WO2013011482A2 - Turbine éolienne pour produire de l'énergie électrique et rotor de machine tournante électrique de turbine éolienne - Google Patents

Turbine éolienne pour produire de l'énergie électrique et rotor de machine tournante électrique de turbine éolienne Download PDF

Info

Publication number
WO2013011482A2
WO2013011482A2 PCT/IB2012/053697 IB2012053697W WO2013011482A2 WO 2013011482 A2 WO2013011482 A2 WO 2013011482A2 IB 2012053697 W IB2012053697 W IB 2012053697W WO 2013011482 A2 WO2013011482 A2 WO 2013011482A2
Authority
WO
WIPO (PCT)
Prior art keywords
wind power
power turbine
rotor
expansion plug
axis
Prior art date
Application number
PCT/IB2012/053697
Other languages
English (en)
Other versions
WO2013011482A3 (fr
Inventor
Otto Pabst
Original Assignee
Wilic S.Ar.L.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Wilic S.Ar.L. filed Critical Wilic S.Ar.L.
Publication of WO2013011482A2 publication Critical patent/WO2013011482A2/fr
Publication of WO2013011482A3 publication Critical patent/WO2013011482A3/fr

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • H02K1/22Rotating parts of the magnetic circuit
    • H02K1/27Rotor cores with permanent magnets
    • H02K1/2706Inner rotors
    • H02K1/272Inner rotors the magnetisation axis of the magnets being perpendicular to the rotor axis
    • H02K1/274Inner rotors the magnetisation axis of the magnets being perpendicular to the rotor axis the rotor consisting of two or more circumferentially positioned magnets
    • H02K1/2753Inner rotors the magnetisation axis of the magnets being perpendicular to the rotor axis the rotor consisting of two or more circumferentially positioned magnets the rotor consisting of magnets or groups of magnets arranged with alternating polarity
    • H02K1/276Magnets embedded in the magnetic core, e.g. interior permanent magnets [IPM]
    • H02K1/2766Magnets embedded in the magnetic core, e.g. interior permanent magnets [IPM] having a flux concentration effect
    • H02K1/2773Magnets embedded in the magnetic core, e.g. interior permanent magnets [IPM] having a flux concentration effect consisting of tangentially magnetized radial magnets
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2260/00Function
    • F05B2260/30Retaining components in desired mutual position
    • F05B2260/31Locking rotor in position
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K7/00Arrangements for handling mechanical energy structurally associated with dynamo-electric machines, e.g. structural association with mechanical driving motors or auxiliary dynamo-electric machines
    • H02K7/18Structural association of electric generators with mechanical driving motors, e.g. with turbines
    • H02K7/1807Rotary generators
    • H02K7/1823Rotary generators structurally associated with turbines or similar engines
    • H02K7/183Rotary generators structurally associated with turbines or similar engines wherein the turbine is a wind turbine
    • H02K7/1838Generators mounted in a nacelle or similar structure of a horizontal axis wind turbine
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/70Wind energy
    • Y02E10/72Wind turbines with rotation axis in wind direction

