JPH0620719A - Electrolyte for lithium secondary battery - Google Patents
Electrolyte for lithium secondary batteryInfo
- Publication number
- JPH0620719A JPH0620719A JP17969692A JP17969692A JPH0620719A JP H0620719 A JPH0620719 A JP H0620719A JP 17969692 A JP17969692 A JP 17969692A JP 17969692 A JP17969692 A JP 17969692A JP H0620719 A JPH0620719 A JP H0620719A
- Authority
- JP
- Japan
- Prior art keywords
- formate
- fluorine
- lithium
- acetate
- electrolyte
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M6/00—Primary cells; Manufacture thereof
- H01M6/14—Cells with non-aqueous electrolyte
- H01M6/16—Cells with non-aqueous electrolyte with organic electrolyte
- H01M6/162—Cells with non-aqueous electrolyte with organic electrolyte characterised by the electrolyte
- H01M6/164—Cells with non-aqueous electrolyte with organic electrolyte characterised by the electrolyte by the solvent
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M2300/00—Electrolytes
- H01M2300/0017—Non-aqueous electrolytes
- H01M2300/0025—Organic electrolyte
- H01M2300/0028—Organic electrolyte characterised by the solvent
- H01M2300/0034—Fluorinated solvents
Landscapes
- Engineering & Computer Science (AREA)
- Manufacturing & Machinery (AREA)
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Secondary Cells (AREA)
Abstract
Description
【0001】[0001]
【産業上の利用分野】本発明はリチウム二次電池用電解
液に関するものであり、さらに詳しくは、充放電効率に
優れ且つ耐酸化性に優れたリチウム二次電池用電解液に
関するものである。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an electrolyte solution for a lithium secondary battery, and more particularly to an electrolyte solution for a lithium secondary battery having excellent charge / discharge efficiency and oxidation resistance.
【0002】[0002]
【従来の技術】リチウム金属、リチウムインターカレー
ト化合物またはリチウム合金を負極に用いたリチウム電
池は高エネルギーを有し、かつ自己放電が少ないという
利点がある。近年この種の電池の適用分野の広がりに従
い、電子機器の駆動用電源として小型・軽量で、高エネ
ルギー密度を有する二次電池の実用化が望まれている。
そのためとくに、正極活物質として4Vの高電圧を示す
LiCoO2やLiMn2O4系の材料が注目されている。一
方、負極としては金属リチウム、リチウム合金およびリ
チウムイオンを吸蔵・放出できる炭素材などが検討され
ている。また、リチウム二次電池に従来から使用されて
いる電解液としては、過塩素酸リチウム、ホウフッ化リ
チウム、六フッ化リン酸リチウム、三フッ化メタンスル
ホン酸リチウム、六フッ化砒酸リチウム等のリチウム塩
を溶かしたプロピレンカーボネート溶液等が知られてい
る。2. Description of the Related Art A lithium battery using a lithium metal, a lithium intercalate compound or a lithium alloy as a negative electrode has advantages of high energy and little self-discharge. In recent years, as the field of application of this type of battery has expanded, there has been a demand for the practical application of a secondary battery that is small and lightweight and has a high energy density as a power source for driving electronic devices.
For this reason, LiCoO 2 and LiMn 2 O 4 -based materials showing a high voltage of 4 V have attracted attention as the positive electrode active material. On the other hand, metallic lithium, lithium alloys, and carbon materials capable of absorbing and desorbing lithium ions have been investigated as the negative electrode. In addition, as an electrolytic solution that has been conventionally used in a lithium secondary battery, lithium perchlorate, lithium borofluoride, lithium hexafluorophosphate, lithium trifluoromethanesulfonate, lithium hexafluoroarsenate, or other lithium is used. A propylene carbonate solution in which a salt is dissolved is known.
【0003】[0003]
【発明が解決しようとする課題】しかしながら、これら
正極・負極・電解液の組み合わせにより構成されたリチ
ウム二次電池においては、充放電効率が100%に満た
ず、充放電を繰り返すと電池容量の低下を引き起こすと
いう問題点がある。この問題点を解決する目的で、様々
な有機電解液が提案されている。例えば、特開昭57-170
463号公報では、エチレンカーボネートが充電効率に優
れていることに着目し、エチレンカーボネートとプロピ
レンカーボネートとの混合溶液を使用することが記載さ
れている。また、特開平3-49166号公報ではジメチルス
ルホキシドとチオフェン誘導体との混合液を使用するこ
とが記載されている。さらに、特開平3-55770号公報で
は、電池の低温特性を改良するためエチレンカーボネー
トとジエチルカーボネートとの混合溶液に2−メチルテ
トラヒドロフラン、1,2−ジメトキシエタン、4−メ
チル−1,3−ジオキソラン等を混合した溶媒を有機電
解液の成分として用いることが提案されている。しかし
ながら、上記のような提案のいずれにおいても、得られ
たリチウム二次電池の充放電効率は98〜99%程度に
留まり、依然としてこの問題点は解決されていない。一
方、米国特許第4,804,596号には、電解液として酢酸メ
チル、ギ酸メチル等の鎖状カルボン酸エステル類を用い
ることが提案されている。この電解液は、充放電効率に
優れているが、これらの溶媒は、エチレンカーボネート
やプロピレンカーボネート等と比べ酸化され易いという
性質があるため、充放電サイクルを繰り返すと徐々に消
耗されていくという欠点がある。本発明は、上記のよう
な従来の課題を解決し、充放電効率に優れ且つ耐酸化性
に優れたリチウム二次電池用電解液を提供することを目
的とするものである。However, in a lithium secondary battery composed of a combination of these positive electrode / negative electrode / electrolyte, the charging / discharging efficiency is less than 100%, and the battery capacity decreases when charging / discharging is repeated. There is a problem that causes. Various organic electrolytes have been proposed for the purpose of solving this problem. For example, JP-A-57-170
In Japanese Patent No. 463, attention is paid to the fact that ethylene carbonate is excellent in charging efficiency, and it is described that a mixed solution of ethylene carbonate and propylene carbonate is used. Further, JP-A-3-49166 describes that a mixed solution of dimethylsulfoxide and a thiophene derivative is used. Further, in JP-A-3-55770, 2-methyltetrahydrofuran, 1,2-dimethoxyethane, 4-methyl-1,3-dioxolane is added to a mixed solution of ethylene carbonate and diethyl carbonate in order to improve low temperature characteristics of a battery. It has been proposed to use a solvent mixed with the above as a component of the organic electrolyte. However, in any of the above proposals, the charging / discharging efficiency of the obtained lithium secondary battery remains at about 98 to 99%, and this problem has not been solved yet. On the other hand, US Pat. No. 4,804,596 proposes to use a chain carboxylic acid ester such as methyl acetate or methyl formate as an electrolytic solution. This electrolytic solution is excellent in charge / discharge efficiency, but these solvents have a property of being easily oxidized as compared with ethylene carbonate, propylene carbonate, etc., and therefore, they are gradually consumed when the charge / discharge cycle is repeated. There is. It is an object of the present invention to solve the above conventional problems and provide an electrolyte solution for a lithium secondary battery, which has excellent charge / discharge efficiency and oxidation resistance.
【0004】[0004]
【課題を解決するための手段】本発明者らは鋭意検討の
結果、上記のような従来の課題を解決することができ
た。すなわち本発明は、リチウム塩を有機溶媒に溶解さ
せたリチウム二次電池用電解液において、前記有機溶媒
として一般式R1COOR2(式中、R1は水素または飽
和炭化水素基、R2は飽和炭化水素基を表し、R1および
R2の水素のうち少なくとも1つがフッ素で置換され、
R1およびR2の炭素原子数の合計は1ないし6であり、
R1および/またはR2の飽和炭化水素基には酸素原子ま
たは窒素原子を含むことができる)で表されるフッ素置
換カルボン酸エステルを含むことを特徴とする、リチウ
ム二次電池用電解液を提供するものである。As a result of earnest studies, the present inventors were able to solve the above-mentioned conventional problems. That is, the present invention provides an electrolytic solution for a lithium secondary battery in which a lithium salt is dissolved in an organic solvent, wherein the organic solvent is represented by the general formula R 1 COOR 2 (wherein R 1 is hydrogen or a saturated hydrocarbon group, and R 2 is Represents a saturated hydrocarbon group, wherein at least one of hydrogen of R 1 and R 2 is substituted with fluorine,
The total number of carbon atoms of R 1 and R 2 is 1 to 6,
A saturated secondary hydrocarbon group of R 1 and / or R 2 may contain a fluorine-substituted carboxylic acid ester represented by (oxygen atom or nitrogen atom). It is provided.
【0005】以下、本発明をさらに詳細に説明する。本
発明のリチウム二次電池用電解液は、上記のような特定
の有機溶媒をリチウム二次電池用電解液の一部として用
いているために、充放電効率および耐酸化性に優れてい
るものである。The present invention will be described in more detail below. The lithium secondary battery electrolyte of the present invention is excellent in charge / discharge efficiency and oxidation resistance because the above-mentioned specific organic solvent is used as a part of the lithium secondary battery electrolyte. Is.
【0006】本発明のリチウム二次電池用電解液に使用
される有機溶媒は、フッ素置換カルボン酸エステルを含
むものであるが、このフッ素置換カルボン酸エステル
は、一般式R1COOR2(式中、R1およびR2は、上記
と同じ意味である)で表されるものである。具体的に
は、ギ酸メチル、ギ酸エチル、ギ酸プロピル、ギ酸イソ
プロピル、ギ酸ブチル、ギ酸イソブチル、ギ酸sec−ブ
チル、ギ酸tert−ブチル、ギ酸ペンチル、ギ酸イソペン
チル、ギ酸ヘキシル等の炭素数が2〜7のカルボン酸エ
ステルのフッ素置換体、酢酸メチル、酢酸エチル、酢酸
プロピル、酢酸イソプロピル、酢酸ブチル、酢酸イソブ
チル、酢酸sec−ブチル、酢酸tert−ブチル、酢酸ペン
チル、酢酸イソペンチル、プロピオン酸メチル、プロピ
オン酸エチル、プロピオン酸プロピル、プロピオン酸イ
ソプロピル、酪酸メチル、酪酸エチル等の炭素数が3〜
7の脂肪族カルボン酸エステルのフッ素置換体等、さら
にR1および/またはR2の飽和炭化水素基に酸素原子を
含むものとして、ギ酸メトキシメチル、ギ酸メトキシエ
チル、ギ酸メトキシプロピル、ギ酸メトキシブチル、ギ
酸メトキシペンチル、ギ酸エトキシメチル、ギ酸エトキ
シエチル、ギ酸エトキシプロピル、ギ酸エトキシブチ
ル、ギ酸プロポキシメチル、ギ酸プロポキシエチル、ギ
酸プロポキシプロピル、ギ酸ブトキシメチル、ギ酸ブト
キシエチル、ギ酸ペントキシメチル、ギ酸メトキシエト
キシメチル、ギ酸メトキシエトキシエチル、ギ酸メトキ
シエトキシプロピル、ギ酸エトキシエトキシメチル、ギ
酸エトキシエトキシエチル、酢酸メトキシメチル、酢酸
メトキシエチル、酢酸メトキシプロピル、酢酸メトキシ
ブチル、酢酸エトキシメチル、酢酸エトキシエチル、酢
酸エトキシプロピル、酢酸プロポキシメチル、酢酸プロ
ポキシエチル、酢酸メトキシエトキシメチル、酢酸メト
キシエトキシエチル、酢酸エトキシエトキシメチル、メ
トキシ酢酸メチル、メトキシ酢酸エチル、メトキシ酢酸
プロピル、メトキシ酢酸ブチル、エトキシ酢酸メチル、
エトキシ酢酸エチル、エトキシ酢酸プロピル、プロポキ
シ酢酸メチル、プロポキシ酢酸エチル、ブトキシ酢酸メ
チル、メトキシエトキシ酢酸メチル、メトキシエトキシ
酢酸エチル、エトキシメトキシ酢酸メチル、エトキシメ
トキシ酢酸エチル、エトキシエトキシ酢酸メチル、メト
キシ酢酸メトキシメチル、メトキシ酢酸メトキシエチ
ル、メトキシ酢酸メトキシプロピル、メトキシ酢酸エト
キシメチル、メトキシ酢酸エトキシエチル、メトキシ酢
酸プロポキシメチル、エトキシ酢酸メトキシメチル、エ
トキシ酢酸メトキシエチル、エトキシ酢酸エトキシメチ
ル、プロポキシ酢酸メトキシメチル、メトキシ酢酸メト
キシエトキシメチル、メトキシ酢酸エトキシメトキシメ
チル、メトキシエトキシ酢酸メトキシメチル、プロピオ
ン酸メトキシメチル、プロピオン酸メトキシエチル、プ
ロピオン酸メトキシプロピル、プロピオン酸エトキシメ
チル、プロピオン酸エトキシエチル、プロピオン酸プロ
ポキシメチル、プロピオン酸メトキシエトキシメチル、
プロピオン酸エトキシメトキシメチル、メトキシプロピ
オン酸メチル、メトキシプロピオン酸エチル、メトキシ
プロピオン酸プロピル、エトキシプロピオン酸メチル、
エトキシプロピオン酸エチル、プロポキシプロピオン酸
メチル、メトキシプロピオン酸メトキシメチル、メトキ
シプロピオン酸メトキシエチル、メトキシプロピオン酸
エトキシメチル、エトキシプロピオン酸メトキシメチ
ル、酪酸メトキシメチル、酪酸メトキシエチル、酪酸エ
トキシメチル、メトキシ酪酸メチル、メトキシ酪酸エチ
ル、エトキシ酪酸メチル等、また、窒素原子を含むもの
として、ギ酸ジメチルアミノメチル、ギ酸ジメチルアミ
ノエチル、ギ酸ジメチルアミノプロピル、ギ酸ジメチル
アミノブチル、ギ酸ジエチルアミノメチル、ギ酸ジエチ
ルアミノエチル、酢酸ジメチルアミノメチル、酢酸ジメ
チルアミノエチル、酢酸ジメチルアミノプロピル、酢酸
ジエチルアミノメチル、ジメチルアミノ酢酸メチル、ジ
メチルアミノ酢酸エチル、ジメチルアミノ酢酸プロピ
ル、ジメチルアミノ酢酸ジメチルアミノメチル、プロピ
オン酸ジメチルアミノメチル、プロピオン酸ジメチルア
ミノエチル、ジメチルアミノプロピオン酸メチル、ジメ
チルアミノプロピオン酸エチル、酪酸ジメチルアミノメ
チル、ジメチルアミノ酪酸メチル等の炭素数が3〜7の
カルボン酸エステルのフッ素置換体等が挙げられる。な
お、上記のようなカルボン酸エステル中の水素原子すべ
てがフッ素で置換されている必要はなく、1個以上が置
換されていればよい。好ましくは、カルボン酸エステル
中にn個の水素原子をもつ場合、1〜(n−2)個の水
素原子がフッ素で置換されているのがよい。The organic solvent used in the electrolytic solution for a lithium secondary battery of the present invention contains a fluorine-substituted carboxylic acid ester. The fluorine-substituted carboxylic acid ester has the general formula R 1 COOR 2 (wherein R 1 and R 2 have the same meanings as described above). Specifically, methyl formate, ethyl formate, propyl formate, isopropyl formate, butyl formate, isobutyl formate, sec-butyl formate, tert-butyl formate, pentyl formate, isopentyl formate, hexyl formate and the like having 2 to 7 carbon atoms. Fluorine-substituted carboxylic acid ester, methyl acetate, ethyl acetate, propyl acetate, isopropyl acetate, butyl acetate, isobutyl acetate, sec-butyl acetate, tert-butyl acetate, pentyl acetate, isopentyl acetate, methyl propionate, ethyl propionate, Carbon number of propyl propionate, isopropyl propionate, methyl butyrate, ethyl butyrate etc.
Fluorine-substituted aliphatic carboxylic acid ester of 7 and the like, further containing an oxygen atom in the saturated hydrocarbon group of R 1 and / or R 2 , methoxymethyl formate, methoxyethyl formate, methoxypropyl formate, methoxybutyl formate, Methoxypentyl formate, ethoxymethyl formate, ethoxyethyl formate, ethoxypropyl formate, ethoxybutyl formate, propoxymethyl formate, propoxyethyl formate, propoxypropyl formate, butoxymethyl formate, butoxyethyl formate, pentoxymethyl formate, methoxyethoxymethyl formate, Methoxyethoxyethyl formate, methoxyethoxypropyl formate, ethoxyethoxymethyl formate, ethoxyethoxyethyl formate, methoxymethyl acetate, methoxyethyl acetate, methoxypropyl acetate, methoxybutyl acetate, etoki acetate Cimethyl, ethoxyethyl acetate, ethoxypropyl acetate, propoxymethyl acetate, propoxyethyl acetate, methoxyethoxymethyl acetate, methoxyethoxyethyl acetate, ethoxyethoxymethyl acetate, methyl methoxyacetate, ethyl methoxyacetate, propyl methoxyacetate, butyl methoxyacetate, ethoxy Methyl acetate,
Ethyl ethoxyacetate, propyl ethoxyacetate, methyl propoxyacetate, ethyl propoxyacetate, methyl butoxyacetate, methyl methoxyethoxyacetate, ethyl methoxyethoxyacetate, methyl ethoxymethoxyacetate, ethyl ethoxymethoxyacetate, methyl ethoxyethoxyacetate, methoxymethyl methoxyacetate, Methoxyethyl methoxyacetate, methoxypropyl methoxyacetate, ethoxymethyl methoxyacetate, ethoxyethyl methoxyacetate, propoxymethyl methoxyacetate, methoxymethyl ethoxyacetate, methoxyethyl ethoxyacetate, ethoxymethyl ethoxyacetate, methoxymethyl propoxyacetate, methoxyethoxymethyl methoxyacetate , Ethoxymethoxymethyl methoxyacetate, methoxymethyl methoxyethoxyacetate, methoxymethyl propionate Methoxyethyl propionate, propionate methoxypropyl, ethoxymethyl propionate, ethoxyethyl propionate, propionic acid propoxymethyl, propionate methoxyethoxymethyl,
Ethoxymethoxymethyl propionate, methyl methoxypropionate, ethyl methoxypropionate, propyl methoxypropionate, methyl ethoxypropionate,
Ethyl ethoxypropionate, methyl propoxypropionate, methoxymethyl methoxypropionate, methoxyethyl methoxypropionate, ethoxymethyl methoxypropionate, methoxymethyl ethoxypropionate, methoxymethyl butyrate, methoxyethyl butyrate, ethoxymethyl butyrate, methyl methoxybutyrate, Ethyl methoxybutyrate, methyl ethoxybutyrate, etc., and those containing a nitrogen atom, such as dimethylaminomethyl formate, dimethylaminoethyl formate, dimethylaminopropyl formate, dimethylaminobutyl formate, diethylaminomethyl formate, diethylaminoethyl formate, dimethylaminomethyl acetate. , Dimethylaminoethyl acetate, dimethylaminopropyl acetate, diethylaminomethyl acetate, methyl dimethylaminoacetate, dimethylaminoacetate Carbon, dimethylaminopropyl acetate, dimethylaminomethyl dimethylaminoacetate, dimethylaminomethyl propionate, dimethylaminoethyl propionate, methyl dimethylaminopropionate, ethyl dimethylaminopropionate, dimethylaminomethyl butyrate, methyl dimethylaminobutyrate, etc. Examples thereof include fluorine-substituted carboxylic acid ester having a number of 3 to 7 and the like. Note that it is not necessary that all the hydrogen atoms in the carboxylic acid ester as described above be replaced by fluorine, and it is sufficient that at least one hydrogen atom is replaced. Preferably, when the carboxylic acid ester has n hydrogen atoms, 1 to (n-2) hydrogen atoms are substituted with fluorine.
【0007】本発明のリチウム二次電池用電解液に使用
される有機溶媒は、上記のようなフッ素置換カルボン酸
エステル以外のものも含むことができる。例えば誘電率
を高めるために、エチレンカーボネート、ジエチルカー
ボネート、プロピレンカーボネート、ガンマブチロラク
トン等のラクトン類、さらにスルホラン等を使用するこ
とができる。フッ素置換カルボン酸エステル以外の上記
のような有機溶媒に対するフッ素置換カルボン酸の体積
比率は、充放電効率および耐酸化性を損なわない範囲で
適宜決定すればよいが、例えば5〜80%である。The organic solvent used in the electrolytic solution for a lithium secondary battery of the present invention may contain a substance other than the above-mentioned fluorine-substituted carboxylic acid ester. For example, in order to increase the dielectric constant, lactones such as ethylene carbonate, diethyl carbonate, propylene carbonate, gamma butyrolactone, and sulfolane can be used. The volume ratio of the fluorine-substituted carboxylic acid to the organic solvent other than the fluorine-substituted carboxylic acid ester may be appropriately determined within a range that does not impair the charge / discharge efficiency and the oxidation resistance, and is, for example, 5 to 80%.
【0008】本発明のリチウム二次電池用電解液に用い
ることのできる溶質としては、各種のリチウム含有塩を
用いることができる。例えば、六フッ化リン酸リチウ
ム、ホウフッ化リチウム、過塩素酸リチウム、三フッ化
メタンスルホン酸リチウム、六フッ化砒酸リチウム等が
挙げられる。As the solute which can be used in the electrolytic solution for a lithium secondary battery of the present invention, various lithium-containing salts can be used. Examples thereof include lithium hexafluorophosphate, lithium borofluoride, lithium perchlorate, lithium trifluoromethanesulfonate, and lithium hexafluoroarsenate.
【0009】[0009]
【作用】本発明者らは、酢酸メチル等の鎖状カルボン酸
エステルの酸化性は官能基であるカルボキシル基に起因
するものであると考え、カルボキシル基の両側の飽和炭
化水素基に電子吸引効果を持つ置換基あるいは、立体障
害効果を持つ置換基を導入することを検討し、その結
果、フッ素置換カルボン酸エステル類が、鎖状カルボン
酸エステルのもつ良好な充放電効率を維持しながら、耐
酸化性に優れた溶媒であることを見いだした。フッ素置
換カルボン酸エステル類は、通常の鎖状カルボン酸エス
テル類に比べ高い耐酸化性を示すと同時に、低凝固点を
有し優れた低温特性を示す。一方、この溶媒の欠点は、
通常の鎖状カルボン酸エステル同様に、溶質であるリチ
ウム塩が溶解されにくいことと、フッ素置換基の影響に
より電解液の電導度が僅かに低下することであるが、こ
れは従来の技術で知られているように誘電率の大きなエ
チレンカーボネート等の環状カーボネートまたはジエチ
ルカーボネート等の鎖状カーボネートを適量配合するこ
とで解決できる。The present inventors believe that the oxidizability of a chain carboxylic acid ester such as methyl acetate is due to the carboxyl group, which is a functional group, and the saturated hydrocarbon groups on both sides of the carboxyl group have an electron withdrawing effect. The introduction of a substituent having a carboxylic acid or a substituent having a steric hindrance effect was investigated, and as a result, fluorine-substituted carboxylic acid esters were found to have good acid resistance while maintaining good charge / discharge efficiency of chain carboxylic acid esters. It was found that it is a solvent having excellent chemical conversion property. Fluorine-substituted carboxylic acid esters show higher oxidation resistance than ordinary chain carboxylic acid esters and, at the same time, have a low freezing point and excellent low-temperature properties. On the other hand, the drawback of this solvent is
Like ordinary chain carboxylic acid esters, it is difficult to dissolve the lithium salt that is a solute and the conductivity of the electrolytic solution slightly decreases due to the influence of the fluorine substituent, which is known in the prior art. As described above, the problem can be solved by mixing an appropriate amount of a cyclic carbonate having a large dielectric constant such as ethylene carbonate or a chain carbonate such as diethyl carbonate.
【0010】[0010]
【実施例】以下本発明の実施例について詳述する。実施例 1 溶媒として酢酸トリフルオロエチル(CH3COOCH2
CF3)を用い、この溶媒に溶質として六フッ化リン酸
リチウム(LiPF6)を1.0モル/lの濃度となるよ
うに溶解したものを電解液とした。この電解液をAとす
る。この電解液の分解電位を銀電極を参照電極、グラッ
シーカーボン電極を作用極、対極として測定したとこ
ろ、還元電位は−3.6V、酸化電位は2.9Vであっ
た。EXAMPLES Examples of the present invention will be described in detail below. Example 1 As a solvent, trifluoroethyl acetate (CH 3 COOCH 2
CF 3 ) was used as a solute in which lithium hexafluorophosphate (LiPF 6 ) was dissolved as a solute to a concentration of 1.0 mol / l to prepare an electrolytic solution. This electrolytic solution is designated as A. When the decomposition potential of this electrolytic solution was measured using a silver electrode as a reference electrode and a glassy carbon electrode as a working electrode and a counter electrode, the reduction potential was -3.6V and the oxidation potential was 2.9V.
【0011】実施例 2 溶媒として酢酸トリフルオロエチルとエチレンカーボネ
ートとジエチルカーボネートの容量比1:0.5:1.5
の混合溶媒を用い、この混合溶媒に溶質として六フッ化
リン酸リチウム(LiPF6)を1.0モル/1の濃度と
なるように溶解したものを電解液とした。この電解液を
Bとする。実施例1と同様にして、電解液Bの分解電位
を測定したところ、還元電位は−3.7V、酸化電位は
2.9Vであった。 Example 2 As a solvent, trifluoroethyl acetate, ethylene carbonate and diethyl carbonate in a volume ratio of 1: 0.5: 1.5.
As a solute, lithium hexafluorophosphate (LiPF 6 ) was dissolved at a concentration of 1.0 mol / 1 to obtain an electrolytic solution. This electrolytic solution is designated as B. When the decomposition potential of the electrolytic solution B was measured in the same manner as in Example 1, the reduction potential was -3.7V and the oxidation potential was 2.9V.
【0012】実施例 3 溶媒として酢酸トリフルオロエチルとジエチルカーボネ
ートの容量比1:2の混合溶媒を用い、この混合溶媒に
溶質として六フッ化リン酸リチウム(LiPF6)を1.
0モル/lの濃度となるように溶解したものを電解液と
した。この電解液をCとする。実施例1と同様にして、
電解液Cの分解電位を測定したところ、還元電位は−
3.6V、酸化電位は2.9Vであった。 Example 3 A mixed solvent of trifluoroethyl acetate and diethyl carbonate having a volume ratio of 1: 2 was used as a solvent, and lithium hexafluorophosphate (LiPF 6 ) was used as a solute in the mixed solvent of 1.
What was dissolved so as to have a concentration of 0 mol / l was used as an electrolytic solution. This electrolytic solution is designated as C. In the same manner as in Example 1,
When the decomposition potential of the electrolytic solution C was measured, the reduction potential was −
It was 3.6 V and the oxidation potential was 2.9 V.
【0013】実施例 4 溶媒としてトリフルオロ酢酸メチル(CF3COOC
H3)とエチレンカーボネートとジエチルカーボネート
の容量比1:0.5:1.5の混合溶媒を用い、この混合
溶媒に溶質として六フッ化リン酸リチウム(LiP
F6)を1.0モル/lの濃度となるように溶解したもの
を電解液とした。この電解液をDとする。実施例1と同
様にして、電解液Dの分解電位を測定したところ、還元
電位は−3.7V、酸化電位は2.9Vであった。 Example 4 Methyl trifluoroacetate (CF 3 COOC) was used as a solvent.
H 3 ), a mixed solvent of ethylene carbonate and diethyl carbonate in a volume ratio of 1: 0.5: 1.5 is used, and lithium hexafluorophosphate (LiP) is used as a solute in the mixed solvent.
An electrolyte was prepared by dissolving F 6 ) in a concentration of 1.0 mol / l. This electrolytic solution is designated as D. When the decomposition potential of the electrolytic solution D was measured in the same manner as in Example 1, the reduction potential was -3.7V and the oxidation potential was 2.9V.
【0014】実施例 5 溶媒としてトリフルオロ酢酸メチルとジエチルカーボネ
ートの容量比1:2の混合溶媒を用い、この混合溶媒に
溶質として六フッ化リン酸リチウム(LiPF6)を1.
0モル/lの濃度となるように溶解したものを電解液と
した。この電解液をEとする。実施例1と同様にして、
電解液Eの分解電位を測定したところ、還元電位は−
3.8V、酸化電位は2.9Vであった。 Example 5 A mixed solvent of methyl trifluoroacetate and diethyl carbonate in a volume ratio of 1: 2 was used as a solvent, and lithium hexafluorophosphate (LiPF 6 ) was used as a solute in the mixed solvent of 1.
What was dissolved so as to have a concentration of 0 mol / l was used as an electrolytic solution. Let this electrolytic solution be E. In the same manner as in Example 1,
When the decomposition potential of the electrolytic solution E was measured, the reduction potential was −
It was 3.8 V and the oxidation potential was 2.9 V.
【0015】比較例 1 溶媒として酢酸エチル(CH3COOCH2CH3)を用
い、この溶媒に溶質として六フッ化リン酸リチウム(L
iPF6)を1.0モル/lの濃度となるように溶解した
ものを電解液とした。この電解液をFとする。実施例1
と同様にして、電解液Fの分解電位を測定したところ、
還元電位は−3.5V、酸化電位は2.6Vであった。 Comparative Example 1 Ethyl acetate (CH 3 COOCH 2 CH 3 ) was used as a solvent, and lithium hexafluorophosphate (L
An electrolytic solution was prepared by dissolving iPF 6 ) at a concentration of 1.0 mol / l. This electrolytic solution is designated as F. Example 1
When the decomposition potential of the electrolytic solution F was measured in the same manner as
The reduction potential was -3.5V and the oxidation potential was 2.6V.
【0016】比較例 2 溶媒として酢酸エチルとエチレンカーボネートとジエチ
ルカーボネートの容量比1:0.5:1.5の混合溶媒を
用い、この混合溶媒に溶質として六フッ化リン酸リチウ
ム(LiPF6)を1.0モル/lの濃度となるように溶
解したものを電解液とした。この電解液をGとする。実
施例1と同様にして、電解液Gの分解電位を測定したと
ころ、還元電位は−3.6V、酸化電位は2.3Vであっ
た。 Comparative Example 2 A mixed solvent having a volume ratio of ethyl acetate, ethylene carbonate and diethyl carbonate of 1: 0.5: 1.5 was used as a solvent, and lithium hexafluorophosphate (LiPF 6 ) was used as a solute in this mixed solvent. Was dissolved to obtain a concentration of 1.0 mol / l, which was used as an electrolytic solution. This electrolytic solution is designated as G. When the decomposition potential of the electrolytic solution G was measured in the same manner as in Example 1, the reduction potential was -3.6V and the oxidation potential was 2.3V.
【0017】比較例 3 溶媒として酢酸エチルとジエチルカーボネートの容量比
1:2の混合溶媒を用い、この混合溶媒に溶質として六
フッ化リン酸リチウム(LiPF6)を1.0モル/lの
濃度となるように溶解したものを電解液とした。この電
解液をHとする。実施例1と同様にして、電解液Hの分
解電位を測定したところ、還元電位は−3.6V、酸化
電位は2.3Vであった。 Comparative Example 3 A mixed solvent of ethyl acetate and diethyl carbonate having a volume ratio of 1: 2 was used as a solvent, and lithium hexafluorophosphate (LiPF 6 ) was used as a solute in the mixed solvent at a concentration of 1.0 mol / l. What was melt | dissolved so that it might be set as electrolyte solution. Let this electrolyte be H. When the decomposition potential of the electrolytic solution H was measured in the same manner as in Example 1, the reduction potential was -3.6V and the oxidation potential was 2.3V.
【0018】本実施例では、電解質の溶質として六フッ
化リン酸リチウムを用いたが、他のリチウム含有塩、例
えばホウフッ化リチウム、過塩素酸リチウム、三フッ化
メタンスルホン酸リチウム、六フッ化砒酸リチウム等で
も同様の結果が得られた。さらに本実施例では、電解液
の混合溶媒としてエチレンカーボネートとジエチルカー
ボネートを使用しているが、プロピレンカーボネート等
の他の環状カーボネートやガンマブチロラクトン等のラ
クトン類、さらにスルホラン等の他の溶媒でも同様の結
果が得られた。さらに、本発明の電解液A〜Eは、室温
付近の電導度が良好であることはもちろん、−20℃で
も1.5〜2.50mS/cmの電導度を有し、溶質の析出
などの問題はないことが判明した。In this embodiment, lithium hexafluorophosphate was used as the solute of the electrolyte, but other lithium-containing salts such as lithium borofluoride, lithium perchlorate, lithium trifluoromethanesulfonate, and hexafluorofluoride. Similar results were obtained with lithium arsenate and the like. Furthermore, in the present embodiment, ethylene carbonate and diethyl carbonate are used as a mixed solvent of the electrolytic solution, but other cyclic carbonates such as propylene carbonate and lactones such as gamma butyrolactone, and other solvents such as sulfolane are the same. Results were obtained. Further, the electrolytes A to E of the present invention have good conductivity near room temperature, and also have a conductivity of 1.5 to 2.50 mS / cm even at -20 ° C. Turned out to be no problem.
【0019】[0019]
【発明の効果】実施例より明白なように、本発明のリチ
ウム二次電池用電解液A〜Eは、比較電解液F〜Hに比
して高い酸化電位を有することが判る。従って、耐酸化
性に優れるため、充放電時に酸化分解を受けにくく、充
放電効率が向上するものである。As is apparent from the examples, the electrolytic solutions A to E of the present invention for lithium secondary batteries have a higher oxidation potential than the comparative electrolytic solutions F to H. Therefore, since it has excellent oxidation resistance, it is less susceptible to oxidative decomposition during charge and discharge, and the charge and discharge efficiency is improved.
───────────────────────────────────────────────────── フロントページの続き (72)発明者 越名 秀 大阪府門真市大字門真1006番地 松下電器 産業株式会社内 (72)発明者 奥野 博美 大阪府門真市大字門真1006番地 松下電器 産業株式会社内 ─────────────────────────────────────────────────── ─── Continuation of front page (72) Inventor Hide Koshina 1006 Kadoma, Kadoma City, Osaka Prefecture Matsushita Electric Industrial Co., Ltd. (72) Hiromi Okuno, 1006 Kadoma, Kadoma City, Osaka Matsushita Electric Industrial Co., Ltd.
Claims (1)
ウム二次電池用電解液において、前記有機溶媒として一
般式R1COOR2(式中、R1は水素または飽和炭化水
素基、R2は飽和炭化水素基を表し、R1およびR2の水
素のうち少なくとも1つがフッ素で置換され、R1およ
びR2の炭素原子数の合計は1ないし6であり、R1およ
び/またはR2の飽和炭化水素基には酸素原子または窒
素原子を含むことができる)で表されるフッ素置換カル
ボン酸エステルを含むことを特徴とする、リチウム二次
電池用電解液。1. An electrolytic solution for a lithium secondary battery in which a lithium salt is dissolved in an organic solvent, wherein the organic solvent is represented by the general formula R 1 COOR 2 (wherein R 1 is hydrogen or a saturated hydrocarbon group, and R 2 is Represents a saturated hydrocarbon group, at least one of hydrogen of R 1 and R 2 is substituted with fluorine, the total number of carbon atoms of R 1 and R 2 is 1 to 6, and R 1 and / or R 2 An electrolyte solution for a lithium secondary battery, comprising a fluorine-substituted carboxylic acid ester represented by the saturated hydrocarbon group which can contain an oxygen atom or a nitrogen atom.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP17969692A JP3444607B2 (en) | 1992-07-07 | 1992-07-07 | Electrolyte for lithium secondary battery |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP17969692A JP3444607B2 (en) | 1992-07-07 | 1992-07-07 | Electrolyte for lithium secondary battery |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH0620719A true JPH0620719A (en) | 1994-01-28 |
JP3444607B2 JP3444607B2 (en) | 2003-09-08 |
Family
ID=16070280
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP17969692A Expired - Lifetime JP3444607B2 (en) | 1992-07-07 | 1992-07-07 | Electrolyte for lithium secondary battery |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3444607B2 (en) |
Cited By (23)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH1092222A (en) * | 1996-09-17 | 1998-04-10 | Tokuyama Sekiyu Kagaku Kk | Solvent for electrolytic solution |
WO2000038264A1 (en) * | 1998-12-19 | 2000-06-29 | Solvay Fluor Und Derivative Gmbh | Electrolyte systems for lithium batteries, the use thereof and method for enhancing the safety of lithium batteries |
US6159640A (en) * | 1997-06-13 | 2000-12-12 | Hoechst Research & Technology Gmbh & Co. Kg | Electrolyte system for lithium batteries and use of said system, and method for increasing the safety of lithium batteries |
WO2001078183A1 (en) * | 2000-04-05 | 2001-10-18 | Solvay Fluor Und Derivate Gmbh | Use of alkoxy esters |
EP1311018A1 (en) * | 2000-08-11 | 2003-05-14 | Ube Industries, Ltd. | Nonaqueous electrolytic solution and lithium secondary battery |
JP2003297422A (en) * | 2002-04-02 | 2003-10-17 | Sony Corp | Battery |
WO2005091422A1 (en) * | 2004-03-22 | 2005-09-29 | Ube Industries, Ltd. | Nonaqueous electrolyte solution and lithium secondary battery using same |
JP2006173124A (en) * | 2004-12-17 | 2006-06-29 | Saft (Soc Accumulateurs Fixes Traction) Sa | Lithium battery operating at low temperature |
JP2007066864A (en) * | 2005-08-05 | 2007-03-15 | Ube Ind Ltd | Non-aqueous electrolytic liquid and lithium secondary battery using the same |
WO2008102638A1 (en) * | 2007-02-20 | 2008-08-28 | Sanyo Electric Co., Ltd. | Non-aqueous electrolyte for secondary battery, and non-aqueous electrolyte secondary battery |
JP2010537369A (en) * | 2007-08-16 | 2010-12-02 | エルジー・ケム・リミテッド | Non-aqueous electrolyte lithium secondary battery |
US8097368B2 (en) | 2008-08-05 | 2012-01-17 | Sanyo Electric Co., Ltd. | Non-aqueous electrolyte for secondary battery and non-aqueous electrolyte secondary battery |
WO2012084066A1 (en) * | 2010-12-21 | 2012-06-28 | Westfälische Wilhelms-Universität | Electrolytes comprising propylene carbonate for batteries and accumulators |
WO2013008439A1 (en) * | 2011-07-08 | 2013-01-17 | パナソニック株式会社 | Non-aqueous electrolyte and non-aqueous electrolyte secondary cell employing same |
WO2013042503A1 (en) * | 2011-09-20 | 2013-03-28 | 日本電気株式会社 | Non-aqueous secondary battery |
WO2013146359A1 (en) * | 2012-03-27 | 2013-10-03 | 旭硝子株式会社 | Nonaqueous electrolyte solution for secondary batteries and lithium ion secondary battery |
WO2013180783A1 (en) * | 2012-06-01 | 2013-12-05 | E. I. Du Pont De Nemours And Company | Fluorinated electrolyte compositions |
JP2014503964A (en) * | 2010-12-15 | 2014-02-13 | ダウ グローバル テクノロジーズ エルエルシー | Electrolyte solution containing a predetermined ester-based solvent and battery containing the electrolyte solution |
JP2014525666A (en) * | 2011-09-02 | 2014-09-29 | イー・アイ・デュポン・ドウ・ヌムール・アンド・カンパニー | Fluorinated electrolyte composition |
US9673450B2 (en) | 2011-09-02 | 2017-06-06 | Solvay Sa | Lithium ion battery |
US10074874B2 (en) | 2012-06-01 | 2018-09-11 | Solvay Sa | Additives to improve electrolyte performance in lithium ion batteries |
CN110277588A (en) * | 2018-03-16 | 2019-09-24 | 丰田自动车株式会社 | Electrolyte and lithium ion battery |
US10749208B2 (en) | 2011-03-28 | 2020-08-18 | Nec Corporation | Secondary battery and electrolyte liquid |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CA2908044C (en) | 2013-04-04 | 2022-08-23 | E. I. Du Pont De Nemours And Company | Nonaqueous electrolyte compositions |
JP6876040B2 (en) | 2015-10-26 | 2021-05-26 | ソルヴェイ(ソシエテ アノニム) | Non-aqueous electrolyte composition containing fluorinated solvent and 2-furanone |
WO2017209762A1 (en) | 2016-06-03 | 2017-12-07 | E. I. Du Pont De Nemours And Company | Nonaqueous electrolyte compositions comprising fluorinated sulfones |
-
1992
- 1992-07-07 JP JP17969692A patent/JP3444607B2/en not_active Expired - Lifetime
Cited By (32)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH1092222A (en) * | 1996-09-17 | 1998-04-10 | Tokuyama Sekiyu Kagaku Kk | Solvent for electrolytic solution |
US6159640A (en) * | 1997-06-13 | 2000-12-12 | Hoechst Research & Technology Gmbh & Co. Kg | Electrolyte system for lithium batteries and use of said system, and method for increasing the safety of lithium batteries |
WO2000038264A1 (en) * | 1998-12-19 | 2000-06-29 | Solvay Fluor Und Derivative Gmbh | Electrolyte systems for lithium batteries, the use thereof and method for enhancing the safety of lithium batteries |
WO2001078183A1 (en) * | 2000-04-05 | 2001-10-18 | Solvay Fluor Und Derivate Gmbh | Use of alkoxy esters |
EP1311018A1 (en) * | 2000-08-11 | 2003-05-14 | Ube Industries, Ltd. | Nonaqueous electrolytic solution and lithium secondary battery |
EP1311018A4 (en) * | 2000-08-11 | 2006-03-22 | Ube Industries | Nonaqueous electrolytic solution and lithium secondary battery |
JP2003297422A (en) * | 2002-04-02 | 2003-10-17 | Sony Corp | Battery |
US7985502B2 (en) | 2004-03-22 | 2011-07-26 | Ube Industries, Ltd. | Nonaqueous electrolyte solution and lithium secondary battery using same |
WO2005091422A1 (en) * | 2004-03-22 | 2005-09-29 | Ube Industries, Ltd. | Nonaqueous electrolyte solution and lithium secondary battery using same |
JP2006173124A (en) * | 2004-12-17 | 2006-06-29 | Saft (Soc Accumulateurs Fixes Traction) Sa | Lithium battery operating at low temperature |
JP2007066864A (en) * | 2005-08-05 | 2007-03-15 | Ube Ind Ltd | Non-aqueous electrolytic liquid and lithium secondary battery using the same |
WO2008102638A1 (en) * | 2007-02-20 | 2008-08-28 | Sanyo Electric Co., Ltd. | Non-aqueous electrolyte for secondary battery, and non-aqueous electrolyte secondary battery |
WO2008102493A1 (en) * | 2007-02-20 | 2008-08-28 | Sanyo Electric Co., Ltd. | Nonaqueous electrolyte for rechargeable battery and rechargeable battery with nonaqueous electrolyte |
US8945781B2 (en) | 2007-02-20 | 2015-02-03 | Sanyo Electric Co., Ltd. | Non-aqueous electrolyte for secondary battery and non-aqueous electrolyte secondary battery |
JP2010537369A (en) * | 2007-08-16 | 2010-12-02 | エルジー・ケム・リミテッド | Non-aqueous electrolyte lithium secondary battery |
US8097368B2 (en) | 2008-08-05 | 2012-01-17 | Sanyo Electric Co., Ltd. | Non-aqueous electrolyte for secondary battery and non-aqueous electrolyte secondary battery |
JP2014503964A (en) * | 2010-12-15 | 2014-02-13 | ダウ グローバル テクノロジーズ エルエルシー | Electrolyte solution containing a predetermined ester-based solvent and battery containing the electrolyte solution |
WO2012084066A1 (en) * | 2010-12-21 | 2012-06-28 | Westfälische Wilhelms-Universität | Electrolytes comprising propylene carbonate for batteries and accumulators |
US10749208B2 (en) | 2011-03-28 | 2020-08-18 | Nec Corporation | Secondary battery and electrolyte liquid |
WO2013008439A1 (en) * | 2011-07-08 | 2013-01-17 | パナソニック株式会社 | Non-aqueous electrolyte and non-aqueous electrolyte secondary cell employing same |
JP2014525666A (en) * | 2011-09-02 | 2014-09-29 | イー・アイ・デュポン・ドウ・ヌムール・アンド・カンパニー | Fluorinated electrolyte composition |
US9673450B2 (en) | 2011-09-02 | 2017-06-06 | Solvay Sa | Lithium ion battery |
US9979050B2 (en) | 2011-09-02 | 2018-05-22 | Solvay Sa | Fluorinated electrolyte compositions |
JPWO2013042503A1 (en) * | 2011-09-20 | 2015-03-26 | 日本電気株式会社 | Non-aqueous secondary battery |
WO2013042503A1 (en) * | 2011-09-20 | 2013-03-28 | 日本電気株式会社 | Non-aqueous secondary battery |
JP5488768B2 (en) * | 2012-03-27 | 2014-05-14 | 旭硝子株式会社 | Nonaqueous electrolyte for secondary battery and lithium ion secondary battery |
WO2013146359A1 (en) * | 2012-03-27 | 2013-10-03 | 旭硝子株式会社 | Nonaqueous electrolyte solution for secondary batteries and lithium ion secondary battery |
US9236636B2 (en) | 2012-03-27 | 2016-01-12 | Asahi Glass Company, Limited | Non-aqueous electrolyte solution for secondary batteries, and lithium ion secondary battery |
WO2013180783A1 (en) * | 2012-06-01 | 2013-12-05 | E. I. Du Pont De Nemours And Company | Fluorinated electrolyte compositions |
US10044066B2 (en) | 2012-06-01 | 2018-08-07 | Solvary SA | Fluorinated electrolyte compositions |
US10074874B2 (en) | 2012-06-01 | 2018-09-11 | Solvay Sa | Additives to improve electrolyte performance in lithium ion batteries |
CN110277588A (en) * | 2018-03-16 | 2019-09-24 | 丰田自动车株式会社 | Electrolyte and lithium ion battery |
Also Published As
Publication number | Publication date |
---|---|
JP3444607B2 (en) | 2003-09-08 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JPH0620719A (en) | Electrolyte for lithium secondary battery | |
US6866964B2 (en) | Secondary battery | |
JP4577482B2 (en) | Electrolytic solution for lithium secondary battery and lithium secondary battery using the same | |
CN111788732B (en) | Lithium secondary battery electrolyte and lithium secondary battery comprising same | |
CA1290010C (en) | Secondary lithium battery | |
JP6081264B2 (en) | Non-aqueous electrolyte additive, non-aqueous electrolyte, and electricity storage device | |
JP4320914B2 (en) | Non-aqueous electrolyte and lithium secondary battery using the same | |
JP2000133304A (en) | Non-aqueous electrolyte and lithium secondary battery using it | |
Bian et al. | A novel lithium difluoro (oxalate) borate and lithium hexafluoride phosphate dual-salt electrolyte for Li-excess layered cathode material | |
JP4328915B2 (en) | Non-aqueous electrolyte for secondary battery and secondary battery using the same | |
JP3199426B2 (en) | Non-aqueous electrolyte secondary battery | |
JPH10116627A (en) | Lithium secondary battery | |
JP2001057236A (en) | Non-aqueous electrolyte and secondary battery using the same | |
JP5982201B2 (en) | Disulfonic acid benzylamide compound, additive for non-aqueous electrolyte, non-aqueous electrolyte, and electricity storage device | |
JP2006172721A (en) | Electrolyte for secondary battery, and secondary battery using the same | |
CN108352572B (en) | Additive for nonaqueous electrolyte solution, and electricity storage device | |
JP4045644B2 (en) | Electrolytic solution for lithium secondary battery and lithium secondary battery using the same | |
CN106410275A (en) | Electrolyte for lithium ion secondary battery, and lithium ion secondary battery using electrolyte | |
JPH06333598A (en) | Electrolyte for lithium secondary battery | |
CN1252846C (en) | Silicon alloy and carbon base material composition and its preparing method and use | |
JPH11126632A (en) | Lithium storage battery provided with organic electrolyte and carbon anode | |
JP7084607B2 (en) | Non-aqueous electrolyte for power storage devices | |
CN116487711A (en) | Sodium ion battery electrolyte and sodium ion battery with high initial efficiency and long circulation | |
JP4221926B2 (en) | Secondary battery and capacitor using indole compound having supramolecular structure | |
JP2654553B2 (en) | Electrolyte for lithium secondary battery |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Year of fee payment: 5 Free format text: PAYMENT UNTIL: 20080627 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090627 Year of fee payment: 6 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Year of fee payment: 7 Free format text: PAYMENT UNTIL: 20100627 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Year of fee payment: 7 Free format text: PAYMENT UNTIL: 20100627 |
|
S531 | Written request for registration of change of domicile |
Free format text: JAPANESE INTERMEDIATE CODE: R313531 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100627 Year of fee payment: 7 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
S111 | Request for change of ownership or part of ownership |
Free format text: JAPANESE INTERMEDIATE CODE: R313117 |
|
S533 | Written request for registration of change of name |
Free format text: JAPANESE INTERMEDIATE CODE: R313533 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100627 Year of fee payment: 7 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Year of fee payment: 7 Free format text: PAYMENT UNTIL: 20100627 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110627 Year of fee payment: 8 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Year of fee payment: 9 Free format text: PAYMENT UNTIL: 20120627 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Year of fee payment: 9 Free format text: PAYMENT UNTIL: 20120627 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Year of fee payment: 10 Free format text: PAYMENT UNTIL: 20130627 |
|
EXPY | Cancellation because of completion of term | ||
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130627 Year of fee payment: 10 |