WO2013005821A1 - Image display apparatus, protection film, and method of manufacturing protection film - Google Patents

Image display apparatus, protection film, and method of manufacturing protection film Download PDF

Info

Publication number
WO2013005821A1
WO2013005821A1 PCT/JP2012/067274 JP2012067274W WO2013005821A1 WO 2013005821 A1 WO2013005821 A1 WO 2013005821A1 JP 2012067274 W JP2012067274 W JP 2012067274W WO 2013005821 A1 WO2013005821 A1 WO 2013005821A1
Authority
WO
WIPO (PCT)
Prior art keywords
image display
protective film
film
angle
display unit
Prior art date
Application number
PCT/JP2012/067274
Other languages
French (fr)
Japanese (ja)
Inventor
祐也 北出
大輔 山川
佑輔 高橋
佳美 杉浦
Original Assignee
Dic株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2011150837A external-priority patent/JP2013019941A/en
Priority claimed from JP2012053029A external-priority patent/JP2013185121A/en
Application filed by Dic株式会社 filed Critical Dic株式会社
Priority to KR1020147003273A priority Critical patent/KR20140045543A/en
Priority to CN201280043470.5A priority patent/CN103782229A/en
Publication of WO2013005821A1 publication Critical patent/WO2013005821A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B5/00Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts
    • B32B5/02Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by structural features of a fibrous or filamentary layer
    • B32B5/024Woven fabric
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B1/00Optical elements characterised by the material of which they are made; Optical coatings for optical elements
    • G02B1/10Optical coatings produced by application to, or surface treatment of, optical elements
    • G02B1/14Protective coatings, e.g. hard coatings
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/30Layered products comprising a layer of synthetic resin comprising vinyl (co)polymers; comprising acrylic (co)polymers
    • B32B27/308Layered products comprising a layer of synthetic resin comprising vinyl (co)polymers; comprising acrylic (co)polymers comprising acrylic (co)polymers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B7/00Layered products characterised by the relation between layers; Layered products characterised by the relative orientation of features between layers, or by the relative values of a measurable parameter between layers, i.e. products comprising layers having different physical, chemical or physicochemical properties; Layered products characterised by the interconnection of layers
    • B32B7/04Interconnection of layers
    • B32B7/12Interconnection of layers using interposed adhesives or interposed materials with bonding properties
    • G02B1/105
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/13363Birefringent elements, e.g. for optical compensation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2457/00Electrical equipment
    • B32B2457/20Displays, e.g. liquid crystal displays, plasma displays
    • B32B2457/202LCD, i.e. liquid crystal displays
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/30Polarising elements
    • G02B5/3083Birefringent or phase retarding elements
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/133308Support structures for LCD panels, e.g. frames or bezels
    • G02F1/133311Environmental protection, e.g. against dust or humidity
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/133308Support structures for LCD panels, e.g. frames or bezels
    • G02F1/133331Cover glasses
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/13363Birefringent elements, e.g. for optical compensation
    • G02F1/133635Multifunctional compensators

