WO2013008439A1 - Non-aqueous electrolyte and non-aqueous electrolyte secondary cell employing same - Google Patents

Non-aqueous electrolyte and non-aqueous electrolyte secondary cell employing same Download PDF

Info

Publication number
WO2013008439A1
WO2013008439A1 PCT/JP2012/004411 JP2012004411W WO2013008439A1 WO 2013008439 A1 WO2013008439 A1 WO 2013008439A1 JP 2012004411 W JP2012004411 W JP 2012004411W WO 2013008439 A1 WO2013008439 A1 WO 2013008439A1
Authority
WO
WIPO (PCT)
Prior art keywords
negative electrode
coo
fluorinated ester
nonaqueous electrolyte
weight
Prior art date
Application number
PCT/JP2012/004411
Other languages
French (fr)
Japanese (ja)
Inventor
出口 正樹
Original Assignee
パナソニック株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニック株式会社 filed Critical パナソニック株式会社
Publication of WO2013008439A1 publication Critical patent/WO2013008439A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0566Liquid materials
    • H01M10/0567Liquid materials characterised by the additives
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0566Liquid materials
    • H01M10/0569Liquid materials characterised by the solvents
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/133Electrodes based on carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/621Binders
    • H01M4/622Binders being polymers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0017Non-aqueous electrolytes
    • H01M2300/0025Organic electrolyte
    • H01M2300/0028Organic electrolyte characterised by the solvent
    • H01M2300/0037Mixture of solvents
    • H01M2300/004Three solvents
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to a non-aqueous electrolyte and a non-aqueous electrolyte secondary battery, and more particularly to a composition of the non-aqueous electrolyte.
  • a nonaqueous electrolyte contained in a nonaqueous electrolyte secondary battery represented by a lithium ion secondary battery includes a nonaqueous solvent and a solute dissolved in the nonaqueous solvent.
  • a solute lithium hexafluorophosphate (LiPF 6 ), lithium tetrafluoroborate (LiBF 4 ), or the like is used.
  • Nonaqueous solvents include chain carbonates, cyclic carbonates, cyclic carboxylic acid esters, chain ethers, cyclic ethers and the like.
  • chain carbonate examples include diethyl carbonate (DEC) and ethyl methyl carbonate (EMC).
  • examples of the cyclic carbonate include ethylene carbonate (EC), propylene carbonate (PC), vinylene carbonate (VC), and the like. Cyclic carbonates such as EC and PC have a high dielectric constant and are advantageous for obtaining high lithium ion conductivity, but have high viscosity. Therefore, it is common to use a mixture with a chain carbonate such as DEC or EMC having a low viscosity.
  • a carbon material is generally used as a negative electrode material.
  • the carbon material may cause a side reaction with the non-aqueous electrolyte as described above, and may deteriorate battery characteristics.
  • SEI solid-electrolyte-interface
  • Patent Document 1 discloses that 1,3-propane sultone (PS) and VC are predetermined for non-aqueous solvents including PC, EC and DEC. It is proposed to be included as an additive in the composition of
  • Patent Documents 2 and 3 addition of a fluorine compound such as a fluorinated ester to the non-aqueous electrolyte is also being studied (Patent Documents 2 and 3).
  • a fluorine compound such as a fluorinated ester
  • Patent Document 2 0.01 to 50% by weight of a specific fluorine compound is added to the nonaqueous electrolyte for the purpose of suppressing the decomposition of the nonaqueous electrolyte at the interface between the positive electrode and the separator.
  • 0.01 to 15% by weight of a fluorinated ester compound is added to a mixed solution containing EC and EMC in a volume ratio of 4: 6.
  • Patent Document 3 proposes that a non-aqueous solvent contains a chain fluorinated ester having a specific composition. According to Patent Document 3, the chain fluorinated ester and light metal ions are appropriately solvated and stabilized, so that the precipitation of dendritic metal in the negative electrode is suppressed.
  • Patent Document 1 since the reduction potentials of PS and PC are close to each other, reduction decomposition of PC is likely to occur preferentially over film formation by PS. Therefore, it is difficult to sufficiently suppress the side reaction between the negative electrode and PC.
  • Patent Document 1 proposes a non-aqueous electrolyte having a large weight ratio of DEC.
  • a chain carbonate such as DEC has an oxidation potential lower than that of a cyclic carbonate, and is easily oxidatively decomposed on the positive electrode side. Further, the chain carbonate is easily reductively decomposed because the molecular structure has a low electron density of carbonyl carbon. Therefore, when DEC is used as the main solvent as in Patent Document 1, a large amount of gas is generated during the charge / discharge cycle, and the charge / discharge capacity of the battery tends to decrease.
  • Patent Documents 2 and 3 the combination of the fluorinated ester and other components, the number of fluorine atoms of the fluorinated ester, the position where the fluorine atoms are bonded, etc. are not fully considered, and the oxidation resistance and non-aqueous electrolyte are not considered. Compatibility with other components contained tends to decrease.
  • the non-aqueous electrolyte proposed in Patent Document 2 contains EMC which is a chain carbonate as a main solvent.
  • EMC is susceptible to oxidative degradation and reductive degradation, like DEC. Therefore, in the proposal of patent document 2, suppression of gas generation is insufficient.
  • an object of the present invention is to provide a nonaqueous electrolyte capable of suppressing gas generation during a charge / discharge cycle of a nonaqueous electrolyte secondary battery.
  • One aspect of the present invention includes a nonaqueous solvent and a solute dissolved in the nonaqueous solvent.
  • the nonaqueous solvent includes ethylene carbonate, propylene carbonate, and a fluorinated ester having three fluorine atoms.
  • the fluorinated ester all the fluorine atoms are bonded to the terminal carbon atom not located at the ⁇ -position of the carbonyl group, and the number of carbon atoms excluding the carbon atom contained in the ester group of the fluorinated ester is 5 or less, ethylene carbonate, propylene carbonate, the weight ratio W EC ethylene carbonate to the total of the fluorinated ester is from 5 to 30 wt%, the weight ratio W PC propylene carbonate relative to the total of 20 to 55 wt% Further, the present invention relates to a non-aqueous electrolyte in which the weight ratio W FE of the fluorinated ester in the total is 20 to 50% by weight.
  • Another aspect of the present invention includes a positive electrode, a negative electrode, a separator disposed between the positive electrode and the negative electrode, and the nonaqueous electrolyte described above, and the negative electrode is attached to the negative electrode core material and the negative electrode core material.
  • the present invention relates to a secondary battery.
  • gas generation during the charge / discharge cycle of the nonaqueous electrolyte secondary battery can be effectively suppressed.
  • FIG. 1 is a longitudinal sectional view schematically showing a configuration of a nonaqueous electrolyte secondary battery according to an embodiment of the present invention.
  • the nonaqueous electrolyte according to the present invention includes a nonaqueous solvent and a solute dissolved in the nonaqueous solvent.
  • the non-aqueous solvent contains ethylene carbonate (EC), propylene carbonate (PC), and a fluorinated ester having three fluorine atoms as a main solvent.
  • the main solvent preferably occupies 80% by weight or more and 100% by weight or less of the whole nonaqueous electrolyte, and more preferably 90-100% by weight. With such a composition, since the non-aqueous solvent contains only a small amount of chain carbonate that is relatively easily decomposed, the effect of suppressing gas generation is enhanced.
  • EC and PC have a high dielectric constant and are advantageous for improving lithium ion conductivity. Since PC has high oxidation resistance, it is particularly advantageous for suppressing gas generation at the positive electrode. Further, since PC (melting point: ⁇ 49 ° C.) has a lower melting point than EC (melting point: 37 ° C.), it is advantageous for improving rate characteristics at low temperatures. On the other hand, EC forms a lithium ion conductive film on the negative electrode. This coating is considered to play a role of enabling insertion and desorption reactions of lithium ions with respect to the negative electrode, and improves the charge acceptance of the negative electrode.
  • EC forms a relatively dense film
  • an effect of suppressing the reductive decomposition of the nonaqueous electrolyte can be obtained.
  • the EC-derived film alone has low heat resistance, it is easily peeled off at high temperatures.
  • a hybrid film derived from EC and a fluorinated ester is relatively dense and has high heat resistance.
  • cyclic carbonates such as EC and PC have a relatively high viscosity. Therefore, when the non-aqueous electrolyte contains a large amount of cyclic carbonate, lithium ion conductivity at a low temperature may be lowered. For this reason, it is considered desirable to mix cyclic carbonates such as EC and PC and chain carbonates (DEC, EMC, etc.) having a low viscosity.
  • a predetermined fluorinated ester having 5 or less carbon atoms excluding carbon atoms contained in the ester group (—COO—) is added.
  • a fluorinated ester is chemically stable and has a low viscosity as compared with a chain carbonate. Therefore, in the present invention, the non-aqueous electrolyte may not contain a chain carbonate. Therefore, the viscosity of the nonaqueous electrolyte can be sufficiently lowered while suppressing gas generation.
  • the rate characteristics at low temperatures can be improved while suppressing gas generation during charge / discharge cycles and during storage in a high temperature environment.
  • the number of carbon atoms excluding the ester group is more preferably 3 to 4 in terms of viscosity and compatibility with other components.
  • the fluorinated ester according to the present invention forms a film containing LiF on the negative electrode during the initial charge / discharge of the battery.
  • a film containing LiF has high heat resistance and is difficult to peel off even at high temperatures.
  • a film containing LiF alone is a relatively sparse film, but is considered to be a dense and highly heat-resistant film by being mixed with a film derived from EC or an additive.
  • EC forms a relatively dense film, but a film derived from EC has low heat resistance, and thus is easily peeled off at high temperatures.
  • a hybrid film derived from EC and a fluorinated ester is relatively dense and has high heat resistance. Therefore, the hybrid coating is difficult to peel off even at high temperatures and can suppress the reductive decomposition of the nonaqueous electrolyte, particularly PC, regardless of the temperature.
  • gas generation can be greatly suppressed even at the end of the charge / discharge cycle of the nonaqueous electrolyte secondary battery. This is considered to be because even if lithium is deposited on the negative electrode surface at the end of the cycle, a film containing LiF is formed on the surface of lithium by the action of the fluorinated ester, and the reaction between lithium and the nonaqueous electrolyte is suppressed. .
  • the mechanism by which a film containing LiF is formed on the negative electrode is considered as follows. Since the fluorine atom has a high electronegativity, the electron density of the carbon atom to which the fluorine atom of the fluorinated ester is bonded is low. Starting from this carbon atom, the fluorinated ester is susceptible to reductive decomposition. Fluoride ions desorbed by reductive decomposition are combined with lithium ions and deposited on the negative electrode surface. As a result, it is considered that a film containing LiF is formed.
  • the coating containing LiF can be confirmed using X-ray photoelectron spectroscopy (XPS). Specifically, the battery after charge / discharge is disassembled, the negative electrode is sampled, and the sample is washed with a solvent such as EMC. Thereby, the components of the remaining nonaqueous electrolyte are removed. The washed sample is dried. Thereafter, XPS measurement is performed to obtain an energy spectrum of emitted photoelectrons. By analyzing the obtained spectrum, the Li and F elements present on the surface of the sample can be identified. Moreover, an element can be quantified from the ratio of the peak areas of each element. Furthermore, since the peak position of each element shifts due to the difference in chemical state, the peak derived from the LiF bond can be identified from the shift amount.
  • XPS X-ray photoelectron spectroscopy
  • the fluorinated ester according to the present invention has three fluorine atoms.
  • Such a fluorinated ester is excellent in compatibility with other components contained in the non-aqueous solvent and oxidation resistance. If the number of fluorine atoms contained in the molecule of the fluorinated ester is 2 or less, sufficient oxidation resistance cannot be obtained. Moreover, it is thought that the component of the film containing LiF decreases and the heat resistance of the whole film falls. On the other hand, if the number of fluorine atoms contained in the fluorinated ester molecule is 4 or more, sufficient compatibility with other components contained in the non-aqueous solvent cannot be obtained, and it is difficult to prepare a stable non-aqueous electrolyte. become. Moreover, there are too many components of the film containing LiF, and the denseness of the film is lowered. Therefore, it is important that the number of fluorine atoms contained in the fluorinated ester is 3.
  • the fluorine atom contained in the fluorinated ester has a strong electron withdrawing property. Therefore, when a fluorine atom and a hydrogen atom are bonded to the same carbon atom, the acidity of the hydrogen atom is increased and a gas such as hydrogen fluoride is easily generated. Therefore, in the fluorinated ester according to the present invention, all the fluorine atoms are bonded to the terminal carbon atom not located at the ⁇ -position of the carbonyl group. That is, the fluorinated ester according to the present invention has only one terminal CF 3 that is not located at the ⁇ -position of the carbonyl group. Since fluorine atoms and hydrogen atoms are not bonded to the same carbon atom, generation of hydrogen fluoride as described above is suppressed.
  • the weight ratio W FE of the fluorinated ester in the total of EC, PC and fluorinated ester is 20 to 50% by weight.
  • WFE 20% by weight or more
  • the ratio of fluorinated ester having high oxidation resistance in the non-aqueous solvent increases, and gas generation can be suppressed more favorably.
  • the rate characteristics at a low temperature can be improved.
  • WFE 50% by weight or less good ion conductivity can be secured, and an appropriate amount of a stable coating can be formed on the negative electrode.
  • WFE is preferably 25% by weight or more, and more preferably 30% by weight or more. Moreover, it is preferable that it is 45 weight% or less, and it is more preferable that it is 40 weight% or less.
  • the fluorinated ester is represented by the general formula: R 1 —COO—R 2 , R 1 is a carbon chain having 2 to 4 carbon atoms, and three fluorine atoms are bonded to the terminal carbon atom.
  • R 2 preferably has a structure having a carbon chain having 1 to 3 carbon atoms. Since the fluorinated ester having such a structure is easy to form a stable film and has high oxidation resistance, gas generation can be satisfactorily suppressed. Moreover, since such a fluorinated ester has a low viscosity, the rate characteristics at low temperature are further improved.
  • R 1 is more preferably a carbon chain having 3 to 4 carbon atoms, and particularly preferably a carbon chain having 3 carbon atoms.
  • R 2 is more preferably a carbon chain having 1 to 2 carbon atoms.
  • the fluorinated ester is represented by the general formula: R 3 —COO—R 4 , R 3 is a carbon chain having 1 to 3 carbon atoms, R 4 is a carbon chain having 2 to 4 carbon atoms, and
  • the terminal carbon atom may have a structure in which three fluorine atoms are bonded. Since the fluorinated ester having such a structure also easily forms a stable film and has high oxidation resistance, gas generation can be satisfactorily suppressed. Moreover, since the viscosity is low, the rate characteristics at low temperature are further improved.
  • Examples thereof include compounds such as CH 2 CF 3 , CH 3 CH 2 —COO—CH 2 CF 3 , and CH 3 CH 2 —COO—CH 2 CH 2 CF 3 .
  • R 3 is more preferably a carbon chain having 2 to 3 carbon atoms.
  • R 4 is more preferably a carbon chain having 2 to 3 carbon atoms.
  • the above fluorinated esters may be used alone or in any combination of a plurality of types.
  • the carbon chain having n carbon atoms is a group having n carbon atoms, specifically, an alkyl group or a fluoroalkyl group.
  • EC and, PC and, PC weight ratio W PC to the total of the fluorinated ester is 20 to 55% by weight. From the viewpoint of suppressing gas generation due to oxidative decomposition of EC, it is preferable that the weight ratio of PC is relatively larger than the weight ratio of EC. Furthermore, since the melting point of PC is lower than that of EC, solidification of the nonaqueous electrolyte at a low temperature can be suppressed by increasing the weight ratio of PC. Therefore, it is advantageous in terms of the low temperature characteristics of the nonaqueous electrolyte secondary battery.
  • W PC is preferably 30 wt% or more, more preferably 40 wt% or more. Moreover, it is preferable that it is 55 weight% or less, and it is more preferable that it is 50 weight% or less. These upper and lower limits can be arbitrarily combined.
  • W PC When W PC is less than 20 wt%, the amount of EC in the nonaqueous solvent is relatively large, it may not be sufficiently suppress the generation of gas.
  • W PC exceeds 55 wt%, PC in the negative electrode is reduced and decomposed, there is a case where CH 4, C 3 H 6, C 3 H 8 , etc. gases.
  • the ratio W PC / W FE of the weight ratio W PC of the PC to the total weight ratio W FE of the fluorinated ester in the total of EC, PC and fluorinated ester is 0.6 to 2.2. It is preferable that By setting W PC / W FE to be 0.6 or more, it becomes easy to form an appropriate amount of a stable film on the negative electrode. By setting W PC / W FE to 2.2 or less, gas generation derived from reductive decomposition of PC at the negative electrode can be more effectively suppressed.
  • W PC / W FE is more preferably 1.0 to 1.7.
  • the EC weight ratio W EC in the total of EC, PC and fluorinated ester is 5 to 30% by weight. If WEC is less than 5% by weight, a coating derived from EC may not be sufficiently formed on the negative electrode. As a result, lithium ions are less likely to be occluded or released from the negative electrode, and charge acceptance may be reduced.
  • W EC exceeds 30% by weight in particular occur oxidative decomposition of EC at the positive electrode, there are cases where the greater the amount of gas generation. Further, when W EC exceeds 30% by weight, is formed excessive amount of the coating on the negative electrode reduces the charge acceptance, there is a case where Li is easily precipitated.
  • WEC is 5 to 30% by weight, preferably 10 to 15% by weight, the amount of gas generated due to oxidative decomposition of EC is reduced, and an appropriate amount of a stable coating is formed on the negative electrode.
  • the charge / discharge capacity and rate characteristics of the nonaqueous electrolyte secondary battery are greatly improved.
  • the non-aqueous electrolyte of the present invention may contain at least one selected from a cyclic carbonate having a C ⁇ C unsaturated bond and a sultone compound as an additive.
  • the additive includes a cyclic carbonate having a C ⁇ C unsaturated bond, a stable film is formed mainly on the negative electrode, and decomposition of the nonaqueous electrolyte is more effectively suppressed.
  • the additive contains a sultone compound, a better film is formed on the negative electrode, and a film is also formed on the positive electrode.
  • By forming a film on the positive electrode it is possible to effectively suppress oxidative decomposition of the nonaqueous solvent at the positive electrode in a high-temperature environment.
  • the effect of suppressing the reductive decomposition of the nonaqueous solvent (particularly PC) by the negative electrode coating is enhanced.
  • the amount of additive ie, the total amount of sultone compound and cyclic carbonate having a C ⁇ C unsaturated bond, preferably occupies 0.2 to 5% by weight of the whole non-aqueous electrolyte, 0.5 to 5% by weight or It is more preferably 1 to 5% by weight, and more preferably 2 to 4% by weight.
  • an appropriate amount of a stable film can be formed on the positive electrode and the negative electrode. As a result, reductive decomposition of PC at the negative electrode and oxidative decomposition of EC at the positive electrode are further effectively suppressed.
  • the above additive forms a dense film with a small amount of addition, so it is effective in suppressing the reductive decomposition of PC, but it has low heat resistance and is therefore easily peeled off at high temperatures.
  • the film derived from the additive is considered to be a dense and highly heat-resistant film by being mixed with the film derived from the fluorinated ester. That is, the hybrid (hybrid) film derived from the additive and the fluorinated ester is hardly peeled off even at a high temperature and can suppress the reductive decomposition of the nonaqueous electrolyte, particularly PC, regardless of the temperature.
  • the non-aqueous electrolyte containing EC, PC, and fluorinated ester has an appropriate amount. An amount of a stable coating is likely to be formed. Moreover, in the nonaqueous electrolyte containing EC, PC and fluorinated ester, the total amount of the sultone compound and the cyclic carbonate having a C ⁇ C unsaturated bond is 5% by weight or less of the whole nonaqueous electrolyte. Thus, it is difficult to form a coating film excessively, and lithium ion insertion and desorption reactions are not inhibited, and sufficient charge acceptability is easily obtained.
  • Ratio of weight ratio W C of cyclic carbonate having C ⁇ C unsaturated bond in additive and weight ratio W SL of sultone compound W C / W SL satisfies 0.5 ⁇ W C / W SL ⁇ 3 It is preferable to satisfy.
  • W C / W SL is 0.5 or more, it becomes difficult for the sultone compound to form an excessive film on the negative electrode, and a film made of a cyclic carbonate having a C ⁇ C unsaturated bond is also easily formed on the negative electrode. As a result, good charge acceptability is ensured, and cycle characteristics are unlikely to deteriorate. In addition, the film resistance of the negative electrode is not increased, and the discharge characteristics at low temperatures are less likely to occur.
  • W C / W SL is 3 or less, oxidative decomposition and gas generation of the cyclic carbonate having a C ⁇ C unsaturated bond are suppressed. Moreover, it becomes easy to obtain the effect of suppressing the reductive decomposition at the negative electrode of PC by the sultone compound and the effect of suppressing the oxidative decomposition of the cyclic carbonate having a C ⁇ C unsaturated bond at the positive electrode.
  • W C / W SL is more preferable to satisfy the 0.75 ⁇ W C / W SL ⁇ 1.5.
  • cyclic carbonate having a C ⁇ C unsaturated bond examples include vinylene carbonate (VC), vinyl ethylene carbonate (VEC), and divinyl ethylene carbonate (DVEC). These cyclic carbonates having a C ⁇ C unsaturated bond may be used alone or in combination of two or more. Among these, vinylene carbonate is more preferable because a thin and dense film can be formed on the negative electrode and the film resistance is low.
  • the sultone compound examples include 1,3-propane sultone (PS), 1,4-butane sultone, 1,3-propene sultone (PRS), and the like.
  • a sultone compound may be used individually by 1 type, and may be used in combination of 2 or more type. Of these, 1,3-propane sultone is more preferable because it has a high effect of suppressing reductive decomposition of PC.
  • the additive contains both vinylene carbonate and 1,3-propane sultone.
  • a coating film derived from 1,3-propane sultone is formed on the positive electrode, and a coating film derived from vinylene carbonate and a coating derived from 1,3-propane sultone are formed on the negative electrode. Since the coating derived from vinylene carbonate can suppress an increase in coating resistance, the charge acceptability is improved. Therefore, deterioration of cycle characteristics can be suppressed.
  • the coating derived from 1,3-propane sultone can further suppress the reductive decomposition of PC at the negative electrode and greatly reduce the generation of gases such as CH 4 , C 3 H 6 , and C 3 H 8 .
  • vinylene carbonate When only vinylene carbonate is added, since vinylene carbonate has low oxidation resistance, it may be oxidized and decomposed at the positive electrode to generate gas such as CO 2 .
  • 1,3-propane sultone By adding 1,3-propane sultone together with vinylene carbonate, 1,3-propane sultone forms a film on the surface of the positive electrode, and oxidative decomposition of vinylene carbonate can be suppressed. This makes it possible to greatly suppressed the generation of gas such as CO 2.
  • a more excellent film A non-aqueous electrolyte can be obtained in which is preferentially formed on the electrode.
  • Such a coating does not hinder charge acceptance and is stable.
  • the additive is not limited to the above sultone compound and a cyclic carbonate having a C ⁇ C unsaturated bond.
  • the nonaqueous electrolyte may further contain other compounds.
  • Other compounds are not particularly limited, and examples thereof include fluorinated aromatic compounds such as fluorobenzene (FB), cyclic sulfones such as sulfolane, fluorine-containing compounds such as fluorinated ethers, and cyclic carboxylic acid esters such as ⁇ -butyrolactone. Can be mentioned.
  • the weight ratio of these other additives is preferably 10% by weight or less. These other additives may be used alone or in combination of two or more.
  • the viscosity of the nonaqueous electrolyte at 25 ° C. is, for example, 3 to 7 mPa ⁇ s. Thereby, the fall of the rate characteristic especially at low temperature can be suppressed.
  • the viscosity is measured using a rotary viscometer and a cone plate type spindle.
  • the solute of the nonaqueous electrolyte is not particularly limited.
  • examples thereof include inorganic lithium fluorides such as LiPF 6 and LiBF 4 and lithium imide compounds such as LiN (CF 3 SO 2 ) 2 and LiN (C 2 F 5 SO 2 ) 2 .
  • the nonaqueous electrolyte secondary battery of the present invention will be described.
  • the nonaqueous electrolyte secondary battery includes a positive electrode, a negative electrode, a separator disposed between the positive electrode and the negative electrode, and the nonaqueous electrolyte.
  • the non-aqueous electrolyte secondary battery is preferably charged and discharged at least once before use. Charging / discharging is preferably performed in a range where the potential of the negative electrode is 0.05 to 1.5 V with respect to lithium. By performing such charge and discharge, at least a part of the fluorinated ester contained in the nonaqueous electrolyte is decomposed to form a film containing LiF on the negative electrode.
  • the amount W FE of the fluorinated ester in the non-aqueous electrolyte contained in the battery after charging and discharging is, for example, 18 to 48% by weight.
  • the negative electrode includes a negative electrode core material and a negative electrode mixture layer attached to the negative electrode core material.
  • the negative electrode mixture layer includes graphite particles, a water-soluble polymer that covers the surface of the graphite particles, and a water-soluble material. And a binder for adhering the graphite particles coated with the polymer.
  • a non-aqueous electrolyte containing a fluorinated ester can easily penetrate into the negative electrode.
  • the non-aqueous electrolyte can be present almost uniformly on the surface of the graphite particles, and a film containing LiF can be easily and uniformly formed during initial charging. Therefore, an appropriate amount of a stable film is formed on the negative electrode, and the reductive decomposition of PC can be satisfactorily suppressed. That is, by using the water-soluble polymer and the non-aqueous electrolyte in combination, gas generation can be significantly suppressed as compared with the case where each is used alone.
  • the type of the water-soluble polymer is not particularly limited, and examples thereof include cellulose derivatives, polyacrylic acid, polyvinyl alcohol, polyvinyl pyrrolidone, and derivatives thereof. Of these, the water-soluble polymer preferably contains a cellulose derivative or polyacrylic acid. As the cellulose derivative, methyl cellulose, carboxymethyl cellulose, Na salt of carboxymethyl cellulose and the like are preferable. The molecular weight of the cellulose derivative is preferably 10,000 to 1,000,000. The molecular weight of polyacrylic acid is preferably from 5,000 to 1,000,000.
  • the amount of the water-soluble polymer contained in the negative electrode mixture layer is preferably 0.4 to 2.8 parts by weight, more preferably 0.5 to 1.5 parts by weight per 100 parts by weight of the graphite particles. ⁇ 1 part by weight is particularly preferred.
  • the water-soluble polymer can cover the surface of the graphite particles with a high coverage.
  • the graphite particle surface is not excessively covered with the water-soluble polymer, and the increase in the internal resistance of the negative electrode is also suppressed.
  • the binder to be included in the negative electrode mixture layer is not particularly limited, but is preferably a particulate binder having rubber elasticity.
  • the average particle diameter of the particulate binder is preferably 0.1 ⁇ m to 0.3 ⁇ m, more preferably 0.1 to 0.26 ⁇ m, and particularly preferably 0.1 to 0.15 ⁇ m. Preferably, it is 0.1 to 0.12 ⁇ m.
  • the average particle size of the binder is, for example, an SEM photograph of 10 binder particles taken with a transmission electron microscope (manufactured by JEOL Ltd., acceleration voltage 200 kV), and the average of these maximum diameters. Calculate as a value.
  • a polymer containing a styrene unit and a butadiene unit is particularly preferable. Such a polymer is excellent in elasticity and stable at the negative electrode potential.
  • the amount of the binder contained in the negative electrode mixture layer is preferably 0.4 to 1.5 parts by weight, more preferably 0.4 to 1 part by weight, and more preferably 0.4 to 0.1 parts by weight per 100 parts by weight of the graphite particles. 7 parts by weight is particularly preferred.
  • the water-soluble polymer coats the surface of the graphite particles, the slippage between the graphite particles is good, so that the binder attached to the surface of the graphite particles coated with the water-soluble polymer has sufficient shear. It receives force and acts effectively on the graphite particle surface.
  • a particulate binder having a small average particle size increases the probability of contact with the surface of graphite particles coated with a water-soluble polymer. Therefore, sufficient binding properties are exhibited even with a small amount of the binder.
  • a metal foil or the like is used as the negative electrode core material.
  • copper foil, copper alloy foil, etc. are used as a negative electrode core material.
  • copper foil which may contain components other than copper of 0.2 mol% or less
  • electrolytic copper foil is particularly preferable.
  • the water permeation rate of the negative electrode mixture layer is preferably 3 to 40 seconds.
  • the water penetration rate of the negative electrode mixture layer can be controlled by, for example, the coating amount of the water-soluble polymer.
  • the water permeation speed of the negative electrode mixture layer is 3 to 40 seconds, the non-aqueous electrolyte particularly easily penetrates into the negative electrode. Thereby, reductive decomposition of PC can be suppressed more favorably.
  • the water penetration rate of the negative electrode mixture layer is more preferably 10 to 25 seconds.
  • the water permeation rate of the negative electrode mixture layer is measured in an environment of 25 ° C., for example, by the following method. 2 ⁇ l of water is dropped to bring the droplet into contact with the surface of the negative electrode mixture layer. By measuring the time until the contact angle ⁇ of water with respect to the surface of the negative electrode mixture layer becomes smaller than 10 °, the water permeation rate of the negative electrode mixture layer is obtained.
  • the contact angle of water with the surface of the negative electrode mixture layer may be measured using a commercially available contact angle measuring device (for example, DM-301 manufactured by Kyowa Interface Science Co., Ltd.).
  • the porosity of the negative electrode mixture layer is preferably 24 to 28%.
  • the negative electrode contains graphite particles as a negative electrode active material.
  • the graphite particles are a general term for particles including a region having a graphite structure.
  • the graphite particles include natural graphite, artificial graphite, graphitized mesophase carbon particles, and the like.
  • the diffraction image of graphite particles measured by the wide-angle X-ray diffraction method has a peak attributed to the (101) plane and a peak attributed to the (100) plane.
  • the ratio of the peak intensity I (101) attributed to the (101) plane and the peak intensity I (100) attributed to the (100) plane is 0.01 ⁇ I (101) / I. (100) ⁇ 0.25 is preferably satisfied, and 0.08 ⁇ I (101) / I (100) ⁇ 0.2 is more preferably satisfied.
  • the peak intensity means the peak height.
  • the average particle diameter of the graphite particles is preferably 14 to 25 ⁇ m, more preferably 16 to 23 ⁇ m.
  • the average particle diameter means the median diameter (D50) in the volume particle size distribution of the graphite particles.
  • the volume particle size distribution of the graphite particles can be measured by, for example, a commercially available laser diffraction type particle size distribution measuring apparatus.
  • the average circularity of the graphite particles is preferably 0.9 to 0.95, and more preferably 0.91 to 0.94.
  • the average circularity is represented by 4 ⁇ S / L 2 (where S is the area of the orthographic image of graphite particles, and L is the perimeter of the orthographic image).
  • S is the area of the orthographic image of graphite particles
  • L is the perimeter of the orthographic image.
  • the average circularity of 100 arbitrary graphite particles is preferably in the above range.
  • the specific surface area S of the graphite particles is preferably 3 to 5 m 2 / g, more preferably 3.5 to 4.5 m 2 / g.
  • the specific surface area is included in the above range, the slipperiness of the graphite particles in the negative electrode mixture layer is improved, which is advantageous for improving the adhesive strength between the graphite particles.
  • the preferred amount of the water-soluble polymer that covers the surface of the graphite particles can be reduced.
  • a preferred method includes a step (step (i)) of mixing graphite particles, water, and a water-soluble polymer dissolved in water, and drying the resulting mixture to obtain a dry mixture.
  • a water-soluble polymer is dissolved in water to prepare a water-soluble polymer aqueous solution.
  • the obtained water-soluble polymer aqueous solution and graphite particles are mixed, and then the water is removed and the mixture is dried.
  • the water-soluble polymer efficiently adheres to the surface of the graphite particles, and the coverage of the graphite particle surface with the water-soluble polymer is increased.
  • the viscosity of the water-soluble polymer aqueous solution is preferably controlled to 1000 to 10,000 mPa ⁇ s at 25 ° C.
  • the viscosity is measured using a B-type viscometer at a peripheral speed of 20 mm / s and using a 5 mm ⁇ spindle.
  • the amount of graphite particles mixed with 100 parts by weight of the water-soluble polymer aqueous solution is preferably 50 to 150 parts by weight.
  • the drying temperature of the mixture is preferably 80 to 150 ° C., and the drying time is preferably 1 to 8 hours.
  • the obtained dry mixture, the binder, and the liquid component are mixed to prepare a negative electrode mixture slurry (step (ii)).
  • the binder adheres to the surface of the graphite particles coated with the water-soluble polymer. Because of the good slippage between the graphite particles, the binder attached to the surface of the graphite particles coated with the water-soluble polymer receives sufficient shearing force and is effective on the surface of the graphite particles coated with the water-soluble polymer. Act on.
  • the negative electrode mixture slurry obtained is applied to a negative electrode core material and dried to form a negative electrode mixture layer, whereby a negative electrode is obtained (step (iii)).
  • the method for applying the negative electrode mixture slurry to the negative electrode core material is not particularly limited.
  • the negative electrode mixture slurry is applied in a predetermined pattern on the raw material of the negative electrode core material using a die coat.
  • the drying temperature of the coating film is not particularly limited.
  • the dried coating film is rolled with a rolling roll and controlled to a predetermined thickness. By the rolling process, the adhesive strength between the negative electrode mixture layer and the negative electrode core material and the adhesive strength between the graphite particles coated with the water-soluble polymer are increased.
  • the negative electrode mixture layer thus obtained is cut into a predetermined shape together with the negative electrode core material, whereby the negative electrode is completed.
  • the liquid component used for preparing the negative electrode mixture slurry by the above method is not particularly limited, but water, an aqueous alcohol solution, and the like are preferable, and water is most preferable.
  • NMP N-methyl-2-pyrrolidone
  • a positive electrode will not be specifically limited if it can be used as a positive electrode of a nonaqueous electrolyte secondary battery.
  • a positive electrode mixture slurry containing a positive electrode active material, a conductive agent such as carbon black, and a binder such as polyvinylidene fluoride is applied to a positive electrode core material such as an aluminum foil, dried, and rolled. Can be obtained.
  • a lithium-containing transition metal composite oxide is preferable.
  • Representative examples of the lithium-containing transition metal composite oxide include LiCoO 2 , LiNiO 2 , LiMn 2 O 4 , LiMnO 2 and the like.
  • a positive electrode contains the complex oxide containing lithium and nickel from the point from which the effect which suppresses gas generation
  • capacitance is acquired more notably.
  • the molar ratio of nickel to lithium contained in the composite oxide is preferably 30 to 100 mol%.
  • the composite oxide preferably further contains at least one selected from the group consisting of manganese and cobalt, and the total molar ratio of manganese and cobalt to lithium is preferably 70 mol% or less.
  • the composite oxide further preferably contains an element M other than Li, Ni, Mn, Co and O, and the molar ratio of the element M to lithium is preferably 1 to 10 mol%.
  • Specific lithium nickel-containing composite oxides include, for example, the general formula (1): Li x Ni y M z Me 1- (y + z) O 2 + d (1) (M is at least one element selected from the group consisting of Co and Mn, Me is at least one element selected from the group consisting of Al, Cr, Fe, Mg, and Zn; 98 ⁇ x ⁇ 1.1, 0.3 ⁇ y ⁇ 1, 0 ⁇ z ⁇ 0.7, 0.9 ⁇ (y + z) ⁇ 1, ⁇ 0.01 ⁇ d ⁇ 0 .01).
  • M is at least one element selected from the group consisting of Co and Mn
  • Me is at least one element selected from the group consisting of Al, Cr, Fe, Mg, and Zn
  • a microporous film made of polyethylene, polypropylene or the like is generally used as the separator.
  • the thickness of the separator is, for example, 10 to 30 ⁇ m.
  • the present invention can be applied to non-aqueous electrolyte secondary batteries having various shapes such as a cylindrical shape, a flat shape, a coin shape, and a square shape, and the shape of the battery is not particularly limited.
  • Example 1 Production of negative electrode Step (i) First, carboxymethylcellulose (hereinafter referred to as CMC, molecular weight 400,000), which is a water-soluble polymer, was dissolved in water to obtain an aqueous solution having a CMC concentration of 1% by weight. While mixing 100 parts by weight of natural graphite particles (average particle size 20 ⁇ m, average circularity 0.92, specific surface area 4.2 m 2 / g) and 100 parts by weight of CMC aqueous solution, the temperature of the mixture is controlled at 25 ° C. Stir. Thereafter, the mixture was dried at 120 ° C. for 5 hours to obtain a dry mixture. In the dry mixture, the amount of CMC per 100 parts by weight of graphite particles was 1 part by weight.
  • CMC carboxymethylcellulose
  • Step (ii) 101 parts by weight of the obtained dry mixture, 0.6 parts by weight of a binder (hereinafter referred to as SBR) having a rubber elasticity, which is in the form of particles having an average particle size of 0.12 ⁇ m, and containing styrene units and butadiene units; .9 parts by weight of carboxymethyl cellulose and an appropriate amount of water were mixed to prepare a negative electrode mixture slurry.
  • SBR was mixed with other components in an emulsion using water as a dispersion medium (BM-400B (trade name) manufactured by Nippon Zeon Co., Ltd., SBR weight ratio: 40% by weight).
  • Step (iii) The obtained negative electrode mixture slurry was applied to both surfaces of an electrolytic copper foil (thickness 12 ⁇ m) as a negative electrode core material using a die coat, and the coating film was dried at 120 ° C. Thereafter, the dried coating film was rolled with a rolling roller at a linear pressure of 0.25 ton / cm to form a negative electrode mixture layer having a thickness of 160 ⁇ m and a graphite density of 1.65 g / cm 3 . The negative electrode mixture layer was cut into a predetermined shape together with the negative electrode core material to obtain a negative electrode.
  • the water penetration rate of the negative electrode mixture layer was measured by the following method. 2 ⁇ l of water was dropped to bring the droplet into contact with the surface of the negative electrode mixture layer. Thereafter, using a contact angle measuring device (DM-301 manufactured by Kyowa Interface Science Co., Ltd.), the time until the contact angle ⁇ of water with respect to the negative electrode mixture layer surface at 25 ° C. was smaller than 10 ° was measured. The water penetration rate of the negative electrode mixture layer was 15 seconds.
  • the porosity of the negative electrode mixture layer was calculated from the true density of each material constituting the negative electrode mixture and found to be 25%.
  • LiPF 6 is dissolved at a concentration of 1 mol / liter in a mixed solvent containing a weight ratio of 50:40, and 1% by weight of 1,3-propane sultone, which is a sultone compound, has a C ⁇ C unsaturated bond.
  • a non-aqueous electrolyte was prepared by containing 2% by weight of vinylene carbonate, which is a cyclic carbonate. When measured with a rotational viscometer (cone plate type, cone plate radius: 24 mm), the viscosity of the nonaqueous electrolyte at 25 ° C. was 4.4 mPa ⁇ s.
  • (D) Battery assembly A square lithium ion secondary battery as shown in FIG. 1 was produced. A negative electrode and a positive electrode are wound through a separator (A089 (trade name) manufactured by Celgard Co., Ltd.) made of a polyethylene microporous film having a thickness of 20 ⁇ m between the negative electrode and the positive electrode. Group 21 was configured. The electrode group 21 was housed in an aluminum square battery can 20. The battery can 20 has a bottom part and a side wall, the top part is opened, and the shape is substantially rectangular. The thickness of the main flat part of the side wall was 80 ⁇ m. Thereafter, an insulator 24 for preventing a short circuit between the battery can 20 and the positive electrode lead 22 or the negative electrode lead 23 was disposed on the electrode group 21.
  • a separator A089 (trade name) manufactured by Celgard Co., Ltd.) made of a polyethylene microporous film having a thickness of 20 ⁇ m between the negative electrode and the positive electrode.
  • Group 21 was configured.
  • the electrode group 21
  • a rectangular sealing plate 25 having a negative electrode terminal 27 surrounded by an insulating gasket 26 in the center was disposed in the opening of the battery can 20.
  • the negative electrode lead 23 was connected to the negative electrode terminal 27.
  • the positive electrode lead 22 was connected to the lower surface of the sealing plate 25.
  • the end of the opening and the sealing plate 25 were welded with a laser to seal the opening of the battery can 20. Thereafter, 2.5 g of nonaqueous electrolyte was injected into the battery can 20 from the injection hole of the sealing plate 25.
  • the liquid injection hole was closed by welding with a plug 29 to complete the prismatic lithium ion secondary battery 1 having a height of 50 mm, a width of 34 mm, an inner space thickness of about 5.2 mm, and a design capacity of 850 mAh.
  • Example 2 Table 1 shows W EC : W PC : W FE , which is a weight ratio of ethylene carbonate (EC), propylene carbonate (PC), and methyl-2,2,2-trifluoropropionate (FE).
  • EC ethylene carbonate
  • PC propylene carbonate
  • FE methyl-2,2,2-trifluoropropionate
  • a nonaqueous electrolyte was prepared in the same manner as in Example 1 except that fluorobenzene (FB) was further added at the weight ratio (W FB ) shown in Table 1, and the same as in Example 1 was used. Thus, batteries 15 and 16 were produced.
  • fluorobenzene FB
  • W FB weight ratio
  • a non-aqueous electrolyte containing EC and EMC was prepared at a weight ratio (W EC : W EMC ) shown in Table 1, and a battery 17 was produced in the same manner as in Example 1 using this. Batteries 2, 8-9, 14, 16 and 17 are comparative examples. The obtained battery was evaluated in the same manner as in Example 1. The results are shown in Table 1.
  • Example 3 A nonaqueous electrolyte was prepared in the same manner as in Example 1 except that the fluorinated ester shown in Table 2 was used instead of methyl-2,2,2-trifluoropropionate. Batteries 18 to 33 were produced in the same manner as in Example 1 except that the obtained nonaqueous electrolyte was used. The batteries 27 to 33 are comparative examples. The obtained battery was evaluated in the same manner as in Example 1. The results are shown in Table 2.
  • Example 4 In the non-aqueous electrolyte, an additive containing 1,3-propane sultone, which is a sultone compound, and vinylene carbonate, which is a cyclic carbonate having a C ⁇ C unsaturated bond, in a weight ratio of 1: 2, was included in the amounts shown in Table 3.
  • a nonaqueous electrolyte was prepared in the same manner as in Example 1 except that.
  • Batteries 34 to 40 were produced in the same manner as in Example 1 except that the obtained nonaqueous electrolyte was used.
  • the obtained battery was evaluated in the same manner as in Example 1. The results are shown in Table 3.
  • Example 5 Batteries 41 to 44 were produced in the same manner as in Example 1 except that the water-soluble polymer shown in Table 4 was used.
  • the present invention is, for example, a non-aqueous electrolyte secondary used for power supplies of electronic devices such as mobile phones, personal computers, digital still cameras, game devices, and portable audio devices, and vehicles such as electric vehicles and hybrid vehicles (HEV). Although useful in batteries, the field of application of the present invention is not limited to these.
  • electronic devices such as mobile phones, personal computers, digital still cameras, game devices, and portable audio devices
  • vehicles such as electric vehicles and hybrid vehicles (HEV).
  • HEV electric vehicles and hybrid vehicles

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Inorganic Chemistry (AREA)
  • Secondary Cells (AREA)

Abstract

Provided is a non-aqueous electrolyte containing a non-aqueous solvent, and a solute dissolved in the non-aqueous solvent. The non-aqueous solvent contains ethylene carbonate, propylene carbonate, and a fluorinated ester having three fluorine atoms, all of the fluorine atoms in the fluorinated ester being bonded to terminal carbon atoms not situated at the α position of the carbonyl group, and the carbon number, excluding the ester group of the fluorinated ester, being 5 or fewer. The weight proportion WEC of the ethylene carbonate in the total of the ethylene carbonate, the propylene carbonate, and the fluorinated ester is 5-30 wt%, the weight proportion WPC of the propylene carbonate in the total is 20-55 wt%, and the weight proportion WFE of the fluorinated ester in the total is 20-50 wt%.

Description

非水電解質およびそれを用いた非水電解質二次電池Nonaqueous electrolyte and nonaqueous electrolyte secondary battery using the same
 本発明は、非水電解質および非水電解質二次電池に関し、特に非水電解質の組成に関する。 The present invention relates to a non-aqueous electrolyte and a non-aqueous electrolyte secondary battery, and more particularly to a composition of the non-aqueous electrolyte.
 リチウムイオン二次電池に代表される非水電解質二次電池に含まれる非水電解質は、非水溶媒と、非水溶媒に溶解された溶質とを含む。溶質としては、六フッ化リン酸リチウム(LiPF6)、四フッ化ホウ酸リチウム(LiBF4)等が用いられている。 A nonaqueous electrolyte contained in a nonaqueous electrolyte secondary battery represented by a lithium ion secondary battery includes a nonaqueous solvent and a solute dissolved in the nonaqueous solvent. As the solute, lithium hexafluorophosphate (LiPF 6 ), lithium tetrafluoroborate (LiBF 4 ), or the like is used.
 非水溶媒は、鎖状カーボネート、環状カーボネート、環状カルボン酸エステル、鎖状エーテル、環状エーテル等を含む。鎖状カーボネートとしては、ジエチルカーボネート(DEC)、エチルメチルカーボネート(EMC)等が挙げられる。環状カーボネートとしては、エチレンカーボネート(EC)、プロピレンカーボネート(PC)、ビニレンカーボネート(VC)等が挙げられる。ECやPCなどの環状カーボネートは誘電率が高く、高いリチウムイオン伝導性を得るために有利であるが、高粘度である。そのため、低粘度であるDEC、EMCなどの鎖状カーボネートと混合して用いることが一般的である。 Nonaqueous solvents include chain carbonates, cyclic carbonates, cyclic carboxylic acid esters, chain ethers, cyclic ethers and the like. Examples of the chain carbonate include diethyl carbonate (DEC) and ethyl methyl carbonate (EMC). Examples of the cyclic carbonate include ethylene carbonate (EC), propylene carbonate (PC), vinylene carbonate (VC), and the like. Cyclic carbonates such as EC and PC have a high dielectric constant and are advantageous for obtaining high lithium ion conductivity, but have high viscosity. Therefore, it is common to use a mixture with a chain carbonate such as DEC or EMC having a low viscosity.
 非水電解質二次電池では、一般的に炭素材料が負極材料として用いられている。炭素材料は、上記のような非水電解質との間で副反応を生じ、電池特性を低下させることがある。炭素材料と非水電解質との副反応を抑制するためには、電極表面に被膜(SEI:solid electrolyte interface)を形成することが重要である。被膜は電池特性に影響を及ぼすため、その構造や性質を制御することが重要である。 In a nonaqueous electrolyte secondary battery, a carbon material is generally used as a negative electrode material. The carbon material may cause a side reaction with the non-aqueous electrolyte as described above, and may deteriorate battery characteristics. In order to suppress a side reaction between the carbon material and the nonaqueous electrolyte, it is important to form a coating (SEI: solid-electrolyte-interface) on the electrode surface. Since the coating affects battery characteristics, it is important to control its structure and properties.
 電極表面に化学的安定性の高い被膜を形成する技術として、特許文献1では、PC、ECおよびDECを含む非水溶媒に対して、1,3-プロパンスルトン(PS)とVCとを、所定の組成で添加剤として含ませることを提案している。 As a technique for forming a film having high chemical stability on the electrode surface, Patent Document 1 discloses that 1,3-propane sultone (PS) and VC are predetermined for non-aqueous solvents including PC, EC and DEC. It is proposed to be included as an additive in the composition of
 一方、フッ素化エステルなどのフッ素化合物を非水電解質に添加することも検討されている(特許文献2および3)。特許文献2は、正極とセパレータとの界面における非水電解質の分解を抑制することを目的として、非水電解質に特定のフッ素化合物を0.01~50重量%添加している。例えば、ECとEMCとを4:6の体積割合で含む混合液に、0.01~15重量%のフッ素化エステル化合物を添加している。 On the other hand, addition of a fluorine compound such as a fluorinated ester to the non-aqueous electrolyte is also being studied (Patent Documents 2 and 3). In Patent Document 2, 0.01 to 50% by weight of a specific fluorine compound is added to the nonaqueous electrolyte for the purpose of suppressing the decomposition of the nonaqueous electrolyte at the interface between the positive electrode and the separator. For example, 0.01 to 15% by weight of a fluorinated ester compound is added to a mixed solution containing EC and EMC in a volume ratio of 4: 6.
 特許文献3は、特定の組成を有する鎖状フッ素化エステルを非水溶媒に含ませることを提案している。特許文献3によれば、鎖状フッ素化エステルと軽金属イオンとが適度に溶媒和して安定化することにより、負極におけるデンドライト状の金属の析出が抑制されるとされている。 Patent Document 3 proposes that a non-aqueous solvent contains a chain fluorinated ester having a specific composition. According to Patent Document 3, the chain fluorinated ester and light metal ions are appropriately solvated and stabilized, so that the precipitation of dendritic metal in the negative electrode is suppressed.
特開2004-355974号公報JP 2004-355974 A 特開2002-343424号公報JP 2002-343424 A 特開平08-298134号公報Japanese Patent Laid-Open No. 08-298134
 環状カーボネートのなかでも、耐酸化性が高く、融点が低いPCを主溶媒として用いることが望まれる。しかし、非水電解質にPCが多く含まれる場合、PCの還元分解とともに負極の劣化が起こりやすい。したがって、非水電解質二次電池のサイクル特性の向上には、負極でのPCの還元反応を抑制し、負極の劣化およびガス発生を抑制することが重要である。 Among cyclic carbonates, it is desirable to use PC having a high oxidation resistance and a low melting point as a main solvent. However, when the non-aqueous electrolyte contains a large amount of PC, the negative electrode is likely to deteriorate along with the reductive decomposition of PC. Therefore, in order to improve the cycle characteristics of the nonaqueous electrolyte secondary battery, it is important to suppress the reduction reaction of PC at the negative electrode, and to suppress the deterioration and gas generation of the negative electrode.
 特許文献1ではPSとPCの還元電位が近いため、PSによる被膜形成よりもPCの還元分解が優先的に起こりやすくなる場合がある。そのため、負極とPCとの副反応を十分に抑制することは困難である。 In Patent Document 1, since the reduction potentials of PS and PC are close to each other, reduction decomposition of PC is likely to occur preferentially over film formation by PS. Therefore, it is difficult to sufficiently suppress the side reaction between the negative electrode and PC.
 特許文献1では、DECの重量割合の大きい非水電解質が提案されている。DECなどの鎖状カーボネートは、環状カーボネートよりも酸化電位が低く、正極側で酸化分解されやすい。また、鎖状カーボネートは、分子構造的にカルボニル炭素の電子密度が低いため、還元分解されやすい。したがって、特許文献1のようにDECを主溶媒として用いる場合、充放電サイクル時に多量のガスが発生し、電池の充放電容量が低下する傾向がある。 Patent Document 1 proposes a non-aqueous electrolyte having a large weight ratio of DEC. A chain carbonate such as DEC has an oxidation potential lower than that of a cyclic carbonate, and is easily oxidatively decomposed on the positive electrode side. Further, the chain carbonate is easily reductively decomposed because the molecular structure has a low electron density of carbonyl carbon. Therefore, when DEC is used as the main solvent as in Patent Document 1, a large amount of gas is generated during the charge / discharge cycle, and the charge / discharge capacity of the battery tends to decrease.
 特許文献2および3では、フッ素化エステルと他成分との組み合わせや、フッ素化エステルのフッ素原子数、フッ素原子が結合する位置などが十分に考慮されておらず、耐酸化性、非水電解質に含まれる他成分との相溶性などが低下しやすい。 In Patent Documents 2 and 3, the combination of the fluorinated ester and other components, the number of fluorine atoms of the fluorinated ester, the position where the fluorine atoms are bonded, etc. are not fully considered, and the oxidation resistance and non-aqueous electrolyte are not considered. Compatibility with other components contained tends to decrease.
 更に、特許文献2が提案している非水電解質は、主溶媒として鎖状カーボネートであるEMCを含む。EMCは、DECと同様に酸化分解および還元分解されやすい。したがって、特許文献2の提案では、ガス発生の抑制が不十分である。 Furthermore, the non-aqueous electrolyte proposed in Patent Document 2 contains EMC which is a chain carbonate as a main solvent. EMC is susceptible to oxidative degradation and reductive degradation, like DEC. Therefore, in the proposal of patent document 2, suppression of gas generation is insufficient.
 そこで、本発明は、非水電解質二次電池の充放電サイクル時のガス発生を抑制できる非水電解質を提供することを目的とする。 Therefore, an object of the present invention is to provide a nonaqueous electrolyte capable of suppressing gas generation during a charge / discharge cycle of a nonaqueous electrolyte secondary battery.
 本発明の一局面は、非水溶媒と、非水溶媒に溶解した溶質とを含み、非水溶媒が、エチレンカーボネートと、プロピレンカーボネートと、フッ素原子を3つ有するフッ素化エステルとを含み、フッ素化エステルにおいて、全てのフッ素原子が、カルボニル基のα位に位置しない末端の炭素原子に結合しており、かつフッ素化エステルのエステル基に含まれる炭素原子を除く炭素数が5以下であり、エチレンカーボネートと、プロピレンカーボネートと、フッ素化エステルとの合計に占めるエチレンカーボネートの重量割合WECが5~30重量%であり、合計に占めるプロピレンカーボネートの重量割合WPCが20~55重量%であり、合計に占めるフッ素化エステルの重量割合WFEが20~50重量%である、非水電解質に関する。 One aspect of the present invention includes a nonaqueous solvent and a solute dissolved in the nonaqueous solvent. The nonaqueous solvent includes ethylene carbonate, propylene carbonate, and a fluorinated ester having three fluorine atoms. In the fluorinated ester, all the fluorine atoms are bonded to the terminal carbon atom not located at the α-position of the carbonyl group, and the number of carbon atoms excluding the carbon atom contained in the ester group of the fluorinated ester is 5 or less, ethylene carbonate, propylene carbonate, the weight ratio W EC ethylene carbonate to the total of the fluorinated ester is from 5 to 30 wt%, the weight ratio W PC propylene carbonate relative to the total of 20 to 55 wt% Further, the present invention relates to a non-aqueous electrolyte in which the weight ratio W FE of the fluorinated ester in the total is 20 to 50% by weight.
 本発明の他の一局面は、正極、負極、正極と負極との間に配されるセパレータおよび上記の非水電解質を含み、負極が、負極芯材および負極芯材に付着した負極合剤層を含み、負極合剤層が、黒鉛粒子と、黒鉛粒子の表面を被覆する水溶性高分子と、水溶性高分子で被覆された黒鉛粒子間を接着する結着剤とを含む、非水電解質二次電池に関する。 Another aspect of the present invention includes a positive electrode, a negative electrode, a separator disposed between the positive electrode and the negative electrode, and the nonaqueous electrolyte described above, and the negative electrode is attached to the negative electrode core material and the negative electrode core material. A non-aqueous electrolyte, wherein the negative electrode mixture layer includes graphite particles, a water-soluble polymer that coats the surface of the graphite particles, and a binder that bonds the graphite particles coated with the water-soluble polymer. The present invention relates to a secondary battery.
 本発明によれば、非水電解質二次電池の充放電サイクル時のガス発生を効果的に抑制できる。 According to the present invention, gas generation during the charge / discharge cycle of the nonaqueous electrolyte secondary battery can be effectively suppressed.
 本発明の新規な特徴を添付の請求の範囲に記述するが、本発明は、構成および内容の両方に関し、本発明の他の目的および特徴と併せ、図面を照合した以下の詳細な説明によりさらによく理解されるであろう。 While the novel features of the invention are set forth in the appended claims, the invention will be further described by reference to the following detailed description, taken in conjunction with the other objects and features of the invention, both in terms of construction and content. It will be well understood.
本発明の一実施形態に係る非水電解質二次電池の構成を概略的に示す縦断面図である。1 is a longitudinal sectional view schematically showing a configuration of a nonaqueous electrolyte secondary battery according to an embodiment of the present invention.
 本発明に係る非水電解質は、非水溶媒と、非水溶媒に溶解した溶質とを含む。非水溶媒は、エチレンカーボネート(EC)と、プロピレンカーボネート(PC)と、フッ素原子を3つ有するフッ素化エステルとを主溶媒として含む。主溶媒は、非水電解質全体の80重量%以上100重量%以下を占めることが好ましく、90~100重量%を占めることがより好ましい。このような組成により、非水溶媒が、比較的分解されやすい鎖状カーボネートを少量までしか含まなくなるため、ガス発生を抑制する効果が高くなる。 The nonaqueous electrolyte according to the present invention includes a nonaqueous solvent and a solute dissolved in the nonaqueous solvent. The non-aqueous solvent contains ethylene carbonate (EC), propylene carbonate (PC), and a fluorinated ester having three fluorine atoms as a main solvent. The main solvent preferably occupies 80% by weight or more and 100% by weight or less of the whole nonaqueous electrolyte, and more preferably 90-100% by weight. With such a composition, since the non-aqueous solvent contains only a small amount of chain carbonate that is relatively easily decomposed, the effect of suppressing gas generation is enhanced.
 ECおよびPCは誘電率が高く、リチウムイオン伝導性の向上に有利である。PCは耐酸化性が高いため、特に正極でのガス発生の抑制に有利である。更に、PC(融点:-49℃)はEC(融点:37℃)に比べて融点が低いため、低温でのレート特性の向上に有利である。一方、ECは、負極にリチウムイオン伝導性の被膜を形成する。この被膜は、負極に対するリチウムイオンの挿入反応および脱離反応を可能にする役割を果たしていると考えられ、負極の充電受入性を向上させる。また、ECは比較的緻密な被膜を形成するため、非水電解質の還元分解を抑制する効果が得られる。なお、EC由来の被膜は、単独では、耐熱性が低いため、高温下で剥がれやすい。一方、ECとフッ素化エステルに由来するハイブリッド(混成)被膜は、比較的緻密であり、かつ高い耐熱性を有する。 EC and PC have a high dielectric constant and are advantageous for improving lithium ion conductivity. Since PC has high oxidation resistance, it is particularly advantageous for suppressing gas generation at the positive electrode. Further, since PC (melting point: −49 ° C.) has a lower melting point than EC (melting point: 37 ° C.), it is advantageous for improving rate characteristics at low temperatures. On the other hand, EC forms a lithium ion conductive film on the negative electrode. This coating is considered to play a role of enabling insertion and desorption reactions of lithium ions with respect to the negative electrode, and improves the charge acceptance of the negative electrode. Further, since EC forms a relatively dense film, an effect of suppressing the reductive decomposition of the nonaqueous electrolyte can be obtained. In addition, since the EC-derived film alone has low heat resistance, it is easily peeled off at high temperatures. On the other hand, a hybrid film derived from EC and a fluorinated ester is relatively dense and has high heat resistance.
 ここで、EC、PC等の環状カーボネートは比較的高粘度である。したがって、非水電解質が多量の環状カーボネートを含む場合、低温でのリチウムイオン伝導性が低下する場合がある。そのため、EC、PC等の環状カーボネートと、低粘度である鎖状カーボネート(DEC、EMC等)とを混合することが望ましいと考えられる。 Here, cyclic carbonates such as EC and PC have a relatively high viscosity. Therefore, when the non-aqueous electrolyte contains a large amount of cyclic carbonate, lithium ion conductivity at a low temperature may be lowered. For this reason, it is considered desirable to mix cyclic carbonates such as EC and PC and chain carbonates (DEC, EMC, etc.) having a low viscosity.
 しかし、鎖状カーボネートは酸化分解および還元分解が起こりやすく、ガス発生の原因となる。そこで、本発明では、エステル基(-COO-)に含まれる炭素原子を除く炭素数が、5以下である所定のフッ素化エステルを添加している。このようなフッ素化エステルは、鎖状カーボネートに比べて化学的に安定であり、かつ低粘度である。したがって、本発明においては、非水電解質に鎖状カーボネートを含ませなくてもよい。よって、ガス発生を抑制しつつ、非水電解質の粘度を十分に低くすることができる。また、充放電サイクル時や、高温環境下での保存時のガス発生を抑制しつつ、低温でのレート特性を向上させることができる。フッ素化エステルにおいて、エステル基を除く炭素数は、粘度や他の成分との相溶性の点で、3~4であることがより好ましい。 However, chain carbonates are prone to oxidative decomposition and reductive decomposition, causing gas generation. Therefore, in the present invention, a predetermined fluorinated ester having 5 or less carbon atoms excluding carbon atoms contained in the ester group (—COO—) is added. Such a fluorinated ester is chemically stable and has a low viscosity as compared with a chain carbonate. Therefore, in the present invention, the non-aqueous electrolyte may not contain a chain carbonate. Therefore, the viscosity of the nonaqueous electrolyte can be sufficiently lowered while suppressing gas generation. In addition, the rate characteristics at low temperatures can be improved while suppressing gas generation during charge / discharge cycles and during storage in a high temperature environment. In the fluorinated ester, the number of carbon atoms excluding the ester group is more preferably 3 to 4 in terms of viscosity and compatibility with other components.
 本発明に係るフッ素化エステルは、電池の初期充放電の際に、負極にLiFを含む被膜を形成する。LiFを含む被膜は、耐熱性が高く、高温下でも剥がれにくい。LiFを含む被膜は、単独では、比較的疎な被膜であるが、ECや添加剤に由来する被膜と混成されることで、緻密かつ耐熱性の高い被膜になると考えられる。例えば、ECは比較的緻密な被膜を形成するが、EC由来の被膜は、耐熱性が低いため、高温下では剥がれやすい。一方、ECとフッ素化エステルに由来するハイブリッド(混成)被膜は、比較的緻密であり、かつ耐熱性も高いものとなる。よって、ハイブリッド被膜は、高温下でも剥がれにくく、温度によらずに非水電解質、特にPCの還元分解を抑制できる。 The fluorinated ester according to the present invention forms a film containing LiF on the negative electrode during the initial charge / discharge of the battery. A film containing LiF has high heat resistance and is difficult to peel off even at high temperatures. A film containing LiF alone is a relatively sparse film, but is considered to be a dense and highly heat-resistant film by being mixed with a film derived from EC or an additive. For example, EC forms a relatively dense film, but a film derived from EC has low heat resistance, and thus is easily peeled off at high temperatures. On the other hand, a hybrid film derived from EC and a fluorinated ester is relatively dense and has high heat resistance. Therefore, the hybrid coating is difficult to peel off even at high temperatures and can suppress the reductive decomposition of the nonaqueous electrolyte, particularly PC, regardless of the temperature.
 また、上記のフッ素化エステルを用いることで、非水電解質二次電池の充放電サイクルの末期においても、ガス発生を大きく抑制することができる。これは、サイクル末期に負極表面にリチウムが析出しても、フッ素化エステルの作用によりリチウムの表面にLiFを含む被膜が形成され、リチウムと非水電解質との反応が抑制されるためと考えられる。 In addition, by using the fluorinated ester, gas generation can be greatly suppressed even at the end of the charge / discharge cycle of the nonaqueous electrolyte secondary battery. This is considered to be because even if lithium is deposited on the negative electrode surface at the end of the cycle, a film containing LiF is formed on the surface of lithium by the action of the fluorinated ester, and the reaction between lithium and the nonaqueous electrolyte is suppressed. .
 負極にLiFを含む被膜が形成されるメカニズムについては、次のように考えられる。フッ素原子は電気陰性度が高いため、フッ素化エステルのフッ素原子が結合している炭素原子の電子密度は低くなっている。この炭素原子を起点として、フッ素化エステルは還元分解を受け易くなっている。還元分解により脱離したフッ化物イオンは、リチウムイオンと結合して、負極表面に堆積する。その結果、LiFを含む被膜が形成されると考えられる。 The mechanism by which a film containing LiF is formed on the negative electrode is considered as follows. Since the fluorine atom has a high electronegativity, the electron density of the carbon atom to which the fluorine atom of the fluorinated ester is bonded is low. Starting from this carbon atom, the fluorinated ester is susceptible to reductive decomposition. Fluoride ions desorbed by reductive decomposition are combined with lithium ions and deposited on the negative electrode surface. As a result, it is considered that a film containing LiF is formed.
 LiFを含む被膜は、X線光電子分光法(XPS)を用いて確認できる。具体的には、充放電を行った後の電池を分解して負極をサンプリングし、EMC等の溶媒を用いてサンプルを洗浄する。これにより、残存する非水電解質の成分が除去される。洗浄後のサンプルは乾燥させる。その後、XPS測定を行い、放出される光電子のエネルギースペクトルを取得する。得られたスペクトルを分析することで、サンプルの表面に存在するLiおよびF元素の同定を行うことができる。また、各元素のピーク面積の比から元素を定量できる。更に、化学状態の違いにより、各元素のピーク位置はシフトするため、そのシフト量からLiF結合に由来するピークを同定できる。 The coating containing LiF can be confirmed using X-ray photoelectron spectroscopy (XPS). Specifically, the battery after charge / discharge is disassembled, the negative electrode is sampled, and the sample is washed with a solvent such as EMC. Thereby, the components of the remaining nonaqueous electrolyte are removed. The washed sample is dried. Thereafter, XPS measurement is performed to obtain an energy spectrum of emitted photoelectrons. By analyzing the obtained spectrum, the Li and F elements present on the surface of the sample can be identified. Moreover, an element can be quantified from the ratio of the peak areas of each element. Furthermore, since the peak position of each element shifts due to the difference in chemical state, the peak derived from the LiF bond can be identified from the shift amount.
 本発明に係るフッ素化エステルは、フッ素原子を3つ有する。このようなフッ素化エステルは、非水溶媒に含まれる他の成分との相溶性および耐酸化性に優れる。フッ素化エステルの分子に含まれるフッ素原子の数が2以下であると、十分な耐酸化性が得られない。また、LiFを含む被膜の成分が少なくなり、被膜全体の耐熱性が低下すると考えられる。一方、フッ素化エステルの分子に含まれるフッ素原子の数が4以上であると、非水溶媒に含まれる他の成分との十分な相溶性が得られず、安定な非水電解質の調製が困難になる。また、LiFを含む被膜の成分が多すぎて、被膜の緻密性が低下する。よって、フッ素化エステルに含まれるフッ素原子数は3にすることが重要である。 The fluorinated ester according to the present invention has three fluorine atoms. Such a fluorinated ester is excellent in compatibility with other components contained in the non-aqueous solvent and oxidation resistance. If the number of fluorine atoms contained in the molecule of the fluorinated ester is 2 or less, sufficient oxidation resistance cannot be obtained. Moreover, it is thought that the component of the film containing LiF decreases and the heat resistance of the whole film falls. On the other hand, if the number of fluorine atoms contained in the fluorinated ester molecule is 4 or more, sufficient compatibility with other components contained in the non-aqueous solvent cannot be obtained, and it is difficult to prepare a stable non-aqueous electrolyte. become. Moreover, there are too many components of the film containing LiF, and the denseness of the film is lowered. Therefore, it is important that the number of fluorine atoms contained in the fluorinated ester is 3.
 フッ素化エステルに含まれるフッ素原子は強い電子求引性を有する。そのため、フッ素原子と水素原子が同じ炭素原子に結合していると、水素原子の酸性度が上昇し、フッ化水素などのガスが発生しやすくなる。そこで、本発明に係るフッ素化エステルにおいては、全てのフッ素原子が、カルボニル基のα位に位置しない末端の炭素原子に結合している。すなわち、本発明に係るフッ素化エステルは、カルボニル基のα位に位置しない末端CF3を1つだけ有する。同じ炭素原子にフッ素原子と水素原子が結合していないため、上記のようなフッ化水素の発生が抑制される。 The fluorine atom contained in the fluorinated ester has a strong electron withdrawing property. Therefore, when a fluorine atom and a hydrogen atom are bonded to the same carbon atom, the acidity of the hydrogen atom is increased and a gas such as hydrogen fluoride is easily generated. Therefore, in the fluorinated ester according to the present invention, all the fluorine atoms are bonded to the terminal carbon atom not located at the α-position of the carbonyl group. That is, the fluorinated ester according to the present invention has only one terminal CF 3 that is not located at the α-position of the carbonyl group. Since fluorine atoms and hydrogen atoms are not bonded to the same carbon atom, generation of hydrogen fluoride as described above is suppressed.
 カルボニル基のα位に、CF3、CH2FCF2などの基が存在する場合は、カルボニル基の電子密度が低くなりすぎ、還元分解が大きくなる。また、CH2FCF2CH2のような基は、末端に全てのフッ素原子を有するCF3CH2、CF3CH2CH2などの基に比べると、良好な被膜を形成しにくい。末端にフッ素原子が全て存在する方が、立体障害がなく、フッ素原子が結合している電子密度の低い炭素原子の還元反応が容易に進行するものと考えられる。 When a group such as CF 3 or CH 2 FCF 2 is present at the α-position of the carbonyl group, the electron density of the carbonyl group becomes too low and reductive decomposition becomes large. Further, a group such as CH 2 FCF 2 CH 2 is less likely to form a good film as compared with groups such as CF 3 CH 2 and CF 3 CH 2 CH 2 having all the fluorine atoms at the terminals. When all the fluorine atoms are present at the terminal, it is considered that there is no steric hindrance and the reduction reaction of the carbon atom having a low electron density to which the fluorine atom is bonded proceeds more easily.
 ECと、PCと、フッ素化エステルとの合計に占めるフッ素化エステルの重量割合WFEは、20~50重量%である。WFEを20重量%以上とすることで、負極への被膜形成に加えて、非水溶媒中の耐酸化性の高いフッ素化エステルの割合が多くなり、ガス発生をより良好に抑制できる。また、低温でのレート特性を向上させることができる。WFEを50重量%以下とすることで、良好なイオン伝導性を確保できるとともに、負極に適度な量の安定な被膜を形成することができる。WFEは、25重量%以上であることが好ましく、30重量%以上であることがより好ましい。また、45重量%以下であることが好ましく、40重量%以下であることがより好ましい。これらの上限および下限は任意に組み合わせることができる。 The weight ratio W FE of the fluorinated ester in the total of EC, PC and fluorinated ester is 20 to 50% by weight. By making WFE 20% by weight or more, in addition to forming a film on the negative electrode, the ratio of fluorinated ester having high oxidation resistance in the non-aqueous solvent increases, and gas generation can be suppressed more favorably. In addition, the rate characteristics at a low temperature can be improved. By making WFE 50% by weight or less, good ion conductivity can be secured, and an appropriate amount of a stable coating can be formed on the negative electrode. WFE is preferably 25% by weight or more, and more preferably 30% by weight or more. Moreover, it is preferable that it is 45 weight% or less, and it is more preferable that it is 40 weight% or less. These upper and lower limits can be arbitrarily combined.
 フッ素化エステルは、一般式:R1-COO-R2で表され、R1が、炭素数2~4の炭素鎖であり、かつ、末端の炭素原子に3つのフッ素原子が結合しており、R2が、炭素数1~3の炭素鎖である構造を有することが好ましい。このような構造を有するフッ素化エステルは、安定な被膜を形成しやすく、耐酸化性が高いため、ガス発生を良好に抑制できる。また、このようなフッ素化エステルは低粘度であるため、低温でのレート特性がより向上する。具体的には、CF3CH2CH2-COO-CH2CH3、CF3CH2-COO-CH3、CF3CH2-COO-CH2CH3、CF3CH2-COO-CH2CH2CH3、CF3CH2CH2-COO-CH3、CF3CH2CH2CH2-COO-CH3などの化合物が挙げられる。R1は、炭素数3~4の炭素鎖であることがより好ましく、炭素数3の炭素鎖であることが特に好ましい。R2は、炭素数1~2の炭素鎖であることがより好ましい。 The fluorinated ester is represented by the general formula: R 1 —COO—R 2 , R 1 is a carbon chain having 2 to 4 carbon atoms, and three fluorine atoms are bonded to the terminal carbon atom. , R 2 preferably has a structure having a carbon chain having 1 to 3 carbon atoms. Since the fluorinated ester having such a structure is easy to form a stable film and has high oxidation resistance, gas generation can be satisfactorily suppressed. Moreover, since such a fluorinated ester has a low viscosity, the rate characteristics at low temperature are further improved. Specifically, CF 3 CH 2 CH 2 —COO—CH 2 CH 3 , CF 3 CH 2 —COO—CH 3 , CF 3 CH 2 —COO—CH 2 CH 3 , CF 3 CH 2 —COO—CH 2 Examples thereof include compounds such as CH 2 CH 3 , CF 3 CH 2 CH 2 —COO—CH 3 , and CF 3 CH 2 CH 2 CH 2 —COO—CH 3 . R 1 is more preferably a carbon chain having 3 to 4 carbon atoms, and particularly preferably a carbon chain having 3 carbon atoms. R 2 is more preferably a carbon chain having 1 to 2 carbon atoms.
 フッ素化エステルは、一般式:R3-COO-R4で表され、R3が、炭素数1~3の炭素鎖であり、R4が、炭素数2~4の炭素鎖であり、かつ、末端の炭素原子に3つのフッ素原子が結合している構造を有していてもよい。このような構造を有するフッ素化エステルも安定な被膜を形成しやすく、耐酸化性が高いため、ガス発生を良好に抑制できる。また、低粘度であるため、低温でのレート特性がより向上する。具体的には、CH3CH2CH2-COO-CH2CF3、CH3-COO-CH2CF3、CH3-COO-CH2CH2CF3、CH3-COO-CH2CH2CH2CF3、CH3CH2-COO-CH2CF3、CH3CH2-COO-CH2CH2CF3などの化合物が挙げられる。R3は、炭素数2~3の炭素鎖であることがより好ましい。R4は、炭素数2~3の炭素鎖であることがより好ましい。
 上記のフッ素化エステルは、1種を単独で用いてもよく、複数種を任意に組み合わせて用いても良い。なかでもCF3CH2CH2-COO-CH2CH3およびCF3CH2-COO-CH2CH3の少なくとも一方を、少なくとも用いることが好ましい。なお、炭素数nの炭素鎖とは、炭素数nの基(group)であり、具体的にはアルキル基またはフルオロアルキル基のことである。
The fluorinated ester is represented by the general formula: R 3 —COO—R 4 , R 3 is a carbon chain having 1 to 3 carbon atoms, R 4 is a carbon chain having 2 to 4 carbon atoms, and The terminal carbon atom may have a structure in which three fluorine atoms are bonded. Since the fluorinated ester having such a structure also easily forms a stable film and has high oxidation resistance, gas generation can be satisfactorily suppressed. Moreover, since the viscosity is low, the rate characteristics at low temperature are further improved. Specifically, CH 3 CH 2 CH 2 —COO—CH 2 CF 3 , CH 3 —COO—CH 2 CF 3 , CH 3 —COO—CH 2 CH 2 CF 3 , CH 3 —COO—CH 2 CH 2 Examples thereof include compounds such as CH 2 CF 3 , CH 3 CH 2 —COO—CH 2 CF 3 , and CH 3 CH 2 —COO—CH 2 CH 2 CF 3 . R 3 is more preferably a carbon chain having 2 to 3 carbon atoms. R 4 is more preferably a carbon chain having 2 to 3 carbon atoms.
The above fluorinated esters may be used alone or in any combination of a plurality of types. Among these, at least one of CF 3 CH 2 CH 2 —COO—CH 2 CH 3 and CF 3 CH 2 —COO—CH 2 CH 3 is preferably used. The carbon chain having n carbon atoms is a group having n carbon atoms, specifically, an alkyl group or a fluoroalkyl group.
 ECと、PCと、フッ素化エステルとの合計に占めるPCの重量割合WPCは、20~55重量%である。ECの酸化分解によるガス発生を抑制する観点から、ECの重量割合よりも、PCの重量割合を相対的に大きくすることが好ましい。更に、PCはECに比べて融点が低いため、PCの重量割合を大きくすることで、低温での非水電解質の凝固を抑制することができる。よって、非水電解質二次電池の低温特性の面で有利である。WPCは、30重量%以上であることが好ましく、40重量%以上であることがより好ましい。また、55重量%以下であることが好ましく、50重量%以下であることがより好ましい。これらの上限および下限は任意に組み合わせることができる。 EC and, PC and, PC weight ratio W PC to the total of the fluorinated ester is 20 to 55% by weight. From the viewpoint of suppressing gas generation due to oxidative decomposition of EC, it is preferable that the weight ratio of PC is relatively larger than the weight ratio of EC. Furthermore, since the melting point of PC is lower than that of EC, solidification of the nonaqueous electrolyte at a low temperature can be suppressed by increasing the weight ratio of PC. Therefore, it is advantageous in terms of the low temperature characteristics of the nonaqueous electrolyte secondary battery. W PC is preferably 30 wt% or more, more preferably 40 wt% or more. Moreover, it is preferable that it is 55 weight% or less, and it is more preferable that it is 50 weight% or less. These upper and lower limits can be arbitrarily combined.
 20~55重量%と比較的多量のPCを含む場合、非水電解質の耐酸化性および電池のレート特性は向上するものの、PCの還元分解とともに負極が劣化しやすい傾向がある。しかし、本発明においては、負極にLiFを含む被膜が形成されるため、上記のように比較的多量のPCを含む場合でも、負極でのPCの還元分解や負極の劣化を良好に抑制できる。また、非水電解質がECを適量含むことで、PCの還元分解を抑制する効果は大きくなる。 When a relatively large amount of PC is contained at 20 to 55% by weight, the oxidation resistance of the nonaqueous electrolyte and the rate characteristics of the battery are improved, but the negative electrode tends to deteriorate with the reduction decomposition of PC. However, in the present invention, since a film containing LiF is formed on the negative electrode, even when a relatively large amount of PC is contained as described above, the reductive decomposition of PC and the deterioration of the negative electrode can be satisfactorily suppressed. Further, when the nonaqueous electrolyte contains an appropriate amount of EC, the effect of suppressing the reductive decomposition of PC is increased.
 WPCが20重量%未満であると、非水溶媒におけるECの量が相対的に大きくなり、ガスの発生を十分に抑制できない場合がある。WPCが55重量%を超えると、負極でPCが還元分解され、CH4、C36、C38等のガスが発生する場合がある。PCの重量割合を上記範囲にすることで、ECに由来するガス発生を抑制し、かつPCの還元分解を抑制できる。 When W PC is less than 20 wt%, the amount of EC in the nonaqueous solvent is relatively large, it may not be sufficiently suppress the generation of gas. When W PC exceeds 55 wt%, PC in the negative electrode is reduced and decomposed, there is a case where CH 4, C 3 H 6, C 3 H 8 , etc. gases. By setting the weight ratio of PC within the above range, the generation of gas derived from EC can be suppressed and the reductive decomposition of PC can be suppressed.
 ECと、PCと、フッ素化エステルとの合計に占めるフッ素化エステルの重量割合WFEに対する、同合計に占めるPCの重量割合WPCの比WPC/WFEは、0.6~2.2であることが好ましい。WPC/WFEを0.6以上とすることで、負極に適度な量の安定な被膜を形成することが容易となる。WPC/WFEを2.2以下とすることで、負極でPCの還元分解に由来するガス発生をより効果的に抑制することができる。WPC/WFEは、1.0~1.7であることがより好ましい。 The ratio W PC / W FE of the weight ratio W PC of the PC to the total weight ratio W FE of the fluorinated ester in the total of EC, PC and fluorinated ester is 0.6 to 2.2. It is preferable that By setting W PC / W FE to be 0.6 or more, it becomes easy to form an appropriate amount of a stable film on the negative electrode. By setting W PC / W FE to 2.2 or less, gas generation derived from reductive decomposition of PC at the negative electrode can be more effectively suppressed. W PC / W FE is more preferably 1.0 to 1.7.
 ECと、PCと、フッ素化エステルとの合計に占めるECの重量割合WECは、5~30重量%である。WECが5重量%より小さいと、EC由来の被膜が負極に十分に形成されない場合がある。その結果、リチウムイオンが負極に吸蔵もしくは負極から放出されにくくなり、充電受入性が低下する場合がある。WECが30重量%を超えると、特に正極においてECの酸化分解が起こり、ガス発生量が多くなる場合がある。また、WECが30重量%を超えると、負極に過剰な量の被膜が形成されて充電受入性が低下し、Liが析出しやすくなる場合がある。WECが5~30重量%、好ましくは10~15重量%であることで、ECの酸化分解に由来するガス発生量が小さくなり、かつ負極に適度な量の安定な被膜が形成されるため、非水電解質二次電池の充放電容量およびレート特性が大きく向上する。 The EC weight ratio W EC in the total of EC, PC and fluorinated ester is 5 to 30% by weight. If WEC is less than 5% by weight, a coating derived from EC may not be sufficiently formed on the negative electrode. As a result, lithium ions are less likely to be occluded or released from the negative electrode, and charge acceptance may be reduced. When W EC exceeds 30% by weight, in particular occur oxidative decomposition of EC at the positive electrode, there are cases where the greater the amount of gas generation. Further, when W EC exceeds 30% by weight, is formed excessive amount of the coating on the negative electrode reduces the charge acceptance, there is a case where Li is easily precipitated. When WEC is 5 to 30% by weight, preferably 10 to 15% by weight, the amount of gas generated due to oxidative decomposition of EC is reduced, and an appropriate amount of a stable coating is formed on the negative electrode. The charge / discharge capacity and rate characteristics of the nonaqueous electrolyte secondary battery are greatly improved.
 本発明の非水電解質は、添加剤として、C=C不飽和結合を有する環状カーボネートおよびスルトン化合物より選ばれる少なくとも1種を含んでもよい。添加剤がC=C不飽和結合を有する環状カーボネートを含むことで、主に負極に安定な被膜が形成され、非水電解質の分解が、より効果的に抑制される。さらに、添加剤がスルトン化合物を含むことで、より良好な被膜が負極に形成され、正極にも被膜が形成される。正極に被膜が形成されることで、高温環境下における非水溶媒の正極での酸化分解を効果的に抑制することができる。また、負極の被膜による、非水溶媒(特にPC)の還元分解を抑制する効果が高められる。 The non-aqueous electrolyte of the present invention may contain at least one selected from a cyclic carbonate having a C═C unsaturated bond and a sultone compound as an additive. When the additive includes a cyclic carbonate having a C═C unsaturated bond, a stable film is formed mainly on the negative electrode, and decomposition of the nonaqueous electrolyte is more effectively suppressed. Furthermore, when the additive contains a sultone compound, a better film is formed on the negative electrode, and a film is also formed on the positive electrode. By forming a film on the positive electrode, it is possible to effectively suppress oxidative decomposition of the nonaqueous solvent at the positive electrode in a high-temperature environment. In addition, the effect of suppressing the reductive decomposition of the nonaqueous solvent (particularly PC) by the negative electrode coating is enhanced.
 添加剤の量、すなわちスルトン化合物およびC=C不飽和結合を有する環状カーボネートの合計量は、非水電解質全体の0.2~5重量%を占めることが好ましく、0.5~5重量%または1~5重量%が更に好ましく、2~4重量%であることがより好ましい。上記範囲の添加剤を含むことで、正極および負極に、適度な量の安定な被膜を形成できる。その結果、負極でのPCの還元分解や、正極でのECの酸化分解が更に効果的に抑制される。 The amount of additive, ie, the total amount of sultone compound and cyclic carbonate having a C═C unsaturated bond, preferably occupies 0.2 to 5% by weight of the whole non-aqueous electrolyte, 0.5 to 5% by weight or It is more preferably 1 to 5% by weight, and more preferably 2 to 4% by weight. By including an additive in the above range, an appropriate amount of a stable film can be formed on the positive electrode and the negative electrode. As a result, reductive decomposition of PC at the negative electrode and oxidative decomposition of EC at the positive electrode are further effectively suppressed.
 上記添加剤は、少量の添加量で緻密な被膜を形成するため、PCの還元分解の抑制に効果的であるが、耐熱性が低いため、高温下で剥がれやすい。一方、添加剤に由来する被膜は、フッ素化エステルに由来する被膜と混成されることで、緻密かつ耐熱性の高い被膜になると考えられる。すなわち、添加剤とフッ素化エステルに由来するハイブリッド(混成)被膜は、高温下でも剥がれにくく、温度によらずに非水電解質、特にPCの還元分解を抑制できる。 The above additive forms a dense film with a small amount of addition, so it is effective in suppressing the reductive decomposition of PC, but it has low heat resistance and is therefore easily peeled off at high temperatures. On the other hand, the film derived from the additive is considered to be a dense and highly heat-resistant film by being mixed with the film derived from the fluorinated ester. That is, the hybrid (hybrid) film derived from the additive and the fluorinated ester is hardly peeled off even at a high temperature and can suppress the reductive decomposition of the nonaqueous electrolyte, particularly PC, regardless of the temperature.
 スルトン化合物およびC=C不飽和結合を有する環状カーボネートの合計量を、非水電解質全体の0.2重量%以上とすることで、EC、PCおよびフッ素化エステルを含む非水電解質において、適度な量の安定な被膜が形成されやすい。また、スルトン化合物およびC=C不飽和結合を有する環状カーボネートの合計量を、非水電解質全体の5重量%以下とすることで、EC、PCおよびフッ素化エステルを含む非水電解質において、負極表面に被膜が過剰に形成されにくくなり、リチウムイオンの挿入および脱離反応が阻害されず、十分な充電受入性を得やすい。 By adjusting the total amount of the sultone compound and the cyclic carbonate having a C═C unsaturated bond to 0.2% by weight or more of the whole non-aqueous electrolyte, the non-aqueous electrolyte containing EC, PC, and fluorinated ester has an appropriate amount. An amount of a stable coating is likely to be formed. Moreover, in the nonaqueous electrolyte containing EC, PC and fluorinated ester, the total amount of the sultone compound and the cyclic carbonate having a C═C unsaturated bond is 5% by weight or less of the whole nonaqueous electrolyte. Thus, it is difficult to form a coating film excessively, and lithium ion insertion and desorption reactions are not inhibited, and sufficient charge acceptability is easily obtained.
 添加剤におけるC=C不飽和結合を有する環状カーボネートの重量割合WCと、スルトン化合物の重量割合WSLとの比:WC/WSLは、0.5≦WC/WSL≦3を満たすことが好ましい。WC/WSLが0.5以上である場合、スルトン化合物は負極に過剰な被膜を形成しにくくなり、C=C不飽和結合を有する環状カーボネートによる被膜も負極に十分に形成されやすい。その結果、充電受入性が良好に確保され、サイクル特性の劣化が起こりにくい。また、負極の被膜抵抗の増加や低温での放電特性の低下が起りにくい。 Ratio of weight ratio W C of cyclic carbonate having C═C unsaturated bond in additive and weight ratio W SL of sultone compound: W C / W SL satisfies 0.5 ≦ W C / W SL ≦ 3 It is preferable to satisfy. When W C / W SL is 0.5 or more, it becomes difficult for the sultone compound to form an excessive film on the negative electrode, and a film made of a cyclic carbonate having a C═C unsaturated bond is also easily formed on the negative electrode. As a result, good charge acceptability is ensured, and cycle characteristics are unlikely to deteriorate. In addition, the film resistance of the negative electrode is not increased, and the discharge characteristics at low temperatures are less likely to occur.
 一方、WC/WSLが3以下である場合、C=C不飽和結合を有する環状カーボネートの酸化分解およびガス発生が抑制される。また、スルトン化合物による、PCの負極での還元分解を抑制する効果や、C=C不飽和結合を有する環状カーボネートの正極での酸化分解を抑制する効果を得やすくなる。WC/WSLは、0.75≦WC/WSL≦1.5を満たすことがより好ましい。 On the other hand, when W C / W SL is 3 or less, oxidative decomposition and gas generation of the cyclic carbonate having a C═C unsaturated bond are suppressed. Moreover, it becomes easy to obtain the effect of suppressing the reductive decomposition at the negative electrode of PC by the sultone compound and the effect of suppressing the oxidative decomposition of the cyclic carbonate having a C═C unsaturated bond at the positive electrode. W C / W SL is more preferable to satisfy the 0.75 ≦ W C / W SL ≦ 1.5.
 具体的なC=C不飽和結合を有する環状カーボネートとしては、例えばビニレンカーボネート(VC)、ビニルエチレンカーボネート(VEC)、ジビニルエチレンカーボネート(DVEC)等が挙げられる。これらのC=C不飽和結合を有する環状カーボネートは、1種のみ単独で用いてもよく、2種以上を組み合わせて用いてもよい。なかでも、負極に薄くて緻密な被膜を形成することができ、被膜抵抗が低いことから、ビニレンカーボネートがより好ましい。 Specific examples of the cyclic carbonate having a C═C unsaturated bond include vinylene carbonate (VC), vinyl ethylene carbonate (VEC), and divinyl ethylene carbonate (DVEC). These cyclic carbonates having a C═C unsaturated bond may be used alone or in combination of two or more. Among these, vinylene carbonate is more preferable because a thin and dense film can be formed on the negative electrode and the film resistance is low.
 具体的なスルトン化合物としては、例えば1,3-プロパンスルトン(PS)、1,4-ブタンスルトン、1,3-プロペンスルトン(PRS)等が挙げられる。スルトン化合物は、1種のみ単独で用いてもよく、2種以上を組み合わせて用いてもよい。なかでも、PCの還元分解を抑制する効果が高いことから、1,3-プロパンスルトンがより好ましい。 Specific examples of the sultone compound include 1,3-propane sultone (PS), 1,4-butane sultone, 1,3-propene sultone (PRS), and the like. A sultone compound may be used individually by 1 type, and may be used in combination of 2 or more type. Of these, 1,3-propane sultone is more preferable because it has a high effect of suppressing reductive decomposition of PC.
 なかでも、添加剤は、ビニレンカーボネートおよび1,3-プロパンスルトンの両方を含むことが特に好ましい。これにより、正極には、1,3-プロパンスルトン由来の被膜が形成され、負極には、ビニレンカーボネート由来の被膜と、1,3-プロパンスルトン由来の被膜とが形成される。ビニレンカーボネート由来の被膜は、被膜抵抗の増加を抑えることができるため、充電受入性が向上する。そのため、サイクル特性の劣化を抑制することができる。1,3-プロパンスルトン由来の被膜は、負極でのPCの還元分解を更に抑制して、CH4、C36、C38等のガスの発生を大きく低減できる。 Among these, it is particularly preferable that the additive contains both vinylene carbonate and 1,3-propane sultone. As a result, a coating film derived from 1,3-propane sultone is formed on the positive electrode, and a coating film derived from vinylene carbonate and a coating derived from 1,3-propane sultone are formed on the negative electrode. Since the coating derived from vinylene carbonate can suppress an increase in coating resistance, the charge acceptability is improved. Therefore, deterioration of cycle characteristics can be suppressed. The coating derived from 1,3-propane sultone can further suppress the reductive decomposition of PC at the negative electrode and greatly reduce the generation of gases such as CH 4 , C 3 H 6 , and C 3 H 8 .
 ビニレンカーボネートのみを添加した場合、ビニレンカーボネートは耐酸化性が低いため、正極で酸化分解されてCO2等のガスを発生する場合がある。ビニレンカーボネートとともに1,3-プロパンスルトンを添加することにより、1,3-プロパンスルトンが正極表面にも被膜を形成し、ビニレンカーボネートの酸化分解も抑制できる。これにより、CO2等のガス発生を大きく抑制することができる。 When only vinylene carbonate is added, since vinylene carbonate has low oxidation resistance, it may be oxidized and decomposed at the positive electrode to generate gas such as CO 2 . By adding 1,3-propane sultone together with vinylene carbonate, 1,3-propane sultone forms a film on the surface of the positive electrode, and oxidative decomposition of vinylene carbonate can be suppressed. This makes it possible to greatly suppressed the generation of gas such as CO 2.
 上記のように、ECと、PCと、フッ素化エステルとを含む非水溶媒に、さらに、スルトン化合物およびC=C不飽和結合を有する環状カーボネートの少なくとも一方を添加することで、より優れた被膜を電極に優先的に形成する非水電解質が得られる。そして、このような被膜は、充電受け入れ性を阻害せず、かつ安定である。 As described above, by adding at least one of a sultone compound and a cyclic carbonate having a C═C unsaturated bond to a nonaqueous solvent containing EC, PC, and a fluorinated ester, a more excellent film A non-aqueous electrolyte can be obtained in which is preferentially formed on the electrode. Such a coating does not hinder charge acceptance and is stable.
 なお、添加剤は上記のスルトン化合物およびC=C不飽和結合を有する環状カーボネートに限定されるものではない。また、非水電解質は、さらに他の化合物を含んでもよい。他の化合物は特に限定されないが、例えば、フルオロベンゼン(FB)等のフッ素化芳香族化合物、スルホラン等の環状スルホン、フッ素化エーテル等の含フッ素化合物、γ-ブチロラクトン等の環状カルボン酸エステル等が挙げられる。非水電解質全体において、これらの他の添加剤の重量割合は、10重量%以下であることが好ましい。これらの他の添加剤は、1種のみ単独で用いてもよく、2種以上を組み合わせて用いてもよい。 The additive is not limited to the above sultone compound and a cyclic carbonate having a C═C unsaturated bond. Further, the nonaqueous electrolyte may further contain other compounds. Other compounds are not particularly limited, and examples thereof include fluorinated aromatic compounds such as fluorobenzene (FB), cyclic sulfones such as sulfolane, fluorine-containing compounds such as fluorinated ethers, and cyclic carboxylic acid esters such as γ-butyrolactone. Can be mentioned. In the whole nonaqueous electrolyte, the weight ratio of these other additives is preferably 10% by weight or less. These other additives may be used alone or in combination of two or more.
 非水電解質の25℃における粘度は、例えば3~7mPa・sである。これにより、特に低温でのレート特性の低下を抑制できる。粘度は、回転型粘度計と、コーンプレートタイプのスピンドルとを用いて測定する。 The viscosity of the nonaqueous electrolyte at 25 ° C. is, for example, 3 to 7 mPa · s. Thereby, the fall of the rate characteristic especially at low temperature can be suppressed. The viscosity is measured using a rotary viscometer and a cone plate type spindle.
 非水電解質の溶質は特に限定されない。例えば、LiPF6、LiBF4等の無機リチウムフッ化物や、LiN(CF3SO22、LiN(C25SO22等のリチウムイミド化合物等が挙げられる。 The solute of the nonaqueous electrolyte is not particularly limited. Examples thereof include inorganic lithium fluorides such as LiPF 6 and LiBF 4 and lithium imide compounds such as LiN (CF 3 SO 2 ) 2 and LiN (C 2 F 5 SO 2 ) 2 .
 本発明の非水電解質二次電池について説明する。
 非水電解質二次電池は、正極、負極、正極と負極との間に配されるセパレータおよび上記の非水電解質を含む。非水電解質二次電池は、使用する前に充放電を少なくとも1回行うことが好ましい。充放電は、負極の電位がリチウム基準で0.05~1.5Vとなる範囲で行うことが好ましい。このような充放電を行うことで、少なくとも非水電解質に含まれるフッ素化エステルの一部が分解して、負極にLiFを含む被膜を形成する。上記の充放電後の電池に含まれる非水電解質中のフッ素化エステルの量WFEは、例えば18~48重量%となる。
The nonaqueous electrolyte secondary battery of the present invention will be described.
The nonaqueous electrolyte secondary battery includes a positive electrode, a negative electrode, a separator disposed between the positive electrode and the negative electrode, and the nonaqueous electrolyte. The non-aqueous electrolyte secondary battery is preferably charged and discharged at least once before use. Charging / discharging is preferably performed in a range where the potential of the negative electrode is 0.05 to 1.5 V with respect to lithium. By performing such charge and discharge, at least a part of the fluorinated ester contained in the nonaqueous electrolyte is decomposed to form a film containing LiF on the negative electrode. The amount W FE of the fluorinated ester in the non-aqueous electrolyte contained in the battery after charging and discharging is, for example, 18 to 48% by weight.
 好ましい形態においては、負極は、負極芯材および負極芯材に付着した負極合剤層を含み、負極合剤層が、黒鉛粒子と、黒鉛粒子の表面を被覆する水溶性高分子と、水溶性高分子で被覆された黒鉛粒子間を接着する結着剤とを含む。 In a preferred embodiment, the negative electrode includes a negative electrode core material and a negative electrode mixture layer attached to the negative electrode core material. The negative electrode mixture layer includes graphite particles, a water-soluble polymer that covers the surface of the graphite particles, and a water-soluble material. And a binder for adhering the graphite particles coated with the polymer.
 黒鉛粒子の表面を水溶性高分子で被覆することにより、フッ素化エステルを含む非水電解質が、負極の内部まで浸透し易くなる。その結果、非水電解質が黒鉛粒子の表面にほぼ均一に存在可能となり、初期充電時にLiFを含む被膜がムラなく均一に形成されやすくなる。そのため、負極に適度量の安定な被膜が形成され、PCの還元分解を良好に抑制できる。すなわち、水溶性高分子と上記の非水電解質とを併用することで、それぞれを単独で用いた場合よりもガス発生を大幅に抑制することができる。 By coating the surface of graphite particles with a water-soluble polymer, a non-aqueous electrolyte containing a fluorinated ester can easily penetrate into the negative electrode. As a result, the non-aqueous electrolyte can be present almost uniformly on the surface of the graphite particles, and a film containing LiF can be easily and uniformly formed during initial charging. Therefore, an appropriate amount of a stable film is formed on the negative electrode, and the reductive decomposition of PC can be satisfactorily suppressed. That is, by using the water-soluble polymer and the non-aqueous electrolyte in combination, gas generation can be significantly suppressed as compared with the case where each is used alone.
 水溶性高分子の種類は特に限定されないが、セルロース誘導体またはポリアクリル酸、ポリビニルアルコール、ポリビニルピロリドンもしくはこれらの誘導体などがあげられる。これらのうちでも特に、水溶性高分子は、セルロース誘導体またはポリアクリル酸を含むことが好ましい。セルロース誘導体としては、メチルセルロース、カルボキシメチルセルロース、カルボキシメチルセルロースのNa塩などが好ましい。セルロース誘導体の分子量は1万~100万が好適である。また、ポリアクリル酸の分子量は5000~100万が好適である。 The type of the water-soluble polymer is not particularly limited, and examples thereof include cellulose derivatives, polyacrylic acid, polyvinyl alcohol, polyvinyl pyrrolidone, and derivatives thereof. Of these, the water-soluble polymer preferably contains a cellulose derivative or polyacrylic acid. As the cellulose derivative, methyl cellulose, carboxymethyl cellulose, Na salt of carboxymethyl cellulose and the like are preferable. The molecular weight of the cellulose derivative is preferably 10,000 to 1,000,000. The molecular weight of polyacrylic acid is preferably from 5,000 to 1,000,000.
 負極合剤層に含まれる水溶性高分子の量は、黒鉛粒子100重量部あたり、0.4~2.8重量部が好ましく、0.5~1.5重量部が更に好ましく、0.5~1重量部が特に好ましい。水溶性高分子の量が上記範囲に含まれる場合、水溶性高分子が黒鉛粒子の表面を高い被覆率で被覆することができる。また、黒鉛粒子表面が水溶性高分子で過度に被覆されることがなく、負極の内部抵抗の上昇も抑制される。 The amount of the water-soluble polymer contained in the negative electrode mixture layer is preferably 0.4 to 2.8 parts by weight, more preferably 0.5 to 1.5 parts by weight per 100 parts by weight of the graphite particles. ˜1 part by weight is particularly preferred. When the amount of the water-soluble polymer is within the above range, the water-soluble polymer can cover the surface of the graphite particles with a high coverage. Moreover, the graphite particle surface is not excessively covered with the water-soluble polymer, and the increase in the internal resistance of the negative electrode is also suppressed.
 負極合剤層に含ませる結着剤は、特に限定されないが、粒子状であり、ゴム弾性を有する結着剤が好ましい。粒子状の結着剤の平均粒径が0.1μm~0.3μmであることが好ましく、0.1~0.26μmであることが更に好ましく、0.1~0.15μmであることが特に好ましく、0.1~0.12μmであることが最も好ましい。なお、結着剤の平均粒径は、例えば、透過型電子顕微鏡(日本電子株式会社製、加速電圧200kV)により、10個の結着剤粒子のSEM写真を撮影し、これらの最大径の平均値として求める。 The binder to be included in the negative electrode mixture layer is not particularly limited, but is preferably a particulate binder having rubber elasticity. The average particle diameter of the particulate binder is preferably 0.1 μm to 0.3 μm, more preferably 0.1 to 0.26 μm, and particularly preferably 0.1 to 0.15 μm. Preferably, it is 0.1 to 0.12 μm. The average particle size of the binder is, for example, an SEM photograph of 10 binder particles taken with a transmission electron microscope (manufactured by JEOL Ltd., acceleration voltage 200 kV), and the average of these maximum diameters. Calculate as a value.
 粒子状であり、ゴム弾性を有し、平均粒径が0.1μm~0.3μmである結着剤としては、特にスチレン単位およびブタジエン単位を含む高分子が好ましい。このような高分子は、弾性に優れ、負極電位で安定である。 As the binder, which is particulate, has rubber elasticity, and an average particle size of 0.1 μm to 0.3 μm, a polymer containing a styrene unit and a butadiene unit is particularly preferable. Such a polymer is excellent in elasticity and stable at the negative electrode potential.
 負極合剤層に含まれる結着剤の量は、黒鉛粒子100重量部あたり、0.4~1.5重量部が好ましく、0.4~1重量部が更に好ましく、0.4~0.7重量部が特に好ましい。水溶性高分子が黒鉛粒子の表面を被覆している場合、黒鉛粒子間の滑り性が良好であるため、水溶性高分子で被覆された黒鉛粒子表面に付着した結着剤は、十分なせん断力を受け、黒鉛粒子表面に有効に作用する。また、粒子状で平均粒径の小さい結着剤は、水溶性高分子で被覆された黒鉛粒子の表面と接触する確率が高くなる。よって、結着剤の量が少量でも十分な結着性が発揮される。 The amount of the binder contained in the negative electrode mixture layer is preferably 0.4 to 1.5 parts by weight, more preferably 0.4 to 1 part by weight, and more preferably 0.4 to 0.1 parts by weight per 100 parts by weight of the graphite particles. 7 parts by weight is particularly preferred. When the water-soluble polymer coats the surface of the graphite particles, the slippage between the graphite particles is good, so that the binder attached to the surface of the graphite particles coated with the water-soluble polymer has sufficient shear. It receives force and acts effectively on the graphite particle surface. In addition, a particulate binder having a small average particle size increases the probability of contact with the surface of graphite particles coated with a water-soluble polymer. Therefore, sufficient binding properties are exhibited even with a small amount of the binder.
 負極芯材としては、金属箔などが用いられる。リチウムイオン二次電池の負極を作製する場合には、一般に銅箔、銅合金箔などが負極芯材として用いられる。なかでも銅箔(0.2モル%以下の銅以外の成分が含まれていてもよい)が好ましく、特に電解銅箔が好ましい。 A metal foil or the like is used as the negative electrode core material. When producing the negative electrode of a lithium ion secondary battery, generally copper foil, copper alloy foil, etc. are used as a negative electrode core material. Of these, copper foil (which may contain components other than copper of 0.2 mol% or less) is preferable, and electrolytic copper foil is particularly preferable.
 負極合剤層の水浸透速度は、3~40秒であることが好ましい。負極合剤層の水浸透速度は、例えば水溶性高分子の被覆量によって制御できる。負極合剤層の水浸透速度が3~40秒であることで、非水電解質が、負極の内部まで特に浸透しやすくなる。これにより、PCの還元分解をより良好に抑制できる。負極合剤層の水浸透速度は、10~25秒であることがより好ましい。 The water permeation rate of the negative electrode mixture layer is preferably 3 to 40 seconds. The water penetration rate of the negative electrode mixture layer can be controlled by, for example, the coating amount of the water-soluble polymer. When the water permeation speed of the negative electrode mixture layer is 3 to 40 seconds, the non-aqueous electrolyte particularly easily penetrates into the negative electrode. Thereby, reductive decomposition of PC can be suppressed more favorably. The water penetration rate of the negative electrode mixture layer is more preferably 10 to 25 seconds.
 負極合剤層の水浸透速度は、例えば以下の方法で25℃の環境下で測定する。
 2μlの水を滴下して、液滴を負極合剤層の表面に接触させる。負極合剤層表面に対する水の接触角θが10°より小さくなるまでの時間を測定することで、負極合剤層の水浸透速度が求められる。負極合剤層表面に対する水の接触角は、市販の接触角測定装置(例えば、協和界面科学(株)製のDM-301)を用いて測定すればよい。
The water permeation rate of the negative electrode mixture layer is measured in an environment of 25 ° C., for example, by the following method.
2 μl of water is dropped to bring the droplet into contact with the surface of the negative electrode mixture layer. By measuring the time until the contact angle θ of water with respect to the surface of the negative electrode mixture layer becomes smaller than 10 °, the water permeation rate of the negative electrode mixture layer is obtained. The contact angle of water with the surface of the negative electrode mixture layer may be measured using a commercially available contact angle measuring device (for example, DM-301 manufactured by Kyowa Interface Science Co., Ltd.).
 負極合剤層の空隙率は、24~28%であることが好ましい。表面を水溶性高分子で被覆した黒鉛粒子を含む負極合剤層の空隙率を24~28%に制御することで、非水電解質が、負極の内部までより浸透しやすくなる。これにより、均一な被膜が負極に形成され易くなるため、PCの還元分解をより良好に抑制できる。 The porosity of the negative electrode mixture layer is preferably 24 to 28%. By controlling the porosity of the negative electrode mixture layer containing graphite particles whose surfaces are coated with water-soluble polymer to 24 to 28%, the nonaqueous electrolyte can more easily penetrate into the negative electrode. Thereby, since a uniform film is easily formed on the negative electrode, the reductive decomposition of PC can be suppressed more favorably.
 負極は、負極活物質として黒鉛粒子を含む。ここでは、黒鉛粒子とは、黒鉛構造を有する領域を含む粒子の総称である。よって、黒鉛粒子には、天然黒鉛、人造黒鉛、黒鉛化メソフェーズカーボン粒子などが含まれる。 The negative electrode contains graphite particles as a negative electrode active material. Here, the graphite particles are a general term for particles including a region having a graphite structure. Thus, the graphite particles include natural graphite, artificial graphite, graphitized mesophase carbon particles, and the like.
 広角X線回折法で測定される黒鉛粒子の回折像は、(101)面に帰属されるピークと、(100)面に帰属されるピークとを有する。ここで、(101)面に帰属されるピークの強度I(101)と、(100)面に帰属されるピークの強度I(100)との比は、0.01<I(101)/I(100)<0.25を満たすことが好ましく、0.08<I(101)/I(100)<0.2を満たすことが更に好ましい。なお、ピークの強度とは、ピークの高さを意味する。 The diffraction image of graphite particles measured by the wide-angle X-ray diffraction method has a peak attributed to the (101) plane and a peak attributed to the (100) plane. Here, the ratio of the peak intensity I (101) attributed to the (101) plane and the peak intensity I (100) attributed to the (100) plane is 0.01 <I (101) / I. (100) <0.25 is preferably satisfied, and 0.08 <I (101) / I (100) <0.2 is more preferably satisfied. The peak intensity means the peak height.
 黒鉛粒子の平均粒径は、14~25μmが好ましく、16~23μmが更に好ましい。平均粒径が上記範囲に含まれる場合、負極合剤層における黒鉛粒子の滑り性が向上し、黒鉛粒子の充填状態が良好となり、黒鉛粒子間の接着強度の向上に有利である。なお、平均粒径とは、黒鉛粒子の体積粒度分布におけるメディアン径(D50)を意味する。黒鉛粒子の体積粒度分布は、例えば市販のレーザー回折式の粒度分布測定装置により測定することができる。 The average particle diameter of the graphite particles is preferably 14 to 25 μm, more preferably 16 to 23 μm. When the average particle diameter is within the above range, the slipping property of the graphite particles in the negative electrode mixture layer is improved, the filling state of the graphite particles is improved, and it is advantageous for improving the adhesive strength between the graphite particles. The average particle diameter means the median diameter (D50) in the volume particle size distribution of the graphite particles. The volume particle size distribution of the graphite particles can be measured by, for example, a commercially available laser diffraction type particle size distribution measuring apparatus.
 黒鉛粒子の平均円形度は、0.9~0.95が好ましく、0.91~0.94が更に好ましい。平均円形度が上記範囲に含まれる場合、負極合剤層における黒鉛粒子の滑り性が向上し、黒鉛粒子の充填性の向上や、黒鉛粒子間の接着強度の向上に有利である。なお、平均円形度は、4πS/L2(ただし、Sは黒鉛粒子の正投影像の面積、Lは正投影像の周囲長)で表される。例えば、任意の100個の黒鉛粒子の平均円形度が上記範囲であることが好ましい。 The average circularity of the graphite particles is preferably 0.9 to 0.95, and more preferably 0.91 to 0.94. When the average circularity is included in the above range, the slipping property of the graphite particles in the negative electrode mixture layer is improved, which is advantageous in improving the filling properties of the graphite particles and the adhesion strength between the graphite particles. The average circularity is represented by 4πS / L 2 (where S is the area of the orthographic image of graphite particles, and L is the perimeter of the orthographic image). For example, the average circularity of 100 arbitrary graphite particles is preferably in the above range.
 黒鉛粒子の比表面積Sは、3~5m2/gが好ましく、3.5~4.5m2/gが更に好ましい。比表面積が上記範囲に含まれる場合、負極合剤層における黒鉛粒子の滑り性が向上し、黒鉛粒子間の接着強度の向上に有利である。また、黒鉛粒子の表面を被覆する水溶性高分子の好適量を少なくすることができる。 The specific surface area S of the graphite particles is preferably 3 to 5 m 2 / g, more preferably 3.5 to 4.5 m 2 / g. When the specific surface area is included in the above range, the slipperiness of the graphite particles in the negative electrode mixture layer is improved, which is advantageous for improving the adhesive strength between the graphite particles. Further, the preferred amount of the water-soluble polymer that covers the surface of the graphite particles can be reduced.
 黒鉛粒子の表面を水溶性高分子で被覆するために、以下の製造方法で負極を製造することが望ましい。
 好ましい方法は、黒鉛粒子と、水と、水に溶解した水溶性高分子とを混合し、得られた混合物を乾燥させて、乾燥混合物とする工程(工程(i))を含む。例えば、水溶性高分子を水中に溶解させて、水溶性高分子水溶液を調製する。得られた水溶性高分子水溶液と黒鉛粒子とを混合し、その後、水分を除去して、混合物を乾燥させる。このように、混合物を一旦乾燥させることにより、黒鉛粒子の表面に水溶性高分子が効率的に付着し、水溶性高分子による黒鉛粒子表面の被覆率が高められる。
In order to coat the surface of the graphite particles with a water-soluble polymer, it is desirable to produce a negative electrode by the following production method.
A preferred method includes a step (step (i)) of mixing graphite particles, water, and a water-soluble polymer dissolved in water, and drying the resulting mixture to obtain a dry mixture. For example, a water-soluble polymer is dissolved in water to prepare a water-soluble polymer aqueous solution. The obtained water-soluble polymer aqueous solution and graphite particles are mixed, and then the water is removed and the mixture is dried. Thus, once the mixture is dried, the water-soluble polymer efficiently adheres to the surface of the graphite particles, and the coverage of the graphite particle surface with the water-soluble polymer is increased.
 水溶性高分子水溶液の粘度は、25℃において、1000~10000mPa・sに制御することが好ましい。粘度は、B型粘度計を用い、周速度20mm/sで、5mmφのスピンドルを用いて測定する。また、水溶性高分子水溶液100重量部と混合する黒鉛粒子の量は、50~150重量部が好適である。 The viscosity of the water-soluble polymer aqueous solution is preferably controlled to 1000 to 10,000 mPa · s at 25 ° C. The viscosity is measured using a B-type viscometer at a peripheral speed of 20 mm / s and using a 5 mmφ spindle. The amount of graphite particles mixed with 100 parts by weight of the water-soluble polymer aqueous solution is preferably 50 to 150 parts by weight.
 混合物の乾燥温度は80~150℃が好ましく、乾燥時間は1~8時間が好適である。
 次に、得られた乾燥混合物と、結着剤と、液状成分とを混合し、負極合剤スラリーを調製する(工程(ii))。この工程により、水溶性高分子で被覆された黒鉛粒子の表面に、結着剤が付着する。黒鉛粒子間の滑り性が良好なため、水溶性高分子で被覆された黒鉛粒子表面に付着した結着剤は、十分なせん断力を受け、水溶性高分子で被覆された黒鉛粒子表面に有効に作用する。
The drying temperature of the mixture is preferably 80 to 150 ° C., and the drying time is preferably 1 to 8 hours.
Next, the obtained dry mixture, the binder, and the liquid component are mixed to prepare a negative electrode mixture slurry (step (ii)). By this step, the binder adheres to the surface of the graphite particles coated with the water-soluble polymer. Because of the good slippage between the graphite particles, the binder attached to the surface of the graphite particles coated with the water-soluble polymer receives sufficient shearing force and is effective on the surface of the graphite particles coated with the water-soluble polymer. Act on.
 そして、得られた負極合剤スラリーを、負極芯材に塗布し、乾燥させて、負極合剤層を形成することにより、負極が得られる(工程(iii))。負極合剤スラリーを負極芯材に塗布する方法は、特に限定されない。例えば、ダイコートを用いて、負極芯材の原反に負極合剤スラリーを所定パターンで塗布する。塗膜の乾燥温度も特に限定されない。乾燥後の塗膜は、圧延ロールで圧延し、所定の厚さに制御される。圧延工程により、負極合剤層と負極芯材との接着強度や、水溶性高分子で被覆された黒鉛粒子間の接着強度が高められる。こうして得られた負極合剤層を負極芯材とともに所定形状に裁断することにより、負極が完成する。 Then, the negative electrode mixture slurry obtained is applied to a negative electrode core material and dried to form a negative electrode mixture layer, whereby a negative electrode is obtained (step (iii)). The method for applying the negative electrode mixture slurry to the negative electrode core material is not particularly limited. For example, the negative electrode mixture slurry is applied in a predetermined pattern on the raw material of the negative electrode core material using a die coat. The drying temperature of the coating film is not particularly limited. The dried coating film is rolled with a rolling roll and controlled to a predetermined thickness. By the rolling process, the adhesive strength between the negative electrode mixture layer and the negative electrode core material and the adhesive strength between the graphite particles coated with the water-soluble polymer are increased. The negative electrode mixture layer thus obtained is cut into a predetermined shape together with the negative electrode core material, whereby the negative electrode is completed.
 上記方法で、負極合剤スラリーを調製する際に用いる液状成分は、特に限定されないが、水、アルコール水溶液などが好ましく、水が最も好ましい。ただし、N-メチル-2-ピロリドン(以下、NMP)などを用いてもよい。 The liquid component used for preparing the negative electrode mixture slurry by the above method is not particularly limited, but water, an aqueous alcohol solution, and the like are preferable, and water is most preferable. However, N-methyl-2-pyrrolidone (hereinafter referred to as NMP) may be used.
 正極は、非水電解質二次電池の正極として用いることのできるものであれば、特に限定されない。正極は、例えば、正極活物質と、カーボンブラックなどの導電剤と、ポリフッ化ビニリデンなどの結着剤とを含む正極合剤スラリーを、アルミニウム箔などの正極芯材に塗布し、乾燥し、圧延することにより得られる。正極活物質としては、リチウム含有遷移金属複合酸化物が好ましい。リチウム含有遷移金属複合酸化物の代表的な例としては、LiCoO2、LiNiO2、LiMn24、LiMnO2などを挙げることができる。 A positive electrode will not be specifically limited if it can be used as a positive electrode of a nonaqueous electrolyte secondary battery. For the positive electrode, for example, a positive electrode mixture slurry containing a positive electrode active material, a conductive agent such as carbon black, and a binder such as polyvinylidene fluoride is applied to a positive electrode core material such as an aluminum foil, dried, and rolled. Can be obtained. As the positive electrode active material, a lithium-containing transition metal composite oxide is preferable. Representative examples of the lithium-containing transition metal composite oxide include LiCoO 2 , LiNiO 2 , LiMn 2 O 4 , LiMnO 2 and the like.
 なかでも、高容量を確保しつつ、ガス発生を抑制する効果がより顕著に得られる点から、正極は、リチウムおよびニッケルを含む複合酸化物を含むことが好ましい。この場合、複合酸化物に含まれるニッケルのリチウムに対するモル比が、30~100モル%であることが好ましい。 Especially, it is preferable that a positive electrode contains the complex oxide containing lithium and nickel from the point from which the effect which suppresses gas generation | occurrence | production while ensuring high capacity | capacitance is acquired more notably. In this case, the molar ratio of nickel to lithium contained in the composite oxide is preferably 30 to 100 mol%.
 複合酸化物は、更に、マンガンおよびコバルトよりなる群から選ばれる少なくとも1種を含むことが好ましく、リチウムに対するマンガンおよびコバルトの合計のモル比は70モル%以下であることが好ましい。 The composite oxide preferably further contains at least one selected from the group consisting of manganese and cobalt, and the total molar ratio of manganese and cobalt to lithium is preferably 70 mol% or less.
 複合酸化物は、更に、Li、Ni、Mn、CoおよびO以外の元素Mを含むことが好ましく、元素Mのリチウムに対するモル比は1~10モル%であることが好ましい。 The composite oxide further preferably contains an element M other than Li, Ni, Mn, Co and O, and the molar ratio of the element M to lithium is preferably 1 to 10 mol%.
 具体的なリチウムニッケル含有複合酸化物としては、例えば、一般式(1):
 LixNiyzMe1-(y+z)2+d (1)
(Mは、CoおよびMnよりなる群から選ばれる少なくとも1種の元素であり、Meは、Al、Cr、Fe、Mg、およびZnよりなる群から選ばれる少なくとも1種の元素であり、0.98≦x≦1.1であり、0.3≦y≦1であり、0≦z≦0.7であり、0.9≦(y+z)≦1であり、-0.01≦d≦0.01である)で表されるものが挙げられる。
Specific lithium nickel-containing composite oxides include, for example, the general formula (1):
Li x Ni y M z Me 1- (y + z) O 2 + d (1)
(M is at least one element selected from the group consisting of Co and Mn, Me is at least one element selected from the group consisting of Al, Cr, Fe, Mg, and Zn; 98 ≦ x ≦ 1.1, 0.3 ≦ y ≦ 1, 0 ≦ z ≦ 0.7, 0.9 ≦ (y + z) ≦ 1, −0.01 ≦ d ≦ 0 .01).
 セパレータとしては、ポリエチレン、ポリプロピレンなどからなる微多孔性フィルムが一般に用いられている。セパレータの厚みは、例えば10~30μmである。 As the separator, a microporous film made of polyethylene, polypropylene or the like is generally used. The thickness of the separator is, for example, 10 to 30 μm.
 本発明は、円筒型、扁平型、コイン型、角型など、様々な形状の非水電解質二次電池に適用可能であり、電池の形状は特に限定されない。 The present invention can be applied to non-aqueous electrolyte secondary batteries having various shapes such as a cylindrical shape, a flat shape, a coin shape, and a square shape, and the shape of the battery is not particularly limited.
 次に、本発明を実施例および比較例に基づいて具体的に説明する。ただし、本発明は、以下の実施例に限定されるものではない。 Next, the present invention will be specifically described based on examples and comparative examples. However, the present invention is not limited to the following examples.
《実施例1》
 (a)負極の作製
 工程(i)
 まず、水溶性高分子であるカルボキシメチルセルロース(以下、CMC、分子量40万)を水に溶解し、CMC濃度1重量%の水溶液を得た。天然黒鉛粒子(平均粒径20μm、平均円形度0.92、比表面積4.2m2/g)100重量部と、CMC水溶液100重量部とを混合し、混合物の温度を25℃に制御しながら攪拌した。その後、混合物を120℃で5時間乾燥させ、乾燥混合物を得た。乾燥混合物において、黒鉛粒子100重量部あたりのCMC量は1重量部であった。
Example 1
(A) Production of negative electrode Step (i)
First, carboxymethylcellulose (hereinafter referred to as CMC, molecular weight 400,000), which is a water-soluble polymer, was dissolved in water to obtain an aqueous solution having a CMC concentration of 1% by weight. While mixing 100 parts by weight of natural graphite particles (average particle size 20 μm, average circularity 0.92, specific surface area 4.2 m 2 / g) and 100 parts by weight of CMC aqueous solution, the temperature of the mixture is controlled at 25 ° C. Stir. Thereafter, the mixture was dried at 120 ° C. for 5 hours to obtain a dry mixture. In the dry mixture, the amount of CMC per 100 parts by weight of graphite particles was 1 part by weight.
 工程(ii)
 得られた乾燥混合物101重量部と、平均粒径0.12μmの粒子状であり、スチレン単位およびブタジエン単位を含み、ゴム弾性を有する結着剤(以下、SBR)0.6重量部と、0.9重量部のカルボキシメチルセルロースと、適量の水とを混合し、負極合剤スラリーを調製した。なお、SBRは水を分散媒とするエマルジョン(日本ゼオン(株)製のBM-400B(商品名)、SBR重量割合40重量%)の状態で他の成分と混合した。
Step (ii)
101 parts by weight of the obtained dry mixture, 0.6 parts by weight of a binder (hereinafter referred to as SBR) having a rubber elasticity, which is in the form of particles having an average particle size of 0.12 μm, and containing styrene units and butadiene units; .9 parts by weight of carboxymethyl cellulose and an appropriate amount of water were mixed to prepare a negative electrode mixture slurry. SBR was mixed with other components in an emulsion using water as a dispersion medium (BM-400B (trade name) manufactured by Nippon Zeon Co., Ltd., SBR weight ratio: 40% by weight).
 工程(iii)
 得られた負極合剤スラリーを、負極芯材である電解銅箔(厚さ12μm)の両面にダイコートを用いて塗布し、塗膜を120℃で乾燥させた。その後、乾燥塗膜を圧延ローラで線圧0.25トン/cmで圧延して、厚さ160μm、黒鉛密度1.65g/cm3の負極合剤層を形成した。負極合剤層を負極芯材とともに所定形状に裁断することにより、負極を得た。
Step (iii)
The obtained negative electrode mixture slurry was applied to both surfaces of an electrolytic copper foil (thickness 12 μm) as a negative electrode core material using a die coat, and the coating film was dried at 120 ° C. Thereafter, the dried coating film was rolled with a rolling roller at a linear pressure of 0.25 ton / cm to form a negative electrode mixture layer having a thickness of 160 μm and a graphite density of 1.65 g / cm 3 . The negative electrode mixture layer was cut into a predetermined shape together with the negative electrode core material to obtain a negative electrode.
 以下の方法で、負極合剤層の水浸透速度を測定した。
 2μlの水を滴下して、液滴を負極合剤層の表面に接触させた。その後、接触角測定装置(協和界面科学(株)製のDM-301)を用いて、25℃における負極合剤層表面に対する水の接触角θが10°より小さくなるまでの時間を測定した。負極合剤層の水浸透速度は、15秒であった。
The water penetration rate of the negative electrode mixture layer was measured by the following method.
2 μl of water was dropped to bring the droplet into contact with the surface of the negative electrode mixture layer. Thereafter, using a contact angle measuring device (DM-301 manufactured by Kyowa Interface Science Co., Ltd.), the time until the contact angle θ of water with respect to the negative electrode mixture layer surface at 25 ° C. was smaller than 10 ° was measured. The water penetration rate of the negative electrode mixture layer was 15 seconds.
 また、負極合剤を構成する各材料の真密度から、負極合剤層の空隙率を計算したところ、25%であった。 Further, the porosity of the negative electrode mixture layer was calculated from the true density of each material constituting the negative electrode mixture and found to be 25%.
 (b)正極の作製
 正極活物質である100重量部のLiNi0.80Co0.15Al0.052に対し、結着剤であるポリフッ化ビニリデン(PVDF)を4重量部添加し、適量のN-メチル-2-ピロリドン(NMP)とともに混合し、正極合剤スラリーを調製した。得られた正極合剤スラリーを、正極芯材である厚さ20μmのアルミニウム箔の両面に、ダイコートを用いて塗布し、塗膜を乾燥させ、更に、圧延して、正極合剤層を形成した。正極合剤層を正極芯材とともに所定形状に裁断することにより、正極を得た。
(B) Preparation of positive electrode 4 parts by weight of polyvinylidene fluoride (PVDF) as a binder was added to 100 parts by weight of LiNi 0.80 Co 0.15 Al 0.05 O 2 as a positive electrode active material, and an appropriate amount of N-methyl- Mixing with 2-pyrrolidone (NMP) to prepare a positive electrode mixture slurry. The obtained positive electrode mixture slurry was applied to both surfaces of a 20 μm thick aluminum foil as a positive electrode core material using a die coat, the coating film was dried, and further rolled to form a positive electrode mixture layer. . The positive electrode mixture layer was cut into a predetermined shape together with the positive electrode core material to obtain a positive electrode.
 (c)非水電解質の調製
 エチレンカーボネート(EC)と、プロピレンカーボネート(PC)と、メチル-2,2,2-トリフルオロプロピオネート(FE)とを、WEC:WPC:WFE=10:50:40の重量割合で含む混合溶媒に、1モル/リットルの濃度でLiPF6を溶解させ、更にスルトン化合物である1,3-プロパンスルトンを1重量%、C=C不飽和結合を有する環状カーボネートであるビニレンカーボネートを2重量%含ませて非水電解質を調製した。回転粘度計(コーンプレート型、コーンプレートの半径:24mm)によって測定したところ、25℃における非水電解質の粘度は4.4mPa・sであった。
(C) Preparation of non-aqueous electrolyte Ethylene carbonate (EC), propylene carbonate (PC), and methyl-2,2,2-trifluoropropionate (FE) were mixed with W EC : W PC : W FE = 10. : LiPF 6 is dissolved at a concentration of 1 mol / liter in a mixed solvent containing a weight ratio of 50:40, and 1% by weight of 1,3-propane sultone, which is a sultone compound, has a C═C unsaturated bond. A non-aqueous electrolyte was prepared by containing 2% by weight of vinylene carbonate, which is a cyclic carbonate. When measured with a rotational viscometer (cone plate type, cone plate radius: 24 mm), the viscosity of the nonaqueous electrolyte at 25 ° C. was 4.4 mPa · s.
 (d)電池の組み立て
 図1に示すような角型リチウムイオン二次電池を作製した。
 負極と正極とを、これらの間に厚さ20μmのポリエチレン製の微多孔質フィルムからなるセパレータ(セルガード(株)製のA089(商品名))を介して捲回し、断面が略楕円形の電極群21を構成した。電極群21はアルミニウム製の角型の電池缶20に収容した。電池缶20は、底部と、側壁とを有し、上部は開口しており、その形状は略矩形である。側壁の主要平坦部の厚みは80μmとした。その後、電池缶20と正極リード22または負極リード23との短絡を防ぐための絶縁体24を、電極群21の上部に配置した。次に、絶縁ガスケット26で囲まれた負極端子27を中央に有する矩形の封口板25を、電池缶20の開口に配置した。負極リード23は、負極端子27と接続した。正極リード22は、封口板25の下面と接続した。開口の端部と封口板25とをレーザで溶接し、電池缶20の開口を封口した。その後、封口板25の注液孔から2.5gの非水電解質を電池缶20に注入した。最後に、注液孔を封栓29で溶接により塞ぎ、高さ50mm、幅34mm、内空間の厚み約5.2mm、設計容量850mAhの角型リチウムイオン二次電池1を完成させた。
(D) Battery assembly A square lithium ion secondary battery as shown in FIG. 1 was produced.
A negative electrode and a positive electrode are wound through a separator (A089 (trade name) manufactured by Celgard Co., Ltd.) made of a polyethylene microporous film having a thickness of 20 μm between the negative electrode and the positive electrode. Group 21 was configured. The electrode group 21 was housed in an aluminum square battery can 20. The battery can 20 has a bottom part and a side wall, the top part is opened, and the shape is substantially rectangular. The thickness of the main flat part of the side wall was 80 μm. Thereafter, an insulator 24 for preventing a short circuit between the battery can 20 and the positive electrode lead 22 or the negative electrode lead 23 was disposed on the electrode group 21. Next, a rectangular sealing plate 25 having a negative electrode terminal 27 surrounded by an insulating gasket 26 in the center was disposed in the opening of the battery can 20. The negative electrode lead 23 was connected to the negative electrode terminal 27. The positive electrode lead 22 was connected to the lower surface of the sealing plate 25. The end of the opening and the sealing plate 25 were welded with a laser to seal the opening of the battery can 20. Thereafter, 2.5 g of nonaqueous electrolyte was injected into the battery can 20 from the injection hole of the sealing plate 25. Finally, the liquid injection hole was closed by welding with a plug 29 to complete the prismatic lithium ion secondary battery 1 having a height of 50 mm, a width of 34 mm, an inner space thickness of about 5.2 mm, and a design capacity of 850 mAh.
 〈電池の評価〉
(1)サイクル容量維持率の評価
 電池1に対し、電池の充放電サイクルを45℃で繰り返した。充放電サイクルにおいて、充電では、充電電流600mA、終止電圧4.2Vの定電流充電を行った後、4.2Vで充電カット電流43mAまで定電圧充電を行った。充電後の休止時間は10分間とした。一方、放電では、放電電流を850mA、放電終止電圧を2.5Vとし、定電流放電を行った。放電後の休止時間は10分間とした。
 3サイクル目の放電容量を100%とみなし、500サイクルを経過したときの放電容量をサイクル容量維持率[%]とした。結果を表1に示す。
<Battery evaluation>
(1) Evaluation of cycle capacity maintenance rate The battery charge / discharge cycle of battery 1 was repeated at 45 ° C. In the charge / discharge cycle, in charging, constant current charging with a charging current of 600 mA and a final voltage of 4.2 V was performed, and then constant voltage charging was performed at 4.2 V up to a charging cut current of 43 mA. The rest time after charging was 10 minutes. On the other hand, in the discharge, constant current discharge was performed with a discharge current of 850 mA and a discharge end voltage of 2.5V. The rest time after discharge was 10 minutes.
The discharge capacity at the third cycle was regarded as 100%, and the discharge capacity when 500 cycles passed was defined as the cycle capacity maintenance rate [%]. The results are shown in Table 1.
(2)サイクル後電池膨れの評価
 また、3サイクル目の充電後における状態と、501サイクル目の充電後における状態とで、電池1の最大平面(縦50mm、横34mm)に垂直な中央部の厚みを測定した。その電池厚みの差から、45℃での充放電サイクル経過後における電池膨れの量[mm]を求めた。結果を表1に示す。
(2) Evaluation of battery swelling after cycle In the state after charging in the third cycle and in the state after charging in the 501st cycle, the central portion perpendicular to the maximum plane (vertical 50 mm, horizontal 34 mm) of the battery 1 The thickness was measured. From the difference in battery thickness, the amount of battery swelling [mm] after the charge / discharge cycle at 45 ° C. was determined. The results are shown in Table 1.
(3)低温放電特性評価
 電池1に対し、電池の充放電サイクルを25℃で3サイクル繰り返した。次に、4サイクル目の充電を25℃で行った後、0℃で3時間放置後、そのまま0℃で放電を行った。3サイクル目(25℃)の放電容量を100%とみなし、4サイクル目(0℃)の放電容量を百分率で表し、これを低温放電容量維持率[%]とした。結果を表1に示す。なお、充放電条件は、充電後の休止時間以外は、評価(1)と同様にした。
(3) Evaluation of low-temperature discharge characteristics For battery 1, the battery charge / discharge cycle was repeated three times at 25 ° C. Next, after charging at the fourth cycle at 25 ° C., the battery was left at 0 ° C. for 3 hours and then discharged at 0 ° C. as it was. The discharge capacity at the third cycle (25 ° C.) was regarded as 100%, the discharge capacity at the fourth cycle (0 ° C.) was expressed as a percentage, and this was defined as the low temperature discharge capacity maintenance rate [%]. The results are shown in Table 1. The charging / discharging conditions were the same as those in the evaluation (1) except for the rest time after charging.
(4)高温保存後電池膨れの評価
 まず、電池1に対し、電池の充放電サイクルを25℃で2サイクル繰り返した後、3サイクル目の充電後における状態で、電池1の最大平面に垂直な中央部の厚みを測定した。次に、電池1を85℃で3日放置した後、25℃で3時間冷却放置した状態で、同様に電池厚みを測定した。それらの電池厚みの差から、85℃で3日間高温保存した後における電池膨れの量[mm]を求めた。結果を表1に示す。
(4) Evaluation of battery swelling after storage at high temperature First, the battery 1 was charged and discharged at 25 ° C. for 2 cycles, and then charged in the third cycle. The thickness of the central part was measured. Next, after the battery 1 was allowed to stand at 85 ° C. for 3 days and then cooled at 25 ° C. for 3 hours, the battery thickness was measured in the same manner. From the difference in battery thickness, the amount of battery swelling [mm] after high temperature storage at 85 ° C. for 3 days was determined. The results are shown in Table 1.
《実施例2》
 エチレンカーボネート(EC)と、プロピレンカーボネート(PC)と、メチル-2,2,2-トリフルオロプロピオネート(FE)との重量割合であるWEC:WPC:WFEを表1に示すように変化させたこと以外、実施例1と同様にして、非水電解質を調製した。得られた非水電解質を用いたこと以外、実施例1と同様にして、電池2~14を作製した。
Example 2
Table 1 shows W EC : W PC : W FE , which is a weight ratio of ethylene carbonate (EC), propylene carbonate (PC), and methyl-2,2,2-trifluoropropionate (FE). A nonaqueous electrolyte was prepared in the same manner as in Example 1 except that the amount was changed. Batteries 2 to 14 were produced in the same manner as in Example 1 except that the obtained nonaqueous electrolyte was used.
 また、表1に示す重量割合(WFB)でフルオロベンゼン(FB)を更に添加したこと以外、実施例1と同様にして、非水電解質を調製し、これらを用いて実施例1と同様にして、電池15、16を作製した。 In addition, a nonaqueous electrolyte was prepared in the same manner as in Example 1 except that fluorobenzene (FB) was further added at the weight ratio (W FB ) shown in Table 1, and the same as in Example 1 was used. Thus, batteries 15 and 16 were produced.
 更に、表1に示す重量割合(WEC:WEMC)でECとEMCとを含む非水電解質を調製し、これを用いて実施例1と同様にして、電池17を作製した。
 なお、電池2、8~9、14、16および17は比較例である。得られた電池について、実施例1と同様に評価を行った。結果を表1に示す。
Furthermore, a non-aqueous electrolyte containing EC and EMC was prepared at a weight ratio (W EC : W EMC ) shown in Table 1, and a battery 17 was produced in the same manner as in Example 1 using this.
Batteries 2, 8-9, 14, 16 and 17 are comparative examples. The obtained battery was evaluated in the same manner as in Example 1. The results are shown in Table 1.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
《実施例3》
 メチル-2,2,2-トリフルオロプロピオネートの代わりに表2に示すフッ素化エステルを用いたこと以外、実施例1と同様にして、非水電解質を調製した。得られた非水電解質を用いたこと以外、実施例1と同様にして、電池18~33を作製した。なお、電池27~33は比較例である。得られた電池について、実施例1と同様に評価を行った。結果を表2に示す。
Example 3
A nonaqueous electrolyte was prepared in the same manner as in Example 1 except that the fluorinated ester shown in Table 2 was used instead of methyl-2,2,2-trifluoropropionate. Batteries 18 to 33 were produced in the same manner as in Example 1 except that the obtained nonaqueous electrolyte was used. The batteries 27 to 33 are comparative examples. The obtained battery was evaluated in the same manner as in Example 1. The results are shown in Table 2.
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
《実施例4》
 非水電解質に、スルトン化合物である1,3-プロパンスルトンおよびC=C不飽和結合を有する環状カーボネートであるビニレンカーボネートを重量比1:2で含む添加剤を、表3に示す量含ませたこと以外、実施例1と同様にして、非水電解質を調製した。得られた非水電解質を用いたこと以外、実施例1と同様にして、電池34~40を作製した。得られた電池について、実施例1と同様に評価を行った。結果を表3に示す。
Example 4
In the non-aqueous electrolyte, an additive containing 1,3-propane sultone, which is a sultone compound, and vinylene carbonate, which is a cyclic carbonate having a C═C unsaturated bond, in a weight ratio of 1: 2, was included in the amounts shown in Table 3. A nonaqueous electrolyte was prepared in the same manner as in Example 1 except that. Batteries 34 to 40 were produced in the same manner as in Example 1 except that the obtained nonaqueous electrolyte was used. The obtained battery was evaluated in the same manner as in Example 1. The results are shown in Table 3.
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
《実施例5》
 水溶性高分子として表4に示すものを用いたこと以外、実施例1と同様にして、電池41~44を作製した。
Example 5
Batteries 41 to 44 were produced in the same manner as in Example 1 except that the water-soluble polymer shown in Table 4 was used.
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004
 本発明は、例えば、携帯電話、パソコン、デジタルスチルカメラ、ゲーム機器、携帯オーディオ機器などの電子機器類や、電気自動車、ハイブリッド自動車(HEV)などの車両の電源に使用される非水電解質二次電池において有用であるが、本発明の利用分野はこれらに限定されない。 The present invention is, for example, a non-aqueous electrolyte secondary used for power supplies of electronic devices such as mobile phones, personal computers, digital still cameras, game devices, and portable audio devices, and vehicles such as electric vehicles and hybrid vehicles (HEV). Although useful in batteries, the field of application of the present invention is not limited to these.
 本発明を現時点での好ましい実施態様に関して説明したが、そのような開示を限定的に解釈してはならない。種々の変形および改変は、上記開示を読むことによって本発明に属する技術分野における当業者には間違いなく明らかになるであろう。したがって、添付の請求の範囲は、本発明の真の精神および範囲から逸脱することなく、すべての変形および改変を包含する、と解釈されるべきものである。 Although the present invention has been described in terms of the presently preferred embodiments, such disclosure should not be construed as limiting. Various changes and modifications will no doubt become apparent to those skilled in the art to which the present invention pertains after reading the above disclosure. Accordingly, the appended claims should be construed to include all variations and modifications without departing from the true spirit and scope of this invention.
 20 電池缶
 21 電極群
 22 正極リード
 23 負極リード
 24 絶縁体
 25 封口板
 26 絶縁ガスケット
 29 封栓
20 Battery Can 21 Electrode Group 22 Positive Electrode Lead 23 Negative Electrode Lead 24 Insulator 25 Sealing Plate 26 Insulating Gasket 29 Sealing

Claims (11)

  1.  非水溶媒と、前記非水溶媒に溶解した溶質とを含み、
     前記非水溶媒が、エチレンカーボネートと、プロピレンカーボネートと、フッ素原子を3つ有するフッ素化エステルとを主溶媒として含み、
     前記フッ素化エステルにおいて、全てのフッ素原子が、カルボニル基のα位に位置しない末端の炭素原子に結合しており、かつ前記フッ素化エステルのエステル基に含まれる炭素原子を除く炭素数が5以下であり、
     前記エチレンカーボネートと、前記プロピレンカーボネートと、前記フッ素化エステルとの合計に占める前記エチレンカーボネートの重量割合WECが5~30重量%であり、
     前記合計に占める前記プロピレンカーボネートの重量割合WPCが20~55重量%であり、
     前記合計に占める前記フッ素化エステルの重量割合WFEが20~50重量%である、非水電解質。
    A non-aqueous solvent, and a solute dissolved in the non-aqueous solvent,
    The non-aqueous solvent contains ethylene carbonate, propylene carbonate, and a fluorinated ester having three fluorine atoms as a main solvent,
    In the fluorinated ester, all the fluorine atoms are bonded to the terminal carbon atom not located at the α-position of the carbonyl group, and the number of carbon atoms excluding the carbon atom contained in the ester group of the fluorinated ester is 5 or less. And
    The ethylene carbonate, the propylene carbonate, and the fluorinated ester have a weight ratio W EC of the ethylene carbonate in the total of 5 to 30% by weight,
    The propylene carbonate weight ratio W PC in the total is 20 to 55% by weight,
    A non-aqueous electrolyte in which a weight ratio W FE of the fluorinated ester in the total is 20 to 50% by weight.
  2.  前記フッ素化エステルが、一般式:R1-COO-R2で表され、R1が、炭素数2~4の炭素鎖であり、かつ、末端の炭素原子に前記3つのフッ素原子が結合しており、R2が、炭素数1~3の炭素鎖である、請求項1記載の非水電解質。 The fluorinated ester is represented by the general formula: R 1 —COO—R 2 , R 1 is a carbon chain having 2 to 4 carbon atoms, and the three fluorine atoms are bonded to a terminal carbon atom. The nonaqueous electrolyte according to claim 1, wherein R 2 is a carbon chain having 1 to 3 carbon atoms.
  3.  前記フッ素化エステルが、一般式:R3-COO-R4で表され、R3が、炭素数1~3の炭素鎖であり、R4が、炭素数2~4の炭素鎖であり、かつ、末端の炭素原子に前記3つのフッ素原子が結合している、請求項1記載の非水電解質。 The fluorinated ester is represented by the general formula: R 3 —COO—R 4 , R 3 is a carbon chain having 1 to 3 carbon atoms, and R 4 is a carbon chain having 2 to 4 carbon atoms, The non-aqueous electrolyte according to claim 1, wherein the three fluorine atoms are bonded to a terminal carbon atom.
  4.  前記フッ素化エステルが、CF3CH2CH2-COO-CH2CH3、CF3CH2-COO-CH3、CF3CH2-COO-CH2CH3、CF3CH2-COO-CH2CH2CH3、CF3CH2CH2-COO-CH3、CF3CH2CH2CH2-COO-CH3、CH3CH2CH2-COO-CH2CF3、CH3-COO-CH2CF3、CH3-COO-CH2CH2CF3、CH3-COO-CH2CH2CH2CF3、CH3CH2-COO-CH2CF3、およびCH3CH2-COO-CH2CH2CF3よりなる群から選択される少なくとも1種である、請求項1記載の非水電解質。 The fluorinated ester is CF 3 CH 2 CH 2 —COO—CH 2 CH 3 , CF 3 CH 2 —COO—CH 3 , CF 3 CH 2 —COO—CH 2 CH 3 , CF 3 CH 2 —COO—CH. 2 CH 2 CH 3 , CF 3 CH 2 CH 2 —COO—CH 3 , CF 3 CH 2 CH 2 CH 2 —COO—CH 3 , CH 3 CH 2 CH 2 —COO—CH 2 CF 3 , CH 3 —COO —CH 2 CF 3 , CH 3 —COO—CH 2 CH 2 CF 3 , CH 3 —COO—CH 2 CH 2 CH 2 CF 3 , CH 3 CH 2 —COO—CH 2 CF 3 , and CH 3 CH 2 — The nonaqueous electrolyte according to claim 1, wherein the nonaqueous electrolyte is at least one selected from the group consisting of COO-CH 2 CH 2 CF 3 .
  5.  前記フッ素化エステルが、少なくとも、CF3CH2CH2-COO-CH2CH3およびCF3CH2-COO-CH2CH3の少なくとも一方を含む、請求項4記載の非水電解質。 The nonaqueous electrolyte according to claim 4, wherein the fluorinated ester comprises at least one of CF 3 CH 2 CH 2 —COO—CH 2 CH 3 and CF 3 CH 2 —COO—CH 2 CH 3 .
  6.  前記非水溶媒が、スルトン化合物およびC=C不飽和結合を有する環状カーボネートの少なくとも一方からなる添加剤を含み、
     前記添加剤が、前記非水電解質全体の0.2~5重量%を占める、請求項1~5のいずれか1項に記載の非水電解質。
    The non-aqueous solvent includes an additive composed of at least one of a sultone compound and a cyclic carbonate having a C═C unsaturated bond,
    The nonaqueous electrolyte according to any one of claims 1 to 5, wherein the additive occupies 0.2 to 5% by weight of the entire nonaqueous electrolyte.
  7.  前記フッ素化エステルの重量割合WFEが、30~40重量%である、請求項1~6のいずれか1項に記載の非水電解質。 Weight ratio W FE of the fluorinated ester is 30 to 40 wt%, the non-aqueous electrolyte according to any one of claims 1 to 6.
  8.  正極、負極、前記正極と前記負極との間に配されるセパレータおよび請求項1~7のいずれか1項に記載の非水電解質を含み、
     前記負極が、負極芯材および前記負極芯材に付着した負極合剤層を含み、
     前記負極合剤層が、黒鉛粒子と、前記黒鉛粒子の表面を被覆する水溶性高分子と、前記水溶性高分子で被覆された前記黒鉛粒子間を接着する結着剤とを含む、非水電解質二次電池。
    A positive electrode, a negative electrode, a separator disposed between the positive electrode and the negative electrode, and the nonaqueous electrolyte according to any one of claims 1 to 7,
    The negative electrode includes a negative electrode core material and a negative electrode mixture layer attached to the negative electrode core material,
    The negative electrode mixture layer includes graphite particles, a water-soluble polymer that coats the surface of the graphite particles, and a binder that bonds the graphite particles coated with the water-soluble polymer. Electrolyte secondary battery.
  9.  請求項8記載の電池の充放電を少なくとも1回行うことにより得られる、非水電解質二次電池。 A non-aqueous electrolyte secondary battery obtained by charging and discharging the battery according to claim 8 at least once.
  10.  前記負極合剤層の表面に、フッ化リチウムを含む被膜が形成されている、請求項8または9記載の非水電解質二次電池。 The nonaqueous electrolyte secondary battery according to claim 8 or 9, wherein a film containing lithium fluoride is formed on a surface of the negative electrode mixture layer.
  11.  前記水溶性高分子が、セルロース誘導体またはポリアクリル酸を含む、請求項8~10のいずれか1項に記載の非水電解質二次電池。 The non-aqueous electrolyte secondary battery according to any one of claims 8 to 10, wherein the water-soluble polymer contains a cellulose derivative or polyacrylic acid.
PCT/JP2012/004411 2011-07-08 2012-07-06 Non-aqueous electrolyte and non-aqueous electrolyte secondary cell employing same WO2013008439A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011151861 2011-07-08
JP2011-151861 2011-07-08

Publications (1)

Publication Number Publication Date
WO2013008439A1 true WO2013008439A1 (en) 2013-01-17

Family

ID=47505743

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/004411 WO2013008439A1 (en) 2011-07-08 2012-07-06 Non-aqueous electrolyte and non-aqueous electrolyte secondary cell employing same

Country Status (1)

Country Link
WO (1) WO2013008439A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018061301A1 (en) * 2016-09-30 2018-04-05 パナソニック株式会社 Nonaqueous electrolyte and nonaqueous-electrolyte secondary cell
JP2018535509A (en) * 2015-09-23 2018-11-29 ゴーション,インコーポレイテッド Fluorinated acrylates as additives for Li-ion battery electrolytes

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0620719A (en) * 1992-07-07 1994-01-28 Mitsubishi Petrochem Co Ltd Electrolyte for lithium secondary battery
JPH08298134A (en) * 1995-04-25 1996-11-12 Sony Corp Nonaqueous electrolyte
JPH11176472A (en) * 1997-12-08 1999-07-02 Ricoh Co Ltd Ion conductive high molecular solid electrolyte, and electrochemical element and battery containing the solid electrolyte
JP2002343423A (en) * 2001-05-15 2002-11-29 Hitachi Ltd Lithium secondary battery
JP2003100342A (en) * 2001-09-25 2003-04-04 Hitachi Ltd Lithium secondary battery
WO2008102493A1 (en) * 2007-02-20 2008-08-28 Sanyo Electric Co., Ltd. Nonaqueous electrolyte for rechargeable battery and rechargeable battery with nonaqueous electrolyte

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0620719A (en) * 1992-07-07 1994-01-28 Mitsubishi Petrochem Co Ltd Electrolyte for lithium secondary battery
JPH08298134A (en) * 1995-04-25 1996-11-12 Sony Corp Nonaqueous electrolyte
JPH11176472A (en) * 1997-12-08 1999-07-02 Ricoh Co Ltd Ion conductive high molecular solid electrolyte, and electrochemical element and battery containing the solid electrolyte
JP2002343423A (en) * 2001-05-15 2002-11-29 Hitachi Ltd Lithium secondary battery
JP2003100342A (en) * 2001-09-25 2003-04-04 Hitachi Ltd Lithium secondary battery
WO2008102493A1 (en) * 2007-02-20 2008-08-28 Sanyo Electric Co., Ltd. Nonaqueous electrolyte for rechargeable battery and rechargeable battery with nonaqueous electrolyte

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018535509A (en) * 2015-09-23 2018-11-29 ゴーション,インコーポレイテッド Fluorinated acrylates as additives for Li-ion battery electrolytes
US11133529B2 (en) 2015-09-23 2021-09-28 Gotion, Inc. Fluorinated acrylates as additives for Li-ion battery electrolytes
WO2018061301A1 (en) * 2016-09-30 2018-04-05 パナソニック株式会社 Nonaqueous electrolyte and nonaqueous-electrolyte secondary cell
US10903523B2 (en) 2016-09-30 2021-01-26 Panasonic Corporation Nonaqueous electrolyte and nonaqueous electrolyte secondary battery

Similar Documents

Publication Publication Date Title
WO2011039949A1 (en) Nonaqueous electrolyte, and nonaqueous electrolyte secondary battery using same
JP5426763B2 (en) Nonaqueous electrolyte for secondary battery and nonaqueous electrolyte secondary battery
WO2010113419A1 (en) Nonaqueous electrolyte, and nonaqueous electrolyte secondary battery using same
CN109309226B (en) Electrochemical energy storage device
JP5525599B2 (en) Nonaqueous electrolyte for secondary battery and nonaqueous electrolyte secondary battery using the same
JP2007214120A (en) Lithium ion secondary battery
JP6304746B2 (en) Lithium ion secondary battery
JP2014053193A (en) Method for manufacturing nonaqueous electrolyte secondary battery
JP5089828B2 (en) Nonaqueous electrolyte and nonaqueous electrolyte secondary battery using the same
JP2013218967A (en) Nonaqueous electrolyte and nonaqueous electrolytic secondary battery
JP4433163B2 (en) Electrolytic solution for lithium secondary battery and lithium secondary battery using the same
JP5204929B1 (en) Nonaqueous electrolyte for secondary battery and nonaqueous electrolyte secondary battery
JP2011192561A (en) Manufacturing method for nonaqueous electrolyte secondary battery
JP2008153053A (en) Manufacturing method of positive electrode plate for nonaqueous electrolyte secondary battery and nonaqueous electrolyte secondary battery
WO2011118144A1 (en) Non-aqueous electrolyte and non-aqueous electrolyte secondary battery using same
JP6508049B2 (en) Negative electrode for lithium ion secondary battery, lithium ion secondary battery and method for manufacturing the same
WO2018123213A1 (en) Nonaqueous electrolyte secondary battery
JP6988169B2 (en) A method for manufacturing a negative electrode for a non-aqueous electrolyte secondary battery, and a method for manufacturing a non-aqueous electrolyte secondary battery.
JP2019040796A (en) Nonaqueous electrolyte secondary battery
WO2012140858A1 (en) Nonaqueous electrolyte and nonaqueous electrolyte secondary battery using same
WO2013008439A1 (en) Non-aqueous electrolyte and non-aqueous electrolyte secondary cell employing same
JP4172175B2 (en) Nonaqueous electrolyte and nonaqueous electrolyte secondary battery using the same
WO2020021749A1 (en) Secondary battery and method of manufacturing same
JP2018081788A (en) Electrode manufacturing method
JPWO2013080379A1 (en) Lithium secondary battery and manufacturing method thereof

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12811400

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12811400

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP