WO2013010832A2 - Système de gestion de batterie et procédé correspondant de détermination d'un état de charge d'une batterie, batterie comportant un système de gestion de batterie et véhicule à moteur comportant un système de gestion de batterie - Google Patents

Système de gestion de batterie et procédé correspondant de détermination d'un état de charge d'une batterie, batterie comportant un système de gestion de batterie et véhicule à moteur comportant un système de gestion de batterie Download PDF

Info

Publication number
WO2013010832A2
WO2013010832A2 PCT/EP2012/063346 EP2012063346W WO2013010832A2 WO 2013010832 A2 WO2013010832 A2 WO 2013010832A2 EP 2012063346 W EP2012063346 W EP 2012063346W WO 2013010832 A2 WO2013010832 A2 WO 2013010832A2
Authority
WO
WIPO (PCT)
Prior art keywords
battery
management system
battery management
cell monitoring
units
Prior art date
Application number
PCT/EP2012/063346
Other languages
German (de)
English (en)
Other versions
WO2013010832A3 (fr
Inventor
Stefan Butzmann
Original Assignee
Sb Limotive Germany Gmbh
Sb Limotive Company Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sb Limotive Germany Gmbh, Sb Limotive Company Ltd. filed Critical Sb Limotive Germany Gmbh
Publication of WO2013010832A2 publication Critical patent/WO2013010832A2/fr
Publication of WO2013010832A3 publication Critical patent/WO2013010832A3/fr