Definitions

  • the present invention relates to a wind power turbine for producing electric energy.
  • the present invention relates to a wind power turbine comprising an electric rotating machine having a stator and a rotor, which comprises a supporting body mounted to rotate with respect to the stator about an axis of rotation; and a plurality of rotor segments, each designed to slide axially on and off the rotor supporting body when assembling and disassembling the rotor.
  • An electric rotating machine of the above type is known from WO 2006/032969, and has the advantage of enabling easy extraction and insertion of the rotor segments for maintenance .
  • a wind power turbine for producing electric energy
  • the wind power turbine comprising an electric rotating machine having a stator and a rotor, which comprises a supporting body mounted to rotate with respect to the stator about an axis of rotation, and having a plurality of guides parallel to the axis of rotation; a plurality of rotor segments, each designed to slide, in an axial direction parallel to the axis of rotation, into a guide on the supporting body; and a plurality of expansion plugs, each designed to be positioned contacting one of the rotor segments to selectively lock the rotor segment in a given axial position inside the guide.
  • a rotor segment With one expansion plug, a rotor segment can thus be locked in a given position to the supporting body, and its position along the guide adjusted accurately.
  • Each expansion plug preferably extends parallel to the axis of rotation, and is substantially the same length as the rotor segments .
  • each expansion plug comprises a main body made of polymer material and extending along a longitudinal axis parallel to the axis of rotation.
  • the expansion plug according to the present invention is extremely lightweight and easy to handle .
  • the main body of the expansion plug preferably comprises a central portion parallel to the longitudinal axis; and two side portions parallel to the longitudinal axis, located on opposite sides of the central portion, and connected to the central portion in elastically deformable manner.
  • the main body preferably comprises a plurality of parallel arms arranged in a herringbone pattern and extending between the central portion and the side portions .
  • the expansion plug comprises an actuator for moving the central portion with respect to the side portions in the axial direction and so moving the side portions in the tangential direction perpendicular to the axial direction.
  • one actuator conveniently deforms the expansion plug along its whole length, and is preferably located at one end of the expansion plug.
  • the actuator preferably comprises a threaded rod aligned and integral with the central portion; a bracket having a hole engaged by the threaded rod, and two opposite supporting ends which rest on the ends of the side portions; and a nut, which engages the threaded rod to press the bracket and simultaneously push the side portions and pull the central portion.
  • the expansion plug may advantageously be locked and released using one nut.
  • the supporting body comprises a plurality of radial ribs; each guide extending between a pair of facing ribs, and defining a seat for housing a rotor segment and an expansion plug.
  • the ribs and the supporting body may be formed in one piece, or the ribs may be fixed to the supporting body .
  • the guide and the rotor segment are preferably designed to form a prismatic joint, which only allows the rotor segment to slide inside the guide in an axial direction with respect to the supporting body.
  • the guide actually prevents tangential and radial movement of the rotor segment, and the expansion plug simply prevents axial movement of the rotor segment with respect to the supporting body.
  • This function of the expansion plug is preferably achieved by positioning the expansion plug between two ribs and between the supporting body and the rotor segment, so as to push the rotor segment against the two ribs and lock the rotor segment inside the guide.
  • the expansion plug and the supporting body i.e. the ribs, are preferably designed to form two wedge joints, so that expansion of the expansion plug in the tangential direction produces thrust in the radial direction to lock the rotor segment against the ribs.
  • the supporting body and the expansion plug cooperate to direct the action of the expansion plug radially.
  • each rotor segment is elastically expandable and controllable by the expansion plug.
  • each guide is defined by a pair of grooves parallel to the axis of rotation and formed in the supporting body; each rotor segment comprising an active part, and two wings having two first ends, which slide into the guide to form, with the grooves, a prismatic joint slidable in the axial direction; the expansion plug being designed to exert a tangential parting force on the first ends of the wings, to lock the rotor segment inside the supporting body.
  • the supporting body may thus be very simple in design, e.g. defined by a cylindrical wall with axial grooves, and the expansion plug simply parts the wings slightly to lock the rotor segment frictionally inside the grooves.
  • the two wings of the rotor segment are preferably connected to each other near the middle to form a gripper, and comprise two second ends opposite the first ends and designed to grip the active part when the first ends are parted.
  • the wings are separate from the active part of the rotor segment, but locking the wings to the supporting body advantageously locks the wings simultaneously to the active part.
  • a further object of the present invention is to provide a wind power turbine electric rotating machine rotor designed to eliminate the drawbacks of the known art .
