when the surface tilt resonance occurs, a correction value is included in the axis (galvano mirror 3X) orthogonal to the axis (galvano mirror 3Y) where the surface tilt resonance occurs in order to cancel the surface tilt amount. Send a galvo command.
 なお、静電容量を被検出部11Yと固定電極14Yとの間の距離が同じであっても、ガルバノミラー3Yの回転角度(ガルバノ角度位置)によって被検出部11Yと固定電極14Yとの間の静電容量が変化する場合がある。このため、変位量算出部16Aは、ガルバノ角度位置を用いて、静電容量を、被検出部11Yと固定電極14Yとの間の距離に応じた静電容量に換算してもよい。これにより、正確な静電容量を算出することが可能となる。 In addition, even if the distance between the detected part 11Y and the fixed electrode 14Y is the same, the capacitance between the detected part 11Y and the fixed electrode 14Y depends on the rotation angle (galvano angle position) of the galvano mirror 3Y. The capacitance may change. For this reason, the displacement amount calculation unit 16A may convert the capacitance into a capacitance according to the distance between the detected portion 11Y and the fixed electrode 14Y using the galvano angle position. This makes it possible to calculate an accurate capacitance.
 図5は、面倒れ量検出部の他の構成を示す図である。なお、図4の面倒れ量検出部10Aと同様の構成を有する構成要素に関しては、その説明を省略する。ここでの面倒れ量検出部10Bは、変位量算出部16Aの代わりに変位量算出部16Bを備えている。そして、変位量算出部16Bが補正部17を備えている。 FIG. 5 is a diagram showing another configuration of the surface tilt amount detection unit. Note that description of components having the same configuration as the surface tilt amount detection unit 10A of FIG. 4 is omitted. The surface tilt amount detection unit 10B here includes a displacement amount calculation unit 16B instead of the displacement amount calculation unit 16A. The displacement amount calculation unit 16 </ b> B includes a correction unit 17.
 面倒れ共振現象を位置決めサーボ制御にリアルタイムに反映させるために、検出した面倒れ量を直交する軸の検出角度に加算(または減算)して補正することで、面倒れによる位置ずれをキャンセルすることができる。これにより、目標位置に移動を開始した後の面倒れ共振をリアルタイムにキャンセルすることができる。回転軸の正負の向きの設定や配置、X軸方向の設定、Y軸方向の設定によっては、面倒れ量のキャンセルが、指令位置または検出位置に対する補正量の加算になったり減算になったりする場合がある。このため、補正演算については、適宜キャンセル機構が働くように符号を設定しておく。 In order to reflect surface tilt resonance phenomenon in positioning servo control in real time, the detected surface tilt amount is added to (or subtracted from) the detected angle of the orthogonal axis to correct the misalignment due to surface tilt. Can do. As a result, it is possible to cancel the surface tilt resonance after starting to move to the target position in real time. Depending on the setting and arrangement of the positive and negative directions of the rotation axis, the setting of the X-axis direction, and the setting of the Y-axis direction, canceling the amount of surface tilt may result in addition or subtraction of a correction amount for the command position or detection position There is a case. For this reason, the sign for the correction calculation is set so that the cancel mechanism works appropriately.
 変位量算出部16Bへは、後述の角度検出器(エンコーダ)58が検出するガルバノ角度位置が入力される。補正部17は、ガルバノ角度位置を用いて、静電容量を、被検出部11Yと固定電極14Yとの間の距離に換算する。換言すると、補正部17は、静電容量に対応する被検出部11Yと固定電極14Yとの間の距離を、ガルバノ角度位置に応じた距離に補正する。以下の説明では、面倒れ量検出部10Bが変位量算出部16Bを備える場合について説明する。 The galvano angle position detected by an angle detector (encoder) 58 described later is input to the displacement amount calculation unit 16B. The correction unit 17 converts the electrostatic capacitance into a distance between the detected unit 11Y and the fixed electrode 14Y using the galvano angle position. In other words, the correction unit 17 corrects the distance between the detected portion 11Y corresponding to the capacitance and the fixed electrode 14Y to a distance according to the galvano angle position. In the following description, a case where the surface tilt amount detection unit 10B includes the displacement amount calculation unit 16B will be described.
 図6は、ガルバノスキャナの構成を示す図である。ガルバノスキャナ5Yは、ガルバノミラー3Y側から延びるロータ52の一部を含んで構成されている。ガルバノスキャナ5Yでは、ロータ52にベアリング55,57と、ミラー駆動部56と、角度検出器58と、が配置されている。ロータ52は、ベアリング55,57によって回転自在に支持されている。 FIG. 6 is a diagram showing the configuration of the galvano scanner. The galvano scanner 5Y includes a part of the rotor 52 extending from the galvano mirror 3Y side. In the galvano scanner 5Y, bearings 55, 57, a mirror driving unit 56, and an angle detector 58 are arranged on the rotor 52. The rotor 52 is rotatably supported by bearings 55 and 57.
 ベアリング55は、ミラー駆動部56とガルバノミラー3Yとの間に配置され、ベアリング57は、ミラー駆動部56と角度検出器58との間に配置されている。ロータ52は、その温度変化によって軸方向に伸縮が発生する。このため、ベアリング55は、ロータ52に対して軸方向に完全には固定されておらず、ロータ52が伸縮する際にはロータ52がベアリング55をすり抜けるよう構成されている。一方、ベアリング57は、ロータ52を軸方向に固定している。 The bearing 55 is disposed between the mirror driving unit 56 and the galvano mirror 3Y, and the bearing 57 is disposed between the mirror driving unit 56 and the angle detector 58. The rotor 52 expands and contracts in the axial direction due to the temperature change. For this reason, the bearing 55 is not completely fixed in the axial direction with respect to the rotor 52, and the rotor 52 is configured to pass through the bearing 55 when the rotor 52 expands and contracts. On the other hand, the bearing 57 fixes the rotor 52 in the axial direction.
 ミラー駆動部56は、ロータ52の柱軸を回転軸としてガルバノミラー3Yを回転させる。ミラー駆動部56は、例えば磁石とコイルとを用いて構成されており、コイルに電流を流すことにより、磁石との間でトルクを発生させる。これにより、ロータ52ひいてはガルバノミラー3Yが回転されるように働く。 The mirror driving unit 56 rotates the galvanometer mirror 3Y about the column axis of the rotor 52 as a rotation axis. The mirror drive unit 56 is configured using, for example, a magnet and a coil, and generates a torque with the magnet by flowing a current through the coil. As a result, the rotor 52 and thus the galvanometer mirror 3Y work so as to rotate.
 角度検出器58は、例えばエンコーダであり、ガルバノミラー3Yの回転角度(ガルバノ角度位置)を検出する。角度検出器58は、検出したガルバノ回転角度を、変位量算出部16Bや制御装置20に送る。 The angle detector 58 is an encoder, for example, and detects the rotation angle (galvano angle position) of the galvanometer mirror 3Y. The angle detector 58 sends the detected galvano rotation angle to the displacement amount calculation unit 16B and the control device 20.
 ここで、面倒れ共振現象について説明する。図7は、面倒れ共振現象を説明するための図である。なお、図7では、ミラー駆動部56や角度検出器58の図示を省略している。面倒れ共振現象は、ガルバノミラー3Yが、ミラー面と略垂直な方向に揺れる現象である。例えば、ガルバノミラー3Yの場合、ベアリング57がロータ52を軸方向に固定しているので、ベアリング57よりも端部側(ガルバノミラー3Y側)で面倒れ共振現象が発生する。面倒れ共振現象は、ベアリング57を固定部分として、ロータ52およびガルバノミラー3Yが撓むことで、ガルバノミラー3Yのミラー面の角度が変わり、偏向されるレーザ光L0の進む向きがずれる現象である。 Here, the surface tilt resonance phenomenon will be described. FIG. 7 is a diagram for explaining the surface tilt resonance phenomenon. In FIG. 7, illustration of the mirror driving unit 56 and the angle detector 58 is omitted. The surface tilt resonance phenomenon is a phenomenon in which the galvanometer mirror 3Y swings in a direction substantially perpendicular to the mirror surface. For example, in the case of the galvanometer mirror 3Y, since the bearing 57 fixes the rotor 52 in the axial direction, a surface tilt resonance phenomenon occurs on the end side (galvanometer mirror 3Y side) of the bearing 57. The surface tilt resonance phenomenon is a phenomenon in which the angle of the mirror surface of the galvano mirror 3Y is changed by the deflection of the rotor 52 and the galvano mirror 3Y with the bearing 57 as a fixed part, and the traveling direction of the deflected laser light L0 is deviated. .
 ガルバノスキャナ5Yが、同じ方向に等ピッチの加工位置移動を繰り返すと、ある移動周期でロータ52およびガルバノミラー3Yの面倒れ共振が発生する。換言すると、面倒れ共振は、同じ方向に等ピッチで加工位置を移動させる際に、移動周期がガルバノミラー3Yを含むロータ52の面倒れ共振周波数の逆数に近いと発生する。 When the galvano scanner 5Y repeats the movement of the machining position at the same pitch in the same direction, the surface tilt resonance of the rotor 52 and the galvano mirror 3Y occurs at a certain movement cycle. In other words, the surface tilt resonance occurs when the moving period is close to the reciprocal of the surface tilt resonance frequency of the rotor 52 including the galvano mirror 3Y when the machining position is moved in the same direction at an equal pitch.
 面倒れ共振は、ガルバノミラー3Yを含むロータ52の機械的な曲げの固有振動である。等ピッチのガルバノ移動をする場合には、ガルバノミラー3Yの回転の加減速が周期的に発生する。この回転運動の中心からガルバノミラー3Yおよびロータ52に重量のアンバランスがあると、軸の振れ回り現象が発生し、回転の加速度が軸の曲げの力に変換される。この曲げの力が加振力となり、その周期が面倒れ共振周波数の周期と近い場合には、面倒れ振動が徐々に大きくなって、加工点では大きな位置ずれ(レーザ光照射位置の位置ずれ)が発生する。面倒れ共振による位置ずれは、たとえば、加工位置の進行方向に直交する方向に現れる。 Surface tilt resonance is a natural vibration of mechanical bending of the rotor 52 including the galvanometer mirror 3Y. When the galvano movement is performed at an equal pitch, the acceleration / deceleration of the rotation of the galvano mirror 3Y occurs periodically. If the galvanometer mirror 3Y and the rotor 52 are unbalanced in weight from the center of this rotational motion, a shaft swing phenomenon occurs, and the rotational acceleration is converted into a shaft bending force. When this bending force becomes an excitation force, and the period is close to the period of the face-to-face resonance frequency, the face-to-face vibration gradually increases and a large position shift (position shift of the laser beam irradiation position) occurs at the machining point. Will occur. The position shift due to the surface tilt resonance appears, for example, in a direction perpendicular to the traveling direction of the machining position.
 したがって、X方向の位置決めを行うガルバノミラー3Xで面倒れ共振が発生すると、Y方向に加工位置がずれる。同様に、Y方向の位置決めを行うガルバノミラー3Yで面倒れ共振が発生すると、X方向に加工位置がずれる。 Therefore, if a surface tilt resonance occurs in the galvanometer mirror 3X that performs positioning in the X direction, the machining position is shifted in the Y direction. Similarly, when surface tilt resonance occurs in the galvanometer mirror 3Y that performs positioning in the Y direction, the processing position is shifted in the X direction.
 面倒れ共振の際には、ロータ52およびガルバノミラー3Yが、ベアリング55およびベアリング57を固定位置として、ガルバノミラー3Yのミラー面に略垂直な方向に揺れる。これにより、レーザ光L0のガルバノミラー3Yにおける反射角度が、所望の反射角度から所定量だけずれることとなる。 During surface tilt resonance, the rotor 52 and the galvanometer mirror 3Y swing in a direction substantially perpendicular to the mirror surface of the galvanometer mirror 3Y with the bearing 55 and the bearing 57 as fixed positions. As a result, the reflection angle of the laser beam L0 at the galvano mirror 3Y is deviated by a predetermined amount from the desired reflection angle.
 例えば、ロータ52およびガルバノミラー3Yが、ガルバノミラー3Yの裏面側に最大に撓んだ状態では、レーザ光L0がX方向に反射角度(+θ1)だけずれて、レーザ光L2として反射される。一方、ロータ52およびガルバノミラー3Yが、ガルバノミラー3Yの表側に最大に撓んだ状態では、レーザ光L0がX方向に反射角度(-θ1)だけずれて、レーザ光L3として反射される。 For example, in a state where the rotor 52 and the galvano mirror 3Y are bent to the maximum on the back side of the galvano mirror 3Y, the laser beam L0 is reflected by the reflection angle (+ θ1) in the X direction and reflected as the laser beam L2. On the other hand, in a state where the rotor 52 and the galvano mirror 3Y are bent to the maximum on the front side of the galvano mirror 3Y, the laser beam L0 is reflected by the reflection angle (−θ1) in the X direction and reflected as the laser beam L3.
 換言すると、ロータ52およびガルバノミラー3Yが面倒れ共振によって撓むと、レーザ光L0のX方向に対する反射角度に、撓み量に応じたずれ量が生じる。そして、ロータ52およびガルバノミラー3Yが、最大に撓んだ状態の場合に、レーザ光L0のX方向の反射角度のずれ量も最大となる。 In other words, when the rotor 52 and the galvano mirror 3Y are bent due to surface tilt resonance, the reflection angle of the laser beam L0 with respect to the X direction causes a shift amount corresponding to the bending amount. When the rotor 52 and the galvano mirror 3Y are bent to the maximum, the deviation amount of the reflection angle in the X direction of the laser light L0 is also maximized.
 レーザ光L0の反射角度がX方向にずれる場合、被検出部11Xの位置がずれている。このため、被検出部11Xと固定電極14Xとの間の距離が変化し、被検出部11Xと固定電極14Xとの間の静電容量が変化する。同様に、レーザ光L0の反射角度がY方向にずれる場合、被検出部11Yの位置がずれている。このため、被検出部11Yと固定電極14Yとの間の距離が変化し、被検出部11Yと固定電極14Yとの間の静電容量が変化する。本実施の形態では、被検出部11Xと固定電極14Xとの間の静電容量、被検出部11Yと固定電極14Yとの間の静電容量に基づいて、レーザ光照射位置の位置ずれ(加工位置の位置ずれ)を補正する。 When the reflection angle of the laser beam L0 is shifted in the X direction, the position of the detected part 11X is shifted. For this reason, the distance between the detected part 11X and the fixed electrode 14X changes, and the electrostatic capacitance between the detected part 11X and the fixed electrode 14X changes. Similarly, when the reflection angle of the laser beam L0 is shifted in the Y direction, the position of the detected portion 11Y is shifted. For this reason, the distance between the detected part 11Y and the fixed electrode 14Y changes, and the electrostatic capacitance between the detected part 11Y and the fixed electrode 14Y changes. In the present embodiment, the positional deviation (processing) of the laser light irradiation position is based on the capacitance between the detected portion 11X and the fixed electrode 14X and the capacitance between the detected portion 11Y and the fixed electrode 14Y. (Positional deviation) is corrected.