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/48Accumulators combined with arrangements for measuring, testing or indicating the condition of cells, e.g. the level or density of the electrolyte
    • H01M10/482Accumulators combined with arrangements for measuring, testing or indicating the condition of cells, e.g. the level or density of the electrolyte for several batteries or cells simultaneously or sequentially
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/36Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
    • G01R31/396Acquisition or processing of data for testing or for monitoring individual cells or groups of cells within a battery
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2220/00Batteries for particular applications
    • H01M2220/20Batteries in motive systems, e.g. vehicle, ship, plane
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to a battery management system having a controller and a plurality of cell monitoring units, a method for determining the state of charge of a battery, a battery with the
  • batteries with lithium-ion technology are suitable. They are characterized among others by high energy density and low self-discharge. By definition, exist
  • Lithium-ion batteries made of two or more lithium-ion cells, the
  • Lithium-ion cells can be connected by parallel or serial connection to modules, and then to batteries.
  • a module consists of six or more cells.
  • Cell Supervision Circuit which are each assigned to a plurality of battery cells 14 or battery modules.
  • CSC Cell Supervision Circuit
  • the battery cells 14 are grouped into battery modules, the exact
  • the battery management system 1 1 can be connected to battery cells 14 or
  • Battery modules in a common housing housed.
  • the battery modules can each have their own housing.
  • a better scalability can be achieved.
  • the battery cells 14 are monitored by the plurality of cell monitoring units 16.
  • a cell monitoring unit 16 includes measurement electronics that monitors the voltage and other parameters.
  • the information obtained by the cell monitoring unit 16 information is sent via a communication bus 19, such as a CAN bus, to a central control unit 15, which evaluates the data of all battery cells 14 and corrective action in case of deviations from defined parameters or, if necessary, the contactors 17, 18 opens and the battery system 10 turns off.
  • the control unit 15 has a low-voltage side or a
  • low-voltage side part 22 with a microcontroller 23 and a high-voltage side or a high-voltage side part 24 with a microcontroller 25 on.
  • the low-voltage side 22 and the high-voltage side 24 are connected to each other via a galvanic isolation 29.
  • the low-voltage side 22 is with a
  • Hall sensor 27 connected to measure the battery current
  • High-voltage side 24 is connected to a shunt 26 for measuring the battery current.
  • the control unit 15 communicates with the vehicle electronics by means of
  • the electrical connections 12, 13 are used for power supply for example, a motor vehicle and / or recharging the battery.
  • the data of the cell monitoring units 16 are evaluated both on the high-voltage side 24 and on the low-voltage side 22 of the control unit 15 in two redundant microcontrollers 23, 25 and compared.
  • the high-voltage side is evaluated both on the high-voltage side 24 and on the low-voltage side 22 of the control unit 15 in two redundant microcontrollers 23, 25 and compared.
  • Microcontroller 25 uses the total voltage of the pack, that is, all the battery modules and the total current, which is measured for example by means of the shunt 26.
  • the low-voltage side microcontroller 23 measures the voltage of the individual battery cells 14 and the current that is determined, for example, via the Hall sensor 27.
  • the Hall sensor 27 typically, on the
  • the low-voltage side of the control unit also calculates the state of charge of the battery pack (SOC) .
  • SOC state of charge of the battery pack
  • a battery which is constructed from a plurality of battery modules, wherein the battery modules are monitored by means of a central battery management system.
  • a disadvantage of the battery management systems of the prior art is that to achieve a high ASIL level, a complex and complex programming of the controller and a high computational effort are required. This causes high costs. Furthermore, a lot of data is on the
  • a battery management system according to independent claim 1 is provided.
  • a battery management system has a control unit and one or more cell monitoring units for monitoring in each case a plurality of battery cells of at least one battery module of a battery.
  • the cell monitoring units each have a microcontroller, which is connected to the control unit by a first communication connection, and measuring electronics for detecting one or more physical measured variables from the battery cells.
  • the measuring electronics everyone
  • Cell monitoring unit is at least partially redundant, so that in the cell voltage monitoring unit, a physical measured variable, in particular an electrical voltage can be detected several times by means of several measuring units. Furthermore, each cell monitoring unit has means for current detection, and the microcontroller is adapted to a
  • An advantage of the battery management system according to the invention is that the required effort to be controlled of the controller is significantly reduced, whereby the calculations in the microcontrollers of the controller are significantly simplified. When using several battery modules, this is particularly advantageous, since the control unit no longer has to synchronize and reassemble the data of all cell monitoring units as conventionally. But even with only one
  • Cell monitoring unit is advantageous, the calculation effort is reduced overall. For example, the controller no longer needs to collect, synchronize, and evaluate data from the cell monitor and a current sensor. This is also achieved because the scope of the
  • the control unit less Values are evaluated.
  • the data rate on the bus is also significantly reduced. In particular, the required data for calculating the state of charge no longer has to run via the bus.
  • the state of charge is first determined in modules using at least one of the cell monitoring units according to the invention.
  • the invention is not limited to a particular bus system.
  • the first communication connection may be a CAN bus.
  • the microcontrollers of the one or more cell monitoring units each have a plausibility function for performing a plausibility check of acquired measurement data.
  • the microcontroller each have a processing and output function for generating and outputting information about the acquired measurement data to the
  • Control unit For example, this can further reduce the data rate on the bus.
  • combined results can be generated during processing, with only the results being output to the control unit.
  • the microcontroller also each have an alarm function for generating an alarm signal, if a detected measured value assumes a critical value, in particular an overvoltage value or undervoltage value. As a result, the safety can be increased in a favorable manner.
  • Cell monitoring unit is used, so that increased functional safety is present and, for example, an ASIL C / D level is easier to reach.
  • the costs for the cell monitoring units are also well scalable for different ASIL levels, a so-called "downgrade" is easy to accomplish.
  • inexpensive measuring units can be used, but this does not necessarily mean that the ASIL level is lower.
  • the plurality of measuring units in a cell monitoring unit each have a min-max measuring unit
  • the min-max measuring unit is adapted to determine a minimum and a maximum voltage value and to discard intermediate voltage values.
  • the cell monitoring units are designed in such a way that at least one of the several measuring units can output data directly to the control unit without an intermediate circuit with the microcontroller.
  • Min-Max data is sufficient to perform or complete a plausibility check.
  • the battery management system has a second communication connection, in particular a second one
  • Control unit connects.
  • the first communication connection connects the microcontroller of the cell monitoring units with a low-voltage side of the control unit and the second communication connection in each case at least one measuring unit in each cell monitoring unit of the one or more
  • Cell monitoring units connects to a high-voltage side of the controller.
  • a second redundant measuring unit the voltage to the
  • High-voltage side of the control unit transmitted, in the control unit, the data of the low-voltage side and the high-voltage side are plausibility.
  • the microcontrollers are configured to receive voltage values from at least one of the measuring units, to calculate the state of charge based on the outputted voltage values, and to output the state of charge, a minimum voltage and a maximum voltage, and a detected temperature.
  • the microcontrollers are configured to receive voltage values from at least one of the measuring units, to calculate the state of charge based on the outputted voltage values, and to output the state of charge, a minimum voltage and a maximum voltage, and a detected temperature.
  • a battery is provided with the battery management system according to the invention.
  • the battery is a
  • the battery management system monitors a battery connected to a drive system of the motor vehicle.
  • FIG. 2 shows a battery with a battery management system according to an embodiment of the invention
  • Figure 3 shows components of a battery and a cell monitoring unit according to another embodiment of the invention.
  • FIG. 4 components of a battery and a cell monitoring unit according to yet another embodiment of the invention.
  • FIG. 2 shows a battery with a battery management system 21 according to an embodiment of the invention.
  • the battery management system 21 has a redundant topology for monitoring the battery cells 14. More precisely, the measuring electronics are designed redundantly, and the microcontroller 25, 23 in the control unit 15th be by means of two separate communication links 19, 35th
  • a first communication link 19 may be the communication line of a CAN bus.
  • a second communication link 35 has
  • the one group of measuring units which in the exemplary embodiment is a cell voltage measuring unit 32 designed as CVM (English: “Cell Voltage Monitor”), communicates directly with the high-voltage side via the microcontroller 33 24 of the CVM (English: “Cell Voltage Monitor”), communicates directly with the high-voltage side via the microcontroller 33 24 of the CVM (English: “Cell Voltage Monitor”), communicates directly with the high-voltage side via the microcontroller 33 24 of the
  • Control unit or with the low-voltage side microcontroller 23 whereas another group of CVM designed as
  • Cell voltage measuring units 42 communicates directly with the high-voltage side or with the high-voltage side microcontroller 25 of the controller 15.
  • the cell monitoring units 31 each have a current sensor (not shown).
  • the microcontroller is designed in each case from the cell voltage measuring unit 32
  • measuring units 43 on the high-voltage side strand as measuring units 43 optionally CVM or
  • Min-max measuring units are used. More precisely, according to FIG. 3, measurement units 31 can be used for the design of the cell monitoring unit 31, which only report the minimum and the maximum voltage of all assigned cells to the control unit or the microcontroller 33 in the cell voltage measurement unit 31.
  • the min-max measuring units 34 compare the state of an assigned battery cell 14 with the state of the upstream cell 14. Thus, in determining the maximum voltage of all battery cells 14, the higher voltage of the two battery cells
  • Measuring unit only the highest voltage value to the control unit. Similarly, the minimum voltage of all cells 14 is determined. However, the calculation 38 of the state of charge SOC is the same as in
  • the microcontroller 33 takes place in the microcontroller 33, and the microcontroller 33 also gives only the battery module-based SOC and a minimum and a maximum voltage and a temperature over the
  • the second communication connection 35 is dispensed with, and the cell monitoring unit 31 transmits, by means of the microcontroller 33, in total only the state of charge of the
  • Figure 2 used other components that are used in a different topology again.
  • the microcontroller 33 can advantageously the
  • a battery system is presented with which a hardware-based redundant system is created in a favorable manner, which reduces the expense for the software-based plausibility check in the control unit and reduces the data rate. Due to the use of modified components in the cell voltage monitoring unit and due to the particular topology of the cell voltage measuring units, the cost of the
  • Battery management system can be reduced.
  • the costs are in particular scalable for different ASIL levels.

