WO2013007520A1 - Dispositif houlomoteur de conversion d'energie de la houle en energie electrique - Google Patents

Dispositif houlomoteur de conversion d'energie de la houle en energie electrique Download PDF

Info

Publication number
WO2013007520A1
WO2013007520A1 PCT/EP2012/062462 EP2012062462W WO2013007520A1 WO 2013007520 A1 WO2013007520 A1 WO 2013007520A1 EP 2012062462 W EP2012062462 W EP 2012062462W WO 2013007520 A1 WO2013007520 A1 WO 2013007520A1
Authority
WO
WIPO (PCT)
Prior art keywords
stator
bow
rotors
volume
waves
Prior art date
Application number
PCT/EP2012/062462
Other languages
English (en)
Inventor
François CROLET
Original Assignee
Crolet Francois
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Crolet Francois filed Critical Crolet Francois
Publication of WO2013007520A1 publication Critical patent/WO2013007520A1/fr

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03BMACHINES OR ENGINES FOR LIQUIDS
    • F03B13/00Adaptations of machines or engines for special use; Combinations of machines or engines with driving or driven apparatus; Power stations or aggregates
    • F03B13/12Adaptations of machines or engines for special use; Combinations of machines or engines with driving or driven apparatus; Power stations or aggregates characterised by using wave or tide energy
    • F03B13/14Adaptations of machines or engines for special use; Combinations of machines or engines with driving or driven apparatus; Power stations or aggregates characterised by using wave or tide energy using wave energy
    • F03B13/16Adaptations of machines or engines for special use; Combinations of machines or engines with driving or driven apparatus; Power stations or aggregates characterised by using wave or tide energy using wave energy using the relative movement between a wave-operated member, i.e. a "wom" and another member, i.e. a reaction member or "rem"
    • F03B13/18Adaptations of machines or engines for special use; Combinations of machines or engines with driving or driven apparatus; Power stations or aggregates characterised by using wave or tide energy using wave energy using the relative movement between a wave-operated member, i.e. a "wom" and another member, i.e. a reaction member or "rem" where the other member, i.e. rem is fixed, at least at one point, with respect to the sea bed or shore
    • F03B13/1805Adaptations of machines or engines for special use; Combinations of machines or engines with driving or driven apparatus; Power stations or aggregates characterised by using wave or tide energy using wave energy using the relative movement between a wave-operated member, i.e. a "wom" and another member, i.e. a reaction member or "rem" where the other member, i.e. rem is fixed, at least at one point, with respect to the sea bed or shore and the wom is hinged to the rem
    • F03B13/1825Adaptations of machines or engines for special use; Combinations of machines or engines with driving or driven apparatus; Power stations or aggregates characterised by using wave or tide energy using wave energy using the relative movement between a wave-operated member, i.e. a "wom" and another member, i.e. a reaction member or "rem" where the other member, i.e. rem is fixed, at least at one point, with respect to the sea bed or shore and the wom is hinged to the rem for 360° rotation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03BMACHINES OR ENGINES FOR LIQUIDS
    • F03B13/00Adaptations of machines or engines for special use; Combinations of machines or engines with driving or driven apparatus; Power stations or aggregates
    • F03B13/12Adaptations of machines or engines for special use; Combinations of machines or engines with driving or driven apparatus; Power stations or aggregates characterised by using wave or tide energy
    • F03B13/14Adaptations of machines or engines for special use; Combinations of machines or engines with driving or driven apparatus; Power stations or aggregates characterised by using wave or tide energy using wave energy
    • F03B13/22Adaptations of machines or engines for special use; Combinations of machines or engines with driving or driven apparatus; Power stations or aggregates characterised by using wave or tide energy using wave energy using the flow of water resulting from wave movements to drive a motor or turbine
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2240/00Components
    • F05B2240/40Use of a multiplicity of similar components
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2240/00Components
    • F05B2240/90Mounting on supporting structures or systems
    • F05B2240/93Mounting on supporting structures or systems on a structure floating on a liquid surface
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2240/00Components
    • F05B2240/90Mounting on supporting structures or systems
    • F05B2240/98Mounting on supporting structures or systems which is inflatable
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2250/00Geometry
    • F05B2250/20Geometry three-dimensional
    • F05B2250/25Geometry three-dimensional helical
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2270/00Control
    • F05B2270/10Purpose of the control system
    • F05B2270/18Purpose of the control system to control buoyancy
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/30Energy from the sea, e.g. using wave energy or salinity gradient

Definitions

  • the present invention relates to wave energy devices for converting wave energy into electrical energy.
  • Known floating devices use the vertical back and forth motion of the swell to drive an articulated float or to oscillate a water column in a cylinder.
  • An object of the invention is to provide a power wave device having improved performance.
  • a wave energy conversion device comprising a stator provided with means for anchoring it to a fixed point, and two rotors each comprising at least one globally indeformable flow ⁇ tor to form a helix and having similar lengths and diameters but opposite helical pitch, the rotors being mounted on the stator to pivot and being mechanically connected to a rotating generator so as to transform a wave displacement energy into electrical energy , characterized in that the anchoring means are connected to the stator at a bow of the device and in that the device com ⁇ carries means for promoting the penetration of the bow of the device in the waves.
  • the stabilization means make it possible to control the pitch of the device so as to prevent the device from being erased as the waves pass. Indeed, if the device is lifted at each wave, the rotation of the rotor induced by the scrolling waves is limited as well as the energy produced.
  • the means of stabilization promote penetration of the bow of the device into the waves.
  • the stabilizing means are integral with the stator.
  • the stabilization means comprise a mass distribution along the stator favoring a penetration of the bow of the device in the waves.
  • the stabilization means are soli ⁇ dary of a stator volume extending to the bow and / or a volume of the stator extending to the stern of the device.
  • the volume has an outer shape favoring its penetration into the waves
  • the volume is provided with external fins having an incidence favoring its penetration of the waves;
  • the volume has a mass favoring its diving and, preferably, the volume contains the generator.
  • the stabilization means are dynamic means driven by at least one motor.
  • the motor is driven via at least one inertial sensor
  • the engine is driven via at least one geolocation receiver
  • the engine is associated with a remote control module
  • the motor drives in rotation at least one fin mounted on the stator to rotate about a substantially horizontal axis; - The motor drives in rotation at least one propulsion member mounted on the stator for pivoting.
  • the device comprises ballasting means arranged to adjust a floating device.
  • the ballasting means are arranged to emerge at least a portion of the stator and / or the ballasting means are arranged to allow total immersion of the device.
  • the rotors have a length of between 0.5 and 2 times the pitch of the helix approximately.
  • the rotors define between them an angle of between 0 ° and 30 ° approximately.
  • the anchoring means comprise a cable connected to the stator downstream of the bow of the device and upstream of the helical floats with respect to the direction of travel of the waves.
  • the device comprises at least one saffron connected to a motor driven to maintain the device along a wave propagation axis by countering a drift of the device.
  • FIG. 1 is a perspective view of the device according to the invention
  • FIG. 2 is a view similar to FIG. 1 but from another angle of view
  • FIG. 3 is a perspective view of the device in use
  • FIG. 4 is a perspective view, exploded, of the device of the invention.
  • Figure 5 is a perspective view of a pre ⁇ Mière embodiment
  • FIG. 6 is a perspective view of a second variant embodiment
  • FIG. 7 is a detailed perspective view of this second variant embodiment
  • FIG. 8 is a view similar to that of FIG. 1 of a variant of the device of FIG.
  • the energy conversion houlomoter device comprises a stator 3 provided with means for anchoring it to a fixed point, and two helical rotors 1 and 2. .
  • Each helical rotor 1, 2 comprises a single float 4 shaped to extend in a helix around a shaft 5 which it is integral in rotation.
  • the float comprises an outer casing 4.1, rigid and tubular, provided at regular intervals internal transverse partitions 4.2 ensuring the connection of the outer casing 4.1 to the shaft 5 and the stiffening of the outer casing 4.1.
  • the outer casing 4.1 is for example made of a stainless metal, a maté ⁇ composite material or thermoplastic material. It is thus formed a globally indeformable float in the conditions of its use.
  • the helical rotors 1 and 2 are here parallel to each other and have similar lengths and diameters but helical pitches in opposite directions.
  • the helical rotors have here a lon ⁇ LATIONS between 0.5 and 2 times the helical pitch envi ⁇ ron.
  • the helical rotors 1, 2 are mounted on the stator 3 to rotate and are each mechanically connected to a rotary generator 6 received in a bow volume 7 of the stator 3.
  • the mechanical connection between the shafts 5 and the generators 6 here comprises a set reduction.
  • the generators 6 are connected to a terrestrial electrical network by an electric cable.
  • the bow volume 7 of the stator 3 also receives a control unit 8 of the wave energy device ensuring a monitoring of the proper operation of the device and allowing remote control of the device by radio or via an electric cable running to the ground with the electric cable connected to the generators.
  • the bow volume 7 comprises on its upper part an access hatch allowing access to the interior of the bow volume 7 for maintenance operations.
  • the stator 3 comprises means for anchoring to the sea bottom.
  • the anchoring means are connected to the sta tor ⁇ 3 at the bow of the device.
  • the anchoring means here comprise a cable or chain 9 fixed to the stator 3 between the bow volume 7 and the helical rotors 1, 2.
  • the hooking point or points of this cable 9 on the stator 3 are thus located downstream of the bow volume 7 and upstream of the helical floats 1 and 2, with respect to the direction of travel of the waves.
  • the anchoring means may also comprise, as shown in the figures, a cable or a chain attached to the stator 3 at the stern of the device.
  • the device comprises means for stabilizing the device scrolling waves and promote the penetration of the bow of the device in the waves.
  • the stabilization means are here secured to the stator 3.
  • the stabilizing means here comprise a mass distribution along the stator 3 favoring a dive of the bow volume 7 extending to the bow of the device.
  • the bow volume 7 has in particular a mass favoring its diving, mass to which contribute the generators 6 and the mechanical connection means of the generators 6 to the shafts 5.
  • the stabilizing means may also comprise other means.
  • the bow volume 7 is advantageously configured according to an external shape favoring its diving.
  • the bow volume 7 is advantageously provided with external fins 100 having an incidence favoring diving.
  • Such fins 100 may also be arranged at the stern.
  • These stabilizing means are static means.
  • the device also comprises dynamic stabilization means driven by one or more motors 101.
  • the motor is then controlled by the control unit in different alternative or cumulative ways:
  • control can be carried out automatically from the signals coming from at least one inertial sensor secured to the device so as to maintain the device in the desired orientation in the vertical plane, that is to say in an orientation substantially horizontal;
  • the engine can be driven automatically from the information coming from at least one geolocation receiver, for example of the GPS type; the engine can be associated with a remote control module enabling an operator to correctly position the device for example according to meteorological information.
  • a motor rotating at least one wing, preferably two wings mounted on the stator to rotate about an axis substantially horizon tal ⁇ ;
  • propulsion member propeller or water ejection turbine
  • the device of Figures 1 to 3 is equipped at its bow and stern propeller driven motors arranged, oriented and controlled to maintain the device substantially horizontal despite the scrolling waves.
  • the device may further comprise at least one saffron connected to a motor driven by the control unit to maintain the device along a wave propagation axis by countering a device drift for example due to wind.
  • the device comprises ballasting means arranged to adjust a flotation of the device.
  • the ballasting means comprise at least one compartment, here several compartments which are formed along the stator 3 and which are each provided with a water inlet valve in the compartment and a discharge valve of the compartment water.
  • the valves are controlled by the control unit for:
  • the volume of the compartments must therefore be sufficient to allow this immersion.
  • the distribution of the compartments along the stator also makes it possible to adjust the attitude of the device and by adequate control of the valves constitute one of the means of stabilization.
  • the movement of the waves pro ⁇ voque a pivoting floats that drive the trees 5 and the generators 6 so as to transform the wave displacement energy into electrical energy.
  • the masses of generators 6 contribute to assu ⁇ rer horizontality of the axes of helical Volumes 1 and 2 through a pendular mass effect with the travel of the waves.
  • the device is held in position on a wave field by means of the anchoring chains which are arranged to withstand the horizontal, longitudinal and transverse components of the forces induced by the waves on the device.
  • This feature makes it possible to maintain the geographical position of the device on the wave field to which it is adapted while leaving it the ability to orient itself naturally as the direction of the waves changes.
  • the positioning of the hooked point of the chain 9 on the stator 3 situated downstream of the bow volume 7 and upstream of the helical floats 1 and 2 with respect to the direction of the waves makes it possible to benefit from the dynamic effect.
  • front pendulum exerted by the mass of the bow volume and generators 6 on the one hand and the dynamic forces induced by the scrolling waves on the helical rotors 1 and 2 on the other hand.
  • the device comprises rudders, the axes of the helical rotors 1 and 2 are maintained substantially parallel to the wave propagation axis in particular to reduce the drift effect caused by a wind direction different from the wave propagation
  • the parallel axes of the helical rotors 1 and 2 are maintained in the mean plane of the sea surface by means of the ballast device along the length of the stator 3. This makes it possible to keep the helical rotors 1 and 2 partially immersed on the surface of the sea with the scrolling waves.
  • This ballasting device also makes it possible to adjust the level of immersion of the device, thus making it submersible. This feature allows to fully and temporarily immerse the device in order to avoid the effects of storms that mainly affect the free surface of the sea.
  • the stabilization means prevent the device from fading at the passage of the wave and allow it to have the support necessary to make work the forces exerted by the wave on the immersed part of the floats of the helical rotors 1 and 2.
  • the collection of several devices according to the invention of size consistent with the surface of a wave field near the coast is a real power generation park.
  • the installation of one or more machines of reduced size makes it possible to produce punctual electricity for backup or relief on isolated coastal sites.
  • the rotors may comprise several identical floats angularly offset relative to each other to form a helix.
  • the outer surfaces of the floats can then be arranged to extend in the extension of each other, or not.
  • the helical rotors 1 and 2 of great length of each machine are composed by the combination of several identical float modules of predominantly tubular shape arranged in a beam together along the shaft 5.
  • the structure and the architecture of the stator 3 provide an axial rigidity for the connection with the helical rotors 1 and 2, not ⁇ with the addition of spacers, integral with the stator 3, regularly arranged along the axes of the helical volumes 1 and 2 and provided with a pivot connection at each end to reduce the stresses induced in the trees 5 with the scrolling waves.
  • the ballasting device can in this case take the form of ballastable compartments integrated in the submerged axial structure of the stator 3.
  • the helical rotors 1 and 2 are produced by means of very three-dimensional tetrahedrons whose choice of particular characteristics makes it possible to form a volume mesh of generally helical shape on a continuous axis.
  • These tetrahedron beams made from standardized beams, whose lengths are chosen so that one of the edges is always on the axis of the helical volume; while two other edges define the continuity of the helical shape.
  • Identical floats of roughly spherical shape, which can be inflatable, are uniformly integrated inside the structure, based on the 6 beams constituting each basic elementary tetrahedron. Due to this rigid tetrahedron structure along its length, the stator 3 does not require an intermediate pivot connection.
  • the ballasting device 5 is divided into two volumes and placed respectively at the front and at the rear of the device.
  • the rotors can define between them an angle of between 0 ° and 30 °.
  • the stabilizing means may be distributed along the stator or be integral with the rotor.
  • the device is equipped with several means of stabilized ⁇ of different types, the device can include an ⁇ dre a stabilizing means or more stabilization of a single type means.
  • the anchoring means may comprise a chain connected to the stern of the device. This chain dis ⁇ posed to the stern must not thwart the pendulum dynamic effect of the device.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Other Liquid Machine Or Engine Such As Wave Power Use (AREA)

Abstract

Dispositif houlomoteur de conversion d'énergie, comprenant un stator (3) pourvu de moyens de son ancrage (9) à au moins un point fixe, et deux rotors (1, 2) comportant chacun au moins un flotteur globalement indéformable pour former une hélice et ayant des longueurs et des diamètres similaires mais des pas d'hélice de sens opposés, les rotors étant montés sur le stator pour pivoter et étant mécaniquement reliés à un générateur (6) tournant de manière à transformer une énergie de déplacement des vagues en énergie électrique. Selon l'invention, les moyens d'ancrage sont reliés au stator à une proue du dispositif et en ce que le dispositif comporte des moyens de stabilisation du dispositif au défilement des vagues.

Description

DISPOSITIF HOULOMOTEUR DE CONVERSION D'ENERGIE DE LA HOULE EN ENERGIE ELECTRIQUE
La présente invention concerne les dispositifs houlomoteurs permettant de convertir l'énergie de la houle en énergie électrique. Les dispositifs flottants connus utilisent le mouvement de va-et-vient vertical de la houle pour entraîner un flotteur articulé ou faire osciller une colonne d'eau dans un cylindre.
Dans ces dispositifs connus, l'énergie potentielle et cinétique alternative contenue dans la houle est captée par l'intermédiaire de structures flottantes articulées conçues pour résister dans des conditions de mer extrêmes. De plus, ces dispositifs doivent pouvoir capter les vagues les plus énergétiques et présentent donc une bande passante adaptée à la capture des vagues de grandes longueurs d'onde entraînant des dimensions de plus de cent mètres. Tous ces dispositifs nécessitent des moyens d'ancrage surdimensionnés tandis que l'énergie mécanique récupérée dans ces systèmes sous forme alterna¬ tive nécessite l'usage de mécanismes de conversion d'une efficience relative et parfois peu adaptés à un séjour prolongé en milieu marin. Enfin, ces structures mécaniques de grandes tailles articulées, doivent durer dans des conditions d'environnement particulièrement agressi¬ ves. A ce jour, celles qui ont survécu ont pu bénéficier d'importants coefficients de sécurité pour leur dimen- sionnement .
Des exemples de tels dispositifs figurent notamment dans les documents FR2457989, FR2505937, EP222352, US3818703.
Ces raisons conduisent encore aujourd'hui à des projets de structures expérimentales dont la durée de vie reste incertaine et le coût difficilement rentabilisable . Ces tentatives sont illustrées dans les documents FR2805864, WO2004/065785 et WO2009/093909. Dans ces dispositifs houlomoteurs à flotteur en hélice, l'efficacité de la conversion d'énergie dépend des conditions de mer liant la longueur du pas des hélices à la longueur d'onde des vagues et le rayon des hélices au creux des vagues. Les flotteurs hélicoïdaux sont alors soumis à un couple tendant à les faire tourner autour de leur axe avec le défilement des vagues. Ceci permet de transformer le mouvement alternatif des vagues en mouvement de rotation unidirectionnel exploitable directement par un générateur électrique tournant conventionnel .
OBJET DE L' INVENTION
Un but de l'invention est de fournir un dispositif houlomoteur présentant des performances améliorées.
RESUME DE L'INVENTION
A cet effet, on prévoit, selon l'invention, un dispositif houlomoteur de conversion d'énergie, comprenant un stator pourvu de moyens de son ancrage à un point fixe, et deux rotors comportant chacun au moins un flot¬ teur globalement indéformable pour former une hélice et ayant des longueurs et des diamètres similaires mais des pas d'hélice de sens opposés, les rotors étant montés sur le stator pour pivoter et étant mécaniquement reliés à un générateur tournant de manière à transformer une énergie de déplacement des vagues en énergie électrique, caractérisé en ce que les moyens d'ancrage sont reliés au stator à une proue du dispositif et en ce que le dispositif com¬ porte des moyens pour favoriser la pénétration de la proue du dispositif dans les vagues.
Ainsi, les moyens de stabilisation permettent de contrôler le tangage du dispositif de manière à éviter que le dispositif ne s'efface au passage des vagues. En effet, si le dispositif se soulève à chaque vague, la rotation du rotor induite par le défilement des vagues est limitée de même que l'énergie produite. Les moyens de stabilisation favorisent une pénétration de la proue du dispositif dans les vagues.
De préférence, les moyens de stabilisation sont solidaires du stator.
Selon un premier mode de réalisation des moyens de stabilisation, les moyens de stabilisation comprennent une répartition de masse le long du stator favorisant une pénétration de la proue du dispositif dans les vagues.
Selon un deuxième mode de réalisation des moyens de stabilisation, les moyens de stabilisation sont soli¬ daires d'un volume du stator s' étendant à la proue et/ou d'un volume du stator s' étendant à la poupe du dispositif.
Selon différentes possibilités :
- le volume a une forme extérieure favorisant sa pénétration dans les vagues ;
le volume est pourvu d'ailerons extérieurs ayant une incidence favorisant sa pénétration das les vagues ;
- le volume a une masse favorisant sa plongée et, de préférence, le volume contient le générateur.
Selon un troisième mode de réalisation des moyens de stabilisation, les moyens de stabilisation sont des moyens dynamiques mus par au moins un moteur.
Selon différentes possibilités :
- le moteur est piloté via au moins un capteur inertiel ;
- le moteur est piloté via au moins un récepteur de géolocalisation ;
- le moteur est associé à un module de pilotage à distance ;
- le moteur entraîne en rotation au moins un aileron monté sur le stator pour pivoter autour d'un axe sensiblement horizontal ; - le moteur entraîne en rotation au moins un organe de propulsion monté sur le stator pour pivoter.
Avantageusement, le dispositif comprend des moyens de ballastage agencés pour régler une flottaison du dispositif.
De préférence alors, les moyens de ballastage sont agencés pour émerger au moins une partie du stator et / ou les moyens de ballastage sont agencés pour permettre une immersion totale du dispositif.
Selon une caractéristique intéressante, les rotors ont une longueur comprise entre 0,5 et 2 fois le pas d'hélice environ.
Selon une autre caractéristique intéressante, les rotors définissent entre eux un angle compris entre 0° et 30° environ.
Selon encore une autre caractéristique intéressante, les moyens d'ancrage comprennent un câble relié au stator en aval de la proue du dispositif et en amont des flotteurs hélicoïdaux par rapport au sens de défilement des vagues.
Avantageusement, le dispositif comporte au moins un safran relié à un moteur piloté pour maintenir le dispositif selon un axe de propagation des vagues en contrant une dérive du dispositif.
BREVE DESCRIPTION DES DESSINS
D'autres caractéristiques et avantages de l'invention ressortiront à la lecture de la description qui suit de modes de réalisation particuliers non limitatifs de l'invention.
Il sera fait référence aux dessins annexés, parmi lesquels :
la figure 1 est une vue en perspective du dispositif conforme à l'invention,
la figure 2 est une vue analogue à la figure 1 mais sous un autre angle de vue, la figure 3 est une vue en perspective du dispositif en utilisation,
la figure 4 est une vue en perspective, avec éclaté, du dispositif de l'invention
la figure 5 est une vue en perspective d'une pre¬ mière variante de réalisation,
la figure 6 est une vue en perspective d'une deuxième variante de réalisation,
la figure 7 est une vue en perspective de détail de cette deuxième variante de réalisation,
la figure 8 est une vue analogue à celle de la figure 1 d'une variante du dispositif de la figure 1.
DESCRIPTION DETAILLEE DE L'INVENTION En référence aux figures, le dispositif houlomo- teur de conversion d'énergie conforme à l'invention com¬ prend un stator 3 pourvu de moyens de son ancrage à un point fixe, et deux rotors hélicoïdaux 1 et 2.
Chaque rotor hélicoïdal 1, 2 comporte un unique flotteur 4 conformé pour s'étendre selon une hélice autour d'un arbre 5 dont il est solidaire en rotation. Le flotteur comporte une enveloppe externe 4.1, rigide et tubulaire, pourvue à intervalle régulier de cloisons transversales internes 4.2 assurant la liaison de l'enveloppe externe 4.1 à l'arbre 5 et la rigidification de l'enveloppe externe 4.1. L'enveloppe externe 4.1 est par exemple réalisée en un métal inoxydable, en un maté¬ riau composite ou en matériau thermoplastique. Il est ainsi formé un flotteur globalement indéformable dans les conditions de son utilisation. Les rotors hélicoïdaux 1 et 2 sont ici parallèles l'un à l'autre et ont des longueurs et des diamètres similaires mais des pas d'hélice de sens opposés. Les rotors hélicoïdaux ont ici une lon¬ gueur comprise entre 0,5 et 2 fois le pas d'hélice envi¬ ron . Les rotors hélicoïdaux 1, 2 sont montés sur le stator 3 pour pivoter et sont mécaniquement reliés chacun à un générateur tournant 6 reçu dans un volume de proue 7 du stator 3. La liaison mécanique entre les arbres 5 et les générateurs 6 comprend ici un ensemble de réduction. Les générateurs 6 sont reliés à un réseau électrique terrestre par un câble électrique.
Le volume de proue 7 du stator 3 reçoit également une unité de commande 8 du dispositif houlomoteur assu- rant une surveillance du bon fonctionnement du dispositif et permettant une commande à distance du dispositif par voie hertzienne ou via un câble électrique courant jusqu'à terre avec le câble électrique relié aux générateurs .
Le volume de proue 7 comprend sur sa partie supérieure une trappe d'accès permettant d'accéder à l'intérieur du volume de proue 7 pour des opérations de maintenance .
Le stator 3 comprend des moyens de son ancrage au fond de la mer. Les moyens d'ancrage sont reliés au sta¬ tor 3 à la proue du dispositif. Les moyens d'ancrage comprennent ici un câble ou une chaîne 9 fixée au stator 3 entre le volume de proue 7 et les rotors hélicoïdaux 1, 2. Le ou les points d'accroché de ce câble 9 sur le sta- tor 3 sont ainsi situés en aval du volume de proue 7 et en amont des flotteurs hélicoïdaux 1 et 2, par rapport au sens de défilement des vagues. Les moyens d'ancrage peuvent également comprendre, comme c'est représenté sur les figures un câble ou une chaîne fixée au stator 3 à la poupe du dispositif. Il va de soi que la longueur des chaînes est calculée pour laisser au dispositif une latitude de mouvement suffisante de sorte que les chaînes n'entravent pas la stabilisation du dispositif au défile¬ ment des vagues. En référence plus particulièrement aux figures 1 à 3, le dispositif comporte des moyens pour stabiliser le dispositif au défilement des vagues et favoriser la pénétration de la proue du dispositif dans les vagues. Les moyens de stabilisation sont ici solidaires du stator 3.
Les moyens de stabilisation comprennent ici une répartition de masse le long du stator 3 favorisant une plongée du volume de proue 7 s' étendant à la proue du dispositif. Le volume de proue 7 a notamment une masse favorisant sa plongée, masse à laquelle contribuent les générateurs 6 et les moyens de liaison mécanique des générateurs 6 aux arbres 5.
Les moyens de stabilisation peuvent également comprendre d'autres moyens. En particulier, le volume de proue 7 est avantageusement configuré selon une forme extérieure favorisant sa plongée.
Par ailleurs, comme illustré à la figure 8, le volume de proue 7 est avantageusement pourvu d' ailerons extérieurs 100 ayant une incidence favorisant la plongée. De tels ailerons 100 peuvent être également disposés à la poupe. Ces moyens de stabilisation sont des moyens statiques .
Le dispositif comprend également des moyens de stabilisation dynamiques mus par un ou des moteurs 101. Le moteur est alors piloté par l'unité de commande selon différentes manières alternatives ou cumulatives :
- le pilotage peut être réalisé automatiquement à partir des signaux provenant d'au moins un capteur iner- tiel solidaire du dispositif de manière à maintenir le dispositif dans l'orientation souhaitée dans le plan verticale, c'est-à-dire selon une orientation sensiblement horizontale ;
- le moteur peut être piloté automatiquement à partir des informations provenant d'au moins un récepteur de géolocalisation, par exemple de type GPS ; - le moteur peut être associé à un module de pilotage à distance permettant à un opérateur de positionner correctement le dispositif par exemple en fonction d'informations météorologiques.
Il est possible de prévoir alternativement ou cumulativement :
- un moteur entraînant en rotation au moins un aileron, et de préférence deux ailerons, montés sur le stator pour pivoter autour d'un axe sensiblement horizon¬ tal ;
- un moteur entraînant au moins un organe de propulsion (hélice ou turbine d'éjection d'eau) monté sur le stator pour éventuellement être orientable et relié à l'unité de commande pour être piloté.
Le dispositif des figures 1 à 3 est équipé à sa proue et à sa poupe de moteurs entraînant une hélice agencés, orientés et pilotés pour maintenir le dispositif sensiblement horizontal malgré le défilement des vagues.
Le dispositif peut en outre comporter au moins un safran relié à un moteur piloté par l'unité de commande pour maintenir le dispositif selon un axe de propagation des vagues en contrant une dérive du dispositif par exemple dû au vent.
Le dispositif comprend des moyens de ballastage agencés pour régler une flottaison du dispositif. Les moyens de ballastage comprennent au moins un compartiment, ici plusieurs compartiments qui sont ménagés le long du stator 3 et qui sont pourvu chacun d' une vanne d'introduction d'eau dans le compartiment et d'une vanne d'évacuation de l'eau du compartiment. Les vannes sont pilotées par l'unité de commande pour :
- émerger au moins une partie du stator, et plus particulièrement le volume de proue pour les opérations de maintenance et les opérations d'acheminement du dispo¬ sitif sur le site de production des vagues ; - immerger totalement le dispositif par exemple en cas de tempête, soit automatiquement ou sur commande à distance en fonction de données météorologiques ou d'efforts / contraintes détectés sur le dispositif.
- immerger partiellement le dispositif afin de faire coïncider l'axe des rotors avec le plan moyen des vagues en fonctionnement normal par exemple.
Le volume des compartiments doit donc être suffisant pour permettre cette immersion. La répartition des compartiments le long du stator permet en outre de régler l'assiette du dispositif et par un pilotage adéquat des vanne constituer un des moyens de stabilisation.
En fonctionnement, le défilement des vagues pro¬ voque un pivotement des flotteurs qui entraînent les ar- bres 5 et les générateurs 6 de manière à transformer l'énergie de déplacement des vagues en énergie électrique .
La combinaison des deux rotors hélicoïdaux 1, 2 de pas d'hélice contraires permet d'apporter la stabilité de la paire qu'ils constituent par l'intermédiaire du stator 3 au sein du dispositif.
Les masses des générateurs 6 contribuent à assu¬ rer l'horizontalité des axes des volumes hélicoïdaux 1 et 2 grâce à un effet de masse pendulaire avec le défilement des vagues.
Le dispositif est maintenu en position sur un champ de vagues par l'intermédiaire des chaînes d'ancrage qui sont agencée pour résister aux composantes horizontale, longitudinale et transversale des efforts induits par les vagues sur le dispositif. Cette caractéristique permet de maintenir la position géographique du dispositif sur le champ de vagues auquel il est adapté tout en lui laissant l'aptitude de s'orienter naturellement à mesure que la direction des vagues change. Le positionnement du point d'accroché de la chaîne 9 sur le stator 3 situé en aval du volume de proue 7 et en amont des flotteurs hélicoïdaux 1 et 2 par rapport au sens de défilement des vagues permet de bénéfi- cier de l'effet dynamique pendulaire avant exercée par la masse du volume de proue et des générateurs 6 d'une part et les efforts dynamiques induits par le défilement des vagues sur les rotors hélicoïdaux 1 et 2 d'autre part. Lorsque le dispositif comprend des safrans, les axes des rotors hélicoïdaux 1 et 2 sont maintenus sensiblement parallèles à l'axe de propagation des vagues pour notamment réduire l'effet de dérive occasionné par un vent de direction différente de l'axe de propagation des vagues.
Les axes parallèles des rotors hélicoïdaux 1 et 2 sont maintenus dans le plan moyen de la surface de la mer grâce au dispositif de ballastage sur la longueur du stator 3. Ceci permet de maintenir les rotors hélicoïdaux 1 et 2 partiellement immergés à la surface de la mer avec le défilement des vagues. Ce dispositif de ballastage permet également d'ajuster le niveau d'immersion du dispositif, le rendant ainsi submersible. Cette caractéristique permet d'immerger intégralement et temporairement le dispositif afin de le soustraire aux effets des tempêtes qui affectent principalement la surface libre de la mer.
Les moyens de stabilisation empêchent le dispositif de s'effacer au passage de la vague et lui permettent de disposer de l'appui nécessaire pour faire travailler les efforts exercés par la vague sur la partie immergée des flotteurs des rotors hélicoïdaux 1 et 2.
Le rassemblement de plusieurs dispositifs selon l'invention de taille conséquente à la surface d'un champ de houle à proximité des côtes constitue un véritable parc de production d'électricité. L'installation d'une ou plusieurs machines de dimensions réduites permet de produire ponctuellement de l'électricité en appoint ou en secours sur des sites cô- tiers notamment isolés.
La transformation de l'énergie de la houle en énergie électrique permet accessoirement d'atténuer la violence de cette houle en aval du dispositif. Il est ainsi permis d'envisager des applications intéressant la protection des ouvrages en mer, des côtes contre l'agres- sion de la houle, ou encore des activités humaines d'aquaculture. Le rassemblement de plusieurs dispositifs dans une même zone permet de constituer un barrage flottant atténuateur de houle en aval duquel les activités humaines, animales ou végétales pourront d'autant plus facilement s'exercer qu'elles disposeront d'une source d'énergie locale.
Bien entendu, l'invention n'est pas limitée aux modes de réalisation décrits mais englobe toute variante entrant dans le champ de l'invention telle que définie par les revendications.
En particulier, les rotors peuvent comprendre plusieurs flotteurs identiques décalés angulairement les uns par rapport aux autres pour former une hélice. Les surfaces externes des flotteurs peuvent alors être agen- cées pour s'étendre dans le prolongement les unes des autres, ou pas.
Ainsi, selon un premier mode de réalisation des flotteurs, représenté à la figure 5, destiné à la production d'énergie électrique de masse à partir d'un parc de machines implantées dans un champ de vagues orientées à proximité des côtes, les rotors hélicoïdaux 1 et 2 de grande longueur de chaque machine sont composés par l'association de plusieurs modules flotteurs identiques de forme principalement tubulaire disposés solidairement en faisceau le long de l'arbre 5. La structure et l'architecture du stator 3 apportent une rigidité axiale pour la liaison avec les rotors hélicoïdaux 1 et 2, no¬ tamment par l'ajout d' entretoises , solidaires du stator 3, régulièrement disposées le long des axes des volumes hélicoïdaux 1 et 2 et munies d'une liaison pivot à chaque extrémité permettant de réduire les contraintes induites dans les arbres 5 avec le défilement des vagues. Le dispositif de ballastage peut notamment ici prendre la forme de compartiments ballastables intégrés dans la structure axiale immergée du stator 3.
Selon un autre mode de réalisation plus léger de l'invention, représenté aux figures 6 et 7, destiné à la production locale ponctuelle d'énergie électrique, les rotors hélicoïdaux 1 et 2 sont réalisés grâce à des pou- très tridimensionnelles tétraèdrées dont le choix particulier des caractéristiques permet de former un maillage volumique de forme globalement hélicoïdale sur un axe continu. Ces poutres tétraèdrées, réalisées à partir de poutrelles standardisées, dont les longueurs sont choi- sies de manière à ce qu'une des arêtes soit toujours sur l'axe du volume hélicoïdal ; tandis que deux autres arêtes définissent la continuité de la forme hélicoïdale. Des flotteurs identiques de forme grossièrement sphéri- que, pouvant être gonflables, sont intégrés de façon ré- gulière à l'intérieur de la structure en prenant appui sur les 6 poutrelles constituant chaque tétraèdre élémentaire de base. Grâce à cette structure tétraédrée rigide sur sa longueur, le stator 3 ne nécessite pas de liaison pivot intermédiaire. Le dispositif de ballastage 5 se ré- sume à 2 volumes et respectivement placés à l'avant et à l'arrière du dispositif.
Par ailleurs, les rotors peuvent définir entre eux un angle compris entre 0° et 30° environ.
Les moyens de stabilisation peuvent être répartis le long du stator ou être solidaires du rotor. Bien que dans le mode de réalisation décrit, le dispositif soit équipé de plusieurs moyens de stabilisa¬ tion de différents types, le dispositif peut ne compren¬ dre qu'un moyen de stabilisation ou plusieurs moyens de stabilisation d'un seul type.
Les moyens d'ancrage peuvent comprendre une chaîne reliée à la poupe du dispositif. Cette chaîne dis¬ posée à la poupe ne doit pas contrarier l'effet dynamique pendulaire du dispositif.

Claims

REVENDICATIONS
1. Dispositif houlomoteur de conversion d'énergie, comprenant un stator (3) pourvu de moyens de son ancrage (9) à au moins un point fixe, et deux rotors (1, 2) comportant chacun au moins un flotteur globalement indéformable pour former une hélice et ayant des longueurs et des diamètres similaires mais des pas d'hélice de sens opposés, les rotors étant montés sur le stator pour pivoter et étant mécaniquement reliés à un générateur (6) tournant de manière à transformer une énergie de déplacement des vagues en énergie électrique, caractérisé en ce que les moyens d'ancrage sont reliés au stator à une proue du dispositif et en ce que le dispositif com- porte des moyens de stabilisation du dispositif au défilement des vagues.
2. Dispositif selon la revendication 1, dans lequel les moyens de stabilisation sont solidaires du stator .
3. Dispositif selon la revendication 2, dans lequel les moyens de stabilisation comprennent une répartition de masse le long du stator favorisant une plongée de la proue du dispositif.
4. Dispositif selon la revendication 2, dans le- quel les moyens de stabilisation sont solidaires d'un volume du stator s' étendant à la proue du dispositif.
5. Dispositif selon la revendication 4, dans lequel le volume a une forme extérieure favorisant sa plongée .
6. Dispositif selon la revendication 5, dans lequel le volume est pourvu d' ailerons extérieurs ayant une incidence favorisant la plongée.
7. Dispositif selon la revendication 4, dans lequel le volume a une masse favorisant sa plongée.
8. Dispositif selon la revendication 7, dans lequel le volume contient le générateur.
9. Dispositif selon la revendication 2, dans lequel les moyens de stabilisation sont des moyens dynami- ques mus par au moins un moteur.
10. Dispositif selon la revendication 9, dans lequel le moteur est piloté via au moins un capteur iner- tiel.
11. Dispositif selon la revendication 9, dans le- quel le moteur est piloté via au moins un récepteur de géolocalisation ,
12. Dispositif selon la revendication 9, dans lequel le moteur est associé à un module de pilotage à dis¬ tance .
13. Dispositif selon la revendication 9, dans lequel le moteur entraîne en rotation au moins un aileron monté sur le stator pour pivoter autour d'un axe sensiblement horizontal.
14. Dispositif selon la revendication 9, dans le- quel le moteur entraîne en rotation au moins un organe de propulsion monté sur le stator pour pivoter.
15. Dispositif selon la revendication 1, dans lequel au moins une partie des moyens de stabilisation est montée à une poupe du dispositif.
16. Dispositif selon la revendication 1, comprenant des moyens de ballastage agencés pour régler une flottaison du dispositif.
17. Dispositif selon la revendication 16, dans lequel les moyens de ballastage sont agencés pour émerger au moins une partie du stator.
18. Dispositif selon la revendication 16, dans lequel les moyens de ballastage sont agencés pour permettre une immersion totale du dispositif.
19. Dispositif selon la revendication 1, dans lequel les rotors ont une longueur comprise entre 0,5 et 2 fois le pas d'hélice environ.
20. Dispositif selon la revendication 1, dans le- quel les rotors définissent entre eux un angle compris entre 0° et 30° environ.
21. Dispositif selon la revendication 1, dans lequel les moyens d'ancrage (4) comprennent un câble (10) relié au stator (3) en aval de la proue du dispositif et en amont des flotteurs hélicoïdaux (1) par rapport au sens de défilement des vagues.
22. Dispositif selon revendication 1, comportant au moins un safran relié à un moteur piloté pour mainte¬ nir le dispositif selon un axe de propagation des vagues en contrant une dérive du dispositif.
PCT/EP2012/062462 2011-07-08 2012-06-27 Dispositif houlomoteur de conversion d'energie de la houle en energie electrique WO2013007520A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR1156249 2011-07-08
FR1156249A FR2977642B1 (fr) 2011-07-08 2011-07-08 Dispositif houlomoteur de conversion d'energie de la houle en energie electrique

Publications (1)

Publication Number Publication Date
WO2013007520A1 true WO2013007520A1 (fr) 2013-01-17

Family

ID=46420175

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2012/062462 WO2013007520A1 (fr) 2011-07-08 2012-06-27 Dispositif houlomoteur de conversion d'energie de la houle en energie electrique

Country Status (2)

Country Link
FR (1) FR2977642B1 (fr)
WO (1) WO2013007520A1 (fr)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015150602A1 (fr) * 2014-03-25 2015-10-08 Elaborados Castellano, S.L. Dispositif pour générer de l'énergie au moyen des mouvements des vagues de la mer

Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3818703A (en) 1971-06-01 1974-06-25 Laitram Corp Wave energy converter array
FR2457989A1 (fr) 1979-05-28 1980-12-26 Grugeaud Charles Dispositif permettant de recueillir l'energie des vagues et des courants, marins ou fluviaux, au moyen de vis flottantes
US4337052A (en) * 1979-07-10 1982-06-29 Seiichi Kitabayashi Wave energy propelling marine ship
FR2505937A1 (fr) 1981-05-15 1982-11-19 Hydronautics Dispositif pour convertir l'energie des vagues en une forme d'energie plus utile
EP0222352A2 (fr) 1985-11-07 1987-05-20 Johann Dauenhauer Dispositif hydraulique de production de courant électrique
FR2805864A1 (fr) 2000-01-25 2001-09-07 Francois Christian Paul Crolet Dispositif de conversion de l'energie de la houle en energie mecanique de rotation
WO2004065785A1 (fr) 2003-01-20 2004-08-05 Torben Veset Mogensen Convertisseur d'energie des vagues de mer
WO2006054084A1 (fr) * 2004-11-17 2006-05-26 Overberg Limited Appareil flottant deploye dans un courant marin pour extraire de l’energie
WO2007027544A1 (fr) * 2005-08-31 2007-03-08 Gizara Andrew R Hydroptere a turbine integree
WO2008100157A1 (fr) * 2007-02-16 2008-08-21 Hydra Tidal Energy Technology As Dispositif flottant pour production d'énergie à partir de courants aquatiques
US20090146428A1 (en) * 2007-12-05 2009-06-11 Kinetic Wave Power Water Wave Power System
WO2009093909A1 (fr) 2008-01-24 2009-07-30 Flucon As Dispositif à turbine
WO2010107316A1 (fr) * 2009-03-20 2010-09-23 Norwegian Ocean Power As Appareil de turbine aquatique

Patent Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3818703A (en) 1971-06-01 1974-06-25 Laitram Corp Wave energy converter array
FR2457989A1 (fr) 1979-05-28 1980-12-26 Grugeaud Charles Dispositif permettant de recueillir l'energie des vagues et des courants, marins ou fluviaux, au moyen de vis flottantes
US4337052A (en) * 1979-07-10 1982-06-29 Seiichi Kitabayashi Wave energy propelling marine ship
FR2505937A1 (fr) 1981-05-15 1982-11-19 Hydronautics Dispositif pour convertir l'energie des vagues en une forme d'energie plus utile
EP0222352A2 (fr) 1985-11-07 1987-05-20 Johann Dauenhauer Dispositif hydraulique de production de courant électrique
FR2805864A1 (fr) 2000-01-25 2001-09-07 Francois Christian Paul Crolet Dispositif de conversion de l'energie de la houle en energie mecanique de rotation
WO2004065785A1 (fr) 2003-01-20 2004-08-05 Torben Veset Mogensen Convertisseur d'energie des vagues de mer
WO2006054084A1 (fr) * 2004-11-17 2006-05-26 Overberg Limited Appareil flottant deploye dans un courant marin pour extraire de l’energie
WO2007027544A1 (fr) * 2005-08-31 2007-03-08 Gizara Andrew R Hydroptere a turbine integree
WO2008100157A1 (fr) * 2007-02-16 2008-08-21 Hydra Tidal Energy Technology As Dispositif flottant pour production d'énergie à partir de courants aquatiques
US20090146428A1 (en) * 2007-12-05 2009-06-11 Kinetic Wave Power Water Wave Power System
WO2009093909A1 (fr) 2008-01-24 2009-07-30 Flucon As Dispositif à turbine
WO2010107316A1 (fr) * 2009-03-20 2010-09-23 Norwegian Ocean Power As Appareil de turbine aquatique

Also Published As

Publication number Publication date
FR2977642A1 (fr) 2013-01-11
FR2977642B1 (fr) 2013-08-30

Similar Documents

Publication Publication Date Title
EP2640632B1 (fr) Installation et procédé d'exploitation d'énergie éolienne
EP2986848B1 (fr) Structure d'eolienne flottante
EP2906818B1 (fr) Aérogénérateur birotor «en v» sur structure flottante de type spar
US20120248769A1 (en) Tuned Rolling Wave Energy Extractor
EP3853118B1 (fr) Eolienne flottante à position en lacet pilotable
EP1718863A1 (fr) Turbomachine hydraulique
EP1809897A1 (fr) Appareil pour convertir l'energie des vagues en energie electrique
FR2913728A1 (fr) Dispositif et procede pour capter une energie cinetique d'un fluide naturellement en mouvement
FR2980245A1 (fr) Dispositif de recuperation d'energie a partir des courants marins ou des cours d'eau
WO2014106765A1 (fr) Turbine a aubes helicoidales
WO2013007520A1 (fr) Dispositif houlomoteur de conversion d'energie de la houle en energie electrique
WO2013092362A2 (fr) Eolienne à pales montée sur une plateforme rotative
WO2019201703A1 (fr) Eolienne flottante a turbines jumelles et a axe vertical
WO2022106979A1 (fr) Système de captage de l'énergie d'un courant de fluide
WO2009003285A1 (fr) Eolienne à axe verticale avec pales munies d'un moyen de rappel
FR3028895A1 (fr) Dispositif de production d'energie de type eolienne.
EP3947957B1 (fr) Dispositif de propulsion et de conversion d'énergie des vagues
FR2994716A1 (fr) Installation de conversion de l'energie marine
EP3332115B1 (fr) Dispositif de production d'électricité a partir d'écoulements de fluide liquide
FR2805864A1 (fr) Dispositif de conversion de l'energie de la houle en energie mecanique de rotation
FR2955157A1 (fr) Dispositif simple de conversion de l' energie de la houle en energie electrique
FR2867523A3 (fr) Dispositif modulable pour capter l'energie des courants marins ou fluviaux
EP1375914A1 (fr) Ensemble éolienne flottant
WO2012001320A1 (fr) Eolienne verticale a winglets
WO2019201705A1 (fr) Eolienne flottante a turbines jumelles a axe vertical et a couplage mecanique

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12730941

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12730941

Country of ref document: EP

Kind code of ref document: A1