 図8は、反射角度のずれ量を説明するための図である。ロータ52およびガルバノミラー3Yに面倒れ共振が発生していない場合、ロータ52およびガルバノミラー3Yは、ガルバノミラー3Yの表面側にも裏面側にも撓まない。この場合、レーザ光L0のX方向に対する反射角度には、ずれが生じない。したがって、レーザ光L0は、ガルバノミラー3Yによって所望の反射角度でレーザ光L1として反射される。 FIG. 8 is a diagram for explaining the deviation amount of the reflection angle. When the face-down resonance does not occur in the rotor 52 and the galvanometer mirror 3Y, the rotor 52 and the galvanometer mirror 3Y do not bend toward the front surface side or the back surface side of the galvanometer mirror 3Y. In this case, there is no deviation in the reflection angle of the laser light L0 with respect to the X direction. Therefore, the laser beam L0 is reflected as the laser beam L1 at a desired reflection angle by the galvanometer mirror 3Y.
 一方、ロータ52およびガルバノミラー3Yが、ガルバノミラー3Yの表面側や裏面側に撓んだ状態では、X方向の反射角度がずれて、レーザ光L2やレーザ光L3として反射される。 On the other hand, in the state where the rotor 52 and the galvano mirror 3Y are bent toward the front side or the back side of the galvano mirror 3Y, the reflection angle in the X direction is shifted and reflected as the laser light L2 or the laser light L3.
 図9は、電極間距離の変位量とミラー面の倒れ角との関係を説明するための図である。電極間距離の変位量Dxは、電極間距離の初期値からのずれ量であり、面倒れ共振によるロータ52およびガルバノミラー3Yの撓み量に応じて変化するものである。面倒れ量の検出は、被検出部11Y(ミラー先端部)の面倒れ方向への変位量Dxを検出することによって行なわれる。面倒れはベアリング55とベアリング57を支点にして、ロータ52およびガルバノミラー3Yが撓むことで発生する。このため、ロータ52を軸方向に固定しているベアリング55から被検出部11Yまでの距離をL(mm)とすると、電極間距離の変位量Dx(μm)と、ロータ52およびガルバノミラー3Yの倒れ角である撓み角Φ(rad)との関係は、Φ=Dx/(L×1000)となる。 FIG. 9 is a diagram for explaining the relationship between the displacement amount of the inter-electrode distance and the tilt angle of the mirror surface. The displacement amount Dx of the inter-electrode distance is a deviation amount from the initial value of the inter-electrode distance, and changes according to the deflection amount of the rotor 52 and the galvano mirror 3Y due to surface tilt resonance. The surface tilt amount is detected by detecting a displacement amount Dx of the detected portion 11Y (mirror tip) in the surface tilt direction. Surface tilt occurs when the rotor 52 and the galvanometer mirror 3Y are bent with the bearing 55 and the bearing 57 as fulcrums. Therefore, if the distance from the bearing 55 that fixes the rotor 52 in the axial direction to the detected portion 11Y is L (mm), the displacement amount Dx (μm) of the inter-electrode distance, the rotor 52 and the galvanometer mirror 3Y The relationship with the deflection angle Φ (rad), which is the tilt angle, is Φ = Dx / (L × 1000).
 図10は、反射角度のずれ量とレーザ光照射位置のずれ量の関係を説明するための図である。図10では、ガルバノミラー3Yにおいて、レーザ光L0がX方向に反射角度θ2だけずれて、レーザ光L4として反射された場合のレーザ光照射位置P1を示している。 FIG. 10 is a diagram for explaining the relationship between the deviation amount of the reflection angle and the deviation amount of the laser light irradiation position. In Figure 10, the galvanometer mirror 3Y, deviated laser beam L0 only the reflection angle theta 2 in the X-direction shows a laser beam irradiation position P1 when it is reflected as the laser beam L4.
 X方向への反射角度がずれることなくレーザ光L0がガルバノミラー3Yで反射されると、被加工物W上において、X方向にはレーザ光照射位置がずれることなく所望のレーザ光照射位置P0にレーザ光L0が照射される。したがって、レーザ光L0がX方向に反射角度θ2だけずれて、レーザ光L4として反射された場合、レーザ光照射位置P0とレーザ光照射位置P1との間の距離が照射位置ずれ量(レーザ光照射位置のずれ量)Δxとなる。この場合において、fθレンズ6の焦点距離をfとすると、Δx=fθ2となる。 When the laser beam L0 is reflected by the galvanometer mirror 3Y without shifting the reflection angle in the X direction, the laser beam irradiation position on the workpiece W is shifted to the desired laser beam irradiation position P0 in the X direction. Laser light L0 is irradiated. Therefore, when the laser beam L0 is reflected by the reflection angle θ 2 in the X direction and reflected as the laser beam L4, the distance between the laser beam irradiation position P0 and the laser beam irradiation position P1 is the irradiation position deviation amount (laser beam). Irradiation position deviation amount) Δx. In this case, if the focal length of the fθ lens 6 is f, Δx = fθ 2 .
 このように、ガルバノミラー3Yの面倒れ方向への傾きは、レーザ光L0の反射角度の角度ずれとなって現れる。そして、fθレンズ6の特性から、レーザ光L4の角度ずれ量(変化量)θ2が、加工位置としてΔx=fθ2となる位置変位(照射位置ずれ量)に変換される。 Thus, the inclination of the galvanometer mirror 3Y in the surface tilt direction appears as an angle shift of the reflection angle of the laser light L0. Then, from the characteristics of the fθ lens 6, the angle deviation amount (change amount) θ 2 of the laser light L 4 is converted into a position displacement (irradiation position deviation amount) that satisfies Δx = fθ 2 as a processing position.
 図11は、一般的にガルバノミラーが角度Φ変わった時に、加工される位置がどれだけずれるかを説明するための図である。ガルバノミラー3Yが撓み角Φで撓んだ場合、レーザ光L0がX方向に反射角度(2Φ)だけずれて、レーザ光L4として反射される。 FIG. 11 is a diagram for explaining how much the position to be processed is shifted when the galvanometer mirror is generally changed in angle Φ. When the galvanometer mirror 3Y bends at the deflection angle Φ, the laser light L0 is reflected by the reflection angle (2Φ) in the X direction and reflected as the laser light L4.
 ガルバノミラー3Yの撓み角が0の場合のレーザ光照射位置をレーザ光照射位置P2とし、ガルバノミラー3Yが撓み角Φで撓んだ場合のレーザ光照射位置をレーザ光照射位置P3とする。ガルバノミラー3Yが撓み角Φで撓んだ場合、レーザ光照射位置P2とレーザ光照射位置P3との間の距離が照射位置ずれ量Δxとなる。この場合において、fθレンズ6の焦点距離をfとすると、Δx=2fΦとなる。 The laser beam irradiation position when the deflection angle of the galvano mirror 3Y is 0 is defined as the laser beam irradiation position P2, and the laser beam irradiation position when the galvano mirror 3Y is bent at the deflection angle Φ is defined as the laser beam irradiation position P3. When the galvano mirror 3Y bends at the bending angle Φ, the distance between the laser beam irradiation position P2 and the laser beam irradiation position P3 becomes the irradiation position deviation amount Δx. In this case, when the focal length of the fθ lens 6 is f, Δx = 2fΦ.
 このように、ガルバノミラー3Yの撓み角(傾き)Φは、レーザ光L4の出射角度を2×Φだけ変化させる。したがって、Δx=2f×Dx/(L×1000)となる。実際の面倒れには、ベアリング57からの直線的な撓みばかりではなく、シャフト(ロータ52)やガルバノミラー3Yの湾曲も含まれる。このため、照射位置ずれ量Δxと電極間距離の変位量Dxを直線比例的な関係として扱うばかりではなく、実際の現象にあわせた高次式を用いてもよい。 Thus, the deflection angle (tilt) Φ of the galvanometer mirror 3Y changes the emission angle of the laser light L4 by 2 × Φ. Therefore, Δx = 2f × Dx / (L × 1000). The actual surface tilt includes not only the linear deflection from the bearing 57 but also the curvature of the shaft (rotor 52) and the galvanometer mirror 3Y. For this reason, not only the irradiation position deviation amount Δx and the inter-electrode distance displacement amount Dx are treated as a linearly proportional relationship, but a higher-order equation that matches the actual phenomenon may be used.
 なお、レーザ加工装置100は、ガルバノミラー3Yの撓み角Φと、照射位置ずれ量Δxとの関係に基づいて、ガルバノスキャナ5X,5Yへの位置指令の補正を行ってもよい。この場合、ガルバノミラー3Yの撓み角Φと、照射位置ずれ量Δxとの関係を予め面倒れ量検出部10B内に記憶しておく。そして、面倒れ量検出部10Bが、電極間距離の変位量Dxに基づいて、撓み角Φを算出する。さらに、記憶しておいた関係と、ガルバノミラー3Yの撓み角Φと、に基づいて、面倒れ量検出部10Bが、照射位置ずれ量Δxを算出する。 The laser processing apparatus 100 may correct the position command to the galvano scanners 5X and 5Y based on the relationship between the deflection angle Φ of the galvano mirror 3Y and the irradiation position deviation amount Δx. In this case, the relationship between the deflection angle Φ of the galvano mirror 3Y and the irradiation position deviation amount Δx is stored in advance in the surface tilt amount detection unit 10B. Then, the surface tilt amount detection unit 10B calculates the deflection angle Φ based on the displacement amount Dx of the interelectrode distance. Further, based on the stored relationship and the deflection angle Φ of the galvano mirror 3Y, the surface tilt amount detection unit 10B calculates the irradiation position deviation amount Δx.
 なお、制御装置20が、照射位置ずれ量Δxを算出してもよい。この場合、ガルバノミラー3Yの撓み角Φと、照射位置ずれ量Δxとの関係を予め加工プログラム記憶部22などのメモリ内に記憶しておく。そして、記憶しておいた関係と、ガルバノミラー3Yの撓み角Φと、に基づいて、制御装置20が、照射位置ずれ量Δxに対応する加工位置補正量を算出する。 Note that the control device 20 may calculate the irradiation position deviation amount Δx. In this case, the relationship between the deflection angle Φ of the galvano mirror 3Y and the irradiation position deviation amount Δx is stored in advance in a memory such as the machining program storage unit 22. Then, based on the stored relationship and the deflection angle Φ of the galvano mirror 3Y, the control device 20 calculates a machining position correction amount corresponding to the irradiation position deviation amount Δx.
 図12は、反射角度にずれが無い場合のレーザ光照射位置を示す図であり、図13は、反射角度にずれが有る場合のレーザ光照射位置を示す図である。図12および図13では、被加工物W上のY方向に負から正の方向に間隔d(ピッチd)でレーザ光L1を照射した場合のレーザ光照射位置を示している。具体的には、1点目のレーザ光照射位置H1、2点目のレーザ光照射位置H2、n点目のレーザ光照射位置Hn(nは3以上の自然数)の順番でレーザ光L1が照射される。 FIG. 12 is a diagram showing a laser beam irradiation position when there is no deviation in the reflection angle, and FIG. 13 is a diagram showing a laser beam irradiation position when there is a deviation in the reflection angle. 12 and 13 show the laser beam irradiation position when the laser beam L1 is irradiated at an interval d (pitch d) in the Y direction on the workpiece W from the negative to the positive direction. Specifically, the laser beam L1 is irradiated in the order of the first laser beam irradiation position H1, the second laser beam irradiation position H2, and the nth laser beam irradiation position Hn (n is a natural number of 3 or more). Is done.
 図12に示すように、X方向の反射角度にずれが無い場合、X方向のレーザ光照射位置にもずれは生じない。そして、被加工物W上のY方向には間隔dでレーザ光L1が照射される。 As shown in FIG. 12, when there is no deviation in the reflection angle in the X direction, no deviation occurs in the laser beam irradiation position in the X direction. Then, the laser beam L1 is irradiated at an interval d in the Y direction on the workpiece W.
 一方、図13に示すように、X方向の反射角度にずれが有る場合、X方向のレーザ光照射位置にずれが生じる。このため、被加工物W上のY方向には間隔dで、X方向には反射角度のずれ量に応じた位置ずれ量で、レーザ光L5が照射される。レーザ加工装置100では、レーザ光L5が所定の周期(周波数)で被加工物Wに照射されるともに、ガルバノミラー3Yが所定の周期で面倒れ共振する場合がある。この場合、各レーザ光照射位置では、レーザ光L5の出射周波数およびガルバノミラー3Yの面倒れ共振周波数に応じたX方向の位置ずれ量を生じることとなる。 On the other hand, as shown in FIG. 13, when there is a deviation in the reflection angle in the X direction, a deviation occurs in the laser light irradiation position in the X direction. For this reason, the laser beam L5 is irradiated with a gap d in the Y direction on the workpiece W and with a positional shift amount corresponding to the shift amount of the reflection angle in the X direction. In the laser processing apparatus 100, the workpiece W may be irradiated with the laser beam L5 at a predetermined cycle (frequency), and the galvano mirror 3Y may be surface-reared and resonated at a predetermined cycle. In this case, in each laser beam irradiation position, a positional deviation amount in the X direction according to the emission frequency of the laser beam L5 and the surface tilt resonance frequency of the galvanometer mirror 3Y is generated.
 この場合において、図13に示す例では、X方向の移動指令がないので、本来+Y方向にまっすぐ加工が進むことが望ましい。しかしながら、実際は面倒れ共振の誘起により、加工点で±10μm程度の位置ずれ振動が発生する場合がある。例えば、レーザ加工装置100が、プリント基板穴あけレーザ加工装置である場合、1ms程度の周期の面倒れ共振が発生することが多い。 In this case, in the example shown in FIG. 13, since there is no movement command in the X direction, it is desirable that the processing should proceed straight in the + Y direction. However, in actuality, displacement vibration of about ± 10 μm may occur at the processing point due to induction of surface tilt resonance. For example, when the laser processing apparatus 100 is a printed circuit board drilling laser processing apparatus, surface tilt resonance with a period of about 1 ms often occurs.
 図14は、X方向の位置ずれ量を説明するための図である。ガルバノミラー3Yへは、Y方向に対して所定の間隔d(ここでは2mm)ずつレーザ光照射位置を移動させる指示情報(Yミラー位置指令)が送られる。 FIG. 14 is a diagram for explaining the amount of positional deviation in the X direction. Instruction information (Y mirror position command) for moving the laser light irradiation position by a predetermined distance d (here 2 mm) in the Y direction is sent to the galvanometer mirror 3Y.
 また、レーザ発振器1へは、各レーザ光照射位置でレーザ光L0をパルス出射させる指示情報が送られる。レーザ光L0をパルス出射させる際には、レーザ出力Pが所定のピーク値となるよう、レーザ発振器1が制御される。ここでは、8箇所のレーザ光照射位置にレーザ光L0が照射されるよう、ガルバノミラー3Y、レーザ発振器1に指示情報が送られる場合を示している。 Also, the laser oscillator 1 is sent with instruction information for emitting a pulse of the laser beam L0 at each laser beam irradiation position. When the laser beam L0 is emitted in pulses, the laser oscillator 1 is controlled so that the laser output P has a predetermined peak value. Here, a case is shown in which instruction information is sent to the galvanometer mirror 3Y and the laser oscillator 1 so that the laser beam L0 is irradiated to eight laser beam irradiation positions.
 ガルバノミラー3Yの面倒れ共振は、レーザ光照射位置がX方向にずれる面倒れ共振である。ガルバノミラー3Yが所定の周期で面倒れ共振している場合、ガルバノミラー3Yの面倒れ量も所定の周期で変化する。ガルバノミラー3Yが所定の周期で面倒れ共振すると、レーザ光L0が出射されるタイミングでのガルバノミラー3Yのミラー面の共振位置に応じた被加工物W上の位置にレーザ光L5が照射される。これにより、例えば、レーザ光照射位置のX方向の位置ずれ量は、所定の周期で変化することとなる。 The surface tilt resonance of the galvanometer mirror 3Y is a surface tilt resonance in which the laser beam irradiation position is shifted in the X direction. When the galvanometer mirror 3Y resonates and resonates at a predetermined cycle, the surface tilt amount of the galvanometer mirror 3Y also changes at a predetermined cycle. When the galvano mirror 3Y resonates with a predetermined period, the laser beam L5 is irradiated to a position on the workpiece W according to the resonance position of the mirror surface of the galvano mirror 3Y at the timing when the laser beam L0 is emitted. . Thereby, for example, the amount of positional deviation in the X direction of the laser light irradiation position changes at a predetermined cycle.