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Secondary Cells (AREA)

Abstract

L'invention concerne un système de gestion de batterie (21) comportant un appareil de commande (15) et une ou plusieurs unités de contrôle d'éléments (31) pour contrôler plusieurs éléments de batterie (14) d'au moins un module de batterie d'une batterie, les unités de contrôle d'éléments (31) présentant respectivement un microcontrôleur (33) relié à l'appareil de commande (15) par une première liaison de communication (19), ainsi qu'une électronique de mesure pour détecter une ou plusieurs grandeurs de mesure des éléments de batterie (14). Par ailleurs, l'électronique de mesure de chaque unité de contrôle d'éléments (31) est conçue au moins partiellement redondante de telle manière que dans l'unité de contrôle d'éléments (31) une grandeur de mesure, notamment une tension électrique, peut être détectée plusieurs fois au moyen de plusieurs unités de mesure (32, 34, 42, 43), et chaque unité de contrôle d'éléments (31) présente des moyens de détection du courant. Le microcontrôleur (33) est conçu pour calculer un état de charge. L'invention concerne également un procédé de contrôle d'une batterie. L'invention concerne également une batterie comportant un système de gestion de batterie et un véhicule à moteur comportant un système de gestion de batterie.
PCT/EP2012/063346 2011-07-18 2012-07-09 Système de gestion de batterie et procédé correspondant de détermination d'un état de charge d'une batterie, batterie comportant un système de gestion de batterie et véhicule à moteur comportant un système de gestion de batterie WO2013010832A2 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102011079292A DE102011079292A1 (de) 2011-07-18 2011-07-18 Batteriemanagementsystem und dazugehöriges Verfahren zur Bestimmung eines Ladezustands einer Batterie, Batterie mit Batteriemanagementsystem und Kraftfahrzeug mit Batteriemanagementsystem
DE102011079292.9 2011-07-18

Publications (2)

Publication Number Publication Date
WO2013010832A2 true WO2013010832A2 (fr) 2013-01-24
WO2013010832A3 WO2013010832A3 (fr) 2014-02-13

Family

ID=46506385

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2012/063346 WO2013010832A2 (fr) 2011-07-18 2012-07-09 Système de gestion de batterie et procédé correspondant de détermination d'un état de charge d'une batterie, batterie comportant un système de gestion de batterie et véhicule à moteur comportant un système de gestion de batterie

Country Status (2)

Country Link
DE (1) DE102011079292A1 (fr)
WO (1) WO2013010832A2 (fr)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105572594A (zh) * 2014-11-03 2016-05-11 大连融科储能技术发展有限公司 液流电池系统荷电状态监测方法及其系统
WO2016070794A1 (fr) * 2014-11-03 2016-05-12 大连融科储能技术发展有限公司 Procédé et système pour surveiller l'état de charge (soc) d'un système de batterie rédox, batterie rédox basée sur une conception de redondance du dispositif de détection de soc, procédé et dispositif pour déterminer la capacité réelle d'une batterie rédox, et procédé et système pour estimer une caractéristique d'entrée-sortie d'un côté courant alternatif d'une batterie rédox
EP2759018B1 (fr) * 2011-09-19 2016-06-01 Robert Bosch GmbH Système de gestion de batterie, batterie, véhicule automobile avec système de gestion de batterie et procédé de surveillance d'une batterie
US10476297B2 (en) 2014-03-11 2019-11-12 Fraunhofer-Gesellschaft Zur Foerderung Der Angewandten Forschung E.V. Device and method for wiring a battery management system
CN111907329A (zh) * 2020-06-29 2020-11-10 东风汽车集团有限公司 可进行动力电池全时段热失控预警的监测系统及监测方法
CN112054252A (zh) * 2019-06-05 2020-12-08 大众汽车有限公司 用于车辆的电池系统的监控组件

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE202013102572U1 (de) * 2013-06-17 2014-09-18 Sma Solar Technology Ag Schaltungsanordnung zur fehlerüberwachten Spannungsmessung und entsprechender Wechselrichter
DE102013219100A1 (de) 2013-09-24 2015-03-26 Robert Bosch Gmbh Verfahren und Vorrichtungen zur Authentifizierung von Messdaten einer Batterie
DE102013225246A1 (de) * 2013-12-09 2015-06-11 Robert Bosch Gmbh Verfahren zur Übertragung entweder eines minimalen oder eines maximalen Wertes eines Batteriesystemparameters und Batteriesystem zur Ausführung eines solchen Verfahrens
DE102013225243A1 (de) 2013-12-09 2015-06-11 Robert Bosch Gmbh Verfahren zum Übertragen eines minimalen und/oder eines maximalen Wertes eines Batteriesystemparameters und Batteriesystem zur Ausführung eines solchen Verfahrens
DE102014201229A1 (de) * 2014-01-23 2015-07-23 Robert Bosch Gmbh Verfahren zur Bereitstellung von Messwerten einer Batterie und Batteriemanagementsystem
CN104442436B (zh) * 2014-10-09 2017-08-25 惠州市亿能电子有限公司 一种适合轨道客车的电池组功率控制方法
DE102016218614A1 (de) * 2016-09-27 2018-03-29 Audi Ag Energiespeichereinrichtung für ein Kraftfahrzeug und Kraftfahrzeug
CN106997970B (zh) * 2017-03-08 2019-11-05 深圳市科陆电子科技股份有限公司 一种电池组数据通信系统
DE102019202164A1 (de) 2019-02-19 2020-08-20 Audi Ag Schutzvorrichtung, Batterie, Kraftfahrzeug und Verfahren zum Abschalten einer Batteriezelle
DE102020105909B4 (de) 2020-03-05 2023-05-25 Audi Aktiengesellschaft Verfahren zum Betreiben eines Bordnetzes und ein Bordnetz

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102009046567A1 (de) 2009-11-10 2011-05-12 SB LiMotive Company Ltd., Suwon Temperierungsverfahren und Batteriesystem

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10218669B4 (de) * 2002-04-26 2015-04-02 Daimler Ag Brennstoffzellensystem und Verfahren zur Spannungsüberwachung für ein Brennstoffzellensystem
DE102004008935A1 (de) * 2004-02-25 2005-09-15 Robert Bosch Gmbh Vorrichtung zur redundanten Spannungsversorgung
WO2008053365A2 (fr) * 2006-05-17 2008-05-08 Johnson Controls Technology Company Circuit et procédé de protection contre les surtensions
CN102105808B (zh) * 2008-06-27 2015-02-11 江森自控帅福得先进能源动力系统有限责任公司 电池单元诊断系统和方法

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102009046567A1 (de) 2009-11-10 2011-05-12 SB LiMotive Company Ltd., Suwon Temperierungsverfahren und Batteriesystem

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2759018B1 (fr) * 2011-09-19 2016-06-01 Robert Bosch GmbH Système de gestion de batterie, batterie, véhicule automobile avec système de gestion de batterie et procédé de surveillance d'une batterie
US9846198B2 (en) 2011-09-19 2017-12-19 Robert Bosch Gmbh Battery management system, battery, motor vehicle having a battery management system, and method for monitoring a battery
US10476297B2 (en) 2014-03-11 2019-11-12 Fraunhofer-Gesellschaft Zur Foerderung Der Angewandten Forschung E.V. Device and method for wiring a battery management system
CN105572594A (zh) * 2014-11-03 2016-05-11 大连融科储能技术发展有限公司 液流电池系统荷电状态监测方法及其系统
WO2016070794A1 (fr) * 2014-11-03 2016-05-12 大连融科储能技术发展有限公司 Procédé et système pour surveiller l'état de charge (soc) d'un système de batterie rédox, batterie rédox basée sur une conception de redondance du dispositif de détection de soc, procédé et dispositif pour déterminer la capacité réelle d'une batterie rédox, et procédé et système pour estimer une caractéristique d'entrée-sortie d'un côté courant alternatif d'une batterie rédox
US10424797B2 (en) 2014-11-03 2019-09-24 Dalian Rongkepower Co., Ltd Method and system for monitoring state of charge (SOC) of flow battery system, flow battery based on redundancy design of SOC detection device, method and device for determining actual capacity of flow battery, and method and system for estimating input-output characteristic of alternating-current side of flow battery
US10629932B2 (en) 2014-11-03 2020-04-21 Dalian Rongkepower Co., Ltd Method and system for monitoring state of charge (SOC) of flow battery system
CN112054252A (zh) * 2019-06-05 2020-12-08 大众汽车有限公司 用于车辆的电池系统的监控组件
CN111907329A (zh) * 2020-06-29 2020-11-10 东风汽车集团有限公司 可进行动力电池全时段热失控预警的监测系统及监测方法
CN111907329B (zh) * 2020-06-29 2022-04-29 东风汽车集团有限公司 可进行动力电池全时段热失控预警的监测系统及监测方法

Also Published As

Publication number Publication date
DE102011079292A1 (de) 2013-01-24
WO2013010832A3 (fr) 2014-02-13

Similar Documents

Publication Publication Date Title
WO2013010832A2 (fr) Système de gestion de batterie et procédé correspondant de détermination d'un état de charge d'une batterie, batterie comportant un système de gestion de batterie et véhicule à moteur comportant un système de gestion de batterie
DE102011079126B4 (de) Batteriemanagementsystem, Batterie, Kraftfahrzeug mit Batteriemanagementsystem sowie Verfahren zur Überwachung einer Batterie
EP2759018B1 (fr) Système de gestion de batterie, batterie, véhicule automobile avec système de gestion de batterie et procédé de surveillance d'une batterie
EP2734852B1 (fr) Système de gestion de batterie et procédé de détermination des états de charge d'éléments de batterie, batterie et véhicule à moteur comportant un système de gestion de batterie
EP2499506B1 (fr) Architecture d'appareil de commande de batterie
EP2932574B1 (fr) Procédé d'équilibrage pour module de batterie et système de gestion de batterie
EP2619844B1 (fr) Système de batterie et procédé de détermination des tensions de modules de batterie
DE102012222720A1 (de) Batteriemanagementsystem und Batteriesystem
EP3323667A1 (fr) Système de stockage d'énergie de traction à limitation de fonctionnement
WO2014090531A1 (fr) Système de gestion de batterie et système de batterie
EP2715860A1 (fr) Architecture de sécurité, batterie et véhicule automobile doté d'une batterie correspondante
DE102005025616B4 (de) Verfahren zur Überwachung und/oder Steuerung oder Regelung der Spannung einzelner Zellen in einem Zellstapel
DE102017218734A1 (de) Hochspannungs-Betriebssystem und Verfahren zum Betreiben eines Hochspannung-Batteriesystems
WO2012052218A2 (fr) Procédé de détection de manipulations dans le réseau haute tension de véhicules électriques et/ou hybrides
DE102020130681A1 (de) Detektion und minderung von lithium-plating in batterien für elektrofahrzeuge
DE102012203017A1 (de) Batteriemanagementsystem und Verfahren zum Überwachen eines Batteriesystems sowie Batteriegesamtsystem mit Batteriemanagementsystem
DE102010039891A1 (de) Batteriesystem mit DC/DC-Umsetzer im Hochvoltnetz zur Versorgung eines Mikrocontrollers
DE102011079120B4 (de) Batteriemanagementsystem, Batterie, Kraftfahrzeug mit Batteriemanagementsystem sowie Verfahren zur Überwachung einer Batterie
DE102011084688B4 (de) Batteriesystem
DE102018105505A1 (de) Verfahren zur Erkennung einer Fehlfunktion, insbesondere eines Kurzschlussstroms, in einer Traktionsbatterieanordnung
WO2018224284A1 (fr) Procédé et dispositif permettant de faire fonctionner un système d'accumulation d'énergie électrique
DE102010030747A1 (de) Batteriesystem
DE102014006031B4 (de) Verfahren zum Betrieb eines Bordnetzes eines Kraftfahrzeugs und Kraftfahrzeug
DE102019208128A1 (de) Verfahren zur Fehlerdetektion in einem elektrischen Energiespeichersystem
DE102012209762B4 (de) Diagnosevorrichtung und Diagnoseverfahren für einen elektrischen Energiespeicher eines Kraftfahrzeuges

Legal Events

Date Code Title Description
122 Ep: pct application non-entry in european phase

Ref document number: 12733703

Country of ref document: EP

Kind code of ref document: A2