  • an electric rotating machine rotor for a wind power turbine for producing electric energy comprising a supporting body mounted to rotate about an axis of rotation and having a plurality of guides parallel to the axis of rotation; a plurality of rotor segments, each designed to slide, in an axial direction parallel to the axis of rotation, into a guide on the supporting body; and a plurality of expansion plugs, each positioned contacting one of the rotor segments and designed to change size in controlled manner to selectively lock the rotor segment in a given axial position inside the guide.
  • Figure 1 shows a side view, with parts removed for clarity, of a wind power turbine in accordance with the present invention
  • Figure 2 shows a larger- scale , partly sectioned side view, with parts removed for clarity, of a detail of the Figure 1 wind power turbine;
  • Figure 3 shows a larger- scale section, with parts removed for clarity, of a detail in Figure 2;
  • Figure 4 shows a view in perspective, with parts removed for clarity, of a detail in Figure 3;
  • Figure 5 shows a larger-scale section, with parts removed for clarity, of a detail in Figure 3 ;
  • Figure 6 shows a section, with parts removed for clarity, of a rotor portion in accordance with an alternative embodiment of the present invention
  • Figure 7 shows a plan, view, with parts removed for clarity, of a component of the wind power turbine in accordance with a variation of the present invention
  • Figure 8 shows a larger- scale plan view, with parts removed for clarity, of a detail in Figure 7;
  • Figure 9 shows a larger-scale section, with parts removed for clarity, of the Figure 7 component along line IX- IX.
  • Number 1 in Figure 1 indicates as a whole a wind power turbine for producing electric energy, and which comprises a vertical support 2; a nacelle 3 fitted to vertical support 2 to rotate about an axis of rotation A2 ; an electric rotating machine 4; and a rotating assembly 5 fitted to nacelle 3 to rotate about an axis of rotation Al .
  • Nacelle 3 is substantially a tubular member supporting rotating assembly 5, which extends partly inside and partly outside nacelle 3, which, in the example shown, comprises a curved tubular member 6 and part of electric rotating machine 4.
  • electric rotating machine 4 is tubular, and comprises a stator 7 and a rotor 8.
  • Stator 7 comprises a cylindrical wall 9, and stator segments 10 arranged about axis of rotation Al and fixed to the inner face of cylindrical wall 9; and
  • rotor 8 comprises a supporting body 11, and rotor segments 12 arranged about axis of rotation Al and fixed to the outside of supporting body 11.
  • nacelle 3 comprises curved tubular member 6 and stator 7, or rather cylindrical wall 9 of stator 7.
  • Cylindrical wall 9 has two opposite ends, one of which is fixed to curved tubular member 6.
  • Rotating assembly 5 comprises rotor 8; a hub 13; and blades 14 fitted to hub 13.
  • Rotor 8 of electric rotating machine 4 comprises a plurality of guides 15; and a plurality of expansion plugs 16, each for locking one of rotor segments 12 to supporting body 11 in a given axial position inside one of guides 15. More specifically, each expansion plug 16 is associated with a respective rotor segment 12 to lock it in a given position with respect to supporting body 11.
  • Each expansion plug 16 extends along a longitudinal axis B parallel to axis of rotation Al, and is preferably substantially the same length as rotor segments 12 and guides 15.
  • each expansion plug 16 comprises a main body 17 made of polymer material and comprising a central portion 18 parallel to longitudinal axis B, and two side portions 19 parallel to longitudinal axis B, located on opposite sides of central portion 18, and connected to central portion 18 in elastically deformable manner.
  • Main body 17 has a shallow cross section, as shown more clearly in Figures 3 and 4, and the connection of central portion 18 to side portions 19 comprises a plurality of parallel arms 20 arranged in a herringbone pattern and extending between central portion 18 and side portions 19.
  • This design of expansion plug 16 allows relative movement between side portions 19 and central portion 18 in an axial direction Dl .
  • central portion 18, each side portion 19, and two arms 20 connecting central portion 18 to side portion 19 behave in the same way as an articulated quadrilateral, i.e. relative movement between central portion 18 and side portions 19 in axial direction Dl moves side portions 19 with respect to central portion 18 in a tangential direction D2 , so side portions 19 remain parallel to longitudinal axis B.
  • deformation of main body 17 consists in a variation in the width of main body 17.
  • the height of main body 17 remains substantially unchanged .
  • Expansion plug 16 comprises an actuator 21 for selectively expanding and contracting main body 17. In other words, expansion plug 16 is selectively- expandable in controlled manner.
  • Actuator 21 is located at one end of expansion plug 16 for easy user access.
  • Actuator 21 is preferably operated manually, possibly using a tool such as a wrench.
  • Actuator 21 is fitted to main body 17 and designed to produce a controlled variation in the size of main body 17 in at least one direction, which, in the example shown, is tangential direction D2.
  • Actuator 21 comprises an actuating mechanism for elastically deforming main body 17 in tangential direction D2 when expansion plug 16 is fitted to supporting body 11.
  • actuator 21 is designed to move central portion 18 with respect to side portions 19 in axial direction Dl, and structurally comprises a threaded rod 22 aligned with central portion 18 and integral with main body 17; a bracket 23 having a hole 24 engaged by threaded rod 22, and two opposite supporting ends 25 which rest on the ends of side portions 19; and a nut 26 which engages threaded rod 22 to press bracket 23 and simultaneously push side portions 19 and pull central portion 18.
  • nut 26 is screwed on threaded rod 22
  • central portion 18 is pulled towards bracket 23, which pushes side portions 19 to move central portion 18 slightly with respect to side portions 19 in axial direction Dl .
  • actuator 21 i.e. the relative movement produced by it, moves arms 20 into a position substantially perpendicular to longitudinal axis B, thus expanding plug 16 in tangential direction D2.
  • supporting body 11 comprises a plurality of radial ribs 27 parallel to axial direction Dl, i.e. to axis of rotation Al, and equally spaced about axis of rotation Al ( Figure 2) .
  • Each guide 15 is defined by two facing ribs 27, and itself defines a seat for housing a rotor segment 12 and an expansion plug 16.
  • Each guide 15 and each rotor segment 12 define a prismatic joint slidable in direction Dl .
  • each rib 27 has a contoured profile substantially complementary with the contoured profile of rotor segment 12, and cooperates with rotor segment 12 to retain it in a radial direction D3.
  • each rotor segment 12 is substantially defined by an active body comprising two superimposed rows of permanent magnets 28; two magnetic guides 29 made of laminations and located on opposite sides of the rows of permanent magnets 28; and a cover 30.
  • rotor segment 12 defines a seat for expansion plug 16. More specifically, expansion plug 16 is located between two ribs 27, and between supporting body 11 and rotor segment 12 to exert thrust on rotor segment 12 in radial direction D3 and lock rotor segment 12 frictionally inside guide 15.
  • expansion plug 16 and supporting body 11 define two wedge joints, so that expansion of plug 16 in tangential direction D2 produces thrust in radial direction D3 to lock rotor segment 12.
  • Side portions 19 are wedged between supporting body 11 and rotor segment 12. More specifically, supporting body 11 has two inclined faces 31 on which side portions 19 slide.
  • Supporting body 11, expansion plug 16 and rotor segment 12 thus define a reversible locking system by which to selectively lock and release rotor segment 12.
  • rotor 8 comprises a supporting body 32; a plurality of rotor segments 33 which slide onto supporting body 32 in axial direction Dl; and a plurality of expansion plugs 34 for locking rotor segments 33 to supporting body 32.
  • Supporting body 32 is in the form of a cylindrical wall, and has a plurality of guides 35, each defined by two grooves 36 parallel to axial direction Dl and diverging inwards in radial direction D3.
  • Each rotor segment 33 comprises two wings 37, the two ends 38 of which slide inside guide 35, i.e. inside respective grooves 36; ends 38 and grooves 36 form a prismatic joint slidable in axial direction Dl; and expansion plug 34 is located between the two wings 37 and designed to exert a parting force on ends 38 of wings 37 in tangential direction D2 to lock rotor segment 33 inside supporting body 32.
  • supporting body 32, rotor segment 33 and expansion plug 34 define a reversible locking system.
  • Expansion plug 34 is structurally similar to expansion plug 16, except that it is not designed to operate as a wedge .
  • Each rotor segment 33 differs from rotor segment 12 by comprising two wings 37 for retaining the active part of rotor segment 33 where the active part corresponds substantially to the whole of rotor segment 12.
  • the wings 37 in each pair are preferably connected near the middle to form a gripper, and have respective ends 39 opposite ends 38 and for gripping the active part of rotor segment 33.
  • ends 39 and the active part form a prismatic joint slidable in axial direction Dl, and parting ends 38 also grips ends 39 onto the active part of rotor segment 33.
  • the active part of rotor segment 33 is also locked between wings 37 by friction.
  • Expansion plug 40 comprises a main body 17 made partly of polymer material and partly of metal, and which comprises a central portion 18 parallel to longitudinal axis B, and two side portions 19 parallel to longitudinal axis B, located on opposite sides of central portion 18, and connected to central portion 18 in elastically deformable manner. More specifically, central portion 18 is reinforced with a bar 41 embedded in the polymer material along substantially the whole length of main body 17, and which projects from one end of main body 17 to form threaded rod 22, is preferably made of steel, and is preferably threaded completely, so the polymer material adheres firmly to it.
  • Section bars 42 preferably extend the whole length of main body 17, and each have a C- shaped cross section (as shown in Figure 9) to form a groove filled with polymer material.
  • Each section bar 42 is preferably made of aluminium .
  • connection of central portion 18 to side portions 19 comprises a plurality of parallel arms 20 arranged in a herringbone pattern and extending between central portion 18 and side portions 19.
  • This design of expansion plug 40 makes central portion 18 and side portions 19 extremely rigid, so highly deformable polymer material can be used; and section bars 42 improve the abrasion resistance of expansion plug 40.
  • expansion plug 34 in Figure 6 may obviously also comprise a bar 41 and section bars 42 like expansion plug 40 in Figures 7 to 9.
  • the present invention also relates to wind power turbines equipped with electric rotating machines with a non-tubular structure, or in which the rotor extends about the stator.
  • the reversible locking system described can also be used on rotors of large electric rotating machines employed in other technical fields.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Wind Motors (AREA)

Abstract

L'invention concerne une turbine éolienne destinée à produire de l'énergie électrique, qui comprend une machine électrique tournante (4) ayant un stator (7) et un rotor (8), lequel comprend un corps support (11) monté pour tourner par rapport au stator (7) autour d'un axe de rotation (A1), et ayant une pluralité de guides (15) parallèles à l'axe de rotation (A1) ; une pluralité de segments de rotor (12) dont chacun est conçu pour coulisser, dans une direction axiale (D1) parallèle à l'axe de rotation (A1), de façon à pénétrer dans un guide (15) monté sur le corps support (11) ; et une pluralité de plots de dilatation (16) dont chacun est conçu pour être positionné en contact avec l'un des segments de rotor (12) pour verrouiller sélectivement le segment de rotor (12) dans une position axiale donnée à l'intérieur du guide (15).
PCT/IB2012/053697 2011-07-19 2012-07-19 Turbine éolienne pour produire de l'énergie électrique et rotor de machine tournante électrique de turbine éolienne WO2013011482A2 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
ITMI2011A001343 2011-07-19
IT001343A ITMI20111343A1 (it) 2011-07-19 2011-07-19 Aerogeneratore per la produzione di energia elettrica

Publications (2)

Publication Number Publication Date
WO2013011482A2 true WO2013011482A2 (fr) 2013-01-24
WO2013011482A3 WO2013011482A3 (fr) 2013-05-10

Family

ID=44511239

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/IB2012/053697 WO2013011482A2 (fr) 2011-07-19 2012-07-19 Turbine éolienne pour produire de l'énergie électrique et rotor de machine tournante électrique de turbine éolienne

Country Status (3)

Country Link
AR (1) AR087249A1 (fr)
IT (1) ITMI20111343A1 (fr)
WO (1) WO2013011482A2 (fr)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3337013A1 (fr) * 2016-12-16 2018-06-20 Robert Bosch GmbH Machine électrique comprenant un rotor et un stator et procédé de fixation d'un aimant permanent dans une poche de réception d'un rotor ou d'un stator d'une machine électrique
CN111734586A (zh) * 2020-05-29 2020-10-02 华电电力科学研究院有限公司 一种风力发电机组轮毂锁定的电动装置

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006032969A2 (fr) 2004-09-20 2006-03-30 High Technology Investments B.V. Generateur/moteur electrique a utiliser notamment dans des centrales eoliennes, installations a commande par cable ou centrales hydrauliques