Definitions

  • the present invention includes an image display module in which light emitted from the image display unit is linearly polarized light, and a transparent panel provided on an upper portion of the image display module, and a protective film is attached to at least one surface of the transparent panel.
  • the present invention relates to an image display apparatus. Moreover, this invention relates to the manufacturing method of the protective film used for the said image display apparatus, and the said protective film.
  • Image display devices such as liquid crystal displays (LCD) and organic EL displays are used in a wide range of fields including personal computers.
  • LCD liquid crystal displays
  • organic EL displays are used in a wide range of fields including personal computers.
  • electronic notebooks, cellular phones, portable audio players, and the like have been increasingly reduced in size and thickness in recent years, and further, there has been a demand for higher definition due to support for moving image playback functions and the like.
  • an image display image display module such as an LCD module or an organic EL module is included in the configuration, and a transparent panel that protects the image display image display module above the image display image display module Is used.
  • glass panels are often used as the above transparent panels for the purpose of improving the design and texture of electronic devices, and transparent panels are used to prevent damage to glass and to prevent glass from scattering when broken. (See, for example, Patent Document 1).
  • the emitted light is often linearly polarized due to the configuration of the module. Therefore, when viewing an image using polarized sunglasses or the like, there is a problem that the emitted linearly polarized light is orthogonal to the polarized sunglasses and the image cannot be seen.
  • the problem to be solved by the present invention is to realize an image display device capable of visually recognizing an image through polarized sunglasses even when a protective film for preventing panel scattering and scratches is provided.
  • the present invention has an object to provide a method for easily and inexpensively manufacturing a protective film that allows a user to visually recognize an image even when viewed through polarized sunglasses and to prevent panel scattering and scratches. To do.
  • the protective film of the transparent panel is a protective film based on a biaxially stretched resin film, and on the surface of the image display module, the polarization direction of linearly polarized light emitted from the image display unit, and biaxially stretched
  • the angle ⁇ 1 formed by one orientation axis direction of the resin film and the angle ⁇ 2 formed by the polarization direction of the linearly polarized light emitted from the image display unit and the other orientation axis direction of the biaxially stretched resin film are both The above-mentioned problem is solved by an image display device having an angle of 15 to 75 °.
  • the present invention provides an image display device having an image display module in which light emitted from the image display unit is linearly polarized light and a transparent panel provided on an upper portion of the image display module, and is attached to at least one surface of the transparent panel.
  • a method of manufacturing a protective film to be attached wherein the protective film is a protective film having a film base layer made of a biaxially stretched polyethylene-based resin film, And a step of obtaining a protective film having a substantially rectangular shape, and when the transparent panel having the protective film attached to the upper part of the image display module is provided in the punching process to the substantially rectangular shape,
  • the angle ⁇ 1 formed by the polarization axis of the linearly polarized light emitted and one of the orientation axes of the molecules of the film base material layer, and the light emitted from the image display unit The method for manufacturing a polarization axis and the protective film the other alignment axis and the angle ⁇ 2 of the molecules of the film substrate layer is punched to be 15 ⁇
  • the biaxially stretched resin film is used as a base material, so that the refractive index is increased in the two stretched axial directions. Further, by setting the orientation axis direction and the polarization direction of the linearly polarized light emitted from the image display module to 15 to 75 °, when the linearly polarized light is transmitted through the protective film, the influence of a plurality of refractive indexes is exerted.
  • Polarized sunglasses can be transmitted by rotating linearly polarized light.
  • the light transmittance is not lowered and the thickness of the image display portion is not increased.
  • the present invention uses a biaxially stretched protective film for the transparent panel as a base material, not only the optical rotation of light but also the scratch resistance and durability against impacts required for the protective film. Excellent.
  • a general-purpose biaxially stretched polyethylene resin film can be used as a base material, and a protective film having a desired optical axis can be obtained from the entire raw film of the protective film.
  • the manufacturing method of the present invention when the emitted light is used for the transparent panel of the linearly polarized image display device, the image can be satisfactorily viewed through the polarized sunglasses, and the panel is preferably scattered or damaged.
  • the protective film which can be prevented can be manufactured easily and inexpensively.
  • the present invention includes an image display module in which light emitted from the image display unit is linearly polarized light, and a transparent panel provided on an upper portion of the image display module, and a protective film is attached to at least one surface of the transparent panel.
  • the protective film is a protective film having a biaxially stretched resin film as a base material, and on the surface of the image display surface, the polarization direction of linearly polarized light emitted from the image display unit, An angle ⁇ 1 formed by one orientation axis direction of the axially stretched resin film, and an angle ⁇ 2 formed by the polarization direction of linearly polarized light emitted from the image display unit and the other orientation axis direction of the biaxially stretched resin film, Are both 15 to 75 °.
  • the image display module in the present invention is not particularly limited as long as the emitted light from the image display unit is linearly polarized light, and examples thereof include an LCD module and an organic EL module.
  • the module of the present invention also includes a module laminate in which a touch panel module or the like is provided on the upper part of these modules.
  • the shape of the image display unit of the image display module is preferably a substantially square shape.
  • the substantially square shape facilitates incorporation into various display devices, particularly small electronic terminals.
  • the substantially square shape means a rectangular or square square shape (FIG. 1 (a)), as well as a shape in which arbitrary corners of the square shape, preferably four corners are chamfered (FIG. 1 (b)). , (C)) and the like approximate to a square shape.
  • the polarization direction of linearly polarized light in the present invention is an image display device having a transparent panel 2 above an image display module 1 that emits linearly polarized light 3, and the transparent panel 2 is a surface layer of the image display device.
  • the polarization direction 5 (polarization axis) of the linearly polarized light 3 on the image display surface 4 is referred to.
  • an angle ⁇ 1 formed by the polarization direction of the linearly polarized light emitted from the image display unit and the side of the image display unit is 0 to 5 °. It is preferably 0 ° to 10 °. Since the polarization direction of the linearly polarized light can be easily recognized when the angle ⁇ 1 is within this range, the polarization axis of the linearly polarized light emitted from the image display unit and the one orientation axis direction of the biaxially stretched resin film of the protective film It is easy to adjust the angle ⁇ 1 formed by and the angle ⁇ 2 formed by the other orientation axis direction.
  • the angle ⁇ 2 formed by the polarization direction of the linearly polarized light emitted from the image display unit and the base of the image display unit is preferably 0 to 5 °, and more preferably 0 to 10 °. . In this range as well, the polarization direction of linearly polarized light can be easily recognized, so that the angle ⁇ 1 and the angle ⁇ 2 can be easily adjusted.
  • the transparent panel used for this invention is not specifically limited, As a panel generally used, there exist a glass plate, (meth) acrylic resin, polycarbonate resin, polyethylene terephthalate resin, etc. Particularly in recent years, it is preferable to use a glass panel for the purpose of improving the design and texture of an electronic device.
  • the glass panel is preferably a tempered glass plate.
  • the tempered glass include tempered glass manufactured by HOYA, Gorilla glass manufactured by Corning, and IG3 manufactured by Ishizuka Glass.
  • Examples of a method for strengthening the glass plate include a physical strengthening method and a chemical strengthening method.
  • chemical strengthening methods include an ion exchange method and an air cooling strengthening method.
  • Examples of the material of the glass plate include float glass, alkali glass, and alkali-free glass.
  • the transparent panel includes a case where an electrode layer or the like is patterned and has a function such as a touch sensor itself.
  • Decorative parts may be provided on transparent panels.
  • the decoration portion includes characters and figures that are visually recognized around the screen display portion of the mobile electronic terminal, or a black or white background provided on the back of these. These decorative portions are preferable because they can be easily provided by printing on a transparent panel.
  • the printing method and printing ink are not particularly limited, and a commonly used printing method such as silk printing or pad printing or printing ink can be used.
  • the thickness of the transparent panel is preferably 50 ⁇ m to 3 mm, preferably 75 ⁇ m to 2 mm, and more preferably 100 ⁇ m to 1 mm. When the thickness of the transparent panel is within the above range, the thickness can be reduced when applied to an electronic terminal.
  • the protective film used for this invention should just have a biaxially stretched resin film base material.
  • a biaxially stretched resin film substrate is a film produced by stretching biaxially in a film stretching process.
  • the shape of the protective film used in the present invention may be any shape, but it is preferable to use a substantially rectangular shape because it can be easily incorporated into various display devices, particularly small electronic terminals.
  • the angle ⁇ 2 formed between the other orientation axis direction of the stretched resin film substrate and the side perpendicular to one side of the substrate is preferably 5 to 85 °, more preferably 15 to 75 °.
  • an angle ⁇ 1 formed by the side of the substantially rectangular protective film and one orientation axis direction of the biaxially stretched resin film substrate is 5 to 85 °
  • An angle ⁇ 2 formed by the other orientation axis direction of the biaxially stretched resin film substrate is set to 5 to 85 °.
  • ⁇ 1 and ⁇ 2 are angles on the narrow angle side among the angles formed by each side of the protective film and the alignment axis direction, and the alignment axis direction may be based on either.
  • ⁇ 2 is also in the above range by setting ⁇ 1 in the above range.
  • the biaxially stretched resin film can be stretched in any direction so that the orientation axes are not orthogonal to each other, but suitable strength and optical properties can be obtained by stretching the biaxially stretched resin film so that the orientation axes are substantially orthogonal. In order to easily obtain the characteristics, it is preferable that the biaxially stretched resin film has two orientation axes that are orthogonal in the plane.
  • the use of the protective film in which the sides of the protective film and the orientation axis directions do not coincide with each other in this way allows linearly polarized light from the image display module and the biaxially stretched resin film substrate used for the protective film.
  • the angles ⁇ 1 and ⁇ 2 formed by the orientation axis direction can be easily adjusted suitably.
  • the total thickness of the protective film used in the present invention is preferably 50 to 300 ⁇ m or less, more preferably 100 to 250 ⁇ m. By setting the thickness within this range, it is possible to achieve both prevention of damage to the panel and durability against impacts and reduction in the thickness of the image display device.
  • the protective film used in the present invention preferably has an adhesive layer on one side or both sides. By having the pressure-sensitive adhesive layer, it can be easily attached to the transparent panel of the image display device.
  • the protective film may have a hard coat layer on one side or both sides of the film substrate.
  • the total thickness of the protective film used in the present invention is 300 ⁇ m or less, preferably 50 to 300 ⁇ m, and more preferably 100 to 250 ⁇ m. By setting the thickness within this range, it is possible to achieve both prevention of damage to the panel and durability against impacts and reduction in the thickness of the image display device. In addition, it becomes easy to achieve both stamping accuracy and durability against damage to the panel and durability against impact.
  • the protective film of the present invention preferably has high transparency from the viewpoint of use in an image display device.
  • the total light transmittance in the visible light wavelength region of the protective film of the present invention is preferably 85% or more, more preferably 90% or more, haze of 1.0 or less, particularly preferably 0.5 or less.
  • the protective film has high transparency, and the display screen is easily refined.
  • biaxially stretched resin film substrate examples of the biaxially stretched resin film substrate used for the protective film include biaxially stretched polyethylene terephthalate, polycarbonate film, polypropylene film, and polyethylene naphthalate film.
  • a biaxially stretched polyethylene resin film such as polyethylene terephthalate (PET) or polyethylene naphthalate (PEN) can be preferably used, and a polyethylene terephthalate film is particularly desirable.
  • PET polyethylene terephthalate
  • PEN polyethylene naphthalate
  • the substrate preferably has a total light transmittance of 85% or more.
  • the thickness of the substrate is preferably 25 to 200 ⁇ m, and more preferably 50 to 150 ⁇ m. By making the thickness within this range, it becomes easy to achieve both prevention of damage to the panel and durability against impacts and reduction in thickness of the image display device.
  • the protective film used for this invention should just have the said biaxially stretched resin film base material, and is fixed to a transparent panel via an adhesive or an adhesive agent.
  • a protective adhesive film having a configuration in which an adhesive layer is provided on one surface of a biaxially stretched resin film substrate is preferable because it can be easily attached to a transparent panel.
  • the pressure-sensitive adhesive layer it is preferable to use a pressure-sensitive adhesive layer having a thickness of 5 to 50 ⁇ m.
  • a pressure-sensitive adhesive layer having a thickness of 5 to 50 ⁇ m.
  • the pressure-sensitive adhesive used for the pressure-sensitive adhesive layer known acrylic, rubber-based, and silicone-based pressure-sensitive resins can be used.
  • an acrylic copolymer containing a (meth) acrylic acid ester monomer having a C 2-14 alkyl group as a repeating unit as a main monomer component has transparency, light resistance and heat resistance. From the point of view, it is preferable.
  • (meth) acrylic acid ester monomer having 2 to 14 carbon atoms include ethyl acrylate, n-propyl acrylate, isopropyl acrylate, n-butyl acrylate, sec-butyl acrylate, t-butyl acrylate, n -Hexyl acrylate, cyclohexyl acrylate, n-octyl acrylate, isooctyl acrylate, 2-ethylhexyl acrylate, isononyl acrylate, isodecyl acrylate, lauryl acrylate, methyl methacrylate, ethyl methacrylate, n-propyl methacrylate, isopropyl methacrylate, n-butyl methacrylate , Sec-butyl methacrylate, t-butyl methacrylate, n-hexyl methacrylate, cyclohexyl
  • a methacrylic acid alkyl ester monomer having an alkyl side chain having 4 to 9 carbon atoms or an acrylic acid alkyl ester monomer having an alkyl side chain having 4 to 9 carbon atoms is preferable, and the carbon number is More preferred are alkyl acrylate monomers having 4 to 9 alkyl side chains.
  • alkyl acrylate monomers having 4 to 9 alkyl side chains are particularly preferable.
  • the content of the (meth) acrylic acid ester monomer having 2 to 14 carbon atoms in the monomer constituting the acrylic copolymer used for the pressure-sensitive adhesive layer is preferably 60% by mass or more.
  • the content is more preferably at least mass%, more preferably from 90 to 99 mass%, particularly preferably from 90 to 96 mass%.
  • Acrylic copolymers further contain (meth) acrylic acid ester monomers and other vinyl monomers having polar groups such as hydroxyl, carboxyl and amino groups in the side chain as monomer components. It is preferable to do.
  • Examples of the monomer having a hydroxyl group include 2-hydroxyethyl (meth) acrylate, 4-hydroxybutyl (meth) acrylate, 6-hydroxyhexyl (meth) acrylate, hydroxypropyl (meth) acrylate, and caprolactone-modified (meth) acrylate.
  • Hydroxyl group-containing (meth) acrylates such as polyethylene glycol mono (meth) acrylate and polypropylene glycol (meth) acrylate can be used, among which 2-hydroxyethyl (meth) acrylate, 4-hydroxybutyl (meth) acrylate, 6-hydroxy It is preferred to use hexyl (meth) acrylate as a copolymerization component.
  • acrylic acid methacrylic acid, itaconic acid, maleic acid, crotonic acid, (meth) acrylic acid dimer, ethylene oxide-modified succinic acid acrylate, etc.
  • acrylic acid dimer ethylene oxide-modified succinic acid acrylate, etc.
  • ethylene oxide-modified succinic acid acrylate etc.
  • copolymerization component it is preferable to use it as a copolymerization component.
  • Examples of the monomer having a nitrogen atom include N-vinyl-2-pyrrolidone, N-vinylcaprolactam, acryloylmorpholine, acrylamide, N, N-dimethylacrylamide, and 2- (perhydrophthalimido-N-yl) ethyl acrylate.
  • Amide group-containing vinyl monomers can be used, and among them, N-vinyl-2-pyrrolidone, N-vinylcaprolactam, and acryloylmorpholine are preferably used as copolymerization components.
  • vinyl monomers having a polar group include vinyl acetate, acrylonitrile, maleic anhydride, itaconic anhydride and the like.
  • the content of the monomer having a polar group is preferably 0.1 to 20% by weight of the monomer component constituting the acrylic copolymer, more preferably 1 to 13% by weight, More preferably, it is 1.5 to 8% by weight. By containing in the said range, it is easy to adjust the cohesive force, holding force, and adhesiveness of an adhesive to a suitable range.
  • a crosslinking agent to the pressure-sensitive adhesive.
  • a crosslinking agent an isocyanate type crosslinking agent, an epoxy type crosslinking agent, a chelate type crosslinking agent etc. are mentioned, for example.
  • the addition amount of the crosslinking agent is preferably adjusted so that the gel fraction of the pressure-sensitive adhesive layer is 30 to 90%. A more preferable gel fraction is 50 to 85%. Among these, 60 to 80% is most preferable. It becomes easy to suppress the fall of the surface pencil hardness when a protective adhesive film is affixed on a panel as a gel fraction is 30% or more. On the other hand, when the gel fraction is 90% or less, suitable adhesiveness can be easily obtained.
  • the gel fraction is expressed as a percentage of the original weight by measuring the weight after drying the insoluble content remaining after 24 hours of immersion in the adhesive layer after curing.
  • a tackifier resin may be added to improve the adhesive strength of the adhesive layer.
  • the tackifier resin to be added to the pressure-sensitive adhesive layer of the pressure-sensitive adhesive tape of the present invention includes acrylic copolymers, rosin resins such as rosin and rosin esterified products; terpenes such as diterpene polymers and ⁇ -pinene-phenol copolymers Examples of such resins include: petroleum resins such as aliphatic (C5) and aromatic (C9); styrene resins, phenolic resins, xylene resins, and the like.
  • C5 aliphatic
  • C9 styrene resins
  • phenolic resins xylene resins
  • the addition amount of the tackifying resin when the pressure-sensitive adhesive resin is an acrylic copolymer, it is preferable to add 10 to 60 parts by weight with respect to 100 parts by weight of the acrylic copolymer. When importance is attached to adhesiveness, it is most preferable to add 20 to 50 parts by weight. Further, when the adhesive resin is a rubber-based resin, it is preferable to add 80 to 150 parts by weight of the tackifier resin to 100 parts by weight of the rubber-based resin. In general, when the adhesive resin is a silicone resin, no tackifying resin is added.
  • a silane coupling agent can be added in the range of 0.001 to 0.005.
  • plasticizers, softeners, fillers, pigments, flame retardants, and the like can be added.
  • the weight average molecular weight Mw of the acrylic copolymer used for the pressure-sensitive adhesive layer is preferably 400,000 to 1,400,000, and more preferably 600,000 to 1,200,000.
  • the weight average molecular weight Mw of the acrylic copolymer is within the above range, it is easy to secure a suitable adhesive force, and when a protective adhesive film is obtained, the load on the film surface can be relaxed suitably.
  • the weight average molecular weight Mw of the acrylic copolymer can be measured by gel permeation chromatography (GPC).
  • the said protective film it is also preferable to have a hard-coat layer on one surface of a biaxially stretched resin film base material.
  • a hard-coat layer By having a hard-coat layer, the damage prevention property to a transparent panel can be improved.
  • the hard coat layer preferably has a pencil hardness of F or more, more preferably H or more, It is especially preferable to set it as 3H or more. By setting the hardness to F or higher, the ability to prevent scratches on the transparent panel can be improved.
  • the hard coat layer is preferable because it is easy to produce by providing the hard coat layer on the surface opposite to the surface having the pressure-sensitive adhesive layer of the biaxially stretched resin film substrate, and the effect of suppressing scratches on the surface is easily obtained.
  • a hard coat layer is preferable because it has high transparency and does not contain a polarizing substance because it becomes easy to obtain suitable visibility.
  • the hard coat layer has high transparency or does not contain a polarizing substance because suitable visibility can be easily obtained.
  • the transparency of the hard coat layer the total light transmittance of the hard coat layer is 85%, preferably 90% or more.
  • the haze value is preferably 1.0 or less, and particularly preferably 0.5 or less.
  • the hard coat agent used in the hard coat layer is not particularly limited as long as it has the above-mentioned characteristics. However, since the hard coat layer can be easily formed, a hard coat comprising an active energy ray-curable resin composition is used. An agent can be preferably used. As such an active energy ray-curable resin composition, a polyfunctional acrylate resin composition is preferable, and a urethane acrylate hard coat agent is particularly preferable.
  • urethane acrylate-based hard coat agents include urethane, which is an addition reaction product of polyisocyanate (a1) and acrylate (a2) having one hydroxyl group and two or more (meth) acryloyl groups in one molecule.
  • a hard coat agent containing an acrylate (A) can be preferably used.
  • the urethane acrylate (A) has an ⁇ , ⁇ -unsaturation having a functional group capable of reacting with the reactive functional group in the (meth) acrylate polymer (b1) having a reactive functional group in the side chain. It is also preferred to use a polymer (B) having a (meth) acryloyl group obtained by reacting the compound (b2).
  • polyisocyanate (a1) examples include 2,4-tolylene diisocyanate, 2,6-tolylene diisocyanate, 1,3-xylylene diisocyanate, 4,4′-diphenyl diisocyanate, 1,5-naphthalene diisocyanate, 4 Aromatic isocyanate compounds such as 4,4'-diphenylmethane diisocyanate; alicyclic hydrocarbons such as dicyclohexylmethane diisocyanate, isophorone diisocyanate, norbornane diisocyanate, hydrogenated xylylene diisocyanate, hydrogenated methylene bisphenylene diisocyanate, and 1,4-cyclohexane diisocyanate.
  • Aromatic isocyanate compounds such as 4,4'-diphenylmethane diisocyanate
  • alicyclic hydrocarbons such as dicyclohexylmethane diisocyanate, isophorone diisocyanate,
  • alicyclic diisocyanate Compound having two bonded isocyanate groups
  • trimethylene diisocyanate hexamethylene diisocyanate
  • aliphatic diisocyanates Compounds having two isocyanate groups attached to aliphatic hydrocarbons sulfonates like
  • polyisocyanates (a1) aliphatic diisocyanates or alicyclic diisocyanates are preferable, and isophorone diisocyanate, norbornane diisocyanate, hydrogenated xylylene diisocyanate, hydrogenated methylene bisphenylene diisocyanate and hexamethylene diisocyanate are particularly preferable.
  • norbornane diisocyanate is most preferable.
  • acrylate (a2) having one hydroxyl group and two or more (meth) acryloyl groups in one molecule for example, trimethylolpropane di (meth) acrylate, pentaerythritol tri (meth) acrylate, dipentaerythritol penta
  • examples include polyacrylates of polyhydric hydroxyl group-containing compounds such as (meth) acrylate, adducts of these polyacrylates with ⁇ -caprolactone, adducts of these polyacrylates with alkylene oxide, epoxy acrylates, etc. Can be mentioned.
  • These acrylates (a2) can be used alone or in combination of two or more.
  • acrylates (a2) acrylates having one hydroxyl group and 3 to 5 (meth) acryloyl groups in one molecule are preferable.
  • examples of such acrylates include pentaerythritol triacrylate, dipentaerythritol pentaacrylate, and the like, and these are particularly preferable because a cured film having high hardness can be obtained.
  • the urethane acrylate (A) used in the present invention is obtained by subjecting two components of the polyisocyanate (a1) and the acrylate (a2) to an addition reaction.
  • the ratio of the acrylate (a2) to the equivalent of isocyanate in the polyisocyanate (a1) is usually preferably 0.1 to 50, more preferably 0.1 to 10, and preferably 0.9 to 1.2 as the hydroxyl equivalent. Is more preferable.
  • the reaction temperature between the polyisocyanate (a1) and the acrylate (a2) is preferably 30 to 150 ° C., more preferably 50 to 100 ° C.
  • the blending amount of the urethane acrylate (A) in 100 parts by weight of the resin component in the resin composition is preferably 5 to 90 parts by weight, more preferably 10 to 70 parts by weight, and even more preferably 10 to 60 parts by weight. . If the blending amount of the urethane acrylate (A) is within this range, a cured film having a sufficiently high hardness can be obtained, and there is no coating film defect, excellent surface antifouling properties, and curing shrinkage is reduced. Curling of a film having a cured coating can also be reduced.
  • the molecular weight of the urethane acrylate (A) is preferably in the range of 500 to 1,500. When the molecular weight is within this range, a cured film having a sufficiently high hardness can be obtained and the curing shrinkage can be reduced, so that the curl of the film having the cured film can also be reduced.
  • the blending amount of the urethane acrylate (A) in 100 parts by weight of the resin component in the resin composition is preferably 5 to 90 parts by weight, more preferably 10 to 70 parts by weight, and even more preferably 10 to 60 parts by weight. . If the blending amount of the urethane acrylate (A) is within this range, a cured film having a sufficiently high hardness can be obtained, and there is no coating film defect, excellent surface antifouling properties, and curing shrinkage is reduced. Curling of a film having a cured coating can also be reduced.
  • the reactive functional group of the (meth) acrylate polymer (b1) having a reactive functional group in the side chain used in the present invention is preferably a hydroxyl group, a carboxyl group, an epoxy group or the like.
  • the functional group of the ⁇ , ⁇ -unsaturated compound (b2) capable of reacting with these reactive functional groups is preferably an isocyanate group, a carboxyl group, an acid halide group, a hydroxyl group, an epoxy group, or the like.
  • the (meth) acrylate polymer (b1) having a reactive functional group in the side chain was reacted with an ⁇ , ⁇ -unsaturated compound (b2) having a functional group capable of reacting with the reactive functional group.
  • the method for producing the polymer (B) having a (meth) acryloyl group is not particularly limited and can be produced by various methods.
  • the hard coat film used in the present invention can be produced by applying a hard coat agent on a film substrate and curing it.
  • Examples of methods for applying the hard coating agent to the film substrate include gravure coating, roll coating, comma coating, air knife coating, kiss coating, spray coating, transfer coating, dip coating, spinner coating, wheeler coating, brush coating, and silk. Examples thereof include a solid coat using a screen, a wire bar coat, and a flow coat. Also, printing methods such as offset printing and letterpress printing may be used. Among these, gravure coating, roll coating, comma coating, air knife coating, kiss coating, wire bar coating, and flow coating are preferable because a coating film having a more constant thickness can be obtained.
  • Curing of the hard coating agent may be appropriately performed according to the hard coating agent to be used, but when the active energy ray-curable resin composition is used as the hard coating agent, the activity of light, electron beam, radiation, etc. What is necessary is just to harden with an energy ray.
  • Specific energy sources or curing devices include, for example, germicidal lamps, ultraviolet fluorescent lamps, carbon arc, xenon lamps, high pressure mercury lamps for copying, medium or high pressure mercury lamps, ultrahigh pressure mercury lamps, electrodeless lamps, metal halide lamps, natural light, etc. Or an electron beam using a scanning type or curtain type electron beam accelerator.
  • ultraviolet rays are particularly preferable, and irradiation in an inert gas atmosphere such as nitrogen gas is preferable in terms of increasing the polymerization efficiency.
  • heat may be used as an energy source and heat treatment may be performed after curing with active energy rays.
  • the light source is a low pressure mercury lamp, high pressure mercury lamp, ultra high pressure mercury lamp, metal halide lamp, electrodeless lamp (fusion lamp), chemical lamp, black light. Lamp, mercury-xenon lamp, short arc lamp, helium / cadmium laser, argon laser, sunlight, LED, and the like.
  • a flashing xenon-flash lamp is used. This is preferable because the influence of heat can be reduced.
  • an angle ⁇ 1 formed by the polarization direction of linearly polarized light emitted from the image display unit and one orientation axis direction of the biaxially stretched resin film, And the angle ⁇ 2 formed by the polarization direction of the linearly polarized light emitted from the image display unit and the other orientation axis direction of the biaxially stretched resin film is 15 to 75 °.
  • an image display device provided with a transparent panel to which the protective film is attached is attached.
  • the polarization direction of linearly polarized light refers to an image display device having a transparent panel 2 on an upper part of an image display module 1 that emits linearly polarized light 3, and the transparent panel 2 covers the image display surface 4 on the surface of the image display device.
  • it refers to the polarization direction 5 (polarization axis) of the linearly polarized light 3 on the image display surface 4 (FIG. 2).
  • the polarization direction may be any direction, but when the image display unit has a substantially square shape, as described above, the angle ⁇ 1 formed by the polarization direction and the side of the image display unit or the polarization direction and the bottom side It is preferable that an angle ⁇ 2 formed by the above is 0 to 15 °.
  • the orientation axis direction of the biaxially stretched resin film used for the protective film is the direction of the orientation axis of the resin molecules when stretched in the film stretching process.
  • a protective film having a biaxially stretched resin film as a base material is formed into a desired shape, preferably a square shape, by punching or the like according to the mode of use.
  • the orientation axis direction in a protective film may be arbitrary directions. For example, in the case of a rectangular protective film, each side of the protective film 6 is aligned with each side of the protective film 6 even if the side of the protective film 6 is aligned with the alignment axis directions 7 and 8 (FIG. 3A). It may be a protective film (FIG. 3B) in which the axial directions 7 and 8 do not match (the arrow in FIG. 3 is the orientation axis direction during the production of the biaxially stretched resin film).
  • the protective film 6 (FIG. 3B) in which the sides of the protective film 6 do not coincide with the orientation axis directions 7 and 8 is a resin in the flow direction and the width direction of the resin film when the biaxially stretched resin film is manufactured.
  • a method of stretching the film and punching so that the orientation axis direction and the corners are not orthogonal or parallel at the time of punching, or when producing a biaxially stretched resin film, orthogonal to the flow direction and the width direction of the resin film Alternatively, it can be obtained by a method of stretching in a direction that is not parallel and punching according to the flow direction and the width direction.
  • the image display device of the present invention includes an angle ⁇ 1 formed by the polarization direction 5 of linearly polarized light emitted from the image display surface and one orientation axis direction of the biaxially stretched resin film on the surface of the image display surface, and image display
  • the angle ⁇ 2 formed by the polarization direction of the linearly polarized light emitted from the part and the other orientation axis direction of the biaxially stretched resin film is 15 to 75 °, preferably 25 to 65 °. Further, it is more preferably 35 to 55 °, and most preferably 40 to 50 °.
  • these ⁇ 1 and ⁇ 2 within the above ranges, visibility from all directions can be ensured easily and inexpensively even when polarized sunglasses are used.
  • ⁇ 1 and ⁇ 2 in the rectangular protective film are as shown in FIGS. 4 (a) and 4 (b).
  • the polarization direction 5 of the linearly polarized light emitted from the image display unit and the biaxially stretched resin The angle formed by one orientation axis direction 7 of the film is ⁇ 1, and the angle formed by the polarization direction 5 of linearly polarized light emitted from the image display unit and the other orientation axis direction 8 of the biaxially stretched resin film is ⁇ 2.
  • ⁇ 1 and ⁇ 2 are angles on the narrow angle side among the angles formed by the polarization direction and the alignment axis direction. Further, any orientation axis direction may be used as a reference.
  • the image display device may be configured such that each of ⁇ 1 and ⁇ 2 falls within the above range.
  • the protective film used in the image display device of the present invention is manufactured by an arbitrary manufacturing method, and the following manufacturing method can be exemplified as a particularly preferable manufacturing method. According to the following production method, a protective film that can be seen well when viewed through polarized sunglasses and that can prevent panel scattering and scratches can be easily and inexpensively produced.
  • An image display device having an image display module in which light emitted from an image display unit is linearly polarized light and a transparent panel provided on the image display module, and manufacturing a protective film to be attached to at least one surface of the transparent panel
  • the protective film is a protective film having a film base layer made of a biaxially stretched polyethylene resin film, The process of punching the original film of the protective film to obtain a substantially rectangular protective film,
  • the transparent panel with the protective film attached to the upper part of the image display module is provided in the substantially rectangular shape, the polarization axis of linearly polarized light emitted from the image display unit, and the film base layer
  • the angle ⁇ 1 formed by one of the alignment axes of the molecules of the film and the angle ⁇ 2 formed by the polarization axis of the linearly polarized light emitted from the image display unit and the other alignment axis of the molecules of the film substrate layer are 15 to 75 °.
  • a method for producing a protective film which is preferably a punch
  • the protective film is obtained by punching into a substantially rectangular shape from the original film of the protective film.
  • the protective film is made of a biaxially stretched polyethylene resin film, and is provided with a pressure-sensitive adhesive layer or hard coat layer as necessary. It may be in various forms used.
  • the manufactured protective film has a substantially square shape, and the substantially square shape has a rectangular shape such as a rectangular shape or a square shape as described above, and an arbitrary angle of the rectangular shape, preferably four corners. Includes shapes approximate to square shapes such as chamfered shapes.
  • the process of punching the protective film from the original fabric into a substantially square shape is the polarization of linearly polarized light emitted from the image display unit when a transparent panel with a protective film attached is provided on the top of the image display module.
  • the angle ⁇ 1 formed by the axis and one of the alignment axes of the molecules of the film substrate layer, and the angle ⁇ 2 formed by the polarization axis of the linearly polarized light emitted from the image display unit and the other alignment axis of the molecules of the film substrate layer Is a punching process of 15 to 75 °, preferably 20 to 70 °.
  • angles ⁇ 1 and ⁇ 2 formed by the polarization axis of linearly polarized light emitted from the image display unit of the image display device and the molecular orientation axis of the polyethylene-based resin film substrate layer of the protective film are preferably 30 to 60 °. 35 to 55 ° is more preferable, and 40 to 50 ° is most preferable.
  • ⁇ 1 and ⁇ 2 in the substantially rectangular protective film are as shown in FIGS. 4A and 4B, and the polarization direction 5 of the linearly polarized light emitted from the image display unit of the image display module on the image display surface 4 is shown.
  • the angle between one orientation axis direction 6 of the substrate layer of the protective film is ⁇ 1
  • the angle between the polarization direction 5 of the linearly polarized light emitted from the image display unit and the other orientation axis direction 7 is ⁇ 2. It is.
  • ⁇ 1 and ⁇ 2 are angles on the narrow angle side among the angles formed by the polarization direction and the alignment axis direction. Further, any axial direction may be used as a reference.
  • the above-described punching to the angles of ⁇ 1 and ⁇ 2 is a polyethylene-based resin film stretched biaxially in the protective film according to the polarization axis of linearly polarized light emitted from the image display unit of the image display device to be applied.
  • the punching angle is appropriately adjusted so that the orientation axis of the molecules of the base material layer becomes a desired angle after the punching.
  • the biaxially stretched polyethylene resin film used as the base material of the protective film is manufactured by stretching in the flow direction and the width direction at the time of film production, due to the bowing phenomenon during the stretching process, The orientation axis of the molecule is shifted with respect to the flow direction and the stretching direction in the width direction. Therefore, the punching process is performed at a punching angle corresponding to the shift in the stretching direction of the orientation axes of the molecules in the polyethylene-based resin film, depending on the punching position of the original film of the protective film.
  • the molecular orientation axis in the width direction exists at an angle shifted from 0 to 45 ° from the stretch direction. For this reason, the protective film original fabric using the biaxially stretched polyethylene resin film as a base material layer is subjected to a punching process by appropriately adjusting a punching angle in the width direction. A protective film having ⁇ 2 can be obtained.
  • FIG. 5 shows an example of a raw film of a protective film using a biaxially stretched polyethylene resin film stretched in the flow direction and the width direction as a base material layer.
  • the biaxially stretched polyethylene resin film in the original film 10 of the protective film is stretched in the stretching direction 11 in the flow direction and the stretching direction 12 in the width direction, and with respect to the stretching direction 12 in the width direction,
  • the molecular orientation axis 13 of the biaxially stretched polyethylene resin film has a shift angle ⁇ from the stretch direction 12 at each position in the width direction.
  • the molecular orientation axis 13 in the width direction is the orientation axis at the position where the punching process is performed, and is preferably based on the orientation axis at the center position of the substantially square shape after the punching process.
  • the punching angle from the protective film original fabric is the angle formed by the stretching direction in the width direction of the biaxially stretched polyethylene resin film of the protective film raw material and one side of the substantially rectangular shape to be punched. It is preferably a punching process of ⁇ 30 ° of the optimum punching angle ⁇ represented by the formula (1), more preferably a punching process of ⁇ 25 °, further preferably ⁇ ⁇ 15 °, Most preferably, it is within ⁇ ⁇ 5 °.
  • ⁇ [( ⁇ 45 °) ⁇ ] + (90 ° ⁇ n) (1)
  • is an angle formed by the horizontal axis of the image display unit and the polarization axis of linearly polarized light emitted from the image display unit
  • is a biaxially stretched polyethylene-based protective film raw material.
  • the angle formed by the stretching direction in the width direction of the resin film and the molecular orientation axis in the width direction of the polyethylene-based resin film of the original protective film, n is an integer of -3 to 3.
  • the horizontal axis of the image display unit indicates the horizontal axis when the image display unit is viewed when the image is displayed.
  • the image display unit has a substantially square shape, the upper side or the lower side thereof A parallel axis. 6A or 6B, the angle ⁇ formed by the horizontal axis 22 of the image display unit 21 and the polarization axis 23 of the linearly polarized light emitted from the image display unit is the image display unit. Is an angle in the counterclockwise direction from the horizontal axis of the image display unit to the polarization axis of the linearly polarized light, and 0 ° ⁇ ⁇ ⁇ 180 °.
  • the angle ⁇ between the stretching direction in the width direction of the biaxially stretched polyethylene resin film of the original protective film and the molecular orientation axis in the width direction in the polyethylene resin film of the protective film original is the polyethylene resin. It is a shift angle of molecules with respect to the stretching direction in the width direction of the film. Since ⁇ is a shift angle, as shown in FIG. 7, from the stretching direction 12 in the width direction of the polyethylene resin film to the molecular orientation axis 13 in the width direction of the polyethylene resin film at an arbitrary point.
  • the counterclockwise angle ( ⁇ 1) is a positive angle
  • the clockwise angle ( ⁇ 2) from the stretching direction 12 in the width direction of the film to the molecular orientation axis 13 in the width direction of the polyethylene resin film at an arbitrary point. ) Is a negative angle.
  • the angle between the width direction and the alignment axis in the width direction is within 45 °, it can be expressed as ⁇ 45 ° ⁇ ⁇ ⁇ 0 ° or 0 ° ⁇ ⁇ ⁇ 45 °.
  • the transparent panel on the image display module side It is installed on the surface opposite to the surface so that the surface of the punched protective film is a surface layer.
  • the said protective film when applying the said protective film to the surface at the side of the image display module of a transparent panel, what is necessary is just to install so that the back surface side of the cut-out protective film may become a table
  • the angle formed by the stretching direction in the width direction of the biaxially stretched polyethylene resin film of the original film of the protective film and one side of the substantially rectangular shape to be punched is expressed by the following formula (2): It is preferably a punching process of ⁇ 30 ° of the optimum cutting process angle ⁇ represented, and more preferably a punching process at a punching angle of ⁇ 25 °.
  • [( ⁇ 45 °) + ⁇ ] + (90 ° ⁇ n) (2)
  • is an angle formed by the horizontal axis of the image display unit and the polarization axis of linearly polarized light emitted from the image display unit
  • is a biaxially stretched polyethylene-based protective film raw material.
  • the angle formed by the width direction of the resin film and the orientation axis in the width direction of the polyethylene film of the protective film, n is an integer of -3 to 3.
  • the punching angle ⁇ ⁇ 15 ° is more preferable, and it is most preferably within ⁇ 5 °.
  • the optimum punching angles ⁇ and ⁇ are formed in a width direction of the biaxially stretched polyethylene resin film 12 of the original film 10 of the protective film and a substantially rectangular shape to be punched.
  • the counterclockwise angle ( ⁇ 1) from the stretching direction in the width direction of the film to one side of the substantially rectangular protective film 14 to be punched is defined as a positive angle.
  • a clockwise angle from the width direction to one side of the substantially rectangular protective film 15 to be punched is defined as a negative angle ( ⁇ 2).
  • One side of the substantially square shape to be punched is an arbitrary side. Although it may be, it is preferable to use the side which becomes the side of the image display visually recognized when provided in the image display unit of the image display device as a reference. Further, it is preferable to perform the punching process so that the center point of the substantially square shape to be punched coincides with the point for confirming the orientation axis in the width direction of the polyethylene-based resin film because the punching process can be performed with high accuracy.
  • the angle ⁇ of the orientation axis in the width direction of the protective film raw material in the present invention, the punching angles ⁇ , ⁇ are angles when the protective film raw material is viewed from the surface side, for example, a protective film having an adhesive layer on one side If so, it means the angle when the film is viewed from the side opposite to the pressure-sensitive adhesive layer.
  • the stretching direction in the width direction of the biaxially stretched polyethylene resin film in the original film of the protective film It is particularly preferable to perform the substantially square-shaped punching process at an angle other than the range of ⁇ 5 ° to 5 ° with respect to the side of the substantially square shape to be processed because the effect of the present invention is high.
  • the punching process into a substantially square shape may be any punching process such as a punching process with a substantially square-shaped cutting blade having a desired size or a laser punching process.
  • the punching with the punching blade is preferable because it is easy to adjust the angle of the punching blade.
  • the size of the protective film that is punched into a substantially square shape may be adjusted as appropriate according to the size suitable for the image display unit of the image display device to be applied.
  • the size is preferably adapted to a portable electronic device having an image display portion of 5 to 16 inches, preferably 3.5 to 12.1 inches.
  • the size of the protective film suitable for the portable electronic device is preferably 3.5 to 16 inches diagonal, more preferably 3.5 to 12.1 inches diagonal.
  • an isocyanate-based cross-linking agent (Coronate HL solid content 75% manufactured by Nippon Polyurethane Co., Ltd.) was added and stirred with a stirrer for 20 minutes to obtain an adhesive composition. .
  • the protective film was prepared as follows using the said adhesive composition.
  • ⁇ Preparation of protective film A> The pressure-sensitive adhesive composition prepared by the above method was applied to one side of a biaxially stretched polyethylene terephthalate film (Cosmo Shine A4100 manufactured by Toyobo Co., Ltd.) having a thickness of 100 ⁇ m and orthogonal to each orientation axis, and dried at 90 ° C. for 90 seconds.
  • a protective film A having a pressure-sensitive adhesive layer having a thickness of 10 ⁇ m after drying was obtained.
  • ⁇ Preparation of protective film B> A pressure-sensitive adhesive composition prepared by the above method was applied to one side of a biaxially stretched polyethylene terephthalate film (Cosmo Shine A4100 manufactured by Toyobo Co., Ltd.) having a thickness of 50 ⁇ m and orthogonal to each orientation axis, and dried at 90 ° C. for 90 seconds.
  • ⁇ Preparation of protective film C> The pressure-sensitive adhesive composition prepared by the above method was applied to one side of a 100 ⁇ m thick biaxially stretched polyethylene naphthalate film (Teonex manufactured by Teijin DuPont Co., Ltd.) with each orientation axis orthogonal, and dried at 90 ° C. for 90 seconds. A protective film C having an adhesive layer having a thickness of 10 ⁇ m after drying was obtained.
  • ⁇ Preparation of protective film D> The pressure-sensitive adhesive composition prepared by the above method was applied to one side of an unstretched polycycloolefin polymer film having a thickness of 100 ⁇ m (ZEONOR film manufactured by Nippon Zeon Co., Ltd.) and dried at 90 ° C. for 90 seconds.
  • the protective film D which has a 10 micrometer adhesive layer was obtained.
  • ⁇ Preparation of protective film E> A pressure-sensitive adhesive composition prepared by the above method was applied to one side of a 50 ⁇ m-thick unstretched acrylic film (Acryprene manufactured by Mitsubishi Rayon Co., Ltd.), dried at 90 ° C. for 90 seconds, and a thickness of 10 ⁇ m after drying. The protective film E which has this was obtained.
  • a protective film A cut out in a rectangular shape is bonded to one surface of a transparent glass panel, and the glass panel includes a glass panel in which the protective film A is bonded together and a liquid crystal module in which light emitted from the image display unit is linearly polarized light. It fixed so that it might be located in the upper part.
  • the angle formed by one orientation axis direction of the PET film as the base material of the protective film and the linearly polarized light emitted from the image display unit of the liquid crystal module is 45 °.
  • the image display apparatus was manufactured by fixing at an angle.
  • a protective film A cut out in a rectangular shape is bonded to one surface of a transparent glass panel, and the glass panel includes a glass panel in which the protective film A is bonded together and a liquid crystal module in which light emitted from the image display unit is linearly polarized light. It fixed so that it might be located in the upper part.
  • the angle formed by one orientation axis direction of the PET film as the base material of the protective film and the linearly polarized light emitted from the image display unit of the liquid crystal module is 30 °.
  • An image display device was manufactured by fixing at an angle.
  • a protective film A cut out in a rectangular shape is bonded to one surface of a transparent glass panel, and the glass panel includes a glass panel in which the protective film A is bonded together and a liquid crystal module in which light emitted from the image display unit is linearly polarized light. It fixed so that it might be located in the upper part.
  • the angle formed by one orientation axis direction of the PET film as the base material of the protective film and the linearly polarized light emitted from the image display unit of the liquid crystal module is 60 °.
  • An image display device was manufactured by fixing at an angle.
  • a protective film A cut out in a rectangular shape is bonded to one surface of a transparent glass panel, and the glass panel includes a glass panel in which the protective film A is bonded together and a liquid crystal module in which light emitted from the image display unit is linearly polarized light. It fixed so that it might be located in the upper part.
  • the angle formed by one orientation axis direction of the PET film as the base material of the protective film and the linearly polarized light emitted from the image display unit of the liquid crystal module is 15 °.
  • An image display device was manufactured by fixing at an angle.
  • a protective film A cut out in a rectangular shape is bonded to one surface of a transparent glass panel, and the glass panel includes a glass panel in which the protective film A is bonded together and a liquid crystal module in which light emitted from the image display unit is linearly polarized light. It fixed so that it might be located in the upper part.
  • the angle formed by one orientation axis direction of the PET film as the base material of the protective film and the linearly polarized light emitted from the image display unit of the liquid crystal module is 75 °.
  • An image display device was manufactured by fixing at an angle.
  • a protective film B cut out in a rectangular shape is bonded to one surface of a transparent glass panel, and the glass panel includes a glass panel in which the protective film B is bonded, and a liquid crystal module in which light emitted from the image display unit is linearly polarized light. It fixed so that it might be located in the upper part.
  • the angle formed by one orientation axis direction of the PET film as the base material of the protective film and the linearly polarized light emitted from the image display unit of the liquid crystal module is 45 °.
  • An image display device was manufactured by fixing at an angle.
  • a protective film B cut out in a rectangular shape is bonded to one surface of a transparent glass panel, and the glass panel includes a glass panel in which the protective film B is bonded, and a liquid crystal module in which light emitted from the image display unit is linearly polarized light. It fixed so that it might be located in the upper part.
  • the angle formed by one orientation axis direction of the PET film as the base material of the protective film and the linearly polarized light emitted from the image display unit of the liquid crystal module is 30 °.
  • An image display device was manufactured by fixing at an angle.
  • a protective film B cut out in a rectangular shape is bonded to one surface of a transparent glass panel, and the glass panel includes a glass panel in which the protective film B is bonded, and a liquid crystal module in which light emitted from the image display unit is linearly polarized light. It fixed so that it might be located in the upper part.
  • the angle formed by one orientation axis direction of the PET film as the base material of the protective film and the linearly polarized light emitted from the image display unit of the liquid crystal module is 60 °.
  • An image display device was manufactured by fixing at an angle.
  • a protective film C cut out in a rectangular shape is bonded to one surface of a transparent glass panel, and the glass panel includes a glass panel in which the protective film C is bonded and a liquid crystal module in which light emitted from the image display unit is linearly polarized light. It fixed so that it might be located in the upper part.
  • the angle formed by one orientation axis direction of the PEN film as the base material of the protective film and the linearly polarized light emitted from the image display unit of the liquid crystal module is 45 °.
  • An image display device was manufactured by fixing at an angle.
  • a protective film C cut out in a rectangular shape is bonded to one surface of a transparent glass panel, and the glass panel includes a glass panel in which the protective film C is bonded and a liquid crystal module in which light emitted from the image display unit is linearly polarized light. It fixed so that it might be located in the upper part.
  • the angle formed by one orientation axis direction of the PEN film as the base material of the protective film and the linearly polarized light emitted from the image display unit of the liquid crystal module is 30 °.
  • An image display device was manufactured by fixing at an angle.
  • a protective film C cut out in a rectangular shape is bonded to one surface of a transparent glass panel, and the glass panel includes a glass panel in which the protective film C is bonded and a liquid crystal module in which light emitted from the image display unit is linearly polarized light. It fixed so that it might be located in the upper part.
  • the angle formed by one orientation axis direction of the PEN film as the base material of the protective film and the linearly polarized light emitted from the image display unit of the liquid crystal module is 60 °.
  • An image display device was manufactured by fixing at an angle.
  • a protective film A cut out in a rectangular shape is bonded to one surface of a transparent glass panel, and the glass panel includes a glass panel in which the protective film A is bonded together and a liquid crystal module in which light emitted from the image display unit is linearly polarized light. It fixed so that it might be located in the upper part.
  • an angle formed by one orientation axis direction of the PET film as the base material of the protective film and the linearly polarized light emitted from the image display unit of the liquid crystal module is 90 °.
  • An image display device was manufactured by fixing at an angle.
  • a protective film A cut out in a rectangular shape is bonded to one surface of a transparent glass panel, and the glass panel includes a glass panel in which the protective film A is bonded together and a liquid crystal module in which light emitted from the image display unit is linearly polarized light. It fixed so that it might be located in the upper part. At this time, on the glass panel surface (image display surface surface), the angle formed by one orientation axis direction of the PET film as the base material of the protective film and the linearly polarized light emitted from the image display unit of the liquid crystal module becomes 0 °. An image display device was manufactured by fixing at an angle.
  • a protective film B cut out in a rectangular shape is bonded to one surface of a transparent glass panel, and the glass panel includes a glass panel in which the protective film B is bonded, and a liquid crystal module in which light emitted from the image display unit is linearly polarized light. It fixed so that it might be located in the upper part.
  • an angle formed by one orientation axis direction of the PET film as the base material of the protective film and the linearly polarized light emitted from the image display unit of the liquid crystal module is 90 °.
  • An image display device was manufactured by fixing at an angle.
  • a protective film B cut out in a rectangular shape is bonded to one surface of a transparent glass panel, and the glass panel includes a glass panel in which the protective film B is bonded, and a liquid crystal module in which light emitted from the image display unit is linearly polarized light. It fixed so that it might be located in the upper part. At this time, on the glass panel surface (image display surface surface), the angle formed by one orientation axis direction of the PET film as the base material of the protective film and the linearly polarized light emitted from the image display unit of the liquid crystal module becomes 0 °. An image display device was manufactured by fixing at an angle.
  • a protective film C cut out in a rectangular shape is bonded to one surface of a transparent glass panel, and the glass panel includes a glass panel in which the protective film C is bonded and a liquid crystal module in which light emitted from the image display unit is linearly polarized light. It fixed so that it might be located in the upper part.
  • the angle formed by one orientation axis direction of the PEN film as the base material of the protective film and the linearly polarized light emitted from the image display unit of the liquid crystal module is 90 °.
  • An image display device was manufactured by fixing at an angle.
  • a protective film C cut out in a rectangular shape is bonded to one surface of a transparent glass panel, and the glass panel includes a glass panel in which the protective film C is bonded and a liquid crystal module in which light emitted from the image display unit is linearly polarized light. It fixed so that it might be located in the upper part. At this time, on the glass panel surface (image display surface surface), the angle formed by one orientation axis direction of the PEN film as the base material of the protective film and the linearly polarized light emitted from the image display unit of the liquid crystal module becomes 0 °. An image display device was manufactured by fixing at an angle.
  • a protective film D cut out in a rectangular shape is bonded to one surface of a transparent glass panel, and the glass panel includes a glass panel in which the protective film D is bonded and a liquid crystal module in which light emitted from the image display unit is linearly polarized light. It fixed so that it might be located in the upper part.
  • the image display device was manufactured by fixing the angle ⁇ formed by the side of the protective film at this time and the linearly polarized light emitted from the image display unit of the liquid crystal module to be 45 °.
  • a protective film D cut out in a rectangular shape is bonded to one surface of a transparent glass panel, and the glass panel includes a glass panel in which the protective film D is bonded and a liquid crystal module in which light emitted from the image display unit is linearly polarized light. It fixed so that it might be located in the upper part.
  • the image display device was manufactured by fixing the angle ⁇ formed by the side of the protective film at this time and the linearly polarized light emitted from the image display unit of the liquid crystal module to be 30 °.
  • a protective film D cut out in a rectangular shape is bonded to one surface of a transparent glass panel, and the glass panel includes a glass panel in which the protective film D is bonded and a liquid crystal module in which light emitted from the image display unit is linearly polarized light. It fixed so that it might be located in the upper part.
  • the image display device was manufactured by fixing the angle ⁇ formed by the side of the protective film at this time and the linearly polarized light emitted from the image display unit of the liquid crystal module to be 60 °.
  • a protective film D cut out in a rectangular shape is bonded to one surface of a transparent glass panel, and the glass panel includes a glass panel in which the protective film D is bonded and a liquid crystal module in which light emitted from the image display unit is linearly polarized light. It fixed so that it might be located in the upper part.
  • the image display device was manufactured by fixing the angle ⁇ formed by the side of the protective film and the linearly polarized light emitted from the liquid crystal module to 90 °.
  • a protective film D cut out in a rectangular shape is bonded to one surface of a transparent glass panel, and the glass panel includes a glass panel in which the protective film D is bonded and a liquid crystal module in which light emitted from the image display unit is linearly polarized light. It fixed so that it might be located in the upper part.
  • the image display device was manufactured by fixing the angle ⁇ formed by the side of the protective film at this time and the linearly polarized light emitted from the image display unit of the liquid crystal module to be 0 °.
  • a protective film E cut out in a rectangular shape is bonded to one surface of a transparent glass panel, and the glass panel is composed of a glass panel in which the protective film E is bonded and a liquid crystal module in which light emitted from the image display unit is linearly polarized light. It fixed so that it might be located in the upper part.
  • the image display device was manufactured by fixing the angle ⁇ formed by the side of the protective film at this time and the linearly polarized light emitted from the image display unit of the liquid crystal module to be 45 °.
  • a protective film E cut out in a rectangular shape is bonded to one surface of a transparent glass panel, and the glass panel is composed of a glass panel in which the protective film E is bonded and a liquid crystal module in which light emitted from the image display unit is linearly polarized light. It fixed so that it might be located in the upper part.
  • the image display device was manufactured by fixing the angle ⁇ formed by the side of the protective film at this time and the linearly polarized light emitted from the image display unit of the liquid crystal module to be 30 °.
  • a protective film E cut out in a rectangular shape is bonded to one surface of a transparent glass panel, and the glass panel is composed of a glass panel in which the protective film E is bonded and a liquid crystal module in which light emitted from the image display unit is linearly polarized light. It fixed so that it might be located in the upper part.
  • the image display device was manufactured by fixing the angle ⁇ formed by the side of the protective film at this time and the linearly polarized light emitted from the image display unit of the liquid crystal module to be 60 °.
  • a protective film E cut out in a rectangular shape is bonded to one surface of a transparent glass panel, and the glass panel is composed of a glass panel in which the protective film E is bonded and a liquid crystal module in which light emitted from the image display unit is linearly polarized light. It fixed so that it might be located in the upper part.
  • the image display device was manufactured by fixing the angle ⁇ formed by the side of the protective film and the linearly polarized light emitted from the image display unit of the liquid crystal module to 90 °.
  • a protective film E cut out in a rectangular shape is bonded to one surface of a transparent glass panel, and the glass panel is composed of a glass panel in which the protective film E is bonded and a liquid crystal module in which light emitted from the image display unit is linearly polarized light. It fixed so that it might be located in the upper part.
  • the image display device was manufactured by fixing the angle ⁇ formed by the side of the protective film at this time and the linearly polarized light emitted from the image display unit of the liquid crystal module to be 0 °.
  • An image display device was manufactured by fixing a transparent glass panel and a liquid crystal module in which light emitted from the image display unit is linearly polarized so that the glass panel is positioned on the upper part.
  • FIG. 10 shows the result of confirming the visibility of the image display device of Example 1
  • FIG. 11 shows the result of confirming the visibility in the region where the luminance is lowered in the image display device of Example 3, and Comparative Example 1
  • FIG. 10 shows the result of confirming the visibility of the image display device of Example 1
  • FIG. 11 shows the result of confirming the visibility in the region where the luminance is lowered in the image display device of Example 3, and Comparative Example 1
  • FIGS. 6 to 8 are images on the image display unit.
  • X The image becomes dark in a part of the rotation region, and the image is hardly visible in the region.
  • the protective film attached to the glass panel is a protective film based on a biaxially stretched resin film, and both the angles ⁇ 1 and ⁇ 2 are 15 to 75 °.
  • the image display devices of Examples 1 to 11 can improve the strength of the glass panel, prevent the glass from being scattered when cracks occur, and can view the image satisfactorily when viewed through the polarizing plate. .
  • a urethane acrylate (UA1) / PE4A mixture (a mixture of 80/20 by weight, non-volatile) 80% by weight butyl acetate solution).
  • the molecular weight of urethane acrylate (UA1) was 818.
  • the reaction solution was bubbled with air, heated to 110 ° C., and reacted for 8 hours. Thereafter, 1.4 parts by weight of p-methoxyphenol was added, and after cooling to room temperature, MIBK was added so that the nonvolatile content was 50% by weight to obtain the above polymer (MIBK solution having a nonvolatile content of 50% by weight). .
  • the weight average molecular weight of the obtained polymer was 31,000 (in terms of polystyrene by GPC), and the (meth) acryloyl group equivalent was 300 g / eq.
  • ethyl acetate 40.0 parts by weight of a butyl acetate solution (non-volatile content 80%) of a urethane acrylate (UA1) / PE4A mixture (a mixture of 80/20 by weight), a MIBK solution (non-volatile content) of the above polymer 50%) 64.0 parts by weight, dipentaerythritol hexaacrylate (hereinafter referred to as “DPHA”) 16.0 parts by weight, photoinitiator 1-hydroxycyclohexyl phenyl ketone (hereinafter referred to as “HCPK”) 1.63 Part by weight, 1.16 parts by weight of photoinitiator diphenyl-2,4,6-trimethylbenzoylphosphine oxide (hereinafter referred to as “TPO”) are uniformly mixed to prepare a resin composition (non-volatile content: 65%). did.
  • DPHA dipentaerythritol hexaacrylate
  • HCPK photo
  • OPTOOL DAC reactive fluorine antifouling agent
  • a protective film original fabric was prepared as follows.
  • ⁇ Preparation of protective film F> On one side of a 100 ⁇ m-thick biaxially stretched polyethylene terephthalate film (Cosmo Shine A4100 manufactured by Toyobo Co., Ltd.) having an angle ⁇ of ⁇ 30 ° formed by the width direction of the original film and the orientation axis in the width direction in the film, After applying the hard coating agent (A) prepared above and drying at 60 ° C.
  • an ultraviolet irradiation apparatus (“F450” manufactured by Fusion UV Systems Japan Co., Ltd., lamp: 120 W / cm, H bulb) ) was used to irradiate ultraviolet rays at an irradiation light amount of 0.5 J / cm 2 to form a hard coat layer having a thickness of 10 ⁇ m.
  • the pressure-sensitive adhesive (a) was applied to the surface of the hard coat film opposite to the hard coat layer so that the thickness of the pressure-sensitive adhesive layer after drying was 10 ⁇ m, and dried at 85 ° C. for 2 minutes.
  • a 38 ⁇ m thick polyester film (hereinafter referred to as # 38 release film) having one surface peeled off with a silicone compound was bonded to the obtained pressure-sensitive adhesive layer surface and aged at 40 ° C. for 2 days to produce a protective film original fabric F having a total thickness of 158 ⁇ m. Obtained.
  • ⁇ Preparation of protective film G> On one side of a 100 ⁇ m-thick biaxially stretched polyethylene terephthalate film (Cosmo Shine A4100 manufactured by Toyobo Co., Ltd.) having an angle ⁇ of 0 ° between the width direction of the original film and the orientation axis in the width direction in the film, After applying the hard coating agent (A) prepared in step 1 and drying at 60 ° C.
  • an ultraviolet irradiation device in an air atmosphere (“F450” manufactured by Fusion UV Systems Japan Co., Ltd., lamp: 120 W / cm, H bulb) was used to irradiate ultraviolet rays at an irradiation light amount of 0.5 J / cm 2 to form a hard coat layer having a thickness of 10 ⁇ m.
  • the pressure-sensitive adhesive (a) was applied to the surface of the hard coat film opposite to the hard coat layer so that the thickness of the pressure-sensitive adhesive layer after drying was 10 ⁇ m, and dried at 85 ° C. for 2 minutes.
  • a 38 ⁇ m thick polyester film (hereinafter referred to as “# 38 release film”) having one surface peeled off with a silicone compound was bonded to the obtained pressure-sensitive adhesive layer surface, and aged at 40 ° C. for 2 days to produce a protective film original fabric G having a total thickness of 158 ⁇ m. Obtained.
  • ⁇ Preparation of protective film original fabric H> On one side of a 100 ⁇ m-thick biaxially stretched polyethylene terephthalate film (Cosmo Shine A4100 manufactured by Toyobo Co., Ltd.) having an angle ⁇ of 20 ° formed by the width direction of the original film and the orientation axis in the width direction in the film, After applying the hard coating agent (A) prepared in step 1 and drying at 60 ° C.
  • an ultraviolet irradiation device in an air atmosphere (“F450” manufactured by Fusion UV Systems Japan Co., Ltd., lamp: 120 W / cm, H bulb) was used to irradiate ultraviolet rays at an irradiation light amount of 0.5 J / cm 2 to form a hard coat layer having a thickness of 10 ⁇ m.
  • the pressure-sensitive adhesive (a) was applied to the surface of the hard coat film opposite to the hard coat layer so that the thickness of the pressure-sensitive adhesive layer after drying was 10 ⁇ m, and dried at 85 ° C. for 2 minutes.
  • a 38 ⁇ m thick polyester film (hereinafter referred to as # 38 release film) having one surface peeled off with a silicone compound was bonded to the obtained pressure-sensitive adhesive layer surface and aged at 40 ° C. for 2 days to produce a protective film original fabric H having a total thickness of 158 ⁇ m. Obtained.
  • ⁇ Preparation of protective film I> On one side of a 100 ⁇ m-thick biaxially stretched polyethylene naphthalate film (Teonex manufactured by Teijin DuPont) with an angle ⁇ formed by the width direction of the original film and the orientation axis in the width direction of the film being 0 °, After applying the hard coating agent (A) prepared in step 1 and drying at 60 ° C. for 90 seconds, an ultraviolet irradiation device in an air atmosphere (“F450” manufactured by Fusion UV Systems Japan Co., Ltd., lamp: 120 W / cm, H bulb) was used to irradiate ultraviolet rays at an irradiation light amount of 0.5 J / cm 2 to form a hard coat layer having a thickness of 10 ⁇ m.
  • F450 manufactured by Fusion UV Systems Japan Co., Ltd., lamp: 120 W / cm, H bulb
  • the pressure-sensitive adhesive (a) was applied to the surface of the hard coat film opposite to the hard coat layer so that the thickness of the pressure-sensitive adhesive layer after drying was 10 ⁇ m, and dried at 85 ° C. for 2 minutes.
  • a 38 ⁇ m-thick polyester film (hereinafter referred to as # 38 release film) with one side peel-treated with a silicone compound was bonded to the obtained pressure-sensitive adhesive layer surface, and aged at 40 ° C. for 2 days to produce a protective film original fabric I with a total thickness of 158 ⁇ m. Obtained.
  • the hard coating agent (A) prepared above was applied to one side of a 125 ⁇ m thick unstretched acrylic film (Acryprene manufactured by Mitsubishi Rayon Co., Ltd.), dried at 60 ° C. for 90 seconds, and then irradiated with an ultraviolet irradiation device (fusion) in an air atmosphere.
  • a “F450” manufactured by UV Systems Japan, Inc. a lamp: 120 W / cm, an H bulb, ultraviolet rays were irradiated at an irradiation light amount of 0.5 J / cm 2 to form a hard coat layer having a thickness of 10 ⁇ m.
  • the pressure-sensitive adhesive (a) was applied to the surface of the hard coat film opposite to the hard coat layer so that the thickness of the pressure-sensitive adhesive layer after drying was 10 ⁇ m, and dried at 85 ° C. for 2 minutes.
  • a 38 ⁇ m thick polyester film (hereinafter referred to as # 38 release film) having one surface peeled with a silicone compound was bonded to the obtained pressure-sensitive adhesive layer surface, and aged at 40 ° C. for 2 days to produce a protective film original fabric J having a total thickness of 183 ⁇ m. Obtained.
  • Example 12 The protective film original fabric F was punched so that the film punching angle (angle formed by the width direction of the film original fabric and one side of the rectangular shape to be punched) was ⁇ 10 ° to obtain a protective film.
  • This protective film was bonded to one surface of a transparent rectangular glass panel, and the glass panel and a liquid crystal module having a polarization axis angle ⁇ of 0 ° were fixed so that the protective film was positioned on the top.
  • Example 13> The protective film original fabric F was punched so that the punching angle was 0 ° to obtain a protective film.
  • This protective film was bonded to one surface of a transparent rectangular glass panel, and the glass panel and a liquid crystal module having a polarization axis angle ⁇ of 0 ° were fixed so that the protective film was positioned on the top.
  • Example 14> The protective film original fabric F was punched so that the punching angle was 15 ° to obtain a protective film.
  • This protective film was bonded to one surface of a transparent rectangular glass panel, and the glass panel and a liquid crystal module having a polarization axis angle ⁇ of 0 ° were fixed so that the protective film was positioned on the top.
  • Example 15 The protective film original fabric F was punched so that the punching angle was 30 ° to obtain a protective film.
  • This protective film was bonded to one surface of a transparent rectangular glass panel, and the glass panel and a liquid crystal module having a polarization axis angle ⁇ of 0 ° were fixed so that the protective film was positioned on the top.
  • Example 16> The protective film original fabric F was punched so that the punching angle was 40 ° to obtain a protective film.
  • This protective film was bonded to one surface of a transparent rectangular glass panel, and the glass panel and a liquid crystal module having a polarization axis angle ⁇ of 0 ° were fixed so that the protective film was positioned on the top.
  • Example 17 The protective film original fabric G was punched so that the punching angle was 45 ° to obtain a protective film.
  • This protective film was bonded to one surface of a transparent rectangular glass panel, and the glass panel and a liquid crystal module having a polarization axis angle ⁇ of 0 ° were fixed so that the protective film was positioned on the top.
  • Example 18 The protective film original fabric H was punched so that the punching angle was 65 ° to obtain a protective film.
  • This protective film was bonded to one surface of a transparent rectangular glass panel, and the glass panel and a liquid crystal module having a polarization axis angle ⁇ of 0 ° were fixed so that the protective film was positioned on the top.
  • Example 19 The protective film original fabric F was punched so that the punching angle was ⁇ 15 ° to obtain a protective film.
  • This protective film was bonded to one surface of a transparent rectangular glass panel, and the glass panel and a liquid crystal module having a polarization axis angle ⁇ of 30 ° were fixed so that the protective film was positioned on the top.
  • Example 20> The protective film original fabric G was punched so that the punching angle was 15 ° to obtain a protective film.
  • This protective film was bonded to one surface of a transparent rectangular glass panel, and the glass panel and a liquid crystal module having a polarization axis angle ⁇ of 30 ° were fixed so that the protective film was positioned on the top.
  • Example 21 The protective film original fabric H was punched so that the punching angle was 35 ° to obtain a protective film.
  • This protective film was bonded to one surface of a transparent rectangular glass panel, and the glass panel and a liquid crystal module having a polarization axis angle ⁇ of 30 ° were fixed so that the protective film was positioned on the top.
  • Example 22> The protective film original fabric F was punched so that the punching angle was 35 ° to obtain a protective film.
  • This protective film was bonded to one surface of a transparent rectangular glass panel, and the glass panel and a liquid crystal module having a polarization axis angle ⁇ of 160 ° were fixed so that the protective film was positioned on the top.
  • Example 23 The protective film original fabric G was punched so that the punching angle was 65 ° to obtain a protective film.
  • This protective film was bonded to one surface of a transparent rectangular glass panel, and the glass panel and a liquid crystal module having a polarization axis angle ⁇ of 160 ° were fixed so that the protective film was positioned on the top.
  • Example 24 The protective film original fabric H was punched so that the punching angle was 85 ° to obtain a protective film.
  • This protective film was bonded to one surface of a transparent rectangular glass panel, and the glass panel and a liquid crystal module having a polarization axis angle ⁇ of 160 ° were fixed so that the protective film was positioned on the top.
  • Example 25 The protective film original fabric I was punched so that the punching angle was 20 ° to obtain a protective film.
  • This protective film was bonded to one surface of a transparent rectangular glass panel, and the glass panel and a liquid crystal module having a polarization axis angle ⁇ of 0 ° were fixed so that the protective film was positioned on the top.
  • Example 26 The protective film original fabric I was punched so that the punching angle was 45 ° to obtain a protective film.
  • This protective film was bonded to one surface of a transparent rectangular glass panel, and the glass panel and a liquid crystal module having a polarization axis angle ⁇ of 0 ° were fixed so that the protective film was positioned on the top.
  • Example 27 The protective film original fabric I was punched so that the punching angle was 65 ° to obtain a protective film.
  • This protective film was bonded to one surface of a transparent rectangular glass panel, and the glass panel and a liquid crystal module having a polarization axis angle ⁇ of 0 ° were fixed so that the protective film was positioned on the top.
  • the protective film original fabric F was punched so that the punching angle was ⁇ 30 ° to obtain a protective film.
  • This protective film was bonded to one surface of a transparent rectangular glass panel, and the glass panel and a liquid crystal module having a polarization axis angle ⁇ of 0 ° were fixed so that the protective film was positioned on the top.
  • the protective film original fabric F was punched so that the punching angle was ⁇ 20 ° to obtain a protective film.
  • This protective film was bonded to one surface of a transparent rectangular glass panel, and the glass panel and a liquid crystal module having a polarization axis angle ⁇ of 0 ° were fixed so that the protective film was positioned on the top.
  • the protective film original fabric F was punched so that the punching angle was 50 ° to obtain a protective film.
  • This protective film was bonded to one surface of a transparent rectangular glass panel, and the glass panel and a liquid crystal module having a polarization axis angle ⁇ of 0 ° were fixed so that the protective film was positioned on the top.
  • the protective film original fabric F was punched so that the punching angle was 65 ° to obtain a protective film.
  • This protective film was bonded to one surface of a transparent rectangular glass panel, and the glass panel and a liquid crystal module having a polarization axis angle ⁇ of 0 ° were fixed so that the protective film was positioned on the top.
  • the protective film original fabric I was punched so that the punching angle was 0 ° to obtain a protective film.
  • This protective film was bonded to one surface of a transparent rectangular glass panel, and the glass panel and a liquid crystal module having a polarization axis angle ⁇ of 0 ° were fixed so that the protective film was positioned on the top.
  • the protective film original fabric I was punched so that the punching angle was 90 ° to obtain a protective film.
  • This protective film was bonded to one surface of a transparent rectangular glass panel, and the glass panel and a liquid crystal module having a polarization axis angle ⁇ of 0 ° were fixed so that the protective film was positioned on the top.
  • ⁇ Comparative Example 25> The protective film original fabric J was punched so that the punching angles were 0, ⁇ 20, ⁇ 45, ⁇ 70, and ⁇ 90 ° to obtain a protective film.
  • This protective film was bonded to one surface of a transparent rectangular glass panel, and the glass panel and a liquid crystal module having a polarization axis angle ⁇ of 0 ° were fixed so that the protective film was positioned on the top.
  • the protective film original fabric J was punched so that the punching angle was 0, 20, 45, 70, and 90 ° clockwise to obtain a protective film.
  • This protective film was bonded to one surface of a transparent rectangular glass panel, and the glass panel and a liquid crystal module having a polarization axis angle ⁇ of 30 ° were fixed so that the protective film was positioned on the top.
  • ⁇ Comparative Example 27> The protective film original fabric J was punched so that the punching angle was 0, ⁇ 20, ⁇ 45, ⁇ 70, and ⁇ 90 ° counterclockwise to obtain a protective film.
  • This protective film was bonded to one surface of a transparent rectangular glass panel, and the glass panel and a liquid crystal module having a polarization axis angle ⁇ of 30 ° were fixed so that the protective film was positioned on the top.
  • ⁇ Comparative Example 28> The protective film original fabric J was punched so that the punching angle was 0, 20, 45, 70, and 90 ° clockwise to obtain a protective film.
  • This protective film was bonded to one surface of a transparent rectangular glass panel, and the glass panel and a liquid crystal module having a polarization axis angle ⁇ of 160 ° were fixed so that the protective film was positioned on the top.
  • ⁇ Comparative Example 29> The protective film original fabric J was punched so that the punching angle was 0, ⁇ 20, ⁇ 45, ⁇ 70, and ⁇ 90 ° counterclockwise to obtain a protective film.
  • This protective film was bonded to one surface of a transparent rectangular glass panel, and the glass panel and a liquid crystal module having a polarization axis angle ⁇ of 160 ° were fixed so that the protective film was positioned on the top.
  • FIG. 9 shows the visibility of the image emitted from the image display device.
  • the evaluation criteria were as follows. The evaluation results are shown in Tables 4-7. Further, FIG. 13 shows the result of confirming the visibility of the image display device of Example 12, FIG. 14 shows the result of confirming the visibility in the region where the brightness is lowered in the image display device of Example 14, and Comparative Example 18 FIG.
  • FIGS. 13 to 15 shows the result of confirming the visibility in the area where the image becomes dark in the image display apparatus of FIG.
  • the cursors in FIGS. 13 to 15 are images on the image display unit.
  • There is a region where the luminance falls in a part of the rotation region, and a slight darkness is felt in the region, but the image visibility is practical in the entire rotation region.
  • Glass panel scattering prevention The evaluation of the glass scattering prevention property was performed based on the three-point bending test method of JIS R1601 standard.
  • the evaluation criteria for glass scattering were as follows. ⁇ : No glass fragments scattered ⁇ : Glass fragments scattered
  • the protective film was affixed to a glass plate having a thickness of 0.5 mm, a length of 50 mm, and a width of 40 mm, and then fixed by performing heat and pressure treatment at 5 atm, 50 ° C. for 20 minutes.
  • the total light transmittance and haze were measured based on JIS K7105 and JIS K7136 of samples using “HR-100 Model” manufactured by Murakami Color Research Laboratory.
  • the protective film produced by the production method of the present invention was able to realize suitable visibility while having good protective performance as a protective film.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Nonlinear Science (AREA)
  • Mathematical Physics (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Textile Engineering (AREA)
  • Polarising Elements (AREA)
  • Laminated Bodies (AREA)
  • Devices For Indicating Variable Information By Combining Individual Elements (AREA)

Abstract

In the present invention, an image can be favorably visible even through a pair of polarizing sunglasses, in an image display apparatus wherein a protection film of a transparent panel is a protection film the base material of which is a biaxially-oriented resin film, and both the angle (θ1) between the polarization direction of linearly polarized light to emerge from an image display unit and the direction of one orientation axis of the biaxially-oriented resin film, and the angle (θ2) between the polarization direction of the linearly polarized light to emerge from the image display unit and the direction of the other orientation axis of the biaxially-oriented resin film are within a range of 15°-75° at the surface of the image display module.

Description

画像表示装置、保護フィルム及び保護フィルムの製造方法Image display device, protective film, and method of manufacturing protective film
 本発明は、画像表示部からの出射光が直線偏光である画像表示モジュールと、前記画像表示モジュールの上部に設けられる透明パネルとを有し、前記透明パネルの少なくとも一面に保護フィルムが貼り付けられた画像表示装置に関する。
 また、本発明は上記画像表示装置に使用する保護フィルム及び当該保護フィルムの製造方法に関する。
The present invention includes an image display module in which light emitted from the image display unit is linearly polarized light, and a transparent panel provided on an upper portion of the image display module, and a protective film is attached to at least one surface of the transparent panel. The present invention relates to an image display apparatus.
Moreover, this invention relates to the manufacturing method of the protective film used for the said image display apparatus, and the said protective film.
 液晶ディスプレイ(LCD)や有機ELディスプレイ等の画像表示装置は、パソコンを始めとする広範な分野で用いられている。特に電子手帳、携帯電話、携帯オーディオプレイヤー等においては、近年益々小型化や薄型化が進み、更に動画再生機能等への対応から高精細化の要求も高くなっている。このような画像表示装置として、例えば、LCDモジュールや有機ELモジュール等の画像表示画像表示モジュールをその構成中に有し、当該画像表示画像表示モジュール上部に当該画像表示画像表示モジュールを保護する透明パネルが設けられた構成の画像表示装置が使用されている。特に近年では、電子機器のデザイン性や質感を高める目的から上記透明パネルとしてガラスパネルを用いることが多く、ガラスへの傷つき防止や破損した際のガラスの飛散を防止するための保護フィルムを透明パネル側に設けている(例えば、特許文献1参照)。 Image display devices such as liquid crystal displays (LCD) and organic EL displays are used in a wide range of fields including personal computers. In particular, electronic notebooks, cellular phones, portable audio players, and the like have been increasingly reduced in size and thickness in recent years, and further, there has been a demand for higher definition due to support for moving image playback functions and the like. As such an image display device, for example, an image display image display module such as an LCD module or an organic EL module is included in the configuration, and a transparent panel that protects the image display image display module above the image display image display module Is used. In recent years, glass panels are often used as the above transparent panels for the purpose of improving the design and texture of electronic devices, and transparent panels are used to prevent damage to glass and to prevent glass from scattering when broken. (See, for example, Patent Document 1).
 LCD等の画像表示装置においては、モジュールの構成上の都合から出射光が直線偏光となる場合が多い。そのため、偏光サングラス等を使用して画像を見た場合においては、出射した直線偏光が偏光サングラスと直交し、画像が見えなくなる問題があった。 In an image display device such as an LCD, the emitted light is often linearly polarized due to the configuration of the module. Therefore, when viewing an image using polarized sunglasses or the like, there is a problem that the emitted linearly polarized light is orthogonal to the polarized sunglasses and the image cannot be seen.
 この問題を解決する手段としては、画像表示装置中に位相差フィルムを貼付することで直線偏光を円偏光に変換する方法がある(特許文献2参照)。しかし、画像表示部からの出射光が直線偏光である画像表示モジュールを有する画像表示装置においては、画像表示モジュール中に既に偏光板や偏光フィルムを有することから、画像表示モジュール上に、さらに位相差フィルムを設けた場合には、他数の位相差フィルムにより光の透過性の低下が大きくなる問題があった。また、位相差フィルムは一般的に高価であり製造コストが増大する問題があった。 As a means for solving this problem, there is a method of converting linearly polarized light into circularly polarized light by attaching a retardation film in an image display device (see Patent Document 2). However, in an image display device having an image display module in which the light emitted from the image display unit is linearly polarized light, the image display module already has a polarizing plate and a polarizing film. In the case where a film is provided, there is a problem in that the light transmittance is greatly lowered by the other number of retardation films. Further, the retardation film is generally expensive, and there is a problem that the production cost increases.
特開2010-275385号公報JP 2010-275385 A 特開2004-268835号公報JP 2004-268835 A
 本発明が解決しようとする課題は、パネル飛散や傷付きを防止するための保護フィルムを設けた場合にも、偏光サングラスを通して画像を視認できる画像表示装置を安価かつ簡易に実現することにある。 The problem to be solved by the present invention is to realize an image display device capable of visually recognizing an image through polarized sunglasses even when a protective film for preventing panel scattering and scratches is provided.
 さらに本発明は、偏光サングラスを通して視認した際にも画像を良好に視認でき、パネル飛散や傷付きを防止することを可能にする保護フィルムを簡易かつ安価に製造する方法を提供することを課題とする。 Furthermore, the present invention has an object to provide a method for easily and inexpensively manufacturing a protective film that allows a user to visually recognize an image even when viewed through polarized sunglasses and to prevent panel scattering and scratches. To do.
 本発明は、透明パネルの保護フィルムが、二軸延伸樹脂フィルムを基材とする保護フィルムであり、画像表示モジュール表面において、前記画像表示部から出射される直線偏光の偏光方向と、二軸延伸樹脂フィルムの一方の配向軸方向とがなす角度θ1、及び、前記画像表示部から出射される直線偏光の偏光方向と、二軸延伸樹脂フィルムの他方の配向軸方向とがなす角度θ2とが共に15~75°である画像表示装置により上記課題を解決する。 In the present invention, the protective film of the transparent panel is a protective film based on a biaxially stretched resin film, and on the surface of the image display module, the polarization direction of linearly polarized light emitted from the image display unit, and biaxially stretched The angle θ1 formed by one orientation axis direction of the resin film and the angle θ2 formed by the polarization direction of the linearly polarized light emitted from the image display unit and the other orientation axis direction of the biaxially stretched resin film are both The above-mentioned problem is solved by an image display device having an angle of 15 to 75 °.
 また、本発明は、画像表示部からの出射光が直線偏光である画像表示モジュールと、前記画像表示モジュールの上部に設けられる透明パネルとを有する画像表示装置において、前記透明パネルの少なくとも一面に貼り付けられる保護フィルムを製造する方法であって、前記保護フィルムが、二軸延伸されたポリエチレン系樹脂フィルムからなるフィルム基材層を有する保護フィルムであり、前記保護フィルムの原反を抜き加工して、略方形形状の保護フィルムを得る工程を有し、前記略方形形状への抜き加工が、画像表示モジュールの上部に保護フィルムが貼り付けられた透明パネルが設けられた際に、画像表示部から出射される直線偏光の偏光軸と、フィルム基材層の分子の一方の配向軸とがなす角度θ1、及び前記画像表示部から出射される直線偏光の偏光軸と前記フィルム基材層の分子の他方の配向軸とがなす角度θ2が15~75°となる抜き加工である保護フィルムの製造方法により、上記課題を解決する。 Further, the present invention provides an image display device having an image display module in which light emitted from the image display unit is linearly polarized light and a transparent panel provided on an upper portion of the image display module, and is attached to at least one surface of the transparent panel. A method of manufacturing a protective film to be attached, wherein the protective film is a protective film having a film base layer made of a biaxially stretched polyethylene-based resin film, And a step of obtaining a protective film having a substantially rectangular shape, and when the transparent panel having the protective film attached to the upper part of the image display module is provided in the punching process to the substantially rectangular shape, The angle θ1 formed by the polarization axis of the linearly polarized light emitted and one of the orientation axes of the molecules of the film base material layer, and the light emitted from the image display unit The method for manufacturing a polarization axis and the protective film the other alignment axis and the angle θ2 of the molecules of the film substrate layer is punched to be 15 ~ 75 ° linearly polarized light, to solve the above problems.
 本発明における透明パネルの保護フィルムでは、二軸延伸樹脂フィルムを基材とすることで、延伸された二つの軸方向において屈折率を高くしている。さらに、これらの配向軸方向と画像表示モジュールから出射された直線偏光の偏光方向を15~75°にすることにより、直線偏光が保護フィルム内を透過する際に複数の屈折率の影響を与え、直線偏光を旋光させることで偏光サングラスを透過できる。 In the transparent panel protective film of the present invention, the biaxially stretched resin film is used as a base material, so that the refractive index is increased in the two stretched axial directions. Further, by setting the orientation axis direction and the polarization direction of the linearly polarized light emitted from the image display module to 15 to 75 °, when the linearly polarized light is transmitted through the protective film, the influence of a plurality of refractive indexes is exerted. Polarized sunglasses can be transmitted by rotating linearly polarized light.
 本発明においては、新たにフィルム等を積層することがないため、光の透過性の低下や画像表示部の厚みを高くなることがない。 In the present invention, since no new film or the like is laminated, the light transmittance is not lowered and the thickness of the image display portion is not increased.
 また、本発明は透明パネルの保護フィルムを二軸延伸されたフィルムを基材としているため、光の旋光性だけでなく、保護フィルムとして必要となるパネルへの耐傷つき性や衝撃への耐久性に優れる。 In addition, since the present invention uses a biaxially stretched protective film for the transparent panel as a base material, not only the optical rotation of light but also the scratch resistance and durability against impacts required for the protective film. Excellent.
 さらに、本発明の製造方法によれば、汎用の二軸延伸ポリエチレン系樹脂フィルムを基材として使用でき、かつ保護フィルムの原反全域から所望の光学軸を有する保護フィルムを得ることができる。このため、本発明の製造方法によれば、出射光が直線偏光の画像表示装置の透明パネルに使用した際に、偏光サングラスを通して画像を良好に視認でき、かつ、パネル飛散や傷付きを好適に防止できる保護フィルムを簡易かつ安価に製造できる。 Furthermore, according to the production method of the present invention, a general-purpose biaxially stretched polyethylene resin film can be used as a base material, and a protective film having a desired optical axis can be obtained from the entire raw film of the protective film. For this reason, according to the manufacturing method of the present invention, when the emitted light is used for the transparent panel of the linearly polarized image display device, the image can be satisfactorily viewed through the polarized sunglasses, and the panel is preferably scattered or damaged. The protective film which can be prevented can be manufactured easily and inexpensively.
本発明に使用する保護フィルム、画像表示部等の略方形形状の一例を示す概略図である。It is the schematic which shows an example of substantially square shapes, such as a protective film used for this invention, and an image display part. 本発明の画像表示装置における直線偏光の偏光方向を示す概略図である。It is the schematic which shows the polarization direction of the linearly polarized light in the image display apparatus of this invention. 本発明の画像表示装置における保護フィルムに使用する二軸延伸樹脂フィルムの配向軸方向を示す概略図である。It is the schematic which shows the orientation axis direction of the biaxially stretched resin film used for the protective film in the image display apparatus of this invention. 本発明の画像表示装置における直線偏光の偏光方向と、二軸延伸樹脂フィルムの配向軸方向とがなす角度θ1及びθ2を示す概略図である。It is the schematic which shows angle (theta) 1 and (theta) 2 which the polarization direction of a linearly polarized light and the orientation axis direction of a biaxially stretched resin film make in the image display apparatus of this invention. 本発明における保護フィルム原反に使用する二軸延伸されたポリエチレン系樹脂フィルム基材の幅方向の配向軸を示す概略図である。It is the schematic which shows the orientation axis | shaft of the width direction of the biaxially stretched polyethylene-type resin film base material used for the protective film original fabric in this invention. 本発明における画像表示部の水平軸と、画像表示部から出射される直線偏光の偏光軸とがなす角度φを示す概略図である。It is the schematic which shows angle (phi) which the horizontal axis of the image display part in this invention and the polarization axis of the linearly polarized light radiate | emitted from an image display part make. 本発明にける保護フィルムの基材の二軸延伸されたポリエチレン系樹脂フィルムの幅方向と、ポリエチレン系樹脂フィルム中の幅方向の配向軸とがなす角度γを示す概念図である。It is a conceptual diagram which shows angle (gamma) which the width direction of the biaxially stretched polyethylene-type resin film of the base material of the protective film in this invention, and the orientation axis | shaft of the width direction in a polyethylene-type resin film make. 本発明における保護フィルムの最適抜き加工角度αを示す概念図である。It is a conceptual diagram which shows the optimal punching process angle (alpha) of the protective film in this invention. 本発明の実施例における画像視認性の評価の概略図である。It is the schematic of evaluation of the image visibility in the Example of this invention. 本発明の実施例1の画像表示装置における画像視認性の評価結果である。It is an evaluation result of image visibility in an image display device of Example 1 of the present invention. 本発明の実施例3の画像表示装置における画像視認性の評価結果である。It is an evaluation result of image visibility in an image display device of Example 3 of the present invention. 本発明の比較例1の画像表示装置における画像視認性の評価結果である。It is an evaluation result of image visibility in an image display device of comparative example 1 of the present invention. 本発明の実施例12の画像表示装置における画像視認性の評価結果である。It is an evaluation result of image visibility in an image display device of Example 12 of the present invention. 本発明の実施例14の画像表示装置における画像視認性の評価結果である。It is an evaluation result of image visibility in an image display device of Example 14 of the present invention. 本発明の比較例17の画像表示装置における画像視認性の評価結果である。It is an evaluation result of image visibility in an image display device of comparative example 17 of the present invention.
 本発明は、画像表示部からの出射光が直線偏光である画像表示モジュールと、前記画像表示モジュールの上部に設けられる透明パネルとを有し、前記透明パネルの少なくとも一面に保護フィルムが貼り付けられた画像表示装置であって、前記保護フィルムが、二軸延伸樹脂フィルムを基材とする保護フィルムであり、画像表示面表面において、前記画像表示部から出射される直線偏光の偏光方向と、二軸延伸樹脂フィルムの一方の配向軸方向とがなす角度θ1、及び、前記画像表示部から出射される直線偏光の偏光方向と、二軸延伸樹脂フィルムの他方の配向軸方向とがなす角度θ2とが共に15~75°であることを特徴とする画像表示装置である。 The present invention includes an image display module in which light emitted from the image display unit is linearly polarized light, and a transparent panel provided on an upper portion of the image display module, and a protective film is attached to at least one surface of the transparent panel. The protective film is a protective film having a biaxially stretched resin film as a base material, and on the surface of the image display surface, the polarization direction of linearly polarized light emitted from the image display unit, An angle θ1 formed by one orientation axis direction of the axially stretched resin film, and an angle θ2 formed by the polarization direction of linearly polarized light emitted from the image display unit and the other orientation axis direction of the biaxially stretched resin film, Are both 15 to 75 °.
[画像表示モジュール]
 本発明における画像表示モジュールとしては、画像表示部からの出射光が直線偏光であるものであれば特に限定されず、例えば、LCDモジュール、有機ELモジュール等が挙げられる。また、本発明のモジュールには、これらのモジュールの上部にタッチパネルモジュール等を設けたモジュールの積層体も含む。
[Image display module]
The image display module in the present invention is not particularly limited as long as the emitted light from the image display unit is linearly polarized light, and examples thereof include an LCD module and an organic EL module. The module of the present invention also includes a module laminate in which a touch panel module or the like is provided on the upper part of these modules.
 前記画像表示モジュールの画像表示部の形状は、略方形形状であることが望ましい。略方形形状であることで各種の表示装置、特に小型電子端末に組み込みやすくなる。本発明において、略方形形状とは、長方形や正方形の方形形状(図1(a))の他、当該方形形状の任意の角、好ましくは4つの角が面取りされた形状(図1(b),(c))等の方形形状に近似した形状を含む。 The shape of the image display unit of the image display module is preferably a substantially square shape. The substantially square shape facilitates incorporation into various display devices, particularly small electronic terminals. In the present invention, the substantially square shape means a rectangular or square square shape (FIG. 1 (a)), as well as a shape in which arbitrary corners of the square shape, preferably four corners are chamfered (FIG. 1 (b)). , (C)) and the like approximate to a square shape.
 本発明における直線偏光の偏光方向とは、図2に示すように、直線偏光3を出射する画像表示モジュール1の上部に透明パネル2を有する画像表示装置において、当該透明パネル2が画像表示装置表層の画像表示面表面4を構成する場合に、画像表示面表面4にて直線偏光3の偏光方向5(偏光軸)をいう。 As shown in FIG. 2, the polarization direction of linearly polarized light in the present invention is an image display device having a transparent panel 2 above an image display module 1 that emits linearly polarized light 3, and the transparent panel 2 is a surface layer of the image display device. When the image display surface 4 is configured, the polarization direction 5 (polarization axis) of the linearly polarized light 3 on the image display surface 4 is referred to.
 前記画像表示モジュールの画像表示部が略方形形状である場合において、前記画像表示部から出射される直線偏光の偏光方向と、画像表示部の側辺とがなす角度ψ1が0~5°であることが好ましく、0~10°であることがさらに好ましい。角度ψ1がこの範囲にあることで直線偏光の偏光方向が容易に認識できるため、画像表示部から出射される直線偏光の偏光軸と、保護フィルムの二軸延伸樹脂フィルムの一方の配向軸方向とがなす角度θ1、及び、他方の配向軸方向とがなす角度θ2を調整しやすくなる。 When the image display unit of the image display module has a substantially square shape, an angle ψ1 formed by the polarization direction of the linearly polarized light emitted from the image display unit and the side of the image display unit is 0 to 5 °. It is preferably 0 ° to 10 °. Since the polarization direction of the linearly polarized light can be easily recognized when the angle ψ1 is within this range, the polarization axis of the linearly polarized light emitted from the image display unit and the one orientation axis direction of the biaxially stretched resin film of the protective film It is easy to adjust the angle θ1 formed by and the angle θ2 formed by the other orientation axis direction.
 また、前記画像表示部から出射される直線偏光の偏光方向と、画像表示部の底辺とがなす角度ψ2が0~5°であることが好ましく、0~10°であることがさらに好ましい。。この範囲でも同様に直線偏光の偏光方向が容易に認識できるため、角度θ1及び角度θ2を調整しやすくなる。 The angle ψ2 formed by the polarization direction of the linearly polarized light emitted from the image display unit and the base of the image display unit is preferably 0 to 5 °, and more preferably 0 to 10 °. . In this range as well, the polarization direction of linearly polarized light can be easily recognized, so that the angle θ1 and the angle θ2 can be easily adjusted.
[透明パネル]
 本発明に使用する透明パネルは、特に限定されないが、一般的に使用されるパネルとして、ガラス板、(メタ)アクリル樹脂、ポリカーボネート樹脂、ポリエチレンテレフタレート樹脂等がある。特に近年では、電子機器のデザイン性や質感を高める目的からガラスパネルを用いることが好ましい。
[Transparent panel]
Although the transparent panel used for this invention is not specifically limited, As a panel generally used, there exist a glass plate, (meth) acrylic resin, polycarbonate resin, polyethylene terephthalate resin, etc. Particularly in recent years, it is preferable to use a glass panel for the purpose of improving the design and texture of an electronic device.
 上記ガラスパネルは、強化ガラス板であることが好ましい。強化ガラスとしては、例えば、HOYA社製強化ガラス、コーニング社製Gorillaガラス、石塚ガラス社製IG3等が挙げられる。ガラス板を強化する方法としては、物理的強化法と化学的強化法が挙げられる。特に、化学的強化法はイオン交換法と風冷強化法がある。該ガラス板の材質は、フロートガラス、アルカリガラス、無アルカリガラスが挙げられる。 The glass panel is preferably a tempered glass plate. Examples of the tempered glass include tempered glass manufactured by HOYA, Gorilla glass manufactured by Corning, and IG3 manufactured by Ishizuka Glass. Examples of a method for strengthening the glass plate include a physical strengthening method and a chemical strengthening method. In particular, chemical strengthening methods include an ion exchange method and an air cooling strengthening method. Examples of the material of the glass plate include float glass, alkali glass, and alkali-free glass.
 また、透明パネルには、電極層等がパターニングされ、それ自身がタッチセンサー等の機能を有する場合も含む。 In addition, the transparent panel includes a case where an electrode layer or the like is patterned and has a function such as a touch sensor itself.
 透明パネルには装飾部が設けられる場合がある。装飾部は、携帯電子端末の画面表示部の周囲に視認される文字や図形、あるいはこれらの背面に設けられる黒色や白色の下地などがある。これら装飾部は、透明パネルへの印刷により設けることが容易であるため好ましい。印刷方法や印刷インキ等は特に制限されず、シルク印刷、パッド印刷等の通常使用される印刷方法や印刷インキを使用できる。 Decorative parts may be provided on transparent panels. The decoration portion includes characters and figures that are visually recognized around the screen display portion of the mobile electronic terminal, or a black or white background provided on the back of these. These decorative portions are preferable because they can be easily provided by printing on a transparent panel. The printing method and printing ink are not particularly limited, and a commonly used printing method such as silk printing or pad printing or printing ink can be used.
 透明パネルの厚さは、50μm~3mmのものが好ましく、75μm~2mmのものが好ましく、100μm~1mmのものがさらに好ましい。透明パネルの厚さが上記の範囲内だと、電子端末への適用時に薄型化が可能となる。 The thickness of the transparent panel is preferably 50 μm to 3 mm, preferably 75 μm to 2 mm, and more preferably 100 μm to 1 mm. When the thickness of the transparent panel is within the above range, the thickness can be reduced when applied to an electronic terminal.
[保護フィルム]
 本発明に使用する保護フィルムは、二軸延伸樹脂フィルム基材を有するものであればよい。二軸延伸樹脂フィルム基材は、フィルムの延伸工程において二軸で延伸することにより製造されたフィルムである。
[Protective film]
The protective film used for this invention should just have a biaxially stretched resin film base material. A biaxially stretched resin film substrate is a film produced by stretching biaxially in a film stretching process.
 本発明に使用する保護フィルムの形状は、任意の形状であってよいが、略方形形状とすることで、各種の表示装置、特に小型電子端末に組み込みやすくなるため好ましい。 The shape of the protective film used in the present invention may be any shape, but it is preferable to use a substantially rectangular shape because it can be easily incorporated into various display devices, particularly small electronic terminals.
 本発明に使用する保護フィルムは、その形状が略方形形状である場合には、二軸延伸樹脂フィルム基材の一方の配向軸方向と当該基材の一辺とがなす角度η1、及び、二軸延伸樹脂フィルム基材の他方の配向軸方向と当該基材の一辺と直行する辺とがなす角度η2とが5~85°であることが好ましく、15~75°であることが更に好ましい。具体的には、例えば、略方形形状の保護フィルムの側辺と、二軸延伸樹脂フィルム基材の一方の配向軸方向とがなす角度η1を5~85°とし、底辺(又は頂辺)と二軸延伸樹脂フィルム基材の他方の配向軸方向とがなす角度η2を5~85°とする。なお、η1及びη2は、保護フィルムの各辺と配向軸方向とがなす角のうち狭角側の角度であり、配向軸方向はいずれを基準としてもよい。二軸延伸樹脂フィルムは、通常延伸方向が直交する方向に延伸されていることから、この場合には、η1を上記範囲とすることで、おのずとη2も上記範囲となる。二軸延伸樹脂フィルムの各配向軸が直交しないように任意の方向に延伸することもできるが、二軸延伸樹脂フィルムの各配向軸が略直交するように延伸されることで好適な強度や光学特性を得やすいことから、配向軸二軸が面内で直交方向である二軸延伸樹脂フィルムであることが好ましい。本発明においては、このように保護フィルムの各辺と配向軸方向が一致しない保護フィルムを使用することで、画像表示モジュールからの直線偏光と、保護フィルムに使用する二軸延伸樹脂フィルム基材の配向軸方向とがなす角度θ1及びθ2を好適に調整しやすくなる。 When the shape of the protective film used in the present invention is a substantially square shape, an angle η1 formed by one orientation axis direction of the biaxially stretched resin film substrate and one side of the substrate, and biaxial The angle η2 formed between the other orientation axis direction of the stretched resin film substrate and the side perpendicular to one side of the substrate is preferably 5 to 85 °, more preferably 15 to 75 °. Specifically, for example, an angle η1 formed by the side of the substantially rectangular protective film and one orientation axis direction of the biaxially stretched resin film substrate is 5 to 85 °, and the base (or top) An angle η2 formed by the other orientation axis direction of the biaxially stretched resin film substrate is set to 5 to 85 °. In addition, η1 and η2 are angles on the narrow angle side among the angles formed by each side of the protective film and the alignment axis direction, and the alignment axis direction may be based on either. Since the biaxially stretched resin film is usually stretched in a direction perpendicular to the stretching direction, in this case, η2 is also in the above range by setting η1 in the above range. The biaxially stretched resin film can be stretched in any direction so that the orientation axes are not orthogonal to each other, but suitable strength and optical properties can be obtained by stretching the biaxially stretched resin film so that the orientation axes are substantially orthogonal. In order to easily obtain the characteristics, it is preferable that the biaxially stretched resin film has two orientation axes that are orthogonal in the plane. In the present invention, the use of the protective film in which the sides of the protective film and the orientation axis directions do not coincide with each other in this way allows linearly polarized light from the image display module and the biaxially stretched resin film substrate used for the protective film. The angles θ1 and θ2 formed by the orientation axis direction can be easily adjusted suitably.
 本発明に使用する保護フィルムは、その総厚さを50~300μm以下、さらには、100~250μmとすることが好ましい。厚みをこの範囲にすることで、パネルへの傷付防止性や衝撃への耐久性と画像表示装置の薄型化を両立することができる。 The total thickness of the protective film used in the present invention is preferably 50 to 300 μm or less, more preferably 100 to 250 μm. By setting the thickness within this range, it is possible to achieve both prevention of damage to the panel and durability against impacts and reduction in the thickness of the image display device.
 また、本発明に使用する保護フィルムは、片面または両面に粘着剤層を有するものであることが好ましい。粘着剤層を有することで、画像表示装置の透明パネルに容易に貼付することが可能となる。前記保護フィルムは、フィルム基材の片面または両面にハードコート層を有してもよい。 Further, the protective film used in the present invention preferably has an adhesive layer on one side or both sides. By having the pressure-sensitive adhesive layer, it can be easily attached to the transparent panel of the image display device. The protective film may have a hard coat layer on one side or both sides of the film substrate.
 本発明に使用する保護フィルムの厚み、その総厚さを300μm以下、好ましくは50~300μm、さらには、100~250μmとすることが好ましい。厚みをこの範囲にすることで、パネルへの傷付防止性や衝撃への耐久性と画像表示装置の薄型化を両立することができる。また、パネルへの傷付防止性や衝撃への耐久性と打ち抜き加工精度を両立しやすくなる。 The total thickness of the protective film used in the present invention is 300 μm or less, preferably 50 to 300 μm, and more preferably 100 to 250 μm. By setting the thickness within this range, it is possible to achieve both prevention of damage to the panel and durability against impacts and reduction in the thickness of the image display device. In addition, it becomes easy to achieve both stamping accuracy and durability against damage to the panel and durability against impact.
 本発明の保護フィルムは、画像表示装置に使用する点から、高い透明性を有していることが好ましい。 The protective film of the present invention preferably has high transparency from the viewpoint of use in an image display device.
 本発明の保護フィルムの可視光波長領域における全光線透過率は、85%以上が好ましく、90%以上がより好ましく、ヘイズが1.0以下が好ましく、0.5以下が特に好ましい。全光線透過率及びヘイズが上記の範囲内だと、保護フィルムは高い透明性を有しており、表示画面の高精細化しやすくなる。 The total light transmittance in the visible light wavelength region of the protective film of the present invention is preferably 85% or more, more preferably 90% or more, haze of 1.0 or less, particularly preferably 0.5 or less. When the total light transmittance and the haze are within the above ranges, the protective film has high transparency, and the display screen is easily refined.
[二軸延伸樹脂フィルム基材]
 保護フィルムに使用する二軸延伸樹脂フィルム基材としては、二軸延伸されたポリエチレンテレフタレート、ポリカーボネートフィルム、ポリプロピレンフィルム、ポリエチレンナフタレートフィルム等を例示できる。なかでも、ポリエチレンテレフタレート(PET)、ポリエチレンナフタレート(PEN)等の二軸延伸されたポリエチレン系樹脂フィルムを好ましく使用でき、特にポリエチレンテレフタレートフィルムであることが望ましい。ポリエチレンテレフタレートフィルムを用いることで、光の旋光性、透過性、衝撃に対する強靭性に優れる。また、基材は、全光線透過率が85%以上であることが好ましい。
[Biaxially stretched resin film substrate]
Examples of the biaxially stretched resin film substrate used for the protective film include biaxially stretched polyethylene terephthalate, polycarbonate film, polypropylene film, and polyethylene naphthalate film. Of these, a biaxially stretched polyethylene resin film such as polyethylene terephthalate (PET) or polyethylene naphthalate (PEN) can be preferably used, and a polyethylene terephthalate film is particularly desirable. By using a polyethylene terephthalate film, it is excellent in optical rotation, transparency and toughness against impact. Further, the substrate preferably has a total light transmittance of 85% or more.
 上記基材の厚みとしては、25~200μmであることが望ましく、さらに50~150μmであることが望ましい。厚みをこの範囲にすることで、パネルへの傷付防止性や衝撃への耐久性と画像表示装置の薄型化を両立しやすくなる。 The thickness of the substrate is preferably 25 to 200 μm, and more preferably 50 to 150 μm. By making the thickness within this range, it becomes easy to achieve both prevention of damage to the panel and durability against impacts and reduction in thickness of the image display device.
[粘着剤層]
 本発明に使用する保護フィルムは、上記二軸延伸樹脂フィルム基材を有するものであればよく、粘着剤や接着剤を介して透明パネルに固定される。なかでも二軸延伸樹脂フィルム基材の一面に粘着剤層が設けられた構成の保護粘着フィルムは、透明パネルへの貼付が容易となるため好ましい。
[Adhesive layer]
The protective film used for this invention should just have the said biaxially stretched resin film base material, and is fixed to a transparent panel via an adhesive or an adhesive agent. Among these, a protective adhesive film having a configuration in which an adhesive layer is provided on one surface of a biaxially stretched resin film substrate is preferable because it can be easily attached to a transparent panel.
 粘着剤層としては、厚さが5~50μmの粘着剤層を使用することが好ましい。本発明においては、粘着剤層の厚さを当該厚さとすることで、被着対象との十分な粘着力を発現できると共に、保護粘着フィルムの表面で応力集中が生じた場合にも、保護粘着フィルム全体の弾性率を高く保持できるため、パネルへの傷付きを防止することができる。 As the pressure-sensitive adhesive layer, it is preferable to use a pressure-sensitive adhesive layer having a thickness of 5 to 50 μm. In the present invention, by setting the thickness of the pressure-sensitive adhesive layer to the thickness, sufficient adhesive strength with the object to be adhered can be expressed, and even when stress concentration occurs on the surface of the protective adhesive film, the protective adhesive Since the elastic modulus of the entire film can be kept high, it is possible to prevent the panel from being damaged.
 また、粘着剤層に使用される粘着剤には、公知のアクリル系、ゴム系、シリコーン系の粘着樹脂を使用することができる。そのなかでも、反復単位として炭素数2~14のアルキル基を有する(メタ)アクリル酸エステル単量体を主たる単量体成分として含有するアクリル系共重合体が、透明性、耐光性・耐熱性の点から好ましい。 Also, as the pressure-sensitive adhesive used for the pressure-sensitive adhesive layer, known acrylic, rubber-based, and silicone-based pressure-sensitive resins can be used. Among them, an acrylic copolymer containing a (meth) acrylic acid ester monomer having a C 2-14 alkyl group as a repeating unit as a main monomer component has transparency, light resistance and heat resistance. From the point of view, it is preferable.
 炭素数2~14の(メタ)アクリル酸エステル単量体としては、具体的には、エチルアクリレート、n-プロピルアクリレート、イソプロピルアクリレート、n-ブチルアクリレート、sec-ブチルアクリレート、t-ブチルアクリレート、n-ヘキシルアクリレート、シクロヘキシルアクリレート、n-オクチルアクリレート、イソオクチルアクリレート、2-エチルヘキシルアクリレート、イソノニルアクリレート、イソデシルアクリレート、ラウリルアクリレート、メチルメタクリレート、エチルメタクリレート、n-プロピルメタクリレート、イソプロピルメタクリレート、n-ブチルメタクリレート、sec-ブチルメタクリレート、t-ブチルメタクリレート、n-ヘキシルメタクリレート、シクロヘキシルメタクリレート、n-オクチルメタクリレート、イソオクチルメタクリレート、2-エチルヘキシルメタクリレート、イソノニルメタクリレート、イソデシルメタクリレート、ラウリルメタクリレート等が挙げられる。 Specific examples of the (meth) acrylic acid ester monomer having 2 to 14 carbon atoms include ethyl acrylate, n-propyl acrylate, isopropyl acrylate, n-butyl acrylate, sec-butyl acrylate, t-butyl acrylate, n -Hexyl acrylate, cyclohexyl acrylate, n-octyl acrylate, isooctyl acrylate, 2-ethylhexyl acrylate, isononyl acrylate, isodecyl acrylate, lauryl acrylate, methyl methacrylate, ethyl methacrylate, n-propyl methacrylate, isopropyl methacrylate, n-butyl methacrylate , Sec-butyl methacrylate, t-butyl methacrylate, n-hexyl methacrylate, cyclohexyl methacrylate n- octyl methacrylate, isooctyl methacrylate, 2-ethylhexyl methacrylate, isononyl methacrylate, isodecyl methacrylate, lauryl methacrylate and the like.
 そのなかでも、炭素数が4~9のアルキル側鎖を有するメタアクリル酸アルキルエステル単量体又は炭素数が4~9のアルキル側鎖を有するアクリル酸アルキルエステル単量体が好ましく、炭素数が4~9のアルキル側鎖を有するアクリル酸アルキルエステル単量体がより好ましい。なかでもn-ブチルアクリレート、イソオクチルアクリレート、2-エチルヘキシルアクリレート、イソノニルアクリレート、エチルアクリレートが特に好ましい。当該範囲の炭素数のアルキル側鎖を有する(メタ)アクリル酸アルキルエステルを使用することで、好適な粘着力を確保しやすくなる。 Among these, a methacrylic acid alkyl ester monomer having an alkyl side chain having 4 to 9 carbon atoms or an acrylic acid alkyl ester monomer having an alkyl side chain having 4 to 9 carbon atoms is preferable, and the carbon number is More preferred are alkyl acrylate monomers having 4 to 9 alkyl side chains. Of these, n-butyl acrylate, isooctyl acrylate, 2-ethylhexyl acrylate, isononyl acrylate, and ethyl acrylate are particularly preferable. By using a (meth) acrylic acid alkyl ester having an alkyl side chain with a carbon number within the range, it is easy to ensure a suitable adhesive force.
 粘着剤層に使用するアクリル系共重合体を構成する単量体中の炭素数2~14の(メタ)アクリル酸エステル単量体の含有量は、60質量%以上であることが好ましく、80質量%以上であることがより好ましく、90~99質量%とすることがさらに好ましく、90~96質量%にすることが特に好ましい。(メタ)アクリル酸エステル共重合体中の上記炭素数2~14の(メタ)アクリル酸エステル単量体の含有量にすることで、好適な粘着力を確保しやすくなる。 The content of the (meth) acrylic acid ester monomer having 2 to 14 carbon atoms in the monomer constituting the acrylic copolymer used for the pressure-sensitive adhesive layer is preferably 60% by mass or more. The content is more preferably at least mass%, more preferably from 90 to 99 mass%, particularly preferably from 90 to 96 mass%. By adjusting the content of the (meth) acrylic acid ester monomer having 2 to 14 carbon atoms in the (meth) acrylic acid ester copolymer, it is easy to ensure a suitable adhesive force.
 アクリル系共重合体には、さらに単量体成分として、側鎖に水酸基、カルボキシル基、アミノ基などの極性基を有する(メタ)アクリル酸エステル単量体やその他のビニル系単量体を含有することが好ましい。 Acrylic copolymers further contain (meth) acrylic acid ester monomers and other vinyl monomers having polar groups such as hydroxyl, carboxyl and amino groups in the side chain as monomer components. It is preferable to do.
 水酸基を有する単量体としては、例えば2-ヒドロキシエチル(メタ)アクリレート、4-ヒドロキシブチル(メタ)アクリレート、6-ヒドロキシヘキシル(メタ)アクリレート、ヒドロキシプロピル(メタ)アクリレート、カプロラクトン変性(メタ)アクリレート、ポリエチレングリコールモノ(メタ)アクリレート、ポリプロピレングリコール(メタ)アクリレート等の水酸基含有(メタ)アクリレートを使用でき、中で2-ヒドロキシエチル(メタ)アクリレート、4-ヒドロキシブチル(メタ)アクリレート、6-ヒドロキシヘキシル(メタ)アクリレートを共重合成分として使用するのが好ましい。 Examples of the monomer having a hydroxyl group include 2-hydroxyethyl (meth) acrylate, 4-hydroxybutyl (meth) acrylate, 6-hydroxyhexyl (meth) acrylate, hydroxypropyl (meth) acrylate, and caprolactone-modified (meth) acrylate. Hydroxyl group-containing (meth) acrylates such as polyethylene glycol mono (meth) acrylate and polypropylene glycol (meth) acrylate can be used, among which 2-hydroxyethyl (meth) acrylate, 4-hydroxybutyl (meth) acrylate, 6-hydroxy It is preferred to use hexyl (meth) acrylate as a copolymerization component.
 カルボキシル基を有する単量体としては、アクリル酸、メタクリル酸、イタコン酸、マレイン酸、クロトン酸、(メタ)アクリル酸2量体、エチレンオキサイド変性コハク酸アクリレート等を使用でき、なかでもアクリル酸を共重合成分として使用するのが好ましい。 As the monomer having a carboxyl group, acrylic acid, methacrylic acid, itaconic acid, maleic acid, crotonic acid, (meth) acrylic acid dimer, ethylene oxide-modified succinic acid acrylate, etc. can be used. It is preferable to use it as a copolymerization component.
 窒素原子を有する単量体としては、N-ビニル-2-ピロリドン、N-ビニルカプロラクタム、アクリロイルモルホリン、アクリルアミド、N,N-ジメチルアクリルアミド、2-(パーヒドロフタルイミド-N-イル)エチルアクリレート等のアミド基含有ビニルモノマーを使用でき、中でもN-ビニル-2-ピロリドン、N-ビニルカプロラクタム、アクリロイルモルホリンを共重合成分として使用するのが好ましい。 Examples of the monomer having a nitrogen atom include N-vinyl-2-pyrrolidone, N-vinylcaprolactam, acryloylmorpholine, acrylamide, N, N-dimethylacrylamide, and 2- (perhydrophthalimido-N-yl) ethyl acrylate. Amide group-containing vinyl monomers can be used, and among them, N-vinyl-2-pyrrolidone, N-vinylcaprolactam, and acryloylmorpholine are preferably used as copolymerization components.
 その他の極性基を有するビニル系単量体として、酢酸ビニル、アクリロニトリル、無水マレイン酸、無水イタコン酸などが挙げられる。 Other vinyl monomers having a polar group include vinyl acetate, acrylonitrile, maleic anhydride, itaconic anhydride and the like.
 極性基を有する単量体の含有量は、アクリル系共重合体を構成する単量体成分の0.1~20重量%であることが好ましく、1~13重量%であることがより好ましく、1.5~8重量%であることが更に好ましい。当該範囲で含有することにより、粘着剤の凝集力や保持力、接着性を好適な範囲に調整しやすい。 The content of the monomer having a polar group is preferably 0.1 to 20% by weight of the monomer component constituting the acrylic copolymer, more preferably 1 to 13% by weight, More preferably, it is 1.5 to 8% by weight. By containing in the said range, it is easy to adjust the cohesive force, holding force, and adhesiveness of an adhesive to a suitable range.
 さらに粘着剤層の凝集力をあげるために、粘着剤中に架橋剤を添加するのが好ましい。架橋剤としては、例えば、イソシアネート系架橋剤、エポキシ系架橋剤、キレート系架橋剤等が挙げられる。架橋剤の添加量としては、粘着剤層のゲル分率30~90%になるよう調整するのが好ましい。さらに好ましいゲル分率は、50~85%である。そのなかでも60~80%が最も好ましい。ゲル分率が30%以上であると、保護粘着フィルムをパネルに貼付したときの表面鉛筆硬度の低下を抑制しやすくなる。一方、ゲル分率が90%以下とすることで、好適な接着性を得やすくなる。ゲル分率は、養生後の粘着剤層をトルエン中に浸漬し、24時間放置後に残った不溶分の乾燥後の重量を測定し、元の重量に対する百分率で表す。 In order to further increase the cohesive strength of the pressure-sensitive adhesive layer, it is preferable to add a crosslinking agent to the pressure-sensitive adhesive. As a crosslinking agent, an isocyanate type crosslinking agent, an epoxy type crosslinking agent, a chelate type crosslinking agent etc. are mentioned, for example. The addition amount of the crosslinking agent is preferably adjusted so that the gel fraction of the pressure-sensitive adhesive layer is 30 to 90%. A more preferable gel fraction is 50 to 85%. Among these, 60 to 80% is most preferable. It becomes easy to suppress the fall of the surface pencil hardness when a protective adhesive film is affixed on a panel as a gel fraction is 30% or more. On the other hand, when the gel fraction is 90% or less, suitable adhesiveness can be easily obtained. The gel fraction is expressed as a percentage of the original weight by measuring the weight after drying the insoluble content remaining after 24 hours of immersion in the adhesive layer after curing.
 さらに粘着剤層の粘着力を向上させるため、粘着付与樹脂を添加しても良い。本発明の粘着テープの粘着剤層に添加する粘着付与樹脂は、アクリル系共重合体、ロジンやロジンのエステル化物等のロジン系樹脂;ジテルペン重合体やα-ピネン-フェノール共重合体等のテルペン系樹脂;脂肪族系(C5系)や芳香族系(C9)等の石油樹脂;その他、スチレン系樹脂、フェノール系樹脂、キシレン樹脂等が挙げられる。100℃14日放置後の粘着剤層のb*値を6以下にするためには、不飽和二重結合が少ない、水添ロジンや不均化ロジンのエステル化物や、脂肪族や芳香族系石油樹等を粘着剤層に添加することが好ましい Further, a tackifier resin may be added to improve the adhesive strength of the adhesive layer. The tackifier resin to be added to the pressure-sensitive adhesive layer of the pressure-sensitive adhesive tape of the present invention includes acrylic copolymers, rosin resins such as rosin and rosin esterified products; terpenes such as diterpene polymers and α-pinene-phenol copolymers Examples of such resins include: petroleum resins such as aliphatic (C5) and aromatic (C9); styrene resins, phenolic resins, xylene resins, and the like. In order to reduce the b * value of the pressure-sensitive adhesive layer after standing at 100 ° C. for 14 days to 6 or less, there are few unsaturated double bonds, esterified products of hydrogenated rosin and disproportionated rosin, aliphatic and aromatic series It is preferable to add petroleum tree etc. to the adhesive layer
 粘着付与樹脂の添加量としては、粘着剤樹脂がアクリル系共重合体である場合は、アクリル系共重合体100重量部に対して10~60重量部を添加するのが好ましい。接着性を重視する場合は、20~50重量部を添加するのが最も好ましい。また、粘着剤樹脂がゴム系の樹脂である場合は、ゴム系の樹脂100重量部に対して、粘着付与樹脂を80~150重量部添加するのが好ましい。なお、一般的に粘着剤樹脂がシリコーン系樹脂である場合は、粘着付与樹脂を添加しない。 As the addition amount of the tackifying resin, when the pressure-sensitive adhesive resin is an acrylic copolymer, it is preferable to add 10 to 60 parts by weight with respect to 100 parts by weight of the acrylic copolymer. When importance is attached to adhesiveness, it is most preferable to add 20 to 50 parts by weight. Further, when the adhesive resin is a rubber-based resin, it is preferable to add 80 to 150 parts by weight of the tackifier resin to 100 parts by weight of the rubber-based resin. In general, when the adhesive resin is a silicone resin, no tackifying resin is added.
 粘着剤には、上記以外に公知慣用の添加剤を添加することができる。例えば、ガラスへの接着性を向上するために、0.001~0.005の範囲でシランカップリング剤を添加することができる。その他、可塑剤、軟化剤、充填剤、顔料、難燃剤等が添加できる。 In addition to the above, known and commonly used additives can be added to the adhesive. For example, in order to improve adhesion to glass, a silane coupling agent can be added in the range of 0.001 to 0.005. In addition, plasticizers, softeners, fillers, pigments, flame retardants, and the like can be added.
 粘着剤層に使用するアクリル系共重合体の重量平均分子量Mwは40万~140万であることが好ましく、60万~120万であることが、より好ましい。当該アクリル系共重合体の重量平均分子量Mwが上記範囲内であると、好適な接着力を確保しやすく、保護粘着フィルムとした際に、フィルム表面への荷重を好適に緩和することができる。 The weight average molecular weight Mw of the acrylic copolymer used for the pressure-sensitive adhesive layer is preferably 400,000 to 1,400,000, and more preferably 600,000 to 1,200,000. When the weight average molecular weight Mw of the acrylic copolymer is within the above range, it is easy to secure a suitable adhesive force, and when a protective adhesive film is obtained, the load on the film surface can be relaxed suitably.
 なお、当該アクリル系共重合体の重量平均分子量Mwは、ゲルパーミエーションクロマトグラフ(GPC)により測定することができる。 The weight average molecular weight Mw of the acrylic copolymer can be measured by gel permeation chromatography (GPC).
[ハードコート層]
 上記保護フィルムにおいては、二軸延伸樹脂フィルム基材の一面にハードコート層を有することも好ましい。ハードコート層を有することにより、透明パネルへの傷付き防止性を向上することができる。ハードコート層は、上記フィルム基材と積層してハードコートフィルムを形成した際に、ハードコート層表面の鉛筆硬度がF以上となるものであるものが好ましく、H以上であることがより好ましく、3H以上とすることが特に好ましい。硬度をF以上にすることで透明パネルへの傷つき防止性能を向上することができる。また、ハードコート層は、二軸延伸樹脂フィルム基材の粘着剤層を有する面の反対面に設けることで、製造が容易となり、表面の傷付き抑制の効果が得られやすいため好ましい。なおハードコート層は、透明性が高いものや、偏光性物質を含まないものが好適な視認性を得やすくなるため好ましい。
[Hard coat layer]
In the said protective film, it is also preferable to have a hard-coat layer on one surface of a biaxially stretched resin film base material. By having a hard-coat layer, the damage prevention property to a transparent panel can be improved. When the hard coat layer is laminated with the film base material to form a hard coat film, the hard coat layer preferably has a pencil hardness of F or more, more preferably H or more, It is especially preferable to set it as 3H or more. By setting the hardness to F or higher, the ability to prevent scratches on the transparent panel can be improved. Further, the hard coat layer is preferable because it is easy to produce by providing the hard coat layer on the surface opposite to the surface having the pressure-sensitive adhesive layer of the biaxially stretched resin film substrate, and the effect of suppressing scratches on the surface is easily obtained. In addition, a hard coat layer is preferable because it has high transparency and does not contain a polarizing substance because it becomes easy to obtain suitable visibility.
 また、ハードコート層は、透明性が高いものや、偏光性物質を含まないものが好適な視認性を得やすくなるため好ましい。ハードコート層の透明性としては、当該ハードコート層の全光線透過率が85%、好ましくは90%以上であることが好ましい。また、ヘイズ値が、1.0以下が好ましく、0.5以下が特に好ましい。 In addition, it is preferable that the hard coat layer has high transparency or does not contain a polarizing substance because suitable visibility can be easily obtained. As the transparency of the hard coat layer, the total light transmittance of the hard coat layer is 85%, preferably 90% or more. The haze value is preferably 1.0 or less, and particularly preferably 0.5 or less.
 ハードコート層に使用するハードコート剤としては、上記特性を有するものであれば、特に制限されないが、ハードコート層の形成が容易であることから、活性エネルギー線硬化型樹脂組成物からなるハードコート剤を好適に使用できる。このような活性エネルギー線硬化型樹脂組成物としては、多官能アクリレート系樹脂組成物が好ましく、なかでも、ウレタンアクリレート系のハードコート剤が好ましい。 The hard coat agent used in the hard coat layer is not particularly limited as long as it has the above-mentioned characteristics. However, since the hard coat layer can be easily formed, a hard coat comprising an active energy ray-curable resin composition is used. An agent can be preferably used. As such an active energy ray-curable resin composition, a polyfunctional acrylate resin composition is preferable, and a urethane acrylate hard coat agent is particularly preferable.
 なかでも、ウレタンアクリレート系のハードコート剤としては、ポリイソシアネート(a1)と1分子中に1つの水酸基及び2つ以上の(メタ)アクリロイル基を有するアクリレート(a2)との付加反応物であるウレタンアクリレート(A)を含有するハードコート剤を好ましく使用できる。また、当該ウレタンアクリレート(A)に、側鎖に反応性官能基を有する(メタ)アクリレート系重合体(b1)に前記反応性官能基と反応が可能な官能基を有するα,β-不飽和化合物(b2)を反応させた(メタ)アクリロイル基を有する重合体(B)を併用することも好ましい。 Among these, urethane acrylate-based hard coat agents include urethane, which is an addition reaction product of polyisocyanate (a1) and acrylate (a2) having one hydroxyl group and two or more (meth) acryloyl groups in one molecule. A hard coat agent containing an acrylate (A) can be preferably used. Further, the urethane acrylate (A) has an α, β-unsaturation having a functional group capable of reacting with the reactive functional group in the (meth) acrylate polymer (b1) having a reactive functional group in the side chain. It is also preferred to use a polymer (B) having a (meth) acryloyl group obtained by reacting the compound (b2).
 ポリイソシアネート(a1)としては、例えば、2,4-トリレンジイソシアネート、2,6-トリレンジイソシアネート、1,3-キシリレンジイソシアネート、4,4’-ジフェニルジイソシアネート、1,5-ナフタレンジイソシアネート、4,4’-ジフェニルメタンジイソシアネート等の芳香族イソシアネート化合物;ジシクロヘキシルメタンジイソシアネート、イソホロンジイソシアネート、ノルボルナンジイソシアネート、水添キシリレンジイソシアネート、水添メチレンビスフェニレンジイソシアネート、1,4-シクロヘキサンジイソシアネート等の脂環式炭化水素に結合したイソシアネート基を2個有する化合物(以下、脂環式ジイソシアネートと略す。);トリメチレンジイソシアネート、ヘキサメチレンジイソシアネート等の脂肪族炭化水素に結合したイソシアネート基を2個有する化合物(以下、脂肪族ジイソシアネートと略す。)などが挙げられる。これらのポリイソシアネートは、単独で用いることも、2種以上を併用することもできる。 Examples of the polyisocyanate (a1) include 2,4-tolylene diisocyanate, 2,6-tolylene diisocyanate, 1,3-xylylene diisocyanate, 4,4′-diphenyl diisocyanate, 1,5-naphthalene diisocyanate, 4 Aromatic isocyanate compounds such as 4,4'-diphenylmethane diisocyanate; alicyclic hydrocarbons such as dicyclohexylmethane diisocyanate, isophorone diisocyanate, norbornane diisocyanate, hydrogenated xylylene diisocyanate, hydrogenated methylene bisphenylene diisocyanate, and 1,4-cyclohexane diisocyanate. Compound having two bonded isocyanate groups (hereinafter abbreviated as alicyclic diisocyanate); trimethylene diisocyanate, hexamethylene diisocyanate Compounds having two isocyanate groups attached to aliphatic hydrocarbons sulfonates like (hereinafter, referred to as aliphatic diisocyanates.) And the like. These polyisocyanates can be used alone or in combination of two or more.
 また、これらのポリイソシアネート(a1)のうち、脂肪族ジイソシアネート又は脂環式ジイソシアネートが好ましく、中でも、イソホロンジイソシアネート、ノルボルナンジイソシアネート、水添キシリレンジイソシアネート、水添メチレンビスフェニレンジイソシアネート及びヘキサメチレンジイソシアネートが好ましい。とりわけ、ノルボルナンジイソシアネートが最も好ましい。 Of these polyisocyanates (a1), aliphatic diisocyanates or alicyclic diisocyanates are preferable, and isophorone diisocyanate, norbornane diisocyanate, hydrogenated xylylene diisocyanate, hydrogenated methylene bisphenylene diisocyanate and hexamethylene diisocyanate are particularly preferable. In particular, norbornane diisocyanate is most preferable.
 1分子中に1つの水酸基及び2つ以上の(メタ)アクリロイル基を有するアクリレート(a2)としては、例えば、トリメチロールプロパンジ(メタ)アクリレート、ペンタエリスリトールトリ(メタ)アクリレート、ジペンタエリスリトールペンタ(メタ)アクリレート等の多価水酸基含有化合物のポリアクリレート類が挙げられ、これらのポリアクリレート類とε―カプロラクトンとの付加物、これらのポリアクリレート類とアルキレンオキサイドとの付加物、エポキシアクリレート類などが挙げられる。これらのアクリレート(a2)は、単独で用いることも、2種以上を併用することもできる。 As the acrylate (a2) having one hydroxyl group and two or more (meth) acryloyl groups in one molecule, for example, trimethylolpropane di (meth) acrylate, pentaerythritol tri (meth) acrylate, dipentaerythritol penta ( Examples include polyacrylates of polyhydric hydroxyl group-containing compounds such as (meth) acrylate, adducts of these polyacrylates with ε-caprolactone, adducts of these polyacrylates with alkylene oxide, epoxy acrylates, etc. Can be mentioned. These acrylates (a2) can be used alone or in combination of two or more.
 また、これらのアクリレート(a2)のうち、1分子中に1つの水酸基及び3~5つの(メタ)アクリロイル基を有するアクリレートが好ましい。このようなアクリレートとしては、ペンタエリスリトールトリアクリレート、ジペンタエリスリトールペンタアクリレート等が挙げられ、これらは高硬度の硬化被膜が得られるので特に好ましい。 Of these acrylates (a2), acrylates having one hydroxyl group and 3 to 5 (meth) acryloyl groups in one molecule are preferable. Examples of such acrylates include pentaerythritol triacrylate, dipentaerythritol pentaacrylate, and the like, and these are particularly preferable because a cured film having high hardness can be obtained.
 本発明に用いるウレタンアクリレート(A)は、前記ポリイソシアネート(a1)と前記アクリレート(a2)の2成分を付加反応させることにより得られる。前記アクリレート(a2)のポリイソシアネート(a1)中のイソシアネート1当量に対する比率は、水酸基当量として、通常、0.1~50が好ましく、0.1~10がより好ましく、0.9~1.2がさらに好ましい。また、前記ポリイソシアネート(a1)と前記アクリレート(a2)との反応温度は、30~150℃が好ましく、50~100℃がより好ましい。 The urethane acrylate (A) used in the present invention is obtained by subjecting two components of the polyisocyanate (a1) and the acrylate (a2) to an addition reaction. The ratio of the acrylate (a2) to the equivalent of isocyanate in the polyisocyanate (a1) is usually preferably 0.1 to 50, more preferably 0.1 to 10, and preferably 0.9 to 1.2 as the hydroxyl equivalent. Is more preferable. The reaction temperature between the polyisocyanate (a1) and the acrylate (a2) is preferably 30 to 150 ° C., more preferably 50 to 100 ° C.
 樹脂組成物中の樹脂成分の合計100重量部中の前記ウレタンアクリレート(A)の配合量は、5~90重量部が好ましく、10~70重量部がより好ましく、10~60重量部がさらに好ましい。ウレタンアクリレート(A)の配合量がこの範囲であれば、十分に高い硬度の硬化被膜が得られ、かつ塗膜欠陥がなく、表面の防汚性に優れ、かつ硬化収縮が小さくなるので、この硬化被膜を有するフィルムのカールも小さくすることができる。 The blending amount of the urethane acrylate (A) in 100 parts by weight of the resin component in the resin composition is preferably 5 to 90 parts by weight, more preferably 10 to 70 parts by weight, and even more preferably 10 to 60 parts by weight. . If the blending amount of the urethane acrylate (A) is within this range, a cured film having a sufficiently high hardness can be obtained, and there is no coating film defect, excellent surface antifouling properties, and curing shrinkage is reduced. Curling of a film having a cured coating can also be reduced.
 前記ウレタンアクリレート(A)の分子量は、500~1,500の範囲が好ましい。分子量がこの範囲であれば、十分に高い硬度の硬化被膜が得られ、硬化収縮が小さくなるので、この硬化被膜を有するフィルムのカールも小さくすることができる。 The molecular weight of the urethane acrylate (A) is preferably in the range of 500 to 1,500. When the molecular weight is within this range, a cured film having a sufficiently high hardness can be obtained and the curing shrinkage can be reduced, so that the curl of the film having the cured film can also be reduced.
 樹脂組成物中の樹脂成分の合計100重量部中の前記ウレタンアクリレート(A)の配合量は、5~90重量部が好ましく、10~70重量部がより好ましく、10~60重量部がさらに好ましい。ウレタンアクリレート(A)の配合量がこの範囲であれば、十分に高い硬度の硬化被膜が得られ、かつ塗膜欠陥がなく、表面の防汚性に優れ、かつ硬化収縮が小さくなるので、この硬化被膜を有するフィルムのカールも小さくすることができる。 The blending amount of the urethane acrylate (A) in 100 parts by weight of the resin component in the resin composition is preferably 5 to 90 parts by weight, more preferably 10 to 70 parts by weight, and even more preferably 10 to 60 parts by weight. . If the blending amount of the urethane acrylate (A) is within this range, a cured film having a sufficiently high hardness can be obtained, and there is no coating film defect, excellent surface antifouling properties, and curing shrinkage is reduced. Curling of a film having a cured coating can also be reduced.
 本発明に用いる側鎖に反応性官能基を有する(メタ)アクリレート系重合体(b1)の反応性官能基としては、水酸基、カルボキシル基、エポキシ基等が好ましい。また、これらの反応性官能基と反応が可能なα,β-不飽和化合物(b2)が有する官能基としては、イソシアネート基、カルボキシル基、酸ハライド基、水酸基、エポキシ基等が好ましい。なお、側鎖に反応性官能基を有する(メタ)アクリレート系重合体(b1)に前記反応性官能基と反応が可能な官能基を有するα,β-不飽和化合物(b2)を反応させた(メタ)アクリロイル基を有する重合体(B)の製造方法は、特に限定はなく、種々の方法で製造することができる。 The reactive functional group of the (meth) acrylate polymer (b1) having a reactive functional group in the side chain used in the present invention is preferably a hydroxyl group, a carboxyl group, an epoxy group or the like. In addition, the functional group of the α, β-unsaturated compound (b2) capable of reacting with these reactive functional groups is preferably an isocyanate group, a carboxyl group, an acid halide group, a hydroxyl group, an epoxy group, or the like. The (meth) acrylate polymer (b1) having a reactive functional group in the side chain was reacted with an α, β-unsaturated compound (b2) having a functional group capable of reacting with the reactive functional group. The method for producing the polymer (B) having a (meth) acryloyl group is not particularly limited and can be produced by various methods.
 本発明に使用するハードコートフィルムは、フィルム基材上にハードコート剤を塗布して硬化させることで製造できる。 The hard coat film used in the present invention can be produced by applying a hard coat agent on a film substrate and curing it.
 ハードコート剤をフィルム基材に塗布する方法としては、例えば、グラビアコート、ロールコート、コンマコート、エアナイフコート、キスコート、スプレーコート、かけ渡しコート、ディップコート、スピンナーコート、ホイーラーコート、刷毛塗り、シルクスクリーンによるベタコート、ワイヤーバーコート、フローコート等が挙げられる。また、オフセット印刷、活版印刷等の印刷方式でも良い。これらの中でも、グラビアコート、ロールコート、コンマコート、エアナイフコート、キスコート、ワイヤーバーコート、フローコートは、より厚さが一定な塗膜が得られるため好ましい。 Examples of methods for applying the hard coating agent to the film substrate include gravure coating, roll coating, comma coating, air knife coating, kiss coating, spray coating, transfer coating, dip coating, spinner coating, wheeler coating, brush coating, and silk. Examples thereof include a solid coat using a screen, a wire bar coat, and a flow coat. Also, printing methods such as offset printing and letterpress printing may be used. Among these, gravure coating, roll coating, comma coating, air knife coating, kiss coating, wire bar coating, and flow coating are preferable because a coating film having a more constant thickness can be obtained.
 ハードコート剤の硬化は使用するハードコート剤に応じて適宜しようすれば良いが、ハードコート剤として上記活性エネルギー線硬化型樹脂組成物を使用する場合には、光、電子線、放射線等の活性エネルギー線により硬化させればよい。具体的なエネルギー源又は硬化装置としては、例えば殺菌灯、紫外線用蛍光灯、カーボンアーク、キセノンランプ、複写用高圧水銀灯、中圧または高圧水銀灯、超高圧水銀灯、無電極ランプ、メタルハライドランプ、自然光等を光源とする紫外線、または走査型、カーテン型電子線加速器による電子線等が挙げられる。 Curing of the hard coating agent may be appropriately performed according to the hard coating agent to be used, but when the active energy ray-curable resin composition is used as the hard coating agent, the activity of light, electron beam, radiation, etc. What is necessary is just to harden with an energy ray. Specific energy sources or curing devices include, for example, germicidal lamps, ultraviolet fluorescent lamps, carbon arc, xenon lamps, high pressure mercury lamps for copying, medium or high pressure mercury lamps, ultrahigh pressure mercury lamps, electrodeless lamps, metal halide lamps, natural light, etc. Or an electron beam using a scanning type or curtain type electron beam accelerator.
 これらの中でも特に紫外線であることが好ましく、重合効率化の点で窒素ガス等の不活性ガス雰囲気下で照射することが好ましい。また、必要に応じて熱をエネルギー源として併用し、活性エネルギー線にて硬化した後、熱処理を行ってもよい。 Among these, ultraviolet rays are particularly preferable, and irradiation in an inert gas atmosphere such as nitrogen gas is preferable in terms of increasing the polymerization efficiency. Further, if necessary, heat may be used as an energy source and heat treatment may be performed after curing with active energy rays.
 活性エネルギー線を照射する装置として、紫外線を用いる場合には、光発生源として、低圧水銀ランプ、高圧水銀ランプ、超高圧水銀ランプ、メタルハライドランプ、無電極ランプ(フュージョンランプ)、ケミカルランプ、ブラックライトランプ、水銀-キセノンランプ、ショートアーク灯、ヘリウム・カドミニウムレーザー、アルゴンレーザー、太陽光、LED等が挙げられる。また、本発明に使用する活性エネルギー線硬化型樹脂組成物をフィルム基材に塗布し、硬化被膜を形成する際には、閃光的に照射するキセノン-フラッシュランプを使用すると、フィルム基材への熱の影響を小さくできるので好ましい。 When ultraviolet rays are used as a device for irradiating active energy rays, the light source is a low pressure mercury lamp, high pressure mercury lamp, ultra high pressure mercury lamp, metal halide lamp, electrodeless lamp (fusion lamp), chemical lamp, black light. Lamp, mercury-xenon lamp, short arc lamp, helium / cadmium laser, argon laser, sunlight, LED, and the like. In addition, when an active energy ray-curable resin composition used in the present invention is applied to a film substrate to form a cured coating, a flashing xenon-flash lamp is used. This is preferable because the influence of heat can be reduced.
[画像表示装置]
 本発明の画像表示装置は、画像表示装置表層の画像表示面表面において、画像表示部から出射される直線偏光の偏光方向と、二軸延伸樹脂フィルムの一方の配向軸方向とがなす角度θ1、及び、前記画像表示部から出射される直線偏光の偏光方向と、二軸延伸樹脂フィルムの他方の配向軸方向とがなす角度θ2とが共に15~75°となるように、画像表示モジュールの上部に、上記の保護フィルムが貼り付けられた透明パネルが設けられた画像表示装置である。以下、図面を用いて当該構成の例を説明する。
[Image display device]
In the image display device of the present invention, on the surface of the image display surface of the image display device, an angle θ1 formed by the polarization direction of linearly polarized light emitted from the image display unit and one orientation axis direction of the biaxially stretched resin film, And the angle θ2 formed by the polarization direction of the linearly polarized light emitted from the image display unit and the other orientation axis direction of the biaxially stretched resin film is 15 to 75 °. And an image display device provided with a transparent panel to which the protective film is attached. Hereinafter, an example of the configuration will be described with reference to the drawings.
 本発明における直線偏光の偏光方向とは、直線偏光3を出射する画像表示モジュール1の上部に透明パネル2を有する画像表示装置において、当該透明パネル2が画像表示装置表層の画像表示面表面4を構成する場合に、画像表示面表面4にて直線偏光3の偏光方向5(偏光軸)をいう(図2)。当該偏光方向は任意の方向であってよいが、画像表示部が略方形形状である場合には、上述したとおり当該偏光方向と画像表示部の側辺とがなす角ψ1又は当該偏光方向と底辺とがなす角ψ2が0~15°であることが好ましい。 In the present invention, the polarization direction of linearly polarized light refers to an image display device having a transparent panel 2 on an upper part of an image display module 1 that emits linearly polarized light 3, and the transparent panel 2 covers the image display surface 4 on the surface of the image display device. When configured, it refers to the polarization direction 5 (polarization axis) of the linearly polarized light 3 on the image display surface 4 (FIG. 2). The polarization direction may be any direction, but when the image display unit has a substantially square shape, as described above, the angle ψ1 formed by the polarization direction and the side of the image display unit or the polarization direction and the bottom side It is preferable that an angle ψ2 formed by the above is 0 to 15 °.
 また、保護フィルムに使用する二軸延伸樹脂フィルムの配向軸方向とは、フィルムの延伸工程において延伸された際の樹脂分子の配向軸の方向である。二軸延伸樹脂フィルムを基材とする保護フィルムは、使用する態様に応じて打ち抜き加工等により所望の形状、好ましくは方形形状に成型される。この際、保護フィルムにおける配向軸方向は任意の方向であってよい。例えば、方形形状の保護フィルムの場合には、保護フィルム6の各辺と配向軸方向7及び8が一致する保護フィルム(図3(a))であっても、保護フィルム6の各辺と配向軸方向7及び8が一致しない保護フィルム(図3(b))であってもよい(図3中の矢印は二軸延伸樹脂フィルムの製造時の配向軸方向)。 The orientation axis direction of the biaxially stretched resin film used for the protective film is the direction of the orientation axis of the resin molecules when stretched in the film stretching process. A protective film having a biaxially stretched resin film as a base material is formed into a desired shape, preferably a square shape, by punching or the like according to the mode of use. Under the present circumstances, the orientation axis direction in a protective film may be arbitrary directions. For example, in the case of a rectangular protective film, each side of the protective film 6 is aligned with each side of the protective film 6 even if the side of the protective film 6 is aligned with the alignment axis directions 7 and 8 (FIG. 3A). It may be a protective film (FIG. 3B) in which the axial directions 7 and 8 do not match (the arrow in FIG. 3 is the orientation axis direction during the production of the biaxially stretched resin film).
 なお、保護フィルム6の各辺と配向軸方向7及び8が一致しない保護フィルム(図3(b))は、二軸延伸樹脂フィルムを製造する際に、樹脂フィルムの流れ方向及び幅方向に樹脂フィルムを延伸し、打ち抜き加工時に配向軸方向と角辺とが直交又は並行とならないように打ち抜き加工する方法や、二軸延伸樹脂フィルムを製造する際に、樹脂フィルムの流れ方向及び幅方向に直交又は並行とならない方向に延伸し、流れ方向及び幅方向に準じて打ち抜き加工する方法等により得ることができる。 Note that the protective film 6 (FIG. 3B) in which the sides of the protective film 6 do not coincide with the orientation axis directions 7 and 8 is a resin in the flow direction and the width direction of the resin film when the biaxially stretched resin film is manufactured. A method of stretching the film and punching so that the orientation axis direction and the corners are not orthogonal or parallel at the time of punching, or when producing a biaxially stretched resin film, orthogonal to the flow direction and the width direction of the resin film Alternatively, it can be obtained by a method of stretching in a direction that is not parallel and punching according to the flow direction and the width direction.
 本発明の画像表示装置は、画像表示面表面において、画像表示部から出射される直線偏光の偏光方向5と、二軸延伸樹脂フィルムの一方の配向軸方向とがなす角度θ1、及び、画像表示部から出射される直線偏光の偏光方向と、二軸延伸樹脂フィルムの他方の配向軸方向とがなす角度θ2は、15~75°であり、好ましくは25~65°である。また、さらに好ましくは35~55°であり最も好ましくは40~50°である。本発明においては、これらθ1及びθ2を上記範囲とすることで、偏光サングラスを使用した場合にもあらゆる方向からの視認性を簡易かつ安価に確保できる。 The image display device of the present invention includes an angle θ1 formed by the polarization direction 5 of linearly polarized light emitted from the image display surface and one orientation axis direction of the biaxially stretched resin film on the surface of the image display surface, and image display The angle θ2 formed by the polarization direction of the linearly polarized light emitted from the part and the other orientation axis direction of the biaxially stretched resin film is 15 to 75 °, preferably 25 to 65 °. Further, it is more preferably 35 to 55 °, and most preferably 40 to 50 °. In the present invention, by setting these θ1 and θ2 within the above ranges, visibility from all directions can be ensured easily and inexpensively even when polarized sunglasses are used.
 方形形状の保護フィルムにおけるθ1及びθ2は、図4(a)(b)のとおりであり、画像表示面表面4において、画像表示部から出射される直線偏光の偏光方向5と、二軸延伸樹脂フィルムの一方の配向軸方向7とがなす角度がθ1、画像表示部から出射される直線偏光の偏光方向5と、二軸延伸樹脂フィルムの他方の配向軸方向8とがなす角度がθ2である。なお、θ1及びθ2は、偏光方向と配向軸方向とがなす角のうち狭角側の角度である。また、配向軸方向はいずれを基準としてもよい。 Θ1 and θ2 in the rectangular protective film are as shown in FIGS. 4 (a) and 4 (b). On the image display surface 4, the polarization direction 5 of the linearly polarized light emitted from the image display unit and the biaxially stretched resin The angle formed by one orientation axis direction 7 of the film is θ1, and the angle formed by the polarization direction 5 of linearly polarized light emitted from the image display unit and the other orientation axis direction 8 of the biaxially stretched resin film is θ2. . Note that θ1 and θ2 are angles on the narrow angle side among the angles formed by the polarization direction and the alignment axis direction. Further, any orientation axis direction may be used as a reference.
 二軸延伸樹脂フィルムは、通常延伸方向が直交する方向に延伸されていることから、θ1を上記範囲とすることで、おのずとθ2も上記範囲となる。延伸方向が直交していない場合には、θ1及びθ2のそれぞれが上記範囲となるよう画像表示装置を構成すればよい。 Since the biaxially stretched resin film is usually stretched in the direction perpendicular to the stretching direction, θ2 is naturally within the above range by setting θ1 within the above range. If the stretching directions are not orthogonal, the image display device may be configured such that each of θ1 and θ2 falls within the above range.
[保護フィルムの製造方法]
 本発明の画像表示装置に使用する保護フィルムは、任意の製造方法にて製造されるが、特に好ましい製造方法として、下記製造方法を例示できる。下記製造方法により、偏光サングラスを通して視認した際にも画像を良好に視認でき、パネル飛散や傷付きを防止することを可能にする保護フィルムを簡易かつ安価に製造することができる。
[Method for producing protective film]
The protective film used in the image display device of the present invention is manufactured by an arbitrary manufacturing method, and the following manufacturing method can be exemplified as a particularly preferable manufacturing method. According to the following production method, a protective film that can be seen well when viewed through polarized sunglasses and that can prevent panel scattering and scratches can be easily and inexpensively produced.
 画像表示部からの出射光が直線偏光である画像表示モジュールと、前記画像表示モジュールの上部に設けられる透明パネルとを有する画像表示装置において、前記透明パネルの少なくとも一面に貼り付けられる保護フィルムを製造する方法であって、
 前記保護フィルムが、二軸延伸されたポリエチレン系樹脂フィルムからなるフィルム基材層を有する保護フィルムであり、
 前記保護フィルムの原反を抜き加工して、略方形形状の保護フィルムを得る工程を有し、
 前記略方形形状への抜き加工が、画像表示モジュールの上部に保護フィルムが貼り付けられた透明パネルが設けられた際に、画像表示部から出射される直線偏光の偏光軸と、フィルム基材層の分子の一方の配向軸とがなす角度θ1、及び前記画像表示部から出射される直線偏光の偏光軸と前記フィルム基材層の分子の他方の配向軸とがなす角度θ2が15~75°、好ましくは20~70°となる抜き加工である保護フィルムの製造方法。
An image display device having an image display module in which light emitted from an image display unit is linearly polarized light and a transparent panel provided on the image display module, and manufacturing a protective film to be attached to at least one surface of the transparent panel A way to
The protective film is a protective film having a film base layer made of a biaxially stretched polyethylene resin film,
The process of punching the original film of the protective film to obtain a substantially rectangular protective film,
When the transparent panel with the protective film attached to the upper part of the image display module is provided in the substantially rectangular shape, the polarization axis of linearly polarized light emitted from the image display unit, and the film base layer The angle θ1 formed by one of the alignment axes of the molecules of the film and the angle θ2 formed by the polarization axis of the linearly polarized light emitted from the image display unit and the other alignment axis of the molecules of the film substrate layer are 15 to 75 °. A method for producing a protective film, which is preferably a punching process of 20 to 70 °.
 上記製造方法においては、保護フィルムの原反から略方形形状に抜き加工して保護フィルムが得られる。保護フィルムの原反は、二軸延伸されたポリエチレン系樹脂フィルムを基材とし、必要に応じて粘着剤層やハードコート層が設けられた原反であり、ロール状や枚葉状等の工業上使用される各種形態であってよい。 In the above manufacturing method, the protective film is obtained by punching into a substantially rectangular shape from the original film of the protective film. The protective film is made of a biaxially stretched polyethylene resin film, and is provided with a pressure-sensitive adhesive layer or hard coat layer as necessary. It may be in various forms used.
 製造される保護フィルムは、略方形形状を有するものであるが、当該略方形形状は上記と同様に、長方形や正方形の方形形状の他、当該方形形状の任意の角、好ましくは4つの角が面取りされた形状等の方形形状に近似した形状を含む。 The manufactured protective film has a substantially square shape, and the substantially square shape has a rectangular shape such as a rectangular shape or a square shape as described above, and an arbitrary angle of the rectangular shape, preferably four corners. Includes shapes approximate to square shapes such as chamfered shapes.
 保護フィルムの原反からの略方形形状への抜き加工は、画像表示モジュールの上部に、保護フィルムが貼り付けられた透明パネルが設けられた際に、画像表示部から出射される直線偏光の偏光軸と、フィルム基材層の分子の一方の配向軸とがなす角度θ1、及び画像表示部から出射される直線偏光の偏光軸とフィルム基材層の分子の他方の配向軸とがなす角度θ2が15~75°、好ましくは20~70°となる抜き加工である。 The process of punching the protective film from the original fabric into a substantially square shape is the polarization of linearly polarized light emitted from the image display unit when a transparent panel with a protective film attached is provided on the top of the image display module. The angle θ1 formed by the axis and one of the alignment axes of the molecules of the film substrate layer, and the angle θ2 formed by the polarization axis of the linearly polarized light emitted from the image display unit and the other alignment axis of the molecules of the film substrate layer Is a punching process of 15 to 75 °, preferably 20 to 70 °.
 さらに、画像表示装置の画像表示部から出射される直線偏光の偏光軸と、保護フィルムのポリエチレン系樹脂フィルム基材層の分子の配向軸とがなす角度θ1及びθ2は、30~60°が好ましく、35~55°がさらに好ましく、40~50°であることが最も好ましい。θ1及びθ2を上記範囲とすることで、偏光サングラスを使用した場合にもあらゆる方向からの視認性をさらに向上できる。 Furthermore, the angles θ1 and θ2 formed by the polarization axis of linearly polarized light emitted from the image display unit of the image display device and the molecular orientation axis of the polyethylene-based resin film substrate layer of the protective film are preferably 30 to 60 °. 35 to 55 ° is more preferable, and 40 to 50 ° is most preferable. By setting θ1 and θ2 in the above range, visibility from all directions can be further improved even when polarized sunglasses are used.
 略方形形状の保護フィルムにおけるθ1及びθ2は、図4(a)、(b)のとおりであり、画像表示面表面4において、画像表示モジュールの画像表示部から出射される直線偏光の偏光方向5と、保護フィルムの基材層の一方の配向軸方向6とがなす角度がθ1、前記画像表示部から出射される直線偏光の偏光方向5と、他方の配向軸方向7とがなす角度がθ2である。なお、θ1及びθ2は、偏光方向と配向軸方向とがなす角のうち狭角側の角度をいう。また、軸方向はいずれを基準としてもよい。 Θ1 and θ2 in the substantially rectangular protective film are as shown in FIGS. 4A and 4B, and the polarization direction 5 of the linearly polarized light emitted from the image display unit of the image display module on the image display surface 4 is shown. And the angle between one orientation axis direction 6 of the substrate layer of the protective film is θ1, and the angle between the polarization direction 5 of the linearly polarized light emitted from the image display unit and the other orientation axis direction 7 is θ2. It is. Note that θ1 and θ2 are angles on the narrow angle side among the angles formed by the polarization direction and the alignment axis direction. Further, any axial direction may be used as a reference.
 上記θ1、θ2となる角度への抜き加工は、適用する画像表示装置の画像表示部から出射される直線偏光の偏光軸に応じて、保護フィルム原反中の二軸延伸されたポリエチレン系樹脂フィルム基材層の分子の配向軸が、抜き加工後に所望の角度となるように適宜抜き加工角度を調整する。 The above-described punching to the angles of θ1 and θ2 is a polyethylene-based resin film stretched biaxially in the protective film according to the polarization axis of linearly polarized light emitted from the image display unit of the image display device to be applied. The punching angle is appropriately adjusted so that the orientation axis of the molecules of the base material layer becomes a desired angle after the punching.
 保護フィルムの基材として使用する二軸延伸されたポリエチレン系樹脂フィルムは、フィルム作成時に流れ方向及び幅方向に延伸して製造されるため、延伸工程時のボーイング現象により、ポリエチレン系樹脂フィルム中の分子の配向軸は、流れ方向及び幅方向の延伸方向に対してずれが生じる。したがって、上記抜き加工は、保護フィルムの原反の抜き加工位置に応じて、ポリエチレン系樹脂フィルム中の分子の配向軸の延伸方向のずれに対応した抜き加工角度にて実施する。 Since the biaxially stretched polyethylene resin film used as the base material of the protective film is manufactured by stretching in the flow direction and the width direction at the time of film production, due to the bowing phenomenon during the stretching process, The orientation axis of the molecule is shifted with respect to the flow direction and the stretching direction in the width direction. Therefore, the punching process is performed at a punching angle corresponding to the shift in the stretching direction of the orientation axes of the molecules in the polyethylene-based resin film, depending on the punching position of the original film of the protective film.
 一般的な二軸延伸ポリエチレン系樹脂フィルムにおいては、幅方向の分子の配向軸は延伸方向から0~45°程度ずれた角度に存在する。このため、当該二軸延伸ポリエチレン系樹脂フィルムを基材層として使用した保護フィルム原反の抜き加工は、当該幅方向において、適宜抜き加工角度を調整して抜き加工を行うことで、上記θ1、θ2を有する保護フィルムを得ることができる。 In a general biaxially stretched polyethylene resin film, the molecular orientation axis in the width direction exists at an angle shifted from 0 to 45 ° from the stretch direction. For this reason, the protective film original fabric using the biaxially stretched polyethylene resin film as a base material layer is subjected to a punching process by appropriately adjusting a punching angle in the width direction. A protective film having θ2 can be obtained.
 当該抜き加工につき、幅方向において、配向軸のずれ角度を有する二軸延伸ポリエチレン系樹脂フィルムを基材層として使用した保護フィルム原反を使用した場合において、以下、図面に基づき詳細に説明する。流れ方向と幅方向に延伸された二軸延伸ポリエチレン系樹脂フィルムを基材層として使用した保護フィルムの原反の例を図5に示す。図5中、保護フィルムの原反10中の二軸延伸ポリエチレン系樹脂フィルムは、流れ方向の延伸方向11と幅方向の延伸方向12に延伸されており、当該幅方向の延伸方向12に対し、二軸延伸ポリエチレン系樹脂フィルムの分子の配向軸13が、幅方向の各位置において、当該延伸方向12からのずれ角度γを有する。なお、幅方向の分子の配向軸13は、抜き加工を実施する位置における配向軸であり、抜き加工後の略方形形状の中心位置における配向軸を基準とすることが好ましい。 The punching process will be described in detail below with reference to the drawings when a protective film original fabric using a biaxially stretched polyethylene resin film having a deviation angle of the orientation axis in the width direction is used as a base material layer. FIG. 5 shows an example of a raw film of a protective film using a biaxially stretched polyethylene resin film stretched in the flow direction and the width direction as a base material layer. In FIG. 5, the biaxially stretched polyethylene resin film in the original film 10 of the protective film is stretched in the stretching direction 11 in the flow direction and the stretching direction 12 in the width direction, and with respect to the stretching direction 12 in the width direction, The molecular orientation axis 13 of the biaxially stretched polyethylene resin film has a shift angle γ from the stretch direction 12 at each position in the width direction. The molecular orientation axis 13 in the width direction is the orientation axis at the position where the punching process is performed, and is preferably based on the orientation axis at the center position of the substantially square shape after the punching process.
 当該保護フィルム原反からの抜き加工角度は、保護フィルムの原反の二軸延伸されたポリエチレン系樹脂フィルムの幅方向の延伸方向と、抜き加工する略方形形状の一辺とのなす角度が、下記式(1)にて表わされる最適抜き加工角度αの±30°の抜き加工であることが好ましく、±25°の抜き加工であることがより好ましく、α±15°であることがさらに好ましく、α±5°以内であることが最も好ましい。
 α=-[(φ-45°)-γ]+(90°×n)   (1)
(式(1)中、φは、画像表示部の水平軸と、画像表示部から出射される直線偏光の偏光軸とがなす角度、γは、保護フィルム原反の二軸延伸されたポリエチレン系樹脂フィルムの幅方向の延伸方向と、保護フィルム原反のポリエチレン系樹脂フィルムの幅方向の分子の配向軸とがなす角度、nは-3~3の整数である。)
The punching angle from the protective film original fabric is the angle formed by the stretching direction in the width direction of the biaxially stretched polyethylene resin film of the protective film raw material and one side of the substantially rectangular shape to be punched. It is preferably a punching process of ± 30 ° of the optimum punching angle α represented by the formula (1), more preferably a punching process of ± 25 °, further preferably α ± 15 °, Most preferably, it is within α ± 5 °.
α = − [(φ−45 °) −γ] + (90 ° × n) (1)
(In the formula (1), φ is an angle formed by the horizontal axis of the image display unit and the polarization axis of linearly polarized light emitted from the image display unit, and γ is a biaxially stretched polyethylene-based protective film raw material. The angle formed by the stretching direction in the width direction of the resin film and the molecular orientation axis in the width direction of the polyethylene-based resin film of the original protective film, n is an integer of -3 to 3.)
 ここで、画像表示部の水平軸とは、画像表示がなされる際に、画像表示部を視認した場合の水平軸を示し、画像表示部が略方形形状である場合には、その上辺又は下辺と平行な軸をいう。また、図6(a)又は(b)に示したように、画像表示部21の水平軸22と、画像表示部から出射される直線偏光の偏光軸23とがなす角度φは、画像表示部の水平軸と直線偏光の偏光軸とがなす角度のうち、画像表示部の水平軸から直線偏光の偏光軸までの反時計回り方向の角度をいい、0°≦φ≦180°となる。 Here, the horizontal axis of the image display unit indicates the horizontal axis when the image display unit is viewed when the image is displayed. When the image display unit has a substantially square shape, the upper side or the lower side thereof A parallel axis. 6A or 6B, the angle φ formed by the horizontal axis 22 of the image display unit 21 and the polarization axis 23 of the linearly polarized light emitted from the image display unit is the image display unit. Is an angle in the counterclockwise direction from the horizontal axis of the image display unit to the polarization axis of the linearly polarized light, and 0 ° ≦ φ ≦ 180 °.
 保護フィルム原反の二軸延伸されたポリエチレン系樹脂フィルムの幅方向の延伸方向と、保護フィルム原反のポリエチレン系樹脂フィルム中の幅方向の分子の配向軸とがなす角度γは、ポリエチレン系樹脂フィルムの幅方向の延伸方向に対する分子のずれ角度である。当該γは、ずれ角度であることから、図7に示したように、ポリエチレン系樹脂フィルムの幅方向の延伸方向12から、任意の点におけるポリエチレン系樹脂フィルムの幅方向の分子の配向軸13までの反時計回りの角度(γ1)を正の角度とし、フィルムの幅方向の延伸方向12から、任意の点におけるポリエチレン系樹脂フィルムの幅方向の分子の配向軸13までの時計回りの角度(γ2)を負の角度とする。一般的には幅方向と幅方向の配向軸との角度は45°以内であるため、-45°≦γ≦0°又は0°≦γ≦45°で表記できる The angle γ between the stretching direction in the width direction of the biaxially stretched polyethylene resin film of the original protective film and the molecular orientation axis in the width direction in the polyethylene resin film of the protective film original is the polyethylene resin. It is a shift angle of molecules with respect to the stretching direction in the width direction of the film. Since γ is a shift angle, as shown in FIG. 7, from the stretching direction 12 in the width direction of the polyethylene resin film to the molecular orientation axis 13 in the width direction of the polyethylene resin film at an arbitrary point. The counterclockwise angle (γ1) is a positive angle, and the clockwise angle (γ2) from the stretching direction 12 in the width direction of the film to the molecular orientation axis 13 in the width direction of the polyethylene resin film at an arbitrary point. ) Is a negative angle. In general, since the angle between the width direction and the alignment axis in the width direction is within 45 °, it can be expressed as −45 ° ≦ γ ≦ 0 ° or 0 ° ≦ γ ≦ 45 °.
 上記抜き加工角度にて抜き加工された保護フィルムを、画像表示モジュールと、画像表示モジュールの上部に設けられる透明パネルとを有する画像表示装置に適用する場合には、透明パネルの画像表示モジュール側の表面とは反対面に、当該抜き加工された保護フィルムの表面が表層となるように設置する。また、透明パネルの画像表示モジュール側の表面に当該保護フィルムを適用する場合には、抜き加工された保護フィルムの裏面側が、表となるように、設置すればよい。 When the protective film punched at the above-mentioned punching angle is applied to an image display device having an image display module and a transparent panel provided on the top of the image display module, the transparent panel on the image display module side It is installed on the surface opposite to the surface so that the surface of the punched protective film is a surface layer. Moreover, when applying the said protective film to the surface at the side of the image display module of a transparent panel, what is necessary is just to install so that the back surface side of the cut-out protective film may become a table | surface.
 なお、ハードコート層や粘着剤層を有する保護フィルムのように表裏に選択性がある保護フィルムを使用して、保護フィルムの表面側が表層となるように当該保護フィルムを透明パネルの画像表示モジュール側に設ける態様においては、保護フィルムの原反の二軸延伸されたポリエチレン系樹脂フィルムの幅方向の延伸方向と、抜き加工する略方形形状の一辺とのなす角度が、下記式(2)にて表わされる最適抜き加工角度βの±30°の抜き加工であることが好ましく、±25°の抜き加工角度での抜き加工であることがさらに好ましい。
 β=[(φ-45°)+γ]+(90°×n)   (2)
(式(2)中、φは、画像表示部の水平軸と、画像表示部から出射される直線偏光の偏光軸とがなす角度、γは、保護フィルム原反の二軸延伸されたポリエチレン系樹脂フィルムの幅方向と、保護フィルム原反のポリエチレン系樹脂フィルム中の幅方向の配向軸とがなす角度、nは-3~3の整数である。)なお、前記抜き加工角度は、前記最適抜き加工角度β±15°であることがより好ましく±5°以内であることが最も好ましい。
Use a protective film with selectivity on the front and back, such as a protective film with a hard coat layer or adhesive layer, and attach the protective film to the image display module side of the transparent panel so that the surface side of the protective film is the front layer. In the embodiment provided in the above, the angle formed by the stretching direction in the width direction of the biaxially stretched polyethylene resin film of the original film of the protective film and one side of the substantially rectangular shape to be punched is expressed by the following formula (2): It is preferably a punching process of ± 30 ° of the optimum cutting process angle β represented, and more preferably a punching process at a punching angle of ± 25 °.
β = [(φ−45 °) + γ] + (90 ° × n) (2)
(In the formula (2), φ is an angle formed by the horizontal axis of the image display unit and the polarization axis of linearly polarized light emitted from the image display unit, and γ is a biaxially stretched polyethylene-based protective film raw material. The angle formed by the width direction of the resin film and the orientation axis in the width direction of the polyethylene film of the protective film, n is an integer of -3 to 3.) The punching angle β ± 15 ° is more preferable, and it is most preferably within ± 5 °.
 前記最適抜き加工角度α、βは、図8に示したように、保護フィルムの原反10の二軸延伸されたポリエチレン系樹脂フィルムの幅方向の延伸方向12と、抜き加工する略方形形状の保護フィルム14の一辺とのなす角度のうち、フィルムの幅方向の延伸方向から、抜き加工する略方形形状の保護フィルム14の一辺までの反時計回りの角度(α1)を正の角度とし、フィルムの幅方向から、抜き加工する略方形形状の保護フィルム15の一辺までの時計回りの角度を負の角度(α2)とする。(図8においては、略方形形状の保護フィルムの中心点を通る各辺と平行な線を基準線として、α1、α2を示した。)抜き加工する略方形形状の一辺は、任意の一辺であってよいが、画像表示装置の画像表示部に設けられた場合に視認される画像表示の側部となる側辺を基準とすることが好ましい。また、打抜き加工する略方形形状の中心点が、ポリエチレン系樹脂フィルムの幅方向の配向軸を確認する点とが一致するように抜き加工すると、特に精度良く抜き加工が可能となるため好ましい。 As shown in FIG. 8, the optimum punching angles α and β are formed in a width direction of the biaxially stretched polyethylene resin film 12 of the original film 10 of the protective film and a substantially rectangular shape to be punched. Of the angle formed with one side of the protective film 14, the counterclockwise angle (α1) from the stretching direction in the width direction of the film to one side of the substantially rectangular protective film 14 to be punched is defined as a positive angle. A clockwise angle from the width direction to one side of the substantially rectangular protective film 15 to be punched is defined as a negative angle (α2). (In FIG. 8, α1 and α2 are shown with reference to the lines parallel to the sides passing through the center point of the substantially rectangular protective film.) One side of the substantially square shape to be punched is an arbitrary side. Although it may be, it is preferable to use the side which becomes the side of the image display visually recognized when provided in the image display unit of the image display device as a reference. Further, it is preferable to perform the punching process so that the center point of the substantially square shape to be punched coincides with the point for confirming the orientation axis in the width direction of the polyethylene-based resin film because the punching process can be performed with high accuracy.
 本発明における保護フィルム原反の幅方向の配向軸の角度γ、抜き加工角度α、βは保護フィルム原反を表面側から見た時の角度をいい、例えば片面に粘着剤層を有する保護フィルムであれば、粘着剤層と反対面側からフィルムを見た時の角度をいう。 The angle γ of the orientation axis in the width direction of the protective film raw material in the present invention, the punching angles α, β are angles when the protective film raw material is viewed from the surface side, for example, a protective film having an adhesive layer on one side If so, it means the angle when the film is viewed from the side opposite to the pressure-sensitive adhesive layer.
 なお、保護フィルムの原反を抜き加工して、略方形形状の保護フィルムを得る工程においては、前記保護フィルムの原反における二軸延伸されたポリエチレン系樹脂フィルムの幅方向の延伸方向と、抜き加工する略方形形状の一辺とのなす角度が、-5°~5°の範囲を除く角度にて略方形形状の抜き加工を行うことが、特に本願発明の効果が高いため好ましい。 In addition, in the process of punching the original film of the protective film to obtain a substantially rectangular protective film, the stretching direction in the width direction of the biaxially stretched polyethylene resin film in the original film of the protective film, It is particularly preferable to perform the substantially square-shaped punching process at an angle other than the range of −5 ° to 5 ° with respect to the side of the substantially square shape to be processed because the effect of the present invention is high.
 略方形形状への抜き加工は、所望の大きさの略方形形状の抜き加工刃での抜き加工や、レーザーによる抜き加工等、任意の抜き加工であってよい。なかでも抜き加工刃による抜き加工は、抜き加工刃の角度の調整が容易であるため好ましい。 The punching process into a substantially square shape may be any punching process such as a punching process with a substantially square-shaped cutting blade having a desired size or a laser punching process. Among these, the punching with the punching blade is preferable because it is easy to adjust the angle of the punching blade.
 略方形形状に抜き加工される保護フィルムの大きさは、適用する画像表示装置の画像表示部に適合する大きさに応じて適宜調整すればよいが、本発明の保護フィルムは、対角3.5~16インチ、好ましくは3.5~12.1インチの画像表示部を有する携帯電子機器に適合する大きさであることが好ましい。当該携帯電子機器に適合する保護フィルムの大きさとしては、好ましくは対角3.5~16インチ、より好ましくは3.5~12.1インチである。 The size of the protective film that is punched into a substantially square shape may be adjusted as appropriate according to the size suitable for the image display unit of the image display device to be applied. The size is preferably adapted to a portable electronic device having an image display portion of 5 to 16 inches, preferably 3.5 to 12.1 inches. The size of the protective film suitable for the portable electronic device is preferably 3.5 to 16 inches diagonal, more preferably 3.5 to 12.1 inches diagonal.
 以下に実施例および比較例により本発明をより具体的に説明するが、本発明はこれらに何ら限定されるものではない。 Hereinafter, the present invention will be described more specifically with reference to examples and comparative examples, but the present invention is not limited to these examples.
[保護フィルムに使用する粘着剤組成物の調製]
 アクリル共重合体の調製攪拌機、還流冷却器、温度計、滴下漏斗及び窒素ガス導入口を備えた反応容器に、ブチルアクリレート65質量部、メチルアクリレート30質量部、2-ヒドロキシエチルアクリレート5質量部を酢酸エチルに溶解し、重合を行い、質量平均分子量(Mw)70万のアクリル共重合体を得た(固形分30%)。このアクリル共重合体100質量部に対し、イソシアネート系架橋剤(日本ポリウレタン社製コロネートHL 固形分75%)を0.05質量部添加し、20分間攪拌機で攪拌し、粘着剤組成物を得た。
[Preparation of pressure-sensitive adhesive composition used for protective film]
Preparation of acrylic copolymer In a reaction vessel equipped with a stirrer, reflux condenser, thermometer, dropping funnel and nitrogen gas inlet, 65 parts by mass of butyl acrylate, 30 parts by mass of methyl acrylate, 5 parts by mass of 2-hydroxyethyl acrylate It melt | dissolved in ethyl acetate and superposed | polymerized and obtained the acrylic copolymer with a mass mean molecular weight (Mw) 700,000 (solid content 30%). To 100 parts by mass of this acrylic copolymer, 0.05 part by mass of an isocyanate-based cross-linking agent (Coronate HL solid content 75% manufactured by Nippon Polyurethane Co., Ltd.) was added and stirred with a stirrer for 20 minutes to obtain an adhesive composition. .
[保護フィルムの作製]
 上記粘着剤組成物を使用して、保護フィルムを以下のとおり調製した。
[Preparation of protective film]
The protective film was prepared as follows using the said adhesive composition.
<保護フィルムAの作製>
 各配向軸が直交した、厚さ100μmの二軸延伸ポリエチレンテレフタレート製フィルム(東洋紡社製コスモシャインA4100)の片面に上記方法で調整した粘着剤組成物を塗工して90℃で90秒間乾燥し、乾燥後の厚さが10μmの粘着剤層を有する保護フィルムAを得た。
<Preparation of protective film A>
The pressure-sensitive adhesive composition prepared by the above method was applied to one side of a biaxially stretched polyethylene terephthalate film (Cosmo Shine A4100 manufactured by Toyobo Co., Ltd.) having a thickness of 100 μm and orthogonal to each orientation axis, and dried at 90 ° C. for 90 seconds. A protective film A having a pressure-sensitive adhesive layer having a thickness of 10 μm after drying was obtained.
<保護フィルムBの作製>
 各配向軸が直交した、厚さ50μmの二軸延伸ポリエチレンテレフタレート製フィルム(東洋紡社製コスモシャインA4100)の片面に上記方法で調整した粘着剤組成物を塗工して90℃で90秒間乾燥し、乾燥後の厚さが10μmの粘着剤層を有する保護フィルムBを得た。
<Preparation of protective film B>
A pressure-sensitive adhesive composition prepared by the above method was applied to one side of a biaxially stretched polyethylene terephthalate film (Cosmo Shine A4100 manufactured by Toyobo Co., Ltd.) having a thickness of 50 μm and orthogonal to each orientation axis, and dried at 90 ° C. for 90 seconds. A protective film B having a pressure-sensitive adhesive layer having a thickness of 10 μm after drying was obtained.
<保護フィルムCの作製>
 各配向軸が直交した、厚さ100μmの二軸延伸ポリエチレンナフタレートフィルム(帝人デュポン社製テオネックス)の片面に上記方法で調整した粘着剤組成物を塗工して90℃で90秒間乾燥し、乾燥後の厚さが10μmの粘着剤層を有する保護フィルムCを得た。
<Preparation of protective film C>
The pressure-sensitive adhesive composition prepared by the above method was applied to one side of a 100 μm thick biaxially stretched polyethylene naphthalate film (Teonex manufactured by Teijin DuPont Co., Ltd.) with each orientation axis orthogonal, and dried at 90 ° C. for 90 seconds. A protective film C having an adhesive layer having a thickness of 10 μm after drying was obtained.
<保護フィルムDの作製>
 厚さ100μmの無延伸ポリシクロオレフィンポリマーフィルム(日本ゼオン社製ゼオノアフィルム)の片面に上記方法で調整した粘着剤組成物を塗工して90℃で90秒間乾燥し、乾燥後の厚さが10μmの粘着剤層を有する保護フィルムDを得た。
<Preparation of protective film D>
The pressure-sensitive adhesive composition prepared by the above method was applied to one side of an unstretched polycycloolefin polymer film having a thickness of 100 μm (ZEONOR film manufactured by Nippon Zeon Co., Ltd.) and dried at 90 ° C. for 90 seconds. The protective film D which has a 10 micrometer adhesive layer was obtained.
<保護フィルムEの作製>
 厚さ50μmの無延伸アクリルフィルム(三菱レイヨン社製アクリプレン)片面に上記方法で調整した粘着剤組成物を塗工して90℃で90秒間乾燥し、乾燥後の厚さが10μmの粘着剤層を有する保護フィルムEを得た。
<Preparation of protective film E>
A pressure-sensitive adhesive composition prepared by the above method was applied to one side of a 50 μm-thick unstretched acrylic film (Acryprene manufactured by Mitsubishi Rayon Co., Ltd.), dried at 90 ° C. for 90 seconds, and a thickness of 10 μm after drying. The protective film E which has this was obtained.
[画像表示装置の作製]
 上記保護フィルムを使用して、画像表示装置を以下のとおり作製した。
[Production of image display device]
Using the protective film, an image display device was produced as follows.
<実施例1>
 透明なガラスパネルの一面に長方形に切り出した保護フィルムAを貼り合わせ、保護フィルムAを貼り合わせたガラスパネルと、画像表示部からの出射光が直線偏光である液晶モジュールとを、ガラスパネルが最上部に位置するように固定した。この時、ガラスパネル表面(画像表示面表面)において、保護フィルムの基材のPETフィルムの一方の配向軸方向と、液晶モジュールの画像表示部から出射される直線偏光とがなす角度が45°になる角度で固定して画像表示装置を作製した。
<Example 1>
A protective film A cut out in a rectangular shape is bonded to one surface of a transparent glass panel, and the glass panel includes a glass panel in which the protective film A is bonded together and a liquid crystal module in which light emitted from the image display unit is linearly polarized light. It fixed so that it might be located in the upper part. At this time, on the glass panel surface (image display surface surface), the angle formed by one orientation axis direction of the PET film as the base material of the protective film and the linearly polarized light emitted from the image display unit of the liquid crystal module is 45 °. The image display apparatus was manufactured by fixing at an angle.
<実施例2>
 透明なガラスパネルの一面に長方形に切り出した保護フィルムAを貼り合わせ、保護フィルムAを貼り合わせたガラスパネルと、画像表示部からの出射光が直線偏光である液晶モジュールとを、ガラスパネルが最上部に位置するように固定した。この時、ガラスパネル表面(画像表示面表面)において、保護フィルムの基材のPETフィルムの一方の配向軸方向と液晶モジュールの画像表示部から出射される直線偏光とがなす角度が30°になる角度で固定して画像表示装置を作製した。
<Example 2>
A protective film A cut out in a rectangular shape is bonded to one surface of a transparent glass panel, and the glass panel includes a glass panel in which the protective film A is bonded together and a liquid crystal module in which light emitted from the image display unit is linearly polarized light. It fixed so that it might be located in the upper part. At this time, on the glass panel surface (image display surface surface), the angle formed by one orientation axis direction of the PET film as the base material of the protective film and the linearly polarized light emitted from the image display unit of the liquid crystal module is 30 °. An image display device was manufactured by fixing at an angle.
<実施例3>
 透明なガラスパネルの一面に長方形に切り出した保護フィルムAを貼り合わせ、保護フィルムAを貼り合わせたガラスパネルと、画像表示部からの出射光が直線偏光である液晶モジュールとを、ガラスパネルが最上部に位置するように固定した。この時、ガラスパネル表面(画像表示面表面)において、保護フィルムの基材のPETフィルムの一方の配向軸方向と液晶モジュールの画像表示部から出射される直線偏光とがなす角度が60°になる角度で固定して画像表示装置を作製した。
<Example 3>
A protective film A cut out in a rectangular shape is bonded to one surface of a transparent glass panel, and the glass panel includes a glass panel in which the protective film A is bonded together and a liquid crystal module in which light emitted from the image display unit is linearly polarized light. It fixed so that it might be located in the upper part. At this time, on the glass panel surface (image display surface surface), the angle formed by one orientation axis direction of the PET film as the base material of the protective film and the linearly polarized light emitted from the image display unit of the liquid crystal module is 60 °. An image display device was manufactured by fixing at an angle.
<実施例4>
 透明なガラスパネルの一面に長方形に切り出した保護フィルムAを貼り合わせ、保護フィルムAを貼り合わせたガラスパネルと、画像表示部からの出射光が直線偏光である液晶モジュールとを、ガラスパネルが最上部に位置するように固定した。この時、ガラスパネル表面(画像表示面表面)において、保護フィルムの基材のPETフィルムの一方の配向軸方向と液晶モジュールの画像表示部から出射される直線偏光とがなす角度が15°になる角度で固定して画像表示装置を作製した。
<Example 4>
A protective film A cut out in a rectangular shape is bonded to one surface of a transparent glass panel, and the glass panel includes a glass panel in which the protective film A is bonded together and a liquid crystal module in which light emitted from the image display unit is linearly polarized light. It fixed so that it might be located in the upper part. At this time, on the glass panel surface (image display surface surface), the angle formed by one orientation axis direction of the PET film as the base material of the protective film and the linearly polarized light emitted from the image display unit of the liquid crystal module is 15 °. An image display device was manufactured by fixing at an angle.
<実施例5>
 透明なガラスパネルの一面に長方形に切り出した保護フィルムAを貼り合わせ、保護フィルムAを貼り合わせたガラスパネルと、画像表示部からの出射光が直線偏光である液晶モジュールとを、ガラスパネルが最上部に位置するように固定した。この時、ガラスパネル表面(画像表示面表面)において、保護フィルムの基材のPETフィルムの一方の配向軸方向と液晶モジュールの画像表示部から出射される直線偏光とがなす角度が75°になる角度で固定して画像表示装置を作製した。
<Example 5>
A protective film A cut out in a rectangular shape is bonded to one surface of a transparent glass panel, and the glass panel includes a glass panel in which the protective film A is bonded together and a liquid crystal module in which light emitted from the image display unit is linearly polarized light. It fixed so that it might be located in the upper part. At this time, on the glass panel surface (image display surface surface), the angle formed by one orientation axis direction of the PET film as the base material of the protective film and the linearly polarized light emitted from the image display unit of the liquid crystal module is 75 °. An image display device was manufactured by fixing at an angle.
<実施例6>
 透明なガラスパネルの一面に長方形に切り出した保護フィルムBを貼り合わせ、保護フィルムBを貼り合わせたガラスパネルと、画像表示部からの出射光が直線偏光である液晶モジュールとを、ガラスパネルが最上部に位置するように固定した。この時、ガラスパネル表面(画像表示面表面)において、保護フィルムの基材のPETフィルムの一方の配向軸方向と液晶モジュールの画像表示部から出射される直線偏光とがなす角度が45°になる角度で固定して画像表示装置を作製した。
<Example 6>
A protective film B cut out in a rectangular shape is bonded to one surface of a transparent glass panel, and the glass panel includes a glass panel in which the protective film B is bonded, and a liquid crystal module in which light emitted from the image display unit is linearly polarized light. It fixed so that it might be located in the upper part. At this time, on the glass panel surface (image display surface surface), the angle formed by one orientation axis direction of the PET film as the base material of the protective film and the linearly polarized light emitted from the image display unit of the liquid crystal module is 45 °. An image display device was manufactured by fixing at an angle.
<実施例7>
 透明なガラスパネルの一面に長方形に切り出した保護フィルムBを貼り合わせ、保護フィルムBを貼り合わせたガラスパネルと、画像表示部からの出射光が直線偏光である液晶モジュールとを、ガラスパネルが最上部に位置するように固定した。この時、ガラスパネル表面(画像表示面表面)において、保護フィルムの基材のPETフィルムの一方の配向軸方向と液晶モジュールの画像表示部から出射される直線偏光とがなす角度が30°になる角度で固定して画像表示装置を作製した。
<Example 7>
A protective film B cut out in a rectangular shape is bonded to one surface of a transparent glass panel, and the glass panel includes a glass panel in which the protective film B is bonded, and a liquid crystal module in which light emitted from the image display unit is linearly polarized light. It fixed so that it might be located in the upper part. At this time, on the glass panel surface (image display surface surface), the angle formed by one orientation axis direction of the PET film as the base material of the protective film and the linearly polarized light emitted from the image display unit of the liquid crystal module is 30 °. An image display device was manufactured by fixing at an angle.
<実施例8>
 透明なガラスパネルの一面に長方形に切り出した保護フィルムBを貼り合わせ、保護フィルムBを貼り合わせたガラスパネルと、画像表示部からの出射光が直線偏光である液晶モジュールとを、ガラスパネルが最上部に位置するように固定した。この時、ガラスパネル表面(画像表示面表面)において、保護フィルムの基材のPETフィルムの一方の配向軸方向と液晶モジュールの画像表示部から出射される直線偏光とがなす角度が60°になる角度で固定して画像表示装置を作製した。
<Example 8>
A protective film B cut out in a rectangular shape is bonded to one surface of a transparent glass panel, and the glass panel includes a glass panel in which the protective film B is bonded, and a liquid crystal module in which light emitted from the image display unit is linearly polarized light. It fixed so that it might be located in the upper part. At this time, on the glass panel surface (image display surface surface), the angle formed by one orientation axis direction of the PET film as the base material of the protective film and the linearly polarized light emitted from the image display unit of the liquid crystal module is 60 °. An image display device was manufactured by fixing at an angle.
<実施例9>
 透明なガラスパネルの一面に長方形に切り出した保護フィルムCを貼り合わせ、保護フィルムCを貼り合わせたガラスパネルと、画像表示部からの出射光が直線偏光である液晶モジュールとを、ガラスパネルが最上部に位置するように固定した。この時、ガラスパネル表面(画像表示面表面)において、保護フィルムの基材のPENフィルムの一方の配向軸方向と液晶モジュールの画像表示部から出射される直線偏光とがなす角度が45°になる角度で固定して画像表示装置を作製した。
<Example 9>
A protective film C cut out in a rectangular shape is bonded to one surface of a transparent glass panel, and the glass panel includes a glass panel in which the protective film C is bonded and a liquid crystal module in which light emitted from the image display unit is linearly polarized light. It fixed so that it might be located in the upper part. At this time, on the glass panel surface (image display surface surface), the angle formed by one orientation axis direction of the PEN film as the base material of the protective film and the linearly polarized light emitted from the image display unit of the liquid crystal module is 45 °. An image display device was manufactured by fixing at an angle.
<実施例10>
 透明なガラスパネルの一面に長方形に切り出した保護フィルムCを貼り合わせ、保護フィルムCを貼り合わせたガラスパネルと、画像表示部からの出射光が直線偏光である液晶モジュールとを、ガラスパネルが最上部に位置するように固定した。この時、ガラスパネル表面(画像表示面表面)において、保護フィルムの基材のPENフィルムの一方の配向軸方向と液晶モジュールの画像表示部から出射される直線偏光とがなす角度が30°になる角度で固定して画像表示装置を作製した。
<Example 10>
A protective film C cut out in a rectangular shape is bonded to one surface of a transparent glass panel, and the glass panel includes a glass panel in which the protective film C is bonded and a liquid crystal module in which light emitted from the image display unit is linearly polarized light. It fixed so that it might be located in the upper part. At this time, on the glass panel surface (image display surface surface), the angle formed by one orientation axis direction of the PEN film as the base material of the protective film and the linearly polarized light emitted from the image display unit of the liquid crystal module is 30 °. An image display device was manufactured by fixing at an angle.
<実施例11>
 透明なガラスパネルの一面に長方形に切り出した保護フィルムCを貼り合わせ、保護フィルムCを貼り合わせたガラスパネルと、画像表示部からの出射光が直線偏光である液晶モジュールとを、ガラスパネルが最上部に位置するように固定した。この時、ガラスパネル表面(画像表示面表面)において、保護フィルムの基材のPENフィルムの一方の配向軸方向と液晶モジュールの画像表示部から出射される直線偏光とがなす角度が60°になる角度で固定して画像表示装置を作製した。
<Example 11>
A protective film C cut out in a rectangular shape is bonded to one surface of a transparent glass panel, and the glass panel includes a glass panel in which the protective film C is bonded and a liquid crystal module in which light emitted from the image display unit is linearly polarized light. It fixed so that it might be located in the upper part. At this time, on the glass panel surface (image display surface surface), the angle formed by one orientation axis direction of the PEN film as the base material of the protective film and the linearly polarized light emitted from the image display unit of the liquid crystal module is 60 °. An image display device was manufactured by fixing at an angle.
<比較例1>
 透明なガラスパネルの一面に長方形に切り出した保護フィルムAを貼り合わせ、保護フィルムAを貼り合わせたガラスパネルと、画像表示部からの出射光が直線偏光である液晶モジュールとを、ガラスパネルが最上部に位置するように固定した。この時、ガラスパネル表面(画像表示面表面)において、保護フィルムの基材のPETフィルムの一方の配向軸方向と液晶モジュールの画像表示部から出射される直線偏光とがなす角度が90°になる角度で固定して画像表示装置を作製した。
<Comparative Example 1>
A protective film A cut out in a rectangular shape is bonded to one surface of a transparent glass panel, and the glass panel includes a glass panel in which the protective film A is bonded together and a liquid crystal module in which light emitted from the image display unit is linearly polarized light. It fixed so that it might be located in the upper part. At this time, on the glass panel surface (image display surface surface), an angle formed by one orientation axis direction of the PET film as the base material of the protective film and the linearly polarized light emitted from the image display unit of the liquid crystal module is 90 °. An image display device was manufactured by fixing at an angle.
<比較例2>
 透明なガラスパネルの一面に長方形に切り出した保護フィルムAを貼り合わせ、保護フィルムAを貼り合わせたガラスパネルと、画像表示部からの出射光が直線偏光である液晶モジュールとを、ガラスパネルが最上部に位置するように固定した。この時、ガラスパネル表面(画像表示面表面)において、保護フィルムの基材のPETフィルムの一方の配向軸方向と液晶モジュールの画像表示部から出射される直線偏光とがなす角度が0°になる角度で固定して画像表示装置を作製した。
<Comparative example 2>
A protective film A cut out in a rectangular shape is bonded to one surface of a transparent glass panel, and the glass panel includes a glass panel in which the protective film A is bonded together and a liquid crystal module in which light emitted from the image display unit is linearly polarized light. It fixed so that it might be located in the upper part. At this time, on the glass panel surface (image display surface surface), the angle formed by one orientation axis direction of the PET film as the base material of the protective film and the linearly polarized light emitted from the image display unit of the liquid crystal module becomes 0 °. An image display device was manufactured by fixing at an angle.
<比較例3>
 透明なガラスパネルの一面に長方形に切り出した保護フィルムBを貼り合わせ、保護フィルムBを貼り合わせたガラスパネルと、画像表示部からの出射光が直線偏光である液晶モジュールとを、ガラスパネルが最上部に位置するように固定した。この時、ガラスパネル表面(画像表示面表面)において、保護フィルムの基材のPETフィルムの一方の配向軸方向と液晶モジュールの画像表示部から出射される直線偏光とがなす角度が90°になる角度で固定して画像表示装置を作製した。
<Comparative Example 3>
A protective film B cut out in a rectangular shape is bonded to one surface of a transparent glass panel, and the glass panel includes a glass panel in which the protective film B is bonded, and a liquid crystal module in which light emitted from the image display unit is linearly polarized light. It fixed so that it might be located in the upper part. At this time, on the glass panel surface (image display surface surface), an angle formed by one orientation axis direction of the PET film as the base material of the protective film and the linearly polarized light emitted from the image display unit of the liquid crystal module is 90 °. An image display device was manufactured by fixing at an angle.
<比較例4>
 透明なガラスパネルの一面に長方形に切り出した保護フィルムBを貼り合わせ、保護フィルムBを貼り合わせたガラスパネルと、画像表示部からの出射光が直線偏光である液晶モジュールとを、ガラスパネルが最上部に位置するように固定した。この時、ガラスパネル表面(画像表示面表面)において、保護フィルムの基材のPETフィルムの一方の配向軸方向と液晶モジュールの画像表示部から出射される直線偏光とがなす角度が0°になる角度で固定して画像表示装置を作製した。
<Comparative Example 4>
A protective film B cut out in a rectangular shape is bonded to one surface of a transparent glass panel, and the glass panel includes a glass panel in which the protective film B is bonded, and a liquid crystal module in which light emitted from the image display unit is linearly polarized light. It fixed so that it might be located in the upper part. At this time, on the glass panel surface (image display surface surface), the angle formed by one orientation axis direction of the PET film as the base material of the protective film and the linearly polarized light emitted from the image display unit of the liquid crystal module becomes 0 °. An image display device was manufactured by fixing at an angle.
<比較例5>
 透明なガラスパネルの一面に長方形に切り出した保護フィルムCを貼り合わせ、保護フィルムCを貼り合わせたガラスパネルと、画像表示部からの出射光が直線偏光である液晶モジュールとを、ガラスパネルが最上部に位置するように固定した。この時、ガラスパネル表面(画像表示面表面)において、保護フィルムの基材のPENフィルムの一方の配向軸方向と液晶モジュールの画像表示部から出射される直線偏光とがなす角度が90°になる角度で固定して画像表示装置を作製した。
<Comparative Example 5>
A protective film C cut out in a rectangular shape is bonded to one surface of a transparent glass panel, and the glass panel includes a glass panel in which the protective film C is bonded and a liquid crystal module in which light emitted from the image display unit is linearly polarized light. It fixed so that it might be located in the upper part. At this time, on the glass panel surface (image display surface surface), the angle formed by one orientation axis direction of the PEN film as the base material of the protective film and the linearly polarized light emitted from the image display unit of the liquid crystal module is 90 °. An image display device was manufactured by fixing at an angle.
<比較例6>
 透明なガラスパネルの一面に長方形に切り出した保護フィルムCを貼り合わせ、保護フィルムCを貼り合わせたガラスパネルと、画像表示部からの出射光が直線偏光である液晶モジュールとを、ガラスパネルが最上部に位置するように固定した。この時、ガラスパネル表面(画像表示面表面)において、保護フィルムの基材のPENフィルムの一方の配向軸方向と液晶モジュールの画像表示部から出射される直線偏光とがなす角度が0°になる角度で固定して画像表示装置を作製した。
<Comparative Example 6>
A protective film C cut out in a rectangular shape is bonded to one surface of a transparent glass panel, and the glass panel includes a glass panel in which the protective film C is bonded and a liquid crystal module in which light emitted from the image display unit is linearly polarized light. It fixed so that it might be located in the upper part. At this time, on the glass panel surface (image display surface surface), the angle formed by one orientation axis direction of the PEN film as the base material of the protective film and the linearly polarized light emitted from the image display unit of the liquid crystal module becomes 0 °. An image display device was manufactured by fixing at an angle.
<比較例7>
 透明なガラスパネルの一面に長方形に切り出した保護フィルムDを貼り合わせ、保護フィルムDを貼り合わせたガラスパネルと、画像表示部からの出射光が直線偏光である液晶モジュールとを、ガラスパネルが最上部に位置するように固定した。この時の保護フィルムの側辺と液晶モジュールの画像表示部から出射される直線偏光とがなす角度γが45°となるよう固定して画像表示装置を作製した。
<Comparative Example 7>
A protective film D cut out in a rectangular shape is bonded to one surface of a transparent glass panel, and the glass panel includes a glass panel in which the protective film D is bonded and a liquid crystal module in which light emitted from the image display unit is linearly polarized light. It fixed so that it might be located in the upper part. The image display device was manufactured by fixing the angle γ formed by the side of the protective film at this time and the linearly polarized light emitted from the image display unit of the liquid crystal module to be 45 °.
<比較例8>
 透明なガラスパネルの一面に長方形に切り出した保護フィルムDを貼り合わせ、保護フィルムDを貼り合わせたガラスパネルと、画像表示部からの出射光が直線偏光である液晶モジュールとを、ガラスパネルが最上部に位置するように固定した。この時の保護フィルムの側辺と液晶モジュールの画像表示部から出射される直線偏光とがなす角度γが30°となるよう固定して画像表示装置を作製した。
<Comparative Example 8>
A protective film D cut out in a rectangular shape is bonded to one surface of a transparent glass panel, and the glass panel includes a glass panel in which the protective film D is bonded and a liquid crystal module in which light emitted from the image display unit is linearly polarized light. It fixed so that it might be located in the upper part. The image display device was manufactured by fixing the angle γ formed by the side of the protective film at this time and the linearly polarized light emitted from the image display unit of the liquid crystal module to be 30 °.
<比較例9>
 透明なガラスパネルの一面に長方形に切り出した保護フィルムDを貼り合わせ、保護フィルムDを貼り合わせたガラスパネルと、画像表示部からの出射光が直線偏光である液晶モジュールとを、ガラスパネルが最上部に位置するように固定した。この時の保護フィルムの側辺と液晶モジュールの画像表示部から出射される直線偏光とがなす角度γが60°となるよう固定して画像表示装置を作製した。
<Comparative Example 9>
A protective film D cut out in a rectangular shape is bonded to one surface of a transparent glass panel, and the glass panel includes a glass panel in which the protective film D is bonded and a liquid crystal module in which light emitted from the image display unit is linearly polarized light. It fixed so that it might be located in the upper part. The image display device was manufactured by fixing the angle γ formed by the side of the protective film at this time and the linearly polarized light emitted from the image display unit of the liquid crystal module to be 60 °.
<比較例10>
 透明なガラスパネルの一面に長方形に切り出した保護フィルムDを貼り合わせ、保護フィルムDを貼り合わせたガラスパネルと、画像表示部からの出射光が直線偏光である液晶モジュールとを、ガラスパネルが最上部に位置するように固定した。この時の保護フィルムの側辺と液晶モジュールから出射される直線偏光とがなす角度γが90°となるよう固定して画像表示装置を作製した。
<Comparative Example 10>
A protective film D cut out in a rectangular shape is bonded to one surface of a transparent glass panel, and the glass panel includes a glass panel in which the protective film D is bonded and a liquid crystal module in which light emitted from the image display unit is linearly polarized light. It fixed so that it might be located in the upper part. The image display device was manufactured by fixing the angle γ formed by the side of the protective film and the linearly polarized light emitted from the liquid crystal module to 90 °.
<比較例11>
 透明なガラスパネルの一面に長方形に切り出した保護フィルムDを貼り合わせ、保護フィルムDを貼り合わせたガラスパネルと、画像表示部からの出射光が直線偏光である液晶モジュールとを、ガラスパネルが最上部に位置するように固定した。この時の保護フィルムの側辺と液晶モジュールの画像表示部から出射される直線偏光とがなす角度γが0°となるよう固定して画像表示装置を作製した。
<Comparative Example 11>
A protective film D cut out in a rectangular shape is bonded to one surface of a transparent glass panel, and the glass panel includes a glass panel in which the protective film D is bonded and a liquid crystal module in which light emitted from the image display unit is linearly polarized light. It fixed so that it might be located in the upper part. The image display device was manufactured by fixing the angle γ formed by the side of the protective film at this time and the linearly polarized light emitted from the image display unit of the liquid crystal module to be 0 °.
<比較例12>
 透明なガラスパネルの一面に長方形に切り出した保護フィルムEを貼り合わせ、保護フィルムEを貼り合わせたガラスパネルと、画像表示部からの出射光が直線偏光である液晶モジュールとを、ガラスパネルが最上部に位置するように固定した。この時の保護フィルムの側辺と液晶モジュールの画像表示部から出射される直線偏光とがなす角度γが45°となるよう固定して画像表示装置を作製した。
<Comparative Example 12>
A protective film E cut out in a rectangular shape is bonded to one surface of a transparent glass panel, and the glass panel is composed of a glass panel in which the protective film E is bonded and a liquid crystal module in which light emitted from the image display unit is linearly polarized light. It fixed so that it might be located in the upper part. The image display device was manufactured by fixing the angle γ formed by the side of the protective film at this time and the linearly polarized light emitted from the image display unit of the liquid crystal module to be 45 °.
<比較例13>
 透明なガラスパネルの一面に長方形に切り出した保護フィルムEを貼り合わせ、保護フィルムEを貼り合わせたガラスパネルと、画像表示部からの出射光が直線偏光である液晶モジュールとを、ガラスパネルが最上部に位置するように固定した。この時の保護フィルムの側辺と液晶モジュールの画像表示部から出射される直線偏光とがなす角度γが30°となるよう固定して画像表示装置を作製した。
<Comparative Example 13>
A protective film E cut out in a rectangular shape is bonded to one surface of a transparent glass panel, and the glass panel is composed of a glass panel in which the protective film E is bonded and a liquid crystal module in which light emitted from the image display unit is linearly polarized light. It fixed so that it might be located in the upper part. The image display device was manufactured by fixing the angle γ formed by the side of the protective film at this time and the linearly polarized light emitted from the image display unit of the liquid crystal module to be 30 °.
<比較例14>
 透明なガラスパネルの一面に長方形に切り出した保護フィルムEを貼り合わせ、保護フィルムEを貼り合わせたガラスパネルと、画像表示部からの出射光が直線偏光である液晶モジュールとを、ガラスパネルが最上部に位置するように固定した。この時の保護フィルムの側辺と液晶モジュールの画像表示部から出射される直線偏光とがなす角度γが60°となるよう固定して画像表示装置を作製した。
<Comparative example 14>
A protective film E cut out in a rectangular shape is bonded to one surface of a transparent glass panel, and the glass panel is composed of a glass panel in which the protective film E is bonded and a liquid crystal module in which light emitted from the image display unit is linearly polarized light. It fixed so that it might be located in the upper part. The image display device was manufactured by fixing the angle γ formed by the side of the protective film at this time and the linearly polarized light emitted from the image display unit of the liquid crystal module to be 60 °.
<比較例15>
 透明なガラスパネルの一面に長方形に切り出した保護フィルムEを貼り合わせ、保護フィルムEを貼り合わせたガラスパネルと、画像表示部からの出射光が直線偏光である液晶モジュールとを、ガラスパネルが最上部に位置するように固定した。この時の保護フィルムの側辺と液晶モジュールの画像表示部から出射される直線偏光とがなす角度γが90°となるよう固定して画像表示装置を作製した。
<Comparative Example 15>
A protective film E cut out in a rectangular shape is bonded to one surface of a transparent glass panel, and the glass panel is composed of a glass panel in which the protective film E is bonded and a liquid crystal module in which light emitted from the image display unit is linearly polarized light. It fixed so that it might be located in the upper part. The image display device was manufactured by fixing the angle γ formed by the side of the protective film and the linearly polarized light emitted from the image display unit of the liquid crystal module to 90 °.
<比較例16>
 透明なガラスパネルの一面に長方形に切り出した保護フィルムEを貼り合わせ、保護フィルムEを貼り合わせたガラスパネルと、画像表示部からの出射光が直線偏光である液晶モジュールとを、ガラスパネルが最上部に位置するように固定した。この時の保護フィルムの側辺と液晶モジュールの画像表示部から出射される直線偏光とがなす角度γが0°となるよう固定して画像表示装置を作製した。
<比較例17>
 透明なガラスパネルと、画像表示部からの出射光が直線偏光である液晶モジュールとを、ガラスパネルが上部に位置するように固定して画像表示装置を作製した。
<Comparative Example 16>
A protective film E cut out in a rectangular shape is bonded to one surface of a transparent glass panel, and the glass panel is composed of a glass panel in which the protective film E is bonded and a liquid crystal module in which light emitted from the image display unit is linearly polarized light. It fixed so that it might be located in the upper part. The image display device was manufactured by fixing the angle γ formed by the side of the protective film at this time and the linearly polarized light emitted from the image display unit of the liquid crystal module to be 0 °.
<Comparative Example 17>
An image display device was manufactured by fixing a transparent glass panel and a liquid crystal module in which light emitted from the image display unit is linearly polarized so that the glass panel is positioned on the upper part.
[画像の視認性の確認]
 上記実施例及び比較例にて作製した画像表示装置の上部に、液晶モジュールから出射される直線偏光と直交する直線偏光のみが透過する偏光板を設置した。偏光板を360°回転させ、画像表示装置から射出される画像の視認性を確認した(図9)。評価基準は以下の通りとした。評価結果を表1~3に示した。また、実施例1の画像表示装置の視認性を確認した結果を図10に、実施例3の画像表示装置にて輝度が落ちる領域での視認性を確認した結果を図11に、比較例1の画像表示装置において画像が暗くなる領域での視認性を確認した結果を図12に示した。なお図6~8中のカーソルは画像表示部の画像である。
 ◎:回転域全域で輝度が変化せず、良好な輝度を有し、回転域全域での画像の視認性が極めて良好である。
 ○:回転域全域で輝度がほとんど変化せず、十分な輝度を有し、回転域全域での画像の視認性が良好である。
 ○△:回転域の一部で輝度が落ちる領域があり、当該領域で若干暗さを感じるが、回転域全域で実用可能な画像視認性を有する。
 ×:回転域の一部で画像が暗くなり、当該領域では画像がほとんど見えない。
[Verification of image visibility]
A polarizing plate that transmits only linearly polarized light orthogonal to the linearly polarized light emitted from the liquid crystal module was installed on the upper part of the image display devices manufactured in the above-described examples and comparative examples. The polarizing plate was rotated 360 °, and the visibility of the image emitted from the image display device was confirmed (FIG. 9). The evaluation criteria were as follows. The evaluation results are shown in Tables 1 to 3. Further, FIG. 10 shows the result of confirming the visibility of the image display device of Example 1, FIG. 11 shows the result of confirming the visibility in the region where the luminance is lowered in the image display device of Example 3, and Comparative Example 1 FIG. 12 shows the result of confirming the visibility in the area where the image becomes dark in the image display apparatus. The cursors in FIGS. 6 to 8 are images on the image display unit.
A: The luminance does not change over the entire rotation range, the luminance is favorable, and the image visibility is very good over the entire rotation range.
A: The luminance hardly changes in the entire rotation range, has sufficient luminance, and the image visibility in the entire rotation range is good.
◯: There is a region where the luminance falls in a part of the rotation region, and some darkness is felt in the region, but the image visibility is practical in the entire rotation region.
X: The image becomes dark in a part of the rotation region, and the image is hardly visible in the region.
[ガラスの強度向上及び飛散防止性]
 ガラスの強度及び飛散防止性の評価は、JIS R1601規格の3点曲げ試験法に基づき行った。上記実施例及び比較例にて作製した画像表示装置の上記実施例及び比較例にて作製した画像表示装置の保護フィルムを貼り合わせたガラスパネル(比較例17は保護フィルム無しのガラスパネル)の保護フィルム側の面を2点で固定した。次にガラスパネル側の中央に応力をかけ、ガラスが割れた際の応力とガラスの飛散度を確認した。ガラス飛散の評価基準は以下の通りとした。
 ○:ガラス破片の飛散なし
 ×:ガラス破片の飛散あり
[Improvement of glass strength and prevention of scattering]
Evaluation of the intensity | strength of glass and scattering prevention was performed based on the 3 point | piece bending test method of JISR1601 specification. Protection of a glass panel (Comparative Example 17 is a glass panel without a protective film) obtained by bonding the protective films of the image display devices prepared in the above Examples and Comparative Examples of the image display devices prepared in the above Examples and Comparative Examples. The film side surface was fixed at two points. Next, stress was applied to the center of the glass panel side, and the stress when the glass was broken and the degree of scattering of the glass were confirmed. The evaluation criteria for glass scattering were as follows.
○: No glass fragments scattered ×: Glass fragments scattered
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
 表1~3に示した通り、ガラスパネルに貼付した保護フィルムが、二軸延伸樹脂フィルムを基材とする保護フィルムであり、かつ、角度θ1及び、角度θ2とが共に15~75°である実施例1~11の画像表示装置は、ガラスパネルの強度向上や、割れが生じた際のガラス飛散を防止できると共に、偏光板を介して視認した場合にも画像を良好に視認することができる。 As shown in Tables 1 to 3, the protective film attached to the glass panel is a protective film based on a biaxially stretched resin film, and both the angles θ1 and θ2 are 15 to 75 °. The image display devices of Examples 1 to 11 can improve the strength of the glass panel, prevent the glass from being scattered when cracks occur, and can view the image satisfactorily when viewed through the polarizing plate. .
 以下、本発明の好適な製造方法により製造した実施例および比較例により本発明をより具体的に説明する。 Hereinafter, the present invention will be described in more detail with reference to examples and comparative examples produced by the preferred production method of the present invention.
[ハードコート剤の作製]
<ウレタンアクリレートの合成>
 攪拌機、ガス導入管、冷却管、及び温度計を備えたフラスコに、酢酸ブチル254重量部、イソホロンジイソシアネート(以下、「IPDI」という。)222重量部、p-メトキシフェノール0.5重量部、ジブチル錫ジアセテート0.5重量部を仕込み、70℃に昇温した後、ペンタエリスリトールトリアクリレート(以下、「PE3A」という。)/ペンタエリスリトールテトラアクリレート(以下、「PE4A」という。)混合物(重量比75/25の混合物)795重量部を1時間かけて滴下した。滴下終了後、70℃で3時間反応させ、さらにイソシアネート基を示す2250cm-1の赤外線吸収スペクトルが消失するまで反応を行い、ウレタンアクリレート(UA1)/PE4A混合物(重量比80/20の混合物、不揮発分80重量%の酢酸ブチル溶液)を得た。なお、ウレタンアクリレート(UA1)の分子量は818であった。
[Preparation of hard coating agent]
<Synthesis of urethane acrylate>
In a flask equipped with a stirrer, gas introduction tube, cooling tube, and thermometer, 254 parts by weight of butyl acetate, 222 parts by weight of isophorone diisocyanate (hereinafter referred to as “IPDI”), 0.5 part by weight of p-methoxyphenol, dibutyl After charging 0.5 parts by weight of tin diacetate and raising the temperature to 70 ° C., a mixture of pentaerythritol triacrylate (hereinafter referred to as “PE3A”) / pentaerythritol tetraacrylate (hereinafter referred to as “PE4A”) (weight ratio). 75/25 mixture) 795 parts by weight were added dropwise over 1 hour. After completion of the dropwise addition, the mixture was reacted at 70 ° C. for 3 hours, and further reacted until the infrared absorption spectrum of 2250 cm −1 indicating the isocyanate group disappeared. A urethane acrylate (UA1) / PE4A mixture (a mixture of 80/20 by weight, non-volatile) 80% by weight butyl acetate solution). The molecular weight of urethane acrylate (UA1) was 818.
<重合体の合成>
 攪拌機、ガス導入管、冷却管、及び温度計を備えたフラスコに、グリシジルメタクリレート(以下、「GMA」という。)250重量部、ラウリルメルカプタン1.3重量部、メチルイソブチルケトン(以下、「MIBK」という。)1000重量部及び2,2’-アゾビスイソブチロニトリル(以下、「AIBN」という。)7.5重量部を仕込み、窒素気流下で攪拌しながら、1時間かけて90℃に昇温し、90℃で1時間反応させた。次いで、90℃で攪拌しながら、GMA750重量部、ラウリルメルカプタン3.7重量部、AIBN22.5重量部からなる混合液を2時間かけて滴下した後、100℃で3時間反応させた。その後、AIBN10重量部を仕込み、さらに100℃で1時間反応させた後、120℃付近に昇温し、2時間反応させた。60℃まで冷却し、窒素導入管を、空気導入管に付け替え、アクリル酸(以下、「AA」という。)507重量部、p-メトキシフェノール2重量部、トリフェニルホスフィン5.4重量部を加えて混合した後、空気で反応液をバブリングしながら、110℃まで昇温し、8時間反応させた。その後、p-メトキシフェノール1.4重量部を加え、室温まで冷却後、不揮発分が50重量%になるように、MIBKを加え、上記重合体(不揮発分50重量%のMIBK溶液)を得た。なお、得られた上記重合体の重量平均分子量は31,000(GPCによるポリスチレン換算による)で、(メタ)アクリロイル基当量は300g/eqであった。
<Synthesis of polymer>
In a flask equipped with a stirrer, a gas introduction pipe, a cooling pipe, and a thermometer, 250 parts by weight of glycidyl methacrylate (hereinafter referred to as “GMA”), 1.3 parts by weight of lauryl mercaptan, and methyl isobutyl ketone (hereinafter referred to as “MIBK”). 1000 parts by weight and 7.5 parts by weight of 2,2′-azobisisobutyronitrile (hereinafter referred to as “AIBN”) were charged and the mixture was stirred at 90 ° C. over 1 hour while stirring under a nitrogen stream. The temperature was raised and reacted at 90 ° C. for 1 hour. Next, a mixture of 750 parts by weight of GMA, 3.7 parts by weight of lauryl mercaptan, and 22.5 parts by weight of AIBN was added dropwise over 2 hours while stirring at 90 ° C., followed by reaction at 100 ° C. for 3 hours. Thereafter, 10 parts by weight of AIBN was charged and further reacted at 100 ° C. for 1 hour, and then heated to around 120 ° C. and reacted for 2 hours. Cool to 60 ° C., replace the nitrogen inlet tube with an air inlet tube, add 507 parts by weight of acrylic acid (hereinafter referred to as “AA”), 2 parts by weight of p-methoxyphenol, and 5.4 parts by weight of triphenylphosphine. After mixing, the reaction solution was bubbled with air, heated to 110 ° C., and reacted for 8 hours. Thereafter, 1.4 parts by weight of p-methoxyphenol was added, and after cooling to room temperature, MIBK was added so that the nonvolatile content was 50% by weight to obtain the above polymer (MIBK solution having a nonvolatile content of 50% by weight). . In addition, the weight average molecular weight of the obtained polymer was 31,000 (in terms of polystyrene by GPC), and the (meth) acryloyl group equivalent was 300 g / eq.
 酢酸エチル3.1重量部、ウレタンアクリレート(UA1)/PE4A混合物(重量比80/20の混合物)の酢酸ブチル溶液(不揮発分80%)40.0重量部、上記重合体のMIBK溶液(不揮発分50%)64.0重量部、ジペンタエリスリトールヘキサアクリレート(以下、「DPHA」という。)16.0重量部、光開始剤1-ヒドロキシシクロヘキシルフェニルケトン(以下、「HCPK」という。)1.63重量部、光開始剤ジフェニル-2,4,6-トリメチルベンゾイルホスフィン=オキシド(以下、「TPO」という。)1.16重量部を均一に混合し、樹脂組成物(不揮発分65%)を調製した。 3.1 parts by weight of ethyl acetate, 40.0 parts by weight of a butyl acetate solution (non-volatile content 80%) of a urethane acrylate (UA1) / PE4A mixture (a mixture of 80/20 by weight), a MIBK solution (non-volatile content) of the above polymer 50%) 64.0 parts by weight, dipentaerythritol hexaacrylate (hereinafter referred to as “DPHA”) 16.0 parts by weight, photoinitiator 1-hydroxycyclohexyl phenyl ketone (hereinafter referred to as “HCPK”) 1.63 Part by weight, 1.16 parts by weight of photoinitiator diphenyl-2,4,6-trimethylbenzoylphosphine oxide (hereinafter referred to as “TPO”) are uniformly mixed to prepare a resin composition (non-volatile content: 65%). did.
<ハードコート剤の調整>
 上記方法により調製した樹脂組成物のMIBK溶液(不揮発分50重量%)100重量部、反応性フッ素防汚剤(オプツールDAC;ダイキン工業株式会社製、不揮発分20重量%)2重量部を均一に混合した後、不揮発分が40重量%となるように酢酸エチルで希釈して、ハードコート剤(A)を得た。
<Adjustment of hard coating agent>
100 parts by weight of a MIBK solution (non-volatile content: 50% by weight) of the resin composition prepared by the above method and 2 parts by weight of a reactive fluorine antifouling agent (OPTOOL DAC; manufactured by Daikin Industries, Ltd., non-volatile content: 20% by weight) After mixing, the hard coating agent (A) was obtained by diluting with ethyl acetate such that the nonvolatile content was 40% by weight.
[粘着剤組成物の作製]
<アクリル共重合体等の調製>
 アクリル共重合体の調製攪拌機、還流冷却器、温度計、滴下漏斗及び窒素ガス導入口を備えた反応容器に、ブチルアクリレート85質量部、メチルメタクリレート15質量部、アクリル酸4質量部、ジメチルアミノエチルアクリレート1質量部を酢酸エチルに溶解し、重合を行い、質量平均分子量(Mw)70万のアクリル共重合体(1)を得た(固形分25%)。
[Preparation of pressure-sensitive adhesive composition]
<Preparation of acrylic copolymer, etc.>
Preparation of acrylic copolymer In a reaction vessel equipped with a stirrer, reflux condenser, thermometer, dropping funnel and nitrogen gas inlet, 85 parts by weight of butyl acrylate, 15 parts by weight of methyl methacrylate, 4 parts by weight of acrylic acid, dimethylaminoethyl 1 part by mass of acrylate was dissolved in ethyl acetate and polymerized to obtain an acrylic copolymer (1) having a mass average molecular weight (Mw) of 700,000 (solid content 25%).
<粘着剤組成物の調整>
 アクリル共重合体(1)100質量部に対し、エポキシ系架橋剤(綜研化学社製E-2XM 固形分2%)を0.60質量部添加し、20分間攪拌機で攪拌し、粘着剤組成物(a)を得た。
<Adjustment of pressure-sensitive adhesive composition>
To 100 parts by mass of the acrylic copolymer (1), 0.60 part by mass of an epoxy-based crosslinking agent (E-2XM solid content 2% by Soken Chemical Co., Ltd.) is added and stirred with a stirrer for 20 minutes to obtain an adhesive composition. (A) was obtained.
[保護フィルム原反の作製]
 上記ハードコート剤(A)及び粘着剤組成物(a)を使用して、保護フィルム原反を以下のとおり作製した。
[Preparation of the original protective film]
Using the hard coat agent (A) and the pressure-sensitive adhesive composition (a), a protective film original fabric was prepared as follows.
<保護フィルム原反Fの作製>
フィルム原反の幅方向と、フィルム中の幅方向の配向軸とがなす角度γが―30°である厚さ100μmの二軸延伸ポリエチレンテレフタレート製フィルム(東洋紡社製コスモシャインA4100)の片面に、上記で調製したハードコート剤(A)を塗布して60℃で90秒間乾燥後、空気雰囲気下で紫外線照射装置(フュージョンUVシステムズ・ジャパン株式会社製「F450」、ランプ:120W/cm、Hバルブ)を用いて、照射光量0.5J/cmで紫外線を照射し、厚さが10μmのハードコート層を形成した。次いで、このハードコートフィルムのハードコート層と逆の面側に粘着剤(a)を乾燥後の粘着剤層の厚みが10μmになるように塗工し、85℃で2分間乾燥した。得られた粘着剤層面に、シリコーン化合物で片面を剥離処理した厚み38μmのポリエステルフィルム(以下#38剥離フィルム)を貼り合わせ、40℃で2日間熟成し、総厚158μmの保護フィルム原反Fを得た。
<Preparation of protective film F>
On one side of a 100 μm-thick biaxially stretched polyethylene terephthalate film (Cosmo Shine A4100 manufactured by Toyobo Co., Ltd.) having an angle γ of −30 ° formed by the width direction of the original film and the orientation axis in the width direction in the film, After applying the hard coating agent (A) prepared above and drying at 60 ° C. for 90 seconds, an ultraviolet irradiation apparatus (“F450” manufactured by Fusion UV Systems Japan Co., Ltd., lamp: 120 W / cm, H bulb) ) Was used to irradiate ultraviolet rays at an irradiation light amount of 0.5 J / cm 2 to form a hard coat layer having a thickness of 10 μm. Next, the pressure-sensitive adhesive (a) was applied to the surface of the hard coat film opposite to the hard coat layer so that the thickness of the pressure-sensitive adhesive layer after drying was 10 μm, and dried at 85 ° C. for 2 minutes. A 38 μm thick polyester film (hereinafter referred to as # 38 release film) having one surface peeled off with a silicone compound was bonded to the obtained pressure-sensitive adhesive layer surface and aged at 40 ° C. for 2 days to produce a protective film original fabric F having a total thickness of 158 μm. Obtained.
<保護フィルム原反Gの作製>
フィルム原反の幅方向と、フィルム中の幅方向の配向軸とがなす角度γが0°である厚さ100μmの二軸延伸ポリエチレンテレフタレート製フィルム(東洋紡社製コスモシャインA4100)の片面に、上記で調製したハードコート剤(A)を塗布して60℃で90秒間乾燥後、空気雰囲気下で紫外線照射装置(フュージョンUVシステムズ・ジャパン株式会社製「F450」、ランプ:120W/cm、Hバルブ)を用いて、照射光量0.5J/cmで紫外線を照射し、厚さが10μmのハードコート層を形成した。次いで、このハードコートフィルムのハードコート層と逆の面側に粘着剤(a)を乾燥後の粘着剤層の厚みが10μmになるように塗工し、85℃で2分間乾燥した。得られた粘着剤層面に、シリコーン化合物で片面を剥離処理した厚み38μmのポリエステルフィルム(以下#38剥離フィルム)を貼り合わせ、40℃で2日間熟成し、総厚158μmの保護フィルム原反Gを得た。
<Preparation of protective film G>
On one side of a 100 μm-thick biaxially stretched polyethylene terephthalate film (Cosmo Shine A4100 manufactured by Toyobo Co., Ltd.) having an angle γ of 0 ° between the width direction of the original film and the orientation axis in the width direction in the film, After applying the hard coating agent (A) prepared in step 1 and drying at 60 ° C. for 90 seconds, an ultraviolet irradiation device in an air atmosphere (“F450” manufactured by Fusion UV Systems Japan Co., Ltd., lamp: 120 W / cm, H bulb) Was used to irradiate ultraviolet rays at an irradiation light amount of 0.5 J / cm 2 to form a hard coat layer having a thickness of 10 μm. Next, the pressure-sensitive adhesive (a) was applied to the surface of the hard coat film opposite to the hard coat layer so that the thickness of the pressure-sensitive adhesive layer after drying was 10 μm, and dried at 85 ° C. for 2 minutes. A 38 μm thick polyester film (hereinafter referred to as “# 38 release film”) having one surface peeled off with a silicone compound was bonded to the obtained pressure-sensitive adhesive layer surface, and aged at 40 ° C. for 2 days to produce a protective film original fabric G having a total thickness of 158 μm. Obtained.
<保護フィルム原反Hの作製>
フィルム原反の幅方向と、フィルム中の幅方向の配向軸とがなす角度γが20°である厚さ100μmの二軸延伸ポリエチレンテレフタレート製フィルム(東洋紡社製コスモシャインA4100)の片面に、上記で調製したハードコート剤(A)を塗布して60℃で90秒間乾燥後、空気雰囲気下で紫外線照射装置(フュージョンUVシステムズ・ジャパン株式会社製「F450」、ランプ:120W/cm、Hバルブ)を用いて、照射光量0.5J/cmで紫外線を照射し、厚さが10μmのハードコート層を形成した。次いで、このハードコートフィルムのハードコート層と逆の面側に粘着剤(a)を乾燥後の粘着剤層の厚みが10μmになるように塗工し、85℃で2分間乾燥した。得られた粘着剤層面に、シリコーン化合物で片面を剥離処理した厚み38μmのポリエステルフィルム(以下#38剥離フィルム)を貼り合わせ、40℃で2日間熟成し、総厚158μmの保護フィルム原反Hを得た。
<Preparation of protective film original fabric H>
On one side of a 100 μm-thick biaxially stretched polyethylene terephthalate film (Cosmo Shine A4100 manufactured by Toyobo Co., Ltd.) having an angle γ of 20 ° formed by the width direction of the original film and the orientation axis in the width direction in the film, After applying the hard coating agent (A) prepared in step 1 and drying at 60 ° C. for 90 seconds, an ultraviolet irradiation device in an air atmosphere (“F450” manufactured by Fusion UV Systems Japan Co., Ltd., lamp: 120 W / cm, H bulb) Was used to irradiate ultraviolet rays at an irradiation light amount of 0.5 J / cm 2 to form a hard coat layer having a thickness of 10 μm. Next, the pressure-sensitive adhesive (a) was applied to the surface of the hard coat film opposite to the hard coat layer so that the thickness of the pressure-sensitive adhesive layer after drying was 10 μm, and dried at 85 ° C. for 2 minutes. A 38 μm thick polyester film (hereinafter referred to as # 38 release film) having one surface peeled off with a silicone compound was bonded to the obtained pressure-sensitive adhesive layer surface and aged at 40 ° C. for 2 days to produce a protective film original fabric H having a total thickness of 158 μm. Obtained.
<保護フィルム原反Iの作製>
フィルム原反の幅方向と、フィルム中の幅方向の配向軸とがなす角度γが0°である厚さ100μmの二軸延伸ポリエチレンナフタレート製フィルム(帝人デュポン社製テオネックス)の片面に、上記で調製したハードコート剤(A)を塗布して60℃で90秒間乾燥後、空気雰囲気下で紫外線照射装置(フュージョンUVシステムズ・ジャパン株式会社製「F450」、ランプ:120W/cm、Hバルブ)を用いて、照射光量0.5J/cmで紫外線を照射し、厚さが10μmのハードコート層を形成した。次いで、このハードコートフィルムのハードコート層と逆の面側に粘着剤(a)を乾燥後の粘着剤層の厚みが10μmになるように塗工し、85℃で2分間乾燥した。得られた粘着剤層面に、シリコーン化合物で片面を剥離処理した厚み38μmのポリエステルフィルム(以下#38剥離フィルム)を貼り合わせ、40℃で2日間熟成し、総厚158μmの保護フィルム原反Iを得た。
<Preparation of protective film I>
On one side of a 100 μm-thick biaxially stretched polyethylene naphthalate film (Teonex manufactured by Teijin DuPont) with an angle γ formed by the width direction of the original film and the orientation axis in the width direction of the film being 0 °, After applying the hard coating agent (A) prepared in step 1 and drying at 60 ° C. for 90 seconds, an ultraviolet irradiation device in an air atmosphere (“F450” manufactured by Fusion UV Systems Japan Co., Ltd., lamp: 120 W / cm, H bulb) Was used to irradiate ultraviolet rays at an irradiation light amount of 0.5 J / cm 2 to form a hard coat layer having a thickness of 10 μm. Next, the pressure-sensitive adhesive (a) was applied to the surface of the hard coat film opposite to the hard coat layer so that the thickness of the pressure-sensitive adhesive layer after drying was 10 μm, and dried at 85 ° C. for 2 minutes. A 38 μm-thick polyester film (hereinafter referred to as # 38 release film) with one side peel-treated with a silicone compound was bonded to the obtained pressure-sensitive adhesive layer surface, and aged at 40 ° C. for 2 days to produce a protective film original fabric I with a total thickness of 158 μm. Obtained.
<保護フィルム原反Jの作製>
厚さ125μmの無延伸アクリルフィルム(三菱レイヨン社製アクリプレン)の片面に、上記で調製したハードコート剤(A)を塗布して60℃で90秒間乾燥後、空気雰囲気下で紫外線照射装置(フュージョンUVシステムズ・ジャパン株式会社製「F450」、ランプ:120W/cm、Hバルブ)を用いて、照射光量0.5J/cmで紫外線を照射し、厚さが10μmのハードコート層を形成した。次いで、このハードコートフィルムのハードコート層と逆の面側に粘着剤(a)を乾燥後の粘着剤層の厚みが10μmになるように塗工し、85℃で2分間乾燥した。得られた粘着剤層面に、シリコーン化合物で片面を剥離処理した厚み38μmのポリエステルフィルム(以下#38剥離フィルム)を貼り合わせ、40℃で2日間熟成し、総厚183μmの保護フィルム原反Jを得た。
<Preparation of protective film web J>
The hard coating agent (A) prepared above was applied to one side of a 125 μm thick unstretched acrylic film (Acryprene manufactured by Mitsubishi Rayon Co., Ltd.), dried at 60 ° C. for 90 seconds, and then irradiated with an ultraviolet irradiation device (fusion) in an air atmosphere. Using a “F450” manufactured by UV Systems Japan, Inc., a lamp: 120 W / cm, an H bulb, ultraviolet rays were irradiated at an irradiation light amount of 0.5 J / cm 2 to form a hard coat layer having a thickness of 10 μm. Next, the pressure-sensitive adhesive (a) was applied to the surface of the hard coat film opposite to the hard coat layer so that the thickness of the pressure-sensitive adhesive layer after drying was 10 μm, and dried at 85 ° C. for 2 minutes. A 38 μm thick polyester film (hereinafter referred to as # 38 release film) having one surface peeled with a silicone compound was bonded to the obtained pressure-sensitive adhesive layer surface, and aged at 40 ° C. for 2 days to produce a protective film original fabric J having a total thickness of 183 μm. Obtained.
[保護フィルム抜き加工と画像表示装置への貼り合わせ]
 上記保護フィルム原反を使用して、保護フィルムを以下のとおり作製し、画像表示装置へ貼り合わせた。
[Protective film punching and bonding to image display device]
Using the above protective film original fabric, a protective film was produced as follows and bonded to an image display device.
<実施例12>
 保護フィルム原反Fを、フィルムの抜き加工角度(フィルム原反の幅方向と抜き加工する方形形状の一辺とがなす角度)が-10°となるように抜き加工して保護フィルムを得た。この保護フィルムを透明な方形形状のガラスパネルの一面に貼り合わせ、ガラスパネルと偏光軸角度φが0°である液晶モジュールとを、保護フィルムが最上部に位置するように固定した。
<Example 12>
The protective film original fabric F was punched so that the film punching angle (angle formed by the width direction of the film original fabric and one side of the rectangular shape to be punched) was −10 ° to obtain a protective film. This protective film was bonded to one surface of a transparent rectangular glass panel, and the glass panel and a liquid crystal module having a polarization axis angle φ of 0 ° were fixed so that the protective film was positioned on the top.
<実施例13>
 保護フィルム原反Fを、抜き加工角度が0°となるように抜き加工して保護フィルムを得た。この保護フィルムを透明な方形形状のガラスパネルの一面に貼り合わせ、ガラスパネルと、偏光軸角度φが0°である液晶モジュールとを、保護フィルムが最上部に位置するように固定した。
<Example 13>
The protective film original fabric F was punched so that the punching angle was 0 ° to obtain a protective film. This protective film was bonded to one surface of a transparent rectangular glass panel, and the glass panel and a liquid crystal module having a polarization axis angle φ of 0 ° were fixed so that the protective film was positioned on the top.
<実施例14>
 保護フィルム原反Fを、抜き加工角度が15°となるように抜き加工して保護フィルムを得た。この保護フィルムを透明な方形形状のガラスパネルの一面に貼り合わせ、ガラスパネルと、偏光軸角度φが0°である液晶モジュールとを、保護フィルムが最上部に位置するように固定した。
<Example 14>
The protective film original fabric F was punched so that the punching angle was 15 ° to obtain a protective film. This protective film was bonded to one surface of a transparent rectangular glass panel, and the glass panel and a liquid crystal module having a polarization axis angle φ of 0 ° were fixed so that the protective film was positioned on the top.
<実施例15>
 保護フィルム原反Fを、抜き加工角度が30°となるように抜き加工して保護フィルムを得た。この保護フィルムを透明な方形形状のガラスパネルの一面に貼り合わせ、ガラスパネルと、偏光軸角度φが0°である液晶モジュールとを、保護フィルムが最上部に位置するように固定した。
<Example 15>
The protective film original fabric F was punched so that the punching angle was 30 ° to obtain a protective film. This protective film was bonded to one surface of a transparent rectangular glass panel, and the glass panel and a liquid crystal module having a polarization axis angle φ of 0 ° were fixed so that the protective film was positioned on the top.
<実施例16>
 保護フィルム原反Fを、抜き加工角度が40°となるように抜き加工して保護フィルムを得た。この保護フィルムを透明な方形形状のガラスパネルの一面に貼り合わせ、ガラスパネルと、偏光軸角度φが0°である液晶モジュールとを、保護フィルムが最上部に位置するように固定した。
<Example 16>
The protective film original fabric F was punched so that the punching angle was 40 ° to obtain a protective film. This protective film was bonded to one surface of a transparent rectangular glass panel, and the glass panel and a liquid crystal module having a polarization axis angle φ of 0 ° were fixed so that the protective film was positioned on the top.
<実施例17>
 保護フィルム原反Gを、抜き加工角度が45°となるように抜き加工して保護フィルムを得た。この保護フィルムを透明な方形形状のガラスパネルの一面に貼り合わせ、ガラスパネルと、偏光軸角度φが0°である液晶モジュールとを、保護フィルムが最上部に位置するように固定した。
<Example 17>
The protective film original fabric G was punched so that the punching angle was 45 ° to obtain a protective film. This protective film was bonded to one surface of a transparent rectangular glass panel, and the glass panel and a liquid crystal module having a polarization axis angle φ of 0 ° were fixed so that the protective film was positioned on the top.
<実施例18>
 保護フィルム原反Hを、抜き加工角度が65°となるように抜き加工して保護フィルムを得た。この保護フィルムを透明な方形形状のガラスパネルの一面に貼り合わせ、ガラスパネルと、偏光軸角度φが0°である液晶モジュールとを、保護フィルムが最上部に位置するように固定した。
<Example 18>
The protective film original fabric H was punched so that the punching angle was 65 ° to obtain a protective film. This protective film was bonded to one surface of a transparent rectangular glass panel, and the glass panel and a liquid crystal module having a polarization axis angle φ of 0 ° were fixed so that the protective film was positioned on the top.
<実施例19>
 保護フィルム原反Fを、抜き加工角度が―15°となるように抜き加工して保護フィルムを得た。この保護フィルムを透明な方形形状のガラスパネルの一面に貼り合わせ、ガラスパネルと、偏光軸角度φが30°である液晶モジュールとを、保護フィルムが最上部に位置するように固定した。
<Example 19>
The protective film original fabric F was punched so that the punching angle was −15 ° to obtain a protective film. This protective film was bonded to one surface of a transparent rectangular glass panel, and the glass panel and a liquid crystal module having a polarization axis angle φ of 30 ° were fixed so that the protective film was positioned on the top.
<実施例20>
 保護フィルム原反Gを、抜き加工角度が15°となるように抜き加工して保護フィルムを得た。この保護フィルムを透明な方形形状のガラスパネルの一面に貼り合わせ、ガラスパネルと、偏光軸角度φが30°である液晶モジュールとを、保護フィルムが最上部に位置するように固定した。
<Example 20>
The protective film original fabric G was punched so that the punching angle was 15 ° to obtain a protective film. This protective film was bonded to one surface of a transparent rectangular glass panel, and the glass panel and a liquid crystal module having a polarization axis angle φ of 30 ° were fixed so that the protective film was positioned on the top.
<実施例21>
 保護フィルム原反Hを、抜き加工角度が35°となるように抜き加工して保護フィルムを得た。この保護フィルムを透明な方形形状のガラスパネルの一面に貼り合わせ、ガラスパネルと、偏光軸角度φが30°である液晶モジュールとを、保護フィルムが最上部に位置するように固定した。
<Example 21>
The protective film original fabric H was punched so that the punching angle was 35 ° to obtain a protective film. This protective film was bonded to one surface of a transparent rectangular glass panel, and the glass panel and a liquid crystal module having a polarization axis angle φ of 30 ° were fixed so that the protective film was positioned on the top.
<実施例22>
 保護フィルム原反Fを、抜き加工角度が35°となるように抜き加工して保護フィルムを得た。この保護フィルムを透明な方形形状のガラスパネルの一面に貼り合わせ、ガラスパネルと、偏光軸角度φが160°である液晶モジュールとを、保護フィルムが最上部に位置するように固定した。
<Example 22>
The protective film original fabric F was punched so that the punching angle was 35 ° to obtain a protective film. This protective film was bonded to one surface of a transparent rectangular glass panel, and the glass panel and a liquid crystal module having a polarization axis angle φ of 160 ° were fixed so that the protective film was positioned on the top.
<実施例23>
 保護フィルム原反Gを、抜き加工角度が65°となるように抜き加工して保護フィルムを得た。この保護フィルムを透明な方形形状のガラスパネルの一面に貼り合わせ、ガラスパネルと、偏光軸角度φが160°である液晶モジュールとを、保護フィルムが最上部に位置するように固定した。
<Example 23>
The protective film original fabric G was punched so that the punching angle was 65 ° to obtain a protective film. This protective film was bonded to one surface of a transparent rectangular glass panel, and the glass panel and a liquid crystal module having a polarization axis angle φ of 160 ° were fixed so that the protective film was positioned on the top.
<実施例24>
 保護フィルム原反Hを、抜き加工角度が85°となるように抜き加工して保護フィルムを得た。この保護フィルムを透明な方形形状のガラスパネルの一面に貼り合わせ、ガラスパネルと、偏光軸角度φが160°である液晶モジュールとを、保護フィルムが最上部に位置するように固定した。
<Example 24>
The protective film original fabric H was punched so that the punching angle was 85 ° to obtain a protective film. This protective film was bonded to one surface of a transparent rectangular glass panel, and the glass panel and a liquid crystal module having a polarization axis angle φ of 160 ° were fixed so that the protective film was positioned on the top.
<実施例25>
 保護フィルム原反Iを、抜き加工角度が20°となるように抜き加工して保護フィルムを得た。この保護フィルムを透明な方形形状のガラスパネルの一面に貼り合わせ、ガラスパネルと、偏光軸角度φが0°である液晶モジュールとを、保護フィルムが最上部に位置するように固定した。
<Example 25>
The protective film original fabric I was punched so that the punching angle was 20 ° to obtain a protective film. This protective film was bonded to one surface of a transparent rectangular glass panel, and the glass panel and a liquid crystal module having a polarization axis angle φ of 0 ° were fixed so that the protective film was positioned on the top.
<実施例26>
 保護フィルム原反Iを、抜き加工角度が45°となるように抜き加工して保護フィルムを得た。この保護フィルムを透明な方形形状のガラスパネルの一面に貼り合わせ、ガラスパネルと、偏光軸角度φが0°である液晶モジュールとを、保護フィルムが最上部に位置するように固定した。
<Example 26>
The protective film original fabric I was punched so that the punching angle was 45 ° to obtain a protective film. This protective film was bonded to one surface of a transparent rectangular glass panel, and the glass panel and a liquid crystal module having a polarization axis angle φ of 0 ° were fixed so that the protective film was positioned on the top.
<実施例27>
 保護フィルム原反Iを、抜き加工角度が65°となるように抜き加工して保護フィルムを得た。この保護フィルムを透明な方形形状のガラスパネルの一面に貼り合わせ、ガラスパネルと、偏光軸角度φが0°である液晶モジュールとを、保護フィルムが最上部に位置するように固定した。
<Example 27>
The protective film original fabric I was punched so that the punching angle was 65 ° to obtain a protective film. This protective film was bonded to one surface of a transparent rectangular glass panel, and the glass panel and a liquid crystal module having a polarization axis angle φ of 0 ° were fixed so that the protective film was positioned on the top.
<比較例18>
 保護フィルム原反Fを、抜き加工角度が―30°となるように抜き加工して保護フィルムを得た。この保護フィルムを透明な方形形状のガラスパネルの一面に貼り合わせ、ガラスパネルと、偏光軸角度φが0°である液晶モジュールとを、保護フィルムが最上部に位置するように固定した。
<Comparative Example 18>
The protective film original fabric F was punched so that the punching angle was −30 ° to obtain a protective film. This protective film was bonded to one surface of a transparent rectangular glass panel, and the glass panel and a liquid crystal module having a polarization axis angle φ of 0 ° were fixed so that the protective film was positioned on the top.
<比較例19>
 保護フィルム原反Fを、抜き加工角度が―20°となるように抜き加工して保護フィルムを得た。この保護フィルムを透明な方形形状のガラスパネルの一面に貼り合わせ、ガラスパネルと、偏光軸角度φが0°である液晶モジュールとを、保護フィルムが最上部に位置するように固定した。
<Comparative Example 19>
The protective film original fabric F was punched so that the punching angle was −20 ° to obtain a protective film. This protective film was bonded to one surface of a transparent rectangular glass panel, and the glass panel and a liquid crystal module having a polarization axis angle φ of 0 ° were fixed so that the protective film was positioned on the top.
<比較例20>
 保護フィルム原反Fを、抜き加工角度が50°となるように抜き加工して保護フィルムを得た。この保護フィルムを透明な方形形状のガラスパネルの一面に貼り合わせ、ガラスパネルと、偏光軸角度φが0°である液晶モジュールとを、保護フィルムが最上部に位置するように固定した。
<Comparative Example 20>
The protective film original fabric F was punched so that the punching angle was 50 ° to obtain a protective film. This protective film was bonded to one surface of a transparent rectangular glass panel, and the glass panel and a liquid crystal module having a polarization axis angle φ of 0 ° were fixed so that the protective film was positioned on the top.
<比較例21>
 保護フィルム原反Fを、抜き加工角度が65°となるように抜き加工して保護フィルムを得た。この保護フィルムを透明な方形形状のガラスパネルの一面に貼り合わせ、ガラスパネルと、偏光軸角度φが0°である液晶モジュールとを、保護フィルムが最上部に位置するように固定した。
<Comparative Example 21>
The protective film original fabric F was punched so that the punching angle was 65 ° to obtain a protective film. This protective film was bonded to one surface of a transparent rectangular glass panel, and the glass panel and a liquid crystal module having a polarization axis angle φ of 0 ° were fixed so that the protective film was positioned on the top.
<比較例22>
 保護フィルム原反Iを、抜き加工角度が0°となるように抜き加工して保護フィルムを得た。この保護フィルムを透明な方形形状のガラスパネルの一面に貼り合わせ、ガラスパネルと、偏光軸角度φが0°である液晶モジュールとを、保護フィルムが最上部に位置するように固定した。
<Comparative Example 22>
The protective film original fabric I was punched so that the punching angle was 0 ° to obtain a protective film. This protective film was bonded to one surface of a transparent rectangular glass panel, and the glass panel and a liquid crystal module having a polarization axis angle φ of 0 ° were fixed so that the protective film was positioned on the top.
<比較例23>
 保護フィルム原反Iを、抜き加工角度が90°となるように抜き加工して保護フィルムを得た。この保護フィルムを透明な方形形状のガラスパネルの一面に貼り合わせ、ガラスパネルと、偏光軸角度φが0°である液晶モジュールとを、保護フィルムが最上部に位置するように固定した。
<Comparative Example 23>
The protective film original fabric I was punched so that the punching angle was 90 ° to obtain a protective film. This protective film was bonded to one surface of a transparent rectangular glass panel, and the glass panel and a liquid crystal module having a polarization axis angle φ of 0 ° were fixed so that the protective film was positioned on the top.
<比較例24>
 保護フィルム原反Jを、抜き加工角度が0、20、45、70、90°となるように抜き加工して保護フィルムを得た。この保護フィルムを透明な方形形状のガラスパネルの一面に貼り合わせ、ガラスパネルと、偏光軸角度φが0°である液晶モジュールとを、保護フィルムが最上部に位置するように固定した。
<Comparative Example 24>
The protective film original fabric J was punched so that the punching angles were 0, 20, 45, 70, and 90 ° to obtain a protective film. This protective film was bonded to one surface of a transparent rectangular glass panel, and the glass panel and a liquid crystal module having a polarization axis angle φ of 0 ° were fixed so that the protective film was positioned on the top.
<比較例25>
 保護フィルム原反Jを、抜き加工角度が0、-20、-45、-70、-90°となるように抜き加工して保護フィルムを得た。この保護フィルムを透明な方形形状のガラスパネルの一面に貼り合わせ、ガラスパネルと、偏光軸角度φが0°である液晶モジュールとを、保護フィルムが最上部に位置するように固定した。
<Comparative Example 25>
The protective film original fabric J was punched so that the punching angles were 0, −20, −45, −70, and −90 ° to obtain a protective film. This protective film was bonded to one surface of a transparent rectangular glass panel, and the glass panel and a liquid crystal module having a polarization axis angle φ of 0 ° were fixed so that the protective film was positioned on the top.
<比較例26>
 保護フィルム原反Jを、抜き加工角度が時計回りに0、20、45、70、90°となるように抜き加工して保護フィルムを得た。この保護フィルムを透明な方形形状のガラスパネルの一面に貼り合わせ、ガラスパネルと、偏光軸角度φが30°である液晶モジュールとを、保護フィルムが最上部に位置するように固定した。
<Comparative Example 26>
The protective film original fabric J was punched so that the punching angle was 0, 20, 45, 70, and 90 ° clockwise to obtain a protective film. This protective film was bonded to one surface of a transparent rectangular glass panel, and the glass panel and a liquid crystal module having a polarization axis angle φ of 30 ° were fixed so that the protective film was positioned on the top.
<比較例27>
 保護フィルム原反Jを、抜き加工角度が反時計回りに0、-20、-45、-70、-90°となるように抜き加工して保護フィルムを得た。この保護フィルムを透明な方形形状のガラスパネルの一面に貼り合わせ、ガラスパネルと、偏光軸角度φが30°である液晶モジュールとを、保護フィルムが最上部に位置するように固定した。
<Comparative Example 27>
The protective film original fabric J was punched so that the punching angle was 0, −20, −45, −70, and −90 ° counterclockwise to obtain a protective film. This protective film was bonded to one surface of a transparent rectangular glass panel, and the glass panel and a liquid crystal module having a polarization axis angle φ of 30 ° were fixed so that the protective film was positioned on the top.
<比較例28>
 保護フィルム原反Jを、抜き加工角度が時計回りに0、20、45、70、90°となるように抜き加工して保護フィルムを得た。この保護フィルムを透明な方形形状のガラスパネルの一面に貼り合わせ、ガラスパネルと、偏光軸角度φが160°である液晶モジュールとを、保護フィルムが最上部に位置するように固定した。
<Comparative Example 28>
The protective film original fabric J was punched so that the punching angle was 0, 20, 45, 70, and 90 ° clockwise to obtain a protective film. This protective film was bonded to one surface of a transparent rectangular glass panel, and the glass panel and a liquid crystal module having a polarization axis angle φ of 160 ° were fixed so that the protective film was positioned on the top.
<比較例29>
 保護フィルム原反Jを、抜き加工角度が反時計回りに0、-20、-45、-70、-90°となるように抜き加工して保護フィルムを得た。この保護フィルムを透明な方形形状のガラスパネルの一面に貼り合わせ、ガラスパネルと、偏光軸角度φが160°である液晶モジュールとを、保護フィルムが最上部に位置するように固定した。
<Comparative Example 29>
The protective film original fabric J was punched so that the punching angle was 0, −20, −45, −70, and −90 ° counterclockwise to obtain a protective film. This protective film was bonded to one surface of a transparent rectangular glass panel, and the glass panel and a liquid crystal module having a polarization axis angle φ of 160 ° were fixed so that the protective film was positioned on the top.
<比較例30>
 ガラスパネル単体と、偏光軸角度φが0°である液晶モジュールとを、保護フィルムが最上部に位置するように固定した。
<Comparative Example 30>
The glass panel alone and the liquid crystal module having a polarization axis angle φ of 0 ° were fixed so that the protective film was positioned at the top.
 上記実施例及び比較例にて得られた画像表示装置につき、以下の評価を行った。得られた結果を表4~7に示す。 The following evaluations were performed on the image display devices obtained in the above examples and comparative examples. The results obtained are shown in Tables 4-7.
[画像の視認性の確認]
 上記実施例及び比較例にて作製した画像表示装置の上部に、液晶モジュールから出射される直線偏光と直交する直線偏光のみが透過する偏光板を設置した。偏光板を360°回転させ、画像表示装置から射出される画像の視認性を確認した(図9)。評価基準は以下の通りとした。評価結果を表4~7に示した。また、実施例12の画像表示装置の視認性を確認した結果を図13に、実施例14の画像表示装置にて輝度が落ちる領域での視認性を確認した結果を図14に、比較例18の画像表示装置において画像が暗くなる領域での視認性を確認した結果を図15に示した。なお図13~15中のカーソルは画像表示部の画像である。
 ◎:回転域全域で輝度が変化せず、非常に良好な輝度を有し、回転域全域での画像の視認性が極めて良好である。
 ○:回転域全域で輝度がほとんど変化せず、良好な輝度を有し、回転域全域での画像の視認性が良好である。
 ○△:回転域の一部で輝度が落ちる領域があり、当該領域で若干暗さを感じるが、回転域全域で実用可能な画像視認性を有する。
 △:回転域の一部で輝度が落ちる領域があり、当該領域で実用上視認しにくい暗さを感じる。
 ×:回転域の一部で画像が暗くなり、当該領域では画像がほとんど見えない。
[Verification of image visibility]
A polarizing plate that transmits only linearly polarized light orthogonal to the linearly polarized light emitted from the liquid crystal module was installed on the upper part of the image display devices manufactured in the above examples and comparative examples. The polarizing plate was rotated 360 °, and the visibility of the image emitted from the image display device was confirmed (FIG. 9). The evaluation criteria were as follows. The evaluation results are shown in Tables 4-7. Further, FIG. 13 shows the result of confirming the visibility of the image display device of Example 12, FIG. 14 shows the result of confirming the visibility in the region where the brightness is lowered in the image display device of Example 14, and Comparative Example 18 FIG. 15 shows the result of confirming the visibility in the area where the image becomes dark in the image display apparatus of FIG. The cursors in FIGS. 13 to 15 are images on the image display unit.
A: The luminance does not change in the entire rotation range, has very good luminance, and the image visibility in the entire rotation range is very good.
A: The luminance hardly changes in the entire rotation range, has a good luminance, and the image visibility in the entire rotation range is good.
◯: There is a region where the luminance falls in a part of the rotation region, and a slight darkness is felt in the region, but the image visibility is practical in the entire rotation region.
(Triangle | delta): There exists an area | region where a brightness | luminance falls in a part of rotation area, and the darkness which is hard to visually recognize in the said area | region is felt.
X: The image becomes dark in a part of the rotation region, and the image is hardly visible in the region.
[ガラスパネルの飛散防止性]
 ガラスの飛散防止性の評価は、JIS R1601規格の3点曲げ試験法に基づき行った。上記実施例及び比較例にて作製した画像表示装置の保護フィルムを貼り合わせたガラスパネル(比較例13は保護フィルム無しのガラスパネル)の保護フィルム側の面を2点で固定した。次にガラスパネル側の中央に応力をかけ、ガラスが割れた際ガラスの飛散度を確認した。ガラス飛散の評価基準は以下の通りとした。
 ○:ガラス破片の飛散なし
 ×:ガラス破片の飛散あり
[Glass panel scattering prevention]
The evaluation of the glass scattering prevention property was performed based on the three-point bending test method of JIS R1601 standard. The surface on the protective film side of the glass panel (Comparative Example 13 is a glass panel without a protective film) on which the protective film of the image display device produced in the above Examples and Comparative Examples was bonded was fixed at two points. Next, stress was applied to the center of the glass panel side, and the degree of scattering of the glass was confirmed when the glass was broken. The evaluation criteria for glass scattering were as follows.
○: No glass fragments scattered ×: Glass fragments scattered
[表面鉛筆硬度の測定]
 上記記の実施例及び比較例で得られた保護フィルムの剥離フィルムを剥がしてガラス板に貼り付けた。ハードコート層表面の鉛筆硬度を、JIS K 5600-5-4(1999年版)の規定に基づき、株式会社井元製作所製の塗膜用鉛筆引掻き試験機(手動式)を用いて測定した。評価基準は以下の通りとした。
○:硬度Hの鉛筆で傷がつかない
△:硬度Fの鉛筆で傷がつかない
×:硬度Fの鉛筆で傷がつく
[Measurement of surface pencil hardness]
The release film of the protective film obtained in the above Examples and Comparative Examples was peeled off and attached to a glass plate. The pencil hardness on the surface of the hard coat layer was measured using a pencil scratch tester (manual type) for coating film manufactured by Imoto Seisakusho Co., Ltd. based on the provisions of JIS K 5600-5-4 (1999 edition). The evaluation criteria were as follows.
○: Not scratched with a pencil of hardness H Δ: Not scratched with a pencil of hardness F ×: Scratched with a pencil of hardness F
[全光線透過率及びヘイズの測定]
 上記保護フィルムを、厚さ0.5mm、長さ50mm、幅40mmのガラス板に貼り付けた後、5気圧、50℃、20分の条件で加熱加圧処理を行い固定した。村上色彩技術研究所社製「HR-100型」を使用して、サンプルのJIS K7105及びJIS K7136に基づいて全光線透過率及びヘイズを測定した。
[Measurement of total light transmittance and haze]
The protective film was affixed to a glass plate having a thickness of 0.5 mm, a length of 50 mm, and a width of 40 mm, and then fixed by performing heat and pressure treatment at 5 atm, 50 ° C. for 20 minutes. The total light transmittance and haze were measured based on JIS K7105 and JIS K7136 of samples using “HR-100 Model” manufactured by Murakami Color Research Laboratory.
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000007
Figure JPOXMLDOC01-appb-T000007
 上記表4~7から明らかなように、本発明の製造方法により製造された保護フィルムは、保護フィルムとして良好な保護性能を有しつつ、好適な視認性を実現できるものであった。 As is apparent from Tables 4 to 7 above, the protective film produced by the production method of the present invention was able to realize suitable visibility while having good protective performance as a protective film.
 1 画像表示モジュール
 2 透明パネル
 3 画像表示モジュールから出射される直線偏光
 4 画像表示面表面
 5 直線偏光の偏光方向
 6 保護フィルム
 7 二軸延伸樹脂フィルム基材の配向軸方向
 8 二軸延伸樹脂フィルム基材の配向軸方向
 10 保護フィルムの原反
 11 二軸延伸ポリエチレン系樹脂フィルムの流れ方向の延伸方向
 12 二軸延伸ポリエチレン系樹脂フィルムの幅方向の延伸方向
 13 二軸延伸ポリエチレン系樹脂フィルムの分子の幅方向の配向軸
 14 抜き加工する略方形形状の保護フィルム
 21 画像表示部
 22 画像表示部の水平軸
 23 画像表示部から出射される直線偏光の偏光軸
 31 直線偏光を出射する液晶モジュール
 32 保護フィルム
 33 透明ガラスパネル
 34 偏光板
DESCRIPTION OF SYMBOLS 1 Image display module 2 Transparent panel 3 Linearly polarized light radiate | emitted from an image display module 4 Image display surface surface 5 Polarization direction of linearly polarized light 6 Protective film 7 Orientation axial direction of biaxially stretched resin film base material 8 Biaxially stretched resin film base Orientation direction of the material 10 Original film of the protective film 11 Stretch direction in the flow direction of the biaxially stretched polyethylene resin film 12 Stretch direction in the width direction of the biaxially stretched polyethylene resin film 13 Molecular orientation of the biaxially stretched polyethylene resin film Alignment axis in width direction 14 Protective film having a substantially rectangular shape to be punched 21 Image display unit 22 Horizontal axis of image display unit 23 Polarization axis of linearly polarized light emitted from image display unit 31 Liquid crystal module emitting linearly polarized light 32 Protective film 33 Transparent glass panel 34 Polarizing plate

Claims (11)

  1.  画像表示部からの出射光が直線偏光である画像表示モジュールと、前記画像表示モジュールの上部に設けられる透明パネルとを有し、前記透明パネルの少なくとも一面に保護フィルムが貼り付けられた画像表示装置であって、
     前記保護フィルムが、二軸延伸樹脂フィルムを基材とする保護フィルムであり、
     画像表示面表面において、前記画像表示部から出射される直線偏光の偏光方向と、二軸延伸樹脂フィルムの一方の配向軸方向とがなす角度θ1、及び、前記画像表示部から出射される直線偏光の偏光方向と、二軸延伸樹脂フィルムの他方の配向軸方向とがなす角度θ2とが共に15~75°であることを特徴とする画像表示装置。
    An image display device comprising: an image display module in which light emitted from the image display unit is linearly polarized light; and a transparent panel provided on an upper portion of the image display module, and a protective film attached to at least one surface of the transparent panel Because
    The protective film is a protective film based on a biaxially stretched resin film,
    On the surface of the image display surface, an angle θ1 formed by the polarization direction of the linearly polarized light emitted from the image display unit and one orientation axis direction of the biaxially stretched resin film, and the linearly polarized light emitted from the image display unit An image display device characterized in that an angle θ2 formed by the polarization direction of the liquid crystal and the other orientation axis direction of the biaxially stretched resin film are both 15 to 75 °.
  2.  前記保護フィルムが、基材の一面に粘着剤層を有し、他面にハードコート層を有する保護フィルムである請求項1に記載の画像表示装置。 The image display device according to claim 1, wherein the protective film is a protective film having an adhesive layer on one side of the substrate and a hard coat layer on the other side.
  3.  前記透明パネルが、画像表示モジュール側表面に保護フィルムが貼り付けられた透明パネルである請求項1又は2に記載の画像表示装置。 3. The image display device according to claim 1, wherein the transparent panel is a transparent panel having a protective film attached to the surface of the image display module.
  4.  前記画像表示モジュールの画像表示部が略方形形状であり、前記画像表示部から出射される直線偏光の偏光方向と、画像表示部の側辺とがなす角度ψ1が0~15°である請求項1~3のいずれかに記載の画像表示装置。 The image display unit of the image display module has a substantially square shape, and an angle ψ1 formed by a polarization direction of linearly polarized light emitted from the image display unit and a side of the image display unit is 0 to 15 °. The image display device according to any one of 1 to 3.
  5.  前記画像表示モジュールの画像表示部が略方形形状であり、前記画像表示部から出射される直線偏光の偏光方向と、画像表示部の底辺とがなす角度ψ2が0~15°である請求項1~3のいずれかに記載の画像表示装置。 2. The image display unit of the image display module has a substantially square shape, and an angle ψ2 formed by a polarization direction of linearly polarized light emitted from the image display unit and a bottom side of the image display unit is 0 to 15 °. 4. The image display device according to any one of items 1 to 3.
  6.  画像表示部からの出射光が直線偏光である画像表示モジュールと、前記画像表示モジュールの上部に設けられる透明パネルとを有する画像表示装置において、前記透明パネルの少なくとも一面に貼り付けられる保護フィルムであって、
     二軸延伸樹脂フィルムからなる基材の一面に粘着剤層を有し、
     前記基材が略方形形状を有し、
     前記二軸延伸樹脂フィルムの一方の配向軸方向と前記基材の一辺とがなす角度η1、および、前記二軸延伸樹脂フィルムの他方の配向軸方向と前記基材の一辺と直行する辺とがなす角度η2とが5~85度であることを特徴とする保護フィルム。
    In the image display device having an image display module in which light emitted from the image display unit is linearly polarized light and a transparent panel provided on the image display module, the protective film is attached to at least one surface of the transparent panel. And
    Having a pressure-sensitive adhesive layer on one surface of a base material made of a biaxially stretched resin film
    The substrate has a substantially square shape;
    An angle η1 formed by one orientation axis direction of the biaxially stretched resin film and one side of the substrate, and a direction perpendicular to the other orientation axis direction of the biaxially stretched resin film and one side of the substrate. A protective film having an angle η2 of 5 to 85 degrees.
  7.  画像表示部からの出射光が直線偏光である画像表示モジュールと、前記画像表示モジュールの上部に設けられる透明パネルとを有する画像表示装置において、前記透明パネルの少なくとも一面に貼り付けられる保護フィルムを製造する方法であって、
     前記保護フィルムが、二軸延伸されたポリエチレン系樹脂フィルムからなるフィルム基材層を有する保護フィルムであり、
     前記保護フィルムの原反を抜き加工して、略方形形状の保護フィルムを得る工程を有し、
     前記略方形形状への抜き加工が、画像表示モジュールの上部に保護フィルムが貼り付けられた透明パネルが設けられた際に、画像表示部から出射される直線偏光の偏光軸と、フィルム基材層の分子の一方の配向軸とがなす角度θ1、及び前記画像表示部から出射される直線偏光の偏光軸と前記フィルム基材層の分子の他方の配向軸とがなす角度θ2が15~75°となる抜き加工であることを特徴とする保護フィルムの製造方法。
    An image display device having an image display module in which light emitted from an image display unit is linearly polarized light and a transparent panel provided on the image display module, and manufacturing a protective film to be attached to at least one surface of the transparent panel A way to
    The protective film is a protective film having a film base layer made of a biaxially stretched polyethylene resin film,
    The process of punching the original film of the protective film to obtain a substantially rectangular protective film,
    When the transparent panel with the protective film attached to the upper part of the image display module is provided in the substantially rectangular shape, the polarization axis of linearly polarized light emitted from the image display unit, and the film base layer The angle θ1 formed by one of the alignment axes of the molecules of the film and the angle θ2 formed by the polarization axis of the linearly polarized light emitted from the image display unit and the other alignment axis of the molecules of the film substrate layer are 15 to 75 °. The manufacturing method of the protective film characterized by being the punching process which becomes.
  8.  画像表示部からの出射光が直線偏光である画像表示モジュールと、前記画像表示モジュールの上部に設けられる透明パネルとを有する画像表示装置において、前記透明パネルの画像表示モジュールと反対面に貼り付けられる保護フィルムを製造する方法であって、
     前記保護フィルムが、二軸延伸されたポリエチレン系樹脂フィルムからなるフィルム基材層を有する保護フィルムであり、
     前記保護フィルムの原反を抜き加工して、略方形形状の保護フィルムを得る工程を有し、
     前記略方形形状への抜き加工が、前記保護フィルムの原反の二軸延伸されたポリエチレン系樹脂フィルムの幅方向の延伸方向と、抜き加工する略方形形状の一辺とのなす角度が、下記式(1)にて表わされる角度αの±30°の抜き加工角度での抜き加工であることを特徴とする保護フィルムの製造方法。
     α=-[(φ-45°)-γ]+(90°×n)   (1)
    (式(1)中、φは、画像表示部の水平軸と、画像表示部から出射される直線偏光の偏光軸とがなす角度、γは、保護フィルム原反の二軸延伸されたポリエチレン系樹脂フィルムの幅方向と、保護フィルム原反のポリエチレン系樹脂フィルム中の幅方向の配向軸とがなす角度、nは-3~3の整数である。)
    In an image display device having an image display module in which light emitted from an image display unit is linearly polarized light and a transparent panel provided on an upper portion of the image display module, the transparent panel is pasted on the opposite surface of the image display module. A method for producing a protective film, comprising:
    The protective film is a protective film having a film base layer made of a biaxially stretched polyethylene resin film,
    The process of punching the original film of the protective film to obtain a substantially rectangular protective film,
    The angle between the stretching direction in the width direction of the biaxially stretched polyethylene resin film of the original film of the protective film and the side of the substantially rectangular shape to be punched is the following formula: A method for producing a protective film, which is a punching process at a punching angle of ± 30 ° of the angle α represented by (1).
    α = − [(φ−45 °) −γ] + (90 ° × n) (1)
    (In the formula (1), φ is an angle formed by the horizontal axis of the image display unit and the polarization axis of linearly polarized light emitted from the image display unit, and γ is a biaxially stretched polyethylene-based protective film raw material. (An angle between the width direction of the resin film and the orientation axis in the width direction in the polyethylene-based resin film of the original protective film, n is an integer of -3 to 3)
  9.  画像表示部からの出射光が直線偏光である画像表示モジュールと、前記画像表示モジュールの上部に設けられる透明パネルとを有する画像表示装置において、前記透明パネルの画像表示モジュール面に貼り付けられる保護フィルムを製造する方法であって、
     前記保護フィルムが、二軸延伸されたポリエチレン系樹脂フィルムからなるフィルム基材層を有する保護フィルムであり、
     前記保護フィルムの原反を抜き加工して、略方形形状の保護フィルムを得る工程を有し、
     前記略方形形状への抜き加工が、前記保護フィルムの原反の二軸延伸されたポリエチレン系樹脂フィルムの幅方向の延伸方向と、抜き加工する略方形形状の一辺とのなす角度が、下記式(1)にて表わされる角度βの±30°の抜き加工角度での抜き加工であることを特徴とする保護フィルムの製造方法。
     β=[(φ-45°)+γ]+(90°×n)   (2)
    (式(1)中、φは、画像表示部の水平軸と、画像表示部から出射される直線偏光の偏光軸とがなす角度、γは、保護フィルム原反の二軸延伸されたポリエチレン系樹脂フィルムの幅方向と、保護フィルム原反のポリエチレン系樹脂フィルム中の幅方向の配向軸とがなす角度、nは-3~3の整数である。)
    In an image display device having an image display module in which light emitted from the image display unit is linearly polarized light and a transparent panel provided on the image display module, a protective film to be attached to the image display module surface of the transparent panel A method of manufacturing
    The protective film is a protective film having a film base layer made of a biaxially stretched polyethylene resin film,
    The process of punching the original film of the protective film to obtain a substantially rectangular protective film,
    The angle between the stretching direction in the width direction of the biaxially stretched polyethylene resin film of the original film of the protective film and the side of the substantially rectangular shape to be punched is the following formula: A method for producing a protective film, which is a punching process at a punching angle of ± 30 ° of the angle β represented by (1).
    β = [(φ−45 °) + γ] + (90 ° × n) (2)
    (In the formula (1), φ is an angle formed by the horizontal axis of the image display unit and the polarization axis of linearly polarized light emitted from the image display unit, and γ is a biaxially stretched polyethylene-based protective film raw material. (An angle between the width direction of the resin film and the orientation axis in the width direction in the polyethylene-based resin film of the original protective film, n is an integer of -3 to 3)
  10.  前記保護フィルムの原反が、二軸延伸されたポリエチレン系樹脂フィルムからなるフィルム基材層の少なくとも一面に粘着剤層を有する請求項7~9のいずれかに記載の保護フィルムの製造方法。 The method for producing a protective film according to any one of claims 7 to 9, wherein the original film of the protective film has an adhesive layer on at least one surface of a film base layer made of a biaxially stretched polyethylene resin film.
  11.  前記保護フィルムの原反が、二軸延伸されたポリエチレン系樹脂フィルムからなるフィルム基材層の少なくとも一面にハードコート層を有する請求項7~9のいずれかに記載の保護フィルムの製造方法。 The method for producing a protective film according to any one of claims 7 to 9, wherein the original film of the protective film has a hard coat layer on at least one surface of a film base layer made of a biaxially stretched polyethylene resin film.
PCT/JP2012/067274 2011-07-07 2012-07-06 Image display apparatus, protection film, and method of manufacturing protection film WO2013005821A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
KR1020147003273A KR20140045543A (en) 2011-07-07 2012-07-06 Image display apparatus, protection film, and method of manufacturing protection film
CN201280043470.5A CN103782229A (en) 2011-07-07 2012-07-06 Image display apparatus, protection film, and method of manufacturing protection film

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2011-150837 2011-07-07
JP2011150837A JP2013019941A (en) 2011-07-07 2011-07-07 Image display device and protective film
JP2012053029A JP2013185121A (en) 2012-03-09 2012-03-09 Method for producing protective film and protective film
JP2012-053029 2012-03-09

Publications (1)

Publication Number Publication Date
WO2013005821A1 true WO2013005821A1 (en) 2013-01-10

Family

ID=47437164

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/067274 WO2013005821A1 (en) 2011-07-07 2012-07-06 Image display apparatus, protection film, and method of manufacturing protection film

Country Status (4)

Country Link
KR (1) KR20140045543A (en)
CN (1) CN103782229A (en)
TW (1) TW201307908A (en)
WO (1) WO2013005821A1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101635441B1 (en) * 2013-03-04 2016-07-01 가부시키가이샤 니데크 Method for manufacturing touch panel, touch panel, method for manufacturing molded article, molded article, and laminated film
JP7389656B2 (en) * 2019-02-08 2023-11-30 日東電工株式会社 Image display device and its manufacturing method

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006267272A (en) * 2005-03-22 2006-10-05 Fuji Photo Film Co Ltd Image display device
JP2007304219A (en) * 2006-05-09 2007-11-22 Keiwa Inc Base material film for optical sheet, optical sheet and liquid crystal display module
JP2008083307A (en) * 2006-09-27 2008-04-10 Konica Minolta Opto Inc Polarizing plate, manufacturing method of polarizing plate, and liquid crystal display device
JP2010002544A (en) * 2008-06-19 2010-01-07 Epson Imaging Devices Corp Liquid crystal display and electronic device
WO2010140393A1 (en) * 2009-06-01 2010-12-09 シャープ株式会社 Liquid crystal display device

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4578900B2 (en) * 2004-09-07 2010-11-10 富士フイルム株式会社 Optical film, polarizing plate and liquid crystal display device

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006267272A (en) * 2005-03-22 2006-10-05 Fuji Photo Film Co Ltd Image display device
JP2007304219A (en) * 2006-05-09 2007-11-22 Keiwa Inc Base material film for optical sheet, optical sheet and liquid crystal display module
JP2008083307A (en) * 2006-09-27 2008-04-10 Konica Minolta Opto Inc Polarizing plate, manufacturing method of polarizing plate, and liquid crystal display device
JP2010002544A (en) * 2008-06-19 2010-01-07 Epson Imaging Devices Corp Liquid crystal display and electronic device
WO2010140393A1 (en) * 2009-06-01 2010-12-09 シャープ株式会社 Liquid crystal display device

Also Published As

Publication number Publication date
CN103782229A (en) 2014-05-07
KR20140045543A (en) 2014-04-16
TW201307908A (en) 2013-02-16

Similar Documents

Publication Publication Date Title
JP5277553B2 (en) Image display module for electronic terminal and pressure sensitive adhesive sheet
JP5472685B2 (en) Anti-scattering adhesive sheet
KR102422016B1 (en) Optically clear adhesive and optical laminate
JP5149533B2 (en) Adhesive for optical functional film, optical functional film with adhesive, and method for producing the same
KR101393778B1 (en) Double-Side Adhesive Sheet and Touch Panel Display Device comprising the same
JP4807604B2 (en) Protective adhesive film, screen panel, and portable electronic terminal
JP2009227826A (en) Double coated self-adhesive tape and image display module
KR20130128439A (en) Articles having optical adhesives and method of making same
WO2014141866A1 (en) Hard coat film, protective film, and image display device
TWI677546B (en) Adhesive, adhesive sheet and display
JP2014109712A (en) Hard coat film, decorative film and protective film
JP6350546B2 (en) High hardness film
JP6094226B2 (en) Protective adhesive film, screen panel and touch panel
JP2012158632A (en) Pressure sensitive adhesive and laminated product therewith
JP2015040241A (en) Adhesive sheet and image display device
WO2013005821A1 (en) Image display apparatus, protection film, and method of manufacturing protection film
TWI798417B (en) Adhesive composition, adhesive and adhesive sheet
JP2013185121A (en) Method for producing protective film and protective film
JP2013097041A (en) Image display unit and protective film
JP2014084336A (en) Protective adhesive film
JP2016060833A (en) Adhesive film, information display device, and portable electronic terminal
JP2021021034A (en) Adhesive sheet, backlight unit and liquid crystal display device
WO2023100866A1 (en) Adhesive sheet and method for manufacturing adhesive sheet
WO2022201613A1 (en) Adhesive sheet and method for manufacturing structure
JP2023008234A (en) Adhesive sheet, laminate, optical device and image display device, and method for manufacturing the same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12807778

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20147003273

Country of ref document: KR

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 12807778

Country of ref document: EP

Kind code of ref document: A1