WO2013010475A1 - 自驱动装置、引导系统及其移动方法 - Google Patents
自驱动装置、引导系统及其移动方法 Download PDFInfo
- Publication number
- WO2013010475A1 WO2013010475A1 PCT/CN2012/078746 CN2012078746W WO2013010475A1 WO 2013010475 A1 WO2013010475 A1 WO 2013010475A1 CN 2012078746 W CN2012078746 W CN 2012078746W WO 2013010475 A1 WO2013010475 A1 WO 2013010475A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- self
- driving device
- wire
- deflection
- driving
- Prior art date
Links
- 238000000034 method Methods 0.000 title claims abstract description 26
- 230000033001 locomotion Effects 0.000 claims abstract description 18
- 238000001514 detection method Methods 0.000 claims abstract description 14
- 238000002955 isolation Methods 0.000 claims description 43
- 238000003032 molecular docking Methods 0.000 claims description 20
- 230000008859 change Effects 0.000 claims description 18
- 230000005540 biological transmission Effects 0.000 description 10
- 230000000875 corresponding effect Effects 0.000 description 10
- 230000008569 process Effects 0.000 description 10
- 239000004020 conductor Substances 0.000 description 7
- 244000025254 Cannabis sativa Species 0.000 description 4
- 230000001186 cumulative effect Effects 0.000 description 3
- 230000000694 effects Effects 0.000 description 3
- 238000004458 analytical method Methods 0.000 description 2
- 238000013459 approach Methods 0.000 description 2
- 238000004140 cleaning Methods 0.000 description 2
- 238000006073 displacement reaction Methods 0.000 description 2
- 230000009182 swimming Effects 0.000 description 2
- 230000009286 beneficial effect Effects 0.000 description 1
- 230000008901 benefit Effects 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 238000004364 calculation method Methods 0.000 description 1
- 238000002485 combustion reaction Methods 0.000 description 1
- 230000001276 controlling effect Effects 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 230000005484 gravity Effects 0.000 description 1
- 230000006698 induction Effects 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 230000000737 periodic effect Effects 0.000 description 1
- 239000013589 supplement Substances 0.000 description 1
Classifications
-
- G—PHYSICS
- G05—CONTROLLING; REGULATING
- G05D—SYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
- G05D1/00—Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
- G05D1/02—Control of position or course in two dimensions
- G05D1/021—Control of position or course in two dimensions specially adapted to land vehicles
- G05D1/0259—Control of position or course in two dimensions specially adapted to land vehicles using magnetic or electromagnetic means
- G05D1/0265—Control of position or course in two dimensions specially adapted to land vehicles using magnetic or electromagnetic means using buried wires
-
- G—PHYSICS
- G05—CONTROLLING; REGULATING
- G05D—SYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
- G05D1/00—Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
- G05D1/02—Control of position or course in two dimensions
- G05D1/021—Control of position or course in two dimensions specially adapted to land vehicles
- G05D1/0268—Control of position or course in two dimensions specially adapted to land vehicles using internal positioning means
Definitions
- the present invention relates to a self-driving device, a guiding system of a self-driving device, and a method of moving the self-driving device.
- This automated home appliance includes auto vacuum cleaners that are primarily used for room cleaning, as well as automatic lawn mowers that are primarily used in home gardens.
- This type of automated home device has some technical problems to be solved. For example, although an automated device can work on its own, it still needs to be manually set up to work in a designated work area.
- One way to solve this type of problem in the current technology is to convert the work area into an electronic map by scanning and input it into the automation device before the automation device works. The automation device identifies the work area based on the entered electronic map.
- this type of method requires more electronic components, resulting in a more complicated structure of the entire automation device.
- Another method is to lay a wire on the ground and use the area enclosed by the wire as the working area.
- the conductors can signal that the automation device senses the presence of the conductors, this can cause corresponding avoidance actions when the automation equipment encounters the conductors to avoid crossing the boundaries of the conductor formation, thus ensuring that the automation equipment always operates in the work area. This method works better and costs less.
- a self-driving device comprising: a housing; a driving unit located in the housing and driving the movement from the driving device, the driving unit comprising a driving moving within a range defined by the external wires a cycle setting unit that generates a detection cycle; a deflection detecting device that detects a deflection amount of the self-driving device during the detection period; a control unit that controls a movement speed of the driving wheel, wherein the self-driving device further includes a deflection amount and a preset
- the comparison unit for comparing the values, if the deflection amount is greater than the preset value, the control unit controls the self-driving device to leave the wire; if the deflection amount is not greater than the preset value, the control unit controls the self-driving device to move along the wire.
- the amount of deflection is an absolute value indicating only the size.
- the amount of deflection is a value indicating a magnitude and a positive or negative.
- the period setting unit is a timer, and the detection period generated by the timer is a time period.
- the period setting unit is a range finder, and the detection period generated by the range finder is a distance period.
- the self-driving device further includes an input unit, and the control unit generates a preset value according to the input value of the input unit.
- the amount of deflection is an amount of angular change from the drive unit.
- the preset value is greater than 36 degrees.
- the preset value is between 36 degrees and 720 degrees.
- the driving unit includes a first driving wheel and a second driving wheel, and the amount of deflection is a difference between the moving distances of the first driving wheel and the second driving wheel.
- the deflection detecting device is a first rotational speed detector disposed on the first drive wheel and a second rotational speed detector disposed on the second drive wheel.
- the control unit controls the rotation speed of the first driving wheel to become smaller and the rotation speed of the second driving wheel becomes larger to make the movement of the self-driving device The direction is changed. If the difference between the moving distances of the first driving wheel and the second driving wheel is not greater than the preset value, the control unit controls to maintain the instantaneous rotation speeds of the first driving wheel and the second driving wheel to keep the self-driving device along The wire moves.
- the first drive wheel and the second drive wheel are driven by the same drive motor, the drive motor drives the first drive wheel through the first transmission, and the drive motor drives the second drive wheel via the second transmission.
- the angle of change of the moving direction of the driving device ranges from 90 degrees to 27 degrees.
- the first drive wheel is driven by a drive motor and the second drive wheel is driven by another drive motor.
- the self-driving device is a lawn mower.
- a guiding system of a self-driving device comprising a wire for generating a guiding signal and a self-driving device for receiving a guiding signal, the wire forming a closed area and an isolation area, and the self-driving device is in the closed area Work inside and outside the isolated area.
- the wires forming the enclosed area are connected to the docking station.
- the docking station includes electrode pads that are chargeable by the drive unit.
- the method for moving the self-driving device comprises the steps of: walking from the driving device along the wire; the deflection detecting device detecting the deflection amount of the self-driving device, and the comparing unit performing the deflection amount with the preset value In comparison, if the deflection amount is greater than the preset value, the self-driving device leaves the wire, and if the deflection amount is not greater than the preset value, the self-driving device moves along the wire.
- the wire is again sought after the drive has left the wire.
- the self-driving device walks along the wire according to the guiding signal of the wire after finding the wire.
- the wire is connected to the docking station, and the self-driving device moves along the wire into the docking station to stop.
- the beneficial effects of the present invention are: in the process of moving along the wire, the self-driving device can detect the deflection amount of the driving wheel, and make a corresponding position change according to the deflection amount judgment, thereby being able to accurately identify different wire.
- FIG. 1 is a schematic view of a self-driving device in accordance with an embodiment of the present invention.
- FIG. 2 is a schematic view of a self-driving device in accordance with another embodiment of the present invention.
- Figure 3 is a schematic illustration of the self-driving device of Figure 1 in a working area.
- Figure 4 is a schematic illustration of the self-driving device of Figure 1 walking along a wire forming an isolated region.
- Figure 5 is a schematic illustration of the self-driving device of Figure 1 walking along a wire forming a closed region.
- Fig. 6 is a schematic view showing the direction of movement of the self-driving device shown in Fig. 1.
- Figure 7 is a schematic illustration of the self-driving device of Figure 1 walking along a wire in a work area.
- Figure 8 is a flow chart showing the operation of the self-driving device shown in Figure 7.
- Figure 9 is a schematic illustration of a self-driving device in accordance with yet another embodiment of the present invention.
- Figure 10 is a flow chart showing the operation of the self-driving device shown in Figure 9.
- Control system 41 first drive wheel 42, second drive wheel
- FIG. 1 shows a self-driving device according to an embodiment of the present invention.
- the self-driving device can move on the ground itself to perform various tasks according to preset instructions.
- Self-driven devices include a variety of embodiments. For example, automatic vacuum cleaners, automatic lawn mowers, automatic trimmers, etc.
- the self-driving device 1 is an automatic lawn mower having a cutting unit 9.
- the self-driving device 1 is generally square.
- the self-driving device 1 has a housing 2 with a power unit 3 therein.
- the function of the power unit 3 is to provide power to the other components of the self-driving device 1.
- the power unit 3 can have different power sources.
- the self-driving device 1 takes the form of electric power to provide electric power.
- a battery is provided in the housing 2. At the time of operation, the battery releases electrical energy to maintain operation of the self-driving device 1.
- the battery can be connected to an external power source to store electrical energy.
- the self-driving device 1 will find the charging station to supplement the electric energy.
- the self-driving device 1 is also provided with a drive unit 4.
- the drive unit 4 mainly includes a drive wheel disposed outside the casing 2, a motor that drives the drive wheel to move, and a transmission that connects the motor and the drive wheel.
- the number of drive wheels can be 1, 2, or more.
- the moving direction of the self-driving device as indicated by the arrow A is the front side
- the side opposite to the front side is the rear side
- the two sides adjacent to the front and rear sides are the left and right sides, respectively.
- there are two driving wheels of the self-driving device wherein the first driving wheel 41 is located on the left side and the second driving wheel 42 is located on the right side.
- first drive wheel 41 and the second drive wheel 42 are arranged symmetrically about the central axis 15 of the self-driving device. Since the center of gravity of the entire self-driving device 1 is closer to the rear side, the first drive wheel 41 and the second drive wheel 42 are disposed closer to the rear side for balance. Guide wheels are also provided near the front side. Of course, in other embodiments, the number of drive wheels can be one. In other embodiments, there may be four drive wheels, two of which are on the left side and two on the right side.
- the radii of the first drive wheel 41 and the second drive wheel 42 are the same.
- the rotational speeds of the first drive wheel 41 and the second drive wheel 42 are the same, since the first drive wheel 41 and the second drive wheel 42 are symmetrically disposed relative to the central axis 15 of the drive unit 1, the self-driving device moves linearly.
- the greater the rotational speed of the first drive wheel 41 and the second drive wheel 42 the greater the speed of the self-driving device 1.
- the self-driving device 1 is deflected toward one side, and no linear motion is maintained.
- the self-driving device turns toward the side where the rotational speed is small, that is, toward the right side where the second drive wheel 42 is located. If the rotational speed of the second drive wheel 42 is greater than the rotational speed of the first drive wheel 41, the self-driving device 1 will turn to the side where the rotational speed is small, i.e., to the left side where the first drive wheel 41 is located. The greater the difference between the rotational speeds of the first drive wheel 41 and the second drive wheel 42, the greater the turning angle of the self-driving device 1.
- the motor that drives the drive wheel to roll on the ground.
- the number of driving wheels is two, and the number of motors is also two.
- the first motor 43 independently drives the first drive wheel 41
- the second motor 44 independently drives the second drive wheel 42.
- a transmission is also provided between the motor and the drive wheel, and the transmission can be a planetary gear train or the like that is common in the art.
- the number of driving wheels is two, and the number of motors is one.
- Motor 48 drives first drive wheel 41 via first transmission 45
- motor 48 drives second drive wheel 42 via second transmission 46. That is, the same motor drives the first drive wheel 41 and the second drive wheel 42 through different transmissions.
- the self-driving device 1 is further provided with a deflection detecting unit 5. Driven by drive unit 4 The position of the self-driving device 1 is changed after the driving device 1 has moved a certain distance or for a certain period of time.
- the amount of deflection is generated as long as the position of the drive unit 1 is changed.
- the amount of deflection has various forms, and may be the amount of change in displacement or the amount of change in angle.
- the position change trajectory during moving, the average moving speed, and the like, which are indicative of the change in the movement of the driving device 1 can be used as a representation of the amount of deflection. For example, as shown in FIG.
- control system 20 can be an integrated chip, and control system 20 includes a plurality of functional control modules integrated on the chip, so multiple functional control modules may not be physically distinguishable.
- the factor influencing the amount of deflection is the length of the interval in which the amount of deflection from the driving device 1 is detected.
- a cycle setting unit 10 is provided for this control system 2 0 .
- the period setting unit 10 can generate a detection period signal and transmit it to the deflection detecting unit 5. After receiving the signal, the deflection detecting unit 5 detects the offset in a periodic interval.
- the period setting unit 10 can have various forms.
- the cycle setting unit 10 may be a timer provided on the self-driving device 1, which generates a time period. During this time period, the drive wheel of the drive unit 4 moves to generate a deflection amount.
- the period setting unit 10 may be a range finder that generates a distance period.
- the self-driving device 1 moves a certain distance to a predetermined distance period, and the driving wheel of the driving unit 4 generates an offset during the distance period.
- the amount of deflection is the difference between the moving distances of the first driving wheel 4 1 and the second driving wheel 42 in the same period of time. If the driving speed of the two driving wheels is equal when the self-driving device 1 moves in a straight line, the difference between the moving distances is zero. If the self-driving device 1 moves along the curve, the rotational speeds of the two driving wheels are not equal, and within the same time or moving distance, the smaller the curvature of the curve, the smaller the difference between the moving distances of the two driving wheels.
- the deflection detecting unit 5 is detected by the principle of magnetic induction.
- the deflection detecting unit 5 includes a magnetic generator and a magnetic detector.
- a first magnetic generator (not shown) is disposed on the first driving wheel 41, and a second magnetic generator (not shown) is fixedly disposed on the second driving wheel 42.
- the magnetic generator may be A magnet or other form that produces a magnetic field that can be used to detect the speed of the drive wheel.
- a magnetic inductor is provided in the housing 2 at a position close to the first drive wheel 41 and the second drive wheel 4 2, respectively, for sensing a change in the magnetic field of the magnetic generator.
- the magnetic sensor can detect and record, which represents the rotation of the drive wheel.
- the circumference of the drive wheel and the number of turns of the drive wheel can be multiplied within a specified time or distance as the distance traveled by the drive wheel during that time or distance.
- the deflection detecting unit 5 subtracts the detected moving distances of the first driving wheel 41 and the second driving wheel 42, and outputs the difference between the moving distances of the two as a detection result signal.
- the deflection detecting unit 5 is not limited to the above-mentioned magnetic generator and magnetic detector, and all detectors that can detect the rotational speed of the driving wheel are possible.
- a storage unit 7 is provided in the control system 20.
- the storage unit 7 is used to store some data, including data used in the operation of the self-driven device 1, and some reference data input by the user according to the actual working conditions to help the self-driving device 1 to work better.
- the storage unit 7 stores a preset value related to the amount of deflection.
- a comparison unit 6 is also included in the control system 20.
- the comparison unit 6 is internally provided with a comparator for mainly comparing the detection result signal output from the deflection detecting unit 5 with the stored preset value deflection amount in the storage unit 7, and outputting the comparison result accordingly.
- the comparing unit 6 first receives the deflection amount of the deflection detecting unit 5 and the preset value in the storage unit 7, and then performs comparison.
- the comparison unit 6 compares the difference between the moving distances of the first driving wheel 41 and the second driving wheel 42 by more than a preset value, the comparing unit 6 outputs a first comparison result signal; if the first driving wheel 4 1 and the first When the difference between the moving distances of the two driving wheels 42 is not greater than a preset value, the comparing unit 7 outputs a second comparison result signal.
- the comparison unit 6 can also compare the movement deflection angle detected by the deflection detecting unit 5 with other displacement amounts capable of representing the movement of the drive wheel with a preset value. Similarly, when the movement deflection angle is larger than the angle preset value, the comparison unit 6 outputs the first comparison result signal; when the movement deflection angle is not greater than the angle preset value, the comparison unit 6 outputs the second comparison result signal.
- a control unit 8 is also provided in the control system 20.
- the function of the control unit 8 is to receive the signal output by the comparison unit 6, and generate a control command to the corresponding motor driving the drive wheel to control the rotational speed of the drive wheel.
- the control unit 8 includes the CPU 81. After receiving the comparison result signal, the CPU 8 1 logically judges it. If the CPU 8 1 receives the first comparison result signal, it indicates that the difference between the moving distances of the first driving wheel 4 1 and the second driving wheel 42 is greater than a preset value, and then the control unit 8 outputs a corresponding control command to control the first driving wheel. 41 and the motor of the second drive wheel 42.
- control unit 8 outputs corresponding control commands to control first drive wheel 41 and second drive wheel
- the working area of the self-drive unit 1 is determined by the wires. As shown in Fig. 1, the wire 12 is laid over the entire boundary of the work area 11, so that the wire encloses a closed area. This closed area is the work area 11.
- the boundary line of the work area 11 consists of wires 12.
- the self-driving device 1 operates in the work area 11.
- the self-driving device 1 is a lawn mower. The mower travels in a certain route in this area. During the walking process, the cutting unit 9 rotates to cut the grass located on the route. After all the places in the work area 11 have been traveled, the cutting unit 9 also performs the cutting work on the grass in the work area 11.
- the conductors 12 located on the boundary will give a pilot signal.
- the self-driving device 1 is provided with a receiving device for receiving the pilot signal.
- the pilot signal becomes correspondingly stronger. Therefore, since the driving device 1 senses that the situation has changed, it will move in other directions, thereby avoiding the work area 11 .
- the work area 11 is usually a grass field in a garden courtyard. There are ponds, trees, etc. on the grass in the work area 11. Wires 12 are also wound around these ponds and trees, thus ensuring that the self-driving device does not hit obstacles such as ponds and trees. These wires 12 surround the obstacle and the inside of the surrounding curve is the isolated area 13.
- the self-driving device 1 operates outside the isolated area 11 and outside the isolated area 13, as shown in FIG. And these wires 12 also issue a pilot signal. Obstructions such as ponds and trees are located in the isolated area 13, and the isolated areas 13 are located outside the working area 11.
- the isolation region 13 is circular. The area of the isolation region 13 is smaller than the area of the work area 11. That is, the radius of the wire 12 surrounding the isolation region 13 is small, so the curvature of the wire 12 surrounding the isolation region 13 is large.
- a stop 14 is connected to the wire 12 surrounding the work area 11. Since in the present embodiment, the self-driving device 1 is driven by electric energy, a shortage of power may occur during operation. Therefore, the self-driving device 1 is provided with a power detecting element (not shown), and when the remaining power is detected to be insufficient, the self-driving device 1 automatically searches for and enters the docking station 14 for charging, and the docking station 14 is provided with a supply. An electrode sheet (not shown) that is charged by the driving device 1.
- the self-driving device 1 detects that the self-power does not meet certain conditions when operating in the working area 11, the self-driving device 1 stops working at any working point in the working area 11, along a certain The direction proceeds until the wire 12 is found based on the pilot signal emanating from the wire 12.
- the self-driving device 1 can also be used under other conditions. The other modes are switched to the mode of finding the wire. After the driver 1 finds the wire 12, according to the wire
- the self-driving device 1 travels along the wire 12 and eventually enters the docking station 14 for charging.
- the self-driving device 1 may encounter various difficulties such that it cannot enter the docking station 14 correctly.
- the wire 12 surrounding the working area 11 and the wire 12 surrounding the isolation region 13 are substantially the same wire, so that the wire 12 surrounding the working area 11 and the wire 12 surrounding the isolation region 13 are interconnected, The same current flows through these wires.
- the self-driving device 1 may move to the wire 12 surrounding the isolation region 13. Walking along the wire 12 around the isolation region 13 causes the self-driving device 1 to travel around the isolation region 13 repeatedly and repeatedly without returning to the wire 12 surrounding the working region 11, so that the self-driving device 1 is very long.
- One method is to distinguish between the working area 11 and the isolated area 13 by the difference in curvature.
- the area formed by the wires 12 surrounding the isolation region 13 is relatively large, and the area formed by the wires 12 surrounding the working area 11 is relatively flat. Therefore, when traveling on different wires, the difference in moving distance between the first drive wheel 41 and the second drive wheel 42 on the self-driving device 1 is different in the same time. As shown in FIG. 4, when the self-driving device 1 travels along the wire 12 surrounding the isolation region 13, the movement trajectory 410 of the first drive wheel 41 and the movement trajectory 420 of the second drive wheel 42 are different, and the first drive wheel The difference between the moving distances of 41 and the second driving wheels 42 is large.
- the difference between the moving distances of the first driving wheel 41 and the second driving wheel 42 is equal to 2 ⁇ multiplied by the first driving wheel and the second driving wheel.
- the first driving wheel 41 and the second driving wheel 42 are respectively mounted on the self-driving device 1, and the distance d between the two driving wheels is fixed, and does not change due to the position change of the self-driving device 1.
- 410, and 420 respectively indicate the movement locus of the first drive wheel 41 and the movement locus of the second drive wheel 42.
- the first driving wheel 41 and the second driving wheel 42 on the left and right sides have different moving distances in a certain time, but the first driving wheel 41 and the second The difference in the moving distance of the drive wheels 42 is small. Therefore, if a reasonable preset value is set, and the first drive wheel 41 and the second drive are When the difference between the moving distances of the moving wheels 42 is compared with the preset value, it can be discriminated from the comparison result whether the self-driving device 1 is traveling along the wire 12 having a large curvature or the wire 12 having a small curvature.
- the self-driving device 1 travels along a small arc 12, it indicates that the device is traveling along the wire 12 surrounding the working area 11, and continues to follow the wire 12 to smoothly enter the docking station 14. If the self-driving device 1 travels along the arc 12 having a large curvature, it indicates that the device is traveling along the wire 12 surrounding the isolation region 13, and it is necessary to change the direction of movement from the driving device 1 and to be guided away from the wire 12 surrounding the isolation region 13. Then continue looking for the wire 12.
- the self-driving device 1 identifies the wires surrounding the work area 11 and the wires surrounding the isolation region 13, and the two wires that are mainly relied on have different curvatures. Such differences are not directional, and comparisons can be made directly by comparing the sizes.
- the measured deflection amount is an absolute value indicating only the size, and there is no need to introduce a sign.
- the amount of deflection is the difference in the moving distance of the first drive wheel 41 and the second drive wheel 42 of the self-driving device 1.
- the difference between the moving distances of the first driving wheel 41 and the second driving wheel 42 is 1 meter.
- the result is the same as the case where the moving distance of the first driving wheel 41 is 3 meters and the moving distance of the second driving wheel 42 is 5 meters, because in this case, the first driving wheel 41 and the second driving wheel 42 are the same.
- the difference in moving distance is still 1 meter, not 2 meters.
- the detected deflection amount can be an absolute value indicating only the size. This is a significant benefit to the ease of measurement.
- the measured deflection value is still an absolute value indicating only the size, measured
- the deflection value may be, for example, a difference between the average moving speeds of the first driving wheel and the second driving wheel, or a deflection angle of the traveling direction of the driving device or the like.
- the cycle setting unit 10 generates a detection signal period, and the previously described deflection detecting unit 5 starts detecting the first driving wheel 41 and the second driving.
- the difference between the detected first driving wheel moving distance and the second driving wheel moving distance is transmitted to the comparing unit 6 for comparison. If the difference between the moving distance of the first driving wheel 41 and the moving distance of the second driving wheel 42 is greater than a preset value, the control unit 8 controls the guiding of the self-driving device 1 from the wire 12 and moves in a certain direction to search again. wire The process of 12.
- the control unit 8 maintains the instantaneous rotational speeds of the first driving wheel 41 and the second driving wheel 42 to be self-driven.
- Device 1 continues to move along wire 12 and eventually enters docking station 14 for charging. Therefore, it is necessary to set the preset value reasonably so that the self-driving device 1 can distinguish the wire surrounding the working area 11 and the wire surrounding the isolation region 13.
- the preset value is set as such.
- the user first finds the largest isolated area 13 and measures the radius of the isolated area 13. The measured radius is then input from the drive unit 1.
- the housing 2 of the self-driving device 1 is provided with an input unit (not shown) for user input.
- the CPU 81 operates on the input radius value to obtain a preset value, and stores the preset value in the storage unit 6.
- a fixed preset value can be built into the self-drive unit 1, for example 5 meters, 8 meters or 10 meters and other numbers.
- the form of the preset value is not limited to the distance. In the embodiment in which the amount of deflection is an angular offset, the preset value is also an angle value.
- the length of the detection cycle Another factor that affects the difference in the moving distance between the first drive wheel 41 and the second drive wheel 42 is the length of the detection cycle.
- the time period is preferably set to 60 seconds. In other embodiments, the distance period setting and time period are similar.
- the angle ⁇ formed by the moving direction A of the self-driving device after the change to the moving direction A of the self-driving device before the change is 90 degrees to 270. Between degrees. If it is determined that the driving distance of the first driving wheel 41 is smaller than that of the second driving wheel 42 from the driving device 1 on the wire 12 surrounding the isolation region 13, the control unit 8 controls the rotation speed of the first driving wheel 41 to become larger, and the second driving The rotation speed of the wheel 42 becomes small, so that the self-driving device 1 is turned around to change the moving direction. The self-driving device 1 moves away from the wire 12 until the wire 12 is found again. After finding the new wire 12, repeat the above discriminating process, and I will not repeat it here. Finally, the self-driving device 1 moves along the wire 12 into the docking station 14 for charging.
- the self-driving device 1 first enters the boot mode of operation. In this mode, self-driven Device 1 looks for wires 12. After the wire 12 is found, the self-driving device 1 begins to travel along the wire 12. During the walking along the wire 12, the self-driving device 1 periodically detects the amount of deflection in the cycle, and compares the amount of deflection with a preset value, and if the amount of deflection is greater than a preset value, self-driving The device 1 changes the direction of movement and leaves the guide of the wire 12, and then looks for the wire 12 again; if the amount of deflection is not greater than the preset value, the self-driving device 1 continues to travel along the wire 12 and eventually enters the docking station 14. After entering the docking station 14, the self-driving device 1 is parked in the docking station 14, and charging or other work can be performed.
- the self-driving device 1 also includes a deflection detecting unit 5 for detecting the self-driving device 1 and an analysis of the amount of deflection detected by the deflection detecting unit 5 to control the control system 20 of the self-driving device 1 accordingly.
- the control system 20 also includes a comparison unit 6, a storage unit 7, and a control unit 8.
- the storage unit 7 is used to store preset values and process data of the control system 20 in the analysis control process.
- the comparison unit 6 is for comparing the stored preset value with the deflection amount and outputting the comparison result accordingly.
- the control unit 8 is for receiving the signal output from the comparison unit 6, and generating a control command to the drive unit 4.
- the biggest difference between this embodiment and the previous embodiment is that the deflection detecting unit 5 does not periodically measure the amount of deflection. Therefore, in the present embodiment, there is no cycle setting unit 10 in the control system 20.
- the control system 20 cumulatively superimposes the amount of deflection detected by the deflection detecting unit 5.
- the comparing unit 6 compares the accumulated deflection amount with the stored preset value and outputs a corresponding comparison result signal. If the comparison unit 6 compares the accumulated deflection amount to be greater than the preset value, the comparison unit 6 outputs a first comparison result signal; if the comparison unit 6 compares that the accumulated deflection amount is not greater than the preset value, the comparison unit 6 outputs a second comparison. Result signal. After receiving the comparison result signal outputted by the comparison unit 6, the control unit 8 outputs a control command correspondingly, so that the self-driving device 1 continues to walk along the wire or leave the wire.
- the wire 12 surrounding the working area 11 constitutes a closed loop having a relatively long length.
- the self-driving device 1 travels on the wire 12, the amount of deflection accumulated over a certain period of time is small.
- the wire 12 surrounding the isolation region 13 also constitutes a closed loop with a small length.
- the self-driving device 1 travels on the wire 12, the amount of deflection accumulated over a certain period of time is large. Therefore, a reasonable preset value is set, and then the amount of deflection accumulated by walking around the wire 12 of the work area 11 and the amount of deflection accumulated by the wire 12 around the isolation region 13 are respectively compared with a preset value, and two types are obtained.
- the self-driving device 1 can distinguish the line 12 of the wire currently surrounding the working area 11. It is still walking on the wire 12 around the isolation area 13. That is to say, the self-driving device 1 can recognize whether the docking station 14 is currently walking around the obstacle or can correctly walk to the connecting wire 12.
- the amount of deflection can be set to an angle that is deflected from the traveling direction of the driving device 1.
- the preset value can be set to 360 degrees.
- the control unit 8 controls the self-driving device 1 to always walk on the wire 12 and finally enters the docking station 14 smoothly.
- the self-driving device 1 is traveling on the wire 12 surrounding the isolation region 13, there is a case where the self-driving device 1 will wrap around the obstacle.
- the cumulative deflection angle will be greater than 360 degrees, so the control unit 8 will control the self-driving device 1 to disengage the wire and search for other wires.
- the wire 12 around the work area 11 will eventually be found and entered into the stop 14 . Therefore, the preset value can be set to any value greater than or 360 degrees. Preferably, the preset value ranges from 360 degrees to 720 degrees. For the same reason, the amount of deflection can be other parameters as long as the preset value corresponds to the setting.
- the self-driving device 1 In actual life, there may be trees in the isolated area 13 surrounded by the wires 12, and possibly a swimming pool. Since the area of the trees is relatively small, the radius of the isolated area 13 is relatively small. The size of the swimming pool is relatively large, so the radius of the isolated area 13 is relatively large. Regardless of the isolation region 13 having a small radius or a large radius, the self-driving device 1 travels along the wire 12 surrounding the isolation region 13, and the cumulative deflection angle thereof is inevitably greater than 360 degrees, so the self-driving device 1 can still determine It is located on the wire 12 surrounding the isolation region 13. Thus, the self-driving device 1 can be identified for the isolated area 13 which is smaller in radius or larger in radius, and the range of application of the self-driving device 1 is improved.
- control system 20 also includes a clearing unit.
- the function of the clearing unit is that when the amount of deflection accumulated by the self-driving device 1 is greater than a preset value, so that the control unit 8 controls the self-driving device 1 to leave the wire, the clearing unit clears the current amount of deflection so that the amount of deflection is calculated next time.
- the clearing unit can zero out the amount of deflection or use other means of removal.
- the self-driving device 1 enters the guiding operation mode in accordance with the trigger condition. In this mode, the self-driving device 1 starts looking for the wire 12 and walks on the trailing wire 12 when it is found. During the walking, the amount of deflection detected by the deflection detecting unit 5 is accumulated. If the comparison unit 6 compares the accumulated deflection amount to less than the preset value, the comparison unit 6 sends a signal to the control unit 8, and the control unit 8 causes the self-driving device 1 to continue to travel along the wire, and the deflection amount continues to be tired. Count.
- the comparison unit 6 compares the accumulated deflection amount to be greater than the preset value, the comparison unit 6 sends a corresponding signal to the control unit 8, and the control unit 8 controls the self-driving device 1 to change the moving direction and deviate from the guiding of the wire 12.
- the self-driving device 1 starts the process of finding the wire 12 again, and on the other hand, the cleaning unit clears the amount of deflection.
- the self-driving device 1 begins to travel along the wire 12 while re-accumulating the amount of deflection. This cycle reciprocates and finally causes the self-driving device 1 to perform the stop station 14.
- the self-driving device 1 recognizes the wires at the two places. For example, as shown in Fig. 7, the self-driving device 1 is guided based on a current signal emitted from the wire 12. A detector is provided on the self-driving device 1 to detect the flow direction of the current in the wire 12.
- the current in the wire 12 surrounding the working area 11 flows in a clockwise direction
- the current in the wire 12 surrounding the isolation region 13 flows in a counterclockwise direction
- the current in the wire 12 surrounding the working area 11 If it flows counterclockwise, the current in the wire 12 surrounding the isolation region 13 flows correspondingly in a clockwise direction. Therefore, the direction of current flow in the wire 12 around the work area 11 and the direction of current flow in the wire 12 surrounding the isolation region 13 are exactly opposite. Therefore, if the self-driving device 1 is walking along the wire 12 surrounding the working area 11, the running direction of the self-driving device 1 is clockwise; if walking along the wire 12 surrounding the isolation region 13, the self-driving device 1 The direction of walking is counterclockwise. Therefore, by using this directional difference to identify the wire 12 surrounding the working area 11 and the wire 12 surrounding the isolation area 13, the amount of deflection correspondingly detected also needs to have a positive and negative value.
- the direction of current supplied in the conductor 12 is fixed, in particular, the direction of current flow on the conductor 12 surrounding the working area 11 is clockwise, and around the isolation region.
- the current direction on the wire of 13 is counterclockwise. While the self-driving device 1 is guided by the current on the wire, when it travels along the wire 12 surrounding the working area 11, the self-driving device 1 travels in a clockwise direction; and when it travels along the wire surrounding the isolation region 13, When walking 12, the self-driving device 1 travels in a counterclockwise direction.
- the driving device 1 when the driving device 1 is traveling clockwise, the first driving wheel 41 on the left side is located outside the wire 12, and the second driving wheel 42 located on the right side is located inside the wire, so the first driving wheel in the process
- the number of turns of the 41 is greater than the number of turns of the second drive wheel 42.
- the self-driving device 1 when traveling counterclockwise, the first driving wheel 41 located on the left side is located on the wire 12.
- the inner side, and the second drive wheel 42 on the right side are located outside the wire, so that the number of turns of the first drive wheel 41 is smaller than the number of turns of the second drive wheel 42 in the process.
- the amount of deflection can be set to the difference between the number of rotations of the first drive wheel 41 of the self-driving device 1 and the second drive wheel 42, i.e., the number of rotations of the first drive wheel 41 minus the second number.
- the result obtained is positive and negative.
- the self-driving device 1 is traveling counterclockwise, the number of rotations of the first driving wheel 41 is smaller than the number of rotations of the second driving wheel 42, so that the result is negative number.
- the self-driving device 1 is traveling clockwise, the number of turns of the first drive wheel 41 is larger than the number of turns of the second drive wheel 42, and thus the result is a positive number.
- the deflection amount is compared with the preset value.
- the deflection amount is greater than 0, it indicates that the self-driving device 1 is walking along the wire 12 surrounding the working area 11, when the deflection amount is Below less than 0, the surface self-driving device 1 travels on the wire 12 along the isolation region 13.
- the preset value can also be set to a value other than zero. Therefore, according to different comparison results, the self-driving device 1 is controlled to take corresponding actions.
- the control unit 8 controls the self-driving device 1 to continue to travel along the wire 12; when the self-driving device 1 recognizes that it is surrounding When walking on the wire 12 of the isolation region 13, the control unit 8 controls the self-driving device 1 to leave the wire 12. If the direction of travel of the self-driving device 1 on the wire 12 surrounding the work area 11 changes from clockwise to counterclockwise, the result is exactly opposite to that described above.
- the deflection value can be a value indicating a positive and negative value.
- the present invention is not limited to the specific embodiment structures, and the structures based on the inventive concept are all within the scope of the present invention.
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Aviation & Aerospace Engineering (AREA)
- Radar, Positioning & Navigation (AREA)
- Remote Sensing (AREA)
- General Physics & Mathematics (AREA)
- Automation & Control Theory (AREA)
- Electromagnetism (AREA)
- Control Of Position, Course, Altitude, Or Attitude Of Moving Bodies (AREA)
Abstract
一种自驱动装置(1),包括壳体(2);位于壳体(2)内并驱动自驱动装置(1)移动的驱动单元(4),驱动单元(4)包括在外部导线(12)限定的范围内移动的驱动轮(41、42);产生探测周期的周期设置单元(10);偏转探测单元(5),偏转探测单元(5)在探测周期内探测自驱动装置(1)的偏转量;控制驱动轮(41、42)移动速度的控制单元(8),其中自驱动装置(1)还包括对偏转量与预设值进行比较的比较单元(6),若偏转量大于预设值,控制单元(8)控制自驱动装置(1)离开所述导线(12);若偏转量不大于预设值,控制单元(8)控制自驱动装置(1)沿所述导线(12)移动。该自驱动装置(1)能够在沿导线(12)移动过程中准确识别不同导线(12)。还公开了一种自驱动装置(1)的引导系统及其移动方法。
Description
自驱动装置、 引导系统及其移动方法 技术领域
本发明涉及一种自驱动装置、 自驱动装置的引导系统及自驱动装置的移动 方法。
背景技术
目前, 随着人类生活节奏的加快, 自动化的家庭设备在全球越来越受到欢 迎。 由于其具有自动工作程序而自行工作, 这样并不需要人力始终操控。 人们 可以从繁重的家庭任务中解脱出来, 节省了大量的精力从而得到更多的休闲时 光。 这种自动化的家庭设备包括像主要用于房间清洁的自动吸尘器, 还包括像 主要用于家庭花园的自动割草机等。
这类自动化的家庭设备有一些需要解决的技术问题, 例如虽然自动化的设 备能够自行工作, 但是仍然需要人为的给它设置工作区域, 以便使其在指定的 工作区域内工作。 在目前的技术中解决这类问题的一种办法是, 在自动化设备 工作前, 通过扫描的方式设置把工作区域转换成电子地图, 并输入自动化设备 中。 自动化设备根据输入的电子地图, 识别出工作区域。 但是这类的方法需要 较多的电子元件, 导致整个自动化设备结构比较复杂。 还有一种办法是在地面 上铺设导线, 并将导线围成的区域作为工作区域。 由于导线可以发出信号使自 动化设备感应到导线的存在, 这样在自动化设备遇到导线的时候可以产生相应 的规避动作避免越过导线形成的界限, 这样就确保自动化设备始终在工作区域 内工作。 这样方法效果比较好, 而且成本低。
但是使用导线的方法也还存在问题。 例如, 在实际的工作区域内, 总会有 一些障碍物。 例如像房间里的家具, 或者庭院中的树木、 池塘等。 人们并不希 望自动化设备在工作区域内工作时撞到这些障碍物。 因此解决办法是在障碍物 的四周围绕导线, 利用导线发出的信号使自动化设备感应从而避免与障碍物产 生碰撞。 但是这样的解决办法存在缺点, 由于自动化设备遇到围绕障碍物的导 线后, 往往会误认为是位于工作区域边界的导线而持续地沿导线行走。 而围绕 障碍物的导线往往形成一个半径较小的封闭圆形, 造成自动化设备会陷入绕着 该封闭圆形行走的死循环中。 因此自动化设备在实际应用中仍然存在很多的不
足之处, 需要进行改进。
发明内容
有鉴于此, 本发明的目的在于提供一种能够准确识别不同导线的自驱动装 置。
本发明解决现有技术问题所采用的技术方案是: 一种自驱动装置, 包括壳 体; 位于壳体内并驱动自驱动装置移动的驱动单元, 驱动单元包括在外部导线 限定的范围内移动的驱动轮; 产生探测周期的周期设置单元; 偏转探测装置, 偏转探测装置在探测周期内探测自驱动装置的偏转量; 控制驱动轮移动速度的 控制单元, 其中 自驱动装置还包括对偏转量与预设值进行比较的比较单元, 若 偏转量大于预设值, 控制单元控制自驱动装置离开所述导线; 若偏转量不大于 预设值, 控制单元控制自驱动装置沿所述导线移动。
优选地, 偏转量为仅表示大小的绝对值。
优选地, 偏转量为表示大小和正负的值。
优选地, 周期设置单元为计时器, 计时器产生的探测周期为时间周期。 优选地, 周期设置单元为测距器, 测距器产生的探测周期为距离周期。 优选地, 自驱动装置还包括输入单元, 控制单元根据输入单元的输入值产 生预设值。
优选地, 偏转量为 自驱动装置的角度变化量。
优选地, 预设值大于 36 0度。
优选地, 预设值在 36 0度至 720度之间。
优选地, 驱动单元包括第一驱动轮和第二驱动轮, 偏转量为第一驱动轮和 第二驱动轮的移动距离之差。
优选地, 偏转探测装置为设置于第一驱动轮上的第一转速探测器和设置于 第二驱动轮上的第二转速探测器。
优选地, 若第一驱动轮与第二驱动轮的移动距离之差大于所设预设值, 控 制单元控制第一驱动轮的转速变小且第二驱动轮的转速变大使自驱动装置的移 动方向改变, 若第一驱动轮与第二驱动轮的移动距离之差不大于所设预设值, 控制单元控制维持第一驱动轮和第二驱动轮的瞬时转速不变使自驱动装置沿所 述导线移动。
优选地, 第一驱动轮和第二驱动轮由同一个驱动马达驱动, 驱动马达通过 第一传动装置驱动第一驱动轮, 驱动马达通过第二传动装置驱动第二驱动轮。
优选地, 自驱动装置的移动方向改变的角度范围为 9 0度至 27 0度。
优选地, 第一驱动轮由一个驱动马达驱动, 第二驱动轮由另一个驱动马达 驱动。
优选地, 自驱动装置为割草机。
本发明所采用的另一种技术方案是: 一种自驱动装置的引导系统, 包括产 生引导信号的导线和接收引导信号的自驱动装置, 导线构成封闭区域和隔离区 域, 自驱动装置在封闭区域内、 隔离区域外工作。
优选地, 构成封闭区域的导线连接停靠站。
优选地, 停靠站包括可供自驱动装置充电的电极片。
本发明所采用的另一种技术方案是: 自驱动装置的移动方法包括如下步骤, 自驱动装置沿导线行走; 偏转探测装置探测自驱动装置的偏转量, 比较单元将 偏转量与预设值进行比较, 若偏转量大于预设值, 自驱动装置离开导线, 若偏 转量不大于预设值, 自驱动装置沿导线移动。
优选地, 自驱动装置离开导线后, 再次寻找导线。
优选地, 自驱动装置找到导线后根据导线的引导信号沿导线行走。
优选地, 导线连接停靠站, 所述自驱动装置沿导线移动进入到停靠站停靠。 与现有技术相比, 本发明的有益效果为: 在沿导线移动的过程中, 自驱动 装置能够探测驱动轮的偏转量, 并根据偏转量判断做出相应位置改变, 从而能 够准确识别不同的导线。
附图说明
以上所述的本发明的目的、 技术方案以及有益效果可以通过下面的能够实 现本发明的具体实施例的详细描述, 同时结合附图描述而清楚地获得。
附图以及说明书中的相同的标号和符号用于代表相同的或者等同的元件。 图 1是本发明一实施例的自驱动装置的示意图。
图 2是本发明另一实施例的自驱动装置的示意图。
图 3是图 1所示的自驱动装置位于工作区域的示意图。
图 4是图 1所示的自驱动装置沿构成隔离区域的导线行走的示意图。
图 5是图 1所示的自驱动装置沿构成封闭区域的导线行走的示意图。 图 6是图 1所示的自驱动装置改变移动方向的示意图。
图 7是图 1所示的自驱动装置在工作区域内沿导线行走的示意图。
图 8是图 7所示的自驱动装置的工作流程图。
图 9是本发明又一实施例的自驱动装置的示意图 。
图 10是图 9所示的自驱动装置的工作流程图。
1、 自驱动装置 2、 壳体 3、 动力单元
4、 驱动单元 5、 偏转探测单元 6、 比较单元
7、 存储单元 8、 控制单元 9、 切割单元
10、 周期设置单元 11、 工作区域 12、 导线
13、 隔离区域 14、 停靠站 15、 中轴线
20、 控制系统 41、 第一驱动轮 42、 第二驱动轮
43、 第一马达 44、 第二马达 45、 第一传动装置
46、 第二传动装置 48、 马达 81、 CPU
A、 A'、 移动方向 d、 3巨离 0、 定点
、 角度 410、 410,第一驱动轮移动 420、 420,第二驱动轮移 轨迹 动轨迹
具体实施方式
如图 1 所示为本发明一实施例的自驱动装置。 自驱动装置可根据预先设置 的指令自行地在地面上进行移动以执行各项工作。 自驱动装置包括了多种实施 方式。 例如自动吸尘器、 自动割草机、 自动修剪机等。 在本实施例中, 自驱动 装置 1 为自动割草机, 其具有切割单元 9。 如图 1 所示, 自驱动装置 1 大致呈 方形。 自驱动装置 1具有壳体 2, 壳体 2 内具有动力单元 3。 动力单元 3的作用 是提供动力给自驱动装置 1 的其他元件。 动力单元 3可以具有不同的动力源。 例如, 采用内燃机产生动力、 采用电能、 采用太阳能或者混合动力等形式。 在 本实施例中, 自驱动装置 1采用电能提供电力的形式。 在壳体 2 内设有电池。 在工作的时候, 电池释放电能以维持自驱动装置 1工作。 在非工作的时候, 电 池可以连接到外部电源以存贮电能。 特别地, 出于更人性化的设计, 当探测到 电池的电量不足时, 自驱动装置 1会自行的寻找充电站进行补充电能。
自驱动装置 1还设有驱动单元 4。 驱动单元 4主要包括设于壳体 2外的驱 动轮、 驱动驱动轮移动的马达以及连接马达和驱动轮的传动装置。 自驱动装置 的驱动轮设置可以有多种实施方式。 驱动轮的数量可以为 1 个, 2 个, 或者 2 个以上。 如图 1所示, 以如箭头 A所示的自驱动装置移动方向作为前侧, 与前 侧相对的一侧为后侧, 与前后侧相邻的两边分别为左右两侧。 在本实施例中, 自驱动装置的驱动轮为 2个, 其中第一驱动轮 41位于左侧, 第二驱动轮 42位 于右侧。并且第一驱动轮 41和第二驱动轮 42关于自驱动装置的中轴线 15对称 设置。 由于整个自驱动装置 1 的重心更靠近后侧, 因此出于平衡性的考虑, 第 一驱动轮 41和第二驱动轮 42设在更靠近后侧的地方。 并且在靠近前侧的地方 还设有导向轮。 当然在其他实施例中, 驱动轮可以为 1个。 在另外的实施例中, 驱动轮可以为 4个, 其中两个位于左侧, 两个位于右侧。
另外, 在本实施例中, 第一驱动轮 41和第二驱动轮 42 的半径相同。 当第 一驱动轮 41和第二驱动轮 42的转速相同时,由于第一驱动轮 41与第二驱动轮 42相对自驱动装置 1 的中轴线 15对称设置, 因此自驱动装置沿直线运动。 而 且, 第一驱动轮 41和第二驱动轮 42的转速越大, 自驱动装置 1 的速度也就越 大。 当第一驱动轮 41和第二驱动轮 42的转速不相同时, 自驱动装置 1会向一 侧发生偏转, 不再保持直线运动。 具体地, 若第一驱动轮 41 的转速大于第二驱 动轮 42 的转速, 自驱动装置会向转速小的一侧, 即向第二驱动轮 42所处的右 侧转弯。 若第二驱动轮 42的转速大于第一驱动轮 41 的转速, 自驱动装置 1会 向转速小的一侧, 即向第一驱动轮 41 所处的左侧转弯。 其中, 第一驱动轮 41 和第二驱动轮 42的转速之差越大, 则自驱动装置 1 的转弯角度则越大。
驱动驱动轮在地面上滚动的是马达。 在本实施例中, 驱动轮的数量为 2个, 马达的数量也同样为 2 个。 第一马达 43独立地驱动第一驱动轮 41, 第二马达 44独立地驱动第二驱动轮 42。 马达和驱动轮之间还设有传动装置, 传动装置可 以是本技术领域内常见的行星轮系等。 当然在其他的实施例中, 如图 2所示, 驱动轮的数量为 2个, 马达的数量为 1个。 马达 48通过第一传动装置 45驱动 第一驱动轮 41, 马达 48通过第二传动装置 46驱动第二驱动轮 42。 即同一个马 达通过不同的传动装置驱动第一驱动轮 41和第二驱动轮 42。
如图 1 所示, 自驱动装置 1还设有偏转探测单元 5。 由于驱动单元 4驱动
自驱动装置 1移动一定距离或者一段时间后,自驱动装置 1 的位置产生了改变。 只要自驱动装置 1 改变了位置就产生了偏转量。 偏转量具有多种形式, 可以是 位移的变化量, 也可以是角度的变化量。 另外, 移动过程中的位置变化轨迹、 平均移动速度等表征自驱动装置 1移动变化的参考量都可以作为偏转量的表现 形式。 例如, 图 3所示, 点 0为定点, 自驱动装置 1绕该定点 0移动一定时间 或者一段路程, 自驱动装置 1就产生了角度变化量。 这样的角度变化量就可以 是偏转量。 而偏转探测单元 5可以对该偏转量进行探测并反馈给控制系统 2 0。 控制系统 2 0用于将偏转探测单元 5探测的偏转量进行分析,从而对自驱动装置 1作出相应的控制。 在一个实施例中, 控制系统 2 0可以是一块集成的芯片, 控 制系统 2 0 包括多个功能控制模块集成在该芯片上,所以多个功能控制模块物理 上可能无法区分开。
其中影响偏转量大小的因素是探测自驱动装置 1 的偏转量的间隔长短。 为 此控制系统 2 0 内设有周期设置单元 1 0。 周期设置单元 1 0可以产生探测周期信 号, 并传递给偏转探测单元 5。 接收到信号后, 偏转探测单元 5 在周期性的间 隔内对偏移量进行探测。 而周期设置单元 1 0可以具有多种形式。 例如, 周期设 置单元 1 0可以为设置在自驱动装置 1上的计时器, 其产生时间周期。 在该时间 周期内, 驱动单元 4 的驱动轮移动而产生偏转量。 又例如, 周期设置单元 1 0 可以为测距器, 其产生距离周期。 自驱动装置 1移动一定距离达到预设的距离 周期, 驱动单元 4 的驱动轮在该距离周期内产生了偏移量。 在本实施例中, 偏 转量为第一驱动轮 4 1和第二驱动轮 4 2在同一时间段的移动距离之差。 若自驱 动装置 1 沿直线移动时, 两个驱动轮的转速相等, 则其移动距离之差为 0。 若 自驱动装置 1 沿曲线移动, 两个驱动轮的转速不相等, 并且在相同的时间或者 移动路程内, 曲线的曲率越小, 两个驱动轮的移动距离之差就越小。
偏转探测单元 5是利用磁感应原理进行探测的。 偏转探测单元 5 包括磁性 产生器和磁性探测器。在第一驱动轮 4 1上设置第一磁性产生器(图中未示出 ), 在第二驱动轮 4 2上固定设置第二磁性产生器 (图中未示出 ), 磁性产生器可以 是磁铁或者其他可以产生磁场的形式,磁性产生器可以用来探测驱动轮的转速。 在壳体 2 内靠近第一驱动轮 4 1和第二驱动轮 4 2的位置分别设置磁性感应器用 于感测磁性产生器的磁场变化。 每当旋转一圏的驱动轮上的磁性产生器靠近磁
性感应器时,磁性感应器就可以探测到并进行记录, 其代表驱动轮旋转了一圏。 在规定时间内或者路程内, 驱动轮的周长和驱动轮滚动的圏数相乘即可作为驱 动轮在该时间段内或者路程内的移动距离。 偏转探测单元 5将探测到的第一驱 动轮 41和第二驱动轮 42的移动距离进行减法处理, 把两者的移动距离之差作 为探测结果信号输出。 当然, 偏转探测单元 5不限于上述提及的磁性产生器和 磁性探测器, 一切可以探测驱动轮转速的探测器都是可以的。
控制系统 2 0 内设有存储单元 7。 存储单元 7用来存储一些数据, 包括自驱 动装置 1运算中使用的数据, 和用户根据实际的工作情况输入的一些参考数据 以帮助自驱动装置 1更好的工作。 在本实施例中, 存储单元 7存储有与偏转量 相关的预设值。
控制系统 2 0 内还包括比较单元 6。 比较单元 6 内部设有比较器, 主要作用 是将偏转探测单元 5输出的探测结果信号与存储单元 7 中的存储预设值偏转量 进行比较, 并相应输出比较结果。 在本实施例中, 比较单元 6先接收偏转探测 单元 5的偏转量以及存储单元 7 中的预设值, 然后进行比较。 若比较单元 6 比 较出第一驱动轮 4 1与第二驱动轮 42的移动距离之差大于预设值时, 比较单元 6输出第一比较结果信号; 若比较出第一驱动轮 4 1 与第二驱动轮 42 的移动距 离之差不大于预设值时, 比较单元 7输出第二比较结果信号。 当然在其他实施 例中, 比较单元 6也可以对偏转探测单元 5探测的移动偏转角度以及其他能够 代表驱动轮移动的位移量与预设值进行比较。 同样地, 当移动偏转角度大于角 度预设值时, 比较单元 6输出第一比较结果信号; 当移动偏转角度不大于角度 预设值时, 比较单元 6输出第二比较结果信号。
如图 1所示, 控制系统 20 内还设有控制单元 8。 控制单元 8 的作用是接收 比较单元 6输出的信号, 并产生控制指令给驱动驱动轮的相应马达, 控制驱动 轮的转速。 在本实施例中, 控制单元 8 包含了 CPU8 1。 CPU8 1接收到比较结果信 号后, 会对其进行逻辑判断。 若 CPU8 1接收到第一比较结果信号, 则表明第一 驱动轮 4 1与第二驱动轮 42 的移动距离之差大于预设值, 然后控制单元 8输出 相应的控制指令给控制第一驱动轮 41和第二驱动轮 42的马达。 最终使第一驱 动轮 41 的转速变小而且使第二驱动轮 42的转速变大。 若 CPU8 1接收到第二比 较结果信号, 则表明第一驱动轮 41与第二驱动轮 42 的移动距离之差小于预设
值, 然后控制单元 8 输出相应的控制指令给控制第一驱动轮 41 和第二驱动轮
42的马达。 最终使第一驱动轮 41和第二驱动轮 42的瞬时转速保持不变。
自驱动装置 1 的工作区域由导线确定。 如图 1所示, 在工作区域 11 的整个 边界上铺设导线 12 , 这样导线围成了一个封闭区域。 该封闭区域即为工作区域 11。 工作区域 11 的边界线由导线 12组成。 自驱动装置 1在该工作区域 11 内进 行工作。 在本实施例中, 自驱动装置 1为割草机。 割草机在该区域内, 以一定 的路线行走。 在行走的过程中, 切割单元 9旋转把位于路线上的草进行切割。 在工作区域 11 内所有地方都走遍后, 切割单元 9也就对工作区域 11 内的草完 成切割工作。 为了确保自驱动装置 1始终位于工作区域 11 内, 位于边界上的导 线 12会发出引导信号。 自驱动装置 1上设有接收装置接收该引导信号。 当 自驱 动装置 1接近或者横跨于边界上的导线时, 该引导信号会相应的变强。 所以自 驱动装置 1感测到情况变化后就会向其他方向移动,从而避免走出工作区域 11。
而根据本实施例中实际的工作环境,工作区域 11通常是花园庭院中的一块 草地。 而在工作区域 11 内的草地上会有池塘、 树木等。 在这些池塘、 树木的周 围也会绕上导线 12, 这样保证自驱动装置不会撞上池塘、 树木等障碍物。 这些 导线 12环绕障碍物, 环绕的曲线内部即为隔离区域 13。 自驱动装置 1在封闭 区域 11 内、 隔离区域 13外工作, 如图 3所示。 并且这些导线 12 同样发出引导 信号。 池塘、 树木等障碍物位于隔离区域 13 内, 隔离区域 13都位于工作区域 11外。 在本实施例中, 隔离区域 13为圆形。 且隔离区域 13的面积相较于工作 区域 11 的面积较小。 也就是说, 围绕隔离区域 13的导线 12设置的半径较小, 所以围绕隔离区域 13的导线 12 的弧度较大。
另外如图 2所示, 围绕工作区域 11 的导线 12连接有停靠站 14。 由于在本 实施例中, 自驱动装置 1采用电能驱动, 工作时可能出现电量不足的情况。 因 此在自驱动装置 1上设有电量探测元件(图中未示出),探测到剩余电量不足时, 自驱动装置 1会自动寻找并进入停靠站 14里进行充电, 停靠站 14里设有供自 驱动装置 1 进行充电的电极片 (图中未示出)。 在本实施例中, 若自驱动装置 1 在工作区域 11 内工作时, 探测到自身电量不符合一定条件时, 自驱动装置 1 会在工作区域 11 内的任何一个工作点停止工作,沿某一方向前进直到根据导线 12上发出的引导信号找到导线 12。 当然自驱动装置 1也可以在其他条件下, 从
其他模式转换到寻找导线的模式中。 自驱动装置 1寻找到导线 12后, 根据导线
12的引导信号的引导, 自驱动装置 1 沿着导线 12行走, 并最终进入停靠站 14 进行充电。 我们称这种寻找导线 12并沿导线 12行走的模式为引导模式。
自驱动装置 1从工作点出发寻找导线 12的过程中,可能会遇到各种困难使 其无法正确地进入停靠站 14。 如图 7所示, 围绕工作区域 11 的导线 12和围绕 隔离区域 13 的导线 12 实质上是相同的导线, 因此围绕工作区域 11 的导线 12 和围绕隔离区域 13的导线 12是相互连接的, 在这些导线中流通相同的电流。 在围绕工作区域 11 的导线 12上行走时, 自驱动装置 1有可能会移动到围绕隔 离区域 13的导线 12上。 而沿着围绕隔离区域 13的导线 12行走会导致自驱动 装置 1反复循环地绕着隔离区域 13行走, 而不会再回到围绕工作区域 11 的导 线 12上,使得自驱动装置 1在很长的一段时间内甚至永远都无法正确地回到停 靠站 14。 因此有必要使自驱动装置 1 能够区别出围绕工作区域 11 的导线 12和 围绕隔离区域 13 的导线 12 , 进而采取对应的动作确保自驱动装置 1 沿围绕工 作区域 11 的导线 12上行走, 并最终进入位于导线 12上的停靠站 14。
一种方法是利用工作区域 11和隔离区域 13的弧度不同进行区分。 环绕隔 离区域 13的导线 12形成的区域弧度比较大, 而环绕工作区域 11 的导线 12形 成的区域弧度比较平緩。 因此在不同的导线上行走时, 自驱动装置 1上的第一 驱动轮 41和第二驱动轮 42在相同的时间内移动距离差是不一样的。 如图 4所 示, 自驱动装置 1 沿围绕隔离区域 13的导线 12行走时, 第一驱动轮 41 的移动 轨迹 410和第二驱动轮 42的移动轨迹 420是不一样的, 并且第一驱动轮 41和 第二驱动轮 42 的移动距离之差较大。 更具体地, 若自驱动装置 1 沿导线 12行 走一个完整的圆, 则第一驱动轮 41 与第二驱动轮 42 的移动距离之差等于 2 π 乘以第一驱动轮与第二驱动轮之间距离 d。 而第一驱动轮 41 和第二驱动轮 42 分别安装在自驱动装置 1上, 两个驱动轮之间的距离 d是固定不变的, 不会因 自驱动装置 1 的位置改变而发生变化。 另外, 如图 5所示, 410,和 420,分别表 示第一驱动轮 41 的移动轨迹和第二驱动轮 42 的移动轨迹。 自驱动装置 1 沿弧 度平緩的导线 12行走时,位于左右两侧的第一驱动轮 41和第二驱动轮 42在一 定的时间内移动距离也是不一样的, 但是第一驱动轮 41和第二驱动轮 42的移 动距离之差很小。 因此, 若设置一合理的预设值, 并把第一驱动轮 41和第二驱
动轮 42 的移动距离之差和预设值作比较,则根据比较结果可以辨别出 自驱动装 置 1是沿着弧度大的导线 12走还是沿着弧度小的导线 12走。 若自驱动装置 1 沿着弧度小的导线 12走, 则表明该装置是沿着环绕工作区域 11 的导线 12走, 继续沿着该导线 12走可以顺利地进入停靠站 14。 若自驱动装置 1 沿着弧度大 的导线 12走, 则表明该装置是沿着环绕隔离区域 13的导线 12走, 需要自驱动 装置 1 改变移动方向并脱离环绕隔离区域 13的导线 12的引导, 然后继续寻找 导线 12。
在此实施例中, 自驱动装置 1识别围绕工作区域 11 的导线和围绕隔离区域 13的导线, 主要依靠的这两种导线的弧度不同。 而这样的差异性是不带有方向 性的, 直接做大小比较就可以比较出的。 在这种情况下, 测量的偏转量为仅表 示大小的绝对值, 不需要有正负号的引入。 对应到具体实施例中, 偏转量为自 驱动装置 1 的第一驱动轮 41和第二驱动轮 42 的移动距离的差值。 例如像如果 第一驱动轮 41 的移动距离为 5米, 第二驱动轮 42的移动距离为 3米, 则第一 驱动轮 41和第二驱动轮 42 的移动距离的差值为 1米。和第一驱动轮 41 的移动 距离为 3米, 第二驱动轮 42的移动距离为 5米的情况得到的结果一样, 因为在 该种情况下,则第一驱动轮 41和第二驱动轮 42的移动距离的差值仍然为 1米, 而并非是 -2 米。 总结而言, 如果利用围绕工作区域 11 的导线和围绕隔离区域 13的导线的差异性在于直接的大小差异, 而不具有方向性差异的话, 那么探测 的偏转量就可以是仅表示大小的绝对值, 这对测量的方便性提高是有显著好处 的。在其他的实施例中, 只要利用的仍然是围绕工作区域 11 的导线和围绕隔离 区域 13的导线之间非方向性的差异,那么该测量的偏转值仍然为仅表示大小的 绝对值, 测量的偏转值例如可以是第一驱动轮和第二驱动轮的平均移动速度之 差, 或者自驱动装置的行走方向的偏转角度等。
回到本实施中, 在引导模式下自驱动装置 1 沿导线 12行走的过程中, 周期 设置单元 10产生探测信号周期,之前所述的偏转探测单元 5开始探测第一驱动 轮 41和第二驱动轮 42在该周期内的移动距离之差。 并将探测到的第一驱动轮 移动距离和第二驱动轮移动距离之差传递给比较单元 6进行比较。 若第一驱动 轮 41 的移动距离与第二驱动轮 42 的移动距离之差大于预设值时, 控制单元 8 控制自驱动装置 1脱离导线 12的引导, 并向某一方向移动, 进行再次寻找导线
12的过程。 若第一驱动轮 41 的移动距离与第二驱动轮 42的移动距离之差不大 于预设值时, 控制单元 8维持第一驱动轮 41和第二驱动轮 42的瞬时转速不变 使自驱动装置 1继续沿导线 12移动, 并最终进入停靠站 14充电。 所以, 需要 合理的设置预设值使得自驱动装置 1能够分辨出围绕工作区域 11的导线和围绕 隔离区域 13的导线。
在本实施例中,是这样设定预设值的。用户先找到面积最大的隔离区域 13, 并测量该隔离区域 13的半径。 然后将测量到的半径输入自驱动装置 1。 其中, 自驱动装置 1 的壳体 2上设有可供用户输入的输入单元(图中未示出)。 输入半 径后, CPU81 根据输入的半径值进行运算从而得出预设值, 并将预设值存储入 存储单元 6。 当然在其他实施例中, 用户也可以不必根据隔离区域 13的半径设 置, 而是输入能代表隔离区域 13 的其他参数。 另外, 也可以在自驱动装置 1 中内置一个固定的预设值, 例如 5米、 8米或 10米以及其他数字。 预设值的形 式也不限于距离, 在偏转量为角度偏移量的实施例中, 预设值也相应为角度值。
另外一个影响第一驱动轮 41 与第二驱动轮 42移动距离之差的因素是探测 周期长短。 以时间时周期为例, 时间周期过长的话, 不管是沿着弧度小的导线 还是弧度大的导线行走, 偏转量都随着时间的拉长而越来越大, 从而超过预设 值。 而计时周期过短的话, 偏转量又都低于预设值, 仍然无法达到区分环绕隔 离区域 13和工作区域 11 的导线 12的作用。 在本实施例中,根据大量实验的计 算, 并且根据自驱动装置 1 的一般移动速度, 时间周期设为 60秒最为合适。 在 其他实施例中, 距离周期设置和时间周期类似。
如图 6和图 7所示, 为使脱离引导的效果更好, 改变后的自驱动装置的移 动方向 A,到改变前的自驱动装置的移动方向 A 所形成的角度 α在 90度至 270 度之间。 若判断出 自驱动装置 1位于环绕隔离区域 13的导线 12上, 第一驱动 轮 41 比第二驱动轮 42的移动距离小,则控制单元 8控制第一驱动轮 41 的转速 变大, 第二驱动轮 42的转速变小, 从而使自驱动装置 1掉头改变移动方向。 自 驱动装置 1 向远离该导线 12 的方向移动, 直到重新找到导线 12。 找到新的导 线 12 后, 重新进行上述判别过程, 在此就不多加赘述了。 最终自驱动装置 1 沿导线 12移动进入停靠站 14从而进行充电。
如图 8所示, 自驱动装置 1首先进入引导工作模式。 在该模式下, 自驱动
装置 1寻找导线 12。 找到导线 12后, 自驱动装置 1开始沿导线 12行走。 在沿 导线 12行走的过程中, 自驱动装置 1周期性地探测其在该周期内的偏转量, 并 将该偏转量和一预设值进行比较, 若偏转量大于预设值, 则自驱动装置 1 改变 移动方向并脱离导线 12 的引导, 然后重新寻找导线 12; 若偏转量不大于预设 值, 则自驱动装置 1 继续沿该导线 12行走, 并最终进入停靠站 14。 进入停靠 站 14后, 自驱动装置 1停靠在停靠站 14 内, 可以进行充电或者其他工作。
如图 9所示为本发明的另一实施例。 与前一实施例类似, 自驱动装置 1 中 同样包括探测自驱动装置 1 的偏转探测单元 5以及对偏转探测单元 5探测到的 偏转量进行分析进而相应控制自驱动装置 1 的控制系统 20。 控制系统 20 同样 包括了比较单元 6、存储单元 7和控制单元 8。 存储单元 7用于存储预设值以及 控制系统 20在分析控制过程中的过程数据。比较单元 6用于把存储的预设值与 偏转量进行比较并相应输出比较结果。 控制单元 8用于接收比较单元 6输出的 信号, 并产生控制指令给驱动单元 4。 本实施例和前一实施例最大的区别是, 偏转探测单元 5并非周期性地对偏转量进行测量。 因此在本实施例中, 控制系 统 20 内没有周期设置单元 10。 控制系统 20对偏转探测单元 5探测到的偏转量 进行累计叠加。 比较单元 6把累计的偏转量和存储的预设值进行比较并输出相 应的比较结果信号。 若比较单元 6比较出累计的偏转量大于预设值时, 比较单 元 6输出第一比较结果信号; 若比较单元 6 比较出累计的偏转量不大于预设值 时, 比较单元 6输出第二比较结果信号。 控制单元 8接收到比较单元 6输出的 比较结果信号后, 相应输出控制指令, 使自驱动装置 1继续沿该导线行走或者 离开导线。
如图 3所示, 围绕着工作区域 11 的导线 12构成一封闭环路, 其长度较长。 当 自驱动装置 1在该导线 12上行走时, 其在一定的时间内累计的偏转量较小。 而围绕隔离区域 13的导线 12 同样构成一封闭环路, 其长度较小。 当 自驱动装 置 1在该导线 12上行走时, 其在一定的时间内累计的偏转量较大。 因此设置一 合理的预设值, 然后通过把围绕工作区域 11 的导线 12行走累计的偏转量以及 围绕隔离区域 13的导线 12行走累计的偏转量分别和预设值进行比较, 则会得 到两种不同的结果, 一个会大于偏转量, 另一个则会小于偏转量。 因此根据比 较的结果, 自驱动装置 1就可以分辨出当前是在围绕工作区域 11 的导线 12行
走还是在围绕隔离区域 13的导线 12行走。 也就是说, 自驱动装置 1可以识别 出当前是围绕障碍物行走还是可以正确行走到连接导线 12上的停靠站 14。
在一个具体实施例中, 偏转量可以设置为 自驱动装置 1 的行走方向偏转的 角度。 预设值可以设置为 360度。 当 自驱动装置 1 在围绕工作区域 11 的导线 12上行走直到进入停靠站 14 为止, 其累计偏转的角度始终小于 360度。 而且 时间因素对偏转的角度不产生影响。 因此控制单元 8控制自驱动装置 1始终在 该导线 12上行走, 并最终顺利进入停靠站 14。 当 自驱动装置 1在围绕隔离区 域 13的导线 12上行走时, 会出现自驱动装置 1会围绕障碍物绕圏的情况。 其 累计偏转的角度会大于 360度, 因此控制单元 8会控制自驱动装置 1脱离该导 线并搜寻其他导线。 最终会找到围绕工作区域 11 的导线 12并进入停靠站 14。 因此预设值可以设为大于或 360度的任何一个数值。 较佳地, 预设值的范围为 360度至 720度之间。 同样的道理, 偏转量也可以是其他的参数, 只要预设值 对应的设置即可。
在实际的生活中, 导线 12 围绕的隔离区域 13 内有可能是树木, 还有可能 是游泳池。 树木由于面积比较小, 因此这种隔离区域 13的半径比较小。 而游泳 池的面积比较大, 因此这种隔离区域 13的半径比较大。 而不管是半径较小还是 半径较大的隔离区域 13, 自驱动装置 1 沿围绕该隔离区域 13的导线 12行走, 其累计的偏转角度必然会大于 360度, 因此自驱动装置 1还是能够判断出否位 于围绕隔离区域 13的导线 12上。 这样自驱动装置 1针对无论是半径较小还是 半径较大的隔离区域 13都能够识别, 提高了 自驱动装置 1 的适用范围。
在一优选的实施例中, 控制系统 20还包括清除单元。 清除单元的作用是当 自驱动装置 1 累计的偏转量大于预设值, 使得控制单元 8控制自驱动装置 1 离 开该导线时, 清除单元清除当前偏转量, 以便下一次计算偏转量。 清除单元可 以对偏转量清零或者采用其他的清除手段。
下面描述自驱动装置 1 的工作情况。 如图 10所示, 自驱动装置 1符合触发 条件进入引导工作模式。 在该模式下, 自驱动装置 1开始寻找导线 12并在找到 后沿导线 12行走。在行走过程中,对偏转探测单元 5探测到的偏转量进行累计。 若比较单元 6 比较出累计的偏转量小于预设值时, 则比较单元 6发出信号给控 制单元 8, 控制单元 8使自驱动装置 1 继续沿导线行走, 偏转量也继续进行累
计。 若比较单元 6 比较出累计的偏转量大于预设值时, 则比较单元 6发出对应 的信号给控制单元 8, 控制单元 8控制自驱动装置 1 改变移动方向并脱离导线 12 的引导。 一方面, 自驱动装置 1 又开始寻找导线 12 的过程, 另一方面清除 单元对偏转量进行清除。 在找到导线 12后, 自驱动装置 1开始沿该导线 12行 走, 同时开始对偏转量重新累计。 如此循环往复, 并最终使自驱动装置 1进行 停靠站 14。
如前说述除了利用围绕工作区域 11 的导线和围绕隔离区域 13的导线之间 非方向性的差异之外, 还可以利用围绕工作区域 11 的导线和围绕隔离区域 13 的导线之间方向性的差异, 从而实现自驱动装置 1识别该两处的导线。 例如如 图 7所示, 自驱动装置 1是根据导线 12 内发出的电流信号进行引导的。 自驱动 装置 1 上设有探测器来探测导线 12 内电流的流动方向。 如果说围绕工作区域 11 的导线 12 中的电流是绕顺时针方向流动的,那么围绕隔离区域 13的导线 12 中的电流是绕逆时针方向流动的; 如果围绕工作区域 11 的导线 12 中的电流是 逆时针方向流动的, 则围绕隔离区域 13的导线 12 中的电流相应是顺时针方向 流动。所以说围绕工作区域 11 的导线 12 中的电流方向和围绕隔离区域 13的导 线 12 中的电流方向是恰好相反的。因此自驱动装置 1如果在沿着围绕工作区域 11 的导线 12上行走, 那么 自驱动装置 1 的行走方向是顺时针的; 如果沿着围 绕隔离区域 13的导线 12上行走, 那么 自驱动装置 1 的行走方向是逆时针的。 因此利用这方向性的差异识别围绕工作区域 11 的导线 12 和围绕隔离区域 13 的导线 12, 则相应探测的偏转量也需要采用具有正负的数值。
在某一实施例中如图 7所示, 供给在导线 12 中的电流方向是固定的, 具体 而言, 在围绕工作区域 11 的导线 12上的电流方向是顺时针方向, 而在围绕隔 离区域 13的导线上的电流方向是逆时针方向。而自驱动装置 1根据导线上电流 的引导, 当其沿着围绕工作区域 11 的导线 12上行走时, 自驱动装置 1是沿着 顺时针方向行走; 而当其沿着围绕隔离区域 13的导线 12上行走时, 自驱动装 置 1是沿着逆时针方向行走。 则自驱动装置 1在顺时针行走时, 位于左侧的第 一驱动轮 41位于导线 12的外侧,而位于右侧的第二驱动轮 42位于导线的内侧, 因此在该过程中第一驱动轮 41的转动圏数是大于第二驱动轮 42的转动圏数的。 而当 自驱动装置 1在逆时针行走时, 位于左侧的第一驱动轮 41位于导线 12的
内侧, 而位于右侧的第二驱动轮 42位于导线的外侧, 因此在该过程中第一驱动 轮 41 的转动圏数是小于第二驱动轮 42 的转动圏数的。 在本实施例中, 可以把 偏转量设置为自驱动装置 1 的第一驱动轮 41 的和第二驱动轮 42的转动圏数之 差,即第一驱动轮 41 的转动圏数减去第二驱动轮 42的转动圏数所得到的结果。 得到的结果是具有正负号的, 具体而言, 当 自驱动装置 1在逆时针行走时, 第 一驱动轮 41 的转动圏数小于第二驱动轮 42的转动圏数, 因此得到的结果是负 数。 当 自驱动装置 1在顺时针行走时, 第一驱动轮 41 的转动圏数大于第二驱动 轮 42的转动圏数, 因此得到的结果是正数。 当把预设值设为 0时, 使该偏转量 和该预设值进行比较, 当偏转量大于 0, 则表明自驱动装置 1 在沿着围绕工作 区域 11 的导线 12上行走, 当偏转量小于 0, 则表面自驱动装置 1在沿着隔离 区域 13的导线 12上行走。 当然为了减少误差的考虑, 也可以把预设值设为非 0的一个数值。 因此根据不同的比较结果, 控制自驱动装置 1采取相应的动作。 例如, 当 自驱动装置 1识别出在沿着围绕工作区域 11 的导线 12上行走时, 控 制单元 8控制自驱动装置 1继续沿着该导线 12行走;当 自驱动装置 1识别出在 沿着围绕隔离区域 13的导线 12上行走时, 控制单元 8控制自驱动装置 1 离开 该导线 12。 如果自驱动装置 1在围绕工作区域 11 的导线 12上的行走方向从顺 时针变为逆时针方向时, 则结果正好和上述的相反。
当然在其他的实施例中, 也可以使用类似的办法。 只要围绕工作区域 11 的导线 12和围绕隔离区域 13的导线 12具有方向性的差异,偏转值都可以为表 示大小和正负的值。
本发明不局限于所举的具体实施例结构, 基于本发明构思的结构均属于本 发明保护范围。
Claims
1 . 一种自驱动装置, 包括壳体; 位于所述壳体内并驱动所述自驱动装置移动 的驱动单元, 所述驱动单元包括在外部导线限定的范围内移动的驱动轮; 探测所述自驱动装置的偏转量的偏转探测装置; 控制所述驱动轮移动速度 的控制单元, 其特征在于: 所述自驱动装置还包括对所述偏转量与预设值 进行比较的比较单元, 若所述偏转量大于预设值, 所述控制单元控制所述 自驱动装置离开所述导线; 若所述偏转量不大于预设值, 所述控制单元控 制所述自驱动装置沿所述导线移动。
2. 根据权利要求 1 所述的自驱动装置, 其特征在于: 所述偏转量为仅表示大 小的绝对值。
3. 根据权利要求 1 所述的自驱动装置, 其特征在于: 所述偏转量为表示大小 和正负的值。
4. 根据权利要求 1 所述的自驱动装置, 其特征在于: 所述自驱动装置包括产 生探测周期的周期设置单元, 所述偏转探测装置在所述探测周期内探测所 述自驱动装置的偏转量。
5. 根据权利要求 4 所述的自驱动装置, 其特征在于: 所述周期设置单元为计 时器, 所述计时器产生的所述探测周期为时间周期。
6. 根据权利要求 4 所述的自驱动装置, 其特征在于: 所述周期设置单元为测 距器, 所述测距器产生的所述探测周期为距离周期。
7. 根据权利要求 1 所述的自驱动装置, 其特征在于: 所述自驱动装置还包括 输入单元, 所述控制单元根据所述输入单元的输入值产生所述预设值。
8. 根据权利要求 1 所述的自驱动装置, 其特征在于: 所述偏转量为角度变化 量。
9. 根据权利要求 8所述的自驱动装置, 其特征在于: 所述预设值大于 3 6 0度。
1 0.根据权利要求 9 所述的自驱动装置, 其特征在于: 所述预设值在 36 0度至 7 2 0度之间。
1 1 .根据权利要求 1 所述的自驱动装置, 其特征在于: 所述驱动单元包括位于 所述自驱动装置左侧的第一驱动轮和位于右侧的第二驱动轮。
1 2 .根据权利要求 1 1所述的自驱动装置, 其特征在于: 所述偏转量为所述第一 驱动轮和所述第二驱动轮的移动距离之差。
根据权利要求 1 1所述的自驱动装置, 其特征在于: 所述偏转量为所述第一 驱动轮和所述第二驱动轮的转动圏数之差。
根据权利要求 1 所述的自驱动装置, 其特征在于: 所述自驱动装置为割草 机。
一种自驱动装置的引导系统, 包括产生引导信号的导线和接收所述引导信 号的如权利要求 1至 1 4 中任一项所述的自驱动装置, 所述导线构成封闭区 域和隔离区域, 所述自驱动装置在所述封闭区域内、 所述隔离区域外工作。 —种自驱动装置的移动方法, 其特征在于: 所述移动方法包括如下步骤, 如权利要求 1至 1 4 中任一项所述自驱动装置沿导线行走; 所述偏转探测装 置探测所述自驱动装置的偏转量, 所述比较单元将所述偏转量与所述预设 值进行比较, 若所述偏转量大于所述预设值, 所述自驱动装置离开所述导 线, 若所述偏转量不大于所述预设值, 所述自驱动装置沿所述导线移动。 根据权利要求 1 6所述的移动方法, 其特征在于: 所述自驱动装置离开所述 导线后, 再次寻找所述导线。
根据权利要求 1 7所述的移动方法, 其特征在于: 所述自驱动装置找到所述 导线后根据所述导线的引导信号沿所述导线移动。
根据权利要求 1 7所述的移动方法, 其特征在于: 所述导线连接停靠站, 所 述自驱动装置沿所述导线移动进入到所述停靠站停靠。
Applications Claiming Priority (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201110200197 | 2011-07-18 | ||
CN201110200197.X | 2011-07-18 | ||
CN201210243550.7A CN102890509B (zh) | 2011-07-18 | 2012-07-13 | 自驱动装置、引导系统及其移动方法 |
CN201210243550.7 | 2012-07-13 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2013010475A1 true WO2013010475A1 (zh) | 2013-01-24 |
Family
ID=47534035
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2012/078746 WO2013010475A1 (zh) | 2011-07-18 | 2012-07-17 | 自驱动装置、引导系统及其移动方法 |
Country Status (2)
Country | Link |
---|---|
CN (1) | CN102890509B (zh) |
WO (1) | WO2013010475A1 (zh) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102687620A (zh) * | 2011-03-21 | 2012-09-26 | 苏州宝时得电动工具有限公司 | 自驱动装置 |
CN104808656A (zh) * | 2014-01-24 | 2015-07-29 | 苏州宝时得电动工具有限公司 | 基于定位系统的回归引导方法及其系统 |
Families Citing this family (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN104111651A (zh) * | 2013-04-22 | 2014-10-22 | 苏州宝时得电动工具有限公司 | 自动行走设备及其向停靠站回归的方法 |
CN107371562B (zh) | 2016-05-16 | 2020-07-17 | 南京德朔实业有限公司 | 动力工具、割草机及其控制方法 |
CN107632596B (zh) * | 2016-07-18 | 2021-01-05 | 苏州宝时得电动工具有限公司 | 自移动设备回归路径控制方法和系统 |
WO2019096262A1 (zh) * | 2017-11-16 | 2019-05-23 | 南京德朔实业有限公司 | 智能割草系统 |
KR102697035B1 (ko) * | 2018-07-30 | 2024-08-22 | 엘지전자 주식회사 | 청소기의 노즐 및 그 제어방법 |
CN111941419B (zh) * | 2019-05-15 | 2023-03-14 | 苏州科瓴精密机械科技有限公司 | 自移动机器人的控制方法及自移动机器人系统 |
CN112740889B (zh) * | 2020-12-25 | 2023-09-12 | 格力博(江苏)股份有限公司 | 自动割草机的路径规划方法、系统、设备及自动割草机 |
CN112293038B (zh) * | 2020-09-28 | 2021-09-10 | 深圳拓邦股份有限公司 | 一种防止定点割草磨损草地的方法及自动割草机 |
CN112526986B (zh) * | 2020-10-28 | 2022-11-22 | 苏州极目机器人科技有限公司 | 跟垄作业方法和装置 |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0382693A1 (en) * | 1989-02-07 | 1990-08-16 | Transitions Research Corporation | Autonomous vehicle for working on a surface and method of controlling same |
JPH06289930A (ja) * | 1993-03-31 | 1994-10-18 | Fujitsu General Ltd | 自立走行車 |
JP2009037378A (ja) * | 2007-08-01 | 2009-02-19 | Panasonic Corp | 自律走行装置およびプログラム |
KR100919698B1 (ko) * | 2007-08-14 | 2009-09-29 | 포항공과대학교 산학협력단 | 로봇청소기를 이용한 청소방법 |
CN101714000A (zh) * | 2009-09-30 | 2010-05-26 | 刘瑜 | 一种自动吸尘器的路径规划方法 |
CN102063123A (zh) * | 2009-11-18 | 2011-05-18 | 三星电子株式会社 | 执行机器人清洁器的旋转移动的控制方法 |
-
2012
- 2012-07-13 CN CN201210243550.7A patent/CN102890509B/zh active Active
- 2012-07-17 WO PCT/CN2012/078746 patent/WO2013010475A1/zh active Application Filing
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0382693A1 (en) * | 1989-02-07 | 1990-08-16 | Transitions Research Corporation | Autonomous vehicle for working on a surface and method of controlling same |
JPH06289930A (ja) * | 1993-03-31 | 1994-10-18 | Fujitsu General Ltd | 自立走行車 |
JP2009037378A (ja) * | 2007-08-01 | 2009-02-19 | Panasonic Corp | 自律走行装置およびプログラム |
KR100919698B1 (ko) * | 2007-08-14 | 2009-09-29 | 포항공과대학교 산학협력단 | 로봇청소기를 이용한 청소방법 |
CN101714000A (zh) * | 2009-09-30 | 2010-05-26 | 刘瑜 | 一种自动吸尘器的路径规划方法 |
CN102063123A (zh) * | 2009-11-18 | 2011-05-18 | 三星电子株式会社 | 执行机器人清洁器的旋转移动的控制方法 |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102687620A (zh) * | 2011-03-21 | 2012-09-26 | 苏州宝时得电动工具有限公司 | 自驱动装置 |
CN104808656A (zh) * | 2014-01-24 | 2015-07-29 | 苏州宝时得电动工具有限公司 | 基于定位系统的回归引导方法及其系统 |
Also Published As
Publication number | Publication date |
---|---|
CN102890509B (zh) | 2015-10-21 |
CN102890509A (zh) | 2013-01-23 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2013010475A1 (zh) | 自驱动装置、引导系统及其移动方法 | |
US20220187829A1 (en) | An autonomous working system, an autonomous vehicle and a turning method thereof | |
WO2017166971A1 (zh) | 自动工作系统、自动行走设备及其转向方法 | |
US11921513B2 (en) | Moving robot and moving robot system | |
EP2829937B1 (en) | Robotic working apparatus for a limited working area | |
EP3778145B1 (en) | Mobile robot and control method of mobile robot | |
WO2020220652A1 (zh) | 自动割草机及其控制方法 | |
KR20180138210A (ko) | 청소 로봇 및 그 제어 방법 | |
JPH0546239A (ja) | 自律走行ロボツト | |
CN105911981A (zh) | 自动工作系统、自动行走设备及其转向方法 | |
JP2006127448A (ja) | ロボット掃除機システム及び外部充電装置復帰方法 | |
WO2020155715A1 (zh) | 行走机器人及其转向控制方法、控制系统以及行走机器人工作系统 | |
CN202527426U (zh) | 管道清洁机器人的自主导航系统 | |
CN115605818A (zh) | 通过导线导航机器人割草机的方法 | |
US20230244243A1 (en) | Navigating a robotic mower with dead reckoning | |
CN202498547U (zh) | 吸尘机器人的自主导航系统 | |
AU2019247309B2 (en) | Mobile robot and method for controlling mobile robot | |
CN210202476U (zh) | 自动割草机 | |
JP6378962B2 (ja) | 自走式電子機器 | |
JP7107658B2 (ja) | 自律走行型掃除機及び自律走行型掃除機システム並びに移動体 | |
US20230320267A1 (en) | Navigating a robotic mower along a wire | |
WO2018077160A1 (zh) | 自移动设备路径规划方法和系统 | |
EP4147555B1 (en) | Automatic lawn mower and path-planning method, system and device thereof | |
CN203773352U (zh) | 基于双核两轮极速微电脑鼠对角线冲刺伺服系统 | |
CN118696691A (zh) | 一种割草机的控制方法、设备及存储介质 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 12814937 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 12814937 Country of ref document: EP Kind code of ref document: A1 |