 図15は、X方向の位置ずれ補正を説明するための図である。ここでは、図14で説明したX方向の位置ずれ量に対する位置ずれ補正について説明する。ガルバノミラー3Yが面倒れ共振すると、レーザ光照射位置は、面倒れ量に応じた距離(X方向)だけ位置ずれする。したがって、本実施形態では、制御装置20の補正量算出部23がガルバノミラー3Yの面倒れ量に対応する照射位置ずれ量Δxを補正するための加工位置補正量を算出する。ガルバノミラー3Yで生じる面倒れ共振によって、レーザ光照射位置はX方向にずれる。このため、補正量算出部23は、ガルバノミラー3Xへの加工位置補正量を算出する。ガルバノミラー3Xへの加工位置補正量は、ガルバノミラー3Xへの位置指令に対する補正量である。 FIG. 15 is a diagram for explaining positional deviation correction in the X direction. Here, the positional deviation correction with respect to the positional deviation amount in the X direction described with reference to FIG. 14 will be described. When the galvanometer mirror 3Y resonates due to surface tilt, the laser light irradiation position is displaced by a distance (X direction) corresponding to the surface tilt amount. Therefore, in the present embodiment, the correction amount calculation unit 23 of the control device 20 calculates a processing position correction amount for correcting the irradiation position deviation amount Δx corresponding to the surface tilt amount of the galvanometer mirror 3Y. The laser beam irradiation position is shifted in the X direction by the surface tilt resonance generated in the galvanometer mirror 3Y. Therefore, the correction amount calculation unit 23 calculates the processing position correction amount for the galvano mirror 3X. The processing position correction amount for the galvanometer mirror 3X is a correction amount for the position command to the galvanometer mirror 3X.
 ガルバノミラー3Xへの位置指令が0である場合、ガルバノミラー3Xの面倒れ量も0である。この場合、ガルバノミラー3Xは、補正量算出部23で算出された加工位置補正量に基づいて制御される。したがって、ガルバノミラー3Xへは、X方向に対して加工位置補正量に応じた位置補正量ずつレーザ光照射位置を移動させる指示情報(Xミラー位置指令)が送られる。 When the position command to the galvanometer mirror 3X is 0, the surface tilt amount of the galvanometer mirror 3X is also zero. In this case, the galvanometer mirror 3X is controlled based on the machining position correction amount calculated by the correction amount calculation unit 23. Therefore, instruction information (X mirror position command) for moving the laser light irradiation position by the position correction amount corresponding to the machining position correction amount with respect to the X direction is sent to the galvanometer mirror 3X.
 つぎに、照射位置ずれ量の測定方法について説明する。図16は、被検出部と固定電極の接続構成を示す図である。同図に示すように、被検出部11Yと固定電極14Yとは、所定の距離だけ離されて配置されている。そして、被検出部11Yと固定電極14Yが、それぞれ交流定電流源である電流源61に接続されている。電流源61は、例えば、前述の静電容量検出センサ15内に配置されている。 Next, a method for measuring the irradiation position deviation will be described. FIG. 16 is a diagram illustrating a connection configuration between the detected portion and the fixed electrode. As shown in the figure, the detected part 11Y and the fixed electrode 14Y are arranged apart from each other by a predetermined distance. And the to-be-detected part 11Y and the fixed electrode 14Y are each connected to the current source 61 which is an alternating current source. The current source 61 is disposed, for example, in the aforementioned capacitance detection sensor 15.
 図17は、静電容量検出センサの構成例を示す図である。ここでは、被検出部11Yと固定電極14Yとによって形成されるコンデンサ62の静電容量を静電容量Cxで示している。被検出部11Yと電流源61との間の配線および固定電極14Yと電流源61との間の配線のうち、OPアンプ64に接続されている側の配線(例えば、固定電極14Yと電流源61との間の配線)は、シールド線60などによってシールドされている。 FIG. 17 is a diagram illustrating a configuration example of a capacitance detection sensor. Here, the capacitance of the capacitor 62 formed by the detected portion 11Y and the fixed electrode 14Y is indicated by a capacitance Cx. Of the wiring between the detected portion 11Y and the current source 61 and the wiring between the fixed electrode 14Y and the current source 61, the wiring connected to the OP amplifier 64 (for example, the fixed electrode 14Y and the current source 61). Is shielded by a shield wire 60 or the like.
 ωを印加する電流の角周波数として、電流源61からI0sinωtの電流がVsの電圧で流されると、コンデンサ62には、iの電流がVxの電圧(電極間電圧)で流される。被検出部11Yと電流源61との間の配線または固定電極14Yと電流源61との間の配線には、OPアンプ64の非反転入力側が接続されている。また、OPアンプ64の反転入力側と出力側には、シールド線60が接続されている。 As an angular frequency of the current to which ω is applied, when a current I 0 sinωt is supplied from the current source 61 at a voltage of Vs, a current of i is supplied to the capacitor 62 at a voltage of Vx (interelectrode voltage). The non-inverting input side of the OP amplifier 64 is connected to the wiring between the detected portion 11Y and the current source 61 or the wiring between the fixed electrode 14Y and the current source 61. A shield line 60 is connected to the inverting input side and the output side of the OP amplifier 64.
 この場合において、i=Vs×jωCxが成立する。したがって、Vs=i/jωCxである。シールド線60による配線のシールドが良好な場合、Vsと電極間電圧Vxは、ほぼ等しいので、Vsを測定することによって、電極間電圧Vxの値を得ることが可能となる。このように、静電容量検出センサ15では、シールド線60が配置されているので、コンデンサ62の周辺にある金属(配線)の浮遊容量の影響を受けることなく、電極間電圧Vxを測定することが可能となる。なお、コンデンサ62と電流源61とを接続する配線のうち、OPアンプ64が接続されていない側の配線をグランドに接続してもよい。 In this case, i = Vs × jωCx holds. Therefore, Vs = i / jωCx. When the shield of the wiring by the shield line 60 is good, Vs and the interelectrode voltage Vx are substantially equal. Therefore, the value of the interelectrode voltage Vx can be obtained by measuring Vs. As described above, since the shield wire 60 is arranged in the capacitance detection sensor 15, the interelectrode voltage Vx can be measured without being affected by the stray capacitance of the metal (wiring) around the capacitor 62. Is possible. Of the wires connecting the capacitor 62 and the current source 61, the wire on the side where the OP amplifier 64 is not connected may be connected to the ground.
 静電容量検出センサ15の算出部63は、静電容量Cxに応じて変化する電極間電圧Vxを検出するとともに電極間電圧Vxの値を用いて静電容量Cxを算出し、変位量算出部16Bは、静電容量Cxを用いて被検出部11Yと固定電極14Yとの間の電極間距離Dを算出する。図18は、被検出部と固定電極との間の距離の算出方法を説明するための図である。 The calculation unit 63 of the capacitance detection sensor 15 detects the interelectrode voltage Vx that changes according to the capacitance Cx, calculates the capacitance Cx using the value of the interelectrode voltage Vx, and calculates the displacement amount calculation unit. 16B calculates the inter-electrode distance D between the detected portion 11Y and the fixed electrode 14Y using the capacitance Cx. FIG. 18 is a diagram for explaining a method for calculating the distance between the detected portion and the fixed electrode.
 図18では、説明の便宜上、被検出部11Yを円板状の電極63Aで示し、固定電極14Yを円板状の電極63Bで示している。電極63Aと電極63Bとの間の電極間距離DがDであり、電極63A,63Bの面積がそれぞれSである場合、S≫D2の関係が成立すれば(SがDの2乗に比べてはるかに大きい場合)、Cx=ε×S/Dとなる。したがって、変位量算出部16Bは、Cx=ε×S/Dの関係と、静電容量Cxの値とを用いて、電極間距離Dを算出する。ここで、εは電極間の誘電率である。したがって、静電容量Cxは、電極間距離Dに反比例するので、静電容量Cxの変化を求めれば、電極間距離Dの変化を測定することができる。 In FIG. 18, for convenience of explanation, the detected portion 11Y is indicated by a disk-like electrode 63A, and the fixed electrode 14Y is indicated by a disk-like electrode 63B. Electrode distance D between the electrode 63A and the electrode 63B is D, if the electrode 63A, the area of 63B which is S, respectively, if established relationship S»D 2 is (S is compared to the square of D And much larger), Cx = ε × S / D. Therefore, the displacement amount calculation unit 16B calculates the inter-electrode distance D using the relationship of Cx = ε × S / D and the value of the capacitance Cx. Here, ε is the dielectric constant between the electrodes. Therefore, since the capacitance Cx is inversely proportional to the interelectrode distance D, the change in the interelectrode distance D can be measured by determining the change in the capacitance Cx.
 なお、変位量算出部16Bは、電極間距離Dと静電容量Cxの関係を予め記憶しておき、電極間距離Dと静電容量Cxの関係に基づいて、電極間距離Dを算出してもよい。図19は、静電容量と電極間距離の関係を示す図である。変位量算出部16Bは、例えば、図19に示した静電容量Cxと電極間距離Dの関係を用いて電極間距離Dを算出する。 The displacement amount calculation unit 16B stores the relationship between the interelectrode distance D and the capacitance Cx in advance, and calculates the interelectrode distance D based on the relationship between the interelectrode distance D and the capacitance Cx. Also good. FIG. 19 is a diagram illustrating the relationship between the capacitance and the inter-electrode distance. For example, the displacement amount calculation unit 16B calculates the inter-electrode distance D using the relationship between the capacitance Cx and the inter-electrode distance D illustrated in FIG.
 また、変位量算出部16Bは、電極間距離の変位量Dxと静電容量Cxの関係を予め記憶しておき、電極間距離の変位量Dxと静電容量Cxの関係に基づいて、電極間距離の変位量Dxを算出してもよい。 Further, the displacement amount calculation unit 16B stores in advance the relationship between the displacement amount Dx of the inter-electrode distance and the capacitance Cx, and based on the relationship between the displacement amount Dx of the inter-electrode distance and the capacitance Cx, A distance displacement amount Dx may be calculated.
 また、変位量算出部16Bは、電極間にかかる電極間電圧Vxと電極間距離Dの関係を予め記憶しておき、電極間電圧Vxと電極間距離Dの関係に基づいて、電極間距離Dを算出してもよい。図20は、電極間電圧と電極間距離の関係を示す図である。変位量算出部16Bは、例えば、図20に示した電極間電圧Vxと電極間距離Dの関係を用いて電極間距離Dを算出する。図19に示した電極間距離Dと静電容量Cxの関係や、図20に示した電極間電圧Vxと電極間距離Dの関係は、例えば変位量算出部16B内で記憶しておく。 Further, the displacement amount calculation unit 16B stores in advance the relationship between the interelectrode voltage Vx and the interelectrode distance D applied between the electrodes, and based on the relationship between the interelectrode voltage Vx and the interelectrode distance D, the interelectrode distance D is stored. May be calculated. FIG. 20 is a diagram showing the relationship between the interelectrode voltage and the interelectrode distance. The displacement amount calculation unit 16B calculates the interelectrode distance D using, for example, the relationship between the interelectrode voltage Vx and the interelectrode distance D shown in FIG. The relationship between the interelectrode distance D and the capacitance Cx shown in FIG. 19 and the relationship between the interelectrode voltage Vx and the interelectrode distance D shown in FIG. 20 are stored in the displacement amount calculation unit 16B, for example.
 また、変位量算出部16Bは、電極間にかかる電極間電圧Vxと電極間距離の変位量Dxの関係を予め記憶しておき、電極間電圧Vxと電極間距離の変位量Dxの関係に基づいて、電極間距離の変位量Dxを算出してもよい。 Further, the displacement amount calculation unit 16B stores in advance the relationship between the interelectrode voltage Vx applied between the electrodes and the displacement amount Dx of the interelectrode distance, and is based on the relationship between the interelectrode voltage Vx and the displacement amount Dx of the interelectrode distance. Thus, the displacement amount Dx of the interelectrode distance may be calculated.
 面倒れ量検出部が、電極間電圧Vxと電極間距離Dの関係を用いて電極間距離Dを算出する場合の面倒れ量検出部の構成について説明する。図21は、電極間電圧を用いて電極間距離を算出する場合の面倒れ量検出部の構成を示す図である。なお、ここでは、コンデンサ62の一方の電極を電流源61に接続し、他方の電極をグランドに接続している場合を示している。面倒れ量検出部10Cは、高インピーダンス電圧検出部68、整流回路69、A/D変換部70、電極間距離算出部71、補正部17を備えている。 The configuration of the surface tilt amount detection unit when the surface tilt amount detection unit calculates the inter-electrode distance D using the relationship between the interelectrode voltage Vx and the inter-electrode distance D will be described. FIG. 21 is a diagram illustrating a configuration of the surface tilt amount detection unit when the interelectrode distance is calculated using the interelectrode voltage. Here, the case where one electrode of the capacitor 62 is connected to the current source 61 and the other electrode is connected to the ground is shown. The surface tilt amount detection unit 10 </ b> C includes a high impedance voltage detection unit 68, a rectifier circuit 69, an A / D conversion unit 70, an interelectrode distance calculation unit 71, and a correction unit 17.
 高インピーダンス電圧検出部68によって、コンデンサ62の電極間における電圧(電極間電圧)が検出され、検出された電極間電圧が整流回路69で直流化される。整流回路69で直流化された直流電圧は、A/D変換部70でA/D変換(アナログ信号からデジタル信号への変換)が行われる。そして、電極間距離算出部71は、A/D変換された信号を用いて、電極間距離Dを算出する。このとき、電極間距離算出部71は、例えば、図20に示した電極間電圧Vxと電極間距離Dの関係を用いて電極間距離Dを算出する。そして、補正部17で、電極間距離Dがガルバノ角度位置に応じた電極間距離Dに補正される。補正部17は、補正した電極間距離Dを制御装置10に送る。 The high impedance voltage detector 68 detects the voltage between the electrodes of the capacitor 62 (interelectrode voltage), and the detected interelectrode voltage is converted into a direct current by the rectifier circuit 69. The direct current voltage converted into direct current by the rectifier circuit 69 is subjected to A / D conversion (conversion from an analog signal to a digital signal) by the A / D conversion unit 70. Then, the interelectrode distance calculation unit 71 calculates the interelectrode distance D using the A / D converted signal. At this time, the interelectrode distance calculation unit 71 calculates the interelectrode distance D using, for example, the relationship between the interelectrode voltage Vx and the interelectrode distance D shown in FIG. Then, the correction unit 17 corrects the interelectrode distance D to the interelectrode distance D corresponding to the galvano angle position. The correction unit 17 sends the corrected inter-electrode distance D to the control device 10.
 制御装置20の補正量算出部23は、変位量算出部16Bが算出した電極間距離Dを用いて、ガルバノスキャナ5X,5Yへの位置指令を補正するための加工位置補正量を算出する。制御装置20では、予め加工プログラム記憶部22内などに、電極間距離Dと加工位置補正量の関係を格納しておく。補正量算出部23は、この電極間距離Dと加工位置補正量の関係を用いて、加工位置補正量を算出する。 The correction amount calculation unit 23 of the control device 20 calculates the machining position correction amount for correcting the position command to the galvano scanners 5X and 5Y using the inter-electrode distance D calculated by the displacement amount calculation unit 16B. In the control device 20, the relationship between the inter-electrode distance D and the machining position correction amount is stored in advance in the machining program storage unit 22 or the like. The correction amount calculation unit 23 calculates the machining position correction amount using the relationship between the interelectrode distance D and the machining position correction amount.
 なお、電極間電圧Vxと加工位置補正量の関係を予め記憶しておき、電極間電圧Vxと加工位置補正量の関係に基づいて、加工位置補正量を算出してもよい。この場合、変位量算出部16Bが加工位置補正量を算出してもよいし、補正量算出部23が加工位置補正量を算出してもよい。変位量算出部16Bが加工位置補正量を算出する場合、電極間電圧と加工位置補正量の関係は、例えば変位量算出部16B内に格納しておく。また、補正量算出部23が加工位置補正量を算出する場合、電極間電圧と加工位置補正量の関係は、例えば加工プログラム記憶部22内に格納しておく。 Note that the relationship between the interelectrode voltage Vx and the machining position correction amount may be stored in advance, and the machining position correction amount may be calculated based on the relationship between the interelectrode voltage Vx and the machining position correction amount. In this case, the displacement amount calculation unit 16B may calculate the machining position correction amount, or the correction amount calculation unit 23 may calculate the machining position correction amount. When the displacement amount calculation unit 16B calculates the machining position correction amount, the relationship between the interelectrode voltage and the machining position correction amount is stored in, for example, the displacement amount calculation unit 16B. When the correction amount calculation unit 23 calculates the machining position correction amount, the relationship between the interelectrode voltage and the machining position correction amount is stored in the machining program storage unit 22, for example.
 図22は、電流源回路の構成例を示す図である。ここでは、電流源61の電流源回路が、グランドに接続されている場合を示している。電流源61の電流源回路は、E0sinωtの電圧を発生させる交流電圧源65と、OPアンプ72と、抵抗値Rの抵抗73と、を備えている。これにより、電流源61からは、i=E0/Rsinωtの電流が発生する。例えば、交流の周波数として250kHz~1MHz程度、抵抗器としてR=100kΩ~1MΩ程度のものを使用すると良好な特性が得られる。 FIG. 22 is a diagram illustrating a configuration example of a current source circuit. Here, the case where the current source circuit of the current source 61 is connected to the ground is shown. The current source circuit of the current source 61 includes an AC voltage source 65 that generates a voltage of E 0 sinωt, an OP amplifier 72, and a resistor 73 having a resistance value R. As a result, a current of i = E 0 / Rsinωt is generated from the current source 61. For example, good characteristics can be obtained when an AC frequency of about 250 kHz to 1 MHz and a resistor of about R = 100 kΩ to 1 MΩ are used.
 図23は、静電容量検出センサの他の構成例を示す図である。なお、図17に示した静電容量検出センサと同様の構成要素については、その説明を省略する。コンデンサ62の一方の電極は、グランドに接続され、他方の電極は、OPアンプ64の非反転入力側と電流源61が接続されている。そして、OPアンプ64の反転入力側と出力側には、シールド線60が接続されている。この構成により、算出部63は、電極間電圧Vxを検出するとともに電極間電圧Vxの値を用いて静電容量Cxを算出し、変位量算出部16Bは、静電容量Cxを用いて被検出部11Yと固定電極14Yとの間の電極間距離Dを算出する。 FIG. 23 is a diagram showing another configuration example of the capacitance detection sensor. The description of the same components as those of the capacitance detection sensor shown in FIG. 17 is omitted. One electrode of the capacitor 62 is connected to the ground, and the other electrode is connected to the non-inverting input side of the OP amplifier 64 and the current source 61. The shield line 60 is connected to the inverting input side and the output side of the OP amplifier 64. With this configuration, the calculation unit 63 detects the interelectrode voltage Vx and calculates the capacitance Cx using the value of the interelectrode voltage Vx, and the displacement amount calculation unit 16B detects the detected value using the capacitance Cx. An interelectrode distance D between the portion 11Y and the fixed electrode 14Y is calculated.
 電圧を検出する回路側に印加電流源iからの電流が流入しないよう高インピーダンスの検出回路が必要であるので、ボルテージフォロア構成としている。また、電極(固定電極14Yまたは被検出部11Y)に接続する電線は、実際には浮遊容量をもち、余計な電流が流れて検出誤差になる。このため、浮遊容量の影響が現れないよう、検出電圧と同じ電圧を、低出力インピーダンスの緩衝増幅を介してシールド線60に印加する。 Since a high-impedance detection circuit is required so that current from the applied current source i does not flow into the voltage detection circuit side, a voltage follower configuration is used. Moreover, the electric wire connected to the electrode (the fixed electrode 14Y or the detected part 11Y) actually has a stray capacitance, and an excess current flows, resulting in a detection error. For this reason, the same voltage as the detection voltage is applied to the shield line 60 through buffer amplification with a low output impedance so that the influence of stray capacitance does not appear.
 ここで、電極間距離Dに応じた電圧の検出方法の他の例について説明する。図24は、電極間距離に応じた電圧検出を行う回路の回路構成例を示す図である。図24に示す電圧検出回路は、交流電圧源77、定電流増幅回路79、移相回路83、電圧検出回路80、同期整流回路81、低域フィルタ82を備えている。 Here, another example of the voltage detection method according to the interelectrode distance D will be described. FIG. 24 is a diagram illustrating a circuit configuration example of a circuit that performs voltage detection according to the distance between the electrodes. The voltage detection circuit shown in FIG. 24 includes an AC voltage source 77, a constant current amplifier circuit 79, a phase shift circuit 83, a voltage detection circuit 80, a synchronous rectification circuit 81, and a low-pass filter 82.
 コンデンサ62のうちの一方の電極と、定電流増幅回路79と、電圧検出回路80と、が接続されている。ここでは、コンデンサ62のうちの一方の電極である固定電極14Yが定電流増幅回路79と電圧検出回路80に接続され、他方の電極である被検出部11Yがグランドに接続されている場合について説明する。 One electrode of the capacitor 62, the constant current amplification circuit 79, and the voltage detection circuit 80 are connected. Here, the case where the fixed electrode 14Y, which is one electrode of the capacitor 62, is connected to the constant current amplifier circuit 79 and the voltage detection circuit 80, and the detected part 11Y, which is the other electrode, is connected to the ground will be described. To do.
 交流電圧源77は、基準の波形発生源として使用されるものであり、定電流増幅回路79は入力電圧に比例した交流電流を出力するものである。また、電圧検出回路80は、固定電極14Yに発生する電圧(電圧降下)を検出するものである。移相回路83は、入力した交流電圧源77の位相をシフトさせ所定の位相に進相処理または遅相処理して出力するものである。 The AC voltage source 77 is used as a reference waveform generation source, and the constant current amplifier circuit 79 outputs an AC current proportional to the input voltage. The voltage detection circuit 80 detects a voltage (voltage drop) generated in the fixed electrode 14Y. The phase shift circuit 83 shifts the phase of the input AC voltage source 77 to advance the phase to a predetermined phase or process the phase to be output.
 交流電圧源77および定電流増幅回路79は、入力信号を発生させ、移相回路83及び同期整流回路81は、電圧検出回路80で検出された交流信号と、交流電圧源77で発生した交流信号と、の周波数および位相を一致させる。 The AC voltage source 77 and the constant current amplifier circuit 79 generate an input signal, and the phase shift circuit 83 and the synchronous rectifier circuit 81 have an AC signal detected by the voltage detection circuit 80 and an AC signal generated by the AC voltage source 77. And the frequency and phase of these are matched.
 図24に示す電圧検出回路80では、交流電圧源77で発生した交流定電圧sin2πftが定電流増幅回路79に入力され、定電流増幅回路79は、入力電圧に比例した交流電流を出力し、固定電極14Yに供給する。このとき、固定電極14Yの電圧Vcは、Vc=i/2πfCとして電圧検出回路80に印加されるが、電圧検出回路80の入力インピーダンスは非常に大きく、電圧検出回路80に流入する電流の値は無視できる。電圧検出回路80で検出された電圧は、同期整流回路81に入力される。 In the voltage detection circuit 80 shown in FIG. 24, the AC constant voltage sin2πft generated by the AC voltage source 77 is input to the constant current amplifier circuit 79. The constant current amplifier circuit 79 outputs an AC current proportional to the input voltage and is fixed. Supply to the electrode 14Y. At this time, the voltage Vc of the fixed electrode 14Y is applied to the voltage detection circuit 80 as Vc = i / 2πfC, but the input impedance of the voltage detection circuit 80 is very large, and the value of the current flowing into the voltage detection circuit 80 is Can be ignored. The voltage detected by the voltage detection circuit 80 is input to the synchronous rectification circuit 81.
 同期整流回路81では、移相回路83の信号の位相情報をもとに電圧検出回路80の検出信号を同期整流し、移相回路83を通過した特定の周波数のみの信号を整流し、他の周波数成分を除去する。また、同期整流回路81の出力は、低域フィルタ82に入力される。低域フィルタ82は、不要な高周波成分を除去し、距離情報出力として正確な検出出力(電極間電圧Vx)を得る。なお、印加する電流iに対して静電容量Cx両端に発生する電圧は位相が90°遅れているが、移相回路83によって位相が一致するようにして、同期検波出力が得られるようにしている。このため、同期整流回路81では、移相回路83の信号の位相情報をもとに電圧検出回路80の検出信号を同期整流して抽出できる。これにより、低域フィルタ82は、同期整流回路81の出力として入力された信号の中から不要な高周波成分を除去し、距離情報として正確な検出出力を出力することが可能となる。 The synchronous rectifier circuit 81 synchronously rectifies the detection signal of the voltage detection circuit 80 based on the phase information of the signal of the phase shift circuit 83, rectifies a signal of only a specific frequency that has passed through the phase shift circuit 83, Remove frequency components. The output of the synchronous rectifier circuit 81 is input to the low pass filter 82. The low-pass filter 82 removes unnecessary high frequency components and obtains an accurate detection output (interelectrode voltage Vx) as a distance information output. The voltage generated at both ends of the capacitance Cx is delayed by 90 ° with respect to the applied current i, but the phase is matched by the phase shift circuit 83 so that a synchronous detection output is obtained. Yes. Therefore, the synchronous rectification circuit 81 can extract the detection signal of the voltage detection circuit 80 by synchronous rectification based on the phase information of the signal of the phase shift circuit 83. As a result, the low-pass filter 82 can remove unnecessary high-frequency components from the signal input as the output of the synchronous rectification circuit 81 and output an accurate detection output as distance information.
 このように、電圧検出回路では、信号に混入するノイズ成分が重畳していても、周波数が一致しないのでノイズ成分を除去できる。この結果、ノイズ成分の影響を無視した電圧を検出することが可能となる。 Thus, in the voltage detection circuit, even if noise components mixed in the signal are superimposed, the noise components can be removed because the frequencies do not match. As a result, it is possible to detect a voltage that ignores the influence of noise components.
 つぎに、検出電圧(電極間電圧Vx)から電極間距離Dへの換算方法について説明する。電極の面積が理想無限の場合には、静電容量Cxと電極間距離Dとの間に反比例の関係があるが、実際には面積が有限であるので反比例の関係からはずれる。図19に示したように、電極間距離Dが大きくなると静電容量Cxが減少するという関係がある。そして、静電容量Cxが減少すると電極間電圧Vxは増加する。したがって、電極間距離Dが増加すると、電極間電圧Vxは増加する。ところが、有限の電極面積であるがために理想の反比例からずれ、実際には電極間距離Dと電極間電圧Vxの間には、図20に示すような単調曲線の関係がある。 Next, a conversion method from the detection voltage (interelectrode voltage Vx) to the interelectrode distance D will be described. When the area of the electrode is ideally infinite, there is an inversely proportional relationship between the capacitance Cx and the inter-electrode distance D. However, since the area is actually finite, it is out of the inversely proportional relationship. As shown in FIG. 19, there is a relationship that the capacitance Cx decreases as the interelectrode distance D increases. When the capacitance Cx decreases, the interelectrode voltage Vx increases. Therefore, as the interelectrode distance D increases, the interelectrode voltage Vx increases. However, since it has a finite electrode area, it deviates from the ideal inverse proportion, and actually there is a monotone curve relationship between the interelectrode distance D and the interelectrode voltage Vx as shown in FIG.
 電極間電圧Vxから電極間距離Dへの換算は、図21に示した変位量算出部16Bの電極間距離算出部71で行われる。図25は、検出電圧から電極間距離への換算方法を説明するための図である。電極間距離Dの変位と電極間電圧Vxとの関係は、図20に示したように直線的ではないので、電極間距離算出部71を設けておき、後の処理に都合が良いように電極間距離Dの変位と出力信号が比例するように信号を変換する。 The conversion from the interelectrode voltage Vx to the interelectrode distance D is performed by the interelectrode distance calculation unit 71 of the displacement amount calculation unit 16B shown in FIG. FIG. 25 is a diagram for explaining a conversion method from the detection voltage to the inter-electrode distance. Since the relationship between the displacement of the interelectrode distance D and the interelectrode voltage Vx is not linear as shown in FIG. 20, an interelectrode distance calculation unit 71 is provided so that it is convenient for subsequent processing. The signal is converted so that the displacement of the distance D is proportional to the output signal.
 電極間距離算出部71へは、A/D変換された信号(電極間電圧のA/D変換値X)が入力される。電極間距離算出部71は、例えばAX4+BX3+CX2+DX+Eなどの補正式を用いて、電極間電圧のA/D変換値Xを電極間距離Dに変換する。このように、電極間距離算出部71は、4次多項式近似式などを用いることにより、電極間電圧Vxを電極間距離Dに変換している。なお、電極間電圧のA/D変換値Xを電極間距離Dに変換する際に用いる補正式は、4次式に限らず3次以下の補正式であってもよいし、5次以上の補正式であってもよい。 The interelectrode distance calculation unit 71 receives an A / D converted signal (A / D conversion value X of the interelectrode voltage). The interelectrode distance calculation unit 71 converts the A / D conversion value X of the interelectrode voltage into the interelectrode distance D using a correction formula such as AX 4 + BX 3 + CX 2 + DX + E. As described above, the interelectrode distance calculation unit 71 converts the interelectrode voltage Vx into the interelectrode distance D by using a fourth-order polynomial approximation formula or the like. The correction formula used when the A / D conversion value X of the interelectrode voltage is converted into the inter-electrode distance D is not limited to the quartic formula, and may be a correction formula of the third order or lower, or the fifth order or higher. It may be a correction formula.
 図26は、制御装置のハードウェア構成を示す図である。図26では、レーザ加工装置100の制御系の全体構成を示している。制御装置20は、加工機制御部88と、ガルバノ制御部90X,90Yと、テーブル駆動制御部92と、を備えている。加工機制御部88は、加工プログラムや面倒れ量検出部10Bから送られてくるガルバノスキャナ5X,5Yの面倒れ量に基づいて、ガルバノ制御部90X,90Y、テーブル駆動制御部92、レーザ発振器1に指示情報を送る。 FIG. 26 is a diagram illustrating a hardware configuration of the control device. In FIG. 26, the whole structure of the control system of the laser processing apparatus 100 is shown. The control device 20 includes a processing machine control unit 88, galvano control units 90X and 90Y, and a table drive control unit 92. The processing machine control unit 88 is based on the surface tilt amount of the galvano scanners 5X and 5Y sent from the processing program and the surface tilt amount detection unit 10B, and the galvano control units 90X and 90Y, the table drive control unit 92, and the laser oscillator 1 Send instruction information to.
 加工機制御部88は、ガルバノ制御部90XにX方向の位置指令を送り、ガルバノ制御部90YにY方向の位置指令を送る。具体的には、加工機制御部88は、ガルバノ制御部90X,90Yに、ガルバノスキャナ5X,5Yへの位置決め目標座標の指令を送る。 The processing machine control unit 88 sends a position command in the X direction to the galvano control unit 90X, and sends a position command in the Y direction to the galvano control unit 90Y. Specifically, the processing machine control unit 88 sends commands for positioning target coordinates to the galvano scanners 5X and 5Y to the galvano control units 90X and 90Y.
 本実施の形態では、ガルバノミラー3Xが面倒れ共振する場合に、Y方向にレーザ光L5の照射位置がずれるので、ガルバノ制御部90Yに加工位置補正量を含む位置指令が送られる。また、ガルバノミラー3Yが面倒れ共振する場合に、X方向にレーザ光L5の照射位置がずれるので、ガルバノ制御部90Xに加工位置補正量を含む位置指令が送られる。 In the present embodiment, when the galvano mirror 3X is tilted and resonates, the irradiation position of the laser beam L5 is shifted in the Y direction, so that a position command including a machining position correction amount is sent to the galvano controller 90Y. In addition, when the galvano mirror 3Y resonates and resonates, the irradiation position of the laser beam L5 shifts in the X direction, and therefore a position command including the machining position correction amount is sent to the galvano control unit 90X.
 ガルバノ制御部90Xは、加工機制御部88からの指示情報に従って、ガルバノスキャナ5Xを制御する。また、ガルバノ制御部90Yは、加工機制御部88からの指示情報に従って、ガルバノスキャナ5Yを制御する。具体的には、ガルバノ制御部90X,90Yは、それぞれガルバノスキャナ5X,5Yに対して位置決めサーボ動作を行う。そして、ガルバノスキャナ5X,5Yが、それぞれガルバノミラー3X,3Yを、ロータ52を回転軸として所定の角度だけ回転させる。 The galvano control unit 90X controls the galvano scanner 5X in accordance with the instruction information from the processing machine control unit 88. Further, the galvano control unit 90Y controls the galvano scanner 5Y according to the instruction information from the processing machine control unit 88. Specifically, the galvano controllers 90X and 90Y perform positioning servo operations on the galvano scanners 5X and 5Y, respectively. Then, the galvano scanners 5X and 5Y rotate the galvanometer mirrors 3X and 3Y, respectively, by a predetermined angle with the rotor 52 as the rotation axis.
 ガルバノミラー3X,3Yは、例えば軽量で剛性の高いベリリウムなどで構成し、ガルバノスキャナ5X,5Yも高剛性となるように設計しておく。このため、XYテーブル8のテーブル駆動のみで加工位置の位置決め制御を行うよりも、はるかに高速で位置決め動作を完了できる。レーザ加工装置100は、例えば1秒間に3000回程度の位置決めを行う。 The galvano mirrors 3X and 3Y are made of, for example, lightweight and highly rigid beryllium, and the galvano scanners 5X and 5Y are designed to have high rigidity. Therefore, the positioning operation can be completed at a much higher speed than when the machining position is controlled only by driving the XY table 8. The laser processing apparatus 100 performs positioning about 3000 times per second, for example.
 また、加工機制御部88は、レーザ発振器1に所望のレーザ出力およびパルス幅のレーザパルスを照射する条件およびタイミングを指示する。これにより、レーザ発振器1は、加工に必要なタイミングでレーザパルスを出すことができる。 Further, the processing machine control unit 88 instructs the laser oscillator 1 on conditions and timing for irradiating a laser pulse having a desired laser output and pulse width. Thereby, the laser oscillator 1 can emit a laser pulse at a timing required for processing.
 また、図1に示したように、レーザ加工装置100は、被加工物Wを載置するXYテーブル8を備えており、制御装置20は、XYテーブル8を位置決め駆動制御をするテーブル駆動制御部92を有している。テーブル駆動制御部92は、XYテーブル8をX-Y方向に位置決め駆動制御するために、サーボアンプ93X,93Yを駆動制御する。これにより、モータM94,M94が動作し、XYテーブル8をX-Y方向に移動させる。また、テーブル駆動制御部92は、fθレンズ6の上下高さ方向(Z方向)、ガルバノスキャナ5X,5Yを搭載するZ軸ヘッド部分の上下高さ方向を、それぞれ位置決め駆動制御する。具体的には、テーブル駆動制御部92は、サーボアンプ93Zを駆動制御する。これにより、モータM96が動作し、fθレンズ6およびZ軸ヘッド部分をZ方向に移動させる。 As shown in FIG. 1, the laser processing apparatus 100 includes an XY table 8 on which the workpiece W is placed, and the control apparatus 20 controls a table drive control unit that controls the positioning of the XY table 8. 92. The table drive control unit 92 controls the drive of the servo amplifiers 93X and 93Y in order to control the positioning of the XY table 8 in the XY direction. As a result, the motors M94 and M94 operate to move the XY table 8 in the XY direction. Further, the table drive control unit 92 performs positioning drive control on the vertical height direction (Z direction) of the fθ lens 6 and the vertical height direction of the Z-axis head portion on which the galvano scanners 5X and 5Y are mounted. Specifically, the table drive control unit 92 drives and controls the servo amplifier 93Z. As a result, the motor M96 operates to move the fθ lens 6 and the Z-axis head portion in the Z direction.
 図27は、ガルバノミラーへ送る指示情報の作成処理例を説明するための図である。なお、ガルバノスキャナ5X,5Yは、同様の構成を有しているので、ここではガルバノスキャナ5Xの構成について説明する。 FIG. 27 is a diagram for explaining an example of processing for creating instruction information to be sent to the galvano mirror. Since the galvano scanners 5X and 5Y have the same configuration, the configuration of the galvano scanner 5X will be described here.
 制御装置20の指示作成部24では、加工プログラムに基づいた位置指令(X方向の位置指令)と、加工位置補正量に応じた補正位置指令と、を用いて、ガルバノスキャナ5Xへの位置指令(指示情報)が作成される。制御装置20からガルバノスキャナ5Xに送る指示情報は、位置指令に限らず角度指令でもよい。ここでは、制御装置20からガルバノスキャナ5Xに送る指示情報が角度指令である場合について説明する。 The instruction creating unit 24 of the control device 20 uses a position command (position command in the X direction) based on the machining program and a corrected position command corresponding to the machining position correction amount to a position command ( Instruction information) is created. The instruction information sent from the control device 20 to the galvano scanner 5X is not limited to the position command but may be an angle command. Here, a case where the instruction information sent from the control device 20 to the galvano scanner 5X is an angle command will be described.
 指示作成部24は、作成した位置指令をガルバノミラー3Xへの角度指令に変換し、出力部25は、変換された角度指令をガルバノスキャナ5Xに送る。ガルバノスキャナ5Xは、角度指令をフィードフォワードゲイン(Kff)101に送る。また、フィードバックゲイン(K)102へは、制御装置20から送られてきた角度指令からガルバノミラー3Xへ送る角度指令を減算したものが入力される。 The instruction creating unit 24 converts the created position command into an angle command to the galvano mirror 3X, and the output unit 25 sends the converted angle command to the galvano scanner 5X. The galvano scanner 5X sends an angle command to the feed forward gain (Kff) 101. Further, the feedback gain (K) 102 is inputted by subtracting the angle command sent to the galvanometer mirror 3X from the angle command sent from the control device 20.
 フィードフォワードゲイン101から出力される角度指令の加速度(電流信号)は、フィードバックゲイン102から出力される角度指令(電流信号)に加算されて、ノッチフィルタ103に入力される。 The acceleration (current signal) of the angle command output from the feedforward gain 101 is added to the angle command (current signal) output from the feedback gain 102 and input to the notch filter 103.
 ノッチフィルタ103では、ロータ52やガルバノミラー3Xのねじれ共振周波数成分が除去される。ねじれ共振周波数が除去された角度指令は、電流アンプゲイン(Ki)104を介してトルク変換回路105に送られる。トルク変換回路105では、電流にトルク定数KTが掛けられてトルクに変換され、さらにイナーシャJSで割られることにより、加速度が出力される。ここでのイナーシャは、ロータ52のイナーシャと、ガルバノミラー3Xのイナーシャと、を足したものである。 In the notch filter 103, the torsional resonance frequency component of the rotor 52 and the galvanometer mirror 3X is removed. The angle command from which the torsional resonance frequency is removed is sent to the torque conversion circuit 105 via the current amplifier gain (Ki) 104. The torque conversion circuit 105 multiplies the current by a torque constant K T to convert it into torque, and further divides by the inertia J S to output acceleration. The inertia here is the sum of the inertia of the rotor 52 and the inertia of the galvano mirror 3X.
 トルク変換回路105から出力される加速度は、積分回路106A,106Bに送られて、積分回路106A,106Bで積分される。これにより、積分回路106Bからガルバノミラー3Xへの角度指令が出力される。この角度指令は、フィードバック制御に用いられる。具体的には、制御装置20から送られてきた角度指令からガルバノミラー3Xへ送る角度指令が減算されて、フィードバックゲイン102に送られる。 Acceleration output from the torque conversion circuit 105 is sent to the integration circuits 106A and 106B and integrated by the integration circuits 106A and 106B. As a result, an angle command is output from the integrating circuit 106B to the galvanometer mirror 3X. This angle command is used for feedback control. Specifically, the angle command sent to the galvanometer mirror 3X is subtracted from the angle command sent from the control device 20 and sent to the feedback gain 102.
 なお、電極間の静電容量Cxの検出には、所定の時間を要するので、ガルバノミラー3Yの面倒れ量の変化周期に基づいて、補正位置指令を作成してもよい。この場合、予めガルバノミラー3Yの面倒れ量の変化周期を検出しておき、制御装置20内の加工プログラム記憶部22などに変化周期を設定しておく。そして、補正量算出部23は、ガルバノミラー3Yの面倒れ量の変化周期と、面倒れ静電容量検出センサ15で検出されたガルバノミラー3Yの面倒れ量と、に基づいて、補正位置指令を作成する。具体的には、補正量算出部23は、例えば1つ前の周期で検出された面倒れ量を補正する補正位置指令を作成する。 Note that since a predetermined time is required to detect the capacitance Cx between the electrodes, the correction position command may be created based on the change period of the surface tilt amount of the galvano mirror 3Y. In this case, the change cycle of the surface tilt amount of the galvanometer mirror 3Y is detected in advance, and the change cycle is set in the machining program storage unit 22 in the control device 20 or the like. Then, the correction amount calculation unit 23 issues a correction position command based on the change period of the surface tilt amount of the galvanometer mirror 3Y and the surface tilt amount of the galvanometer mirror 3Y detected by the surface tilt capacitance detection sensor 15. create. Specifically, the correction amount calculation unit 23 creates a correction position command for correcting, for example, the surface tilt amount detected in the previous cycle.
 ところで、従来のガルバノ制御系は、X軸方向のガルバノスキャナであれば、その軸の回転角度を検出するセンサ(ロータリエンコーダなど)の信号をフィードバックする制御系に加え、位置決めを高速で行うために予め制御対象のモデルを想定し、フィードフォワード制御を用いて位置決め動作を実施していた。 By the way, if the conventional galvano control system is a galvano scanner in the X-axis direction, in addition to a control system that feeds back a signal from a sensor (such as a rotary encoder) that detects the rotation angle of the axis, in order to perform positioning at high speed Assuming a model to be controlled in advance, positioning operation was performed using feedforward control.
 しかしながら、回転を検出するセンサ以外からの情報を用いることがなく、その軸の発生する面倒れ現象を抑える構成とはなっていなかった。本実施の形態では、面倒れの補正を行うために、検出した面倒れ量から加工位置のずれ量を求める。そして、直交する軸のガルバノスキャナ5Xへの位置指令に、加工位置のずれ量を加えることで補正を実施する。このため、X方向、Y方向のそれぞれに同様に相互の面倒れがキャンセルされるように、お互いの位置指令を補正するよう構成しておく。これにより、X軸方向の位置を制御するガルバノミラー3Yで発生した面倒れ量Δyは、Y軸方向のガルバノミラー3Yでキャンセルされ、Y軸方向のガルバノミラー3Yで発生した面倒れ量に対応する照射位置ずれ量Δxは、X軸方向のガルバノミラー3Xでキャンセルすることができる。したがって、面倒れ現象が発生していても、所望の目標位置にレーザ光L0を偏向させることができ、精度の良いレーザ加工が行える。 However, information from other than the sensor that detects rotation is not used, and the configuration is not configured to suppress the surface collapse phenomenon that the shaft generates. In the present embodiment, in order to correct the surface tilt, the displacement amount of the machining position is obtained from the detected surface tilt amount. Then, the correction is performed by adding the displacement amount of the processing position to the position command to the galvano scanner 5X having the orthogonal axis. For this reason, it is configured to correct each other's position command so that mutual tilting of the surfaces in the X direction and the Y direction are similarly canceled. Thereby, the surface tilt amount Δy generated in the galvano mirror 3Y that controls the position in the X-axis direction is canceled by the galvanometer mirror 3Y in the Y-axis direction, and corresponds to the surface tilt amount generated in the galvano mirror 3Y in the Y-axis direction. The irradiation position deviation amount Δx can be canceled by the galvanometer mirror 3X in the X-axis direction. Therefore, even if the surface tilt phenomenon occurs, the laser beam L0 can be deflected to a desired target position, and laser processing with high accuracy can be performed.
 図28は、面倒れ量の変化周期を説明するための図である。図28において、横軸は時間(t)であり、縦軸はガルバノミラー3Yの面倒れ量(dy)である。同図に示すように、ガルバノミラー3Yの面倒れ量は、所定の周期で変化する。 FIG. 28 is a diagram for explaining a change cycle of the amount of surface collapse. In FIG. 28, the horizontal axis represents time (t), and the vertical axis represents the surface tilt amount (dy) of the galvanometer mirror 3Y. As shown in the figure, the surface tilt amount of the galvanometer mirror 3Y changes at a predetermined cycle.
 図29は、ガルバノミラーへ送る指示情報の他の作成処理例を説明するための図である。ここでは、面倒れ量の変化周期を用いてガルバノミラー3Xへ送る指示情報(角度指令)を作成する場合について説明する。 FIG. 29 is a diagram for explaining another example of processing for creating instruction information to be sent to the galvanometer mirror. Here, a case where instruction information (angle command) to be sent to the galvanometer mirror 3X is created using the change period of the surface tilt amount will be described.
 静電容量Cxの検出においては、前述のように交流信号の振幅を求め、電圧を距離に変換する演算処理があるので、実際の現象から僅かに遅れる傾向がある。この遅れがある場合には、遅れ時間を補正するためのディレイ処理を行う時間差補償を行うと補正精度が良好になる場合がある。面倒れ周波数は機械的な構成で決まり、略一定であるので、距離検出の遅れ時間を特定の時間差となるように補正すれば、キャンセル効果が良好に働く。このため、補正量算出部23には、時間差補償部107を設けておく。そして、時間差補償部107では、レーザ加工装置100に対してディレイを考慮した補正処理の時間差を調整しておく。 In the detection of the capacitance Cx, there is an arithmetic processing for obtaining the amplitude of the AC signal and converting the voltage into a distance as described above, and therefore there is a tendency to be slightly delayed from the actual phenomenon. When there is this delay, the correction accuracy may be improved by performing time difference compensation that performs delay processing for correcting the delay time. Since the surface tilt frequency is determined by the mechanical configuration and is substantially constant, if the distance detection delay time is corrected so as to have a specific time difference, the canceling effect works well. Therefore, the time difference compensation unit 107 is provided in the correction amount calculation unit 23. Then, the time difference compensation unit 107 adjusts the time difference of the correction processing in consideration of the delay with respect to the laser processing apparatus 100.
 時間差補償部107は、静電容量検知による遅れ時間を補償するための補正位置指令を作成する機能を有している。時間差補償部107は、所定周期(例えば1つ周期)前の周期で検出された面倒れ量を補正する補正位置指令を作成する。なお、時間差補償部107は、所定周期前の電極間電圧Vx、所定周期前の静電容量Cx、所定周期前の歪み角Φに基づいて補正位置指令を作成してもよい。このように、1周期前の面倒れ状況でキャンセル動作をさせることで面倒れ量の補正精度を高めることができる。 The time difference compensation unit 107 has a function of creating a correction position command for compensating for a delay time due to capacitance detection. The time difference compensation unit 107 creates a correction position command for correcting the amount of surface tilt detected in a cycle before a predetermined cycle (for example, one cycle). The time difference compensation unit 107 may create a correction position command based on the interelectrode voltage Vx before a predetermined period, the capacitance Cx before the predetermined period, and the distortion angle Φ before the predetermined period. Thus, the correction accuracy of the amount of surface tilt can be increased by performing the cancel operation in the state of surface tilt one cycle before.
 指示作成部24では、加工プログラムに基づいた位置指令(X方向の位置指令)と、1つ前の周期で検出された面倒れ量を補正する補正位置指令と、を用いて、ガルバノスキャナ5Xへの位置指令が作成される。この後、ガルバノスキャナ5Xでは、図27で説明した処理と同様の処理によって、ガルバノミラー3Xへ送る角度指令が作成される。 The instruction creating unit 24 uses the position command (position command in the X direction) based on the machining program and the corrected position command for correcting the surface tilt amount detected in the previous cycle to the galvano scanner 5X. Position command is created. Thereafter, in the galvano scanner 5X, an angle command to be sent to the galvanometer mirror 3X is created by a process similar to the process described in FIG.
 なお、本実施の形態では、固定電極14Yが被検出部11Yの側面(曲面)の一部と略平行な平行曲面を有している場合について説明したが、固定電極14Yのうち被検出部11Yに対向する対向面は、曲面に限らない。例えば、固定電極14Yのうち被検出部11Yに対向する対向面を平面としてもよい。 In the present embodiment, the case where the fixed electrode 14Y has a parallel curved surface substantially parallel to a part of the side surface (curved surface) of the detected portion 11Y has been described. However, the detected portion 11Y of the fixed electrode 14Y. The facing surface that faces is not limited to a curved surface. For example, the opposed surface of the fixed electrode 14Y that faces the detected portion 11Y may be a flat surface.
 図30は、固定電極の他の構成例を示す図である。同図に示すように、固定電極108は、被検出部11Yに対向する対向面が平面である。ここでは、固定電極108が円板状であり、円板状の底面が被検出部11Yに対向する対向面である場合を示している。 FIG. 30 is a diagram illustrating another configuration example of the fixed electrode. As shown in the figure, the fixed electrode 108 has a flat surface facing the detected portion 11Y. Here, the case where the fixed electrode 108 is disc-shaped and the disc-shaped bottom surface is a facing surface facing the detected portion 11Y is shown.
 つぎに、固定電極14Yと電流源61との間の配線をシールドするシールド線60の構成について説明する。図31-1は、シールド配線の構成例を示す図であり、図31-2は、固定電極の拡大図である。シールド線60は、例えば同軸ケーブルの外部導体である。同軸ケーブルは、その中心が中心導体(固定電極108と電流源61との間の配線)であり、中心導体の周囲が絶縁内皮(図示せず)によって覆われている。さらに絶縁内皮の周囲が外部導体(シールド線60)で覆われており、外部導体の周囲が絶縁外皮(図示せず)で覆われている。 Next, the configuration of the shield wire 60 that shields the wiring between the fixed electrode 14Y and the current source 61 will be described. FIG. 31A is a diagram illustrating a configuration example of the shield wiring, and FIG. 31-2 is an enlarged view of the fixed electrode. The shield wire 60 is an outer conductor of a coaxial cable, for example. The center of the coaxial cable is a central conductor (wiring between the fixed electrode 108 and the current source 61), and the periphery of the central conductor is covered with insulating endothelium (not shown). Furthermore, the periphery of the insulating inner skin is covered with an outer conductor (shield wire 60), and the outer conductor is covered with an insulating outer skin (not shown).
 さらに、固定電極108の周囲が絶縁体で覆われるとともに、絶縁体の周囲が導体110で覆われている。なお、固定電極14Yの周囲を絶縁体で覆うとともに、絶縁体の周囲を導体110で覆う構成としてもよい。 Furthermore, the periphery of the fixed electrode 108 is covered with an insulator, and the periphery of the insulator is covered with a conductor 110. The fixed electrode 14Y may be covered with an insulator and the insulator may be covered with the conductor 110.
 なお、本実施の形態では、電極間電圧Vxに基づいて加工位置補正量を算出し、加工位置補正量から補正位置指令を作成する場合について説明したが、電極間電圧Vxから補正位置指令を作成してもよい。また、静電容量Cx、電極間距離D、電極間距離の変位量Dx、撓み角Φの何れかから補正位置指令を作成してもよい。 In this embodiment, the processing position correction amount is calculated based on the interelectrode voltage Vx, and the correction position command is generated from the processing position correction amount. However, the correction position command is generated from the interelectrode voltage Vx. May be. Further, a corrected position command may be created from any one of the capacitance Cx, the interelectrode distance D, the interelectrode distance displacement amount Dx, and the deflection angle Φ.
 ガルバノスキャナやガルバノミラーの動作速度が上がるに従って、角加速度も大きくなってきており、面倒れ方向に対する加振力も増える傾向にある。さらに、同じ機械的構成であっても面倒れ量が大きくなっており、ユーザが望む加工速度と加工精度を両立させることが難しくなってきている状況にある。本実施の形態では、加工速度を大きくすることによって面倒れ共振が発生した場合であっても、面倒れ量に基づいて、ガルバノミラー3X,3Yへの位置指令を補正するので、加工速度と加工精度を両立させることが可能となる。 ¡As the operating speed of galvano scanners and galvano mirrors increases, the angular acceleration increases, and the excitation force in the direction of surface tilt tends to increase. Furthermore, even with the same mechanical configuration, the amount of surface tilt is large, and it is difficult to achieve both the processing speed desired by the user and the processing accuracy. In the present embodiment, even when surface tilt resonance occurs by increasing the processing speed, the position command to the galvanometer mirrors 3X and 3Y is corrected based on the surface tilt amount. It is possible to achieve both accuracy.
 このように実施の形態によれば、被検出部11Yと固定電極14Yとの間の電極間電圧(電位差)や被検出部11Xと固定電極14Xとの間の電極間電圧(電位差)に基づいて、面倒れ量を検出するので、簡易な構成で容易に面倒れ量を検出することが可能となる。また、静電容量Cxに対応する電極間電圧Vxに基づいて、面倒れ量を検出するので、正確に面倒れ量を検出することが可能となる。したがって、面倒れ共振が発生した場合であっても、面倒れ量に基づいて、ガルバノミラー3X,3Yへの位置指令を正確に補正することが可能となり、所望の位置にレーザ光L1を照射することが可能となる。 Thus, according to the embodiment, based on the interelectrode voltage (potential difference) between the detected portion 11Y and the fixed electrode 14Y and the interelectrode voltage (potential difference) between the detected portion 11X and the fixed electrode 14X. Since the amount of surface tilt is detected, the amount of surface tilt can be easily detected with a simple configuration. Moreover, since the amount of surface tilt is detected based on the interelectrode voltage Vx corresponding to the capacitance Cx, the amount of surface tilt can be accurately detected. Therefore, even when surface tilt resonance occurs, the position command to the galvanometer mirrors 3X and 3Y can be accurately corrected based on the surface tilt amount, and the laser beam L1 is irradiated to a desired position. It becomes possible.
 また、固定電極14Yと被検出部11Yとの各対向面が互いに平行曲面となっているので、ガルバノミラー3Yの回転角度に依らず、正確な面倒れ量を検出することが可能となる。また、被検出部11Yのうち固定電極14Yに対向する対抗面は、円柱の側面の一部を有し、固定電極14Yのうち被検出部11Yに対向する対抗面は、円筒の内壁面の一部を有しているので、正確な面倒れ量を検出することが可能となる。 Further, since the opposing surfaces of the fixed electrode 14Y and the detected portion 11Y are parallel curved surfaces, it is possible to detect an accurate surface tilt amount regardless of the rotation angle of the galvanometer mirror 3Y. In addition, the opposing surface that faces the fixed electrode 14Y in the detected portion 11Y has a part of a cylindrical side surface, and the opposing surface that faces the detected portion 11Y in the fixed electrode 14Y is one of the inner wall surfaces of the cylinder. Since it has a portion, it is possible to detect an accurate amount of surface tilt.
 また、図19に示した電極間距離と静電容量の関係を用いて電極間距離(面倒れ量)を検出するので容易に面倒れ量を検出することが可能となる。また、図20に示した電極間電圧と電極間距離の関係を用いて電極間距離(面倒れ量)を検出するので容易に面倒れ量を検出することが可能となる。 Further, since the interelectrode distance (surface fall amount) is detected using the relationship between the interelectrode distance and the capacitance shown in FIG. 19, it is possible to easily detect the surface fall amount. Further, since the inter-electrode distance (surface fall amount) is detected using the relationship between the inter-electrode voltage and the inter-electrode distance shown in FIG. 20, it is possible to easily detect the surface fall amount.
 また、ガルバノミラー3Yの面倒れ量の変化周期に基づいて、補正位置指令を作成するので、静電容量Cxの検出に時間を要する場合であっても、正確に面倒れに対する位置補正量を行うことが可能となる。 In addition, since the correction position command is created based on the change period of the surface tilt amount of the galvano mirror 3Y, even if it takes time to detect the capacitance Cx, the position correction amount for the surface tilt is accurately performed. It becomes possible.
 以上のように、本発明に係る面倒れ量検出装置、加工位置制御装置およびレーザ加工装置は、加工位置への位置決めを行いながらのレーザ加工に適している。 As described above, the surface tilt amount detection device, the processing position control device, and the laser processing device according to the present invention are suitable for laser processing while positioning to the processing position.
 1 レーザ発振器
 3X,3Y ガルバノミラー
 4 レーザ加工部
 5X,5Y ガルバノスキャナ
 10 制御装置
 10A~10C 面倒れ量検出部
 11X,11Y 被検出部
 14X,14Y,108 固定電極
 15 静電容量検出センサ
 16A,16B 変位量算出部
 17 補正部
 20 制御装置
 22 加工プログラム記憶部
 23 補正量算出部
 24 指示作成部
 52 ロータ
 58 角度検出器
 60 シールド線
 62 コンデンサ
 63 算出部
 63A,63B 電極
 68 高インピーダンス電圧検出部
 71 電極間距離算出部
 90X,90Y ガルバノ制御部
 100 レーザ加工装置
 107 時間差補償部
 D 電極間距離
 Dx 電極間距離の変位量
 L0~L5 レーザ光
 W 被加工物
DESCRIPTION OF SYMBOLS 1 Laser oscillator 3X, 3Y Galvano mirror 4 Laser processing part 5X, 5Y Galvano scanner 10 Control apparatus 10A-10C Surface fall amount detection part 11X, 11Y Detected part 14X, 14Y, 108 Fixed electrode 15 Capacitance detection sensor 16A, 16B Displacement amount calculation unit 17 Correction unit 20 Control device 22 Machining program storage unit 23 Correction amount calculation unit 24 Instruction creation unit 52 Rotor 58 Angle detector 60 Shield wire 62 Capacitor 63 Calculation unit 63A, 63B Electrode 68 High impedance voltage detection unit 71 Electrode Distance calculation unit 90X, 90Y Galvano control unit 100 Laser processing device 107 Time difference compensation unit D Distance between electrodes Dx Displacement of distance between electrodes L0 to L5 Laser beam W Workpiece

Claims (14)

  1.  レーザ光を加工エリアに設定された加工位置に偏向させるガルバノミラーの回転軸上に配置されて前記ガルバノミラーと同じ動作を行う第1の電極と、
     前記第1の電極から所定の距離だけ離されて固定配置された第2の電極と、
     前記第1の電極と前記第2の電極との間の静電容量に応じた前記第1の電極と前記第2の電極との間の電極間電圧を検出する電圧検出部と、
     前記電極間電圧に基づいて前記ガルバノミラーの面倒れ量を検出する面倒れ量検出部と、
     を備え、
     前記面倒れ量検出部は、前記ガルバノミラーの面倒れ量として、前記第1の電極と前記第2の電極との間の距離である電極間距離を算出することを特徴とする面倒れ量検出装置。
    A first electrode disposed on a rotation axis of a galvano mirror for deflecting laser light to a processing position set in a processing area and performing the same operation as the galvano mirror;
    A second electrode fixedly disposed at a predetermined distance from the first electrode;
    A voltage detection unit that detects an interelectrode voltage between the first electrode and the second electrode according to a capacitance between the first electrode and the second electrode;
    A surface tilt amount detection unit for detecting the surface tilt amount of the galvanometer mirror based on the voltage between the electrodes;
    With
    The surface tilt amount detection unit calculates an inter-electrode distance that is a distance between the first electrode and the second electrode as the surface tilt amount of the galvanometer mirror. apparatus.
  2.  前記面倒れ量検出部は、前記電極間距離を、前記ガルバノミラーの回転角度に応じた電極間距離に補正する補正部を有することを特徴とする請求項1に記載の面倒れ量検出装置。 2. The surface tilt amount detection device according to claim 1, wherein the surface tilt amount detection unit includes a correction unit that corrects the inter-electrode distance to an inter-electrode distance corresponding to a rotation angle of the galvanometer mirror.
  3.  前記第1の電極が前記第2の電極に対向する第1の対向面と、前記第2の電極が前記第1の電極に対向する第2の対向面と、は、それぞれ互いに平行な平行曲面であることを特徴とする請求項1に記載の面倒れ量検出装置。 The first opposing surface in which the first electrode opposes the second electrode and the second opposing surface in which the second electrode opposes the first electrode are parallel curved surfaces that are parallel to each other. The surface tilt amount detection device according to claim 1, wherein
  4.  前記電極間電圧と前記電極間距離との対応関係である第1の対応関係を記憶する第1の記憶部をさらに備え、
     前記面倒れ量検出部は、前記第1の対応関係を用いて、前記電極間距離を算出することを特徴とする請求項1~3のいずれか1つに記載の面倒れ量検出装置。
    A first storage unit that stores a first correspondence relationship that is a correspondence relationship between the inter-electrode voltage and the inter-electrode distance;
    4. The surface tilt amount detection apparatus according to claim 1, wherein the surface tilt amount detection unit calculates the inter-electrode distance using the first correspondence relationship.
  5.  前記電極間電圧に基づいて前記静電容量を算出する静電容量算出部をさらに備え、
     前記面倒れ量検出部は、静電容量算出部が算出した静電容量を用いて前記電極間距離を算出することを特徴とする請求項1~3のいずれか1つに記載の面倒れ量検出装置。
    A capacitance calculating unit that calculates the capacitance based on the voltage between the electrodes;
    The surface tilt amount according to any one of claims 1 to 3, wherein the surface tilt amount detection unit calculates the inter-electrode distance using the capacitance calculated by the capacitance calculation unit. Detection device.
  6.  前記静電容量と前記電極間距離との対応関係である第2の対応関係を記憶する第2の記憶部をさらに備え、
     前記面倒れ量検出部は、前記第2の対応関係を用いて、前記電極間距離を算出することを特徴とする請求項5に記載の面倒れ量検出装置。
    A second storage unit that stores a second correspondence relationship that is a correspondence relationship between the capacitance and the inter-electrode distance;
    The surface tilt amount detection device according to claim 5, wherein the surface tilt amount detection unit calculates the inter-electrode distance using the second correspondence relationship.
  7.  前記第1の対向面および前記第2の対向面は、一方の対抗面が円柱の側面の一部を有するとともに他方の対抗面が円筒の内壁面の一部を有し、前記円筒の内壁面の一部が前記円柱の側面の一部を囲うよう、前記第1の電極および前記第2の電極が配置されていることを特徴とする請求項3に記載の面倒れ量検出装置。 The first opposing surface and the second opposing surface have one opposing surface having a part of a cylindrical side surface and the other opposing surface having a part of an inner wall surface of a cylinder, The surface tilt amount detection device according to claim 3, wherein the first electrode and the second electrode are arranged so that a part of the cylinder surrounds a part of a side surface of the cylinder.
  8.  レーザ光を加工エリアに設定された加工位置に偏向させるガルバノミラーの回転軸上に配置されて前記ガルバノミラーと同じ動作を行う第1の電極と、
     前記第1の電極から所定の距離だけ離されて固定配置された第2の電極と、
     前記第1の電極と前記第2の電極との間の静電容量に応じた前記第1の電極と前記第2の電極との間の電極間電圧を検出する電圧検出部と、
     面倒れの発生したガルバノミラーが制御する偏向方向と垂直な偏向方向にレーザ光を偏向させるガルバノミラーに対し、前記面倒れによる加工位置の位置ずれを補正させる制御装置と、
     を備え、
     前記制御装置は、前記電極間電圧に基づいて前記位置ずれを補正する補正指令を生成するとともに生成した補正量を前記ガルバノミラーに出力することを特徴とする加工位置制御装置。
    A first electrode disposed on a rotation axis of a galvano mirror for deflecting laser light to a processing position set in a processing area and performing the same operation as the galvano mirror;
    A second electrode fixedly disposed at a predetermined distance from the first electrode;
    A voltage detection unit that detects an interelectrode voltage between the first electrode and the second electrode according to a capacitance between the first electrode and the second electrode;
    A control device that corrects a positional deviation of a processing position due to the surface tilt with respect to the galvanometer mirror that deflects the laser light in a deflection direction perpendicular to the deflection direction controlled by the galvanometer mirror in which the surface tilt occurs.
    With
    The said control apparatus produces | generates the correction command which correct | amends the said position shift based on the said electrode voltage, and outputs the produced | generated correction amount to the said galvanometer mirror, The machining position control apparatus characterized by the above-mentioned.
  9.  前記制御装置は、前記面倒れが検出されたガルバノミラーに対して加工位置の位置決め方向が直交するガルバノミラーに、前記補正量を出力することを特徴とする請求項8に記載の加工位置制御装置。 9. The machining position control device according to claim 8, wherein the control device outputs the correction amount to a galvanometer mirror in which a positioning direction of the machining position is orthogonal to the galvanometer mirror in which the surface tilt is detected. .
  10.  前記制御装置は、前記補正指令と、加工プログラムに応じた前記ガルバノミラーへの位置指令と、を用いて、前記ガルバノミラーへの指示情報を生成し、生成した指示情報を前記ガルバノミラーへ出力することを特徴とする請求項9に記載の加工位置制御装置。 The control device generates instruction information to the galvano mirror using the correction instruction and a position instruction to the galvano mirror according to a machining program, and outputs the generated instruction information to the galvano mirror. The processing position control apparatus according to claim 9.
  11.  前記電極間電圧に基づいて前記ガルバノミラーの面倒れ量を検出する面倒れ量検出部をさらに備え、
     前記面倒れ量検出部は、前記ガルバノミラーの面倒れ量として、前記第1の電極と前記第2の電極との間の距離である電極間距離を算出し、
     前記制御装置は、前記面倒れ量に基づいて前記補正指令を生成することを特徴とする請求項8~10のいずれか1つに記載の加工位置制御装置。
    Further comprising a surface tilt amount detection unit for detecting the surface tilt amount of the galvanometer mirror based on the voltage between the electrodes,
    The surface tilt amount detection unit calculates an inter-electrode distance, which is a distance between the first electrode and the second electrode, as the surface tilt amount of the galvanometer mirror.
    The machining position control device according to any one of claims 8 to 10, wherein the control device generates the correction command based on the surface tilt amount.
  12.  前記制御装置は、予め取得しておいた前記電極間電圧の変化周期から所定周期前の電極間電圧を抽出するとともに抽出した電極間電圧に基づいて前記補正指令を生成することを特徴とする請求項8に記載の加工位置制御装置。 The control device extracts an inter-electrode voltage before a predetermined period from a change period of the inter-electrode voltage acquired in advance, and generates the correction command based on the extracted inter-electrode voltage. Item 9. The machining position control device according to Item 8.
  13.  レーザ光を加工エリアに設定された加工位置に偏向させるガルバノミラーと、
     前記ガルバノミラーの回転軸上に配置されて前記ガルバノミラーと同じ動作を行う第1の電極と、
     前記第1の電極から所定の距離だけ離されて固定配置された第2の電極と、
     前記第1の電極と前記第2の電極との間の静電容量に応じた前記第1の電極と前記第2の電極との間の電極間電圧を検出する電圧検出部と、
     面倒れの発生したガルバノミラーが制御する偏向方向と垂直な偏向方向にレーザ光を偏向させるガルバノミラーに対し、前記面倒れによる加工位置の位置ずれを補正させる制御装置と、
     を備え、
     前記制御装置は、前記電極間電圧に基づいて前記位置ずれを補正する補正指令を生成するとともに生成した補正量を前記ガルバノミラーに出力し、
     前記ガルバノミラーは、前記補正指令を用いて前記レーザ光を加工エリアに設定された加工位置に偏向させることを特徴とするレーザ加工装置。
    A galvanometer mirror that deflects the laser beam to the machining position set in the machining area;
    A first electrode disposed on a rotation axis of the galvanometer mirror and performing the same operation as the galvanometer mirror;
    A second electrode fixedly disposed at a predetermined distance from the first electrode;
    A voltage detection unit that detects an interelectrode voltage between the first electrode and the second electrode according to a capacitance between the first electrode and the second electrode;
    A control device that corrects a positional deviation of a processing position due to the surface tilt with respect to the galvanometer mirror that deflects the laser light in a deflection direction perpendicular to the deflection direction controlled by the galvanometer mirror in which the surface tilt occurs.
    With
    The control device generates a correction command for correcting the positional deviation based on the inter-electrode voltage and outputs the generated correction amount to the galvanometer mirror.
    The galvanometer mirror deflects the laser beam to a machining position set in a machining area using the correction command.
  14.  前記ガルバノミラーは、第1の方向に加工位置の位置決めを行う第1のガルバノミラーと、前記第1の方向に直交する第2の方向に加工位置の位置決めを行う第2のガルバノミラーと、を有し、
     前記制御装置は、前記第1のガルバノミラーから面倒れを検出した場合に、前記第2のガルバノミラーに前記補正量を出力し、前記第2のガルバノミラーから面倒れを検出した場合に、前記第1のガルバノミラーに前記補正量を出力することを特徴とする請求項13に記載のレーザ加工装置。
    The galvanometer mirror includes a first galvanometer mirror that positions a machining position in a first direction, and a second galvanometer mirror that positions a machining position in a second direction orthogonal to the first direction. Have
    The control device outputs the correction amount to the second galvanometer mirror when detecting a surface tilt from the first galvanometer mirror, and detects the surface tilt from the second galvanometer mirror, The laser processing apparatus according to claim 13, wherein the correction amount is output to a first galvanometer mirror.
PCT/JP2012/061611 2011-07-15 2012-05-02 Device for detecting amount of surface inclination, processing position control device, and laser processing apparatus WO2013011731A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011-157053 2011-07-15
JP2011157053A JP2014186043A (en) 2011-07-15 2011-07-15 Surface inclination amount detection device, processing position control device, and laser processing device