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4179634A (en) * 1978-06-02 1979-12-18 R. E. Phelon-Company, Inc. Magneto rotor construction
US4336649A (en) * 1978-12-26 1982-06-29 The Garrett Corporation Method of making rotor assembly having anchor with undulating sides
ITBZ20050062A1 (it) * 2005-11-29 2007-05-30 High Technology Invest Bv Rotore a magneti permanenti per generatori e motori elettrici
US7911104B2 (en) * 2009-03-10 2011-03-22 Drs Power Technology, Inc. Pole retention configuration for electric machine rotors
US8004140B2 (en) * 2009-04-30 2011-08-23 General Electric Company Dovetail spoke internal permanent magnet machine
WO2011012131A2 (fr) * 2009-07-29 2011-02-03 Joachim Sabinski Rotor multipolaire à aimants permanents pour machines électriques rotatives et procédé d'orientation et de fixation des pôles du rotor sur un corps de base du rotor à aimants permanents

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006032969A2 (fr) 2004-09-20 2006-03-30 High Technology Investments B.V. Generateur/moteur electrique a utiliser notamment dans des centrales eoliennes, installations a commande par cable ou centrales hydrauliques

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3337013A1 (fr) * 2016-12-16 2018-06-20 Robert Bosch GmbH Machine électrique comprenant un rotor et un stator et procédé de fixation d'un aimant permanent dans une poche de réception d'un rotor ou d'un stator d'une machine électrique
CN111734586A (zh) * 2020-05-29 2020-10-02 华电电力科学研究院有限公司 一种风力发电机组轮毂锁定的电动装置

Also Published As

Publication number Publication date
AR087249A1 (es) 2014-03-12
WO2013011482A3 (fr) 2013-05-10
ITMI20111343A1 (it) 2013-01-20

Similar Documents

Publication Publication Date Title
US8669685B2 (en) Wind power turbine for producing electric energy
EP2381560B1 (fr) Générateur électrique de turbine d'éolienne et turbine d'éolienne équipée d'un tel générateur électrique
KR101765542B1 (ko) 자석 어셈블리
EP2381092B1 (fr) Systèmes et procédés d'assemblage d'un ensemble de verrouillage de rotor à utiliser dans une éolienne
DK2416006T3 (en) Krøjningsanordning for use in wind turbines
SE534292C2 (sv) Låsanordning för bladpitch och metod för att låsa ett turbinblad
EP2898589B1 (fr) Système de verrouillage de segments de machine électrique rotatifs d'éolienne
EP2372145B1 (fr) Eolienne et méthode de suppression d'un roulement d'une éolienne
KR20170125886A (ko) 풍력 발전기 조립체를 위한 베어링 지지 장치와 설치 방법, 및 풍력 발전기 조립체
EP3523535B1 (fr) Système de verrou de rotor pour éolienne
US20110248592A1 (en) Synchronous Machine
US20220145862A1 (en) Plain bearing arrangement
EP3504424B1 (fr) Système de verrouillage de rotor pour une éolienne
WO2013011482A2 (fr) Turbine éolienne pour produire de l'énergie électrique et rotor de machine tournante électrique de turbine éolienne
CN201865852U (zh) 复合风力发电机
US20120257994A1 (en) Power generating apparatus of renewable energy type and method for installing hydraulic pump
US20140133992A1 (en) Connection mechanism for mounting blades for a wind turbine
DK2620637T3 (en) Arrangement device for transmission in a wind power plant as well as method for arresting the transmission
EP3807532B1 (fr) Raccordement de groupe motopropulseur d'éolienne
EP3672025A1 (fr) Machine électrique et éolienne
EP3168457B1 (fr) Éolienne avec pales avec un angle de conicité
WO2018072797A1 (fr) Appareil de retenue de rotor et procédé pour éoliennes
EP3425196A1 (fr) Procédé et outil d'entretien d'un système de pas de pale hydraulique
JP3230920U (ja) ベアリング抜き出し治具
CN114087140A (zh) 用于维护风力涡轮的构件的一体化系统及方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12759214

Country of ref document: EP

Kind code of ref document: A2

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12759214

Country of ref document: EP

Kind code of ref document: A2