WO2013007161A1 - 基带处理单元、基带处理板和基带处理板的故障处理方法 - Google Patents

基带处理单元、基带处理板和基带处理板的故障处理方法 Download PDF

Info

Publication number
WO2013007161A1
WO2013007161A1 PCT/CN2012/078219 CN2012078219W WO2013007161A1 WO 2013007161 A1 WO2013007161 A1 WO 2013007161A1 CN 2012078219 W CN2012078219 W CN 2012078219W WO 2013007161 A1 WO2013007161 A1 WO 2013007161A1
Authority
WO
WIPO (PCT)
Prior art keywords
baseband processing
path
module
board
switch
Prior art date
Application number
PCT/CN2012/078219
Other languages
English (en)
French (fr)
Inventor
许灵军
程广辉
王东
Original Assignee
中国移动通信集团公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中国移动通信集团公司 filed Critical 中国移动通信集团公司
Priority to US14/128,141 priority Critical patent/US9281997B2/en
Priority to EP12811814.8A priority patent/EP2733978B1/en
Publication of WO2013007161A1 publication Critical patent/WO2013007161A1/zh

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/04Arrangements for maintaining operational condition
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F1/00Details not covered by groups G06F3/00 - G06F13/00 and G06F21/00
    • G06F1/26Power supply means, e.g. regulation thereof
    • G06F1/28Supervision thereof, e.g. detecting power-supply failure by out of limits supervision
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F11/00Error detection; Error correction; Monitoring
    • G06F11/07Responding to the occurrence of a fault, e.g. fault tolerance
    • G06F11/16Error detection or correction of the data by redundancy in hardware
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • H04B1/74Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission for increasing reliability, e.g. using redundant or spare channels or apparatus
    • H04B1/745Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission for increasing reliability, e.g. using redundant or spare channels or apparatus using by-passing or self-healing methods
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L41/00Arrangements for maintenance, administration or management of data switching networks, e.g. of packet switching networks
    • H04L41/06Management of faults, events, alarms or notifications
    • H04L41/0654Management of faults, events, alarms or notifications using network fault recovery
    • H04L41/0659Management of faults, events, alarms or notifications using network fault recovery by isolating or reconfiguring faulty entities
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L41/00Arrangements for maintenance, administration or management of data switching networks, e.g. of packet switching networks
    • H04L41/06Management of faults, events, alarms or notifications
    • H04L41/0654Management of faults, events, alarms or notifications using network fault recovery
    • H04L41/0668Management of faults, events, alarms or notifications using network fault recovery by dynamic selection of recovery network elements, e.g. replacement by the most appropriate element after failure
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F11/00Error detection; Error correction; Monitoring
    • G06F11/07Responding to the occurrence of a fault, e.g. fault tolerance
    • G06F11/16Error detection or correction of the data by redundancy in hardware
    • G06F11/20Error detection or correction of the data by redundancy in hardware using active fault-masking, e.g. by switching out faulty elements or by switching in spare elements
    • G06F11/2017Error detection or correction of the data by redundancy in hardware using active fault-masking, e.g. by switching out faulty elements or by switching in spare elements where memory access, memory control or I/O control functionality is redundant
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F11/00Error detection; Error correction; Monitoring
    • G06F11/07Responding to the occurrence of a fault, e.g. fault tolerance
    • G06F11/16Error detection or correction of the data by redundancy in hardware
    • G06F11/20Error detection or correction of the data by redundancy in hardware using active fault-masking, e.g. by switching out faulty elements or by switching in spare elements
    • G06F11/202Error detection or correction of the data by redundancy in hardware using active fault-masking, e.g. by switching out faulty elements or by switching in spare elements where processing functionality is redundant
    • G06F11/2035Error detection or correction of the data by redundancy in hardware using active fault-masking, e.g. by switching out faulty elements or by switching in spare elements where processing functionality is redundant without idle spare hardware
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F2201/00Indexing scheme relating to error detection, to error correction, and to monitoring
    • G06F2201/85Active fault masking without idle spares
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L25/00Baseband systems
    • H04L25/02Details ; arrangements for supplying electrical power along data transmission lines

