WO2013005875A1 - Coordination control system and method for a micro-grid energy storage device - Google Patents

Coordination control system and method for a micro-grid energy storage device Download PDF

Info

Publication number
WO2013005875A1
WO2013005875A1 PCT/KR2011/004915 KR2011004915W WO2013005875A1 WO 2013005875 A1 WO2013005875 A1 WO 2013005875A1 KR 2011004915 W KR2011004915 W KR 2011004915W WO 2013005875 A1 WO2013005875 A1 WO 2013005875A1
Authority
WO
WIPO (PCT)
Prior art keywords
energy storage
storage device
output
load
value
Prior art date
Application number
PCT/KR2011/004915
Other languages
French (fr)
Korean (ko)
Inventor
이학주
채우규
박중성
원동준
강기혁
Original Assignee
한국전력공사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 한국전력공사 filed Critical 한국전력공사
Publication of WO2013005875A1 publication Critical patent/WO2013005875A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/28Arrangements for balancing of the load in a network by storage of energy
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/38Arrangements for parallely feeding a single network by two or more generators, converters or transformers
    • H02J3/381Dispersed generators
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J2300/00Systems for supplying or distributing electric power characterised by decentralized, dispersed, or local generation
    • H02J2300/10The dispersed energy generation being of fossil origin, e.g. diesel generators
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P80/00Climate change mitigation technologies for sector-wide applications
    • Y02P80/10Efficient use of energy, e.g. using compressed air or pressurized fluid as energy carrier
    • Y02P80/14District level solutions, i.e. local energy networks

Definitions

  • the present invention relates to a cooperative control system and method of the energy storage device for microgrids (THE COORDINATED CONTROL SYSTEM AND METHOD OF ENERGY STORAGE DEVICE FOR MICROGRID), and more particularly, to SOC in a microgrid system capable of centralized control and local control.
  • the present invention relates to a cooperative control system and method for an energy storage device for a microgrid that performs cooperative control between an energy storage device having characteristics and an energy storage device having no SOC characteristics.
  • a microgrid system is a small power supply system near a demand, which can supply power and heat simultaneously.
  • the microgrid system separates from the power system when an accident or failure occurs in the power system, and performs an independent operation of controlling the power supply to the load from a plurality of distributed power sources constituting the microgrid.
  • the microgrid system controls the output of the distributed power supply in a central control method to maintain the balance of power supply and supply by satisfying the load variation in the load through various types of control. That is, the microgrid central control method monitors distributed power supply and load and collects related information such as voltage and frequency from the central control unit.
  • the central control unit uses the collected information to send the output value instructions of the distributed power supply and energy storage device back to the distributed power supply and energy storage device.
  • the central control method of the microgrid system transmits information such as voltage and frequency from the distributed power supply and the load to the central control device through communication, so it is difficult to deteriorate the electrical quality and maintain the power supply and demand balance due to communication delay. There is this.
  • the local control method of the microgrid system is capable of autonomous operation of the microgrid by using voltage and frequency information, but should be composed of a distributed power supply having high dynamic characteristics.
  • the distributed power supply having high dynamic characteristics has a limitation in the amount of charge and discharge of energy, and thus there is a problem that long-term operation is possible only by using a plurality of distributed power supplies.
  • an object of the present invention is to provide a cooperative control system and method of an energy storage device for a microgrid, which controls an output amount of an energy storage device having no SOC characteristic to stabilize the output of the microgrid.
  • Another object of the present invention is to determine the internal load variation of the microgrid as a short period load and a long period load by using a low pass filter, so that the SOC of the energy storage device having an SOC through cooperative control between energy storage devices in the microgrid.
  • the present invention provides a cooperative control system and method for an energy storage device for a microgrid to quickly recover a set value.
  • the cooperative control system for an energy storage device for a microgrid has no SOC characteristics based on current output values and SOC values received from a plurality of distributed power supplies and energy storage devices.
  • a central controller for setting an output value command for controlling the output of the energy storage device;
  • a first energy storage device for transmitting the current output value and the SOC value to the central control device, and controlling the output by droop control;
  • a second energy storage device for transmitting the current output value to the central controller and controlling the output based on the output value command received from the central controller.
  • the central controller includes: a load calculation unit configured to calculate a load of the microgrid system by summing a plurality of distributed power supplies and current output values received from the first energy storage device and the second energy storage device; A load amount classifying unit classifying the load amount calculated by the load amount calculating unit into a long period load amount and a short period load amount; And a control unit for setting the output value command based on the long period load amount classified by the load amount classification unit and the SOC value from the first energy storage device, and transmitting the output value command to the second energy storage device.
  • the load classifier includes a low pass filter.
  • the load amount classifying unit classifies the long period load amount if the load amount calculated by the load calculating unit passes the low pass filter.
  • the control unit sets the value calculated by summing the SOC value received from the first energy storage device and the long period load amount classified by the load amount classification unit as the output value command of the second energy storage device.
  • the first energy storage device includes a battery having SOC characteristics
  • the second energy storage device includes a fuel cell without SOC characteristics.
  • the first energy storage device controls the output through local control by droop control.
  • the first energy storage device includes a reference value setting unit for setting an output reference value of the first energy storage device based on the load amount from the central controller;
  • a control mode setting unit configured to set a control mode of the first energy storage device by comparing the load amount with an output reference value when the load amount calculated by the central controller is a short period load amount;
  • an output control unit controlling an output of the first energy storage device according to the control mode set by the control mode setting unit.
  • the reference value setting section sets the output setting value including the excess load amount and the underload amount.
  • the control mode setting unit sets the charge control mode when the load amount is less than the excess load amount, sets the current control mode when the load amount is less than the excess load amount or less than the underload amount, and sets the discharge control mode when the load amount exceeds the underload amount.
  • the output control unit controls the first energy storage device to charge at the maximum output when the charging mode is set in the control mode setting unit, and the load fluctuation amount excluding the amount of power preset in the power system when the tidal current control mode is set in the control mode setting unit.
  • the first energy storage device is controlled to output power for the control, and when the control mode setting unit is set to the discharge control mode, the first energy storage device is controlled to discharge at the maximum output.
  • the second energy storage device includes a control mode setting unit for setting a control mode of the second energy storage device based on an output value command and a load setting value received from the central control device; And an output control unit controlling an output of the second energy storage device according to the control mode set by the control mode setting unit.
  • the control mode setting unit sets the UPC first mode. If the output value command is greater than or equal to the first load setting value and less than or equal to the second load setting value, the control mode setting unit is set to the tidal current control mode. If the second load setting value is exceeded, set the UPC to the second mode.
  • the first load set value is the sum of the minimum output value of the second energy storage device and the power system inflow power amount
  • the second load set value is the sum of the maximum output value of the second energy storage device and the power system inflow power amount.
  • the output control unit controls the second energy storage device to output power at the minimum output when the control mode setting unit is set to the UPC first mode, and sets the preset power in the power system when the control mode setting unit is set to the tidal current control mode. Outputs and controls the power of the load to subtract the power output from the power system from the load, and outputs the power at the maximum output when the control mode setting unit is set to the UPC second mode. Control storage.
  • the output control unit controls the output of the second energy storage device to be zero when the UPC mode is set and is less than the minimum output of the output value command second energy storage device, and the output control unit is set to the UPC mode and set to the output value command second energy storage device. If the minimum output is greater than the first load set value, the second energy storage device is controlled to output at the minimum output.
  • a cooperative control method of an energy storage device for a microgrid receives a current output value and an SOC value from a plurality of distributed power supplies, a first energy storage device, and a second energy storage device.
  • the load of the microgrid system is calculated by summing a plurality of distributed power supplies and current output values received from the first energy storage device and the second energy storage device.
  • the calculated load passes the low pass filter, it is classified as the long period load.
  • a value calculated by summing the SOC value received from the first energy storage device and the classified long period load amount is set as the output value command of the second energy storage device.
  • the control unit sets the UPC first mode, and if the output value command is more than the first load setting value and less than the second load setting value, the flow control Mode, and if the output value command exceeds the second load setting value, the mode is set to UPC second mode.
  • the first load set value is the sum of the minimum output value of the second energy storage device and the power system inflow power amount
  • the second load set value is the sum of the maximum output value of the second energy storage device and the power system inflow power amount.
  • the second energy storage device when the UPC is set to the first mode, the second energy storage device is controlled to output power at the minimum output, and when the tidal current control mode is set, the preset power is output from the power system. And outputs the power of the load subtracted from the power output from the power system in the second energy storage device, and controls the second energy storage device to output power at the maximum output when the UPC is set to the second mode.
  • the output of the second energy storage device In the controlling of the output of the second energy storage device, if the output mode is set to the UPC mode and is less than the minimum value of the output value command second energy storage device, the output of the second energy storage device is controlled to be 0 and set to the UPC mode. When the output value command is greater than or equal to the minimum output of the second energy storage device and less than the first load set value, the second energy storage device is controlled to output at the minimum output power.
  • the controlling of the output of the first energy storage device may include: setting an output reference value of the first energy storage device based on the calculated load amount; Setting the control mode of the first energy storage device by comparing the load amount with the calculated output reference value when the calculated load amount is a short period load amount; And PI controlling the output of the first energy storage device according to the control mode.
  • an output set value including an excess load amount and an underload amount is set.
  • the charging control mode is set; if the load amount is less than the excess load amount or less than the load amount, the flow rate control mode is set; Set to discharge control mode.
  • the first energy storage device when the charging control mode is set, the first energy storage device is controlled to charge at the maximum output, and when the tidal current control mode is set, the load fluctuation amount excluding the predetermined power amount is set in the power system.
  • the first energy storage device is controlled to output power for the control, and when the discharge control mode is set, the first energy storage device is controlled to discharge at maximum output.
  • Receiving the current output value and SOC value Receiving the current output value from a plurality of distributed power supply step Receiving the current output value and SOC value from the first energy storage device having a SOC characteristic; And receiving a current output value from a second energy storage device having no SOC characteristic.
  • the cooperative control system and method of the energy storage device for the microgrid divides the load variation of the microgrid into a long period load and a short period load so that the long period load does not have an SOC and a slow dynamic energy storage device (ie, a fuel cell). ), And the short-cycle load is in charge of the energy storage device (that is, the battery) with SOC, and mutually performs cooperative control to maintain the power supply balance of the microgrid, and system power flows into the microgrid. It is effective to keep it constant.
  • the cooperative control system and method of the energy storage device for the microgrid is responsible for supplying power to the load by the energy storage device fully responsible for the load fluctuations inside the microgrid regardless of the time.
  • the power system is responsible for the load, and the battery is switched to the unit control mode that produces a constant output to balance the power supply and supply, thereby effectively operating the microgrid.
  • FIG. 1 is a view for explaining the configuration of a microgrid cooperative control system for explaining an embodiment of the present invention.
  • FIG. 2 is a view for explaining the configuration of the first energy storage device of FIG.
  • FIG. 3 is a view for explaining the configuration of the second energy storage device of FIG.
  • FIG. 4 is a view for explaining the configuration of the central control device of FIG.
  • FIG. 5 is a flowchart illustrating a cooperative control method of an energy storage device for a microgrid according to an embodiment of the present invention.
  • FIG. 6 is a flowchart for describing a step of controlling a second energy storage device having no SOC characteristic of FIG. 5.
  • FIG. 7 is a flowchart for describing a step of controlling a first energy storage device having SOC characteristics of FIG. 5.
  • FIG. 8 is a view for explaining an operation mode of a second energy storage device having no SOC characteristic.
  • 9 to 11 are views for explaining the operation mode of the first energy storage device having SOC characteristics.
  • the present invention relates to a cooperative control system and method for performing cooperative control between distributed power supplies in a microgrid system capable of centralized control and local control by a central controller.
  • the cooperative control system of the energy storage device for the microgrid performs cooperative control between the energy storage devices in the microgrid system capable of central control by the local control and the central control device.
  • the load variation of the microgrid is divided into a long period component and a short period component. Therefore, the cooperative control system of the energy storage device for microgrid has the dynamic characteristics of the energy storage device having the SOC characteristic, so that it can handle the load fluctuation of the short period component, and the energy storage device such as the fuel cell without the SOC characteristic has the slow dynamic characteristics. Since the output can be produced regardless of time, it controls to handle the load variation of long period component.
  • the central control apparatus receives the output amount and SOC of each distributed power supply and calculates the microgrid internal load amount. Then, the microgrid internal load variation is extracted as the short period and long period variation by the low pass filter.
  • a low pass filter is used to classify the load variation into short and long period components. In other words, if the amount that the distributed power supply must pass passes through the low pass filter, it is regarded as a long period component and other components are regarded as short period components.
  • the additional output is added to the long period load variation so that the received SOC value remains within the acceptable range (10 to 100%). If the SOC is 100%, the output of the fuel cell is instructed so that the battery can no longer be charged by reducing the load fluctuation of the long period.If the SOC is 10%, the battery no longer discharges by increasing the load fluctuation of the long period. Command the output of the fuel cell to prevent it.
  • the control device of each distributed power supply switches to an appropriate control mode of UPC and FFC in consideration of the load amount and output capacity of the distributed power supply, thereby stabilizing the output of the microgrid.
  • the controller of the energy storage device without SOC whose output is commanded by calculating the long-term load and the load for SOC management is converted to the appropriate control mode of UPC and FFC in consideration of the output capacity and output through PI control.
  • the energy storage device with SOC capable of local control through droop control is converted to the appropriate control mode of UPC and FFC by considering the output amount and output capacity by droop control without command of the central controller, and the output is controlled through PI control. To control.
  • the energy storage device with SOC has fast output dynamic characteristics, so it can react quickly to load fluctuations without command of the central controller, thereby maintaining power supply balance and improving power quality. Therefore, the present invention is expected to be applied to improve the power quality of the micro grid and maintain the power supply and demand balance when the spread of the micro grid is expanded in the future.
  • Batteries which are energy storage devices with SOC, are installed above the fuel cells, and output control is performed through regional control through droop control.
  • the microgrid is separated from the grid by droop control and the power from the grid becomes “0”, the frequency changes.
  • the battery output is increased by the set droop coefficient to maintain the power supply balance of the microgrid.
  • the fuel cell which is an energy storage device without SOC, receives the output of the battery and the fuel cell from the central controller by a central control method. In addition, the fuel cell compares the SOC and SOC set values in order to keep the SOC of the battery constant and adds this value to the fuel cell input through the PI controller.
  • the load is estimated using the output of the energy storage device, and the command value is transmitted to the energy storage device having no SOC characteristics and slow dynamic characteristics, and the energy storage device having fast SOC characteristics but high dynamic characteristics has a load variation and dynamic characteristics. It is a way to balance power by dealing with the difference in output value of a slow energy storage device. This can reduce the capacity of energy storage devices that have fast dynamic characteristics like SOC and have SOC characteristics, and help the SOC management of energy storage devices with SOC characteristics as long-term components are handled by energy storage devices such as fuel cells without SOC characteristics. It has the advantage of maintaining the output balance regardless of time.
  • FIG. 1 is a view for explaining the configuration of a microgrid cooperative control system for explaining an embodiment of the present invention.
  • 2 is a view for explaining the configuration of the first energy storage device of FIG. 1
  • FIG. 3 is a view for explaining the configuration of the second energy storage device of FIG. 1, FIG. It is a figure for demonstrating a structure.
  • the energy storage device is collectively referred to as a device for storing and outputting chemical energy, electrical energy, and the like, if necessary, and is not limited to general energy storage devices.
  • the cooperative control system of the microgrid energy storage device includes a plurality of distributed power sources 100, a first energy storage device 200, a second energy storage device 300, and a central control device 400. It is configured to include).
  • the plurality of distributed power source 100, the first energy storage device 200 and the second energy storage device 300 is a load (through the power line 700 connected to the distribution transformer 500 and the stationary switch 600) 800, and transmits and receives data to and from the central controller 400 through the network 900.
  • the distributed power source 100 is composed of a micro turbine, a fuel cell, a diesel generator, and the like, and is connected to a load 800 through an AC power line 700 connected to a distribution transformer 500 and a stationary switch 600.
  • the distributed power supply 100 transmits the current output value to the central control unit 400 through the network 900.
  • the first energy storage device 200 transmits the current output value and the SOC value to the central controller 400, and outputs power to the load 800 by droop control.
  • the first energy storage device 200 includes a battery 280 having SOC characteristics.
  • the first energy storage device 200 includes a reference value setting unit, a control mode setting unit 240, and an output control unit 260.
  • the first energy storage device 200 may be configured to include a communication unit (not shown) for transmitting and receiving data with the central control unit 400.
  • the reference value setting unit sets the output reference value of the first energy storage device 200 based on the load amount from the central controller 400.
  • the reference value setting section sets the output setting value including the excess load amount and the underload amount.
  • the control mode setting unit 240 sets the control mode of the first energy storage device 200 by comparing the load amount and the output reference value when the load amount calculated by the central controller 400 is a short period load amount.
  • the control mode setting unit 240 is set to the charge control mode if the load is less than the excess load amount, and set to the tidal current control mode if the load amount is less than the excess load amount or less than the underload load, and to the discharge control mode if the load amount exceeds the underload load. Set it.
  • the output controller 260 controls the output of the first energy storage device 200 according to the control mode set by the control mode setting unit 240.
  • the output control unit 260 controls the first energy storage device 200 to charge at the maximum output when the control mode setting unit 240 is set to the charging control mode, and the current control mode in the control mode setting unit 240
  • the maximum output when the control mode setting unit 240 is set to the discharge control mode The first energy storage device 200 is controlled to discharge.
  • the second energy storage device 300 transmits the current output value to the central control unit 400 and controls the output based on the output value command received from the central control unit 400.
  • the second energy storage device 300 includes a fuel cell 360 having no SOC characteristic.
  • the second energy storage device 300 includes a control mode setting unit 320 and an output control unit 340.
  • the second energy storage device 300 may be configured to include a communication unit (not shown) for data transmission and reception with the central control unit 400.
  • the control mode setting unit 320 sets the control mode of the second energy storage device 300 based on the output value command and the load 800 setting value received from the central controller 400.
  • the control mode setting unit 320 sets the UPC first mode if the output value command is less than the first load 800 setting value, and the output value command is greater than or equal to the first load 800 setting value and the second load 800. If it is less than the set value, it is set to the tidal current control mode, and if the output value command exceeds the set value of the second load 800, it is set to the UPC second mode.
  • control mode setting unit 320 sets a value obtained by adding the minimum output value of the second energy storage device 300 and the amount of power input into the power system as the first load 800 setting value, and the second energy storage device 300.
  • the control mode of the second energy storage device 300 is set based on the sum of the maximum output value and the amount of power supplied to the power system as the second load 800.
  • the output controller 340 controls the output of the second energy storage device 300 according to the control mode set by the control mode setting unit 320.
  • the control mode setting unit 320 is set to the UPC first mode
  • the output control unit 340 controls the second energy storage device 300 to output power at the minimum output, and in the control mode setting unit 320.
  • the current control mode is set, the power is output from the power system and the power of the load 800 subtracted from the power output from the power system is output from the second energy storage device 300, and the control mode is set.
  • the unit 320 is set to the second UPC mode, the second energy storage device 300 is controlled to output power at the maximum output.
  • the central controller 400 sets an output value command for controlling the output of the energy storage device having no SOC characteristic based on the current output value and the SOC value received from the energy storage devices.
  • the central control unit 400 includes a communication unit 420, a load amount calculation unit 440, a load amount classification unit 460, and a control unit 480.
  • the communication unit 420 transmits and receives data to and from a plurality of distributed power sources 100 and energy storage devices (ie, the first energy storage device 200 and the second energy storage device 300).
  • the load calculator 440 calculates the load of the microgrid system by summing the current output values received from the plurality of distributed power supplies 100, the first energy storage device 200, and the second energy storage device 300.
  • the load amount classification unit 460 classifies the load amount calculated by the load amount calculation unit 440 into a long period load amount and a short period load amount.
  • the load amount classifying unit 460 is configured as a low pass filter, and if the load calculated by the load calculating unit 440 passes the low pass filter, it is classified as a long period load amount. If the load calculated by the load calculator 440 does not pass the low pass filter, it is classified as a short period load.
  • the cutoff frequency of the low pass filter is set differently according to the energy storage device having a slow dynamic characteristic.
  • the controller 480 sets an output value command based on the long period load amount classified by the load amount classifying unit 460 and the SOC value from the first energy storage device 200, and sends the output value command to the second energy storage device 300. Control to transmit.
  • the control unit 480 is a second energy storage device is calculated by summing the SOC value received from the first energy storage device 200 through the communication unit 420 and the long period load amount classified by the load amount classification unit 460. (300) is set to the output value command.
  • FIG. 5 is a flowchart illustrating a cooperative control method of an energy storage device for a microgrid according to an embodiment of the present invention.
  • FIG. 6 is a flowchart illustrating a step of controlling a second energy storage device having no SOC characteristic of FIG. 5
  • FIG. 7 is a flowchart illustrating a step of controlling a first energy storage device having SOC characteristic of FIG. 5. to be.
  • the central control unit 400 receives a current output value and SOC value from the plurality of distributed power supplies 100, the first energy storage device 200, and the second energy storage device 300 through the network 900 ( S100).
  • the central control unit 400 receives current output values from the plurality of distributed power supplies 100, receives the current output values and SOC values from the first energy storage device 200 having SOC characteristics, and has no SOC characteristics.
  • 2 receives the current output value from the energy storage device (300).
  • the central control unit 400 calculates the load of the microgrid system by using the received current output value and SOC value (S200). At this time, the central control unit 400 calculates the load of the microgrid system by summing the current output values received from the plurality of distributed power supplies 100, the first energy storage device 200 and the second energy storage device 300. .
  • the central control unit 400 classifies the load amount calculated using the low pass filter into a long period load amount and a short period load amount (S300). At this time, the central control unit 400 classifies the long period load when the calculated load passes the low pass filter. If the calculated load does not pass the low pass filter, the central controller 400 classifies it as a short period load.
  • the central controller 400 sets an output value command of the second energy storage device 300 based on the long-term load amount and the SOC value from the first energy storage device 200 (S510). At this time, the central control unit 400 sets the value calculated by summing the SOC value received from the first energy storage device 200 and the classified long period load amount as an output value command of the second energy storage device 300. The central control unit 400 transmits the set output value command to the second energy storage device 300.
  • the second energy storage device 300 sets the tidal flow control mode (S522).
  • the set value of the first load 800 is the sum of the minimum output value of the second energy storage device 300 and the amount of power supplied to the power system
  • the set value of the second load 800 is the second energy storage device 300. Is the sum of the maximum output value
  • the predetermined power is output from the power system, and the second energy storage device 300 outputs power for the load amount by subtracting the power output from the power system from the load amount (S524). Accordingly, the power supply and demand balance of the microgrid is maintained in the second energy storage device 300 having no SOC characteristic.
  • the second energy storage device 300 sets the UPC first mode (S542). As set to the UPC first mode, the second energy storage device 300 outputs power at the minimum output, and the system power outputs power for the remaining load 800 (S544). As a result, the power supply balance of the microgrid is maintained in the grid power.
  • the second energy storage device 300 sets the UPC second mode (S562). As set to the second mode UPC, the second energy storage device 300 outputs power at maximum output, and outputs power for the remaining load 800 in the power system (S564). As a result, the power supply balance of the microgrid is maintained in the grid power.
  • An output reference value of the first energy storage device 200 is set based on the calculated load amount (S610).
  • the first energy storage device 200 sets an output set value including an excess load amount and an insufficient load amount. That is, the first energy storage device 200 sets the control mode of the first energy storage device 200 by comparing the load amount with a set output reference value (that is, excess load and underload) when the calculated load is a short period load. do.
  • the first energy storage device 200 controls the output by PI control of the output of the first energy storage device 200 according to the control mode set.
  • the first energy storage device 200 is set to the tidal flow control mode (622).
  • the power system When set to the tidal flow control mode, the power system outputs a predetermined power, and the first energy storage device 200 outputs power for the remaining amount of load 800 except for the output of the power system from the load amount (S624).
  • the first energy storage device 200 is set to the charge control mode (S642).
  • the charging control mode When the charging control mode is set, the first energy storage device 200 maintains the maximum output charging and outputs power for the remaining load 800 in the power system (S644).
  • the first energy storage device 200 is set to the discharge control mode (S662). When set to the discharge control mode, the first energy storage device 200 maintains the maximum output discharge, and outputs the power to the remaining load 800 in the power system (S664).
  • FIG. 8 is a diagram for describing an operation mode of the second energy storage device 300 having no SOC characteristic.
  • 9 to 11 are diagrams for describing an operation mode of the first energy storage device 200 having SOC characteristics.
  • the second energy storage device 300 (eg, the fuel cell 360) having no SOC characteristic is illustrated in detail.
  • the second energy storage device 300 having no SOC characteristic for example, the fuel cell 360 or the distributed power supply 100
  • the first load 800 setting value and the second load 800 setting value which are reference values for setting the control mode of the second energy storage device 300, are calculated using Equations 1 and 2 below. do.
  • the second energy storage device 300 compares the first load 800 reference value, the second load 800 reference value, and the output value command to set the control mode of the second energy storage device 300 as follows, and the control mode. To output power.
  • the second energy storage device 300 when the load amount Pload or the output value command is less than the first load 800 set value Pload_p1, the second energy storage device 300 operates in the UPC first mode. Accordingly, the second energy storage device 300 (fuel cell 360) constantly outputs the minimum output and the remaining load 800 outputs the system power. At this time, when the load amount Pload is less than the minimum output Pdg_min, the second energy storage device 300 is turned off, and the output becomes 0, and power is supplied from the power system.
  • the second energy storage device 300 operates in the tidal current control mode. Accordingly, the power supply is constantly supplied from the power system by a predetermined amount (ie, contract power), and the power of the remaining load 800 is in charge of the second energy storage device 300.
  • a predetermined amount ie, contract power
  • the second energy storage device 300 When the load 800 of the second energy storage device 300 having no SOC characteristic exceeds the capacity of the second energy storage device 300 (that is, the second load 800 is greater than or equal to the set value Pload_P2). In the case), the second energy storage device 300 outputs the maximum output and receives constant power from the associated power system. In this case, the power supply of the remaining load 800 is set to the UPC second mode that is in charge in the associated power system.
  • FIG. 9 is a detailed diagram of the operation mode when the power system is connected to the first energy storage device 200 (that is, the battery 280) having SOC characteristics in consideration of the load 800 and capacity.
  • Pdg -Pdg_max (charge) when -Pload_p1 ⁇ -Pload
  • the energy storage device having the SOC does not have a limit of the minimum output power Pdg_min, but there are restrictions on the maximum power power Pdg_max and the SOC. do.
  • the (+) load 800 is the underload amount (+ Pload_p2) that the first energy storage device 200 having the SOC should discharge and be in charge of
  • the ( ⁇ ) load 800 is the zero load having the SOC. 1 is the surplus load amount (-Pload_p1) that the energy storage device 200 should charge and take charge of.
  • the power supply for the load 800 variation is the first energy storage device 200 having an SOC.
  • the second energy storage device 300 having the SOC charges or discharges the surplus power or the insufficient power. That is, when the load amount Pload exceeds the underload amount + Pload_p2, when the load 800 is large, the second energy storage device 300 having the SOC discharges at the maximum output power (+ Pdg_max) and the remaining load 800 Sets to the discharge control (UPC_dis) mode that receives power from the power system.
  • the load 800 is small, or the output of renewable energy is left, and the surplus power exceeds the charging capacity of the distributed power supply 100 (battery 280) having the SOC (that is, the load amount (-Pload) is the excess load amount. If (-Pload_p1) is exceeded, the first energy storage device 200 having the SOC charges to the maximum output power (dg_max) and the power supply of the remaining load 800 is supplied from the associated power system. Mode).
  • FIG. 10 is a graph of a control operation mode when the first energy storage device 200 having an SOC is connected to a power system, and illustrates a control change according to an output set value Pgrid_FFC of the power system.
  • the output set value is positively supplied with (+)
  • the load_p1 value of the second and third graphs of the graphs 2 and 3 are moved to load_p1 ⁇ , thereby changing the conversion point of the UPC mode.
  • -Pload_p1, -Pdg_max grid_FFC and if -Pload_p1 ⁇ , -Pdg_max + Pgrid_FFC.
  • the SOC has the SOC.
  • the first energy storage device 200 is charged to the maximum output (dg_max), the power supply of the remaining load 800 change is supplied from the associated power system.
  • the insufficient power that the first energy storage device 200 having the SOC should be in charge is the same as the first and fourth quadrants of FIG. 8.
  • FIG. 11 illustrates a case in which Pgrid_FFC constantly receives (-) power, and the + Pload_p2 value of the first and fourth quadrants of FIG. 9 is moved to + Pload_p2 ⁇ , thereby changing the conversion point of the UPC mode.
  • Discharge control (UPC_dis) mode in the case of + Pdg_max ⁇ + Pload in which the insufficient power that the first energy storage device 200 having the SOC has to handle is greater than the capacity of the first energy storage device 200 having the SOC.
  • the first energy storage device 200 having the SOC is discharged at the maximum output + Pdg_max, and the remaining load 800 variation is supplied from an associated power system. At this time, the surplus power that the first energy storage device 200 having the SOC should be in charge is the same as the second and third quadrants of FIG. 9.
  • the SOC management of the present invention maintains the SOC of the first energy storage device 200 having the SOC without the SOC by using the proportional-integral controller, FIG. 10. It is maintained at the arrow point at. In this step, first, the first energy storage device 200 having the SOC is charged or discharged by droop control with respect to the instantaneous load 800 change. Then, when the SOC of the first energy storage device 200 exceeds the limit range, the second energy storage device 300 without SOC adds or subtracts the output for SOC management.
  • the cooperative control system and method of the energy storage device for the microgrid divides the amount of variation of the microgrid load 800 into the long period load 800 and the short period load 800 so that the long period load 800 is an SOC.
  • Energy storage device ie, fuel cell 360
  • the short cycle load 800 is responsible for energy storage device (ie, battery 280) with SOC.
  • the energy storage device is solely responsible for the variation of the load 800 inside the microgrid regardless of time to supply power to the load 800 and vice versa
  • the load 800 variation is taken care of by the power system, and the battery 280 switches to a unit control mode that produces a constant output to maintain the power supply balance, thereby maintaining the microgrid. It is effective to operate stably.

Abstract

The present invention relates to a coordination control system and method for a micro-grid energy storage device for controlling an output amount of an energy storage device having no SOC characteristics according to a current output of an energy storage device having SOC characteristics on the basis of a load amount (or an output amount) calculated using current outputs of energy storage devices in a central control device in order to stabilize an output of a micro-grid. The suggested coordination control system of a micro-grid energy storage device includes: a central control device for setting an output value command to control an output of an energy storage device having no SOC characteristics on the basis of a current output value and an SOC value received from a plurality of distributed power supplies and energy storage devices; a first energy storage device for transmitting a current output value and an SOC value to the central control device and controlling an output of a droop control; and a second energy storage device for transmitting a current output value to the central control device and controlling an output on the basis of an output value command received from the central control device.

Description

마이크로그리드용 에너지 저장장치의 협조제어 시스템 및 방법Cooperative control system and method of energy storage device for microgrid
본 발명은 마이크로그리드용 에너지 저장장치의 협조제어 시스템 및 방법(THE COORDINATED CONTROL SYSTEM AND METHOD OF ENERGY STORAGE DEVICE FOR MICROGRID)에 관한 것으로, 더욱 상세하게는 중앙 집중제어와 지역제어가 가능한 마이크로그리드 시스템에서 SOC 특성이 있는 에너지 저장장치와 SOC 특성이 없는 에너지 저장장치 상호 간의 협조제어를 수행하는 마이크로그리드용 에너지 저장장치의 협조제어 시스템 및 방법에 대한 것이다.The present invention relates to a cooperative control system and method of the energy storage device for microgrids (THE COORDINATED CONTROL SYSTEM AND METHOD OF ENERGY STORAGE DEVICE FOR MICROGRID), and more particularly, to SOC in a microgrid system capable of centralized control and local control. The present invention relates to a cooperative control system and method for an energy storage device for a microgrid that performs cooperative control between an energy storage device having characteristics and an energy storage device having no SOC characteristics.
발명은 2011년 7월 5일 출원된 한국특허출원 제 10-2011-0066233호의 출원일의 이익을 주장하며, 그 내용 전부는 본 명세서에 포함된다.The invention claims the benefit of the filing date of Korean Patent Application No. 10-2011-0066233 filed on July 5, 2011, the entire contents of which are incorporated herein.
일반적으로 마이크로그리드 시스템은 수요지 인근의 소규모 전력공급 시스템으로 전력과 열을 동시에 공급할 수 있는 시스템이다. 이때, 마이크로그리드 시스템은 전력계통에서 사고나 고장이 발생하게 되면 전력계통과 분리하고, 마이크로그리드를 구성하는 다수의 분산전원에서 부하로 전력을 공급하도록 제어하는 독립운전을 수행한다. 이때, 마이크로그리드 시스템은 다양한 형태의 제어를 통해 부하에서의 부하변동량을 충족시켜 전력수급의 균형을 유지하는 중앙제어방식으로 분산전원의 출력을 제어한다. 즉, 마이크로그리드의 중앙제어방식은 분산전원 및 부하를 모니터링하여 전압, 주파수 등의 관련 정보를 중앙제어장치에서 수집한다. 중앙제어장치는 수집한 정보를 이용하여 분산전원 및 에너지 저장장치의 출력값 지령을 다시 분산전원 및 에너지 저장장치에 전송한다.In general, a microgrid system is a small power supply system near a demand, which can supply power and heat simultaneously. At this time, the microgrid system separates from the power system when an accident or failure occurs in the power system, and performs an independent operation of controlling the power supply to the load from a plurality of distributed power sources constituting the microgrid. At this time, the microgrid system controls the output of the distributed power supply in a central control method to maintain the balance of power supply and supply by satisfying the load variation in the load through various types of control. That is, the microgrid central control method monitors distributed power supply and load and collects related information such as voltage and frequency from the central control unit. The central control unit uses the collected information to send the output value instructions of the distributed power supply and energy storage device back to the distributed power supply and energy storage device.
하지만, 마이크로그리드 시스템의 중앙제어방식은 분산전원 및 부하에서 전압, 주파수 등의 정보를 통신을 통하여 중앙제어장치로 전송하기 때문에, 통신지연에 따라 전기품질의 악화와 전력수급 밸런스의 유지가 어려운 문제점이 있다.However, the central control method of the microgrid system transmits information such as voltage and frequency from the distributed power supply and the load to the central control device through communication, so it is difficult to deteriorate the electrical quality and maintain the power supply and demand balance due to communication delay. There is this.
또한, 마이크로그리드 시스템의 지역제어 방식은 전압과 주파수 정보를 이용하여 마이크로그리드의 자율적 운전이 가능하지만 동특성이 빠른 분산전원으로 구성해야 한다. 하지만, 동특성이 빠른 분산전원은 에너지의 충전량 및 방전량의 한계가 있어 복수의 분산전원을 이용해야만 장기운전이 가능한 문제점이 있다.In addition, the local control method of the microgrid system is capable of autonomous operation of the microgrid by using voltage and frequency information, but should be composed of a distributed power supply having high dynamic characteristics. However, the distributed power supply having high dynamic characteristics has a limitation in the amount of charge and discharge of energy, and thus there is a problem that long-term operation is possible only by using a plurality of distributed power supplies.
본 발명은 상기한 종래의 문제점을 해결하기 위해 제안된 것으로, 중앙제어장치에서 에너지 저장장치들의 현재 출력을 이용하여 산출한 부하량(또는 출력량)을 근거로 SOC 특성이 있는 에너지 저장장치의 현재 출력에 따라 SOC 특성이 없는 에너지 저장장치의 출력량을 제어하여 마이크로그리드의 출력을 안정화하도록 한 마이크로그리드용 에너지 저장장치의 협조제어 시스템 및 방법을 제공하는 것을 목적으로 한다.The present invention has been proposed to solve the above-described problems, and based on the load amount (or output amount) calculated using the current output of the energy storage devices in the central control unit, the current output of the energy storage device having the SOC characteristic is determined. Accordingly, an object of the present invention is to provide a cooperative control system and method of an energy storage device for a microgrid, which controls an output amount of an energy storage device having no SOC characteristic to stabilize the output of the microgrid.
본 발명의 다른 목적은, 마이크로그리드의 내부 부하 변동량을 저대역통과필터를 이용하여 단주기 부하량 및 장주기 부하량으로 판별하여 마이크로그리드 내의 에너지 저장장치 상호 간 협조제어를 통해 SOC를 가지는 에너지 저장장치의 SOC 설정값을 빠르게 회복하도록 한 마이크로그리드용 에너지 저장장치의 협조제어 시스템 및 방법을 제공함에 있다.Another object of the present invention is to determine the internal load variation of the microgrid as a short period load and a long period load by using a low pass filter, so that the SOC of the energy storage device having an SOC through cooperative control between energy storage devices in the microgrid. The present invention provides a cooperative control system and method for an energy storage device for a microgrid to quickly recover a set value.
상기한 목적을 달성하기 위하여 본 발명의 실시예에 따른 마이크로그리드용 에너지 저장장치의 협조제어 시스템은, 다수의 분산전원 및 에너지 저장장치들로부터 수신한 현재 출력값 및 SOC값을 근거로 SOC 특성이 없는 에너지 저장장치의 출력을 제어하기 위한 출력값 지령을 설정하는 중앙제어장치; 현재 출력값 및 SOC값을 중앙제어장치로 전송하고, 드룹제어에 의해 출력을 제어하는 제1에너지 저장장치; 및 현재 출력값을 중앙제어장치로 전송하고, 중앙제어장치로부터 수신한 출력값 지령을 근거로 출력을 제어하는 제2에너지 저장장치를 포함한다.In order to achieve the above object, the cooperative control system for an energy storage device for a microgrid according to an embodiment of the present invention has no SOC characteristics based on current output values and SOC values received from a plurality of distributed power supplies and energy storage devices. A central controller for setting an output value command for controlling the output of the energy storage device; A first energy storage device for transmitting the current output value and the SOC value to the central control device, and controlling the output by droop control; And a second energy storage device for transmitting the current output value to the central controller and controlling the output based on the output value command received from the central controller.
중앙제어장치는, 다수의 분산전원과 제1에너지 저장장치 및 제2에너지 저장장치로부터 수신한 현재 출력값들을 합산하여 마이크로그리드 시스템의 부하량을 산출하는 부하량 산출부; 부하량 산출부에서 산출한 부하량을 장주기 부하량 및 단주기 부하량으로 분류하는 부하량 분류부; 및 부하량 분류부에서 분류된 장주기 부하량 및 제1에너지 저장장치로부터의 SOC값을 근거로 출력값 지령을 설정하고, 제2에너지 저장장치로 출력값 지령을 전송하도록 제어하는 제어부를 포함한다.The central controller includes: a load calculation unit configured to calculate a load of the microgrid system by summing a plurality of distributed power supplies and current output values received from the first energy storage device and the second energy storage device; A load amount classifying unit classifying the load amount calculated by the load amount calculating unit into a long period load amount and a short period load amount; And a control unit for setting the output value command based on the long period load amount classified by the load amount classification unit and the SOC value from the first energy storage device, and transmitting the output value command to the second energy storage device.
부하량 분류부는 저대역통과필터를 포함한다.The load classifier includes a low pass filter.
부하량 분류부는, 부하량 산출부에서 산출한 부하량이 저대역통과필터를 통과하면 장주기 부하량으로 분류한다.The load amount classifying unit classifies the long period load amount if the load amount calculated by the load calculating unit passes the low pass filter.
제어부는, 제1에너지 저장장치로부터 수신한 SOC값과 부하량 분류부에서 분류된 장주기 부하량을 합산하여 산출한 값을 제2에너지 저장장치의 출력값 지령으로 설정한다.The control unit sets the value calculated by summing the SOC value received from the first energy storage device and the long period load amount classified by the load amount classification unit as the output value command of the second energy storage device.
제1에너지 저장장치는 SOC 특성이 있는 배터리(Battery)를 포함하고, 제2에너지 저장장치는 SOC 특성이 없는 연료전지(Fuel Cell)를 포함한다.The first energy storage device includes a battery having SOC characteristics, and the second energy storage device includes a fuel cell without SOC characteristics.
제1에너지 저장장치는 드룹제어에 의한 지역제어를 통해 출력을 제어한다.The first energy storage device controls the output through local control by droop control.
제1에너지 저장장치는, 중앙제어장치로부터의 부하량을 근거로 제1에너지 저장장치의 출력 기준값을 설정하는 기준값 설정부; 중앙제어장치에서 산출한 부하량이 단주기 부하량이면 부하량과 출력 기준값을 비교하여 제1에너지 저장장치의 제어모드를 설정하는 제어모드 설정부; 및 제어모드 설정부에서 설정된 제어모드에 따라 제1에너지 저장장치의 출력을 제어하는 출력 제어부를 포함한다.The first energy storage device includes a reference value setting unit for setting an output reference value of the first energy storage device based on the load amount from the central controller; A control mode setting unit configured to set a control mode of the first energy storage device by comparing the load amount with an output reference value when the load amount calculated by the central controller is a short period load amount; And an output control unit controlling an output of the first energy storage device according to the control mode set by the control mode setting unit.
기준값 설정부는, 잉여부하량 및 부족 부하량을 포함하는 출력 설정값을 설정한다.The reference value setting section sets the output setting value including the excess load amount and the underload amount.
제어모드 설정부는, 부하량이 잉여 부하량 미만이면 충전 제어모드로 설정하고, 부하량이 잉여 부하량 이상 부족 부하량 이하이면 조류 제어모드로 설정하고, 부하량이 부족 부하량을 초과하면 방전 제어모드로 설정한다.The control mode setting unit sets the charge control mode when the load amount is less than the excess load amount, sets the current control mode when the load amount is less than the excess load amount or less than the underload amount, and sets the discharge control mode when the load amount exceeds the underload amount.
출력 제어부는, 제어모드 설정부에서 충전 제어모드로 설정되면 최대출력으로 충전하도록 제1에너지 저장장치를 제어하고, 제어모드 설정부에서 조류제어모드로 설정되면 전력계통에서 기설정된 전력량을 제외한 부하 변동량에 대한 전력을 출력하도록 제1에너지 저장장치를 제어하고, 제어모드 설정부에서 방전 제어모드로 설정되면 최대출력으로 방전하도록 제1에너지 저장장치를 제어한다. The output control unit controls the first energy storage device to charge at the maximum output when the charging mode is set in the control mode setting unit, and the load fluctuation amount excluding the amount of power preset in the power system when the tidal current control mode is set in the control mode setting unit. The first energy storage device is controlled to output power for the control, and when the control mode setting unit is set to the discharge control mode, the first energy storage device is controlled to discharge at the maximum output.
제2에너지 저장장치는, 중앙제어장치로부터 수신한 출력값 지령 및 부하 설정값을 근거로 제2에너지 저장장치의 제어모드를 설정하는 제어모드 설정부; 및 제어모드 설정부에서 설정된 제어모드에 따라 제2에너지 저장장치의 출력을 제어하는 출력 제어부를 포함한다.The second energy storage device includes a control mode setting unit for setting a control mode of the second energy storage device based on an output value command and a load setting value received from the central control device; And an output control unit controlling an output of the second energy storage device according to the control mode set by the control mode setting unit.
제어모드 설정부는, 출력값 지령이 제1부하 설정값 미만이면 UPC 제1모드로 설정하고, 출력값 지령이 제1부하 설정값 이상이고 제2부하 설정값 이하이면 조류제어모드로 설정하고, 출력값 지령이 제2부하 설정값을 초과하면 UPC 제2모드로 설정한다.If the output value command is less than the first load setting value, the control mode setting unit sets the UPC first mode. If the output value command is greater than or equal to the first load setting value and less than or equal to the second load setting value, the control mode setting unit is set to the tidal current control mode. If the second load setting value is exceeded, set the UPC to the second mode.
제1부하 설정값은 제2에너지 저장장치의 최소출력값과 전력계통 유입 전력량을 합산한 값이고, 제2부하 설정값은 제2에너지 저장장치의 최대출력값과 전력계통 유입 전력량을 합산한 값이다.The first load set value is the sum of the minimum output value of the second energy storage device and the power system inflow power amount, and the second load set value is the sum of the maximum output value of the second energy storage device and the power system inflow power amount.
출력 제어부는, 제어모드 설정부에서 UPC 제1모드로 설정되면 최소출력으로 전력을 출력하도록 제2에너지 저장장치를 제어하고, 제어모드 설정부에서 조류제어모드로 설정되면 기설정된 전력을 전력계통에서 출력하고 부하량에서 전력계통에서 출력된 전력을 차감한 부하의 전력을 제2에너지 저장장치에서 출력하도록 제어하고, 제어모드 설정부에서 UPC 제2모드로 설정되면 최대출력으로 전력을 출력하도록 제2에너지 저장장치를 제어한다.The output control unit controls the second energy storage device to output power at the minimum output when the control mode setting unit is set to the UPC first mode, and sets the preset power in the power system when the control mode setting unit is set to the tidal current control mode. Outputs and controls the power of the load to subtract the power output from the power system from the load, and outputs the power at the maximum output when the control mode setting unit is set to the UPC second mode. Control storage.
출력 제어부는, UPC 제모드로 설정되고 출력값 지령 제2에너지 저장장치의 최소출력 미만이면 제2에너지 저장장치의 출력이 0이 되도록 제어하고, UPC 제모드로 설정되고 출력값 지령 제2에너지 저장장치의 최소출력 이상이고 제1부하 설정값 미만이면 제2에너지 저장장치가 최소출력으로 출력하도록 제어한다.The output control unit controls the output of the second energy storage device to be zero when the UPC mode is set and is less than the minimum output of the output value command second energy storage device, and the output control unit is set to the UPC mode and set to the output value command second energy storage device. If the minimum output is greater than the first load set value, the second energy storage device is controlled to output at the minimum output.
상기한 목적을 달성하기 위하여 본 발명의 실시예에 따른 마이크로그리드용 에너지 저장장치의 협조제어 방법은, 다수의 분산전원과 제1에너지 저장장치 및 제2에너지 저장장치로부터 현재 출력값 및 SOC값을 수신하는 단계; 다수의 분산전원과 제1에너지 저장장치 및 제2에너지 저장장치로부터 수신한 현재 출력값들을 근거로 마이크로그리드 시스템의 부하량을 산출하는 단계; 산출한 부하량을 장주기 부하량 및 단주기 부하량으로 분류하는 단계; 분류된 장주기 부하량 및 제1에너지 저장장치로부터의 SOC값을 근거로 제2에너지 저장장치의 출력값 지령을 설정하는 단계; 및 설정된 출력값 지령을 근거로 제2에너지 저장장치의 출력을 제어하는 단계를 포함한다.In order to achieve the above object, a cooperative control method of an energy storage device for a microgrid according to an embodiment of the present invention receives a current output value and an SOC value from a plurality of distributed power supplies, a first energy storage device, and a second energy storage device. Making; Calculating a load of the microgrid system based on a plurality of distributed power sources and current output values received from the first energy storage device and the second energy storage device; Classifying the calculated load into a long period load and a short period load; Setting an output value command of the second energy storage device based on the classified long period load amount and the SOC value from the first energy storage device; And controlling the output of the second energy storage device based on the set output value command.
부하량을 산출하는 단계에서는, 다수의 분산전원과 제1에너지 저장장치 및 제2에너지 저장장치로부터 수신한 현재 출력값들을 합산하여 마이크로그리드 시스템의 부하량을 산출한다.In the calculating of the load, the load of the microgrid system is calculated by summing a plurality of distributed power supplies and current output values received from the first energy storage device and the second energy storage device.
장주기 부하량 및 단주기 부하량으로 분류하는 단계에서는, 산출한 부하량이 저대역통과필터를 통과하면 장주기 부하량으로 분류한다.In the step of classifying the long period load and the short period load, if the calculated load passes the low pass filter, it is classified as the long period load.
출력값 지령을 설정하는 단계에서는, 제1에너지 저장장치로부터 수신한 SOC값과 분류된 장주기 부하량을 합산하여 산출한 값을 제2에너지 저장장치의 출력값 지령으로 설정한다.In the step of setting the output value command, a value calculated by summing the SOC value received from the first energy storage device and the classified long period load amount is set as the output value command of the second energy storage device.
제2에너지 저장장치의 출력을 제어하는 단계에서는, 출력값 지령이 제1부하 설정값 미만이면 UPC 제1모드로 설정하고, 출력값 지령이 제1부하 설정값 이상이고 제2부하 설정값 이하이면 조류제어모드로 설정하고, 출력값 지령이 제2부하 설정값을 초과하면 UPC 제2모드로 설정한다.In the step of controlling the output of the second energy storage device, if the output value command is less than the first load setting value, the control unit sets the UPC first mode, and if the output value command is more than the first load setting value and less than the second load setting value, the flow control Mode, and if the output value command exceeds the second load setting value, the mode is set to UPC second mode.
제1부하 설정값은 제2에너지 저장장치의 최소출력값과 전력계통 유입 전력량을 합산한 값이고, 제2부하 설정값은 제2에너지 저장장치의 최대출력값과 전력계통 유입 전력량을 합산한 값이다.The first load set value is the sum of the minimum output value of the second energy storage device and the power system inflow power amount, and the second load set value is the sum of the maximum output value of the second energy storage device and the power system inflow power amount.
제2에너지 저장장치의 출력을 제어하는 단계에서는, UPC 제1모드로 설정되면 최소출력으로 전력을 출력하도록 제2에너지 저장장치를 제어하고, 조류제어모드로 설정되면 기설정된 전력을 전력계통에서 출력하고 부하량에서 전력계통에서 출력된 전력을 차감한 부하의 전력을 제2에너지 저장장치에서 출력하도록 제어하고, UPC 제2모드로 설정되면 최대출력으로 전력을 출력하도록 제2에너지 저장장치를 제어한다.In the controlling of the output of the second energy storage device, when the UPC is set to the first mode, the second energy storage device is controlled to output power at the minimum output, and when the tidal current control mode is set, the preset power is output from the power system. And outputs the power of the load subtracted from the power output from the power system in the second energy storage device, and controls the second energy storage device to output power at the maximum output when the UPC is set to the second mode.
제2에너지 저장장치의 출력을 제어하는 단계에서는, UPC 제모드로 설정되고 출력값 지령 제2에너지 저장장치의 최소출력 미만이면 제2에너지 저장장치의 출력이 0이 되도록 제어하고, UPC 제모드로 설정되고 출력값 지령 제2에너지 저장장치의 최소출력 이상이고 제1부하 설정값 미만이면 제2에너지 저장장치가 최소출력으로 출력하도록 제어한다.In the controlling of the output of the second energy storage device, if the output mode is set to the UPC mode and is less than the minimum value of the output value command second energy storage device, the output of the second energy storage device is controlled to be 0 and set to the UPC mode. When the output value command is greater than or equal to the minimum output of the second energy storage device and less than the first load set value, the second energy storage device is controlled to output at the minimum output power.
드룹제어에 의한 지역제어를 통해 제1에너지 저장장치의 출력을 제어하는 단계를 더 포함한다.Controlling the output of the first energy storage device through the local control by the droop control.
제1에너지 저장장치의 출력을 제어하는 단계에서는, 산출한 부하량을 근거로 제1에너지 저장장치의 출력 기준값을 설정하는 단계; 산출한 부하량이 단주기 부하량이면 부하량과 산출한 출력 기준값을 비교하여 제1에너지 저장장치의 제어모드를 설정하는 단계; 및 제어모드에 따라 제1에너지 저장장치의 출력을 PI 제어하는 단계를 포함한다.The controlling of the output of the first energy storage device may include: setting an output reference value of the first energy storage device based on the calculated load amount; Setting the control mode of the first energy storage device by comparing the load amount with the calculated output reference value when the calculated load amount is a short period load amount; And PI controlling the output of the first energy storage device according to the control mode.
출력 기준값을 설정하는 단계에서는, 잉여부하량 및 부족 부하량을 포함하는 출력 설정값을 설정한다.In the step of setting the output reference value, an output set value including an excess load amount and an underload amount is set.
제1에너지 저장장치의 제어모드를 설정하는 단계에서는, 부하량이 잉여 부하량 미만이면 충전 제어모드로 설정하고, 부하량이 잉여 부하량 이상 부족 부하량 이하이면 조류 제어모드로 설정하고, 부하량이 부족 부하량을 초과하면 방전 제어모드로 설정한다.In the step of setting the control mode of the first energy storage device, if the load amount is less than the excess load amount, the charging control mode is set; if the load amount is less than the excess load amount or less than the load amount, the flow rate control mode is set; Set to discharge control mode.
제1에너지 저장장치의 출력을 제어하는 단계에서는, 충전 제어모드로 설정되면 최대출력으로 충전하도록 제1에너지 저장장치를 제어하고, 조류제어모드로 설정되면 전력계통에서 기설정된 전력량을 제외한 부하 변동량에 대한 전력을 출력하도록 제1에너지 저장장치를 제어하고, 방전 제어모드로 설정되면 최대출력으로 방전하도록 제1에너지 저장장치를 제어한다.In the controlling of the output of the first energy storage device, when the charging control mode is set, the first energy storage device is controlled to charge at the maximum output, and when the tidal current control mode is set, the load fluctuation amount excluding the predetermined power amount is set in the power system. The first energy storage device is controlled to output power for the control, and when the discharge control mode is set, the first energy storage device is controlled to discharge at maximum output.
현재 출력값 및 SOC값을 수신하는 단계에서는, 다수의 분산전원으로부터 현재 출력값들을 수신하는 단계 SOC 특성이 있는 제1에너지 저장장치로부터 현재 출력값 및 SOC값을 수신하는 단계; 및 SOC 특성이 없는 제2에너지 저장장치로부터 현재 출력값을 수신하는 단계를 포함한다.Receiving the current output value and SOC value, Receiving the current output value from a plurality of distributed power supply step Receiving the current output value and SOC value from the first energy storage device having a SOC characteristic; And receiving a current output value from a second energy storage device having no SOC characteristic.
본 발명에 의하면, 마이크로그리드용 에너지 저장장치의 협조제어 시스템 및 방법은 마이크로그리드의 부하변동량을 장주기 부하 및 단주기 부하로 구분하여 장주기 부하는 SOC가 없고 동특성이 느린 에너지 저장장치(즉, 연료전지)에서 담당하고, 단주기 부하는 SOC가 있는 에너지 저장장치(즉, 배터리)에서 담당하여 상호가 협조제어를 수행함으로써, 마이크로그리드의 전력수급 균형을 유지하고, 마이크로그리드로 내부로 유입되는 계통전력을 일정하게 유지할 수 있는 효과가 있다.According to the present invention, the cooperative control system and method of the energy storage device for the microgrid divides the load variation of the microgrid into a long period load and a short period load so that the long period load does not have an SOC and a slow dynamic energy storage device (ie, a fuel cell). ), And the short-cycle load is in charge of the energy storage device (that is, the battery) with SOC, and mutually performs cooperative control to maintain the power supply balance of the microgrid, and system power flows into the microgrid. It is effective to keep it constant.
또한, 마이크로그리드용 에너지 저장장치의 협조제어 시스템 및 방법은 시간에 관계없이 마이크로그리드 내부의 부하변동을 에너지 저장장치가 전적으로 담당하여 부하에 전력을 공급하도록 하고 이와 반대로 에너지 저장장치의 출력이 부하 변동량을 초과할 경우 부하변동량은 전력계통에서 담당하며, 배터리는 일정한 출력을 내는 유니트 제어모드로 전환시켜서 전력수급 균형을 유지함으로써, 마이크로그리드를 안정적으로 운영할 수 있는 효과가 있다. In addition, the cooperative control system and method of the energy storage device for the microgrid is responsible for supplying power to the load by the energy storage device fully responsible for the load fluctuations inside the microgrid regardless of the time. In case of exceeding the load fluctuation, the power system is responsible for the load, and the battery is switched to the unit control mode that produces a constant output to balance the power supply and supply, thereby effectively operating the microgrid.
도 1은 본 발명의 실시예의 설명을 위한 마이크로그리드 협조제어 시스템의 구성을 설명하기 위한 도면.BRIEF DESCRIPTION OF THE DRAWINGS Fig. 1 is a view for explaining the configuration of a microgrid cooperative control system for explaining an embodiment of the present invention.
도 2는 도 1의 제1에너지 저장장치의 구성을 설명하기 위한 도면.2 is a view for explaining the configuration of the first energy storage device of FIG.
도 3은 도 1의 제2에너지 저장장치의 구성을 설명하기 위한 도면.3 is a view for explaining the configuration of the second energy storage device of FIG.
도 4는 도 1의 중앙제어장치의 구성을 설명하기 위한 도면.4 is a view for explaining the configuration of the central control device of FIG.
도 5는 본 발명의 실시예에 따른 마이크로그리드용 에너지 저장장치의 협조제어 방법을 설명하기 위한 흐름도.5 is a flowchart illustrating a cooperative control method of an energy storage device for a microgrid according to an embodiment of the present invention.
도 6은 도 5의 SOC 특성이 없는 제2에너지 저장장치를 제어하는 단계를 설명하기 위한 흐름도.FIG. 6 is a flowchart for describing a step of controlling a second energy storage device having no SOC characteristic of FIG. 5.
도 7은 도 5의 SOC 특성이 있는 제1에너지 저장장치를 제어하는 단계를 설명하기 위한 흐름도.FIG. 7 is a flowchart for describing a step of controlling a first energy storage device having SOC characteristics of FIG. 5.
도 8은 SOC 특성이 없는 제2에너지 저장장치의 운영모드를 설명하기 위한 도면.8 is a view for explaining an operation mode of a second energy storage device having no SOC characteristic.
도 9 내지 도 11은 SOC 특성이 있는 제1에너지 저장장치의 운영모드를 설명하기 위한 도면.9 to 11 are views for explaining the operation mode of the first energy storage device having SOC characteristics.
이하, 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자가 본 발명의 기술적 사상을 용이하게 실시할 수 있을 정도로 상세히 설명하기 위하여, 본 발명의 가장 바람직한 실시예를 첨부 도면을 참조하여 설명하기로 한다. 우선 각 도면의 구성요소들에 참조부호를 부가함에 있어서, 동일한 구성요소들에 대해서는 비록 다른 도면상에 표시되더라도 가능한 한 동일한 부호를 가지도록 하고 있음에 유의해야 한다. 또한, 본 발명을 설명함에 있어, 관련된 공지 구성 또는 기능에 대한 구체적인 설명이 본 발명의 요지를 흐릴 수 있다고 판단되는 경우에는 그 상세한 설명은 생략한다.Hereinafter, the preferred embodiments of the present invention will be described in detail with reference to the accompanying drawings so that those skilled in the art may easily implement the technical idea of the present invention. . First of all, in adding reference numerals to the components of each drawing, it should be noted that the same reference numerals are used as much as possible even if displayed on different drawings. In addition, in describing the present invention, when it is determined that the detailed description of the related well-known configuration or function may obscure the gist of the present invention, the detailed description thereof will be omitted.
먼저, 본 발명은 중앙제어장치에 의한 중앙 집중제어와 지역제어가 가능한 마이크로그리드 시스템에서 분산전원 상호 간의 협조제어를 수행하는 협조제어 시스템 및 방법에 관한 것이다.First, the present invention relates to a cooperative control system and method for performing cooperative control between distributed power supplies in a microgrid system capable of centralized control and local control by a central controller.
마이크로그리드용 에너지 저장장치의 협조제어 시스템은 지역제어와 중앙제어장치에 의한 중앙제어가 가능한 마이크로그리드 시스템에서 에너지 저장장치 상호 간의 협조제어를 수행한다. 이때, 마이크로그리드의 부하변동량은 장주기 성분과 단주기 성분으로 구분된다. 따라서, 마이크로그리드용 에너지 저장장치의 협조제어 시스템은 SOC특성을 가진 에너지 저장장치가 동특성이 빨라 단주기 성분의 부하 변동량을 감당하고, SOC특성이 없는 연료전지 등의 에너지 저장장치는 동특성이 느리지만 시간에 상관없이 출력을 낼 수 있기 때문에 장주기 성분의 부하 변동량을 감당하도록 제어한다.The cooperative control system of the energy storage device for the microgrid performs cooperative control between the energy storage devices in the microgrid system capable of central control by the local control and the central control device. At this time, the load variation of the microgrid is divided into a long period component and a short period component. Therefore, the cooperative control system of the energy storage device for microgrid has the dynamic characteristics of the energy storage device having the SOC characteristic, so that it can handle the load fluctuation of the short period component, and the energy storage device such as the fuel cell without the SOC characteristic has the slow dynamic characteristics. Since the output can be produced regardless of time, it controls to handle the load variation of long period component.
더욱 상세하게는, 제1제어 단계로 중앙제어장치에서는 각 분산전원의 출력량과 SOC를 수신하여 마이크로그리드 내부 부하량을 산출한다. 이후, 마이크로그리드 내부 부하변동을 저대역통과필터에 의해 단주기, 장주기 변동량으로 추출하게 된다. 이때, 부하변동량을 단주기와 장주기 성분으로 구분하기 위하여 저대역통과필터를 사용한다. 즉, 분산전원이 감당해야 하는 양이 저대역통과필터를 통과하면 장주기 성분으로, 이외의 성분은 단주기 성분으로 간주한다.More specifically, in the first control step, the central control apparatus receives the output amount and SOC of each distributed power supply and calculates the microgrid internal load amount. Then, the microgrid internal load variation is extracted as the short period and long period variation by the low pass filter. In this case, a low pass filter is used to classify the load variation into short and long period components. In other words, if the amount that the distributed power supply must pass passes through the low pass filter, it is regarded as a long period component and other components are regarded as short period components.
수신된 SOC값이 허용된 범위(10~100%)를 유지하도록 장주기의 부하 변동량에 추가적인 출력량을 합산한다. 만약, SOC가 100%일 경우 장주기의 부하 변동량을 감소시킴으로써 더 이상 배터리가 충전을 하지 못하도록 연료전지의 출력량을 명령하며, SOC가 10%일 경우 장주기의 부하 변동량을 증가시킴으로써 더 이상 배터리가 방전을 하지 못하도록 연료전지의 출력량을 명령한다.The additional output is added to the long period load variation so that the received SOC value remains within the acceptable range (10 to 100%). If the SOC is 100%, the output of the fuel cell is instructed so that the battery can no longer be charged by reducing the load fluctuation of the long period.If the SOC is 10%, the battery no longer discharges by increasing the load fluctuation of the long period. Command the output of the fuel cell to prevent it.
다음, 제2제어 단계에서는 각 분산전원의 제어장치가 분산전원이 담당하는 부하량과 출력 용량을 고려하여 UPC 및 FFC의 적절한 제어모드로 전환하여 제어함으로써, 마이크로그리드의 출력을 안정화시킨다. 중앙제어장치에서 장주기의 부하량과 SOC 관리를 위한 부하량을 산출하여 출력량을 명령받은 SOC가 없는 에너지 저장장치의 제어장치는 출력 용량을 고려하여 UPC 및 FFC의 적절한 제어모드로 전환하여 PI 제어를 통해 출력을 제어한다. 반면, 드룹제어를 통한 지역제어가 가능한 SOC가 있는 에너지 저장장치는 중앙제어장치의 명령없이 드룹제어에 의한 출력량과 출력 용량을 고려하여 UPC 및 FFC의 적절한 제어모드로 전환하여 PI 제어를 통해 출력을 제어한다. SOC가 있는 에너지 저장장치는 출력동특성이 빠른 특성을 가지므로 중앙제어장치의 명령없이 부하변동에 대하여 빠르게 반응할 수 있으므로, 전력수급 밸런스를 유지하며 전력 품질을 향상시켜줄 수 있다. 따라서 본 발명은 향후 마이크로그리드의 보급이 확대되면 마이크로그리드의 전력품질 향상과 전력수급 밸런스 유지에 적용이 기대된다. Next, in the second control step, the control device of each distributed power supply switches to an appropriate control mode of UPC and FFC in consideration of the load amount and output capacity of the distributed power supply, thereby stabilizing the output of the microgrid. In the central controller, the controller of the energy storage device without SOC whose output is commanded by calculating the long-term load and the load for SOC management is converted to the appropriate control mode of UPC and FFC in consideration of the output capacity and output through PI control. To control. On the other hand, the energy storage device with SOC capable of local control through droop control is converted to the appropriate control mode of UPC and FFC by considering the output amount and output capacity by droop control without command of the central controller, and the output is controlled through PI control. To control. The energy storage device with SOC has fast output dynamic characteristics, so it can react quickly to load fluctuations without command of the central controller, thereby maintaining power supply balance and improving power quality. Therefore, the present invention is expected to be applied to improve the power quality of the micro grid and maintain the power supply and demand balance when the spread of the micro grid is expanded in the future.
SOC가 있는 에너지 저장장치인 배터리는 연료전지보다 상위에 설치되어 드룹 제어를 통한 지역제어로 출력제어가 이루어진다. 드룹제어에 의해 마이크로그리드가 계통과 분리되어 계통에서 오는 전력이 “0”이 될 경우 주파수가 변동하게 되고, 설정된 드룹계수에 의해 배터리 출력을 증가시켜 마이크로그리드의 전력수급 균형을 유지한다.Batteries, which are energy storage devices with SOC, are installed above the fuel cells, and output control is performed through regional control through droop control. When the microgrid is separated from the grid by droop control and the power from the grid becomes “0”, the frequency changes. The battery output is increased by the set droop coefficient to maintain the power supply balance of the microgrid.
SOC가 없는 에너지 저장장치인 연료전지는 중앙제어 방식에 의해 배터리와 연료전지의 출력량을 중앙제어장치로부터 입력받는다. 또, 연료전지는 배터리의 SOC를 일정하게 유지하기 위하여 SOC와 SOC 설정값을 비교하여 이값을 PI 제어기를 통해 연료전지 입력값에 더한다.The fuel cell, which is an energy storage device without SOC, receives the output of the battery and the fuel cell from the central controller by a central control method. In addition, the fuel cell compares the SOC and SOC set values in order to keep the SOC of the battery constant and adds this value to the fuel cell input through the PI controller.
본 발명은 이와 같이 에너지 저장장치의 출력을 이용하여 부하를 추정하여 SOC 특성이 없고 동특성이 느린 에너지 저장장치에게 지령값을 전송하고, SOC 특성이 있지만 동특성이 빠른 에너지 저장장치가 부하변동과 동특성이 느린 에너지 저장장치의 출력값의 차이를 감당하여 전력 균형을 이루는 방법이다. 이는 배터리와 같이 동특성이 빠르고 SOC특성을 가진 에너지 저장장치의 용량을 줄일 수 있으며, 장주기 성분은 SOC 특성이 없는 연료전지와 같은 에너지 저장장치가 감당함으로써 SOC특성을 가진 에너지 저장장치의 SOC 관리를 도와 시간에 무관하게 출력 밸런스 유지가 가능한 장점을 가진다.In the present invention, the load is estimated using the output of the energy storage device, and the command value is transmitted to the energy storage device having no SOC characteristics and slow dynamic characteristics, and the energy storage device having fast SOC characteristics but high dynamic characteristics has a load variation and dynamic characteristics. It is a way to balance power by dealing with the difference in output value of a slow energy storage device. This can reduce the capacity of energy storage devices that have fast dynamic characteristics like SOC and have SOC characteristics, and help the SOC management of energy storage devices with SOC characteristics as long-term components are handled by energy storage devices such as fuel cells without SOC characteristics. It has the advantage of maintaining the output balance regardless of time.
이하, 본 발명의 실시예에 따른 마이크로그리드용 에너지 저장장치의 협조제어 시스템을 첨부된 도면을 참조하여 상세하게 설명하면 아래와 같다. 도 1은 본 발명의 실시예의 설명을 위한 마이크로그리드 협조제어 시스템의 구성을 설명하기 위한 도면이다. 도 2는 도 1의 제1에너지 저장장치의 구성을 설명하기 위한 도면이고, 도 3은 도 1의 제2에너지 저장장치의 구성을 설명하기 위한 도면이고, 도 4는 도 1의 중앙제어장치의 구성을 설명하기 위한 도면이다. 본 발명의 실시예에서 에너지 저장장치는 화학적 에너지, 전기 에너지 등을 저장하고 필요시 출력하는 장치를 통칭하므로, 일반적인 에너지 저장장치에 한정되지 않는다.Hereinafter, the cooperative control system of the microgrid energy storage device according to an embodiment of the present invention will be described in detail with reference to the accompanying drawings. 1 is a view for explaining the configuration of a microgrid cooperative control system for explaining an embodiment of the present invention. 2 is a view for explaining the configuration of the first energy storage device of FIG. 1, FIG. 3 is a view for explaining the configuration of the second energy storage device of FIG. 1, FIG. It is a figure for demonstrating a structure. In the embodiment of the present invention, the energy storage device is collectively referred to as a device for storing and outputting chemical energy, electrical energy, and the like, if necessary, and is not limited to general energy storage devices.
도 1에 도시된 바와 같이, 마이크로그리드용 에너지 저장장치의 협조제어 시스템은 다수의 분산전원(100), 제1에너지 저장장치(200), 제2에너지 저장장치(300), 중앙제어장치(400)를 포함하여 구성된다. 이때, 다수의 분산전원(100)과 제1에너지 저장장치(200) 및 제2에너지 저장장치(300)는 배전용 변압기(500)와 정지형 개폐기(600)가 연결된 전력선(700)을 통해 부하(800)로 전력을 공급하고, 네트워크(900)를 통해 중앙제어장치(400)와 데이터를 송수신한다.As shown in FIG. 1, the cooperative control system of the microgrid energy storage device includes a plurality of distributed power sources 100, a first energy storage device 200, a second energy storage device 300, and a central control device 400. It is configured to include). At this time, the plurality of distributed power source 100, the first energy storage device 200 and the second energy storage device 300 is a load (through the power line 700 connected to the distribution transformer 500 and the stationary switch 600) 800, and transmits and receives data to and from the central controller 400 through the network 900.
분산전원(100)은 마이크로터빈, 연료전지, 디젤발전기 등으로 구성되며, 배전용 변압기(500) 및 정지형 개폐기(600)와 연결되는 교류전력선(700)을 통해 부하(800)와 연결된다. 분산전원(100)은 현재 출력값을 네트워크(900)를 통해 중앙제어장치(400)로 전송한다.The distributed power source 100 is composed of a micro turbine, a fuel cell, a diesel generator, and the like, and is connected to a load 800 through an AC power line 700 connected to a distribution transformer 500 and a stationary switch 600. The distributed power supply 100 transmits the current output value to the central control unit 400 through the network 900.
제1에너지 저장장치(200)는 현재 출력값 및 SOC값을 중앙제어장치(400)로 전송하고, 드룹제어에 의해 전력을 부하(800)로 출력한다. 이때, 제1에너지 저장장치(200)는 SOC 특성이 있는 배터리(280)를 포함하여 구성된다. 이를 위해, 도 2에 도시된 바와 같이, 제1에너지 저장장치(200)는 기준값 설정부, 제어모드 설정부(240), 출력 제어부(260)를 포함하여 구성된다. 여기서, 제1에너지 저장장치(200)는 중앙제어장치(400)와의 데이터 송수신을 위한 통신부(미도시)를 포함하여 구성될 수도 있다.The first energy storage device 200 transmits the current output value and the SOC value to the central controller 400, and outputs power to the load 800 by droop control. In this case, the first energy storage device 200 includes a battery 280 having SOC characteristics. To this end, as shown in FIG. 2, the first energy storage device 200 includes a reference value setting unit, a control mode setting unit 240, and an output control unit 260. Here, the first energy storage device 200 may be configured to include a communication unit (not shown) for transmitting and receiving data with the central control unit 400.
기준값 설정부는 중앙제어장치(400)로부터의 부하량을 근거로 제1에너지 저장장치(200)의 출력 기준값을 설정한다. 여기서, 기준값 설정부는 잉여부하량 및 부족 부하량을 포함하는 출력 설정값을 설정한다.The reference value setting unit sets the output reference value of the first energy storage device 200 based on the load amount from the central controller 400. Here, the reference value setting section sets the output setting value including the excess load amount and the underload amount.
제어모드 설정부(240)는 중앙제어장치(400)에서 산출한 부하량이 단주기 부하량이면 부하량과 출력 기준값을 비교하여 제1에너지 저장장치(200)의 제어모드를 설정한다. 여기서, 제어모드 설정부(240)는 부하량이 잉여 부하량 미만이면 충전 제어모드로 설정하고, 부하량이 잉여 부하량 이상 부족 부하량 이하이면 조류 제어모드로 설정하고, 부하량이 부족 부하량을 초과하면 방전 제어모드로 설정한다.The control mode setting unit 240 sets the control mode of the first energy storage device 200 by comparing the load amount and the output reference value when the load amount calculated by the central controller 400 is a short period load amount. Here, the control mode setting unit 240 is set to the charge control mode if the load is less than the excess load amount, and set to the tidal current control mode if the load amount is less than the excess load amount or less than the underload load, and to the discharge control mode if the load amount exceeds the underload load. Set it.
출력 제어부(260)는 제어모드 설정부(240)에서 설정된 제어모드에 따라 제1에너지 저장장치(200)의 출력을 제어한다. 여기서, 출력 제어부(260)는 제어모드 설정부(240)에서 충전 제어모드로 설정되면 최대출력으로 충전하도록 제1에너지 저장장치(200)를 제어하고, 제어모드 설정부(240)에서 조류제어모드로 설정되면 전력계통에서 기설정된 전력량을 제외한 부하(800) 변동량에 대한 전력을 출력하도록 제1에너지 저장장치(200)를 제어하고, 제어모드 설정부(240)에서 방전 제어모드로 설정되면 최대출력으로 방전하도록 제1에너지 저장장치(200)를 제어한다.The output controller 260 controls the output of the first energy storage device 200 according to the control mode set by the control mode setting unit 240. Here, the output control unit 260 controls the first energy storage device 200 to charge at the maximum output when the control mode setting unit 240 is set to the charging control mode, and the current control mode in the control mode setting unit 240 When the power system is set to control the first energy storage device 200 to output the power for the change amount of the load 800, except for the amount of power set in advance, the maximum output when the control mode setting unit 240 is set to the discharge control mode The first energy storage device 200 is controlled to discharge.
제2에너지 저장장치(300)는 현재 출력값을 중앙제어장치(400)로 전송하고, 중앙제어장치(400)로부터 수신한 출력값 지령을 근거로 출력을 제어한다. 이때, 제2에너지 저장장치(300)는 SOC 특성이 없는 연료전지(360)를 포함하여 구성된다. 이를 위해, 도 3에 도시된 바와 같이, 제2에너지 저장장치(300)는 제어모드 설정부(320) 및 출력 제어부(340)를 포함한다. 여기서, 제2에너지 저장장치(300)는 중앙제어장치(400)와의 데이터 송수신을 위한 통신부(미도시)를 포함하여 구성될 수도 있다.The second energy storage device 300 transmits the current output value to the central control unit 400 and controls the output based on the output value command received from the central control unit 400. In this case, the second energy storage device 300 includes a fuel cell 360 having no SOC characteristic. To this end, as shown in FIG. 3, the second energy storage device 300 includes a control mode setting unit 320 and an output control unit 340. Here, the second energy storage device 300 may be configured to include a communication unit (not shown) for data transmission and reception with the central control unit 400.
제어모드 설정부(320)는 중앙제어장치(400)로부터 수신한 출력값 지령 및 부하(800) 설정값을 근거로 제2에너지 저장장치(300)의 제어모드를 설정한다. 여기서, 제어모드 설정부(320)는 출력값 지령이 제1부하(800) 설정값 미만이면 UPC 제1모드로 설정하고, 출력값 지령이 제1부하(800) 설정값 이상이고 제2부하(800) 설정값 이하이면 조류제어모드로 설정하고, 출력값 지령이 제2부하(800) 설정값을 초과하면 UPC 제2모드로 설정한다. 이때, 제어모드 설정부(320)는 제2에너지 저장장치(300)의 최소출력값과 전력계통 유입 전력량을 합산한 값을 제1부하(800) 설정값으로 하고, 제2에너지 저장장치(300)의 최대출력값과 전력계통 유입 전력량을 합산한 값을 제2부하(800) 설정값으로 하여 제2에너지 저장장치(300)의 제어모드를 설정한다.The control mode setting unit 320 sets the control mode of the second energy storage device 300 based on the output value command and the load 800 setting value received from the central controller 400. Here, the control mode setting unit 320 sets the UPC first mode if the output value command is less than the first load 800 setting value, and the output value command is greater than or equal to the first load 800 setting value and the second load 800. If it is less than the set value, it is set to the tidal current control mode, and if the output value command exceeds the set value of the second load 800, it is set to the UPC second mode. In this case, the control mode setting unit 320 sets a value obtained by adding the minimum output value of the second energy storage device 300 and the amount of power input into the power system as the first load 800 setting value, and the second energy storage device 300. The control mode of the second energy storage device 300 is set based on the sum of the maximum output value and the amount of power supplied to the power system as the second load 800.
출력 제어부(340)는 제어모드 설정부(320)에서 설정된 제어모드에 따라 제2에너지 저장장치(300)의 출력을 제어한다. 여기서, 출력 제어부(340)는 제어모드 설정부(320)에서 UPC 제1모드로 설정되면 최소출력으로 전력을 출력하도록 제2에너지 저장장치(300)를 제어하고, 제어모드 설정부(320)에서 조류제어모드로 설정되면 기설정된 전력을 전력계통에서 출력하고 부하량에서 전력계통에서 출력된 전력을 차감한 부하(800)의 전력을 제2에너지 저장장치(300)에서 출력하도록 제어하고, 제어모드 설정부(320)에서 UPC 제2모드로 설정되면 최대출력으로 전력을 출력하도록 제2에너지 저장장치(300)를 제어한다.The output controller 340 controls the output of the second energy storage device 300 according to the control mode set by the control mode setting unit 320. Here, when the control mode setting unit 320 is set to the UPC first mode, the output control unit 340 controls the second energy storage device 300 to output power at the minimum output, and in the control mode setting unit 320. When the current control mode is set, the power is output from the power system and the power of the load 800 subtracted from the power output from the power system is output from the second energy storage device 300, and the control mode is set. When the unit 320 is set to the second UPC mode, the second energy storage device 300 is controlled to output power at the maximum output.
중앙제어장치(400)는 에너지 저장장치들로부터 수신한 현재 출력값 및 SOC값을 근거로 SOC 특성이 없는 에너지 저장장치의 출력을 제어하기 위한 출력값 지령을 설정한다. 이를 위해, 도 4에 도시된 바와 같이, 중앙제어장치(400)는 통신부(420), 부하량 산출부(440), 부하량 분류부(460), 제어부(480)를 포함하여 구성된다.The central controller 400 sets an output value command for controlling the output of the energy storage device having no SOC characteristic based on the current output value and the SOC value received from the energy storage devices. To this end, as shown in FIG. 4, the central control unit 400 includes a communication unit 420, a load amount calculation unit 440, a load amount classification unit 460, and a control unit 480.
통신부(420)는 다수의 분산전원(100) 및 에너지 저장장치들(즉, 제1에너지 저장장치(200), 제2에너지 저장장치(300))들과 데이터를 송수신한다.The communication unit 420 transmits and receives data to and from a plurality of distributed power sources 100 and energy storage devices (ie, the first energy storage device 200 and the second energy storage device 300).
부하량 산출부(440)는 다수의 분산전원(100)과 제1에너지 저장장치(200) 및 제2에너지 저장장치(300)로부터 수신한 현재 출력값들을 합산하여 마이크로그리드 시스템의 부하량을 산출한다.The load calculator 440 calculates the load of the microgrid system by summing the current output values received from the plurality of distributed power supplies 100, the first energy storage device 200, and the second energy storage device 300.
부하량 분류부(460)는 부하량 산출부(440)에서 산출한 부하량을 장주기 부하량 및 단주기 부하량으로 분류한다. 이때, 부하량 분류부(460)는 저대역통과필터로 구성되며, 부하량 산출부(440)에서 산출한 부하량이 저대역통과필터를 통과하면 장주기 부하량으로 분류한다. 부하량 산출부(440)에서 산출한 부하량이 저대역통과필터를 통과하지 못하면 단주기 부하량으로 분류한다. 여기서, 저대역통과필터의 컷오프 주파수는 동특성이 느린 에너지 저장장치에 따라 다르게 설정된다.The load amount classification unit 460 classifies the load amount calculated by the load amount calculation unit 440 into a long period load amount and a short period load amount. At this time, the load amount classifying unit 460 is configured as a low pass filter, and if the load calculated by the load calculating unit 440 passes the low pass filter, it is classified as a long period load amount. If the load calculated by the load calculator 440 does not pass the low pass filter, it is classified as a short period load. Here, the cutoff frequency of the low pass filter is set differently according to the energy storage device having a slow dynamic characteristic.
제어부(480)는 부하량 분류부(460)에서 분류된 장주기 부하량 및 제1에너지 저장장치(200)로부터의 SOC값을 근거로 출력값 지령을 설정하고, 제2에너지 저장장치(300)로 출력값 지령을 전송하도록 제어한다. 이때, 제어부(480)는 통신부(420)를 통해 제1에너지 저장장치(200)로부터 수신한 SOC값과 부하량 분류부(460)에서 분류된 장주기 부하량을 합산하여 산출한 값을 제2에너지 저장장치(300)의 출력값 지령으로 설정한다.The controller 480 sets an output value command based on the long period load amount classified by the load amount classifying unit 460 and the SOC value from the first energy storage device 200, and sends the output value command to the second energy storage device 300. Control to transmit. At this time, the control unit 480 is a second energy storage device is calculated by summing the SOC value received from the first energy storage device 200 through the communication unit 420 and the long period load amount classified by the load amount classification unit 460. (300) is set to the output value command.
이하, 본 발명의 실시예에 따른 마이크로그리드용 에너지 저장장치의 협조제어 방법을 첨부된 도면을 참조하여 상세하게 설명하면 아래와 같다. 도 5는 본 발명의 실시예에 따른 마이크로그리드용 에너지 저장장치의 협조제어 방법을 설명하기 위한 흐름도이다. 도 6은 도 5의 SOC 특성이 없는 제2에너지 저장장치를 제어하는 단계를 설명하기 위한 흐름도이고, 도 7은 도 5의 SOC 특성이 있는 제1에너지 저장장치를 제어하는 단계를 설명하기 위한 흐름도이다.Hereinafter, the cooperative control method of the microgrid energy storage device according to an embodiment of the present invention will be described in detail with reference to the accompanying drawings. 5 is a flowchart illustrating a cooperative control method of an energy storage device for a microgrid according to an embodiment of the present invention. FIG. 6 is a flowchart illustrating a step of controlling a second energy storage device having no SOC characteristic of FIG. 5, and FIG. 7 is a flowchart illustrating a step of controlling a first energy storage device having SOC characteristic of FIG. 5. to be.
먼저, 중앙제어장치(400)는 네트워크(900)를 통해 다수의 분산전원(100)과 제1에너지 저장장치(200) 및 제2에너지 저장장치(300)로부터 현재 출력값 및 SOC값을 수신한다(S100). 이때, 중앙제어장치(400)는 다수의 분산전원(100)으로부터 현재 출력값들을 수신하고, SOC 특성이 있는 제1에너지 저장장치(200)로부터 현재 출력값 및 SOC값을 수신하고, SOC 특성이 없는 제2에너지 저장장치(300)로부터 현재 출력값을 수신한다.First, the central control unit 400 receives a current output value and SOC value from the plurality of distributed power supplies 100, the first energy storage device 200, and the second energy storage device 300 through the network 900 ( S100). In this case, the central control unit 400 receives current output values from the plurality of distributed power supplies 100, receives the current output values and SOC values from the first energy storage device 200 having SOC characteristics, and has no SOC characteristics. 2 receives the current output value from the energy storage device (300).
중앙제어장치(400)는 수신한 현재 출력값 및 SOC값을 이용하여 마이크로그리드 시스템의 부하량을 산출한다(S200). 이때, 중앙제어장치(400)는 다수의 분산전원(100)과 제1에너지 저장장치(200) 및 제2에너지 저장장치(300)로부터 수신한 현재 출력값들을 합산하여 마이크로그리드 시스템의 부하량을 산출한다.The central control unit 400 calculates the load of the microgrid system by using the received current output value and SOC value (S200). At this time, the central control unit 400 calculates the load of the microgrid system by summing the current output values received from the plurality of distributed power supplies 100, the first energy storage device 200 and the second energy storage device 300. .
중앙제어장치(400)는 저대역통과필터를 이용하여 기산출한 부하량을 장주기 부하량 및 단주기 부하량으로 분류한다(S300). 이때, 중앙제어장치(400)는 산출한 부하량이 저대역통과필터를 통과하면 장주기 부하량으로 분류한다. 중앙제어장치(400)는 산출한 부하량이 저대역통과필터를 통과하지 못하면 단주기 부하량으로 분류한다.The central control unit 400 classifies the load amount calculated using the low pass filter into a long period load amount and a short period load amount (S300). At this time, the central control unit 400 classifies the long period load when the calculated load passes the low pass filter. If the calculated load does not pass the low pass filter, the central controller 400 classifies it as a short period load.
기산출한 부하량이 장주기 부하량으로 분류되면(S400; YES), SOC 특성이 없는 제2에너지 저장장치(300)의 출력 제어를 수행한다(S500). 이하에서, 도 6을 참조하여 SOC 특성이 없는 제2에너지 저장장치(300)의 출력 제어하는 방법을 상세하게 설명하면 아래와 같다.When the calculated load amount is classified as a long period load amount (S400; YES), output control of the second energy storage device 300 having no SOC characteristic is performed (S500). Hereinafter, a method of controlling the output of the second energy storage device 300 having no SOC characteristic will be described in detail with reference to FIG. 6.
먼저, 중앙제어장치(400)는 기분류된 장주기 부하량 및 제1에너지 저장장치(200)로부터의 SOC값을 근거로 제2에너지 저장장치(300)의 출력값 지령을 설정한다(S510). 이때, 중앙제어장치(400)는 제1에너지 저장장치(200)로부터 수신한 SOC값과 분류된 장주기 부하량을 합산하여 산출한 값을 제2에너지 저장장치(300)의 출력값 지령으로 설정한다. 중앙제어장치(400)는 설정된 출력값 지령을 제2에너지 저장장치(300)로 전송한다.First, the central controller 400 sets an output value command of the second energy storage device 300 based on the long-term load amount and the SOC value from the first energy storage device 200 (S510). At this time, the central control unit 400 sets the value calculated by summing the SOC value received from the first energy storage device 200 and the classified long period load amount as an output value command of the second energy storage device 300. The central control unit 400 transmits the set output value command to the second energy storage device 300.
출력값 지령이 제1부하(800) 설정값 이상이고 제2부하(800) 설정값 이하이면(S520; YES), 제2에너지 저장장치(300)는 조류제어모드로 설정한다(S522). 여기서, 제1부하(800) 설정값은 제2에너지 저장장치(300)의 최소출력값과 전력계통 유입 전력량을 합산한 값이고, 제2부하(800) 설정값은 제2에너지 저장장치(300)의 최대출력값과 전력계통 유입 전력량을 합산한 값이다.If the output value command is greater than or equal to the first load 800 set value and less than or equal to the second load 800 set value (S520; YES), the second energy storage device 300 sets the tidal flow control mode (S522). Here, the set value of the first load 800 is the sum of the minimum output value of the second energy storage device 300 and the amount of power supplied to the power system, and the set value of the second load 800 is the second energy storage device 300. Is the sum of the maximum output value and
조류제어모드로 설정됨에 따라 기설정된 전력을 전력계통에서 출력하고, 제2에너지 저장장치(300)는 부하량에서 전력계통에서 출력된 전력을 차감한 부하량에 대한 전력을 출력한다(S524). 그에 따라, SOC 특성이 없는 제2에너지 저장장치(300)에서 마이크로그리드의 전력수급 밸런스를 유지한다.As the tidal flow control mode is set, the predetermined power is output from the power system, and the second energy storage device 300 outputs power for the load amount by subtracting the power output from the power system from the load amount (S524). Accordingly, the power supply and demand balance of the microgrid is maintained in the second energy storage device 300 having no SOC characteristic.
출력값 지령이 제1부하(800) 설정값 미만이면(S540; YES), 제2에너지 저장장치(300)는 UPC 제1모드로 설정한다(S542). UPC 제1모드로 설정됨에 따라 제2에너지 저장장치(300)는 최소출력으로 전력을 출력하고, 계통전력이 나머지 부하(800)에 대한 전력을 출력한다(S544). 그에 따라, 계통전력에서 마이크로그리드의 전력수급 밸런스를 유지한다.If the output value command is less than the first load 800 set value (S540; YES), the second energy storage device 300 sets the UPC first mode (S542). As set to the UPC first mode, the second energy storage device 300 outputs power at the minimum output, and the system power outputs power for the remaining load 800 (S544). As a result, the power supply balance of the microgrid is maintained in the grid power.
출력값 지령이 제2부하(800) 설정값을 초과하면(S560; YES), 제2에너지 저장장치(300)는 UPC 제2모드로 설정한다(S562). UPC 제2모드로 설정됨에 따라 제2에너지 저장장치(300)는 최대출력으로 전력을 출력하고, 전력계통에서 나머지 부하(800)에 대한 전력을 출력한다(S564). 그에 따라, 계통전력에서 마이크로그리드의 전력수급 밸런스를 유지한다.If the output value command exceeds the set value of the second load 800 (S560; YES), the second energy storage device 300 sets the UPC second mode (S562). As set to the second mode UPC, the second energy storage device 300 outputs power at maximum output, and outputs power for the remaining load 800 in the power system (S564). As a result, the power supply balance of the microgrid is maintained in the grid power.
기산출한 부하량이 단주기 부하량으로 분류되면(S400; NO), SOC 특성이 있는 제1에너지 저장장치(200)의 출력 제어를 수행한다(S600). 이때, 제1에너지 저장장치(200)는 드룹제어에 의한 지역제어를 통해 출력제어를 수행한다. 이하에서, 도 7을 참조하여 SOC 특성이 있는 제1에너지 저장장치(200)의 출력 제어하는 방법을 상세하게 설명하면 아래와 같다.When the calculated load is classified as a short period load (S400; NO), output control of the first energy storage device 200 having SOC characteristics is performed (S600). At this time, the first energy storage device 200 performs the output control through the local control by the droop control. Hereinafter, a method of controlling output of the first energy storage device 200 having SOC characteristics will be described in detail with reference to FIG. 7.
기산출한 부하량을 근거로 제1에너지 저장장치(200)의 출력 기준값을 설정한다(S610). 이때, 제1에너지 저장장치(200)는 잉여부하량 및 부족 부하량을 포함하는 출력 설정값을 설정한다. 즉, 제1에너지 저장장치(200)는 기산출한 부하량이 단주기 부하량이면 부하량과 설정된 출력 기준값(즉, 잉여부하량 및 부족부하량)을 비교하여 제1에너지 저장장치(200)의 제어모드를 설정한다. 제1에너지 저장장치(200)는 설정되는 제어모드에 따라 제1에너지 저장장치(200)의 출력을 PI 제어하여 출력을 제어한다.An output reference value of the first energy storage device 200 is set based on the calculated load amount (S610). In this case, the first energy storage device 200 sets an output set value including an excess load amount and an insufficient load amount. That is, the first energy storage device 200 sets the control mode of the first energy storage device 200 by comparing the load amount with a set output reference value (that is, excess load and underload) when the calculated load is a short period load. do. The first energy storage device 200 controls the output by PI control of the output of the first energy storage device 200 according to the control mode set.
부하량(즉, 단주기 부하량)이 잉여 부하량 이상 부족 부하량 이하이면(S620; YES), 제1에너지 저장장치(200)는 조류제어모드로 설정한다(622). 조류제어모드로 설정되면 전력계통에서 기설정된 전력을 출력하고, 제1에너지 저장장치(200)는 부하량에서 전력계통의 출력을 제외한 나머지 부하(800) 변동량에 대한 전력을 출력한다(S624).If the load amount (that is, the short period load amount) is more than the excess load amount or less than the insufficient load amount (S620; YES), the first energy storage device 200 is set to the tidal flow control mode (622). When set to the tidal flow control mode, the power system outputs a predetermined power, and the first energy storage device 200 outputs power for the remaining amount of load 800 except for the output of the power system from the load amount (S624).
부하량(즉, 단주기 부하량)이 잉여 부하량 미만이면(S640; YES), 제1에너지 저장장치(200)는 충전제어모드로 설정한다(S642). 충전제어모드로 설정되면, 제1에너지 저장장치(200)는 최대출력충전을 유지하고, 전력계통에서 나머지 부하(800)에 대한 전력을 출력한다(S644).If the load amount (that is, the short period load amount) is less than the surplus load amount (S640; YES), the first energy storage device 200 is set to the charge control mode (S642). When the charging control mode is set, the first energy storage device 200 maintains the maximum output charging and outputs power for the remaining load 800 in the power system (S644).
부하량(즉, 단주기 부하량)이 부족 부하량을 초과하면(S660; YES), 제1에너지 저장장치(200)는 방전제어모드로 설정한다(S662). 방전제어모드로 설정되면, 제1에너지 저장장치(200)는 최대출력방전을 유지하고, 전력계통에서 나머지 부하(800)에 대한 전력을 출력한다(S664).If the load amount (that is, the short period load amount) exceeds the underload amount (S660; YES), the first energy storage device 200 is set to the discharge control mode (S662). When set to the discharge control mode, the first energy storage device 200 maintains the maximum output discharge, and outputs the power to the remaining load 800 in the power system (S664).
이하, 본 발명의 실시예에 따른 마이크로그리드용 에너지 저장장치의 협조제어 시스템 및 방법에서 에너지 저장장치들의 운영모드를 첨부된 도면을 참조하여 상세하게 설명하면 아래와 같다. 도 8은 SOC 특성이 없는 제2에너지 저장장치(300)의 운영모드를 설명하기 위한 도면이다. 도 9 내지 도 11은 SOC 특성이 있는 제1에너지 저장장치(200)의 운영모드를 설명하기 위한 도면이다.Hereinafter, the operation mode of the energy storage devices in the cooperative control system and method of the microgrid energy storage device according to an embodiment of the present invention will be described in detail with reference to the accompanying drawings. FIG. 8 is a diagram for describing an operation mode of the second energy storage device 300 having no SOC characteristic. 9 to 11 are diagrams for describing an operation mode of the first energy storage device 200 having SOC characteristics.
도 8은 부하(800)와 용량을 고려한 상태에서 SOC특성이 없는 제2에너지 저장장치(300; 예컨대, 연료전지(360))의 전력계통 연계시 운영모드를 상세하게 도식화한 것이다. 일반적으로 SOC 특성이 없는 제2에너지 저장장치(300; 예컨대, 연료전지(360) 또는 분산전원(100))는 최소출력(Pdg_min)과 최대출력(Pdg_max) 제약이 존재한다. 이때, 제2에너지 저장장치(300)의 제어모드를 설정하기 위한 기준값인 제1부하(800) 설정값 및 제2부하(800) 설정값은 하기의 수학식 1 및 수학식 2를 이용하여 산출한다.8 shows the load 800 and the capacity in consideration The operation mode of the second energy storage device 300 (eg, the fuel cell 360) having no SOC characteristic is illustrated in detail. In general, the second energy storage device 300 having no SOC characteristic (for example, the fuel cell 360 or the distributed power supply 100) has a minimum output power Pdg_min and a maximum output power Pdg_max. At this time, the first load 800 setting value and the second load 800 setting value, which are reference values for setting the control mode of the second energy storage device 300, are calculated using Equations 1 and 2 below. do.
수학식 1
Figure PCTKR2011004915-appb-M000001
Equation 1
Figure PCTKR2011004915-appb-M000001
수학식 2
Figure PCTKR2011004915-appb-M000002
Equation 2
Figure PCTKR2011004915-appb-M000002
제2에너지 저장장치(300)는 제1부하(800) 기준값 및 제2부하(800) 기준값과 출력값 지령을 비교하여 하기와 같이 제2에너지 저장장치(300)의 제어모드를 설정하고, 제어모드에 따라 전력을 출력한다.The second energy storage device 300 compares the first load 800 reference value, the second load 800 reference value, and the output value command to set the control mode of the second energy storage device 300 as follows, and the control mode. To output power.
UPC 제1모드 : 0 < Pload < Pdg_min인 경우 Pdg=0UPC 1st mode: Pdg = 0 if 0 <Pload <Pdg_min
Pdg_min ≤ Pload ≤ Pload_p1 인 경우 Pdg_min 출력                Pdg_min output when Pdg_min ≤ Pload ≤ Pload_p1
조류제어모드(FFC) : Pload_p1 < Pload < Pload_p2Bird Control Mode (FFC): Pload_p1 <Pload <Pload_p2
UPC 제2모드 : Pload_P2 ≤ Pload UPC Mode 2: Pload_P2 ≤ Pload
즉, 부하량(Pload; 또는, 출력값 지령)이 제1부하(800) 설정값(Pload_p1) 미만이면, 제2에너지 저장장치(300)가 UPC 제1모드로 동작한다. 그에 따라, 제2에너지 저장장치(300; 연료전지(360))가 최소출력을 일정하게 출력하고 나머지 부하(800)는 계통전력에서 출력한다. 이때, 부하량(Pload)이 최소출력(Pdg_min) 미만이면 제2에너지 저장장치(300)가 오프되어 출력은 0이 되고, 전력계통에서 전력을 공급한다.That is, when the load amount Pload or the output value command is less than the first load 800 set value Pload_p1, the second energy storage device 300 operates in the UPC first mode. Accordingly, the second energy storage device 300 (fuel cell 360) constantly outputs the minimum output and the remaining load 800 outputs the system power. At this time, when the load amount Pload is less than the minimum output Pdg_min, the second energy storage device 300 is turned off, and the output becomes 0, and power is supplied from the power system.
부하량(Pload)이 제1부하(800) 설정값(Pload_p1) 이상이고 제2부하(800) 설정값(Pload_P2) 이하이면, 제2에너지 저장장치(300)가 조류제어모드로 동작한다. 그에 따라, 전력계통으로부터 기설정된 양(즉, 계약전력)만큼 일정하게 공급받고, 나머지 부하(800)의 전력은 제2에너지 저장장치(300)가 담당한다.If the load Pload is greater than or equal to the first load 800 set value Pload_p1 and less than or equal to the second load 800 set value Pload_P2, the second energy storage device 300 operates in the tidal current control mode. Accordingly, the power supply is constantly supplied from the power system by a predetermined amount (ie, contract power), and the power of the remaining load 800 is in charge of the second energy storage device 300.
SOC특성이 없는 제2에너지 저장장치(300)가 담당하는 부하(800)가 제2에너지 저장장치(300)의 용량을 초과할 경우에는(즉, 제2부하(800) 설정값(Pload_P2) 이상인 경우), 제2에너지 저장장치(300)가 최대출력을 내고, 연계된 전력계통으로부터 일정하게 전력을 공급받는다. 이 경우 나머지 부하(800)의 전력공급은 연계된 전력계통에서 담당하는 UPC 제2모드로 설정한다. When the load 800 of the second energy storage device 300 having no SOC characteristic exceeds the capacity of the second energy storage device 300 (that is, the second load 800 is greater than or equal to the set value Pload_P2). In the case), the second energy storage device 300 outputs the maximum output and receives constant power from the associated power system. In this case, the power supply of the remaining load 800 is set to the UPC second mode that is in charge in the associated power system.
도 9는 부하(800)와 용량을 고려한 상태에서 SOC특성이 있는 제1에너지 저장장치(200; 즉, 배터리(280))의 전력계통 연계시 운영모드를 상세하게 도식화한 것이다. 9 is a detailed diagram of the operation mode when the power system is connected to the first energy storage device 200 (that is, the battery 280) having SOC characteristics in consideration of the load 800 and capacity.
충전제어(UPC_ch)모드 : -Pload_p1<-Pload 인 경우 Pdg=-Pdg_max(충전)Charge control (UPC_ch) mode: Pdg = -Pdg_max (charge) when -Pload_p1 <-Pload
조류제어(FFC)모드 : -Pload_p1 ≤ Pload ≤ +Pload_p2Current control (FFC) mode: -Pload_p1 ≤ Pload ≤ + Pload_p2
방전제어(UPC_dis)모드 : +Pload_P2 < Pload인 경우 Pdg=+Pdg_max(방전)Discharge control (UPC_dis) mode: Pdg = + Pdg_max (discharge) when + Pload_P2 <Pload
일반적으로 SOC를 가지고 있는 에너지 저장장치(즉, 제1에너지 저장장치(200), 배터리(280))는 최소출력(Pdg_min)의 제약은 없지만, 최대출력(Pdg_max)과 SOC에 대한 제약이 존재하게 된다. 도 9에서 (+)부하(800)는 SOC를 가지고 있는 제1에너지 저장장치(200)가 방전해서 담당해야 하는 부족부하량(+Pload_p2)이며, (-)부하(800)는 SOC를 가지고 있는 제1에너지 저장장치(200)가 충전해서 담당해야 하는 잉여부하량(-Pload_p1)이다.In general, the energy storage device having the SOC (ie, the first energy storage device 200 and the battery 280) does not have a limit of the minimum output power Pdg_min, but there are restrictions on the maximum power power Pdg_max and the SOC. do. In FIG. 9, the (+) load 800 is the underload amount (+ Pload_p2) that the first energy storage device 200 having the SOC should discharge and be in charge of, and the (−) load 800 is the zero load having the SOC. 1 is the surplus load amount (-Pload_p1) that the energy storage device 200 should charge and take charge of.
잉여부하량 이상 부족부하량 이하에서 운전되는 경우 전력계통으로부터 일정한 전력을 공급받거나 수급할 수 있도록 조류제어모드로 설정하고, 부하(800) 변동량에 대한 전력공급은 SOC를 가지고 있는 제1에너지 저장장치(200)에서 담당한다. When operating under surplus load or under underload, it is set in the tidal current control mode to receive or receive a constant power from the power system, and the power supply for the load 800 variation is the first energy storage device 200 having an SOC. In charge of)
만약, |Pload|<|Pgrid_FFC(전력계통 출력 설정값)|인 경우는 SOC를 가지고 있는 제2에너지 저장장치(300)가 잉여전력 또는 부족전력에 대하여 충전 또는 방전을 한다. 즉, 부하량(Pload)이 부족부하량(+Pload_p2)를 초과하면 부하(800)가 많은 경우 SOC를 가지고 있는 제2에너지 저장장치(300)가 최대출력(+Pdg_max)으로 방전하고 나머지 부하(800)는 전력계통으로부터 전력을 공급받는 방전제어(UPC_dis)모드로 설정한다.  If | Pload | <| Pgrid_FFC (power system output set value) |, the second energy storage device 300 having the SOC charges or discharges the surplus power or the insufficient power. That is, when the load amount Pload exceeds the underload amount + Pload_p2, when the load 800 is large, the second energy storage device 300 having the SOC discharges at the maximum output power (+ Pdg_max) and the remaining load 800 Sets to the discharge control (UPC_dis) mode that receives power from the power system.
반대로 부하(800)가 적거나, 신재생에너지의 출력이 남아서 잉여전력이 SOC를 가지고 있는 분산전원(100; 배터리(280))의 충전용량을 초과하는(즉, 부하량(-Pload)가 잉여부하량(-Pload_p1)을 초과하는 경우에는 SOC를 가지고 있는 제1에너지 저장장치(200)가 최대출력(dg_max)으로 충전하고 나머지 부하(800)의 전력공급은 연계된 전력계통으로부터 공급받도록 충전제어(UPC_ch)모드로 설정한다.  On the contrary, the load 800 is small, or the output of renewable energy is left, and the surplus power exceeds the charging capacity of the distributed power supply 100 (battery 280) having the SOC (that is, the load amount (-Pload) is the excess load amount. If (-Pload_p1) is exceeded, the first energy storage device 200 having the SOC charges to the maximum output power (dg_max) and the power supply of the remaining load 800 is supplied from the associated power system. Mode).
도 10은 SOC를 가지고 있는 제1에너지 저장장치(200)와 전력계통 연계 시에 제어 운영모드를 그래프화한 것으로 전력계통의 출력 설정값(Pgrid_FFC)에 따른 제어변화를 나타낸 것이다. 도 9에서 출력 설정값이 (+)로 전력을 일정하게 공급해주는 경우 그래프 2, 3분면의 load_p1 값이 load_p1`으로 옮겨지게 되어 UPC 모드의 변환 지점이 변하게 된다. 이때, -Pload_p1인 경우 -Pdg_max grid_FFC이고, -Pload_p1`인 경우 -Pdg_max + Pgrid_FFC가 된다. 즉, SOC를 가지고 있는 제1에너지 저장장치(200)가 담당해야 하는 잉여전력이 SOC를 가지고 있는 제1에너지 저장장치(200) 용량보다 많아지는 dg_max<-Pload 경우 UPC_ch 모드로 설정, SOC를 가지고 있는 제1에너지 저장장치(200)가 최대출력(dg_max)으로 충전, 나머지 부하(800)변동의 전력공급은 연계된 전력계통으로부터 공급받는다. SOC를 가지고 있는 제1에너지 저장장치(200)가 담당해야 하는 부족전력은 도 8의 제1, 제4분면과 동일하다.FIG. 10 is a graph of a control operation mode when the first energy storage device 200 having an SOC is connected to a power system, and illustrates a control change according to an output set value Pgrid_FFC of the power system. In FIG. 9, when the output set value is positively supplied with (+), the load_p1 value of the second and third graphs of the graphs 2 and 3 are moved to load_p1`, thereby changing the conversion point of the UPC mode. At this time, if -Pload_p1, -Pdg_max grid_FFC, and if -Pload_p1`, -Pdg_max + Pgrid_FFC. That is, in the case of dg_max <-Pload in which surplus power that the first energy storage device 200 having the SOC has to be more than the capacity of the first energy storage device 200 having the SOC is set to UPC_ch mode, the SOC has the SOC. The first energy storage device 200 is charged to the maximum output (dg_max), the power supply of the remaining load 800 change is supplied from the associated power system. The insufficient power that the first energy storage device 200 having the SOC should be in charge is the same as the first and fourth quadrants of FIG. 8.
도 11은 Pgrid_FFC가 (-)전력을 일정하게 수급해가는 경우로 도 9의 제1, 제4사분면의 +Pload_p2 값이 +Pload_p2`으로 옮겨지게 되어 UPC 모드의 변환 지점이 변하게 된다. 이때, +Pload_p2인 경우 +Pdg_max + Pgrid_FFC 이고, +Pload_p2`인 경우 +Pdg_max - Pgrid_FFC이다. FIG. 11 illustrates a case in which Pgrid_FFC constantly receives (-) power, and the + Pload_p2 value of the first and fourth quadrants of FIG. 9 is moved to + Pload_p2`, thereby changing the conversion point of the UPC mode. At this time, + Pdg_max + Pgrid_FFC for + Pload_p2 and + Pdg_max-Pgrid_FFC for + Pload_p2`.
SOC를 가지고 있는 제1에너지 저장장치(200)가 담당해야 하는 부족전력이 SOC를 가지고 있는 제1에너지 저장장치(200)의 용량보다 많아지는 +Pdg_max<+Pload의 경우에 방전제어(UPC_dis)모드로 설정, SOC를 가지고 있는 제1에너지 저장장치(200)가 최대출력+Pdg_max로 방전하고, 나머지 부하(800) 변동은 연계된 전력계통으로부터 공급받는다. 이때, SOC를 가지고 있는 제1에너지 저장장치(200)가 담당해야하는 잉여전력은 도 9의 제2, 제3사분면과 동일하다. Discharge control (UPC_dis) mode in the case of + Pdg_max <+ Pload in which the insufficient power that the first energy storage device 200 having the SOC has to handle is greater than the capacity of the first energy storage device 200 having the SOC. The first energy storage device 200 having the SOC is discharged at the maximum output + Pdg_max, and the remaining load 800 variation is supplied from an associated power system. At this time, the surplus power that the first energy storage device 200 having the SOC should be in charge is the same as the second and third quadrants of FIG. 9.
본 발명의 SOC 관리는 비례-적분제어기를 이용하여 SOC가 없는 분산전원(100; 연료전지(360)) SOC를 가지고 있는 제1에너지 저장장치(200)의 SOC를 일정하게 유지하는 것으로, 도 10에서 화살표지점으로 유지되는 것이다. 이 단계에서는 우선 순간적인 부하(800)변동에 대해서 드룹제어에 의해 SOC를 가지고 있는 제1에너지 저장장치(200)가 충전 또는 방전을 한다. 이후, 제1에너지 저장장치(200)의 SOC가 제한 범위를 초과하는 경우 SOC가 없는 제2에너지 저장장치(300)가 SOC 관리를 위해 출력을 가감한다. 만약, SOC가 없는 제2에너지 저장장치(300)의 출력이 출력제한에 걸리면 조류제어모드에서 UPC모드로 설정이 변경되고, SOC가 없는 제2에너지 저장장치(300)는 Pfc_max 또는 Pfc_min로 일정한 출력을 내고, Pbtry=0, 나머지 부하(800)는 연계된 전력계통에서 전력을 공급받는다. The SOC management of the present invention maintains the SOC of the first energy storage device 200 having the SOC without the SOC by using the proportional-integral controller, FIG. 10. It is maintained at the arrow point at. In this step, first, the first energy storage device 200 having the SOC is charged or discharged by droop control with respect to the instantaneous load 800 change. Then, when the SOC of the first energy storage device 200 exceeds the limit range, the second energy storage device 300 without SOC adds or subtracts the output for SOC management. If the output of the second energy storage device 300 without SOC is subject to the output limit, the setting is changed from the tidal flow control mode to the UPC mode, and the second energy storage device 300 without SOC has a constant output as Pfc_max or Pfc_min. Pbtry = 0, the remaining load 800 is powered from the associated power system.
상술한 바와 같이, 마이크로그리드용 에너지 저장장치의 협조제어 시스템 및 방법은 마이크로그리드의 부하(800)변동량을 장주기 부하(800) 및 단주기 부하(800)로 구분하여 장주기 부하(800)는 SOC가 없고 동특성이 느린 에너지 저장장치(즉, 연료전지(360))에서 담당하고, 단주기 부하(800)는 SOC가 있는 에너지 저장장치(즉, 배터리(280))에서 담당하여 상호가 협조제어를 수행함으로써, 마이크로그리드의 전력수급 균형을 유지하고, 마이크로그리드로 내부로 유입되는 계통전력을 일정하게 유지할 수 있는 효과가 있다.As described above, the cooperative control system and method of the energy storage device for the microgrid divides the amount of variation of the microgrid load 800 into the long period load 800 and the short period load 800 so that the long period load 800 is an SOC. Energy storage device (ie, fuel cell 360), which is slow and dynamic, and the short cycle load 800 is responsible for energy storage device (ie, battery 280) with SOC. By doing so, it is possible to maintain the power supply and demand balance of the micro grid, and to maintain the system power flowing into the micro grid constantly.
또한, 마이크로그리드용 에너지 저장장치의 협조제어 시스템 및 방법은 시간에 관계없이 마이크로그리드 내부의 부하(800)변동을 에너지 저장장치가 전적으로 담당하여 부하(800)에 전력을 공급하도록 하고 이와 반대로 에너지 저장장치의 출력이 부하(800) 변동량을 초과할 경우 부하(800)변동량은 전력계통에서 담당하며, 배터리(280)는 일정한 출력을 내는 유니트 제어모드로 전환시켜서 전력수급 균형을 유지함으로써, 마이크로그리드를 안정적으로 운영할 수 있는 효과가 있다.In addition, the cooperative control system and method of the energy storage device for the microgrid, the energy storage device is solely responsible for the variation of the load 800 inside the microgrid regardless of time to supply power to the load 800 and vice versa When the output of the device exceeds the load 800 variation, the load 800 variation is taken care of by the power system, and the battery 280 switches to a unit control mode that produces a constant output to maintain the power supply balance, thereby maintaining the microgrid. It is effective to operate stably.
이상에서 본 발명에 따른 바람직한 실시예에 대해 설명하였으나, 다양한 형태로 변형이 가능하며, 본 기술분야에서 통상의 지식을 가진자라면 본 발명의 특허청구범위를 벗어남이 없이 다양한 변형예 및 수정예를 실시할 수 있을 것으로 이해된다.Although a preferred embodiment according to the present invention has been described above, it is possible to modify in various forms, and those skilled in the art to various modifications and modifications without departing from the claims of the present invention It is understood that it may be practiced.

Claims (30)

  1. 다수의 분산전원 및 에너지 저장장치들로부터 수신한 현재 출력값 및 SOC값을 근거로 SOC 특성이 없는 에너지 저장장치의 출력을 제어하기 위한 출력값 지령을 설정하는 중앙제어장치;A central controller configured to set an output value command for controlling an output of an energy storage device having no SOC characteristic based on a current output value and an SOC value received from a plurality of distributed power supplies and energy storage devices;
    현재 출력값 및 SOC값을 상기 중앙제어장치로 전송하고, 드룹제어에 의해 출력을 제어하는 제1에너지 저장장치; 및A first energy storage device for transmitting a current output value and an SOC value to the central controller, and controlling the output by droop control; And
    현재 출력값을 상기 중앙제어장치로 전송하고, 상기 중앙제어장치로부터 수신한 출력값 지령을 근거로 출력을 제어하는 제2에너지 저장장치를 포함하는 것을 특징으로 하는 마이크로그리드용 에너지 저장장치의 협조제어 시스템.And a second energy storage device which transmits a current output value to the central control device and controls the output based on an output value command received from the central control device.
  2. 청구항 1에 있어서,The method according to claim 1,
    상기 중앙제어장치는,The central control unit,
    상기 다수의 분산전원과 상기 제1에너지 저장장치 및 제2에너지 저장장치로부터 수신한 현재 출력값들을 합산하여 마이크로그리드 시스템의 부하량을 산출하는 부하량 산출부;A load calculation unit configured to calculate a load of the microgrid system by adding the plurality of distributed power supplies and current output values received from the first energy storage device and the second energy storage device;
    상기 부하량 산출부에서 산출한 부하량을 장주기 부하량 및 단주기 부하량으로 분류하는 부하량 분류부; 및A load amount classifying unit classifying the load amount calculated by the load amount calculating unit into a long period load amount and a short period load amount; And
    상기 부하량 분류부에서 분류된 장주기 부하량 및 상기 제1에너지 저장장치로부터의 SOC값을 근거로 출력값 지령을 설정하고, 상기 제2에너지 저장장치로 상기 출력값 지령을 전송하도록 제어하는 제어부를 포함하는 것을 특징으로 하는 마이크로그리드용 에너지 저장장치의 협조제어 시스템.And a controller configured to set an output value command based on the long period load amount classified by the load amount classification unit and the SOC value from the first energy storage device, and transmit the output value command to the second energy storage device. Cooperative control system for microgrid energy storage device.
  3. 청구항 2에 있어서,The method according to claim 2,
    상기 부하량 분류부는 저대역통과필터를 포함하는 것을 특징으로 하는 마이크로그리드용 에너지 저장장치의 협조제어 시스템.And the load classifying unit comprises a low pass filter.
  4. 청구항 3에 있어서,The method according to claim 3,
    상기 부하량 분류부는,The load amount classification unit,
    상기 부하량 산출부에서 산출한 부하량이 상기 저대역통과필터를 통과하면 장주기 부하량으로 분류하는 것을 특징으로 하는 마이크로그리드용 에너지 저장장치의 협조제어 시스템.And if the load calculated by the load calculation unit passes through the low pass filter, classify the load into a long period load amount.
  5. 청구항 2에 있어서,The method according to claim 2,
    상기 제어부는,The control unit,
    상기 제1에너지 저장장치로부터 수신한 SOC값과 상기 부하량 분류부에서 분류된 장주기 부하량을 합산하여 산출한 값을 상기 제2에너지 저장장치의 출력값 지령으로 설정하는 것을 특징으로 하는 마이크로그리드용 에너지 저장장치의 협조제어 시스템.The energy storage device for the microgrid, wherein the SOC value received from the first energy storage device and the long period load amount classified by the load classification unit are set as an output value command of the second energy storage device. Cooperative control system.
  6. 청구항 1에 있어서,The method according to claim 1,
    상기 제1에너지 저장장치는 SOC 특성이 있는 배터리를 포함하고, 상기 제2에너지 저장장치는 SOC 특성이 없는 연료전지를 포함하는 것을 특징으로 하는 마이크로그리드용 에너지 저장장치의 협조제어 시스템.And the first energy storage device includes a battery having SOC characteristics, and the second energy storage device includes a fuel cell having no SOC characteristics.
  7. 청구항 1에 있어서,The method according to claim 1,
    상기 제1에너지 저장장치는 드룹제어에 의한 지역제어를 통해 출력을 제어하는 것을 특징으로 하는 마이크로그리드용 에너지 저장장치의 협조제어 시스템.The first energy storage device is a cooperative control system of the energy storage device for a micro grid, characterized in that for controlling the output through the local control by the droop control.
  8. 청구항 1에 있어서,The method according to claim 1,
    상기 제1에너지 저장장치는,The first energy storage device,
    상기 중앙제어장치로부터의 부하량을 근거로 상기 제1에너지 저장장치의 출력 기준값을 설정하는 기준값 설정부;A reference value setting unit for setting an output reference value of the first energy storage device based on the load amount from the central controller;
    상기 중앙제어장치에서 산출한 부하량이 단주기 부하량이면 상기 부하량과 상기 출력 기준값을 비교하여 상기 제1에너지 저장장치의 제어모드를 설정하는 제어모드 설정부; 및A control mode setting unit configured to set a control mode of the first energy storage device by comparing the load amount with the output reference value when the load amount calculated by the central controller is a short period load amount; And
    상기 제어모드 설정부에서 설정된 제어모드에 따라 제1에너지 저장장치의 출력을 제어하는 출력 제어부를 포함하는 것을 특징으로 하는 마이크로그리드용 에너지 저장장치의 협조제어 시스템.And an output control unit for controlling the output of the first energy storage device in accordance with the control mode set by the control mode setting unit.
  9. 청구항 8에 있어서,The method according to claim 8,
    상기 기준값 설정부는,The reference value setting unit,
    잉여부하량 및 부족 부하량을 포함하는 출력 설정값을 설정하는 것을 특징으로 하는 마이크로그리드용 에너지 저장장치의 협조제어 시스템.A cooperative control system for an energy storage device for a microgrid, characterized by setting an output set value including an excess load and an underload.
  10. 청구항 9에 있어서,The method according to claim 9,
    상기 제어모드 설정부는,The control mode setting unit,
    상기 부하량이 잉여 부하량 미만이면 충전 제어모드로 설정하고, 상기 부하량이 잉여 부하량 이상 부족 부하량 이하이면 조류 제어모드로 설정하고, 상기 부하량이 상기 부족 부하량을 초과하면 방전 제어모드로 설정하는 것을 특징으로 하는 마이크로그리드용 에너지 저장장치의 협조제어 시스템.If the load amount is less than the excess load amount is set to the charge control mode, if the load amount is more than the excess load amount or less than the insufficient load amount is set to the tidal current control mode, and if the load amount exceeds the insufficient load amount is set to the discharge control mode, characterized in that Cooperative control system of energy storage device for microgrid.
  11. 청구항 10에 있어서,The method according to claim 10,
    상기 출력 제어부는,The output control unit,
    상기 제어모드 설정부에서 충전 제어모드로 설정되면 최대출력으로 충전하도록 상기 제1에너지 저장장치를 제어하고, 상기 제어모드 설정부에서 조류제어모드로 설정되면 전력계통에서 기설정된 전력량을 제외한 부하 변동량에 대한 전력을 출력하도록 상기 제1에너지 저장장치를 제어하고, 상기 제어모드 설정부에서 방전 제어모드로 설정되면 최대출력으로 방전하도록 상기 제1에너지 저장장치를 제어하는 것을 특징으로 하는 마이크로그리드용 에너지 저장장치의 협조제어 시스템.When the control mode setting unit is set to the charging control mode, the first energy storage device is controlled to charge at the maximum output, and when the control mode setting unit is set to the tidal current control mode, the load fluctuation amount excluding the power amount preset in the power system. Controlling the first energy storage device to output power for the microgrid, and controlling the first energy storage device to discharge at the maximum output when the control mode setting unit is set to the discharge control mode. Cooperative control system of the device.
  12. 청구항 1에 있어서,The method according to claim 1,
    상기 제2에너지 저장장치는,The second energy storage device,
    상기 중앙제어장치로부터 수신한 출력값 지령 및 부하 설정값을 근거로 상기 제2에너지 저장장치의 제어모드를 설정하는 제어모드 설정부; 및A control mode setting unit for setting a control mode of the second energy storage device based on an output value command and a load setting value received from the central controller; And
    상기 제어모드 설정부에서 설정된 제어모드에 따라 제2에너지 저장장치의 출력을 제어하는 출력 제어부를 포함하는 것을 특징으로 하는 마이크로그리드용 에너지 저장장치의 협조제어 시스템.And an output control unit for controlling the output of the second energy storage device in accordance with the control mode set by the control mode setting unit.
  13. 청구항 12에 있어서,The method according to claim 12,
    상기 제어모드 설정부는,The control mode setting unit,
    상기 출력값 지령이 제1부하 설정값 미만이면 UPC 제1모드로 설정하고, 상기 출력값 지령이 상기 제1부하 설정값 이상이고 제2부하 설정값 이하이면 조류제어모드로 설정하고, 상기 출력값 지령이 상기 제2부하 설정값을 초과하면 UPC 제2모드로 설정하는 것을 특징으로 하는 마이크로그리드용 에너지 저장장치의 협조제어 시스템.If the output value command is less than the first load setting value, set to UPC first mode, and if the output value command is greater than or equal to the first load setting value and less than or equal to the second load setting value, set to the tidal current control mode, and the output value command is set to the When the second load setting value is exceeded, the microgrid energy storage device for cooperative control system, characterized in that the setting in the UPC second mode.
  14. 청구항 13에 있어서,The method according to claim 13,
    상기 제1부하 설정값은 상기 제2에너지 저장장치의 최소출력값과 전력계통 유입 전력량을 합산한 값이고, 상기 제2부하 설정값은 상기 제2에너지 저장장치의 최대출력값과 상기 전력계통 유입 전력량을 합산한 값인 것을 특징으로 하는 마이크로그리드용 에너지 저장장치의 협조제어 시스템.The first load setting value is the sum of the minimum output value of the second energy storage device and the power system inflow power amount, and the second load setting value is the maximum output value of the second energy storage device and the power system inflow power amount. Cooperative control system of the energy storage device for a micro grid, characterized in that the sum.
  15. 청구항 13에 있어서,The method according to claim 13,
    상기 출력 제어부는,The output control unit,
    상기 제어모드 설정부에서 UPC 제1모드로 설정되면 최소출력으로 전력을 출력하도록 상기 제2에너지 저장장치를 제어하고, When the control mode setting unit is set to the UPC first mode, and controls the second energy storage device to output power at the minimum output,
    상기 제어모드 설정부에서 조류제어모드로 설정되면 기설정된 전력을 전력계통에서 출력하고 상기 부하량에서 전력계통에서 출력된 전력을 차감한 부하의 전력을 제2에너지 저장장치에서 출력하도록 제어하고,When the control mode setting unit is set to the tidal flow control mode, the control unit outputs the preset power from the power system and outputs the power of the load from the load, subtracting the power output from the power system, from the second energy storage device.
    상기 제어모드 설정부에서 UPC 제2모드로 설정되면 최대출력으로 전력을 출력하도록 상기 제2에너지 저장장치를 제어하는 것을 특징으로 하는 마이크로그리드용 에너지 저장장치의 협조제어 시스템.When the control mode setting unit is set to the UPC second mode, the cooperative control system of the energy storage device for a micro grid, characterized in that for controlling the second energy storage device to output power at the maximum output.
  16. 청구항 15에 있어서,The method according to claim 15,
    상기 출력 제어부는,The output control unit,
    상기 UPC 제모드로 설정되고 상기 출력값 지령 상기 제2에너지 저장장치의 최소출력 미만이면 상기 제2에너지 저장장치의 출력이 0이 되도록 제어하고,When the UPC mode is set and the output value command is less than the minimum output of the second energy storage device, the output of the second energy storage device is controlled to be 0.
    상기 UPC 제모드로 설정되고 상기 출력값 지령 상기 제2에너지 저장장치의 최소출력 이상이고 제1부하 설정값 미만이면 상기 제2에너지 저장장치가 최소출력으로 출력하도록 제어하는 것을 특징으로 하는 마이크로그리드용 에너지 저장장치의 협조제어 시스템.When the UPC mode is set and the output value command is greater than or equal to the minimum output of the second energy storage device and is less than the first load set value, the second energy storage device is controlled to output at the minimum output energy. Cooperative control system of storage device.
  17. 다수의 분산전원과 제1에너지 저장장치 및 제2에너지 저장장치로부터 현재 출력값 및 SOC값을 수신하는 단계;Receiving a current output value and an SOC value from the plurality of distributed power supplies, the first energy storage device and the second energy storage device;
    상기 다수의 분산전원과 상기 제1에너지 저장장치 및 제2에너지 저장장치로부터 수신한 현재 출력값들을 근거로 마이크로그리드 시스템의 부하량을 산출하는 단계;Calculating a load of a microgrid system based on the plurality of distributed power supplies and current output values received from the first energy storage device and the second energy storage device;
    상기 산출한 부하량을 장주기 부하량 및 단주기 부하량으로 분류하는 단계;Classifying the calculated load into a long period load and a short period load;
    상기 분류된 장주기 부하량 및 상기 제1에너지 저장장치로부터의 SOC값을 근거로 상기 제2에너지 저장장치의 출력값 지령을 설정하는 단계; 및Setting an output value command of the second energy storage device based on the classified long period load amount and the SOC value from the first energy storage device; And
    상기 설정된 출력값 지령을 근거로 제2에너지 저장장치의 출력을 제어하는 단계를 포함하는 것을 특징으로 하는 마이크로그리드용 에너지 저장장치의 협조제어 방법.And controlling the output of the second energy storage device based on the set output value command.
  18. 청구항 17에 있어서,The method according to claim 17,
    상기 부하량을 산출하는 단계에서는,In the step of calculating the load amount,
    상기 다수의 분산전원과 상기 제1에너지 저장장치 및 제2에너지 저장장치로부터 수신한 현재 출력값들을 합산하여 마이크로그리드 시스템의 부하량을 산출하는 것을 특징으로 하는 마이크로그리드용 에너지 저장장치의 협조제어 방법.And calculating a load of the microgrid system by adding the plurality of distributed power supplies and current output values received from the first energy storage device and the second energy storage device.
  19. 청구항 17에 있어서,The method according to claim 17,
    상기 장주기 부하량 및 단주기 부하량으로 분류하는 단계에서는,In the step of classifying the long period load and the short period load,
    상기 산출한 부하량이 저대역통과필터를 통과하면 장주기 부하량으로 분류하는 것을 특징으로 하는 마이크로그리드용 에너지 저장장치의 협조제어 방법.And if the calculated load passes a low pass filter, the load is classified into a long period load amount.
  20. 청구항 17에 있어서,The method according to claim 17,
    상기 출력값 지령을 설정하는 단계에서는,In the step of setting the output value command,
    상기 제1에너지 저장장치로부터 수신한 SOC값과 상기 분류된 장주기 부하량을 합산하여 산출한 값을 상기 제2에너지 저장장치의 출력값 지령으로 설정하는 것을 특징으로 하는 마이크로그리드용 에너지 저장장치의 협조제어 방법.And a value calculated by summing the SOC value received from the first energy storage device and the classified long period load amount as an output value command of the second energy storage device. .
  21. 청구항 17에 있어서,The method according to claim 17,
    상기 제2에너지 저장장치의 출력을 제어하는 단계에서는,In the controlling of the output of the second energy storage device,
    상기 출력값 지령이 제1부하 설정값 미만이면 UPC 제1모드로 설정하고, 상기 출력값 지령이 상기 제1부하 설정값 이상이고 제2부하 설정값 이하이면 조류제어모드로 설정하고, 상기 출력값 지령이 상기 제2부하 설정값을 초과하면 UPC 제2모드로 설정하는 것을 특징으로 하는 마이크로그리드용 에너지 저장장치의 협조제어 방법.If the output value command is less than the first load setting value, set to UPC first mode, and if the output value command is greater than or equal to the first load setting value and less than or equal to the second load setting value, set to the tidal current control mode, and the output value command is set to the If the second load setting value is exceeded, the control mode of the microgrid energy storage device, characterized in that the setting in the UPC second mode.
  22. 청구항 21에 있어서,The method according to claim 21,
    상기 제1부하 설정값은 상기 제2에너지 저장장치의 최소출력값과 전력계통 유입 전력량을 합산한 값이고, 상기 제2부하 설정값은 상기 제2에너지 저장장치의 최대출력값과 상기 전력계통 유입 전력량을 합산한 값인 것을 특징으로 하는 마이크로그리드용 에너지 저장장치의 협조제어 방법.The first load setting value is the sum of the minimum output value of the second energy storage device and the power system inflow power amount, and the second load setting value is the maximum output value of the second energy storage device and the power system inflow power amount. A cooperative control method for an energy storage device for microgrids, which is a sum value.
  23. 청구항 21에 있어서,The method according to claim 21,
    상기 제2에너지 저장장치의 출력을 제어하는 단계에서는,In the controlling of the output of the second energy storage device,
    상기 UPC 제1모드로 설정되면 최소출력으로 전력을 출력하도록 상기 제2에너지 저장장치를 제어하고, 상기 조류제어모드로 설정되면 기설정된 전력을 전력계통에서 출력하고 상기 부하량에서 전력계통에서 출력된 전력을 차감한 부하의 전력을 제2에너지 저장장치에서 출력하도록 제어하고, 상기 UPC 제2모드로 설정되면 최대출력으로 전력을 출력하도록 상기 제2에너지 저장장치를 제어하는 것을 특징으로 하는 마이크로그리드용 에너지 저장장치의 협조제어 방법.When the first mode is set to the UPC, the second energy storage device is controlled to output power at a minimum output. When the current control mode is set to the tidal current control mode, the preset power is output from the power system and the power output from the power system. Controlling the second energy storage device to output the power of the load subtracted from the second energy storage device, and outputting power at the maximum output when the UPC is set to the second mode. Cooperative control method of storage device.
  24. 청구항 21에 있어서,The method according to claim 21,
    상기 제2에너지 저장장치의 출력을 제어하는 단계에서는,In the controlling of the output of the second energy storage device,
    상기 UPC 제모드로 설정되고 상기 출력값 지령 상기 제2에너지 저장장치의 최소출력 미만이면 상기 제2에너지 저장장치의 출력이 0이 되도록 제어하고,When the UPC mode is set and the output value command is less than the minimum output of the second energy storage device, the output of the second energy storage device is controlled to be 0.
    상기 UPC 제모드로 설정되고 상기 출력값 지령 상기 제2에너지 저장장치의 최소출력 이상이고 제1부하 설정값 미만이면 상기 제2에너지 저장장치가 최소출력으로 출력하도록 제어하는 것을 특징으로 하는 마이크로그리드용 에너지 저장장치의 협조제어 방법.When the UPC mode is set and the output value command is greater than or equal to the minimum output of the second energy storage device and is less than the first load set value, the second energy storage device is controlled to output at the minimum output energy. Cooperative control method of storage device.
  25. 청구항 17에 있어서,The method according to claim 17,
    드룹제어에 의한 지역제어를 통해 제1에너지 저장장치의 출력을 제어하는 단계를 더 포함하는 것을 특징으로 하는 마이크로그리드용 에너지 저장장치의 협조제어 방법.And cooperatively controlling the output of the first energy storage device through the local control by the droop control.
  26. 청구항 25에 있어서,The method according to claim 25,
    상기 제1에너지 저장장치의 출력을 제어하는 단계에서는,In the controlling of the output of the first energy storage device,
    상기 산출한 부하량을 근거로 상기 제1에너지 저장장치의 출력 기준값을 설정하는 단계;Setting an output reference value of the first energy storage device based on the calculated load amount;
    상기 산출한 부하량이 단주기 부하량이면 상기 부하량과 상기 산출한 출력 기준값을 비교하여 상기 제1에너지 저장장치의 제어모드를 설정하는 단계; 및Setting the control mode of the first energy storage device by comparing the load amount with the calculated output reference value when the calculated load amount is a short period load amount; And
    상기 제어모드에 따라 상기 제1에너지 저장장치의 출력을 PI 제어하는 단계를 포함하는 것을 특징으로 하는 마이크로그리드용 에너지 저장장치의 협조제어 방법.And co-controlling the output of the first energy storage device according to the control mode.
  27. 청구항 26에 있어서,The method of claim 26,
    상기 출력 기준값을 설정하는 단계에서는,In the step of setting the output reference value,
    잉여부하량 및 부족 부하량을 포함하는 출력 설정값을 설정하는 것을 특징으로 하는 마이크로그리드용 에너지 저장장치의 협조제어 방법.A cooperative control method for an energy storage device for a microgrid, characterized by setting an output set value including an excess load amount and an underload amount.
  28. 청구항 26에 있어서,The method of claim 26,
    상기 제1에너지 저장장치의 제어모드를 설정하는 단계에서는,In setting the control mode of the first energy storage device,
    상기 부하량이 잉여 부하량 미만이면 충전 제어모드로 설정하고, 상기 부하량이 잉여 부하량 이상 부족 부하량 이하이면 조류 제어모드로 설정하고, 상기 부하량이 상기 부족 부하량을 초과하면 방전 제어모드로 설정하는 것을 특징으로 하는 마이크로그리드용 에너지 저장장치의 협조제어 방법.If the load amount is less than the excess load amount is set to the charge control mode, if the load amount is more than the excess load amount or less than the insufficient load amount is set to the tidal current control mode, and if the load amount exceeds the insufficient load amount is set to the discharge control mode, characterized in that Cooperative control method of energy storage device for microgrid.
  29. 청구항 26에 있어서,The method of claim 26,
    상기 제1에너지 저장장치의 출력을 제어하는 단계에서는,In the controlling of the output of the first energy storage device,
    상기 충전 제어모드로 설정되면 최대출력으로 충전하도록 상기 제1에너지 저장장치를 제어하고, 상기 조류제어모드로 설정되면 전력계통에서 기설정된 전력량을 제외한 부하 변동량에 대한 전력을 출력하도록 상기 제1에너지 저장장치를 제어하고, 상기 방전 제어모드로 설정되면 최대출력으로 방전하도록 상기 제1에너지 저장장치를 제어하는 것을 특징으로 하는 마이크로그리드용 에너지 저장장치의 협조제어 방법.When the charging control mode is set, the first energy storage device is controlled to charge at the maximum output power. When the charging control mode is set, the first energy storage device is configured to output power for a load fluctuation amount excluding a predetermined power amount in a power system. And controlling the first energy storage device to discharge the device at maximum output when the device is set to the discharge control mode.
  30. 청구항 17에 있어서,The method according to claim 17,
    상기 현재 출력값 및 SOC값을 수신하는 단계에서는,In the step of receiving the current output value and SOC value,
    상기 다수의 분산전원으로부터 현재 출력값들을 수신하는 단계Receiving current output values from the plurality of distributed power supplies
    SOC 특성이 있는 상기 제1에너지 저장장치로부터 현재 출력값 및 SOC값을 수신하는 단계; 및Receiving a current output value and SOC value from the first energy storage device having SOC characteristics; And
    SOC 특성이 없는 상기 제2에너지 저장장치로부터 현재 출력값을 수신하는 단계를 포함하는 것을 특징으로 하는 마이크로그리드용 에너지 저장장치의 협조제어 방법.And receiving a current output value from the second energy storage device having no SOC characteristic.
PCT/KR2011/004915 2011-07-05 2011-07-05 Coordination control system and method for a micro-grid energy storage device WO2013005875A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2011-0066233 2011-07-05
KR1020110066233A KR101219883B1 (en) 2011-07-05 2011-07-05 The coordinated control system and method of energy storage device

Publications (1)

Publication Number Publication Date
WO2013005875A1 true WO2013005875A1 (en) 2013-01-10

Family

ID=47437207

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2011/004915 WO2013005875A1 (en) 2011-07-05 2011-07-05 Coordination control system and method for a micro-grid energy storage device

Country Status (2)

Country Link
KR (1) KR101219883B1 (en)
WO (1) WO2013005875A1 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103311940A (en) * 2013-07-08 2013-09-18 东南大学 Integrated control method for micro-grid load and energy accumulation
CN103825363A (en) * 2014-02-26 2014-05-28 中国农业大学 Wind-solar low voltage storage micro-grid group protection coordinating controller
WO2015144194A1 (en) 2014-03-24 2015-10-01 Abb Technology Ltd Control of energy storages in a microgrid
CN106712093A (en) * 2017-01-23 2017-05-24 南京理工大学 Island parallel operation control method based on high-capacity energy storage system
NO20190300A1 (en) * 2019-03-05 2020-09-07 Altered Power As SYSTEM FOR WIRELESS POWER SHARING IN MICRO GRIDS
CN111725825A (en) * 2020-06-28 2020-09-29 江苏科技大学 Hybrid energy storage coordination control method based on droop control
WO2021070989A1 (en) * 2019-10-11 2021-04-15 재단법인 녹색에너지연구원 Dc-based power sharing industrial complex micro grid operating method and program therefor

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101698831B1 (en) 2015-10-06 2017-02-13 한국에너지기술연구원 Apparatus for providing Stability of Power for emergency and Method for controlling the same
KR101699034B1 (en) 2016-06-16 2017-01-23 (주)그린정보시스템 Apparatus for intelligent automatic control and method for controlling the same
KR101995255B1 (en) 2017-10-24 2019-07-03 주식회사 윈텍오토메이션 DC autonomous distribution control system for efficient power transmission and distribution between loads in a micro grid and its operation method
KR102223625B1 (en) 2018-12-13 2021-03-05 한국전력공사 System and Method for Controlling Virtual Multi Slack Droop Based on Power Sensitivity Analysis
KR102226727B1 (en) * 2018-12-27 2021-03-12 한국에너지기술연구원 Energy control device and energy control method for improving stability of power system
KR102011886B1 (en) 2019-01-18 2019-08-21 주식회사 윈텍오토메이션 DC autonomous distributed control system in DC microgrid and its operation method
KR102182117B1 (en) 2020-01-20 2020-11-23 주식회사 그린이엔에스 LVDC smart distribution panelboard and Method for operating the same

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008086109A (en) * 2006-09-27 2008-04-10 Matsushita Electric Ind Co Ltd Power supply system, network system, control method for network system, and control program for power supply system of network system
KR20090029055A (en) * 2007-09-17 2009-03-20 한국전기연구원 Control method for microgrid including multiple distributed generation and energy storage device
JP2009063502A (en) * 2007-09-07 2009-03-26 Seiko Epson Corp Battery remaining capacity management system and its control method
KR20110034510A (en) * 2009-09-28 2011-04-05 한국전력공사 System and method for estimating battery capacity of microgrid

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008086109A (en) * 2006-09-27 2008-04-10 Matsushita Electric Ind Co Ltd Power supply system, network system, control method for network system, and control program for power supply system of network system
JP2009063502A (en) * 2007-09-07 2009-03-26 Seiko Epson Corp Battery remaining capacity management system and its control method
KR20090029055A (en) * 2007-09-17 2009-03-20 한국전기연구원 Control method for microgrid including multiple distributed generation and energy storage device
KR20110034510A (en) * 2009-09-28 2011-04-05 한국전력공사 System and method for estimating battery capacity of microgrid

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103311940A (en) * 2013-07-08 2013-09-18 东南大学 Integrated control method for micro-grid load and energy accumulation
CN103825363A (en) * 2014-02-26 2014-05-28 中国农业大学 Wind-solar low voltage storage micro-grid group protection coordinating controller
CN103825363B (en) * 2014-02-26 2015-11-18 中国农业大学 A kind of wind-light storage low pressure micro-capacitance sensor group protection coordination controller
WO2015144194A1 (en) 2014-03-24 2015-10-01 Abb Technology Ltd Control of energy storages in a microgrid
US9762066B2 (en) 2014-03-24 2017-09-12 Abb Schweiz Ag Control of energy storages in a microgrid
CN106712093A (en) * 2017-01-23 2017-05-24 南京理工大学 Island parallel operation control method based on high-capacity energy storage system
CN106712093B (en) * 2017-01-23 2019-06-25 南京理工大学 The control method of isolated island parallel running based on large capacity energy-storage system
NO20190300A1 (en) * 2019-03-05 2020-09-07 Altered Power As SYSTEM FOR WIRELESS POWER SHARING IN MICRO GRIDS
NO345319B1 (en) * 2019-03-05 2020-12-07 Altered Power As System for wireless power sharing in micro grids
WO2021070989A1 (en) * 2019-10-11 2021-04-15 재단법인 녹색에너지연구원 Dc-based power sharing industrial complex micro grid operating method and program therefor
CN111725825A (en) * 2020-06-28 2020-09-29 江苏科技大学 Hybrid energy storage coordination control method based on droop control

Also Published As

Publication number Publication date
KR101219883B1 (en) 2013-01-09

Similar Documents

Publication Publication Date Title
WO2013005875A1 (en) Coordination control system and method for a micro-grid energy storage device
WO2019225834A1 (en) Power supply control system and method using energy storage device and photovoltaic power generation
WO2012043919A1 (en) Power conversion system for energy storage system and controlling method of the same
WO2017043751A1 (en) Stand-alone micro-grid autonomous control system and method
WO2018056504A1 (en) Method for controlling frequency of stand-alone microgrid and power converter for energy storage device for controlling same
US20200286190A1 (en) System and Method for Controlling a Stand-Alone Direct Current Power System
WO2011059132A1 (en) Power transaction system and transaction method of distributed power
WO2018074651A1 (en) Operating device and method for energy storage device for microgrid
WO2018026233A1 (en) Current transformer module and power supply comprising same
WO2015102396A1 (en) Method and apparatus for distributing power in energy storage system
WO2018212404A1 (en) Hybrid energy storage system
WO2019143023A1 (en) Grid voltage stabilization system
WO2016208974A1 (en) Large capacity battery system for power system frequency regulation and large capacity battery operation method
WO2019031686A1 (en) Energy storage system
WO2018230831A1 (en) Energy storage system
WO2019107806A1 (en) Hierarchical power control system
WO2017116084A1 (en) Power supply control method and system
WO2014046466A1 (en) Device and method for cooperation control of ems and dms
WO2019107802A1 (en) Energy storage system
WO2017159982A1 (en) Microgrid operation system and method
WO2018135716A1 (en) Energy storage device and energy storage system including same
WO2022196846A1 (en) Energy storage system hierarchical management system
CN109901079B (en) Remote capacity checking method and system for storage battery of electric direct-current power supply
WO2021034066A1 (en) Power charging and discharging apparatus having uninterruptible power supply function, and energy storage system including same
WO2013125909A1 (en) Device and method for scheduling power storage devices

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11868998

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11868998

Country of ref document: EP

Kind code of ref document: A1