Publications (1)

Publication Number Publication Date
WO2013011731A1 true WO2013011731A1 (en) 2013-01-24

Family

ID=47557923

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/061611 WO2013011731A1 (en) 2011-07-15 2012-05-02 Device for detecting amount of surface inclination, processing position control device, and laser processing apparatus

Country Status (2)

Country Link
JP (1) JP2014186043A (en)
WO (1) WO2013011731A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107737410A (en) * 2017-10-12 2018-02-27 佛山科学技术学院 A kind of therapy of vitiligo system and its implementation
TWI796692B (en) * 2020-06-24 2023-03-21 日商三菱電機股份有限公司 Detection device of surface inclination amount, control device, and laser processing device

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11230704A (en) * 1998-02-12 1999-08-27 Nikon Corp Capacitive displacement sensor
JP2007021507A (en) * 2005-07-12 2007-02-01 Mitsubishi Electric Corp Laser beam machining apparatus
JP2009258559A (en) * 2008-04-21 2009-11-05 Hitachi Via Mechanics Ltd Scanner apparatus
JP2009271417A (en) * 2008-05-09 2009-11-19 Hitachi Via Mechanics Ltd Galvanoscanner apparatus and laser machining apparatus equipped with galvanoscanner apparatus
JP2009282326A (en) * 2008-05-22 2009-12-03 Canon Inc Galvano-device and laser beam machining apparatus

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11230704A (en) * 1998-02-12 1999-08-27 Nikon Corp Capacitive displacement sensor
JP2007021507A (en) * 2005-07-12 2007-02-01 Mitsubishi Electric Corp Laser beam machining apparatus
JP2009258559A (en) * 2008-04-21 2009-11-05 Hitachi Via Mechanics Ltd Scanner apparatus
JP2009271417A (en) * 2008-05-09 2009-11-19 Hitachi Via Mechanics Ltd Galvanoscanner apparatus and laser machining apparatus equipped with galvanoscanner apparatus
JP2009282326A (en) * 2008-05-22 2009-12-03 Canon Inc Galvano-device and laser beam machining apparatus

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107737410A (en) * 2017-10-12 2018-02-27 佛山科学技术学院 A kind of therapy of vitiligo system and its implementation
CN107737410B (en) * 2017-10-12 2024-04-09 佛山科学技术学院 Vitiligo treatment system and implementation method thereof
TWI796692B (en) * 2020-06-24 2023-03-21 日商三菱電機股份有限公司 Detection device of surface inclination amount, control device, and laser processing device

Also Published As

Publication number Publication date
JP2014186043A (en) 2014-10-02

Similar Documents

Publication Publication Date Title
JP4970211B2 (en) 3D shape measuring instrument
JP5207827B2 (en) Galvano device, processing device, method for obtaining mirror tilt angle in galvano device, and processing method
JP2008194729A (en) Manufacturing method, laser beam machining method and laser beam machining apparatus for small device
JP5570459B2 (en) Laser processing apparatus and laser processing method
CN109070354A (en) The axis calibration of beam processing machine
JP6253312B2 (en) Control device, actuator provided with control device, image shake correction device, replacement lens, imaging device, and automatic stage
JP2007307663A (en) Three-axis tool unit and machining device
JP2009069031A (en) Displacement detecting method and motor controller
TWI469500B (en) Mirror angular-positioning apparatus and processing apparatus
JP5834171B2 (en) Shape measuring device
JP2009271417A (en) Galvanoscanner apparatus and laser machining apparatus equipped with galvanoscanner apparatus
US10814422B2 (en) Determining distance correction values for laser machining a workpiece
JP5759811B2 (en) Position correcting apparatus and laser processing machine
WO2013011731A1 (en) Device for detecting amount of surface inclination, processing position control device, and laser processing apparatus
CN106291919B (en) Optical probe and measuring apparatus
US8058780B2 (en) Circular cylinder type piezoelectric actuator and piezoelectric element and scanning probe microscope using those
Zhakypov et al. Galvanometric optical laser beam steering system for microfactory application
TWI796692B (en) Detection device of surface inclination amount, control device, and laser processing device
JP6719264B2 (en) Laser processing device and state detection device
JP4497985B2 (en) Galvano scanner control method, galvano scanner control device, and laser processing machine
JP2022149267A (en) Laser scanning device and laser processing device
JP2017152087A (en) Image oscillation suppressing device and image oscillation suppressing method
JP4580600B2 (en) Galvano scanner control method, apparatus, and galvano scanner
JP2005246392A (en) Laser beam machining apparatus and method
JP2017068391A (en) Numerical control device and method for compensating for lost motion of numerical control device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12815568

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12815568

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP