WO2013009081A2 - Substrate for an optical device having a zener diode - Google Patents

Substrate for an optical device having a zener diode Download PDF

Info

Publication number
WO2013009081A2
WO2013009081A2 PCT/KR2012/005478 KR2012005478W WO2013009081A2 WO 2013009081 A2 WO2013009081 A2 WO 2013009081A2 KR 2012005478 W KR2012005478 W KR 2012005478W WO 2013009081 A2 WO2013009081 A2 WO 2013009081A2
Authority
WO
WIPO (PCT)
Prior art keywords
zener diode
cavity
optical device
substrate
optical
Prior art date
Application number
PCT/KR2012/005478
Other languages
French (fr)
Korean (ko)
Other versions
WO2013009081A3 (en
Inventor
안범모
박승호
Original Assignee
주식회사 포인트엔지니어링
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 포인트엔지니어링 filed Critical 주식회사 포인트엔지니어링
Publication of WO2013009081A2 publication Critical patent/WO2013009081A2/en
Publication of WO2013009081A3 publication Critical patent/WO2013009081A3/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L25/00Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof
    • H01L25/16Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof the devices being of types provided for in two or more different main groups of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. forming hybrid circuits
    • H01L25/167Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof the devices being of types provided for in two or more different main groups of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. forming hybrid circuits comprising optoelectronic devices, e.g. LED, photodiodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/4805Shape
    • H01L2224/4809Loop shape
    • H01L2224/48091Arched
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48135Connecting between different semiconductor or solid-state bodies, i.e. chip-to-chip
    • H01L2224/48137Connecting between different semiconductor or solid-state bodies, i.e. chip-to-chip the bodies being arranged next to each other, e.g. on a common substrate

Definitions

  • the present invention relates to a substrate for an optical device having a zener diode.
  • the optical element and the zener diode can be accommodated in separate cavities, thereby minimizing optical interference caused by the zener diode.
  • It relates to a substrate for an optical device with a zener diode that eliminates the need for patterning lines and minimizes wire bonding effort.
  • a light emitting diode which is a semiconductor light emitting diode
  • LED is attracting attention in various fields as an environment-friendly light source that does not cause pollution.
  • BLUs back-light units
  • the material or structure of the LED must first be improved, but in addition, the structure of the LED package and the material used therein need to be improved.
  • optical elements various elements including LEDs are collectively referred to as “optical elements”, and various products including one or more of them are referred to as “optical devices”.
  • Zener diodes are also used in optical devices to prevent damage due to static electricity, and the need for these devices is increasing with higher output optical devices.
  • a Zener diode in order to connect a Zener diode to an optical device, a separate space is required inside the package.
  • a Zener diode In order to reduce the size of the optical device, a Zener diode is usually connected to a substrate adjacent to the optical device. In this case, since the light emitted from the optical device is interfered by the zener diode and the light efficiency is reduced, efforts have been made to improve this.
  • FIG. 1 is a cross-sectional view of an optical device having a conventional zener diode proposed as part of this effort, which is disclosed in Korean Patent No. 583162.
  • a third ceramic substrate 103 is disposed between an upper first ceramic substrate 101 and a lower second ceramic substrate 105. It is stacked.
  • the LED 110 is mounted on the third ceramic substrate 103, the zener diode 109 is mounted on the second ceramic substrate 105, and the LED 110 is prevented from being damaged by electrostatic discharge.
  • the Zener diode 109 is connected to the second ceramic substrate 103 in parallel with the LED 110 in the reverse direction.
  • the LED 110 is mounted on the third ceramic substrate 103 while the zener diode 109 is mounted on the second ceramic substrate 103 provided at a lower position. The interference of the LED 110 emitted light by 109 is considerably reduced.
  • the electrode and signal lines 122 connected to the LED 110 and the zener diode 109 are formed by patterning on the third ceramic substrate 103 in the same manner as patterning copper foil on a PCB substrate. These signal lines 122 are electrically connected to the zener diode 109 and the electrodes of the LED 110 by wire 115 bonding.
  • Reference numeral 120 denotes a reflective member.
  • the conventional optical device having a zener diode as described above even if the zener diode is located at a lower position than the optical element, the light reflected by the reflecting member 120, for example, is formed in the same cavity. Indirect interference (secondary interference) to the can not be prevented, and thus there was a problem that some light efficiency is reduced.
  • the optical element and the zener diode are insulated by the horizontal insulating layer called the third ceramic substrate 103, a process of patterning separate electrodes and signal lines on a separate substrate is added, as well as a relatively large number, That is, there was a problem that the wire bonding process is required 3-4 times.
  • a protective resin for protecting the optical element and the zener diode or in addition a protective resin containing fluorescent material (hereinafter collectively referred to as 'encapsulation material') to emit a desired light.
  • 'encapsulation material' a protective resin containing fluorescent material
  • the present invention has been made to solve the above-described problems, and it is possible to minimize optical interference by the zener diode by accommodating the optical element and the zener diode in separate cavities as well as by using the vertical insulation layer in the electrode or signal line. It is an object of the present invention to provide a substrate for an optical device having a zener diode, which eliminates the need for a patterning process and minimizes the number of wire bonding operations.
  • Another object of the present invention is to provide a substrate for an optical device having a zener diode, which can achieve both an improvement in light efficiency and a bonding force of an encapsulant in an optical device having a zener diode.
  • a substrate for an optical device having a zener diode of the present invention for achieving the above object is at least two rows of substrates electrically conductive and electrically insulated with a vertical insulating layer vertically formed therebetween;
  • An optical device cavity in which an optical device is mounted the groove being formed to include the vertical insulating layer on the top of the substrate every two adjacent rows, and the groove formed to include the vertical insulating layer on the top of the substrate every two adjacent rows. It comprises a zener diode cavity and the optical device cavity and the zener diode cavity in which the optical device is mounted.
  • the cavity for the optical device and the zener diode cavity are composed of a large area and a small area with respect to the vertical insulating layer, and the large area of the optical device cavity and the zener diode cavity are adjacent to each other.
  • the optical element is mounted on a large area of the cavity for the optical device, and a wire electrically connected to one of the electrodes of the optical device is connected to the small area of the cavity for the optical device;
  • the zener diode is mounted on the large area of the diode cavity, and a wire electrically connected to one of the electrodes of the zener diode is connected to the small area of the zener diode cavity.
  • the optical device cavity is characterized in that provided with two or more for each substrate of each row.
  • the zener diode cavity is formed at a distance from the optical device cavity, or the zener diode cavity is formed overlapping with the optical device cavity in a partial region, the bottom surface of the zener diode cavity is the bottom of the optical device cavity It may be formed higher than the surface or formed along the entire outer circumference of the cavity for the optical device, the bottom surface of the zener diode cavity may be formed higher than the bottom surface of the cavity for the optical device.
  • a substrate for an optical device having a zener diode having three or more rows having electrical conductivity and electrically insulated with a vertical insulating layer vertically formed therebetween;
  • Zener diodes are mounted by including one or more optical device cavities in which an optical device is mounted by forming a rectangular groove formed to include the vertical insulating layer on top of the substrate, and a groove formed by including the vertical insulating layer on the substrate. It comprises a cavity for the Zener diode.
  • the zener diode cavity is formed to include the vertical insulating layer on the top of the substrate for every two adjacent rows, and is formed at a distance from the cavity for the optical device.
  • the zener diode cavity is formed to include the vertical insulating layer on the top of the substrate every two adjacent rows, and overlaps with the optical device cavity in a partial region, and the bottom surface of the zener diode cavity is Characterized in that formed higher than the bottom surface of the cavity for the optical device.
  • the zener diode cavity is formed along the entire outer circumference of the one optical device cavity, the bottom surface of the zener diode cavity may be formed higher than the bottom surface of the cavity for the optical device.
  • the zener diode cavity may be formed at a distance from the cavity for the optical device, and may be formed as a single rectangular groove formed on the substrate in the entire row.
  • the optical element and the zener diode are housed in separate cavities, thereby minimizing optical interference by the zener diode, and by using a vertical insulating layer, There is no need for a patterning process and the wire bonding effort can be minimized.
  • the optical device having a zener diode it is possible to improve both the light efficiency, the bonding force of the encapsulant, and the life of the cutting tool.
  • FIG. 1 is a cross-sectional view according to an example of an optical device having a conventional zener diode.
  • 2A and 2B are plan views and cross-sectional views taken along a line A-A of an optical device composed of a single optical element and a zener diode according to an embodiment of the present invention.
  • 3A and 3B are plan views and cross-sectional views taken along line B-B of an optical device composed of a single optical element and a zener diode according to another embodiment of the present invention.
  • 4A and 4B are plan views and C-C cross-sectional views of an optical device composed of a single optical element and a zener diode according to another embodiment of the present invention.
  • FIG. 5 is a plan view when the structure of FIG. 2 is applied to an optical device having a plurality of optical elements arranged in a series-parallel matrix form.
  • FIG. 6 is a plan view when the structure of FIG. 3 is applied to an optical device having a plurality of optical elements arranged in a series-parallel matrix form.
  • FIG. 7 is a plan view when the structure of FIG. 2 is applied to an optical device having a plurality of optical elements and a zener diode connected in series.
  • FIG. 7 is a plan view when the structure of FIG. 2 is applied to an optical device having a plurality of optical elements and a zener diode connected in series.
  • FIG. 8 is a plan view when the structure of FIG. 3 is applied to an optical device having a plurality of optical elements and a zener diode connected in series.
  • FIG. 8 is a plan view when the structure of FIG. 3 is applied to an optical device having a plurality of optical elements and a zener diode connected in series.
  • 9A and 9B are plan views and cross-sectional views taken along line D-D of an optical device having a plurality of optical elements and a zener diode connected in series, according to another embodiment of the present invention.
  • the optical device 100 has a first substrate 110 and a second substrate 120 having at least a top surface made of a conductive material, preferably, a body of a metal material. It includes a vertical insulating layer 130 formed vertically between them to electrically insulate them.
  • a groove formed to cover both the first substrate 110 and the second substrate 120 that is, the vertical insulating layer 130 is formed on the first substrate 110 and the second substrate 120.
  • Zener diode cavity made of a groove formed to include a vertical insulation layer 130 in a position separated by a predetermined distance from the optical device cavity 140 and the optical device cavity 140 on which the optical device 160 is mounted. 150 is formed.
  • the optical device cavity 140 and the zener diode cavity 150 are mechanical processes, for example, a press process or a cutting process, a chemical process, for example, an etching process, or a mixture thereof, for example, an etching process. It may be formed by a process of mixing with the polishing process.
  • the optical device cavity 140 and the zener diode cavity 150 may be formed in any shape, such as a circular shape or a rectangular shape, but the size and light efficiency of the optical device 160 and the zener diode 170 may be comprehensive. In consideration of this, it is preferable that the optical device cavity 140 is formed larger and deeper than the zener diode cavity 150. Further, the bottom surfaces of the optical device cavity 140 and the zener diode cavity 150 are respectively large-area portions 144a, 154b, and small-area portions 144b, 154a with respect to the vertical insulating layer 130.
  • the wall surface of the cavity 142 for the optical element is preferably formed in a shape in which the width thereof becomes wider toward the upper portion, that is, the inclined surface of the image light substrait.
  • each of the large areas 144a and 154b has a different substrate, for example, a cavity for an optical device.
  • the large area portion 144a of the 140 may be formed on the first substrate 110, and the large area portion 154b of the zener diode cavity 150 may be formed on the second substrate 120.
  • a horizontal type optical device in which both the anode and the cathode electrodes are formed side by side on the upper surface of the optical device 160 is adopted.
  • the electrode, that is, the anode and the cathode are shown in the form of a vertical (Vertical Type) formed by dividing the bottom and top, respectively, in this case, for example, the anode of the optical device 160 is a wire ( 162.
  • the cathode is electrically connected to the first substrate 110 by bonding and the cathode electrode is electrically connected to the second substrate 120 by wire 164 bonding, while the cathode of zener diode 170 is directly connected.
  • the contact is electrically connected to the second substrate 120 and the anode electrode is electrically connected to the first substrate 110 by bonding the wire 172. Therefore, in this case, a total of three wire bondings are required, but in the case of adopting the vertical optical device 140 like the Zener diode 170, the desired connection can be achieved by only two wire bondings by interposing the vertical insulating layer 130. Since this can be achieved, the number of wire bonding operations can be reduced by that amount.
  • the optical device 160 and the zener diode 170 are mounted in separate cavities 140 and 150 with the vertical insulating layer 130 interposed therebetween, the optical device 160 and the zener diode 170 are emitted from the optical device 160.
  • the light is not subjected to any interference by the zener diode 170, that is, direct and indirect (secondary) interference, thereby improving the light efficiency compared to the conventional.
  • reference numeral 152 denotes an inclined circumferential wall of the zener diode cavity 150.
  • 3A and 3B are plan views and cross-sectional views taken along line BB of an optical device consisting of a single optical element and a zener diode according to another embodiment of the present invention, the same parts as in FIGS. Description is omitted.
  • the optical device 100 ′ according to the present embodiment except that the zener diode cavity 150 ′ and the optical device cavity 140 ′ are formed to overlap in some regions.
  • Most of the structure is the same as that of the optical device shown in Fig. 2, and the portion deformed due to the above-described structural change is accompanied by "'" after the reference numeral.
  • This embodiment may be useful when there is not much space for mounting the zener diode 170 in the optical device 100 'compared to the embodiment of FIG.
  • the zener diode 170 is also a cavity separate from the optical device cavity 140. Since it is mounted on 150, there is an effect that the light efficiency is improved as compared with the conventional optical device shown in FIG. Furthermore, according to the present embodiment, when the optical device cavity 140 ′ and the zener diode cavity 150 ′ are sealed with an encapsulant (not shown), the zener diode cavity 150 ′ is shown in FIG. 3B.
  • the step formed by the step not only the adhesive force is increased but also the side effect that can reduce the amount of the encapsulant used is exhibited.
  • the zener diode cavity 150 ' is formed by cutting, the cutting area is reduced, thereby reducing the time required for the cutting process and increasing the life of the cutting tool.
  • FIG. 4A and 4B are a plan view and a cross-sectional view taken along line CC of an optical device including a single optical device and a zener diode according to another embodiment of the present invention, and the same reference numerals are given to the same parts as in FIG. Omit.
  • most of the structures are the same as those of the optical device shown in FIG. 2 except that the zener diode cavity 150 ′′ is formed along the entire outer circumference of the optical element cavity 140 ′′. The portion deformed due to a structural change is followed by the reference numeral "".
  • the present embodiment also has a space in which the zener diode 150 is mounted in the optical device 100 "as compared with the embodiment of FIG. This is useful when you don't have much time.
  • the adhesive force between the optical device cavity 140 ′′ and the zener diode cavity 150 ′′ and the encapsulant is further increased.
  • FIG. 5 is a plan view when the structure of FIG. 2 is applied to an optical device having a plurality of optical elements arranged in a series-parallel matrix.
  • the optical device 200 includes the optical elements 160 arranged in a matrix form of two rows and two columns. To illustrate. As shown in FIG. 5, according to the present embodiment, the optical elements 160 arranged in each column of the optical device 200 are connected in parallel, and the optical elements 160 arranged in each row are connected in series. As a result, one zener diode 170 is provided for each column. Accordingly, two vertical insulating layers and three substrates (columns) are used.
  • the zener diode 170 is mounted in the zener diode cavity thus formed in a state where the zener diode cavity is formed at a distance between each optical element cavity.
  • the electrical equivalent circuit of the optical device according to this embodiment is as shown on the right side thereof.
  • reference numeral "A” denotes an anode electrode and "C” denotes a cathode electrode.
  • FIG. 6 is a plan view when the structure of FIG. 3 is applied to an optical device having a plurality of optical elements arranged in a series-parallel matrix.
  • the optical device 200 includes the optical elements 160 arranged in a matrix form of two rows and two columns. It is shown. As shown in FIG. 6, according to the present embodiment, the optical elements 160 arranged in each column of the optical device 200 are connected in parallel, and the optical elements 160 arranged in each row are connected in series. As a result, one zener diode 170 is provided for each column. Accordingly, a total of two vertical insulating layers 130 and three substrates (columns) are used.
  • the zener diode 170 is mounted in the zener diode cavity thus formed while the zener diode cavity overlaps with any optical device cavity (lower cavity in this embodiment) in each column.
  • the electrical equivalent circuit of the optical device according to this embodiment is as shown on the right side thereof.
  • reference numeral "A” denotes an anode electrode and "C” denotes a cathode electrode.
  • FIG. 7 is a plan view when the structure of FIG. 2 is applied to an optical device having a plurality of optical elements and a zener diode connected in series.
  • a single optical device cavity 220 made of a rectangular groove accommodating all seven optical devices 240 connected in series. In the state where a total of seven optical devices 240 are mounted, these optical devices are connected in series by wire bonding.
  • a zener diode cavity 230 in which the respective zener diodes 250 are mounted is formed at a predetermined distance from the cavity 220 for the optical device in the same manner as in the structure of FIG. 2, and such a zener diode cavity is formed.
  • the zener diode 250 is mounted at 230. Accordingly, in this embodiment, a total of seven vertical insulating layers 210 and a total of eight (columns) substrates are used. The equivalent circuit is as shown at the bottom of FIG. 9A.
  • FIG. 8 is a plan view when the structure of FIG. 3 is applied to an optical device having a plurality of optical elements and a zener diode connected in series.
  • the optical device 200 ′ in the optical device 200 ′ according to the present exemplary embodiment, the optical device 200 ′ is provided with a single optical device cavity 220 made of a rectangular groove accommodating all seven optical devices 240 connected in series. These optical devices 240 are connected in series by wire bonding while the device 240 is mounted.
  • a zener diode cavity 230 in which the zener diode 250 is mounted is formed at a predetermined distance from the cavity 220 for the optical device in the same manner as in the structure of FIG. 3, and the zener diode cavity 230 is formed.
  • Zener diode is mounted on Accordingly, in this embodiment, a total of seven vertical insulating layers 210 and a total of eight (columns) substrates are used. The equivalent circuit is as shown at the bottom of FIG. 9A.
  • FIGS. 9A and 9B are plan views and cross-sectional views taken along line D-D of an optical device having a plurality of optical elements and a zener diode connected in series, according to another embodiment of the present invention.
  • the structure of the cavity 220 for the optical device and the connection of the optical device 240 are the same as those of FIGS. 7 and 8.
  • all the zener diodes are accommodated in a single zener diode cavity 230 ′ made of a rectangular groove that accommodates all seven zener diodes 250 connected in series as in the cavity 220 for the optical device.
  • the equivalent circuit is as shown at the bottom of Fig. 9A.
  • the substrate for an optical device having the zener diode of the present invention is not limited to the above-described embodiment, and can be modified in various ways within the scope of the technical idea of the present invention.
  • the material of the first substrate and the second substrate may be a metal having excellent electrical conductivity and thermal conductivity, for example, any one selected from aluminum, aluminum alloy, copper, copper alloy, iron, iron alloy, and equivalents thereof.
  • additional plating layers are immersed in the cavity of the first substrate and the second substrate to increase the light reflection efficiency or to make the wire bonding more stable, and an optical element or a zener diode may be mounted on the plating layer.
  • Silver or nickel may be used as the material, and in this case, a plating layer may be formed of only silver or nickel, or a nickel plating layer may be formed first, and then a silver plating layer may be further formed thereon.
  • a plating layer (hereinafter referred to as a "plating layer”) may be formed on the lower surfaces of the first and second substrates. Any one selected from among copper, tin, alloys thereof, and equivalents thereof may be used.
  • the cavity may be sealed with an encapsulant to protect the optical element and the zener diode mounted in the cavity.
  • an epoxy resin or the like may be used as the material of the encapsulation material.
  • the encapsulation material may be finished by filling the cavity so as to have the same height as the upper surfaces of the first and second substrates.
  • the shape of the encapsulant may be convex or concave with respect to the upper surface of the first substrate and the second substrate to have a lens function.
  • the fluorescent material may be included in the encapsulant to change the color of light generated by the optical device to a desired color.
  • Forming method and material of the vertical insulating layer may also be variously modified within the scope of the technical idea of the present invention.
  • 7 to 9 may also be modified in such a manner that a plurality of optical device cavities and a plurality of optical devices are mounted in respective optical device cavities, resulting in optical devices having a parallel-parallel structure.

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Power Engineering (AREA)
  • Led Device Packages (AREA)
  • Light Receiving Elements (AREA)

Abstract

The present invention relates to a substrate for an optical device having a zener diode, in which an optical element and the zener diode are accommodated in separate cavities so as to minimize optical interference caused by the zener diode, and in which a vertical insulation layer is used such that there is no need for a patterning process for an electrode or a signal line and that time needed for wire bonding is minimized. The substrate for the optical device having the zener diode according to the present invention consists essentially of: two or more columns of substrates each having a conductive upper surface, wherein vertical insulating layers are vertically interposed therebetween so as to electrically insulate the substrates; the cavity for the optical element, made of grooves formed on the upper portions of the substrates of every two adjacent columns so as to contain the vertical insulation layers; the cavity for the zener diode, made of grooves formed on the upper portions of the substrates of every two adjacent columns to contain the vertical insulation layers; and the optical element and the zener diode which are accommodated in the cavity for the optical element and in the cavity for the zener diode, respectively, such that an electrical connection between the optical element and the zener diode is in a reverse direction.

Description

제너 다이오드를 갖는 광 디바이스용 기판Substrate for optical device with Zener diode
본 발명은 제너 다이오드를 갖는 광 디바이스용 기판에 관한 것으로, 특히 광소자와 제너 다이오드를 별도의 캐비티에 수용함으로써 제너 다이오드에 의한 광 간섭을 최소화시킬 수가 있을 뿐만 아니라 수직 절연층을 사용함으로써 전극이나 신호 라인에 대한 패터닝 공정이 필요없고 와이어 본딩 공수도 최소화시킬 수 있도록 한 제너 다이오드를 갖는 광 디바이스용 기판에 관한 것이다.BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a substrate for an optical device having a zener diode. In particular, the optical element and the zener diode can be accommodated in separate cavities, thereby minimizing optical interference caused by the zener diode. It relates to a substrate for an optical device with a zener diode that eliminates the need for patterning lines and minimizes wire bonding effort.
일반적으로, 반도체 발광다이오드인 LED(Light Emitting Diode)는 공해를 유발하지 않는 친환경성 광원으로 다양한 분야에서 주목받고 있다. 최근 들어, LED의 사용범위가 실내외 조명, 자동차 헤드라이트 및 디스플레이 장치의 백라이트 유닛(Back-Light Unit:BLU) 등 다양한 분야로 확대됨에 따라 높은 광효율 및 우수한 열 방출 특성이 필요하게 되었다. 고효율의 LED를 얻기 위해서는 일차적으로 LED의 재료 또는 구조를 개선해야되지만 이외에도 LED 패키지의 구조 및 그에 사용되는 재료 등도 개선할 필요가 있다.In general, a light emitting diode (LED), which is a semiconductor light emitting diode, is attracting attention in various fields as an environment-friendly light source that does not cause pollution. Recently, as the use range of LED is expanded to various fields such as indoor / outdoor lighting, automotive headlights, and back-light units (BLUs) of display devices, high light efficiency and excellent heat emission characteristics are required. In order to obtain a high-efficiency LED, the material or structure of the LED must first be improved, but in addition, the structure of the LED package and the material used therein need to be improved.
이와 같은 고효율의 LED에서는 고열이 발생되기 때문에 이를 효과적으로 방출하지 못하면 LED의 온도가 높아져서 그 특성이 열화되고, 이에 따라 수명이 줄어들게 된다. 따라서, 고효율의 LED 패키지에 있어서 LED로부터 발생되는 열을 효과적으로 방출시키고자 하는 노력이 진행되고 있다.Since high heat is generated in such a high-efficiency LED, if it is not effectively emitted, the temperature of the LED is high, and its characteristics are deteriorated, thereby reducing its lifespan. Therefore, efforts are being made to effectively dissipate heat generated from LEDs in high efficiency LED packages.
이하 LED를 포함하여 광을 방출하는 각종 소자를 총칭하여 '광소자"라 하고 이를 하나 이상 포함하여 이루어진 각종 제품을 '광 디바이스'라 한다.Hereinafter, various elements including LEDs are collectively referred to as "optical elements", and various products including one or more of them are referred to as "optical devices".
한편, 각종 전기 및 전자 기기에서는 그 입출력단의 정전기(Electrostatic Discharge), 스위치에서 발생하는 스파크인 EFT(Electrical Fast Transient), 불규칙한 서지 및 낙뢰(Lighting Surge) 등으로부터 회로를 보호하기 위해 제너 다이오드를 사용하고 있다. 이러한 추세를 반영하여 광 디바이스에도 정전기에 의한 파손을 방지하기 위해 제너 다이오드를 사용하고 있으며, 고출력 광 디바이스일수록 그 필요가 증대되고 있다.On the other hand, various electric and electronic devices use zener diodes to protect circuits from electrostatic discharge of the input / output terminals, electrical fast transients (EFT), sparks generated from switches, and irregular surges and lighting surges. Doing. Reflecting this trend, Zener diodes are also used in optical devices to prevent damage due to static electricity, and the need for these devices is increasing with higher output optical devices.
그러나 광 디바이스에 제너 다이오드를 연결하기 위해서는 패키지 내부에 이를 수용하는 별도의 공간이 필요한데, 광 디바이스의 사이즈를 줄이기 위해서 대개 광소자에 인접한 기판상에 제너 다이오드를 연결하고 있다. 이 경우에 광소자에서 방출되는 광이 제너 다이오드에 의해 간섭을 받아 광효율이 감소하기 때문에 이를 개선하기 위한 노력이 진행되고 있다.However, in order to connect a Zener diode to an optical device, a separate space is required inside the package. In order to reduce the size of the optical device, a Zener diode is usually connected to a substrate adjacent to the optical device. In this case, since the light emitted from the optical device is interfered by the zener diode and the light efficiency is reduced, efforts have been made to improve this.
도 1은 이러한 노력의 일환으로 제안된 종래 제너 다이오드를 갖는 광 디바이스의 단면도로서, 등록특허 제583162호로 개시되어 있다. 도 1에 도시한 바와 같이, 종래 제너 다이오드를 갖는 광 디바이스(100)에 따르면, 상부의 제1 세라믹 기판(101)과 하부의 제2 세라믹 기판(105) 사이에 제3 세라믹 기판(103)이 적층되어 있다.FIG. 1 is a cross-sectional view of an optical device having a conventional zener diode proposed as part of this effort, which is disclosed in Korean Patent No. 583162. As shown in FIG. 1, according to the conventional optical device 100 having a zener diode, a third ceramic substrate 103 is disposed between an upper first ceramic substrate 101 and a lower second ceramic substrate 105. It is stacked.
전술한 구성에서, 제3 세라믹 기판(103)에는 LED(110)가 실장되고, 제2 세라믹 기판(105)에는 제너 다이오드(109)가 실장되며, 정전기 방전 등에 의한 LED(110)의 손상을 방지하기 위해 제2 세라믹 기판(103)에 제너 다이오드(109)가 LED(110)의 역방향으로 병렬 연결되어 있다. 이와 같이 종래 광 디바이스에 따르면, LED(110)는 제3 세라믹 기판(103)상에 실장되는 반면에 제너 다이오드(109)는 이보다 낮은 위치에 마련된 제2 세라믹 기판(103)에 실장되기 때문에 제너 다이오드(109)에 의한 LED(110) 방출 광의 간섭을 상당 정도 감소시키고 있다.In the above-described configuration, the LED 110 is mounted on the third ceramic substrate 103, the zener diode 109 is mounted on the second ceramic substrate 105, and the LED 110 is prevented from being damaged by electrostatic discharge. In order to do this, the Zener diode 109 is connected to the second ceramic substrate 103 in parallel with the LED 110 in the reverse direction. As described above, according to the conventional optical device, the LED 110 is mounted on the third ceramic substrate 103 while the zener diode 109 is mounted on the second ceramic substrate 103 provided at a lower position. The interference of the LED 110 emitted light by 109 is considerably reduced.
한편, LED(110)와 제너 다이오드(109)와 연결되는 전극과 신호 라인들(122)은 PCB 기판상에 동박을 패터닝하는 것과 같은 방식으로, 제3 세라믹 기판(103) 상에 패터닝하여 형성하는데, 이러한 신호 라인들(122)은 제너 다이오드(109)와 LED(110)의 전극들과 와이어(115) 본딩에 의해 전기적으로 연결된다. 참조번호 120은 반사 부재를 나타낸다.Meanwhile, the electrode and signal lines 122 connected to the LED 110 and the zener diode 109 are formed by patterning on the third ceramic substrate 103 in the same manner as patterning copper foil on a PCB substrate. These signal lines 122 are electrically connected to the zener diode 109 and the electrodes of the LED 110 by wire 115 bonding. Reference numeral 120 denotes a reflective member.
그러나 전술한 바와 같은 종래의 제너 다이오드를 갖는 광 디바이스에 따르면, 비록 제너 다이오드가 광소자보다 낮은 위치에 배치되어 있다 하더라도 같은 캐비티 내부에 형성되어 있기 때문에 예를 들어 반사 부재(120)에 반사되는 광에 대한 간접 간섭(2차 간섭)까지 방지할 수는 없고, 이에 따라 얼마간의 광효율 저하가 초래되는 문제점이 있었다.However, according to the conventional optical device having a zener diode as described above, even if the zener diode is located at a lower position than the optical element, the light reflected by the reflecting member 120, for example, is formed in the same cavity. Indirect interference (secondary interference) to the can not be prevented, and thus there was a problem that some light efficiency is reduced.
나아가, 제3 세라믹 기판(103)이라는 수평 절연층에 의해 광소자와 제너 다이오드를 절연시키고 있기 때문에 별도의 기판상에 별도의 전극 및 신호 라인을 패터닝하는 공정이 추가될 뿐만 아니라 상대적으로 많은 수, 즉 3-4회의 와이어 본딩 공정이 요구되는 문제점이 있었다.Furthermore, since the optical element and the zener diode are insulated by the horizontal insulating layer called the third ceramic substrate 103, a process of patterning separate electrodes and signal lines on a separate substrate is added, as well as a relatively large number, That is, there was a problem that the wire bonding process is required 3-4 times.
또한 광소자와 제너 다이오드를 보호하기 위한 보호용 수지 또는 이에 더하여 원하는 광을 방출하도록 형광 물질이 함유된 보호용 수지(이하 이러한 수지를 총칭하여 '봉지재'라 한다)에 의해 제1 세라믹 기판 사이의 공간을 밀봉하는 경우에 측면이 평탄한 경사면으로 이루어져 있기 때문에 외부의 약한 충격에도 보호용 수지가 손쉽게 이탈되는 문제점이 있었다.In addition, the space between the first ceramic substrate by a protective resin for protecting the optical element and the zener diode or in addition a protective resin containing fluorescent material (hereinafter collectively referred to as 'encapsulation material') to emit a desired light. In the case of sealing, since the side is made of a flat inclined surface, there was a problem that the protective resin is easily detached even in the external weak impact.
본 발명은 전술한 문제점을 해결하기 위해 안출된 것으로서, 광소자와 제너 다이오드를 별도의 캐비티에 수용함으로써 제너 다이오드에 의한 광 간섭을 최소화시킬 수 있을 뿐만 아니라 수직 절연층을 사용함으로써 전극이나 신호 라인에 대한 패터닝 공정이 필요없고 와이어 본딩 공수도 최소화시킬 수 있도록 한 제너 다이오드를 갖는 광 디바이스용 기판을 제공함을 목적으로 한다.SUMMARY OF THE INVENTION The present invention has been made to solve the above-described problems, and it is possible to minimize optical interference by the zener diode by accommodating the optical element and the zener diode in separate cavities as well as by using the vertical insulation layer in the electrode or signal line. It is an object of the present invention to provide a substrate for an optical device having a zener diode, which eliminates the need for a patterning process and minimizes the number of wire bonding operations.
본 발명의 다른 목적은 제너 다이오드를 갖는 광 디바이스에서 광효율과 봉지재의 결합력의 향상을 공히 도모할 수 있도록 한 제너 다이오드를 갖는 광 디바이스용 기판을 제공함에 있다.Another object of the present invention is to provide a substrate for an optical device having a zener diode, which can achieve both an improvement in light efficiency and a bonding force of an encapsulant in an optical device having a zener diode.
전술한 목적을 달성하기 위한 본 발명의 제너 다이오드를 갖는 광 디바이스용 기판은 상면이 도전성을 가지며, 각각의 사이에 수직으로 형성된 수직 절연층이 개재되어 전기적으로 절연되어 있는 두 열 이상의 기판; 인접하는 두 열마다의 상기 기판의 상부에 상기 수직 절연층을 포함하도록 형성된 홈으로 이루어져서 광소자가 실장되는 광소자용 캐비티 및 인접하는 두 열마다의 상기 기판의 상부에 상기 수직 절연층을 포함하도록 형성된 홈으로 이루어져서 광소자가 실장되는 제너 다이오드용 캐비티 및 상기 광소자용 캐비티와 상기 제너다이오드용 캐비티를 포함하여 이루어진다.A substrate for an optical device having a zener diode of the present invention for achieving the above object is at least two rows of substrates electrically conductive and electrically insulated with a vertical insulating layer vertically formed therebetween; An optical device cavity in which an optical device is mounted, the groove being formed to include the vertical insulating layer on the top of the substrate every two adjacent rows, and the groove formed to include the vertical insulating layer on the top of the substrate every two adjacent rows. It comprises a zener diode cavity and the optical device cavity and the zener diode cavity in which the optical device is mounted.
전술한 구성에서, 상기 광소자용 캐비티와 상기 제너다이오드용 캐비티는 상기 수직 절연층을 중심으로 대면적부와 소면적부로 이루어지되, 상기 광소자용 캐비티와 상기 제너다이오드용 캐비티의 상기 대면적부는 각각 인접하는 두 열의 상기 기판 중 서로 다른 기판에 형성되고, 상기 광소자용 캐비티의 대면적부에는 상기 광소자가 실장되고 상기 광소자용 캐비티의 소면적부에는 상기 광소자의 전극 중 하나와 전기적으로 연결된 와이어가 연결되며, 상기 제너다이오드용 캐비티의 대면적부에는 상기 제너 다이오드가 실장되고 상기 제너다이오드용 캐비티의 소면적부에는 상기 제너 다이오드의 전극 중 하나와 전기적으로 연결된 와이어가 연결된 것을 특징으로 한다.In the above-described configuration, the cavity for the optical device and the zener diode cavity are composed of a large area and a small area with respect to the vertical insulating layer, and the large area of the optical device cavity and the zener diode cavity are adjacent to each other. Two substrates formed on different substrates, the optical element is mounted on a large area of the cavity for the optical device, and a wire electrically connected to one of the electrodes of the optical device is connected to the small area of the cavity for the optical device; The zener diode is mounted on the large area of the diode cavity, and a wire electrically connected to one of the electrodes of the zener diode is connected to the small area of the zener diode cavity.
한편, 상기 광소자용 캐비티는 각 열의 상기 기판마다 2개 이상 구비되는 것을 특징으로 한다.On the other hand, the optical device cavity is characterized in that provided with two or more for each substrate of each row.
상기 제너다이오드용 캐비티는 상기 광소자용 캐비티와 거리를 두고 형성되거나, 상기 제너다이오드용 캐비티는 상기 광소자용 캐비티와 일부 영역에서 중첩되어 형성되되 상기 제너다이오드용 캐비티의 바닥면은 상기 광소자용 캐비티의 바닥면보다 높게 형성되거나 또는 상기 광소자용 캐비티의 전체 외주연을 따라 형성되되 상기 제너다이오드용 캐비티의 바닥면은 상기 광소자용 캐비티의 바닥면보다 높게 형성될 수 있다.The zener diode cavity is formed at a distance from the optical device cavity, or the zener diode cavity is formed overlapping with the optical device cavity in a partial region, the bottom surface of the zener diode cavity is the bottom of the optical device cavity It may be formed higher than the surface or formed along the entire outer circumference of the cavity for the optical device, the bottom surface of the zener diode cavity may be formed higher than the bottom surface of the cavity for the optical device.
본 발명의 또 다른 특징에 따른 제너 다이오드를 갖는 광 디바이스용 기판은 상면이 도전성을 가지며, 각각의 사이에 수직으로 형성된 수직 절연층이 개재되어 전기적으로 절연되어 있는 세 열 이상의 기판; 전체 열의 상기 기판의 상부에 상기 수직 절연층을 포함하도록 형성된 장방형의 홈으로 이루어져서 광소자가 실장되는 하나 이상의 광소자용 캐비티 및 상기 기판의 상부에 상기 수직 절연층을 포함하도록 형성된 홈으로 이루어져서 제너 다이오드가 실장되는 제너 다이오드용 캐비티를 포함하여 이루어진다.According to still another aspect of the present invention, there is provided a substrate for an optical device having a zener diode, the substrate having three or more rows having electrical conductivity and electrically insulated with a vertical insulating layer vertically formed therebetween; Zener diodes are mounted by including one or more optical device cavities in which an optical device is mounted by forming a rectangular groove formed to include the vertical insulating layer on top of the substrate, and a groove formed by including the vertical insulating layer on the substrate. It comprises a cavity for the Zener diode.
전술한 구성에서, 상기 제너다이오드용 캐비티는 인접하는 두 열마다의 상기 기판의 상부에 상기 수직 절연층을 포함하도록 형성되되, 상기 광소자용 캐비티와 거리를 두고 형성된 것을 특징으로 한다.In the above-described configuration, the zener diode cavity is formed to include the vertical insulating layer on the top of the substrate for every two adjacent rows, and is formed at a distance from the cavity for the optical device.
상기 제너다이오드용 캐비티는 인접하는 두 열마다의 상기 기판의 상부에 상기 수직 절연층을 포함하도록 형성되되, 상기 광소자용 캐비티와 일부 영역에서 중첩되도록 형성되며, 상기 제너다이오드용 캐비티의 바닥면은 상기 광소자용 캐비티의 바닥면보다 높게 형성된 것을 특징으로 한다.The zener diode cavity is formed to include the vertical insulating layer on the top of the substrate every two adjacent rows, and overlaps with the optical device cavity in a partial region, and the bottom surface of the zener diode cavity is Characterized in that formed higher than the bottom surface of the cavity for the optical device.
이와는 달리 상기 제너다이오드용 캐비티는 하나의 상기 광소자용 캐비티의 전체 외주연을 따라 형성되되, 상기 제너다이오드용 캐비티의 바닥면은 상기 광소자용 캐비티의 바닥면보다 높게 형성될 수도 있다.In contrast, the zener diode cavity is formed along the entire outer circumference of the one optical device cavity, the bottom surface of the zener diode cavity may be formed higher than the bottom surface of the cavity for the optical device.
상기 제너다이오드용 캐비티는 상기 광소자용 캐비티와 거리를 두고 형성되되, 전체 열의 상기 기판의 상부에 형성된 단일의 장방형의 홈으로 이루어질 수도 있다.The zener diode cavity may be formed at a distance from the cavity for the optical device, and may be formed as a single rectangular groove formed on the substrate in the entire row.
본 발명의 제너 다이오드를 갖는 광 디바이스용 기판에 따르면, 광소자와 제너 다이오드를 별도의 캐비티에 수용함으로써 제너 다이오드에 의한 광 간섭을 최소화시킬 수 있을 뿐만 아니라 수직 절연층을 사용함으로써 전극이나 신호 라인에 대한 패터닝 공정이 필요없고 와이어 본딩 공수도 최소화시킬 수 있다.According to the substrate for an optical device having the zener diode of the present invention, the optical element and the zener diode are housed in separate cavities, thereby minimizing optical interference by the zener diode, and by using a vertical insulating layer, There is no need for a patterning process and the wire bonding effort can be minimized.
나아가, 제너 다이오드를 갖는 광 디바이스에서 광효율과 봉지재의 결합력의 향상 및 절삭 공구의 장수명화를 공히 도모할 수 있다.Furthermore, in the optical device having a zener diode, it is possible to improve both the light efficiency, the bonding force of the encapsulant, and the life of the cutting tool.
도 1은 종래 제너 다이오드를 갖는 광 디바이스의 일례에 따른 단면도.1 is a cross-sectional view according to an example of an optical device having a conventional zener diode.
도 2a 및 도 2b는 본 발명의 일 실시예에 따른 단일 광소자와 제너 다이오드로 이루어진 광 디바이스의 평면도 및 그 A-A선 단면도.2A and 2B are plan views and cross-sectional views taken along a line A-A of an optical device composed of a single optical element and a zener diode according to an embodiment of the present invention.
도 3a 및 도 3b는 본 발명의 다른 실시예에 따른 단일 광소자와 제너 다이오드로 이루어진 광 디바이스의 평면도 및 그 B-B선 단면도.3A and 3B are plan views and cross-sectional views taken along line B-B of an optical device composed of a single optical element and a zener diode according to another embodiment of the present invention.
도 4a 및 도 4b는 본 발명의 또 다른 실시예에 따른 단일 광소자와 제너 다이오드로 이루어진 광 디바이스의 평면도 및 그 C-C선 단면도.4A and 4B are plan views and C-C cross-sectional views of an optical device composed of a single optical element and a zener diode according to another embodiment of the present invention.
도 5는 도 2의 구조를 직병렬의 매트릭스 형태로 배열된 복수의 광소자를 갖는 광 디바이스에 적용한 경우의 평면도.FIG. 5 is a plan view when the structure of FIG. 2 is applied to an optical device having a plurality of optical elements arranged in a series-parallel matrix form. FIG.
도 6은 도 3의 구조를 직병렬의 매트릭스 형태로 배열된 복수의 광소자를 갖는 광 디바이스에 적용한 경우의 평면도.FIG. 6 is a plan view when the structure of FIG. 3 is applied to an optical device having a plurality of optical elements arranged in a series-parallel matrix form. FIG.
도 7은 도 2의 구조를 직렬로 연결된 복수의 광소자와 제너 다이오드를 갖는 광 디바이스에 응용한 경우의 평면도.FIG. 7 is a plan view when the structure of FIG. 2 is applied to an optical device having a plurality of optical elements and a zener diode connected in series. FIG.
도 8은 도 3의 구조를 직렬로 연결된 복수의 광소자와 제너 다이오드를 갖는 광 디바이스에 응용한 경우의 평면도.8 is a plan view when the structure of FIG. 3 is applied to an optical device having a plurality of optical elements and a zener diode connected in series. FIG.
도 9a 및 도 9b는 본 발명의 또 다른 실시예에 따른, 직렬로 연결된 복수의 광소자와 제너 다이오드를 갖는 광 디바이스의 평면도와 그 D-D선 단면도.9A and 9B are plan views and cross-sectional views taken along line D-D of an optical device having a plurality of optical elements and a zener diode connected in series, according to another embodiment of the present invention.
이하에는 첨부한 도면을 참조하여 본 발명의 제너 다이오드를 갖는 광 디바이스용 기판의 바람직한 실시예에 대해 상세하게 설명한다.Hereinafter, with reference to the accompanying drawings will be described in detail a preferred embodiment of the substrate for an optical device having a zener diode of the present invention.
도 2a 및 도 2b는 본 발명의 일 실시예에 따른 단일 광소자와 제너 다이오드로 이루어진 광 디바이스의 평면도 및 그 A-A선 단면도이다. 도 2에 도시한 바와 같이, 본 실시예에 따른 광 디바이스(100)는 적어도 상면이 도전성 재질, 바람직하게는 몸체의 전부가 금속 재질로 이루어진 제1 기판(110)과 제2 기판(120) 및 이들 사이에 수직으로 형성되어 이들을 전기적으로 절연시키는 수직 절연층(130)을 포함하여 이루어진다.2A and 2B are plan views and cross-sectional views taken along line A-A of an optical device composed of a single optical element and a zener diode according to an embodiment of the present invention. As shown in FIG. 2, the optical device 100 according to the present embodiment has a first substrate 110 and a second substrate 120 having at least a top surface made of a conductive material, preferably, a body of a metal material. It includes a vertical insulating layer 130 formed vertically between them to electrically insulate them.
전술한 구성에서, 제1 기판(110)과 제2 기판(120)의 상부에는 제1 기판(110)과 제2 기판(120)에 모두 걸치도록 형성된 홈, 즉 수직 절연층(130)을 포함하는 홈으로 이루어져서 광소자(160)가 실장되는 광소자용 캐비티(140) 및 광소자용 캐비티(140)와 소정 거리만큼 떨어진 위치에 역시 수직 절연층(130)을 포함하도록 형성된 홈으로 이루어진 제너 다이오드용 캐비티(150)가 형성되어 있다. 여기에서 광소자용 캐비티(140)와 제너다이오드용 캐비티(150)는 기계적인 공정, 예를 들어 프레스 공정이나 절삭 공정, 화학적인 공정, 예를 들어 식각 공정 또는 이들을 혼합한 공정, 예를 들어 식각 공정과 연마 공정을 혼합한 공정에 의해 형성될 수 있을 것이다.In the above-described configuration, a groove formed to cover both the first substrate 110 and the second substrate 120, that is, the vertical insulating layer 130 is formed on the first substrate 110 and the second substrate 120. Zener diode cavity made of a groove formed to include a vertical insulation layer 130 in a position separated by a predetermined distance from the optical device cavity 140 and the optical device cavity 140 on which the optical device 160 is mounted. 150 is formed. Here, the optical device cavity 140 and the zener diode cavity 150 are mechanical processes, for example, a press process or a cutting process, a chemical process, for example, an etching process, or a mixture thereof, for example, an etching process. It may be formed by a process of mixing with the polishing process.
한편, 광소자용 캐비티(140)와 제너다이오드용 캐비티(150)는 그 외주연이 원형이나 사각형 등 어떤 형상으로 이루어져도 관계없으나 광소자(160)와 제너 다이오드(170)의 사이즈 및 광효율 등을 종합적으로 고려하여 광소자용 캐비티(140)가 제너다이오드용 캐비티(150)보다 크고 깊게 형성되는 것이 바람직하다. 나아가, 광소자용 캐비티(140)나 제너다이오드용 캐비티(150)의 바닥면이 각각 수직 절연층(130)을 중심으로 대면적부(144a),(154b)와 소면적부(144b),(154a)로 구분되도록 형성하여 각각의 대면적부(144a),(154b)에는 광소자(160)와 제너 다이오드(170)가 실장되도록 하고 각각의 소면적부(144b),(154a)에는 와이어(164),(172)가 본딩되도록 하는 것이 바람직하다.Meanwhile, the optical device cavity 140 and the zener diode cavity 150 may be formed in any shape, such as a circular shape or a rectangular shape, but the size and light efficiency of the optical device 160 and the zener diode 170 may be comprehensive. In consideration of this, it is preferable that the optical device cavity 140 is formed larger and deeper than the zener diode cavity 150. Further, the bottom surfaces of the optical device cavity 140 and the zener diode cavity 150 are respectively large- area portions 144a, 154b, and small- area portions 144b, 154a with respect to the vertical insulating layer 130. It is formed to be divided so that the optical element 160 and the Zener diode 170 are mounted on each of the large area portions 144a and 154b, and the wires 164 and 172 to the small area portions 144b and 154a. Is preferably bonded.
더욱이 광반사 효율을 증가시키기 위해 광소자용 캐비티(142)의 벽면은 상부로 갈수록 그 폭이 넓어지는 형태, 즉 상광하협의 경사면으로 형성하는 것이 바람직하다. 또한 광소자(160)와 제너 다이오드(170)가 상호 역방향으로 연결(후술하는 도 9a 참조)되는 것을 감안하여 각각의 대면적부(144a),(154b)는 서로 다른 기판, 예를 들어 광소자용 캐비티(140)의 대면적부(144a)는 제1 기판(110)에 형성되고, 제너 다이오드용 캐비티(150)의 대면적부(154b)는 제2 기판(120)에 형성되도록 하는 것이 바람직하다.Further, in order to increase the light reflection efficiency, the wall surface of the cavity 142 for the optical element is preferably formed in a shape in which the width thereof becomes wider toward the upper portion, that is, the inclined surface of the image light substrait. Also, considering that the optical device 160 and the zener diode 170 are connected in reverse directions (see FIG. 9A), each of the large areas 144a and 154b has a different substrate, for example, a cavity for an optical device. The large area portion 144a of the 140 may be formed on the first substrate 110, and the large area portion 154b of the zener diode cavity 150 may be formed on the second substrate 120.
한편, 도 2에 도시한 실시예에서는 그 애노드와 캐소드 전극이 모두 광소자(160)의 상면에 나란히 형성되어 있는 수평형(Leteral Type) 광소자가 채택되고 있는 반면에 제너 다이오드(170)는 그 두 전극, 즉 애노드 및 캐소드 전극이 각각 바닥면과 상면에 나뉘어서 형성되어 있는 수직형(Vertical Type)으로 이루어진 형태를 도시하고 있는바, 이 경우에는 예를 들어 광소자(160)의 애노드 전극이 와이어(162) 본딩에 의해 제1 기판(110)에 전기적으로 연결되고 그 캐소드 전극은 와이어(164) 본딩에 의해 제2 기판(120)에 전기적으로 연결되는 반면에 제너 다이오드(170)의 캐소드 전극은 직접적인 접촉에 의해 제2 기판(120)에 전기적으로 연결되어 있고 그 애노드 전극은 와이어(172) 본딩에 의해 제1 기판(110)에 전기적으로 연결되어 있다. 따라서 이 경우에는 총 3회의 와이어 본딩이 요구되지만 제너 다이오드(170)와 마찬가지로 수직형 광소자(140)를 채택하는 경우에는 수직 절연층(130)의 개재에 의해 총 2회의 와이어 본딩만으로도 원하는 결선을 달성할 수 있기 때문에 그만큼 와이어 본딩 공수를 감소시킬 수가 있다.Meanwhile, in the embodiment illustrated in FIG. 2, a horizontal type optical device in which both the anode and the cathode electrodes are formed side by side on the upper surface of the optical device 160 is adopted. The electrode, that is, the anode and the cathode are shown in the form of a vertical (Vertical Type) formed by dividing the bottom and top, respectively, in this case, for example, the anode of the optical device 160 is a wire ( 162. The cathode is electrically connected to the first substrate 110 by bonding and the cathode electrode is electrically connected to the second substrate 120 by wire 164 bonding, while the cathode of zener diode 170 is directly connected. The contact is electrically connected to the second substrate 120 and the anode electrode is electrically connected to the first substrate 110 by bonding the wire 172. Therefore, in this case, a total of three wire bondings are required, but in the case of adopting the vertical optical device 140 like the Zener diode 170, the desired connection can be achieved by only two wire bondings by interposing the vertical insulating layer 130. Since this can be achieved, the number of wire bonding operations can be reduced by that amount.
이와 같이 본 실시예에 따르면 광소자(160)와 제너 다이오드(170)가 수직 절연층(130)을 사이에 두고 별개의 캐비티(140),(150)에 실장되기 때문에 광소자(160)로부터 방출된 광이 제너 다이오드(170)에 의한 어떠한 간섭, 즉 직접 간섭과 간접(2차) 간섭도 받지 않게 되고, 이에 따라 종래에 비해 광효율이 향상될 수 있다. 도 2에서 참조번호 152는 제너다이오드용 캐비티(150)의 경사형 주벽을 나타낸다.As described above, according to the present exemplary embodiment, since the optical device 160 and the zener diode 170 are mounted in separate cavities 140 and 150 with the vertical insulating layer 130 interposed therebetween, the optical device 160 and the zener diode 170 are emitted from the optical device 160. The light is not subjected to any interference by the zener diode 170, that is, direct and indirect (secondary) interference, thereby improving the light efficiency compared to the conventional. In FIG. 2, reference numeral 152 denotes an inclined circumferential wall of the zener diode cavity 150.
도 3a 및 도 3b는 본 발명의 다른 실시예에 따른 단일 광소자와 제너 다이오드로 이루어진 광 디바이스의 평면도 및 그 B-B선 단면도인바, 도 2a 및 도 3b와 동일한 부분에는 동일한 참조부호를 부여하고 그 상세한 설명은 생략한다. 도 3에 도시한 바와 같이, 본 실시예에 의한 광 디바이스(100')에 따르면, 제너다이오드용 캐비티(150')와 광소자용 캐비티(140')가 일부 영역에서 중첩되도록 형성된 점을 제외하고는 대부분의 구조가 도 2에 도시한 광 디바이스와 동일한바, 전술한 구조 변경으로 인해 변형된 부분에는 해당 참조번호 뒤에 「'」를 병기하고 있다. 본 실시예는 도 2의 실시예에 비해 광 디바이스(100')에 제너 다이오드(170)를 실장할 공간적인 여유가 많지 않은 경우에 유용할 수 있다.3A and 3B are plan views and cross-sectional views taken along line BB of an optical device consisting of a single optical element and a zener diode according to another embodiment of the present invention, the same parts as in FIGS. Description is omitted. As shown in FIG. 3, according to the optical device 100 ′ according to the present embodiment, except that the zener diode cavity 150 ′ and the optical device cavity 140 ′ are formed to overlap in some regions. Most of the structure is the same as that of the optical device shown in Fig. 2, and the portion deformed due to the above-described structural change is accompanied by "'" after the reference numeral. This embodiment may be useful when there is not much space for mounting the zener diode 170 in the optical device 100 'compared to the embodiment of FIG.
본 실시예에 의한 광 디바이스(100')에 따르면, 비록 광효율이 도 2의 실시예와 비교할 때 일부 감소될 수 있으나 이 경우에도 역시 제너 다이오드(170)가 광소자용 캐비티(140)와는 별도의 캐비티(150)에 탑재되어 있기 때문에 도 1에 도시한 종래의 광 디바이스에 비해서는 광효율이 개선되는 효과가 있다. 더욱이 본 실시예에 따르면, 광소자용 캐비티(140')와 제너다이오드용 캐비티(150')를 봉지재(미도시)로 밀봉하는 경우에 도 3b에 도시한 바와 같이 제너다이오드용 캐비티(150')에 의해 형성된 단차에 의해 접착력이 증대될 뿐만 아니라 사용되는 봉지재의 량을 줄일 수 있는 부수 효과가 발휘된다. 뿐만 아니라 제너다이오드용 캐비티(150')를 절삭 가공에 의해 형성하는 경우에 절삭 면적이 줄어들게 됨으로써 절삭 공정에 소요되는 시간을 단축시킴과 함께 절삭 도구의 장수명화를 도모할 수 있다.According to the optical device 100 ′ according to the present embodiment, although the light efficiency may be partially reduced in comparison with the embodiment of FIG. 2, in this case, the zener diode 170 is also a cavity separate from the optical device cavity 140. Since it is mounted on 150, there is an effect that the light efficiency is improved as compared with the conventional optical device shown in FIG. Furthermore, according to the present embodiment, when the optical device cavity 140 ′ and the zener diode cavity 150 ′ are sealed with an encapsulant (not shown), the zener diode cavity 150 ′ is shown in FIG. 3B. By the step formed by the step not only the adhesive force is increased but also the side effect that can reduce the amount of the encapsulant used is exhibited. In addition, when the zener diode cavity 150 'is formed by cutting, the cutting area is reduced, thereby reducing the time required for the cutting process and increasing the life of the cutting tool.
도 4a 및 도 4b는 본 발명의 또 다른 실시예에 따른 단일 광소자와 제너 다이오드로 이루어진 광 디바이스의 평면도 및 그 C-C선 단면도인바, 도 2와 동일한 부분에는 동일한 참조부호를 부여하고 그 상세한 설명을 생략한다. 도 4의 실시예에서는 제너다이오드용 캐비티(150")가 광소자용 캐비티(140")의 전체 외주연을 따라 형성된 점을 제외하고는 대부분의 구조가 도 2에 도시한 광 디바이스와 동일한바, 전술한 구조 변경으로 인해 변형된 부분에는 해당 참조번호 뒤에 「"」가 병기되어 있다. 본 실시예 역시 도 2의 실시예와 비교할 때, 광 디바이스(100")에 제너 다이오드(150)를 실장할 공간적인 여유가 많지 않은 경우에 유용하다. 뿐만 아니라 광소자용 캐비티(140") 및 제너다이오드용 캐비티(150")와 봉지재의 접착력이 더욱 증대된다.4A and 4B are a plan view and a cross-sectional view taken along line CC of an optical device including a single optical device and a zener diode according to another embodiment of the present invention, and the same reference numerals are given to the same parts as in FIG. Omit. In the embodiment of FIG. 4, most of the structures are the same as those of the optical device shown in FIG. 2 except that the zener diode cavity 150 ″ is formed along the entire outer circumference of the optical element cavity 140 ″. The portion deformed due to a structural change is followed by the reference numeral "". In addition, the present embodiment also has a space in which the zener diode 150 is mounted in the optical device 100 "as compared with the embodiment of FIG. This is useful when you don't have much time. In addition, the adhesive force between the optical device cavity 140 ″ and the zener diode cavity 150 ″ and the encapsulant is further increased.
도 5는 도 2의 구조를 직병렬의 매트릭스 형태로 배열된 복수의 광소자를 갖는 광 디바이스에 적용한 경우의 평면도인바, 광소자(160)가 2행 2열의 매트릭스 형태로 배열된 광 디바이스(200)를 예시하고 있다. 도 5에 도시한 바와 같이, 본 실시예에 따르면 광 디바이스(200)의 각 열에 배치된 광소자(160)들끼리는 병렬로 연결되고, 각 행에 배치된 광소자(160)들끼리는 직렬로 연결되는바, 제너 다이오드(170)는 각 열당 1개씩 설치되어 있으며, 이에 따라 총 2개의 수직 절연층과 총 3개(열)의 기판이 사용된다. 물론 각 열당 2개 이상의 광소자(160)가 배치, 즉 각 열당 복수의 광소자(160)가 병렬로 연결되더라도 제너 다이오드(170)는 각 열당 1개씩만 설치된다(도 6의 경우에도 동일하다).FIG. 5 is a plan view when the structure of FIG. 2 is applied to an optical device having a plurality of optical elements arranged in a series-parallel matrix. The optical device 200 includes the optical elements 160 arranged in a matrix form of two rows and two columns. To illustrate. As shown in FIG. 5, according to the present embodiment, the optical elements 160 arranged in each column of the optical device 200 are connected in parallel, and the optical elements 160 arranged in each row are connected in series. As a result, one zener diode 170 is provided for each column. Accordingly, two vertical insulating layers and three substrates (columns) are used. Of course, even if two or more optical elements 160 are arranged in each column, that is, a plurality of optical elements 160 in each column are connected in parallel, only one zener diode 170 is provided in each column (the same applies to FIG. 6). ).
이 경우에 본 실시예에서는 제너다이오드용 캐비티를 각각의 광소자용 캐비티 사이에 거리를 두고 형성시킨 상태에서 이렇게 형성된 제너다이오드용 캐비티에 제너 다이오드(170)를 실장하고 있다. 본 실시예에 따른 광 디바이스의 전기적인 등가 회로는 그 우측에 도시한 바와 같다. 도 5에서 부호 "A"는 애노드 전극을, "C"는 캐소드 전극을 나타낸다.In this case, in the present embodiment, the zener diode 170 is mounted in the zener diode cavity thus formed in a state where the zener diode cavity is formed at a distance between each optical element cavity. The electrical equivalent circuit of the optical device according to this embodiment is as shown on the right side thereof. In Fig. 5, reference numeral "A" denotes an anode electrode and "C" denotes a cathode electrode.
도 6은 도 3의 구조를 직병렬의 매트릭스 형태로 배열된 복수의 광소자를 갖는 광 디바이스에 적용한 경우의 평면도인바, 광소자(160)가 2행 2열의 매트릭스 형태로 배열된 광 디바이스(200)를 도시하고 있다. 도 6에 도시한 바와 같이, 본 실시예에 따르면 광 디바이스(200)의 각 열에 배치된 광소자(160)들끼리는 병렬로 연결되고, 각 행에 배치된 광소자(160)들끼리는 직렬로 연결되는바, 제너 다이오드(170)는 각 열당 1개씩 설치되어 있으며, 이에 따라 총 2개의 수직 절연층(130)과 총 3개(열)의 기판이 사용된다.FIG. 6 is a plan view when the structure of FIG. 3 is applied to an optical device having a plurality of optical elements arranged in a series-parallel matrix. The optical device 200 includes the optical elements 160 arranged in a matrix form of two rows and two columns. It is shown. As shown in FIG. 6, according to the present embodiment, the optical elements 160 arranged in each column of the optical device 200 are connected in parallel, and the optical elements 160 arranged in each row are connected in series. As a result, one zener diode 170 is provided for each column. Accordingly, a total of two vertical insulating layers 130 and three substrates (columns) are used.
이 경우에 본 실시예에서는 제너다이오드용 캐비티가 각 열에 있는 임의의 광소자용 캐비티(본 실시예에서는 하측 캐비티)와 중첩되도록 형성시킨 상태에서 이렇게 형성된 제너다이오드용 캐비티에 제너 다이오드(170)를 실장하고 있다. 본 실시예에 따른 광 디바이스의 전기적인 등가 회로는 그 우측에 도시한 바와 같다. 도 6에서 부호 "A"는 애노드 전극을, "C"는 캐소드 전극을 나타낸다. In this case, in the present embodiment, the zener diode 170 is mounted in the zener diode cavity thus formed while the zener diode cavity overlaps with any optical device cavity (lower cavity in this embodiment) in each column. have. The electrical equivalent circuit of the optical device according to this embodiment is as shown on the right side thereof. In Fig. 6, reference numeral "A" denotes an anode electrode and "C" denotes a cathode electrode.
도 7은 도 2의 구조를 직렬로 연결된 복수의 광소자와 제너 다이오드를 갖는 광 디바이스에 응용한 경우의 평면도이다. 도 7에 도시한 바와 같이, 본 실시예에의한 광 디바이스(200)에 따르면, 직렬로 연결된 총 7개의 광소자(240)를 모두 수용하는 장방형의 홈으로 이루어진 단일의 광소자용 캐비티(220)에 총 7개의 광소자(240)가 실장된 상태에서 와이어 본딩에 의해 이들 광소자들이 직렬로 연결되어 있다.FIG. 7 is a plan view when the structure of FIG. 2 is applied to an optical device having a plurality of optical elements and a zener diode connected in series. As shown in FIG. 7, according to the optical device 200 according to the present embodiment, a single optical device cavity 220 made of a rectangular groove accommodating all seven optical devices 240 connected in series. In the state where a total of seven optical devices 240 are mounted, these optical devices are connected in series by wire bonding.
한편, 각 열에는 도 2의 구조와 동일하게 광소자용 캐비티(220)와 소정 거리만큼 떨어져서 개개의 제너 다이오드(250)가 탑재되는 제너다이오드용 캐비티(230)가 형성되어 있고, 이러한 제너다이오드용 캐비티(230)에 제너 다이오드(250)가 실장된다. 이에 따라 본 실시예에서는 총 7개의 수직 절연층(210)과 총 8개(열)의 기판이 사용된다. 등가 회로는 도 9a의 하단에 도시한 바와 같다.Meanwhile, in each column, a zener diode cavity 230 in which the respective zener diodes 250 are mounted is formed at a predetermined distance from the cavity 220 for the optical device in the same manner as in the structure of FIG. 2, and such a zener diode cavity is formed. The zener diode 250 is mounted at 230. Accordingly, in this embodiment, a total of seven vertical insulating layers 210 and a total of eight (columns) substrates are used. The equivalent circuit is as shown at the bottom of FIG. 9A.
도 8은 도 3의 구조를 직렬로 연결된 복수의 광소자와 제너 다이오드를 갖는 광 디바이스에 응용한 경우의 평면도이다. 도 8에 도시한 바와 같이, 본 실시예에 따른 광 디바이스(200')에서는 직렬로 연결된 총 7개의 광소자(240)를 모두 수용하는 장방형의 홈으로 이루어진 단일의 광소자용 캐비티(220)에 광소자(240)가 탑재된 상태에서 와이어 본딩에 의해 이들 광소자(240)들이 직렬로 연결되어 있다.8 is a plan view when the structure of FIG. 3 is applied to an optical device having a plurality of optical elements and a zener diode connected in series. As shown in FIG. 8, in the optical device 200 ′ according to the present exemplary embodiment, the optical device 200 ′ is provided with a single optical device cavity 220 made of a rectangular groove accommodating all seven optical devices 240 connected in series. These optical devices 240 are connected in series by wire bonding while the device 240 is mounted.
한편, 각 열에는 도 3의 구조와 동일하게 광소자용 캐비티(220)와 소정 거리만큼 떨어져서 제너 다이오드(250)가 탑재되는 제너다이오드용 캐비티(230)가 형성되어 있고, 이러한 제너다이오드용 캐비티(230)에 제너 다이오드가 실장된다. 이에 따라 본 실시예에서는 총 7개의 수직 절연층(210)과 총 8개(열)의 기판이 사용된다. 등가 회로는 도 9a의 하단에 도시한 바와 같다.Meanwhile, in each column, a zener diode cavity 230 in which the zener diode 250 is mounted is formed at a predetermined distance from the cavity 220 for the optical device in the same manner as in the structure of FIG. 3, and the zener diode cavity 230 is formed. Zener diode is mounted on Accordingly, in this embodiment, a total of seven vertical insulating layers 210 and a total of eight (columns) substrates are used. The equivalent circuit is as shown at the bottom of FIG. 9A.
도 9a 및 도 9b는 본 발명의 또 다른 실시예에 따른, 직렬로 연결된 복수의 광소자와 제너 다이오드를 갖는 광 디바이스의 평면도와 그 D-D선 단면도이다. 도 9에 도시한 바와 같이, 본 실시예에 따른 광 디바이스(200")에서는 광소자용 캐비티(220)의 구조와 광소자(240)의 연결 관계가 도 7 및 도 8의 실시예와 동일하다. 반면에 본 실시예에서는 광소자용 캐비티(220)와 마찬가지로 직렬로 연결된 총 7개의 제너 다이오드(250)를 모두 수용하는 장방형의 홈으로 이루어진 단일의 제너다이오드용 캐비티(230')에 모든 제너 다이오드가 수용되어 있다. 그 등가 회로는 도 9a의 하단에 도시한 바와 같다.9A and 9B are plan views and cross-sectional views taken along line D-D of an optical device having a plurality of optical elements and a zener diode connected in series, according to another embodiment of the present invention. As shown in FIG. 9, in the optical device 200 ″ according to the present exemplary embodiment, the structure of the cavity 220 for the optical device and the connection of the optical device 240 are the same as those of FIGS. 7 and 8. On the other hand, in the present embodiment, all the zener diodes are accommodated in a single zener diode cavity 230 ′ made of a rectangular groove that accommodates all seven zener diodes 250 connected in series as in the cavity 220 for the optical device. The equivalent circuit is as shown at the bottom of Fig. 9A.
본 발명의 제너 다이오드를 갖는 광 디바이스용 기판은 전술한 실시예에 국한되지 않고 본 발명의 기술 사상이 허용하는 범위 내에서 다양하게 변형하여 실시할 수 있다.The substrate for an optical device having the zener diode of the present invention is not limited to the above-described embodiment, and can be modified in various ways within the scope of the technical idea of the present invention.
예를 들어 제1 기판과 제2 기판의 재질로는 전기 전도도와 열전도도가 모두 우수한 금속, 예를 들어 알루미늄, 알루미늄 합금, 구리, 구리 합금, 철, 철 합금 및 그 등가물 중 선택된 어느 하나가 사용될 수 있을 것이다. 한편, 제1 기판과 제2 기판의 캐비티에는 광반사 효율을 증대시키거나 보다 견고한 와이어 본딩을 위해 추가의 도금층이 헝셩되고, 이러한 도금층 위에 광소자 또는 제너 다이오드가 실장될 수도 있는바, 이러한 도금층의 재질로는 실버나 니켈이 사용될 수 있고, 이 경우에 실버나 니켈만으로 도금층을 형성하거나 니켈 도금층을 먼저 형성한 후에 그 위에 실버 도금층을 추가로 형성할 수도 있을 것이다For example, the material of the first substrate and the second substrate may be a metal having excellent electrical conductivity and thermal conductivity, for example, any one selected from aluminum, aluminum alloy, copper, copper alloy, iron, iron alloy, and equivalents thereof. Could be. On the other hand, additional plating layers are immersed in the cavity of the first substrate and the second substrate to increase the light reflection efficiency or to make the wire bonding more stable, and an optical element or a zener diode may be mounted on the plating layer. Silver or nickel may be used as the material, and in this case, a plating layer may be formed of only silver or nickel, or a nickel plating layer may be formed first, and then a silver plating layer may be further formed thereon.
더욱이 PCB 회로기판 등에 광 디바이스를 실장하기 위해 제1 기판과 제2 기판의 하면에도 도금층(이하 '하면 도금층'이라 한다)을 형성할 수도 있는바, 이러한 하면 도금층의 재질로는 골드, 실버, 니켈, 구리 및 주석 중 어느 하나, 그 합금 및 그 등가물 중에서 선택된 어느 하나가 사용될 수 있을 것이다.Furthermore, in order to mount an optical device on a PCB circuit board or the like, a plating layer (hereinafter referred to as a "plating layer") may be formed on the lower surfaces of the first and second substrates. Any one selected from among copper, tin, alloys thereof, and equivalents thereof may be used.
한편, 전술한 바와 같이 캐비티에 실장된 광소자와 제너 다이오드를 보호하기 위해 캐비티를 봉지재로 밀봉할 수도 있다. 이 경우에 봉지재의 재질로는 에폭시 수지 등이 사용될 수 있는데, 이러한 봉지재를 제1 기판과 제2 기판의 상면과 같은 높이가 되도록 캐비티에 충진하여 마감할 수 있을 것이다. 한편, 광소자용 캐비티의 경우에는 봉지재의 형상을 제1 기판과 제2 기판의 상면에 대해 볼록 또는 오목하게 형성하여 렌즈 기능을 갖도록 할 수도 있을 것이다. 더욱이 봉지재에 형광 물질이 함유되게 함으로써 광소자에서 발생된 광의 색을 원하는 색으로 변경시킬 수도 있을 것이다.Meanwhile, as described above, the cavity may be sealed with an encapsulant to protect the optical element and the zener diode mounted in the cavity. In this case, an epoxy resin or the like may be used as the material of the encapsulation material. The encapsulation material may be finished by filling the cavity so as to have the same height as the upper surfaces of the first and second substrates. Meanwhile, in the case of the optical device cavity, the shape of the encapsulant may be convex or concave with respect to the upper surface of the first substrate and the second substrate to have a lens function. Furthermore, the fluorescent material may be included in the encapsulant to change the color of light generated by the optical device to a desired color.
수직 절연층의 형성 방식과 재질도 본 발명의 기술 사상이 허용하는 범위 내에서 다양하게 변형할 수 있을 것이다.Forming method and material of the vertical insulating layer may also be variously modified within the scope of the technical idea of the present invention.
도 7 내지 도 9의 실시예는 또한 광소자용 캐비티가 복수개로 이루어지고 각각의 광소자용 캐비티에 복수의 광소자가 탑재되는, 결과적으로 직병렬 구조의 광디바이스가 되도록 그 구조가 변형될 수도 있을 것이다.7 to 9 may also be modified in such a manner that a plurality of optical device cavities and a plurality of optical devices are mounted in respective optical device cavities, resulting in optical devices having a parallel-parallel structure.
(부호의 설명)(Explanation of the sign)
100, 100' 100", 200, 200', 200": 광 디바이스,100, 100 '100 ", 200, 200', 200": optical device,
110, 110' 110": 제1 기판,110, 110 '110 ": first substrate,
120, 120', 120": 제2 기판,120, 120 ', 120 ": second substrate,
130, 210: 수직 절연층,130, 210: vertical insulation layer,
140, 140' 140", 220, 220': 광소자용 캐비티,140, 140 '140 ", 220, 220': cavity for optical device,
142: 경사면,142: slope,
144a, 154b: 대면적부,144a, 154b: large area,
144b, 154a: 소면적부,144b, 154a: small area,
150: 제너 다이오드용 캐비티,150: zener diode cavity,
152: 경사면,152: slope,
160, 240: 광소자,160, 240: optical element,
162, 164, 172: 와이어,162, 164, 172: wire,
170, 250: 제너 다이오드170, 250: Zener diode

Claims (11)

  1. 상면이 도전성을 가지며, 각각의 사이에 수직으로 형성된 수직 절연층이 개재되어 전기적으로 절연되어 있는 두 열 이상의 기판;Two or more rows of substrates each having an upper surface conductive and electrically insulated with a vertical insulating layer vertically formed therebetween;
    인접하는 두 열마다의 상기 기판의 상부에 상기 수직 절연층을 포함하도록 형성된 홈으로 이루어져서 광소자가 실장되는 광소자용 캐비티 및Cavity for an optical device to be mounted to the optical device is formed by the groove formed to include the vertical insulating layer on top of the substrate for each adjacent two columns;
    인접하는 두 열마다의 상기 기판의 상부에 상기 수직 절연층을 포함하도록 형성된 홈으로 이루어져서 제너 다이오드가 실장되는 제너 다이오드용 캐비티를 포함하여 이루어진 제너 다이오드를 갖는 광 디바이스용 기판.A substrate for an optical device having a zener diode comprising a zener diode cavity in which a zener diode is mounted, the groove being formed to include the vertical insulating layer on top of the substrate in two adjacent rows.
  2. 제 1 항에 있어서,The method of claim 1,
    상기 광소자용 캐비티와 상기 제너다이오드용 캐비티는 상기 수직 절연층을 중심으로 대면적부와 소면적부로 이루어지되,The optical device cavity and the zener diode cavity are composed of a large area and a small area with respect to the vertical insulating layer.
    상기 광소자용 캐비티와 상기 제너다이오드용 캐비티의 상기 대면적부는 각각 인접하는 두 열의 상기 기판 중 서로 다른 기판에 형성되고,The large area portions of the cavity for the optical device and the zener diode cavity are respectively formed on different substrates of the two adjacent substrates,
    상기 광소자용 캐비티의 대면적부에는 상기 광소자가 실장되고 상기 광소자용 캐비티의 소면적부에는 상기 광소자의 전극 중 하나와 전기적으로 연결된 와이어가 연결되며,The optical element is mounted on a large area of the cavity for the optical device, and a wire electrically connected to one of the electrodes of the optical device is connected to the small area of the cavity for the optical device.
    상기 제너다이오드용 캐비티의 대면적부에는 상기 제너 다이오드가 실장되고 상기 제너다이오드용 캐비티의 소면적부에는 상기 제너 다이오드의 전극 중 하나와 전기적으로 연결된 와이어가 연결된 것을 특징으로 하는 제너 다이오드를 갖는 광 디바이스용 기판.The zener diode is mounted on a large area of the zener diode cavity, and a wire electrically connected to one of the electrodes of the zener diode is connected to a small area of the zener diode cavity. .
  3. 제 1 항에 있어서,The method of claim 1,
    상기 광소자용 캐비티는 각 열의 상기 기판마다 2개 이상 구비되는 것을 특징으로 하는 제너 다이오드를 갖는 광 디바이스용 기판.And at least two cavities for the optical elements are provided for each of the substrates in each row.
  4. 제 1 항 내지 제 3 항 중 어느 한 항에 있어서,The method according to any one of claims 1 to 3,
    상기 제너다이오드용 캐비티는 상기 광소자용 캐비티와 거리를 두고 형성된 것을 특징으로 하는 제너 다이오드를 갖는 광 디바이스용 기판.And the zener diode cavity is formed at a distance from the cavity for the optical element.
  5. 제 1 항 내지 제 3 항 중 어느 한 항에 있어서,The method according to any one of claims 1 to 3,
    상기 제너다이오드용 캐비티는 상기 광소자용 캐비티와 일부 영역에서 중첩되어 형성되되,The zener diode cavity overlaps with the optical device cavity in a partial region,
    상기 제너다이오드용 캐비티의 바닥면은 상기 광소자용 캐비티의 바닥면보다 높게 형성된 것을 특징으로 하는 제너 다이오드를 갖는 광 디바이스용 기판.And a bottom surface of the zener diode cavity is formed higher than a bottom surface of the cavity for the optical device.
  6. 제 1 항 내지 제 3 항 중 어느 한 항에 있어서,The method according to any one of claims 1 to 3,
    상기 제너다이오드용 캐비티는 상기 광소자용 캐비티의 전체 외주연을 따라 형성되되,The zener diode cavity is formed along the entire outer circumference of the optical device cavity,
    상기 제너다이오드용 캐비티의 바닥면은 상기 광소자용 캐비티의 바닥면보다 높게 형성된 것을 특징으로 하는 제너 다이오드를 갖는 광 디바이스용 기판.And a bottom surface of the zener diode cavity is formed higher than a bottom surface of the cavity for the optical device.
  7. 상면이 도전성을 가지며, 각각의 사이에 수직으로 형성된 수직 절연층이 개재되어 전기적으로 절연되어 있는 세 열 이상의 기판;Three or more rows of substrates having an upper surface electrically conductive and electrically insulated with a vertical insulating layer vertically formed therebetween;
    전체 열의 상기 기판의 상부에 상기 수직 절연층을 포함하도록 형성된 장방형의 홈으로 이루어져서 광소자가 실장되는 하나 이상의 광소자용 캐비티;At least one cavity for an optical device in which an optical device is mounted, the rectangular groove being formed to include the vertical insulating layer on top of the substrate in an entire row;
    상기 기판의 상부에 상기 수직 절연층을 포함하도록 형성된 홈으로 이루어져서 제너 다이오드가 실장되는 제너 다이오드용 캐비티를 포함하여 이루어진 제너 다이오드를 갖는 광 디바이스용 기판.A substrate for an optical device having a zener diode comprising a zener diode cavity on which a zener diode is mounted, the groove being formed to include the vertical insulating layer on the substrate.
  8. 제 7 항에 있어서,The method of claim 7, wherein
    상기 제너다이오드용 캐비티는 인접하는 두 열마다의 상기 기판의 상부에 상기 수직 절연층을 포함하도록 형성되되,The zener diode cavity is formed to include the vertical insulating layer on top of the substrate every two adjacent rows,
    상기 광소자용 캐비티와 거리를 두고 형성된 것을 특징으로 하는 제너 다이오드를 갖는 광 디바이스용 기판.And a zener diode formed at a distance from the cavity for the optical element.
  9. 제 7 항에 있어서,The method of claim 7, wherein
    상기 제너다이오드용 캐비티는 인접하는 두 열마다의 상기 기판의 상부에 상기 수직 절연층을 포함하도록 형성되되, 상기 광소자용 캐비티와 일부 영역에서 중첩되도록 형성되며,The zener diode cavity is formed to include the vertical insulating layer on top of the substrate in every two adjacent rows, and overlaps with the optical device cavity in a partial region.
    상기 제너다이오드용 캐비티의 바닥면은 상기 광소자용 캐비티의 바닥면보다 높게 형성된 것을 특징으로 하는 제너 다이오드를 갖는 광 디바이스용 기판.And a bottom surface of the zener diode cavity is formed higher than a bottom surface of the cavity for the optical device.
  10. 제 7 항에 있어서,The method of claim 7, wherein
    상기 제너다이오드용 캐비티는 하나의 상기 광소자용 캐비티의 전체 외주연을 따라 형성되되,The zener diode cavity is formed along the entire outer circumference of the one optical device cavity,
    상기 제너다이오드용 캐비티의 바닥면은 상기 광소자용 캐비티의 바닥면보다 높게 형성된 것을 특징으로 하는 제너 다이오드를 갖는 광 디바이스용 기판.And a bottom surface of the zener diode cavity is formed higher than a bottom surface of the cavity for the optical device.
  11. 제 7 항에 있어서,The method of claim 7, wherein
    상기 제너다이오드용 캐비티는 상기 광소자용 캐비티와 거리를 두고 형성되되,The zener diode cavity is formed at a distance from the cavity for the optical device,
    전체 열의 상기 기판의 상부에 형성된 단일의 장방형의 홈으로 이루어진 것을 특징으로 하는 제너 다이오드를 갖는 광 디바이스용 기판.A substrate for an optical device having a zener diode, comprising a single rectangular groove formed in an upper portion of the substrate in an entire row.
PCT/KR2012/005478 2011-07-14 2012-07-11 Substrate for an optical device having a zener diode WO2013009081A2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2011-0070094 2011-07-14
KR20110070094 2011-07-14

Publications (2)

Publication Number Publication Date
WO2013009081A2 true WO2013009081A2 (en) 2013-01-17
WO2013009081A3 WO2013009081A3 (en) 2013-03-14

Family

ID=47506700

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2012/005478 WO2013009081A2 (en) 2011-07-14 2012-07-11 Substrate for an optical device having a zener diode

Country Status (1)

Country Link
WO (1) WO2013009081A2 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000150962A (en) * 1998-11-10 2000-05-30 Nichia Chem Ind Ltd Light emitting diode
KR100625600B1 (en) * 2005-05-30 2006-09-20 엘지전자 주식회사 Side view led package structure and manufacturing method thereof
KR100818518B1 (en) * 2007-03-14 2008-03-31 삼성전기주식회사 Led package
KR20100096581A (en) * 2009-02-24 2010-09-02 엘지이노텍 주식회사 Light emitting device package and fabrication method thereof
JP2011023557A (en) * 2009-07-16 2011-02-03 Toshiba Corp Light emitting device

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000150962A (en) * 1998-11-10 2000-05-30 Nichia Chem Ind Ltd Light emitting diode
KR100625600B1 (en) * 2005-05-30 2006-09-20 엘지전자 주식회사 Side view led package structure and manufacturing method thereof
KR100818518B1 (en) * 2007-03-14 2008-03-31 삼성전기주식회사 Led package
KR20100096581A (en) * 2009-02-24 2010-09-02 엘지이노텍 주식회사 Light emitting device package and fabrication method thereof
JP2011023557A (en) * 2009-07-16 2011-02-03 Toshiba Corp Light emitting device

Also Published As

Publication number Publication date
WO2013009081A3 (en) 2013-03-14

Similar Documents

Publication Publication Date Title
CN109461386B (en) Display device
WO2016190644A1 (en) Light-emitting device and vehicular lamp comprising same
EP3531451B1 (en) Rgb-led packaging modules and display screen formed thereof
WO2011002208A2 (en) Light-emitting diode package
CN102315207B (en) Light emitting device package
WO2012128458A2 (en) Led module and lighting assembly
KR20100138781A (en) Light-emitting diode apparatus
WO2016178487A1 (en) Ultraviolet ray emitting device
WO2012002629A1 (en) Light-emitting diode module
WO2010074371A1 (en) Chip-on-board led package and manufacturing method thereof
WO2013009082A2 (en) Substrate for optical device
CN103366647B (en) LED display unit module
WO2011078506A2 (en) Light emitting diode package and method for fabricating the same
WO2015023099A1 (en) Chip-on-board type light emitting device package and method for manufacturing same
WO2013089341A1 (en) Optical device integrated with driving circuit and power supply circuit, method for manufacturing optical device substrate used therein, and substrate thereof
CN101728370B (en) Encapsulation modular structure of compound semiconductor elements and manufacturing method thereof
WO2013165115A1 (en) Light emitting diode package and method for manufacturing same
EP2879194B1 (en) Light source module and backlight unit including the same
WO2016122053A1 (en) Transparent electric lighting device
CN108538997B (en) Surface mount type support and multi-chip photoelectric device
WO2013009081A2 (en) Substrate for an optical device having a zener diode
CN100527455C (en) Luminous element packaging device
KR101049490B1 (en) Light emitting device chip, light emitting device package comprising the same, and backlight module comprising the same
WO2014142435A1 (en) Led module manufacturing method
WO2014178654A1 (en) Semiconductor light emitting diode, method for manufacturing semiconductor light emitting diode, and backlight unit comprising semiconductor light emitting diode

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12811960

Country of ref document: EP

Kind code of ref document: A2

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12811960

Country of ref document: EP

Kind code of ref document: A2