WO2013008911A1 - 中枢神経原発悪性リンパ腫患者の予後予測方法、キット及び使用 - Google Patents

中枢神経原発悪性リンパ腫患者の予後予測方法、キット及び使用 Download PDF

Info

Publication number
WO2013008911A1
WO2013008911A1 PCT/JP2012/067922 JP2012067922W WO2013008911A1 WO 2013008911 A1 WO2013008911 A1 WO 2013008911A1 JP 2012067922 W JP2012067922 W JP 2012067922W WO 2013008911 A1 WO2013008911 A1 WO 2013008911A1
Authority
WO
WIPO (PCT)
Prior art keywords
prognosis
brca1
genes
nervous system
central nervous
Prior art date
Application number
PCT/JP2012/067922
Other languages
English (en)
French (fr)
Inventor
龍也 山中
康男 岩立
幸彦 藤井
辰之 角間
淳 川口
浩司 梶原
Original Assignee
京都府公立大学法人
国立大学法人 千葉大学
国立大学法人 新潟大学
学校法人 久留米大学
国立大学法人山口大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 京都府公立大学法人, 国立大学法人 千葉大学, 国立大学法人 新潟大学, 学校法人 久留米大学, 国立大学法人山口大学 filed Critical 京都府公立大学法人
Priority to JP2013523999A priority Critical patent/JP5963748B2/ja
Publication of WO2013008911A1 publication Critical patent/WO2013008911A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/68Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
    • C12Q1/6876Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes
    • C12Q1/6883Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes for diseases caused by alterations of genetic material
    • C12Q1/6886Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes for diseases caused by alterations of genetic material for cancer
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q2600/00Oligonucleotides characterized by their use
    • C12Q2600/158Expression markers
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q2600/00Oligonucleotides characterized by their use
    • C12Q2600/16Primer sets for multiplex assays

Definitions

  • the present invention relates to a method for predicting the prognosis of a patient with primary malignant lymphoma of the central nervous system, a kit used in the method, a prognosis prediction formula, and use.
  • Non-Patent Document 1 In the case group with poor prognosis, it is necessary to perform not only HD-MTX but also more aggressive treatment (Non-patent Document 2), and development of a diagnostic marker for distinguishing between these good prognosis group and bad group is strongly desired.
  • Non-patent Documents 4-6 classification of various cancers by microarray technology
  • Non-Patent Documents 7-15 identification of brain tumor subclasses
  • Non-Patent Documents 16-23 discovery of molecular markers
  • Non-patent documents 24-27 prediction of disease prognosis
  • molecular diagnosis can predict an individual's long-term outcome based on the gene expression profile of the tumor at the time of diagnosis, helping clinicians to make optimal clinical decisions.
  • a typical example is the Oncotype DX diagnostic kit for breast cancer.
  • Non-patent document 28 This is to determine the treatment policy based on the expression profile, evaluate the risk of metastasis within 5 years after surgery for breast cancer, and contribute to the selection of additional postoperative adjuvant chemotherapy, which is approved by the FDA and used clinically.
  • Non-patent Documents 29-31 There are several reports on gene expression analysis using tumor tissue of patients with primary malignant lymphoma of the central nervous system (Non-patent Documents 29-31). However, there are no reports on prognosis based on gene expression analysis. The possibility of accurately determining the prognosis of a patient with primary malignant lymphoma of the central nervous system is suggested by the method of the present inventor, and is expected to bring great benefit to the patient.
  • An object of the present invention is to provide a novel prognostic method, kit and use of a patient with primary malignant lymphoma of the central nervous system.
  • the present inventors extracted mRNA from an excised tumor of 32 patients with primary malignant lymphoma of the central nervous system and used GeneChip Human Genome U133 Plus 2.0 Expression array (Affymetrix, Inc.) (including about 47,000 genes) for each mRNA. The expression level was measured. The correlation between these expression profiles and the postoperative survival time of each patient obtained by follow-up was statistically processed, and genes showing a strong correlation between the expression profile and the survival time were identified. Furthermore, a prognostic method using the expression levels of these genes was devised. Thus, the present invention has been completed.
  • the present invention provides the following prognosis prediction method, kit and use of a patient with primary malignant lymphoma of the central nervous system.
  • Item 1 A method for predicting the prognosis of a patient with primary malignant lymphoma of the central nervous system, in a sample collected from the patient, the following 23 genes: GLOD4, ZNF681, AFAP1AS, RBBP8, EPCAM, FANCA, PGAM1, ROCK1, POLR1D, SC4MOL, CCDC88A, ATAD1, PPM1E, NUBPL, BRCA1, GGH, NEXN, GAPDH, GNAST, PP Measuring at least one expression level of the method.
  • Item 2. At least the following 6 genes: Item 2.
  • the method according to Item 1 comprising a step of measuring the expression level of BRCA1, ROCK1, FANCA, ZNF681, PPP3R1, and RBBP8.
  • Item 3. Item 3.
  • the method according to Item 1 or 2 which comprises a step of measuring the expression level of BRCA1.
  • Item 4. Item 3.
  • the method according to any one of Items 1 to 4 further comprising the step of evaluating at least one selected from the group consisting of age and general general condition (KPS).
  • KPS general general general condition
  • Item 6 It includes the steps of measuring the expression level of RBBP8, BRCA1 and PPP3R1, and evaluating the age and general general condition (KPS), and predicting the prognosis of patients with primary malignant lymphoma of the central nervous system based on these five factors Item 6.
  • Item 7. Item 3.
  • the method according to Item 1 or 2 comprising the step of measuring the expression level of all 23 genes.
  • Item 8. Item 8.
  • Item 9. Item 5.
  • Item 10 The following prognostic formula
  • a kit for predicting the prognosis of a patient with primary malignant lymphoma of the central nervous system comprising the following 23 genes: GLOD4, ZNF681, AFAP1AS, RBBP8, EPCAM, FANCA, PGAM1, ROCK1, POLR1D, SC4MOL, CCDC88A, ATAD1, PPM1E, NUBPL, BRCA1, GGH, NEXN, GAPDH, GNAST, PP
  • a kit comprising a probe or primer for at least one of the above. Item 13.
  • Item 14 The following 23 genes: GLOD4, ZNF681, AFAP1AS, RBBP8, EPCAM, FANCA, PGAM1, ROCK1, POLR1D, SC4MOL, CCDC88A, ATAD1, PPM1E, NUBPL, BRCA1, GGH, NEXN, GAPDH, GNAST, PP Use of for predicting the prognosis of at least one patient with primary malignant lymphoma of the central nervous system. Item 14. Item 14. The use according to Item 13, wherein the prognosis prediction is a survival prediction.
  • the present invention enables more accurate prognosis prediction for patients with primary malignant lymphoma of the central nervous system.
  • prognosis is predicted to be poor (short survival) with high doses of methotrexate and radiation therapy, a higher dose of a combination of more anticancer drugs, transplantation of hematopoietic stem cells, bone marrow cells, etc. You will be able to choose a treatment.
  • the present invention is useful for selecting a therapeutic method for primary malignant lymphoma of the central nervous system and improving the prognosis.
  • Peripheral plot for 6 genes The value on the vertical axis represents the expected number of deaths for a given gene expression, and the horizontal axis represents the gene expression value. Gray points represent dead cases, and black points represent cases that survived to the last day of follow-up (censored cases). The line represents LOWESS (locally weighted scattedplot) compensation.
  • HD-MTX high-dose methotrexate
  • A Representative results of immunohistochemical staining of BRCA1.
  • B Comparison by survival curves of groups classified by BRCA1 expression level in Trainging set.
  • C Comparison by survival curves of groups classified by BRCA1 expression level in Validation set.
  • Examples of primary malignant lymphoma of the central nervous system include extranodal non-Hodgkin-type lymphoma that originates in the central nervous system, particularly diffuse large B-cell lymphoma.
  • the present invention is based on the identification of 23 genes whose expression levels are highly correlated with the survival time of patients with primary malignant lymphoma of the central nervous system. That is, the prognosis prediction method of the present invention measures the expression level of 23 genes shown in Table 1 and predicts the prognosis from this expression level.
  • examples of gene expression levels include mRNA expression levels and protein expression levels, and in particular, mRNA expression levels. In the following description, the measurement of mRNA expression level is taken as an example.
  • a tumor tissue of a primary central nervous system malignant lymphoma collected from a patient can be used as a patient sample for measuring the expression level of each gene.
  • Total RNA or mRNA is extracted from this tissue by conventional methods, and cDNA is synthesized and used for experiments.
  • the tumor tissue may be collected at the first surgery or by biopsy.
  • the gene expression level may be measured by a conventional method.
  • the method for measuring the expression level include a DNA microarray method, a PCR method, a Northern blot method, etc. Among them, the DNA microarray method is preferable.
  • a microarray including a probe for a gene to be measured is used.
  • microarrays include Gene Chip Human Genome U133 Plus 2.0 Expression Array (Affymetrix, Inc.).
  • a desired microarray may be produced by synthesizing a probe for the gene to be measured and immobilizing it on a suitable substrate such as a slide glass.
  • Microarray production and data analysis methods are described in, for example, Microarray Technology and Cancer Gene Gene Profiling. Simone Mocellin (ed). Austin, Tx, and 2006.
  • the measurement of the expression level by the DNA microarray method is, for example, as follows. First, total RNA is extracted from each tumor tissue using ISOGEN (Nippon Gene). The RNA is then processed for hybridization in Gene Chip Human Genome U133 Plus 2.0 Expression array (Affymetrix, Inc.) (containing about 47,000 genes) and hybridization is performed. The chip after hybridization can be analyzed using Fluidics-Station 450, High-Resolution Microarray Scanner 3000, and GCOS Workstation Version 1.3 (Affymetrix, Inc.).
  • sequences of 23 genes can be identified based on the GenBank numbers shown in Table 1.
  • Prognosis may be predicted by measuring the expression level alone or in combination of two or more.
  • BRCA1, PPP3R1, RBBP8 can be combined with age and KPS assessment to predict the prognosis of patients with primary CNS lymphoma using five factors.
  • the evaluation of age and KPS can effectively predict the prognosis of patients with primary malignant lymphoma of the central nervous system by combining with the expression level of at least one of 23 genes, particularly BRCA1 and / or PPP3R1 and / or RBBP8.
  • the prognosis of patients with primary malignant lymphoma of the central nervous system can be predicted based on the expression level of BRCA1 alone.
  • the prognosis of a patient can be predicted by statistically processing the measured gene expression level and calculating a predicted survival function (that is, the probability of survival thereafter at each time point). That is, in this specification, “prognosis” means the survival time after collection of a sample or the probability of survival for a certain period or longer.
  • a principal component analysis was performed on the selected 23 gene expression levels, and a first principal component score was extracted.
  • ROC analysis using the good and bad prognosis groups grouped by RSF, finds the cutoff value of the principal component score, and determines whether the prognosis is good or bad based on the cut-off value It was created.
  • each gene expression level (specifically, mRNA expression level) into the formula in Table 2 and calculating Z, it can be grouped according to the following rules.
  • the kit of the present invention can be used for the prognosis prediction method of the present invention, and includes probes or primers for the 23 genes shown in Table 1. Probes and primers for each gene can be synthesized by conventional methods based on the sequence information of that gene.
  • the kit may contain other necessary reagents depending on the measurement method.
  • the kit of the present invention is, for example, a kit used for DNA microarray method, PCR method, Northern blot method and the like.
  • Examples of the kit for the DNA microarray method include a kit containing a microarray in which the probe is fixed on an appropriate substrate. Primers and probes can be designed easily by conventional methods such as using commercially available design software (eg Wisconsin GCG package Version 10.2, Oligo TM (National Bioscience Inc.), GENETYX (Software Development Co., Ltd.)). it can.
  • the gene of the present invention is used for predicting the prognosis of patients with primary malignant lymphoma of the central nervous system, and is used for preparing a probe for DNA microarray, a primer for PCR, etc. used in the prognosis prediction method of the present invention. be able to.
  • Sample Tissues were frozen in liquid nitrogen within 5 minutes after collection and stored at -80 ° C. Samples were evaluated by a qualified pathologist at Niigata University. Informed consent for sample use was obtained from all patients following the guidelines of Niigata University School of Medicine (Protocol # 70), Chiba University School of Medicine and Yamaguchi University School of Medicine. Overall survival was determined from diagnostic data. The last day of the survival period was the date of death or the last day of follow-up.
  • RNA extraction and array hybridization Using about 100 mg of tissue from each tumor, total RNA was extracted by ISOGEN (Nippon Gene) according to the manufacturer's instructions. The quality of the obtained RNA was verified using RNA Pico Chip by Bioanalyzer System (Agilent Technologies). Only samples with a 28S / 18S ratio> 0.7 and no ribosome peak decay were used in this study. RNA (1 ⁇ g) was processed for hybridization on Gene Chip Human Genome U133 Plus 2.0 Expression array (Affymetrix, Inc.) (containing approximately 47,000 genes). After hybridization, the chip was processed using Fluidics Station 450, High-Resolution Microarray Scanner 3000, and GCOS Workstation Version 1.3 (Affymetrix, Inc.).
  • Random Survival Forest -Variable Hunting method (Ishwaran H, Kogalur UB, Gorodeski EZ, Minn AJ and Lauer MS High-dimensional variable selection for survival data. Stat. Assoc, 2010; 105: 205-217) was applied to select a set of genes with a small minimum depth.
  • the number of iterations is 100
  • the step size is 5, and the default settings are used for other values.
  • FIG. 1 is a scatter plot showing the relationship between estimated collective mortality and selected six genes (BRCA1, ROCK1, FANCA, ZNF681, PPP3R1, and RBBP8).
  • Training Set is a group of cases used for the previous analysis.
  • Validation Set is a new case group.
  • RNA Total RNA (5 ⁇ g) was reverse transcribed into cDNA using SuperScript II (Invirtogen). This cDNA (1 ⁇ l) was used for QPCR. Validation was performed on some of the tumors initially evaluated. The assay was performed in duplicate. The raw data for QPCR is the number of cycles required for the reaction to reach the log phase. GAPDH expression was used to normalize QPCR data. ... Mean expression change between tumor groups, 2 - ⁇ CT method (Livak KJ, Schmittgen TD Analysis of relative gene expression data using real-time quantitative PCR and the 2 (-Delta Delta C (T)) Method Methods 2001; 25: 402-408).
  • Z 2 0.04 ⁇ AGE-0.58 ⁇ KPS + 0.22 ⁇ PPP3R1 + 1.42 ⁇ BRCA1 + 1.11 ⁇ RBBP 8.
  • AGE is age value
  • KPS is 1 if 70 or more, 0 if less
  • PPP3R1, BRCA1, RBBP8 is 0 if immunohistochemical staining is 1 point or more and 0 if 1 point or more
  • Figures 5 and 6 show the survival curves according to this rule.
  • FIG. 7 (A) shows a representative result of immunohistochemical staining of BRCA1. Double staining of CD79a and BRCA1 indicates that BRCA1-positive cells are tumor cells.
  • C, p 0.019
  • BRCA1 expression changes transcription level and protein level
  • D, p 0.0038
  • Table 4 shows the results of multivariate analysis of the relationship between the patient's overall survival (OS) and each factor. Comparing the Z 1 value with the Z 2 value indicates that the Z 1 value is significant, and comparing the Z 1 value with other variables indicates that the Z 1 value is significant.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Organic Chemistry (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Engineering & Computer Science (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Analytical Chemistry (AREA)
  • Zoology (AREA)
  • Genetics & Genomics (AREA)
  • Wood Science & Technology (AREA)
  • Physics & Mathematics (AREA)
  • Biotechnology (AREA)
  • Microbiology (AREA)
  • Molecular Biology (AREA)
  • Hospice & Palliative Care (AREA)
  • Biophysics (AREA)
  • Oncology (AREA)
  • Biochemistry (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • General Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)

Abstract

 本発明が解決すべき課題は、中枢神経原発悪性リンパ腫患者の予後を予測する方法、ならびに前記方法に用いる遺伝子セット、予測式およびキットを提供することである。本発明は、中枢神経原発悪性リンパ腫患者の予後を予測する方法であって、該患者から採取された試料において、特定の23遺伝子の発現レベルを測定する工程を含む方法、予測式ならびに該方法を実施するための遺伝子セットおよびキットを提供する。

Description

中枢神経原発悪性リンパ腫患者の予後予測方法、キット及び使用
 [関連出願の相互参照]
 本出願は、2011年7月13日に出願された日本国特許出願第2011-154664号明細書、2011年12月12日に出願された日本国特許出願第2011-271087号明細書、2011年12月19日に出願された日本国特許出願第2011-277473号明細書及び2012年2月21日に出願された日本国特許出願第2012-034695号明細書(これらの開示全体が参照により本明細書中に援用される)に基づく優先権を主張する。
 本発明は、中枢神経原発悪性リンパ腫患者の予後を予測する方法、ならびに前記方法に用いるキット、予後予測式及び使用に関する。
 中枢神経原発悪性リンパ腫患者の診断は、従来病理組織学的診断を基本になされていた。しかしながら、診断区分内にも依然として多くの個体差が存在し、正確な予後予測ができていなかった。それゆえ、中枢神経原発悪性リンパ腫のさらなる予後予測マーカーが必要とされている。
 中枢神経原発悪性リンパ腫は中枢神経系に原発する節外性非ホジキン型リンパ腫で、多くは瀰漫性大細胞性B細胞リンパ腫である。 この疾患に対しては標準治療であるHigh dose Methotrexate(HD-MTX)の化学療法と放射線療法が行われている。一般的にはその2年生存率は60-65%、生存期間中央値は33-39.5か月である。しかしながら、本発明者が臨床に携わる中で、同じB細胞型の中枢神経原発悪性リンパ腫でありながら5年以上の長期生存する症例群と1-2年で再発死亡する予後不良症例群が存在することを経験している(非特許文献1)。予後不良症例群ではHD-MTXだけでなく、より積極的な治療(非特許文献2)を行う必要があり、これらの予後良好群と不良群とを区別する診断マーカーの開発が強く望まれる。
 中枢神経原発悪性リンパ腫患者の予後不良と関連する因子に関しては1)年齢60歳以上、2)入院時のKernofsky performance statusが不良、3)血清中のLDH値が高値、4)髄液中の蛋白量が高値、5)腫瘍が画像上で脳深部に存在するなどとする報告も見られるが(非特許文献3)、実際には予後予測の指標となる適切なマーカーがないというのが諸家の見解である。
 近年、マイクロアレイ技術による、各種癌の分類(非特許文献4-6)、脳腫瘍サブクラスの同定(非特許文献7-15)、分子マーカーの発見(非特許文献16-23)、疾患の予後予測(非特許文献24-27)が可能となってきている。病理組織学的診断と異なり、分子診断は診断時の腫瘍の遺伝子発現プロファイルに基づき個人の長期的な転帰を予測することができ、臨床医が最適な臨床判断を行う助けとなる。その代表例として、乳癌におけるOncotype DX診断キットがあげられる。これは発現プロファイルによる治療方針の決定を行い、乳癌の術後5年以内の転移リスクを評価し、術後補助化学療法追加の選択に資するものであり、FDAから認可され臨床で利用されている(非特許文献28)。
 中枢神経原発悪性リンパ腫患者の腫瘍組織を用いた遺伝子発現解析は数編の報告が見られるが(非特許文献29-31)、いずれも10-20数症例の少数例の解析から腫瘍に高発現する遺伝子を同定するのにとどまり、遺伝子発現解析から予後を検討する報告は認められない。本発明者の方法により中枢神経原発悪性リンパ腫患者の予後を正確に判定できる可能性が示唆され、患者に大きな利益がもたらされるものと期待される。
Yamanaka R, Morii K, Shinbo Y, et al. Results of treatment of 112 cases of primary CNS lymphoma.  Jpn J Clin Oncol 2008;38(5):373-380. Soussain C, Hoang-Xuan K, Taillandier L, et al. Intensive chemotherapy followed by hematopoietic stem-cell rescue for refractory and recurrent primary CNS and intraocular lymphoma: Societe Francaise de Greffe de Moelle Osseuse-Therapie Cellulaire. J Clin Oncol 2009;26(15):2512-2518 Ferreri AJ, Blay JY, Reni M, et al. Prognostic scoring system for primary CNS lymphomas: the International Extranodal Lymphoma Study Group experience. J Clin Oncol. 2003;21(2):266-272. Ramaswamy S, Tamayo P, Rifkin R, et al. Multiclass cancer diagnosis using tumor gene expression signatures. Proc Natl Acad Sci U S A 2001; 98: 15149-15154. Rickman DS, Bobek MP, Misek DE, et al. Distinctive molecular profiles of high-grade and low-grade gliomas based on oligonucleotide microarray analysis. Cancer Res 2001;61:6885-6891. Kim S, Dougherty ER, Shmulevich I, et al. Identification of combination gene sets for glioma classification. Mol Cancer Ther 2002;1:1229-1236. Khan J, Wei JS, Ringner M, et al. Classification and diagnostic prediction of cancers using gene expression profiling and artificial neural networks. Nat Med 2001;7:673-679. Mischel PS, Shai R, Shi T, et al. Identification of molecular subtypes of glioblastoma by gene expression profiling. Oncogene 2003;22:2361-2373. Nigro JM, Misra A, Zhang L, et al.  Integrated array-comparative genomic hybridization and expression array profiles identify clinically relevant molecular subtypes of glioblastoma. Cancer Res 2005;65:1678-1686. Shai R, Shi T, Kremen TJ, et al. Gene expression profiling identifies molecular subtypes of gliomas.  Oncogene 2003;22:4918-4923. Sorlie T, Tibshirani R, Parker J, et al. Repeated observation of breast tumor subtypes in independent gene expression data sets. Proc Natl Acad Sci U S A 2003;100:8418-8423. Liang Y, Diehn M, Watson N,et al. Gene expression profiling reveals molecularly and clinically distinct subtypes of glioblastoma multiforme. Proc Natl Acad Sci U S A 2005;102:5814-5819. Wong KK, Chang YM, Tsang YT, et al. Expression analysis of juvenile pilocytic astrocytomas by oligonucleotide microarray reveals two potential subgroups. Cancer Res 2005;65:76-84. Shirahata M, Iwao-Koizumi K, Saito S, et al. Gene expression-based molecular diagnostic system for malignant gliomas is superior to histological diagnosis. Clin Cancer Res 2007;13:7341-7356. Li A, Walling J, Ahn S,et al. Unsupervised analysis of transcriptomic profiles reveals six glioma subtypes. Cancer Res 2009;69:2091-2099. Sallinen SL, Sallinen PK, Haapasalo HK, et al. Identification of differentially expressed genes in human gliomas by DNA microarray and tissue chip techniques.  Cancer Res 2000;60:6617-6622. Godard S, Getz G, Delorenzi M, et al.  Classification of human astrocytic gliomas on the basis of gene expression: a correlated group of genes with angiogenic activity emerges as a strong predictor of subtypes. Cancer Res 2003; 63:6613-6625. Rich JN, Hans C, Jones B, et al. Gene expression profiling and genetic markers in glioblastoma survival. Cancer Res 2005;65:4051-4058. Somasundaram K, Reddy SP, Vinnakota K, et al.  Upregulation of ASCL1 and inhibition of Notch signaling pathway characterize progressive astrocytoma. Oncogene 2005; 24:7073-7083. Horvath S, Zhang B, Carlson M, et al. Analysis of oncogenic signaling networks in glioblastoma identifies ASPM as a molecular target. Proc Natl Acad Sci U S A 2006 ;103:17402-17407. Yamanaka R, Arao T, Yajima N, et al. Identification of expressed genes characterizing long-term survival in malignant glioma patients. Oncogene 2006;25:5994-6002. Soroceanu L, Kharbanda S, Chen R, et al. Identification of IGF2 signaling through phosphoinositide-3-kinase regulatory subunit 3 as a growth-promoting axis in glioblastoma. Proc Natl Acad Sci U S A 2007;104:3466-3471. Reddy SP, Britto R, Vinnakota K, et al. Novel glioblastoma markers with diagnostic and prognostic value identified through transcriptome analysis. Clin Cancer Res 2008;14:2978-2987. Nutt CL, Mani DR, Betensky RA, et al. Gene expression-based classification of malignant gliomas correlates better with survival than histological classification. Cancer Res 2003;63:1602-1607. Freije WA, Castro-Vargas FE, Fang Z, et al.  Gene expression profiling of gliomas strongly predicts survival. Cancer Res 2004; 64:6503-6510. Petalidis LP, Oulas A, Backlund M, et al. Improved grading and survival prediction of human astrocytic brain tumors by artificial neural network analysis of gene expression microarray data. Mol Cancer Ther 2008;7:1013-1024. Marko NF, Toms SA, Barnett GH, Weil R.Genomic expression patterns distinguish long-term from short-term glioblastoma survivors: a preliminary feasibility study. Genomics 2008;91:395-406. van de Vijver MJ, He YD, van't Veer LJ, et al. A gene-expression signature as a predictor of survival in breast cancer. N Engl J Med 2002;347(25):1999-2009. Rubenstein JL, Fridlyand J, Shen A, et al. Gene expression and angiotropism in primary CNS lymphoma. Blood 2006;107(9):3716-3723. Tun HW, Personett D, Baskerville KA, et al. Pathway analysis of primary central nervous system lymphoma. Blood 2008;111(6):3200-3210. Montesinos-Rongen M, Brunn A, Bentink S, et al. Gene expression profiling suggests primary central nervous system lymphomas to be derived from a late germinal center B cell. Leukemia 2008;22(2):400-4005. Sung CO, Kim SC, Karnan S, et al. Genomic profiling combined with gene expression profiling in primary central nervous system lymphoma. Blood  2011;117(4):1291-1300.
 本発明は、中枢神経原発悪性リンパ腫患者の新規な予後予測方法、キット及び使用を提供することを目的とする。
 本発明者らは、中枢神経原発悪性リンパ腫患者32人の摘出腫瘍からmRNAを抽出し、GeneChip Human Genome U133 Plus 2.0 Expression array (Affymetrix, Inc.)(約47,000遺伝子を含む)を用いて各mRNAの発現量を測定した。これらの発現プロファイルと、追跡調査により得た各患者の術後の生存期間との相関を統計学的に処理し、発現プロファイルと生存期間との間に強い相関を示す遺伝子を同定した。さらに、これらの遺伝子の発現量を用いた予後予測法を考案した。これにより本発明を完成するに至った。
 本発明は、以下の中枢神経原発悪性リンパ腫患者の予後予測方法、キット及び使用を提供するものである。
項1. 中枢神経原発悪性リンパ腫患者の予後を予測する方法であって、該患者から採取された試料において、以下の23遺伝子:
GLOD4、ZNF681、AFAP1AS、RBBP8、EPCAM、FANCA、PGAM1、ROCK1、POLR1D、SC4MOL、CCDC88A、ATAD1、PPM1E、NUBPL、BRCA1、GGH、NEXN、GAPDH、GNASAS、DNAJC12、 PPP3R1、STIL、TRMT6
の少なくとも1種の発現レベルを測定する工程を含むことを特徴とする、方法。
項2. 少なくとも以下の6遺伝子:
BRCA1、ROCK1、FANCA、ZNF681、PPP3R1、RBBP8の発現レベルを測定する工程を含むことを特徴とする、項1に記載の方法。
項3. BRCA1の発現レベルを測定する工程を含むことを特徴とする、項1又は2に記載の方法。
項4. RBBP8とBRCA1とPPP3R1の発現レベルを測定する工程を含むことを特徴とする、項1又は2に記載の方法。
項5. さらに年齢及び一般全身状態(KPS)からなる群から選ばれる少なくとも1種を評価する工程を含むことを特徴とする項1~4のいずれかに記載の方法。
項6. RBBP8とBRCA1とPPP3R1の発現レベルを測定する工程、年齢と一般全身状態(KPS)を評価する工程を含み、これら5つの因子に基づき中枢神経原発悪性リンパ腫患者の予後を予測することを特徴とする項1~5のいずれかに記載の方法。
項7. 前記23遺伝子全ての発現レベルを測定する工程を含むことを特徴とする、項1又は2に記載の方法。
項8. 前記遺伝子の発現レベルを統計処理し、予測生存関数を算出する工程をさらに含む、項1~4、7のいずれかに記載の方法。
項9. 前記遺伝子の発現レベルと年齢及び一般全身状態(KPS)からなる群から選ばれる少なくとも1種を評価レベルを統計処理し、予測生存関数を算出する工程をさらに含む、項5又は6に記載の方法。
項10. 下記の予後予測式
Figure JPOXMLDOC01-appb-M000003
を用いてZ1を算出し、Z1の値に基づいて予後を予測する、項1~4,6,7のいずれかに記載の方法。
項11. 下記の予後予測式
Figure JPOXMLDOC01-appb-M000004
(ここでAGEは年齢値、KPSとは70以上であれば1,以下なら0、PPP3R1, BRCA1, RBBP8とは免疫組織化学染色で1ポイント以上なら1,0ポイントなら0)
を用いてZ2を算出し、Z2の値に基づいて予後を予測する、項6に記載の方法。
項12. 中枢神経原発悪性リンパ腫患者の予後を予測するためのキットであって、以下の23遺伝子:
GLOD4、ZNF681、AFAP1AS、RBBP8、EPCAM、FANCA、PGAM1、ROCK1、POLR1D、SC4MOL、CCDC88A、ATAD1、PPM1E、NUBPL、BRCA1、GGH、NEXN、GAPDH、GNASAS、DNAJC12、 PPP3R1、STIL、TRMT6
の少なくとも1種に対するプローブまたはプライマーを含むキット。
項13. 以下の23遺伝子:
GLOD4、ZNF681、AFAP1AS、RBBP8、EPCAM、FANCA、PGAM1、ROCK1、POLR1D、SC4MOL、CCDC88A、ATAD1、PPM1E、NUBPL、BRCA1、GGH、NEXN、GAPDH、GNASAS、DNAJC12、 PPP3R1、STIL、TRMT6
の少なくとも1種の中枢神経原発悪性リンパ腫患者の予後を予測するための使用。
項14. 予後の予測が生存期間の予測である、項13に記載の使用。
 本発明により、中枢神経原発悪性リンパ腫患者のより正確な予後予測が可能となった。
 メトトレキセート大量投与と放射線療法による通常の治療方針では予後が悪い(生存期間が短い)と予測される場合、さらに多くの抗癌剤を組み合わせて大量投与したり、造血幹細胞、骨髄細胞の移植を行うなどの治療法を選択することができるようになる。
 本発明は、中枢神経原発悪性リンパ腫の治療法の選択と予後の改善効果に有用である。
6遺伝子についての周辺プロット。縦軸の値は所定の遺伝子発現についての期待死亡者数を表し、横軸は遺伝子発現値を示す。灰色の点は死亡症例を表し、黒色の点は追跡最終日まで生存した症例(打ち切り症例)を表す。線はLOWESS(locally weighted scattedplot)補整を表す。 A)遺伝子発現についてのSAM解析により分類された群の生存曲線による比較、B) 適用した23遺伝子のセットによるRandom survival forest modelにより分類された群の生存曲線による比較。 A)高用量メソトレキセート(HD-MTX)により治療された症例を適用した23遺伝子のセットによるRandom survival forest modelにより分類された群の生存曲線による比較。B) 高用量メソトレキセートを含む多剤併用化学療法により治療された症例を適用した23遺伝子のセットによるRandom survival forest modelにより分類された群の生存曲線による比較。 23遺伝子予測式により分類された群の生存曲線による比較。 Training setについての年齢、KPS、BRCA1、PPP3R1、RBBP8の5つの因子を含む予測式により分類された群の生存曲線による比較。 Validation setについての年齢、KPS、BRCA1、PPP3R1、RBBP8の5つの因子を含む予測式により分類された群の生存曲線による比較。 (A)BRCA1の免疫組織化学染色の代表的な結果。 (B) Trainging setにおいてBRCA1発現レベルにより分類された群の生存曲線による比較。 (C) Validation setにおいてBRCA1発現レベルにより分類された群の生存曲線による比較。
 中枢神経原発悪性リンパ腫としては、中枢神経系に原発する節外性非ホジキン型リンパ腫が挙げられ、特に瀰漫性大細胞性B細胞リンパ腫が挙げられる。
 本発明は、その発現レベルが中枢神経原発悪性リンパ腫患者の生存期間と高い相関を示す23種の遺伝子を同定したことに基づく。すなわち、本発明の予後予測方法は、表1に示す23遺伝子の発現レベルを測定し、この発現レベルから予後を予測するものである。ここで、遺伝子の発現レベルとしては、mRNAの発現レベル、タンパク質の発現レベルが挙げられ、特にmRNAの発現レベルが挙げられる。以下においては、mRNAの発現レベルの測定を例に取り説明する。
 各遺伝子の発現レベルを測定するための患者試料としては、患者から採取した中枢神経原発悪性リンパ腫の腫瘍組織を使用することができる。常套的方法により、この組織から全RNAまたはmRNAを抽出し、cDNAを合成して、実験に使用する。腫瘍組織は、初回手術時に、或いは生検により採取すればよい。
 遺伝子の発現レベルは、常套的方法により測定すればよい。発現レベルの測定方法としては、DNAマイクロアレイ法、PCR法、ノーザンブロット法などが挙げられるが、なかでもDNAマイクロアレイ法が好適である。
 DNAマイクロアレイ法では、測定対象とする遺伝子に対するプローブを含むマイクロアレイを使用する。かかるマイクロアレイとしては、Gene Chip Human Genome U133 Plus 2.0 Expression array (Affymetrix, Inc.)が挙げられる。あるいは、測定対象の遺伝子に対するプローブを合成し、スライドガラスなどの適当な基盤上に固定して、所望のマイクロアレイを作製してもよい。マイクロアレイの作製およびデータ解析の方法は、例えばMicroarray Technology and Cancer Gene Profiling. Simone Mocellin (ed). Landes Bioscience, Austin, Tx, 2006などに記載される。
 DNAマイクロアレイ法による発現レベルの測定は、例えば以下のとおりである。まず、各腫瘍組織からISOGEN(ニッポンジーン)を用いて全RNAを抽出する。次いで、RNAをGene Chip Human Genome U133 Plus 2.0 Expression array (Affymetrix, Inc.)(約47,000遺伝子を含む)でのハイブリダイゼーション用に処理し、ハイブリダイゼーションを行う。ハイブリダイゼーション後のチップは、Fluidics Station 450、High-Resolution Microarray Scanner 3000、およびGCOS Workstation Version 1.3 (Affymetrix, Inc.)を用いて解析することができる。
 23種の各遺伝子の配列は、表1に示すGenBank番号に基づき特定可能である。
 なお、以下においては、23種全ての遺伝子の発現レベルを測定する方法について記載するが、本発明は、これら23種全ての遺伝子の発現レベルを測定することは必須ではなく、これらの各遺伝子を単独で或いは2種以上を組み合わせて発現レベルを測定し、予後を予測してもよい。23種の遺伝子と中枢神経原発悪性リンパ腫患者の予後の予測との関連性については、Variable Importance (VI)値の絶対値が大きいほど関連性が高い。従って、23遺伝子を関連性の高い方から順番に並べると、
(1)BRCA1、(2)PPP3R1、(3)RBBP8、(4)GLOD4、(5)ZNF681、(6)AFAP1AS、(7)EPCAM、(8)FANCAとPGAM1、(10)ROCK1とPOLR1DとSC4MOLとCCDC88A、(14)ATAD1とPPM1EとNUBPL、(17)GGHとNEXN、(19)GAPDH、(20)GNASASとDNAJC12、(22)STIL、(23)TRMT6 
となる。
 BRCA1, PPP3R1, RBBP8は年齢およびKPSの評価と組み合わせることで、5つの因子により中枢神経原発悪性リンパ腫患者の予後を予測することができる。
 年齢及びKPSの評価は、23遺伝子の少なくとも1種、特にBRCA1及び/又はPPP3R1及び/又はRBBP8の発現レベルと組み合わせることによって、効果的に中枢神経原発悪性リンパ腫患者の予後を予測することができる。
 さらに、中枢神経原発悪性リンパ腫患者の予後は、BRCA1単独の発現レベルに基づき予測することができる。
 患者の予後は、測定した遺伝子の発現レベルを統計処理し、予測生存関数(すなわち、各時点においてそれ以降生存する確率)を算出することによって予測することができる。すなわち、本明細書において「予後」は試料の採取後の生存期間或いは一定期間以上生存する確率を意味する。選択された23個の遺伝子発現量に対して主成分分析を行い,第1主成分スコアを抽出した.RSFにより群分けされた予後良群と悪群を用い,ROC解析を行い,主成分スコアのカットオフ値を求め,そのカットオフ値より大か小かで予後良群か悪かを判別するルールを作成した。各遺伝子発現量(具体的にはmRNAの発現量)を表2の式に代入し,Zを計算した上で,下のルールで群分けすることができる。
Z > 1.82 ⇒ 予後不良群
Z ≦ 1.82 ⇒ 予後良好群
 本発明のキットは、本発明の予後予測方法に用いることができるものであり、表1に示す23遺伝子に対するプローブまたはプライマーを含む。各遺伝子に対するプローブおよびプライマーは、その遺伝子の配列情報に基づき、常套的方法により合成することができる。キットは、測定方法に応じて、その他必要な試薬を含んでいてもよい。本発明のキットは、例えば、DNAマイクロアレイ法、PCR法、ノーザンブロット法などに用いられるキットである。DNAマイクロアレイ法用のキットとしては、前記プローブが適当な基盤上に固定されたマイクロアレイを含むものが挙げられる。プライマー、プローブの設計は、市販の設計ソフト(たとえば、Wisconsin GCG package Version 10.2、OligoTM(National Bioscience Inc.)、GENETYX(ソフトウェア開発(株)))を用いる等、常法により容易に行うことができる。
 本発明の遺伝子は、中枢神経原発悪性リンパ腫患者の予後を予測するために使用されるものであり、本発明の予後予測方法に用いるDNAマイクロアレイ用のプローブやPCR用プライマーなどを作製するために用いることができる。
 本発明を、以下の実施例によりさらに説明する。
1.材料および方法
(1)サンプル
 組織は、回収後5分以内に液体窒素中で凍結し、-80℃で保存した。サンプルは、新潟大学の有資格の病理学者により評価した。新潟大学医学部(プロトコール#70)、千葉大学医学部および山口大学医学部ヒト研究倫理委員会のガイドラインにしたがい、全ての患者からサンプルの使用についてインフォームドコンセントを得た。全生存率は、診断データから測定した。生存期間の最終日は、死亡日または追跡最終日とした。
(2)RNA抽出およびアレイハイブリダイゼーション
 各腫瘍からの約100mgの組織を用いて、ISOGEN(ニッポンジーン)により製造元の説明書にしたがい全RNAを抽出した。得られたRNAの質は、Bioanalyzer System (Agilent Technologies) によりRNA Pico Chipを用いて検証した。28S/18S比>0.7であってリボゾームピークの崩壊が見られないサンプルのみを本研究に使用した。RNA(1μg)をGene Chip Human Genome U133 Plus 2.0 Expression array (Affymetrix, Inc.)(約47,000遺伝子を含む)でのハイブリダイゼーション用に処理した。ハイブリダイゼーション後、Fluidics Station 450、High-Resolution Microarray Scanner 3000、およびGCOS Workstation Version 1.3 (Affymetrix, Inc.)を用いてチップを処理した。
(3)統計学的解析
 統計学的解析は全て、Rソフトウェア(R Development Core Team. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. 2011 ISBN 3-900051-07-0, URL http://www.R-project.org)およびBioconductor(Gentleman R, Carey V, Bates D, et al. Bioconductor: open software development for computational biology and bioinformatics. Genome Biol 2004, 5:R80)にて行った。
 生存期間の予測因子となる遺伝子を選択するため、Random Survival Forest -Variable Hunting 法(Ishwaran H, Kogalur UB, Gorodeski EZ, Minn AJ and Lauer MS  High-dimensional variable selection for survival data. J. Amer. Stat. Assoc, 2010;105: 205-217)をあてはめ、小さいminimum depthを有する遺伝子のセットを選択した.Random Survival Forestパッケージ内のvarSel関数において、繰り返し数100,ステップサイズ5とし他の値についてはデフォルトセッティングを使用した。
 Ward's minimum variance cluster analysisにより、あてはめたRandom Survival Forest modelから評価した全ての死亡時点についての各個人のensemble cumulative hazard functionをインプットとして用いて、サンプルを2つの生存群に分けた。Kaplan-Meier method (Kaplan EL, Meier P. Nonparametric estimation from incomplete observations. J Am Statist Assoc 1958;53:457- 481) を用いて、各群について生存分布を評価した。Log-rank検定を用いて生存群間の相違を調べた。比較のため、Random Survival Forest ModelをSAM法(Tusher VG, Tibshirani R, Chu G: Significance analysis of microarrays applied to the ionizing radiation response. Proc Natl Acad Sci USA. 2001;98:5116-21.)への置き換えに基づく別の2群について行った。
 中枢神経原発悪性リンパ腫の多くは瀰漫性大細胞性B細胞リンパ腫であった。
2.結果
(1)患者特性
 2000年~2010年に外科的切除ないし生検術を受けた患者32人から、非処置中枢神経原発悪性リンパ腫標本を得た。患者の平均年齢は64.1歳(44-76歳)であり、男性17人、女性15人であった。手術前のKarnofsky Performance Status (KPS)は、70以上が19人、60以下が13人であった。以上をTraining setとする。さらにValidation setとして表1に示す43症例を解析した。Training setと Validation setは深部病変がValidation setに多く見られる以外、年齢、性別、KPS, 病変数、病理組織、化学療法レジメなどに有意差がなかった。
(2)予測遺伝子の選択
 23遺伝子が予測因子として選択された。表1は、これら遺伝子および各遺伝子のVariable Importance (VI)を示す。図1は、推定集合死亡率と選択した6つの遺伝子(BRCA1、ROCK1、FANCA、ZNF681、PPP3R1、およびRBBP8)との間の関係を示す散布図である。
(3)選択遺伝子を用いた生存率解析
 SAM(A)、適用した23遺伝子のセットによるRandom survival forest model(B)により分類された群について、Kaplan-Meier曲線を描いた(図2)。対応するLogrank検定のためのp値(p)は、遺伝子発現がp<0.038、および23遺伝子によるRandom Survival Forest modelがp<0.0001であった。これらの結果は、Random Survival Forest modelの方が遺伝子発現を直接用いるよりも有用であることを示す。
(4)選択遺伝子を用いた生存率解析の治療法別による比較
 高用量メソトレキセートにより治療された症例(A)、高用量メソトレキセートを含む多剤併用化学療法により治療された症例(B)を適用した23遺伝子のセットによるRandom survival forest modelにより分類された群について、Kaplan-Meier曲線を描いた(図3)。対応するLogrank検定のためのp値(p)は、高用量メソトレキセート群がp=0.0001、および高用量メソトレキセートを含む多剤併用化学療法群がp<0.0001であった。これらの結果は、治療法によらず23遺伝子のセットによって予後が良く予測可能であるという事を示す。
(5)23遺伝子予測式により分類された群の比較
 23遺伝子予測式により分類された群の比較ついて、Kaplan-Meier曲線を描いた(図4)。対応するLogrank検定のためのp値(p)は、p<0.0001であった。この結果は、23遺伝子予測式により予後を良く予測可能であるという事を示す。
Figure JPOXMLDOC01-appb-T000005
 予測式を示す。
Figure JPOXMLDOC01-appb-M000006
 上のZ1を計算した上で,下のルールで群分けする.
Z1 > 1.82 ⇒ 予後不良群
Z1 ≦ 1.82 ⇒ 予後良好群
1.材料および方法
 表2に示す様に、Training SetとValidation Setの異なる症例群を設定した。Training Setはいままでの解析に用いた症例群で。Validation Setは新たな症例群となる。
Figure JPOXMLDOC01-appb-T000007
(1)免疫組織化学
 ホルマリン固定パラフィン包埋組織標本の5ミクロンの切片を用いて免疫組織化学を行った。BRCA1 (抗体希釈1:200; Abcam), FANCA (抗体希釈1:3000; Abcam), PPP3R1(抗体希釈1:100; Abcam), ROCK1 (抗体希釈1:125; SIGMA), RBBP8 (抗体希釈1:200; Abnova)、CD79a (抗体希釈1:50;DAKO)を一次抗体として用いた。染色強度は、なし、または、弱い陽性(0ポイント)、中程度の陽性(1ポイント)、または強い陽性(2ポイント)に分類した。3回の独立した測定の平均を小数点一桁まで計算した。観察者は患者番号を認識していなかった。
(2)リアルタイム定量的PCRによる発現差異の検証
 StepOne RealTime PCR system (Applied Biosystems) において、TaqMan Universal PCR Master Mix (Applied Biosystems) を用いて、製造元のプロトコールにしたがい定量的PCR(QPCR)を行った。TaqMan Gene Expression Assay Mixには、プライマーおよびTaqManプローブはApplied BiosystemsのATAD1(Hs00907773_g1),BRCA1(Hs01556193_m1), FANCA(Hs01116668_m1),GAPDH(Hs99999905_m1),GGH(Hs00914163_m1),GNASAS(Hs00294858_m1),PGAM1(Hs01652468_g1),PPP3R1(Hs01547793_m1),RBBP8(Hs00161222_m1),ROCK1(Hs01127699_m1),STIL(Hs00161700_m1),TRMT6(Hs00210942_m1),ZNF681(Hs01862022_s1)が含まれた。全RNA(5μg)を、SuperScript II (Invirtogen) を用いて逆転写してcDNAとした。このcDNA(1μl)をQPCRに使用した。検証は、はじめに評価した腫瘍の一部について行った。アッセイはデュプリケートで行った。QPCRの生データは、反応が対数期に到達するのに必要なサイクル数である。GAPDHの発現をQPCRデータの標準化に使用した。腫瘍群間の平均発現変化は、2-ΔΔCT法(Livak KJ, Schmittgen TD. Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods. 2001 ;25:402-408)を用いて計算した。
2.結果
(1)前記の12遺伝子について、QPCRによる検証ができた(データ非提示)。
(2)Z1式を算出した方法で、臨床データと免疫組織化学染色の結果を考慮に入れたより簡略化した予後予測式を考案した。Z2 = 0.04 × AGE - 0.58 × KPS + 0.22 ×PPP3R1 + 1.42 × BRCA1 + 1.11 × RBBP8.
 (ここでAGEは年齢値、KPSとは70以上であれば1,以下なら0、PPP3R1, BRCA1, RBBP8とは免疫組織化学染色で1ポイント以上なら1,0ポイントなら0)
・ルール
Z2 > 3.48 ⇒ Poor群
Z2 ≦ 3.48 ⇒ Good群
このルールに従って生存曲線を描いたものが図5、6である。
Z2式でより簡易に予後良好群と不良群がTraining set(図5)、Validation Set(図6)
でも分けられることがわかる。
Z2式でより簡易に予後良好群と不良群が分けられることがわかる。
(3)患者の生存期間とBRCA1の発現を検討した。図7(A)BRCA1の免疫組織化学染色の代表的な結果が示されている。CD79aとBRCA1の二重染色によりBRCA1陽性細胞が腫瘍細胞であることが示される。32症例のBRCA1の免疫組織染色での発現がPOSITIVE(1ポイント以上)/NEGATIVE(0ポイント)で2群に分けると、無増悪生存期間(C, p=0.019)は2群間で有意差を認めた。即ち、BRCA1の発現変化(転写レベルおよびタンパク質レベル)で予後良好群か不良群かに分けられることが示された。また、validation setでも同様の事が確かめられた(D, p=0.0038)。
(4)患者の無増悪生存期間(PFS)、全生存期間(OS)を入院時の年齢(65歳以上/未満か)、性別、KPS(70以上/未満か)、画像上の病変数が単発性/多発性か、画像上の病変が浅部/深部(脳室周囲、基底核、脳梁、脳幹、小脳)か、血清LDH値が216 IU/L以上/未満か、髄液中のタンパク値が45 mg/dl以上/未満か、手術療法は摘出術/生検術か、化学療法はHD-MTX/HD-MTXを含む多剤併用療法か、BRCA1, FANCA, PPP3R1, ROCK1, RBBP8の各免疫組織化学染色がPOSITIVE(1ポイント以上)/NEGATIVE(0ポイント)、 Z1値が1.82以上/未満か、Z2値が3.48以上/未満かで2群間比較した単変量解析結果が表3に示されている。Z1値とZ2値がPFS, OSを、またBRCA1免疫組織化学染色がPFSを有意に2群に分けることができることが示される。
(5)患者の全生存期間(OS)と各因子の関係の多変量解析結果が表4に示されている。Z1値とZ値を比較するとZ1値が有意,Z1値とその他の変量を比較するとZ1値が有意であることが示される。
Figure JPOXMLDOC01-appb-T000008
Figure JPOXMLDOC01-appb-I000009
Figure JPOXMLDOC01-appb-T000010

Claims (14)

  1. 中枢神経原発悪性リンパ腫患者の予後を予測する方法であって、該患者から採取された試料において、以下の23遺伝子:
    GLOD4、ZNF681、AFAP1AS、RBBP8、EPCAM、FANCA、PGAM1、ROCK1、POLR1D、SC4MOL、CCDC88A、ATAD1、PPM1E、NUBPL、BRCA1、GGH、NEXN、GAPDH、GNASAS、DNAJC12、 PPP3R1、STIL、TRMT6
    の少なくとも1種の発現レベルを測定する工程を含むことを特徴とする、方法。
  2. 少なくとも以下の6遺伝子:
    BRCA1、ROCK1、FANCA、ZNF681、PPP3R1、RBBP8の発現レベルを測定する工程を含むことを特徴とする、請求項1に記載の方法。
  3. BRCA1の発現レベルを測定する工程を含むことを特徴とする、請求項1に記載の方法。
  4. RBBP8とBRCA1とPPP3R1の発現レベルを測定する工程を含むことを特徴とする、請求項1に記載の方法。
  5. さらに年齢及び一般全身状態(KPS)からなる群から選ばれる少なくとも1種を評価する工程を含むことを特徴とする請求項1に記載の方法。
  6. RBBP8とBRCA1とPPP3R1の発現レベルを測定する工程、年齢と一般全身状態(KPS)を評価する工程を含み、これら5つの因子に基づき中枢神経原発悪性リンパ腫患者の予後を予測することを特徴とする請求項1に記載の方法。
  7. 前記23遺伝子全ての発現レベルを測定する工程を含むことを特徴とする、請求項1に記載の方法。
  8. 前記遺伝子の発現レベルを統計処理し、予測生存関数を算出する工程をさらに含む、請求項1に記載の方法。
  9. 前記遺伝子の発現レベルと年齢及び一般全身状態(KPS)からなる群から選ばれる少なくとも1種を評価レベルを統計処理し、予測生存関数を算出する工程をさらに含む、請求項5に記載の方法。
  10. 下記の予後予測式
    Figure JPOXMLDOC01-appb-M000001
    を用いてZ1を算出し、Zの値に基づいて予後を予測する、請求項1に記載の方法。
  11. 下記の予後予測式
    Figure JPOXMLDOC01-appb-M000002
    (ここでAGEは年齢値、KPSとは70以上であれば1,以下なら0、PPP3R1, BRCA1, RBBP8とは免疫組織化学染色で1ポイント以上なら1,0ポイントなら0)
    を用いてZ2を算出し、Z2の値に基づいて予後を予測する、請求項6に記載の方法。
  12. 中枢神経原発悪性リンパ腫患者の予後を予測するためのキットであって、以下の23遺伝子:
    GLOD4、ZNF681、AFAP1AS、RBBP8、EPCAM、FANCA、PGAM1、ROCK1、POLR1D、SC4MOL、CCDC88A、ATAD1、PPM1E、NUBPL、BRCA1、GGH、NEXN、GAPDH、GNASAS、DNAJC12、 PPP3R1、STIL、TRMT6
    の少なくとも1種に対するプローブまたはプライマーを含むキット。
  13. 以下の23遺伝子:
    GLOD4、ZNF681、AFAP1AS、RBBP8、EPCAM、FANCA、PGAM1、ROCK1、POLR1D、SC4MOL、CCDC88A、ATAD1、PPM1E、NUBPL、BRCA1、GGH、NEXN、GAPDH、GNASAS、DNAJC12、 PPP3R1、STIL、TRMT6
    の少なくとも1種の中枢神経原発悪性リンパ腫患者の予後を予測するための使用。
  14. 予後の予測が生存期間の予測である、請求項13に記載の使用。
PCT/JP2012/067922 2011-07-13 2012-07-13 中枢神経原発悪性リンパ腫患者の予後予測方法、キット及び使用 WO2013008911A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013523999A JP5963748B2 (ja) 2011-07-13 2012-07-13 中枢神経原発悪性リンパ腫患者の予後予測方法、キット及び使用

Applications Claiming Priority (8)

Application Number Priority Date Filing Date Title
JP2011154664 2011-07-13
JP2011-154664 2011-07-13
JP2011-271087 2011-12-12
JP2011271087 2011-12-12
JP2011-277473 2011-12-19
JP2011277473 2011-12-19
JP2012034695 2012-02-21
JP2012-034695 2012-02-21

Publications (1)

Publication Number Publication Date
WO2013008911A1 true WO2013008911A1 (ja) 2013-01-17

Family

ID=47506186

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/067922 WO2013008911A1 (ja) 2011-07-13 2012-07-13 中枢神経原発悪性リンパ腫患者の予後予測方法、キット及び使用

Country Status (2)

Country Link
JP (1) JP5963748B2 (ja)
WO (1) WO2013008911A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113470753A (zh) * 2021-06-18 2021-10-01 广州医科大学附属肿瘤医院 基于白蛋白和ecog-ps的原发性中枢神经系统淋巴瘤预后模型建立方法及应用

Non-Patent Citations (7)

* Cited by examiner, † Cited by third party
Title
ISHWARAN, H. ET AL.: "High-dimensional variable selection for survival data.", J. AMER. STAT. ASSOC., vol. 105, March 2010 (2010-03-01), pages 205 - 217 *
ISHWARAN, H. ET AL.: "Random survival forests for high-dimensional data.", STAT. ANAL. DATA MINING, vol. 4, January 2011 (2011-01-01), pages 115 - 132 *
JIANG, H. ET AL.: "Joint analysis of two microarray gene-expression data sets to select lung adenocarcinoma marker genes.", BMC BIOINFORMATICS., vol. 5, no. 81, 24 June 2004 (2004-06-24), pages 1/12 - 12/12 *
MA, Y. ET AL.: "Population-based molecular prognosis of breast cancer by transcriptional profiling.", CLIN. CANCER RES., vol. 13, April 2007 (2007-04-01), pages 2014 - 2022 *
SUNG, C.O. ET AL.: "Genomic profiling combined with gene expression profiling in primary central nervous system lymphoma.", BLOOD, vol. 117, no. 4, January 2011 (2011-01-01), pages 1291 - 1300 *
TOSHIO SHIMOKAWA ET AL.: "Regularized Random Forest Method for Survival Analysis", IEICE TECHNICAL REPORT, vol. 110, 2010, pages 71 - 77 *
YOSHITAKA NARITA ET AL.: "Akusei Noshuyo no Zuieki Tanpaku Soshiki Proteomics Kaiseki ni yoru Shinki Shindan Marker no Kaihatsu, Kisho Gan (Akusei Noshuyo) no Kobetsu Tekiseika Chiryo no Tameno TRI(Translational Research Informatics) System no Kochiku ni Kansuru Kenkyu", HEISEI 19 NENDO SOKATSU KENKYU HOKOKUSHO, 2008, pages 11 - 16 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113470753A (zh) * 2021-06-18 2021-10-01 广州医科大学附属肿瘤医院 基于白蛋白和ecog-ps的原发性中枢神经系统淋巴瘤预后模型建立方法及应用

Also Published As

Publication number Publication date
JPWO2013008911A1 (ja) 2015-02-23
JP5963748B2 (ja) 2016-08-03

Similar Documents

Publication Publication Date Title
Wach et al. MicroRNA profiles of prostate carcinoma detected by multiplatform microRNA screening
US8349555B2 (en) Methods and compositions for predicting death from cancer and prostate cancer survival using gene expression signatures
Jansen et al. Decreased expression of ABAT and STC2 hallmarks ER-positive inflammatory breast cancer and endocrine therapy resistance in advanced disease
Zhang et al. Downregulation of long non-coding RNA HCG11 predicts a poor prognosis in prostate cancer
JP6351112B2 (ja) 前立腺癌の予後を定量化するための遺伝子発現プロフィールアルゴリズムおよび試験
Clarke et al. Intraepithelial T cells and prognosis in ovarian carcinoma: novel associations with stage, tumor type, and BRCA1 loss
ES2525382T3 (es) Método para la predicción de recurrencia del cáncer de mama bajo tratamiento endocrino
Guo et al. Confirmation of gene expression–based prediction of survival in non–small cell lung cancer
JP2018068299A (ja) 遺伝子発現を用いた前立腺癌の予後を定量化する方法
JP2020500515A (ja) 乳がん患者の予後の予測方法
Rajan et al. MiRNA expression profiling and emergence of new prognostic signature for oral squamous cell carcinoma
MX2013013746A (es) Biomarcadores para cancer de pulmon.
Vuaroqueaux et al. Low E2F1 transcript levels are a strong determinant of favorable breast cancer outcome
CN109072481B (zh) 早期乳腺癌内分泌治疗后剩余风险的基因特征
Baehner et al. Genomic signatures of cancer: basis for individualized risk assessment, selective staging and therapy
US20120123105A1 (en) Gene Signature for Diagnosis and Prognosis of Breast Cancer and Ovarian Cancer
CN104755627A (zh) 用于肝样本的分类和局灶性结节不典型增生、肝细胞腺瘤和肝细胞癌的诊断的新方法
DK3141617T3 (en) PROCEDURE FOR PREVENTING THE CANCER OF A CANCER ON A PATIENT BY ANALYZING GENEPRESSION
CN113462776B (zh) m6A修饰相关联合基因组在预测肾透明细胞癌患者免疫治疗疗效中的应用
JP2011509689A (ja) Ii及びiii期結腸癌の分子病期分類並びに予後診断
Hwang et al. Genomic copy number alterations as predictive markers of systemic recurrence in breast cancer
AU2018219354B2 (en) Algorithms and methods for assessing late clinical endpoints in prostate cancer
Low et al. A formalin-fixed paraffin-embedded (FFPE)-based prognostic signature to predict metastasis in clinically low risk stage I/II microsatellite stable colorectal cancer
Browne et al. MicroRNA expression profiles in upper tract urothelial carcinoma differentiate tumor grade, stage, and survival: Implications for clinical decision-making
US9195796B2 (en) Malignancy-risk signature from histologically normal breast tissue

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12810915

Country of ref document: EP

Kind code of ref document: A1

DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)
ENP Entry into the national phase

Ref document number: 2013523999

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12810915

Country of ref document: EP

Kind code of ref document: A1