Definitions

  • the present invention relates to wireless communication technologies, and in particular, to a baseband processing unit, a baseband processing board, and a method for troubleshooting a baseband processing board. Background technique
  • the current third-generation mobile communication (3G, 3rd-Generation) systems and base stations in the Long Term Evolution (LTE) system all use a distributed base station architecture, which divides the entire base station into baseband processing units (BBU, Building). Base band unit ) and radio remote unit (RRU, Radio Remote Unit).
  • BBU baseband processing units
  • RRU Radio Remote Unit
  • the BBU is mainly used to perform functions such as baseband processing, main control, transmission, and clock.
  • the RRU is mainly used to perform functions such as mutual conversion between digital baseband signals and radio frequency signals.
  • the interface between the BBU and the RRU is a fiber interface.
  • FIG. 1 is a schematic structural diagram of a conventional BBU of a three-sector configuration. As shown in Figure 1, it includes: a master transmission clock board, a baseband processing board, and a backplane.
  • the main control transmission clock board can be referred to as the main control board, and is mainly responsible for the main control, transmission, and clock functions. Generally, the processing of the BBU control plane is performed in the main control transmission clock board, and the main control transmission clock board is the entire BBU.
  • the nerve center not only controls the operation of other boards, but also provides clock signals and transmission interfaces for other boards.
  • the baseband processing board can be simply referred to as the baseband board, which is mainly responsible for BBU user plane processing, including layer 1 and layer 2 processing.
  • a baseband processing board is usually responsible for user plane processing of a sector with a bandwidth of 20 MHz.
  • the backplane is a printed board mounted on the back of the BBU chassis, which allows the boards to be connected to each other and signals between the boards. Transmission and power supply are all realized by the printed circuit on the backplane, thus avoiding cable entanglement between the boards, so that the entire system has high reliability and easy maintenance.
  • each baseband processing board and its corresponding RRU are jointly responsible for the phase of one cell. If the fault occurs in any of the baseband processing boards, the responsible cell will fail until the entire cell is retired, and the users in the entire cell cannot communicate normally.
  • FIG. 2 is a schematic diagram of the setting manner of the existing backup baseband processing board. Any one of the baseband processing boards fails, that is, the backup baseband processing board replaces the failed baseband processing board.
  • Another object of the present invention is to provide a baseband processing board which can reduce the implementation cost.
  • a baseband processing unit includes: a backplane and two or more baseband processing boards, each baseband processing board includes: a baseband processing module, a power module, and an optical module; and the at least one baseband processing board further includes: a parallel with the baseband processing module a first through path and a second through path in parallel with the power module; when the baseband processing module and the power module in the first baseband processing board including the first through path and the second through path both fail, the first baseband The processing board works according to the first working mode, that is, the baseband processing resources and power required for the work are obtained through the backplane, and the obtained baseband processing resources are provided to the corresponding radio remote unit through the first through path and the optical module- Providing the obtained power supply to the optical module through the second through path;
  • the first baseband processing board When the baseband processing module in the first baseband processing board fails but the power module fails, the first baseband processing board operates according to the second working mode, that is, obtains the baseband processing resources required for the work through the backplane, and passes The first pass path and the optical module provide the obtained baseband processing resources to the corresponding The RF remote unit supplies power to the optical module through its own power module.
  • a baseband processing board includes: a baseband processing module, a power module, and an optical module; further comprising: a first through path in parallel with the baseband processing module and a second through path in parallel with the power module;
  • the baseband processing board When both the baseband processing module and the power module fail, the baseband processing board operates according to the first working mode, that is, the baseband processing resources and power required for the work are obtained through the backplane in the baseband processing unit, and the first straight
  • the pass path and the optical module provide the obtained baseband processing resource to the corresponding radio remote unit, and provide the obtained power supply to the optical module through the second straight path;
  • the baseband processing board works according to the second working mode, that is, the baseband processing resources required for the work are obtained through the backplane, and are obtained through the first through path and the optical module.
  • the baseband processing resource is provided to the corresponding radio remote unit, and the optical module is powered by its own power module.
  • a method for processing a fault in a baseband processing board based on the baseband processing unit includes: the first baseband processing board switches its working mode according to the obtained working mode switching instruction, where the working mode includes a first working mode and a Two working modes;
  • the mode is switched to the first working mode, the following operations are performed: obtaining the baseband processing resources and power required for the work through the backplane, and providing the obtained baseband processing resources to the corresponding radio frequency pull through the first through path and the optical module.
  • the remote unit provides the obtained power supply to the optical module through the second through path;
  • the mode is switched to the second working mode, the following operations are performed: the baseband processing resources required for the work are obtained through the backplane, and the obtained baseband processing resources are provided to the corresponding radio remote unit through the first through path and the optical module. , power the optical module through its own power module.
  • FIG. 1 is a schematic structural diagram of a conventional BBU of a three-sector configuration.
  • Figure 2 is a schematic diagram showing the arrangement of the existing backup baseband processing board.
  • FIG. 3 is a schematic structural view of a conventional baseband processing board.
  • FIG. 4 is a schematic structural diagram of a structure of a BBU according to the present invention.
  • Fig. 5 is a schematic view showing the star connection relationship between the power module and the through path 2 in the present invention.
  • 6 is a flow chart of an embodiment of a method for troubleshooting a baseband processing board of the present invention. detailed description
  • the present invention proposes an improved BBU, a baseband processing board, and a method of troubleshooting a baseband processing board.
  • FIG. 3 is a schematic structural view of a conventional baseband processing board. As shown in Figure 3, it includes: Baseband processing module, power module, and optical module.
  • the baseband processing module is mainly responsible for the processing of the layer 1 and the layer 2;
  • the power module is mainly responsible for converting the power supply (DC power supply) received from the backplane into the power supply (DC power supply) required for the operation of the baseband processing module and the optical module.
  • the optical module is mainly responsible for mutual conversion between the electrical signal and the optical signal.
  • the present invention proposes Introducing a straight-through path for the baseband processing module and the power module, that is, a first straight-through path in parallel with the baseband processing module and a second straight-through path in parallel with the power module.
  • the baseband processing board can work according to the first working mode, that is, obtain the baseband processing resources and power required for the work through the backplane, and pass the first through path and the light.
  • the module provides the obtained baseband processing resource to the corresponding RRU, and provides the obtained power supply to the optical module through the second through path; when the baseband processing module fails but the power module does not fail, the second working mode is performed, that is, The baseband processing resources required for the work are obtained through the backplane, and the obtained baseband processing resources are provided to the corresponding RRUs through the first through path and the optical module, and the optical modules are powered by the power modules.
  • the above baseband processing board can be operated under the control of the master transmission clock board in the BBU where it is located. Switch mode.
  • the main control transmission clock board periodically detects the working state of the baseband processing board, that is, detects whether the baseband processing module and the power supply module of the baseband processing board have a fault, and controls the baseband processing board to operate in the corresponding working mode according to the detection result. Specifically, when the baseband processing module and the power module are both faulty, the control baseband processing board is switched to the first working mode. When the baseband processing board is faulty and the power module is not faulty, the control baseband processing board is switched to the second working mode. If the baseband processing board and the power module are both normal, then the mode operates according to the prior art.
  • the above baseband processing board may further include: a first switch and a second switch.
  • the first switch is configured to connect the optical module to the first through path or the baseband processing module;
  • the second switch is configured to connect the optical module to the power module or the second through path;
  • One end of the first switch is connected to the backboard, and one end of the second straight path that is not connected to the second switch is connected to the backboard.
  • FIG. 4 is a schematic structural diagram of a structure of a BBU according to the present invention.
  • the BBU includes a main control transmission clock board, a back board, and two or more baseband processing boards, and each baseband processing board specifically includes a baseband processing module, a power module, and a light.
  • the module is different from the prior art in that at least one baseband processing board further includes a switch 1, a switch 2, a through path 1 and a through path 2.
  • each baseband processing board includes a switch 1 and a switch. 2. Straight-through path 1 and straight-through path 2.
  • the switch 1 and the switch 2 can be single-pole double-throw switches, and the switch 1 is responsible for switching the baseband processing module/straight-through path 1 and the optical module connection, that is, for connecting the optical module to the straight-through path 1 or the baseband processing module, and the switch 2 is responsible for the power module. / Switching of the direct path 2 to the optical module connection, that is, for connecting the optical module to the power module or the through path 2.
  • the two switches have a total of four switch states. In theory, the four switch states can correspond to four different working states of the baseband processing board, that is, the baseband processing module and the power module both fail, the baseband processing module fails, but the power module does not.
  • the baseband processing module does not fail but the power module fails, and the baseband processing module and power module are normal.
  • the power supply required for the baseband processing module is provided by the power module, if the power module fails, it will inevitably The baseband processing module is faulty. Therefore, the baseband processing module does not fail but the power module fails.
  • This working state does not actually exist, that is, there are actually only three different working states: the baseband processing module and the power module both occur. The fault, the baseband processing module has failed but the power module has not failed, and the baseband processing module and power module are normal.
  • Both the straight-through path 1 and the straight-through path 2 are composed of a plurality of transmission lines.
  • the straight-through path 1 can transmit baseband data between the backplane and the switch 1.
  • the straight-through path 2 can be The power supply required for the operation of the optical module is transmitted between the backplane and the switch 2.
  • the master transmission clock board can periodically detect the working state of each baseband processing board X (using the baseband processing board X to represent any one of the baseband processing boards), and control the baseband processing board X according to different detection modes according to different working modes. working.
  • the control baseband processing board X operates according to the first working mode.
  • the switch 1 is connected to the through path 1
  • the switch 2 is connected to the through path 2, and a normal working baseband processing is performed.
  • the board allocates some of its own baseband processing resources to the RRU corresponding to the baseband processing board X through the backplane, the through path 1, the switch 1, and the optical module.
  • the optical module obtains the power required for the work from the backplane through the switch 2 and the through path 2.
  • the baseband processing module and the power module are both in bypass.
  • the baseband processing board for allocating part of its baseband processing resources to the RRU corresponding to the baseband processing board X may be a baseband processing board randomly selected from each of the normally working baseband processing boards for the main control transmission clock board, or The baseband processing board with the lowest service load selected from the normal working baseband processing boards can be selected as the main control transmission clock board. Of course, the selection can also be performed in other manners, which is not limited in the present invention.
  • the baseband processing resources of each baseband processing board can usually be divided into multiple parts, so that when the baseband processing board
  • the selected baseband processing board can divide its own baseband processing resources, such as dividing the 20MHz carrier into two 10MHz carriers, one assigned to its corresponding RRU, and the other one assigned to The baseband processing board X corresponds to the RRU.
  • the power required for the operation of the optical module can be provided by the power module in the main control transmission clock board (as shown in FIG. 4, the main control transmission clock board is composed of the main control transmission clock module and the power module), or The power module in the working baseband processing board is provided.
  • the baseband processing board that supplies power to the baseband processing board X and the baseband processing board that supplies the baseband processing resources may be the same baseband processing board or different baseband processing boards.
  • the backplane includes a data exchange and control bus and a power bus.
  • the selected normal working baseband processing board passes some of its baseband processing resources through the data exchange and control bus in the backplane.
  • the straight path 1, the switch 1 and the optical module are allocated to the RRU corresponding to the baseband processing board X, and the optical module in the baseband processing board X obtains the power required for the work from the backplane through the power bus, the straight path 2 and the switch 2 in the backplane. .
  • FIG. 5 is a schematic diagram of a star connection relationship between the power module and the through path 2 in the present invention.
  • each baseband processing board is connected to the through path 2 in the other baseband processing board through a certain transmission line in the power bus, since there is a switch 2 between the through path 2 and the optical module, only After the power module fault switch 2 is connected to the straight-through path 2, the optical module may be powered by the power modules in the other baseband processing boards.
  • the baseband processing modules in each baseband processing board also need to form a star connection relationship with the through path 1 in other baseband processing boards.
  • the control baseband processing board X operates according to the second mode of operation.
  • the switch 1 is connected to the through path 1
  • the switch 2 is connected to the power module, and a normal working baseband
  • the processing board passes some of its own baseband processing resources through the backplane and straight
  • the pass path 1, the switch 1 and the optical module are assigned to the RRU corresponding to the baseband processing board X.
  • the baseband processing module is in the bypass state.
  • the power module in the baseband processing board X Since the power module in the baseband processing board X has not failed, the power required for the operation of the optical module is still provided by the power module.
  • the control baseband processing board X operates according to the third working mode. At this time, the switch 1 is connected to the baseband processing module, and the switch 2 is connected to the power module.
  • both the through path 1 and the straight path 2 are disconnected, and the baseband processing module and its corresponding RRU are jointly responsible for the processing of a cell.
  • the main control transmission clock board periodically detects the working state of the baseband processing board X, and the specific value of the period can be determined according to actual needs. If the current detection result is the same as the previous detection result, The original working mode of the baseband processing board X is maintained unchanged. If it is different, the working mode of the baseband processing board X is switched to the corresponding working mode.
  • the baseband processing board X will work according to the second working mode, N is a positive integer; after a certain period of time, the N+ is performed. 1 test, if the test result is the same as the Nth test result, the baseband processing board X will continue to work according to the second working mode. If it is different, if the baseband processing module and the power module fail, the baseband Processing board X will instead work in accordance with the first mode of operation.
  • FIG. 6 is a flow chart of an embodiment of a method for processing a fault of a baseband processing board according to the present invention. The method is based on the BBU implementation shown in Figure 4, as shown in Figure 6, including the following steps:
  • Step 61 The baseband processing board X switches its own working mode according to the obtained working mode switching instruction, where the working mode includes a first working mode and a second working mode. If the mode is switched to the first working mode, step 62 is performed. Switching to the second working mode, step 63 is performed.
  • Step 62 Work in the following manner: obtain the baseband processing resources and power required for the work through the backplane, and provide the obtained baseband processing resources to the corresponding RRU through the first through path and the optical module, and pass the second through path The obtained power is supplied to the optical module.
  • the power required for the operation of the optical module may be provided by a power module in the master transmission clock board, or may be provided by a power module in a normal working baseband processing board.
  • the baseband processing resources obtained by the baseband processing board X can be provided by a normal working baseband processing board, which can be any normal working baseband processing board, or a service load in each normal working baseband processing board. The lowest one.
  • the failed module can be powered down to avoid unnecessary waste of power consumption.
  • Step 63 Work in the following manner: Obtain the baseband processing resources required for the work through the backplane, and provide the obtained baseband processing resources to the corresponding RRU through the first through path and the optical module, and use the power module of the power module as the optical module. Power is supplied.
  • the implementation of the solution of the present invention can significantly reduce the implementation cost.
  • the solution of the present invention is simple and convenient to implement, and is easy to popularize and popularize.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Theoretical Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Quality & Reliability (AREA)
  • Optical Communication System (AREA)

Abstract

本发明公开了一种基带处理单元、一种基带处理板和一种基带处理板的故障处理方法,为基带处理板中的基带处理模块和电源模块分别引入一个直通路径,当基带处理模块发生故障时,将基带处理模块直接旁路,并将一正常工作的基带处理板的部分基带处理资源通过背板和直通路径分配给发生故障的基带处理板对应的RRU;当基带处理模块和电源模块均发生故障时,将基带处理模块和电源模块均直接旁路,将一正常工作的基带处理板的部分基带处理资源通过背板和直通路径分配给发生故障的基带处理板对应的RRU,同时,通过背板和另一直通路径为光模块提供工作所需的供电。应用本发明所述方案,能够降低实现成本。

Description

基带处理单元、 基带处理板和基带处理板的故障处理方法 本申请要求于 2011 年 7 月 11 日提交中国专利局、 申请号为 201110193243. 8 , 发明名称为 "基带处理单元、基带处理板和基带处理板的故 障处理方法"的中国专利申请的优先权,其全部内容通过引用结合在本申请中。 技术领域
本发明涉及无线通信技术,特别涉及一种基带处理单元、一种基带处理板, 以及一种基带处理板的故障处理方法。 背景技术
目前的第三代移动通信 ( 3 G , 3rd-Generation ) 系统和长期演进( LTE , Long Term Evolution ) 系统中的基站均釆用分布式基站架构, 即将整个基站分 为基带处理单元(BBU, Building Base band Unit )和射频拉远单元(RRU, Radio Remote Unit )两部分。 BBU主要用于完成基带处理、 主控、 传输和时钟 等功能, RRU主要用于完成数字基带信号和射频信号间的相互转换等功能, BBU和 RRU之间的接口为光纤接口。
图 1为现有典型的三扇区配置的 BBU的组成结构示意图。 如图 1所示, 包括: 主控传输时钟板、 基带处理板和背板。 其中, 主控传输时钟板可简称为 主控板, 主要负责主控、 传输和时钟功能, 通常, BBU控制面的处理都在主 控传输时钟板中进行, 主控传输时钟板为整个 BBU的神经中枢, 不仅控制着 其它单板的运行, 而且为其它单板提供时钟信号和传输接口等; 基带处理板可 简称为基带板, 主要负责 BBU用户面处理, 包括层 1和层 2的处理, 在 LTE 系统中, 通常一个基带处理板负责一个带宽为 20MHz的扇区的用户面处理; 背板是安装在 BBU机框背面的印制板, 可使得各单板相互连接, 单板间的信 号传输以及电源的供给等均由背板上的印制线来实现,从而避免了各单板间的 电缆缠结 , 使得整个系统具有^^高的可靠性和易维护性。
在实际应用中, 每个基带处理板和其对应的 RRU共同负责一个小区的相 关处理,任意一个基带处理板发生故障均会导致其负责的小区发生故障, 直至 整个小区退服, 进而导致整个小区中的用户均无法正常通信。
为解决上述问题, 现有技术中提出, 可在 BBU中额外增设一个备份基带 处理板, 并将该备份基带处理板与所有 RRU相连, 图 2为现有备份基带处理 板的设置方式示意图,一旦任何一个基带处理板发生故障, 即以备份基带处理 板来代替该发生故障的基带处理板。
但是, 上述方式在实际应用中会存在一定的问题, 即由于需要额外增设一 个备份基带处理板, 并需要相应地增设一倍的光纤接口, 因此实现成本较高。 发明内容
有鉴于此, 本发明的主要目的在于提供一种基带处理单元, 能够降低实现 成本。
本发明的另一目的在于提供一种基带处理板, 能够降低实现成本。
本发明的又一目的在于提供一种基带处理板的故障处理方法,能够降低实 现成本。
为达到上述目的, 本发明的技术方案是这样实现的:
一种基带处理单元, 包括: 背板和两个以上基带处理板, 每个基带处理板 中包括: 基带处理模块、 电源模块和光模块; 至少一个基带处理板中进一步包 括: 与基带处理模块并联的第一直通路径和与电源模块并联的第二直通路径; 当包括第一直通路径和第二直通路径的第一基带处理板中的基带处理模 块和电源模块均发生故障时,第一基带处理板按照第一工作模式进行工作,即: 通过背板获得工作所需的基带处理资源和供电,并通过第一直通路径和光模块 将获得的基带处理资源提供给对应的射频拉远单元-, 通过第二直通路径将获 得的供电提供给光模块;
当第一基带处理板中的基带处理模块发生故障但电源模块未发生故障时, 第一基带处理板按照第二工作模式进行工作, 即: 通过背板获得工作所需的基 带处理资源,并通过第一直通路径和光模块将获得的基带处理资源提供给对应 的射频拉远单元, 通过自身的电源模块为光模块供电。
一种基带处理板, 包括:基带处理模块、 电源模块和光模块; 进一步包括: 与基带处理模块并联的第一直通路径和与电源模块并联的第二直通路径;
当基带处理模块和电源模块均发生故障时,基带处理板按照第一工作模式 进行工作, 即: 通过所在基带处理单元中的背板获得工作所需的基带处理资源 和供电,并通过第一直通路径和光模块将获得的基带处理资源提供给对应的射 频拉远单元, 通过第二直通路径将获得的供电提供给光模块;
当基带处理模块发生故障但电源模块未发生故障时,基带处理板按照第二 工作模式进行工作, 即: 通过背板获得工作所需的基带处理资源, 并通过第一 直通路径和光模块将获得的基带处理资源提供给对应的射频拉远单元,通过自 身的电源模块为光模块供电。
一种基于上述基带处理单元的基带处理板的故障处理方法, 包括: 所述第一基带处理板根据获取到的工作模式切换指令切换自身的工作模 式, 所述工作模式包括第一工作模式和第二工作模式;
如果切换到第一工作模式, 则按照以下方式进行工作: 通过背板获得工作 所需的基带处理资源和供电,并通过第一直通路径和光模块将获得的基带处理 资源提供给对应的射频拉远单元,通过第二直通路径将获得的供电提供给光模 块;
如果切换到第二工作模式, 则按照以下方式进行工作: 通过背板获得工作 所需的基带处理资源,并通过第一直通路径和光模块将获得的基带处理资源提 供给对应的射频拉远单元, 通过自身的电源模块为光模块供电。
可见, 釆用本发明所述方案, 通过在基带处理板中增加直通路径, 即可确 保当基带处理板发生故障时, 其对应的小区中的用户能够正常通信, 与现有方 式相比, 可明显降低实现成本; 另外, 本发明所述方案实现起来简单方便, 便 于普及和推广。 附图说明 图 1为现有典型的三扇区配置的 BBU的组成结构示意图。
图 2为现有备份基带处理板的设置方式示意图。
图 3为现有基带处理板的组成结构示意图。
图 4为本发明所述 BBU的组成结构示意图。
图 5为本发明中的电源模块和直通路径 2之间的星型连接关系示意图。 图 6为本发明基带处理板的故障处理方法实施例的流程图。 具体实施方式
针对现有技术中存在的问题, 本发明中提出一种改进后的 BBU、 一种基 带处理板以及一种基带处理板的故障处理方法。
图 3为现有基带处理板的组成结构示意图。 如图 3所示, 包括: 基带处理 模块、 电源模块和光模块。 其中, 基带处理模块主要负责层 1和层 2的处理; 电源模块主要负责将从背板上接收到的供电(直流供电)转换为基带处理模块 及光模块工作所需的供电 (直流供电), 并提供给基带处理模块和光模块; 光 模块主要负责电信号和光信号之间的相互转换。
与基带处理模块和电源模块相比, 光模块的可靠性要高得多, 也就是说, 光模块发生故障的概率要远小于基带处理模块和电源模块发生故障的概率,因 此, 本发明中提出, 为基带处理模块和电源模块分别引入一个直通路径, 即与 基带处理模块并联的第一直通路径以及与电源模块并联的第二直通路径。
这样, 当基带处理模块和电源模块均发生故障时,基带处理板可按照第一 工作模式进行工作, 即: 通过背板获得工作所需的基带处理资源和供电, 并通 过第一直通路径和光模块将获得的基带处理资源提供给对应的 RRU, 通过第 二直通路径将获得的供电提供给光模块;当基带处理模块发生故障但电源模块 未发生故障时, 按照第二工作模式进行工作, 即: 通过背板获得工作所需的基 带处理资源,并通过第一直通路径和光模块将获得的基带处理资源提供给对应 的 RRU, 通过自身的电源模块为光模块供电。
上述基带处理板可在自身所在 BBU中的主控传输时钟板的控制下进行工 作模式的切换。 比如, 主控传输时钟板周期性地检测基带处理板的工作状态, 即检测基带处理板的基带处理模块和电源模块是否出现了故障,并根据检测结 果控制基带处理板工作在相应的工作模式。具体的, 当基带处理模块和电源模 块均故障时, 控制基带处理板切换为第一工作模式, 当基带处理板故障, 电源 模块未故障时,控制基带处理板切换为第二工作模式。若基带处理板和电源模 块均正常, 则按照现有技术中的模式工作。
在实际应用中 ,上述基带处理板中还可进一步包括:第一开关和第二开关。 其中, 第一开关, 用于将光模块与第一直通路径或基带处理模块相连; 第二开 关, 用于将光模块与电源模块或第二直通路径相连; 第一直通路径中不与第一 开关相连的一端与背板相连,第二直通路径中不与第二开关相连的一端与背板 相连。 当基带处理板按照第一工作模式进行工作时, 第一开关与第一直通路径 相连, 第二开关与第二直通路径相连; 当基带处理板按照第二工作模式进行工 作时, 第一开关与第一直通路径相连, 第二开关与电源模块相连。
需要说明的是, 上述开关设置方式仅为举例说明, 并不用于限制本发明的 技术方案,如果釆用其它的设置方式,只要能够达到同样的目的,也是可以的。
为使本发明的技术方案更加清楚、 明白, 以下参照附图并举实施例, 对本 发明所述方案作进一步地详细说明。
图 4为本发明所述 BBU的组成结构示意图。 如图 4所示, 与现有技术中 相同的是, 该 BBU中包括主控传输时钟板、 背板和两个以上基带处理板, 每 个基带处理板中具体包括基带处理模块、 电源模块和光模块, 与现有技术中不 同的是, 至少一个基带处理板中进一步包括开关 1、 开关 2、 直通路径 1和直 通路径 2, 本实施例中假设每个基带处理板中均包括开关 1、 开关 2、 直通路 径 1和直通路径 2。
开关 1和开关 2可为单刀双掷开关,开关 1负责基带处理模块 /直通路径 1 与光模块连接的切换, 即用于将光模块与直通路径 1或基带处理模块相连, 开 关 2负责电源模块 /直通路径 2与光模块连接的切换, 即用于将光模块与电源 模块或直通路径 2相连。 2个开关共计 4个开关状态, 理论上, 4个开关状态可对应基带处理板的 4种不同的工作状态, 即: 基带处理模块和电源模块均发生故障、 基带处理模 块发生故障但电源模块未发生故障、基带处理模块未发生故障但电源模块发生 故障, 以及基带处理模块和电源模块均正常; 但由于基带处理模块工作所需的 供电是由电源模块提供的,如果电源模块发生故障, 必然将导致基带处理模块 发生故障, 因此,基带处理模块未发生故障但电源模块发生故障这种工作状态 实际上是不存在的, 即实际上只有 3种不同的工作状态: 基带处理模块和电源 模块均发生故障、基带处理模块发生故障但电源模块未发生故障, 以及基带处 理模块和电源模块均正常。
直通路径 1和直通路径 2均由若干根传输线组成,当基带处理模块发生故 障时, 直通路径 1可在背板和开关 1之间传输基带数据, 当电源模块发生故障 时, 直通路径 2可在背板和开关 2之间传输光模块工作所需的供电。
主控传输时钟板可周期性地检测每个基带处理板 X (用基带处理板 X来 表示任意一个基带处理板)的工作状态, 并根据检测结果的不同控制基带处理 板 X按照不同的工作模式进行工作。
1 )第一工作模式
如果基带处理模块和电源模块均发生故障, 则控制基带处理板 X按照第 一工作模式进行工作, 此时, 开关 1与直通路径 1相连, 开关 2与直通路径 2 相连,一正常工作的基带处理板将自身的部分基带处理资源通过背板、 直通路 径 1、 开关 1和光模块分配给基带处理板 X对应的 RRU, 光模块通过开关 2 和直通路径 2从背板中获取工作所需的供电。
这种模式下, 基带处理模块和电源模块均处于旁路状态。
所述将自身的部分基带处理资源分配给基带处理板 X对应的 RRU的基带 处理板可为主控传输时钟板从各正常工作的基带处理板中随机选择出的一个 基带处理板, 或者, 也可为主控传输时钟板从各正常工作的基带处理板中选择 出的业务负荷最低的一个基带处理板, 当然, 也可按照其它方式进行选择, 本 发明中不作限制。 每个基带处理板的基带处理资源通常均可分为多份, 这样, 当基带处理板
X中的基带处理模块发生故障时,所选择的基带处理板可将自身的基带处理资 源进行划分, 如将 20MHz载波划分为 2个 10MHz载波, 一个分配给自身对 应的 RRU, 另一份分配给基带处理板 X对应的 RRU。
另外, 光模块工作所需的供电可由主控传输时钟板中的电源模块(如图 4 所示, 主控传输时钟板由主控传输时钟模块和电源模块组成)提供, 或者, 也 可由一正常工作的基带处理板中的电源模块提供。 为基带处理板 X提供供电 的基带处理板和提供基带处理资源的基带处理板可为同一个基带处理板,也可 为不同的基带处理板。
如图 4所示, 背板中包括数据交换及控制总线和电源总线, 具体来说, 所 选择的正常工作的基带处理板将自身的部分基带处理资源通过背板中的数据 交换及控制总线、 直通路径 1、 开关 1和光模块分配给基带处理板 X对应的 RRU,基带处理板 X中的光模块通过背板中的电源总线、直通路径 2和开关 2 从背板中获取工作所需的供电。
为实现本发明所述方案,每个基带处理板中的电源模块均需要和其它基带 处理板中的直通路径 2之间构成星型连接关系,每个基带处理板中的直通路径 2和其它基带处理板中的电源模块之间也需要构成星型连接关系,如图 5所示, 图 5为本发明中的电源模块和直通路径 2之间的星型连接关系示意图。虽然每 个基带处理板中的电源模块均与其它基带处理板中的直通路径 2 通过电源总 线中的某根传输线连接在一起, 但由于直通路径 2和光模块之间存在开关 2, 因此, 只有当电源模块故障开关 2连接到直通路径 2后, 光模块才可能由其它 基带处理板中的电源模块进行供电。 同样,每个基带处理板中的基带处理模块 也均需要和其它基带处理板中的直通路径 1之间构成星型连接关系。
2 )第二工作模式
如果基带处理模块发生故障但电源模块未发生故障,则控制基带处理板 X 按照第二工作模式进行工作, 此时, 开关 1与直通路径 1相连, 开关 2与电源 模块相连, 一正常工作的基带处理板将自身的部分基带处理资源通过背板、直 通路径 1、 开关 1和光模块分配给基带处理板 X对应的 RRU。
这种模式下, 基带处理模块处于旁路状态。
由于基带处理板 X 中的电源模块未发生故障, 因此光模块工作所需的供 电仍由该电源模块提供。
3 )第三工作模式
如果基带处理模块和电源模块均正常, 则控制基带处理板 X按照第三工 作模式进行工作,此时,开关 1与基带处理模块相连,开关 2与电源模块相连。
这种模式下, 直通路径 1和直通路径 2均断开, 基带处理模块与其对应的 RRU共同负责一个小区的相关处理。
本发明中, 主控传输时钟板周期性地对基带处理板 X 的工作状态进行检 测, 所述周期的具体取值可根据实际需要而定,如果本次检测结果与上一次检 测结果相同, 则维持基带处理板 X原来的工作模式不变, 如果不同, 则将基 带处理板 X的工作模式切换为相应的工作模式。
举例说明: 假设第 N次检测结果为基带处理模块发生故障但电源模块未 发生故障, 那么基带处理板 X将按照第二工作模式进行工作, N为正整数; 经过一定时长后, 进行第 N+1次检测, 如果本次检测结果与第 N次检测结果 相同, 则基带处理板 X将继续按照第二工作模式进行工作, 如果不同, 如变 为了基带处理模块和电源模块均发生故障, 那么基带处理板 X将改为按照第 一工作模式进行工作。
主控传输时钟板如何控制基带处理板 X按照相应的工作模式进行工作为 本领 i或技术人员公知。
基于上述介绍, 图 6 为本发明基带处理板的故障处理方法实施例的流程 图。 该方法基于图 4所示 BBU实现, 如图 6所示, 包括以下步骤:
步骤 61: 基带处理板 X根据获取到的工作模式切换指令切换自身的工作 模式, 所述工作模式包括第一工作模式和第二工作模式; 如果切换到第一工作 模式, 则执行步骤 62, 如果切换到第二工作模式, 则执行步骤 63。
所述指令可为主控传输时钟板发送来的。 步骤 62: 按照以下方式进行工作: 通过背板获得工作所需的基带处理资 源和供电,并通过第一直通路径和光模块将获得的基带处理资源提供给对应的 RRU, 通过第二直通路径将获得的供电提供给光模块。
其中, 光模块工作所需的供电可由主控传输时钟板中的电源模块提供, 或 者, 也可由正常工作的基带处理板中的电源模块提供。
另外, 基带处理板 X获得的基带处理资源可由正常工作的基带处理板提 供, 该正常工作的基带处理板可为任意一个正常工作的基带处理板, 或者为各 正常工作的基带处理板中业务负荷最低的一个。
再有, 在实际应用中, 可对发生故障的模块进行下电操作, 以避免不必要 的功耗浪费。
步骤 63: 按照以下方式进行工作: 通过背板获得工作所需的基带处理资 源, 并通过第一直通路径和光模块将获得的基带处理资源提供给对应的 RRU, 通过自身的电源模块为光模块进行供电。
图 6所示方法的具体工作流程请参照图 4 中所示装置实施例中的相应说 明, 此处不再赘述。
总之, 釆用本发明所述方案, 可明显降低实现成本, 另外, 本发明所述方 案实现起来简单方便, 便于普及和推广。
以上所述仅为本发明的较佳实施例而已, 并不用以限制本发明, 凡在本发 明的精神和原则之内, 所做的任何修改、 等同替换、 改进等, 均应包含在本发 明保护的范围之内。

Claims

权 利 要 求
1、 一种基带处理单元, 包括: 背板和两个以上基带处理板, 每个基带处 理板中包括: 基带处理模块、 电源模块和光模块; 其特征在于, 至少一个基带 处理板中进一步包括:与基带处理模块并联的第一直通路径和与电源模块并联 的第二直通路径;
当包括第一直通路径和第二直通路径的第一基带处理板中的基带处理模 块和电源模块均发生故障时,第一基带处理板按照第一工作模式进行工作,即: 通过背板获得工作所需的基带处理资源和供电,并通过第一直通路径和光模块 将获得的基带处理资源提供给对应的射频拉远单元,通过第二直通路径将获得 的供电提供给光模块;
当第一基带处理板中的基带处理模块发生故障但电源模块未发生故障时, 第一基带处理板按照第二工作模式进行工作, 即: 通过背板获得工作所需的基 带处理资源,并通过第一直通路径和光模块将获得的基带处理资源提供给对应 的射频拉远单元, 通过自身的电源模块为光模块供电。
2、 根据权利要求 1所述的基带处理单元, 其特征在于, 所述基带处理单 元中进一步包括:
主控传输时钟板, 用于检测第一基带处理板的工作状态, 并根据检测结果 控制第一基带处理板工作在相应的工作模式。
3、 根据权利要求 1所述的基带处理单元, 其特征在于, 所述第一基带处 理板中进一步包括: 第一开关和第二开关;
第一开关, 用于将光模块与第一直通路径或基带处理模块相连;
第二开关, 用于将光模块与电源模块或第二直通路径相连;
第一直通路径中不与第一开关相连的一端与背板相连,第二直通路径中不 与第二开关相连的一端与背板相连;
当第一基带处理板按照第一工作模式进行工作时,第一开关与第一直通路 径相连, 第二开关与第二直通路径相连; 当第一基带处理板按照第二工作模式 进行工作时, 第一开关与第一直通路径相连, 第二开关与电源模块相连。
4、 根据权利要求 2所述的基带处理单元, 其特征在于, 所述第一基带处 理板获得的供电由主控传输时钟板中的电源模块提供, 或者, 由正常工作的基 带处理板中的电源模块提供。
5、 根据权利要求 1、 2或 3所述的基带处理单元, 其特征在于, 所述第一 基带处理板获得的基带处理资源由正常工作的基带处理板提供。
6、 一种基带处理板, 包括: 基带处理模块、 电源模块和光模块; 其特征 在于, 进一步包括: 与基带处理模块并联的第一直通路径和与电源模块并联的 第二直通路径;
当基带处理模块和电源模块均发生故障时,基带处理板按照第一工作模式 进行工作, 即: 通过所在基带处理单元中的背板获得工作所需的基带处理资源 和供电,并通过第一直通路径和光模块将获得的基带处理资源提供给对应的射 频拉远单元, 通过第二直通路径将获得的供电提供给光模块;
当基带处理模块发生故障但电源模块未发生故障时,基带处理板按照第二 工作模式进行工作, 即: 通过背板获得工作所需的基带处理资源, 并通过第一 直通路径和光模块将获得的基带处理资源提供给对应的射频拉远单元,通过自 身的电源模块为光模块供电。
7、 根据权利要求 6所述的基带处理板, 其特征在于, 所述基带处理板中 进一步包括: 第一开关和第二开关;
第一开关, 用于将光模块与第一直通路径或基带处理模块相连;
第二开关, 用于将光模块与电源模块或第二直通路径相连;
第一直通路径中不与第一开关相连的一端与背板相连,第二直通路径中不 与第二开关相连的一端与背板相连;
当基带处理板按照第一工作模式进行工作时,第一开关与第一直通路径相 连, 第二开关与第二直通路径相连; 当基带处理板按照第二工作模式进行工作 时, 第一开关与第一直通路径相连, 第二开关与电源模块相连。
8、一种基于权利要求 1所述基带处理单元的基带处理板的故障处理方法, 其特征在于, 包括: 所述第一基带处理板根据获取到的工作模式切换指令切换自身的工作模 式, 所述工作模式包括第一工作模式和第二工作模式;
如果切换到第一工作模式, 则按照以下方式进行工作: 通过背板获得工作 所需的基带处理资源和供电,并通过第一直通路径和光模块将获得的基带处理 资源提供给对应的射频拉远单元,通过第二直通路径将获得的供电提供给光模 块;
如果切换到第二工作模式, 则按照以下方式进行工作: 通过背板获得工作 所需的基带处理资源,并通过第一直通路径和光模块将获得的基带处理资源提 供给对应的射频拉远单元, 通过自身的电源模块为光模块供电。
9、 根据权利要求 8所述的方法, 其特征在于, 所述获取到的工作模式切 换指令为所在基带处理单元中的主控传输时钟板发送来的。
10、 根据权利要求 8所述的方法, 其特征在于, 所述第一基带处理板获得 的供电由所在基带处理单元中的主控传输时钟板中的电源模块提供, 或者, 由 所在基带处理单元中正常工作的基带处理板中的电源模块提供。
11、 根据权利要求 8所述的方法, 其特征在于, 所述第一基带处理板获得 的基带处理资源由所在基带处理单元中正常工作的基带处理板提供。
12、 根据权利要求 11所述的方法, 其特征在于, 所述正常工作的基带处 理板为: 任意一个正常工作的基带处理板, 或者, 各正常工作的基带处理板中 业务负荷最低的一个。
PCT/CN2012/078219 2011-07-11 2012-07-05 基带处理单元、基带处理板和基带处理板的故障处理方法 WO2013007161A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US14/128,141 US9281997B2 (en) 2011-07-11 2012-07-05 Building baseband unit, baseband processing panel, and failure processing method for baseband processing panel
EP12811814.8A EP2733978B1 (en) 2011-07-11 2012-07-05 Building baseband unit, baseband processing panel, and failure processing method for baseband processing panel

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201110193243.8A CN102883355B (zh) 2011-07-11 2011-07-11 基带处理单元、基带处理板和基带处理板的故障处理方法
CN201110193243.8 2011-07-11

Publications (1)

Publication Number Publication Date
WO2013007161A1 true WO2013007161A1 (zh) 2013-01-17

Family

ID=47484456

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2012/078219 WO2013007161A1 (zh) 2011-07-11 2012-07-05 基带处理单元、基带处理板和基带处理板的故障处理方法

Country Status (4)

Country Link
US (1) US9281997B2 (zh)
EP (1) EP2733978B1 (zh)
CN (1) CN102883355B (zh)
WO (1) WO2013007161A1 (zh)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102075744B1 (ko) * 2014-01-09 2020-02-10 삼성전자주식회사 무선 통신 시스템에서 기지국 이중화를 위한 장치 및 방법
US9510211B2 (en) * 2014-07-15 2016-11-29 Alcatel Lucent Multi-board architecture for wireless transceiver station
CN204090161U (zh) * 2014-09-17 2015-01-07 华为技术有限公司 一种基带处理单元
CN109565902B (zh) 2016-11-29 2022-02-11 华为技术有限公司 一种掉电处理、获取连接关系的方法及设备
CN106656336B (zh) * 2016-12-31 2019-06-25 南京泰通科技股份有限公司 Lte基站基带处理板主备信号处理方法
US10070432B1 (en) 2017-03-02 2018-09-04 Micron Technology, Inc. Wireless devices and systems including examples of configuration modes for baseband units and remote radio heads
US10716110B2 (en) * 2017-03-02 2020-07-14 Micron Technology, Inc. Wireless devices and systems including examples of configuration modes for baseband units and remote radio heads
CN107484264B (zh) * 2017-09-18 2021-09-24 武汉虹信科技发展有限责任公司 一种便携式多频无线通信基站
CN109618332A (zh) * 2018-12-24 2019-04-12 南京泰泓信息科技有限公司 基于分布式基站系统bbu设备故障的自动恢复方法
CN111628652A (zh) * 2019-02-28 2020-09-04 中兴通讯股份有限公司 一种电信设备及单板电源保护方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101159933A (zh) * 2005-05-19 2008-04-09 华为技术有限公司 分体式基站系统及其组网方法和基带单元
CN101426303A (zh) * 2008-10-27 2009-05-06 华为技术有限公司 通信系统、设备和方法
CN101951622A (zh) * 2010-09-16 2011-01-19 新邮通信设备有限公司 一种射频拉远单元断电告警处理方法和系统

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7206355B2 (en) * 2002-12-02 2007-04-17 Nortel Networks Limited Digitally convertible radio
DE60301850T2 (de) * 2003-02-14 2006-06-29 Evolium S.A.S. Mobilfunkbasisstation und Basisbandverarbeitungsteil
CN1291618C (zh) * 2004-05-13 2006-12-20 大唐移动通信设备有限公司 一种基站设备结构及备份方法
JP5029068B2 (ja) 2007-03-01 2012-09-19 富士通株式会社 無線基地局
US8045926B2 (en) * 2008-10-15 2011-10-25 Nokia Siemens Networks Oy Multi-transceiver architecture for advanced Tx antenna monitoring and calibration in MIMO and smart antenna communication systems
CN101772059B (zh) 2008-12-30 2012-07-25 中兴通讯股份有限公司 长期演进系统中基站小区自愈的实现方法和系统
US9264914B2 (en) * 2009-11-30 2016-02-16 Mediatek Inc. Methods for monitoring paging messages with reduced power consumption and communications apparatuses utilizing the same
CN101860802A (zh) * 2010-05-21 2010-10-13 中兴通讯股份有限公司 故障处理方法及系统

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101159933A (zh) * 2005-05-19 2008-04-09 华为技术有限公司 分体式基站系统及其组网方法和基带单元
CN101426303A (zh) * 2008-10-27 2009-05-06 华为技术有限公司 通信系统、设备和方法
CN101951622A (zh) * 2010-09-16 2011-01-19 新邮通信设备有限公司 一种射频拉远单元断电告警处理方法和系统

Also Published As

Publication number Publication date
US9281997B2 (en) 2016-03-08
EP2733978A4 (en) 2015-08-19
EP2733978A1 (en) 2014-05-21
CN102883355A (zh) 2013-01-16
US20140126353A1 (en) 2014-05-08
EP2733978B1 (en) 2018-05-09
CN102883355B (zh) 2014-12-10

Similar Documents

Publication Publication Date Title
WO2013007161A1 (zh) 基带处理单元、基带处理板和基带处理板的故障处理方法
CN102045892B (zh) 一种基带池设备及其实现基带数据分布式交换的方法
CA2555460C (en) Distributed base station system and method for networking thereof and base band unit
CN101277484B (zh) 分体式基站系统及其组网方法和基带单元
CN101188818B (zh) 基站、基站中基带信号处理方法及无线通信系统
WO2013075284A1 (zh) 一种lte基带资源池的实现方法及装置
CN107277858B (zh) 一种基于sdn的多信道传输的5g网络及传输数据的方法
CN102264161B (zh) 基站、基站中基带信号处理方法及无线通信系统
CN105992344A (zh) 一种基带池共享方法、装置及分布式基站系统
WO2012097630A1 (zh) 环网配置方法和装置
WO2006066449A1 (fr) Procede de sauvegarde n+m de module de traitement de bande de base sur la base d'une commutation et dispositif associe
CN113498621B (zh) 多ue设备的故障恢复
CN103379527A (zh) 基于共享基带池的系统和方法
KR20210007788A (ko) Gnb 재할당을 통한 고가용성 서비스 제공 방법 및 이를 위한 장치
WO2012109955A1 (zh) 载频互助方法、基站及无线通信系统
CN103024783A (zh) 基带资源热备份系统及方法
WO2021010632A1 (ko) Gnb 재할당을 통한 고가용성 서비스 제공 방법 및 이를 위한 장치
WO2011157162A2 (zh) 一种保护倒换方法及装置
WO2017012595A1 (zh) 一种大容量基带处理装置
JP2012147193A (ja) 基地局システム
CN105812158B (zh) 一种跨背板的数据处理方法及装置
CN117278966A (zh) 基于lte-m的车载集群通信主机设备、系统及方法
WO2024145036A1 (en) In service upgrade of radio access network distributed unit of a cellular network
JP2015231102A (ja) 光無線アクセスシステム及び省電力化方法
KR20030052778A (ko) 이동통신시스템의 트랜시버 리던던시 전환장치 및 방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12811814

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2012811814

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 14128141

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE