WO2013005692A1 - Liquid crystal sealing material and liquid crystal display cell using same - Google Patents

Liquid crystal sealing material and liquid crystal display cell using same Download PDF

Info

Publication number
WO2013005692A1
WO2013005692A1 PCT/JP2012/066792 JP2012066792W WO2013005692A1 WO 2013005692 A1 WO2013005692 A1 WO 2013005692A1 JP 2012066792 W JP2012066792 W JP 2012066792W WO 2013005692 A1 WO2013005692 A1 WO 2013005692A1
Authority
WO
WIPO (PCT)
Prior art keywords
liquid crystal
epoxy resin
meth
component
crystal sealant
Prior art date
Application number
PCT/JP2012/066792
Other languages
French (fr)
Japanese (ja)
Inventor
英之 太田
栄一 西原
大輔 今岡
早紀 吉田
堅太 菅原
Original Assignee
日本化薬株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本化薬株式会社 filed Critical 日本化薬株式会社
Priority to CN201280032956.9A priority Critical patent/CN103649824B/en
Priority to KR1020147001603A priority patent/KR20140039314A/en
Publication of WO2013005692A1 publication Critical patent/WO2013005692A1/en

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1339Gaskets; Spacers; Sealing of cells
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G59/00Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
    • C08G59/18Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing
    • C08G59/40Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing characterised by the curing agents used
    • C08G59/4007Curing agents not provided for by the groups C08G59/42 - C08G59/66
    • C08G59/4014Nitrogen containing compounds
    • C08G59/4035Hydrazines; Hydrazides
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L63/00Compositions of epoxy resins; Compositions of derivatives of epoxy resins
    • C08L63/10Epoxy resins modified by unsaturated compounds

Definitions

  • the present invention relates to a liquid crystal sealant having good curability by heat. More specifically, the present invention relates to a liquid crystal sealing agent having good curability by heat, excellent storage stability, and excellent moisture resistance of a cured product, and a liquid crystal display cell sealed with the cured product.
  • Patent Documents 1 and 2 a so-called liquid crystal dropping method with higher mass productivity has been proposed as a liquid crystal display cell manufacturing method. Specifically, it is a method of manufacturing a liquid crystal display cell in which liquid crystal is sealed by dropping a liquid crystal inside a weir of a liquid crystal sealant formed on one substrate and then bonding the other substrate.
  • the liquid crystal sealant in an uncured state comes into contact with the liquid crystal. At that time, the components of the liquid crystal sealant are dissolved (eluting) in the liquid crystal to reduce the resistance value of the liquid crystal, There is a problem that a display defect occurs.
  • a photothermal combination type liquid crystal sealant for a liquid crystal dropping method is currently used and put into practical use (Patent Documents 3 and 4).
  • the liquid crystal dropping method using the liquid crystal sealant is characterized in that the liquid crystal sealant sandwiched between the substrates is irradiated with light to be primarily cured and then heated to be secondarily cured.
  • the uncured liquid crystal sealant can be quickly cured by light, and dissolution (elution) of the liquid crystal sealant component into the liquid crystal can be suppressed.
  • the problem of insufficient adhesive strength due to curing shrinkage at the time of photocuring occurs only by photocuring, but the photothermal combination type has an advantage that such problems can be solved by secondary curing by heating.
  • Patent Documents 5 and 6 disclose a method using a thermal radical initiator.
  • Patent Documents 7 to 9 disclose methods using polyvalent carboxylic acids as curing accelerators.
  • a thermal radical initiator generates radicals little by little even at room temperature, and thus has a problem that the storage stability and work stability of the liquid crystal sealant are poor.
  • a curing accelerator such as a polyvalent carboxylic acid acts as a catalyst, reacts itself, and is not taken into the cured product by a chemical bond. There is a problem of causing defects.
  • liquid crystal sealants As described above, the development of liquid crystal sealants has been carried out very vigorously, but also has excellent thermal stability and good storage stability and low liquid crystal contamination. A liquid crystal sealant having the above has not been realized yet.
  • the present invention relates to a liquid crystal sealant that is cured only by heating or by combined use of light and heat, and since the reaction by heat is fast, it is extremely low in contamination with liquid crystals throughout the process and has excellent storage stability and moisture resistance.
  • the present invention proposes a liquid crystal sealant for a liquid crystal dropping method that is excellent in properties of cured products such as reliability.
  • the inventors have one or more selected from epoxy resins, (meth) acrylated epoxy resins, and partially (meth) acrylated epoxy resins having active hydrogen in the molecule.
  • a liquid crystal sealing agent containing a curable resin (however, excluding hydrogen contained in a hydroxy group as active hydrogen) has excellent thermal reactivity, and as a result, liquid crystal contamination can be suppressed.
  • the inventors have found that the storage stability is excellent and have completed the present invention. That is, the present invention relates to the following 1) to 13).
  • numerator, (meth) acrylated epoxy resin, and partial (meth) acrylated epoxy resin In order to avoid the trouble of describing “a curable resin composed of two or more species”, it may be described as “component (a) curable resin”.
  • the liquid crystal sealant of the present invention has a high reaction rate at the time of thermosetting, the photothermal combined liquid crystal dropping method has sufficient curability even under wiring where light is difficult to reach.
  • the degree of freedom can be secured and the manufacture of a highly reliable liquid crystal display panel can be facilitated, and furthermore, application to a liquid crystal dropping method in which the liquid crystal sealant is cured only by heat is also possible.
  • the liquid-crystal sealing compound of this invention is 1 type (s) or 2 or more types selected from the epoxy resin which has active hydrogen in a component (a) molecule
  • the curable resin which consists of is contained.
  • hydrogen contained in the hydroxy group is excluded.
  • a hydroxy group generally has a large acid dissociation constant (pKa) and also has a weak nucleophilicity of the hydroxy group itself, so that it is difficult to function as a catalyst.
  • pKa acid dissociation constant
  • a normal epoxy acrylate has a secondary hydroxy group, but does not function as a reaction catalyst during heat curing.
  • the curable resin has a functional group that reacts with light or heat such as a (meth) acryloyl group or an epoxy group, the amount of the curable resin taken into the cured product and dissolved in the liquid crystal can be dramatically reduced. The display characteristics of the liquid crystal display element are not impaired.
  • (meth) acryl means one or both of “acryl” and “methacryl”.
  • (meth) acryloyl means one or both of “acryloyl” and “methacryloyl”.
  • the active hydrogen examples include active hydrogen contained in a carboxy group, a sulfanyl group, an amino group, a sulfo group, a phospho group, and the like. That is, as the component (a), for example, a (meth) acrylated epoxy resin and a partial (meth) acrylated epoxy resin having a carboxy group, a sulfanyl group, an amino group, a sulfo group, a phospho group or the like in the molecule, and a molecule Examples thereof include a curable resin containing one or more selected from epoxy resins having a carboxy group, a thiol group, an amino group, a sulfo group, a phospho group, and the like.
  • a carboxy group is particularly preferable because of its function as a catalyst and ease of synthesis.
  • an epoxy resin having an amino group amine-modified bisphenol A type epoxy acrylate EBECRYL 3703 (manufactured by Daicel Cytec Co., Ltd.) and the like are easily available as commercial products.
  • the component (a) curable resin is preferably a (meth) acrylated epoxy resin rather than an epoxy resin or a partially (meth) acrylated epoxy resin. Since the (meth) acrylated epoxy resin reacts quickly by light, it is possible to further suppress dissolution in the liquid crystal.
  • This curable resin can be obtained, for example, by reacting an acid anhydride, a polyvalent carboxylic acid, or the like with a (meth) acrylated epoxy resin obtained by a known reaction between an epoxy resin and (meth) acrylic acid. .
  • epoxy resin (meth) acrylic acid having a predetermined equivalent ratio
  • catalyst for example, benzyldimethylamine, triethylamine, benzyltrimethylammonium chloride, triphenylphosphine, triphenylstibine, etc.
  • a polymerization inhibitor for example, methoquinone, hydroquinone, methylhydroquinone, phenothiazine, dibutylhydroxytoluene, etc.
  • an esterification reaction is performed at 80 ° C. to 110 ° C. to obtain a (meth) acrylated epoxy resin.
  • the obtained (meth) acrylated epoxy resin is reacted with an acid anhydride by the method described in, for example, JP-A-49-2601, JP-A-3-143911, JP-A-5-32746, A (meth) acrylated epoxy resin having active hydrogen in the molecule can be obtained.
  • the epoxy resin used as a raw material is not particularly limited, but a bifunctional or higher functional epoxy resin is preferable, for example, resorcinol diglycidyl ether, bisphenol A type epoxy resin, bisphenol F type epoxy resin, bisphenol S type.
  • resorcinol diglycidyl ether, bisphenol A type epoxy resin, and bisphenol F type epoxy resin are preferable, and resorcinol diglycidyl ether is particularly preferable.
  • the content of component (a) is preferably 5 to 50 parts by mass, preferably 5 to 30 parts by mass, when the total amount of the liquid crystal sealant of the present invention is 100 parts by mass. Particularly preferred. If the amount of the component (a) is too small, sufficient thermosetting property cannot be obtained. On the other hand, if the amount is too large, the liquid crystal sealant has a high viscosity, which restricts the blending of other components.
  • thermosetting agent that is the component (b) used in the liquid crystal sealing agent of the present invention is not particularly limited, and examples thereof include polyvalent amines, polyhydric phenols, hydrazide compounds, and the like. Compounds are particularly preferably used.
  • the aromatic hydrazide terephthalic acid dihydrazide, isophthalic acid dihydrazide, 2,6-naphthoic acid dihydrazide, 2,6-pyridinedihydrazide, 1,2,4-benzenetrihydrazide, 1,4,5,8-naphthoic acid examples include tetrahydrazide and pyromellitic acid tetrahydrazide.
  • aliphatic hydrazide compound examples include form hydrazide, acetohydrazide, propionic acid hydrazide, oxalic acid dihydrazide, malonic acid dihydrazide, succinic acid dihydrazide, glutaric acid dihydrazide, adipic acid dihydrazide, pimelic acid dihydrazide, 1,4- Cyclohexane dihydrazide, tartaric acid dihydrazide, malic acid dihydrazide, iminodiacetic acid dihydrazide, N, N'-hexamethylenebissemicarbazide, citric acid trihydrazide, nitriloacetic acid trihydrazide, cyclohexanetricarboxylic acid trihydrazide, 1,3-bis (hydrazinocarbono Hydantoin skeleton such as ethyl) -5-isopropylhydantoin, preferably valine hydanto
  • Examples of the compound represented by the above (1) include tris (1-hydrazinocarbonylmethyl) isocyanurate, tris (2-hydrazinocarbonylethyl) isocyanurate, tris (2-hydrazinocarbonylethyl) isocyanurate, tris. (3-hydrazinocarbonylpropyl) isocyanurate, bis (2-hydrazinocarbonylethyl) isocyanurate, and the like can be mentioned, but the structure of the formula (1) is not limited thereto.
  • isophthalic acid dihydrazide isophthalic acid dihydrazide, malonic acid dihydrazide, adipic acid dihydrazide, tris (1-hydrazinocarbonylmethyl) isocyanurate, tris (2-hydrazinocarbonylethyl) isocyanurate, tris (2-hydrazinocarbonylethyl) isocyanurate and tris (3-hydrazinocarbonylpropyl) isocyanurate, particularly preferably tris (2-hydrazinocarbonylethyl) isocyanurate.
  • component (b) is preferably 1 part by mass to 20 parts by mass, more preferably 2 parts by mass to 15 parts by mass, when the total amount of the liquid crystal sealant of the present invention is 100 parts by mass. Yes, two or more may be used in combination.
  • the liquid crystal sealant of the present invention is selected from an epoxy resin, a (meth) acrylated epoxy resin, and a partially (meth) acrylated epoxy resin having no active hydrogen in the molecule as the component (c). Or you may contain the curable resin (However, the hydrogen contained in a hydroxyl group is remove
  • the component (c) used in the present invention preferably has low contamination and solubility in liquid crystals.
  • suitable epoxy resins include bisphenol A type epoxy resin, bisphenol F type epoxy resin, and bisphenol S type epoxy.
  • Resin phenol novolac type epoxy resin, cresol novolac type epoxy resin, bisphenol A novolak type epoxy resin, bisphenol F novolac type epoxy resin, alicyclic epoxy resin, aliphatic chain epoxy resin, glycidyl ester type epoxy resin, hydantoin type epoxy Resin, isocyanurate type epoxy resin, phenol novolac type epoxy resin having triphenolmethane skeleton, other diglycidyl ethers of difunctional phenols, diglycidyl ether of difunctional alcohols Things, and their halides, but hydrogenated product or the like, but is not limited thereto.
  • the (meth) acryloylated epoxy resin and the partial (meth) acryloylated epoxy resin can be obtained by a known reaction between an epoxy resin and (meth) acrylic acid.
  • epoxy resin, (meth) acrylic acid having a predetermined equivalent ratio catalyst (for example, benzyldimethylamine, triethylamine, benzyltrimethylammonium chloride, triphenylphosphine, triphenylstibine, etc.), and a polymerization inhibitor (for example, methoquinone)
  • catalyst for example, benzyldimethylamine, triethylamine, benzyltrimethylammonium chloride, triphenylphosphine, triphenylstibine, etc.
  • a polymerization inhibitor for example, methoquinone
  • hydroquinone, methylhydroquinone, phenothiazine, dibutylhydroxytoluene, etc. and an esterification reaction is carried out at 80 °
  • An epoxy resin more than bifunctional is preferable, for example, a bisphenol A type epoxy resin, a bisphenol F type epoxy resin, a bisphenol S type epoxy resin, a phenol novolac type epoxy resin , Cresol novolac type epoxy resin, bisphenol A novolac type epoxy resin, bisphenol F novolak type epoxy resin, alicyclic epoxy resin, aliphatic chain epoxy resin, glycidyl ester type epoxy resin, hydantoin type epoxy resin, isocyanurate type epoxy resin , Phenol novolac type epoxy resins having a triphenolmethane skeleton, other diglycidyl ethers of difunctional phenols, diglycidyl ethers of difunctional alcohols, and These halides, hydrogenated product and the like.
  • bisphenol type epoxy resin and novolac type epoxy resin are more preferable from the viewpoint of liquid crystal contamination.
  • the ratio of the epoxy group to the (meth) acryloyl group is not limited, and is appropriately selected from the viewpoint of process compatibility and liquid crystal contamination.
  • the amount used is appropriately determined in consideration of the workability and physical properties of the liquid crystal sealant obtained.
  • the total amount of the liquid crystal sealant is 100 parts by mass, it is preferably 20 parts by mass to 80 parts by mass, and more preferably 30 parts by mass to 70 parts by mass.
  • the component (d) silane coupling agent can be used to improve adhesive strength and moisture resistance reliability.
  • silane coupling agents include 3-glycidoxypropyltrimethoxysilane, 3-glycidoxypropylmethyldimethoxysilane, 3-glycidoxypropylmethyldimethoxysilane, 2- (3,4-epoxycyclohexyl) ethyltrimethoxy Silane, N-phenyl- ⁇ -aminopropyltrimethoxysilane, N- (2-aminoethyl) 3-aminopropylmethyldimethoxysilane, N- (2-aminoethyl) 3-aminopropylmethyltrimethoxysilane, 3-amino Propyltriethoxysilane, 3-mercaptopropyltrimethoxysilane, vinyltrimethoxysilane, N- (2- (vinylbenzylamino) ethyl)
  • the component (e) inorganic filler can be used to improve the adhesive strength and improve the moisture resistance reliability.
  • this (e) inorganic filler fused silica, crystalline silica, silicon carbide, silicon nitride, boron nitride, calcium carbonate, magnesium carbonate, barium sulfate, calcium sulfate, mica, talc, clay, alumina, magnesium oxide, zirconium oxide, Aluminum hydroxide, magnesium hydroxide, calcium silicate, aluminum silicate, lithium aluminum silicate, zirconium silicate, barium titanate, glass fiber, carbon fiber, molybdenum disulfide, asbestos, etc., preferably fused silica, crystalline silica, nitriding Silicon, boron nitride, calcium carbonate, barium sulfate, calcium sulfate, mica, talc, clay, alumina, aluminum hydroxide, calcium silicate, aluminum silicate, more silicate, aluminum silicate, more
  • the average particle size is too large, it becomes a cause of defects such as failure to form a gap when laminating the upper and lower glass substrates when manufacturing a narrow gap liquid crystal cell, and therefore 3 ⁇ m or less is appropriate, and preferably 2 ⁇ m or less.
  • the particle size can be measured with a laser diffraction / scattering particle size distribution analyzer (dry type) (manufactured by Seishin Enterprise Co., Ltd .; LMS-30).
  • the content of the inorganic filler (e) that can be used in the liquid crystal sealant of the present invention in the liquid crystal sealant is usually 3 parts by mass to 60 parts by mass when the total amount of the liquid crystal sealant of the present invention is 100 parts by mass. Yes, preferably 5 to 50 parts by mass.
  • the content of the inorganic filler is too large, the liquid crystal cell may not be able to form a gap because it is difficult to be crushed.
  • the liquid crystal sealant of the present invention may contain a component (f) a photoradical polymerization initiator in order to obtain a photothermal combination curable liquid crystal sealant.
  • the radical photopolymerization initiator is not particularly limited as long as it is a compound that generates radicals by UV or visible light irradiation and initiates a chain polymerization reaction.
  • benzyl dimethyl ketal 1-hydroxycyclohexyl phenyl ketone, diethyl thioxanthone, Benzophenone, 2-ethylanthraquinone, 2-hydroxy-2-methylpropiophenone, 2-methyl- [4- (methylthio) phenyl] -2-morpholino-1-propane, 2,4,6-trimethylbenzoyldiphenylphosphine
  • An oxide etc. can be mentioned. From the viewpoint of liquid crystal contamination, it is preferable to use those having a (meth) acryloyl group in the molecule.
  • 2-methacryloyloxyethyl isocyanate and 1- [4- (2-hydroxyethoxy) -phenyl]- The reaction product with 2-hydroxy-2methyl-1-propan-1-one is preferably used.
  • This compound can be obtained by the method described in International Publication No. 2006/027982.
  • the content of the component (f) photopolymerization initiator that can be used in the liquid crystal sealant of the present invention in the liquid crystal sealant is usually 0.5 parts by mass when the total amount of the liquid crystal sealant of the present invention is 100 parts by mass. -20 parts by mass, preferably 1-15 parts by mass.
  • a monomer or oligomer of (meth) acrylic acid ester may be used as necessary.
  • Such monomers and oligomers include, for example, a reaction product of dipentaerythritol and (meth) acrylic acid, a reaction product of dipentaerythritol / caprolactone and (meth) acrylic acid, etc., but has a contamination property to liquid crystals. If it is low, it will not be restricted in particular.
  • liquid crystal sealing agent of the present invention if necessary, additives such as curing accelerators such as organic acids and imidazoles, organic fillers, pigments, leveling agents, antifoaming agents, and solvents can be blended.
  • curing accelerators such as organic acids and imidazoles
  • organic fillers such as organic acids and imidazoles
  • pigments such as pigments, leveling agents, antifoaming agents, and solvents
  • An example of a method for obtaining the liquid crystal sealant of the present invention is the following method. First, the component (c) and the component (f) are heated and dissolved in the component (a) as necessary. Next, after cooling to room temperature, component (b) is added, and if necessary, component (d), component (e), and organic filler, antifoaming agent, leveling agent, solvent, etc. are added,
  • the liquid crystal sealant of the present invention can be produced by uniformly mixing with a three-roll, sand mill, ball mill or the like and filtering with a metal mesh.
  • the liquid crystal display cell of the present invention is a cell in which a pair of substrates having predetermined electrodes formed on a substrate are arranged opposite to each other at a predetermined interval, the periphery is sealed with the liquid crystal sealant of the present invention, and the liquid crystal is sealed in the gap. is there.
  • the kind of liquid crystal to be sealed is not particularly limited.
  • the substrate is composed of a combination of substrates made of at least one of glass, quartz, plastic, silicon, etc. and having light transmission properties.
  • a spacer spacer (gap control material) such as glass fiber
  • the liquid crystal sealant is applied to one of the pair of substrates using a dispenser or a screen printing device.
  • the liquid crystal display cell of the present invention can be obtained by curing at 90 ° C. to 130 ° C. for 1 to 2 hours.
  • the liquid crystal sealant is irradiated with ultraviolet rays by an ultraviolet irradiator and photocured.
  • Ultraviolet irradiation amount is preferably 500mJ / cm 2 ⁇ 6000mJ / cm 2, more preferably 1000mJ / cm 2 ⁇ 4000mJ / cm 2.
  • the liquid crystal display cell of the present invention can be obtained by curing at 90 ° C. to 130 ° C. for 1 to 2 hours.
  • the liquid crystal display cell of the present invention thus obtained is free from display defects due to liquid crystal contamination and has excellent adhesion and moisture resistance reliability.
  • the spacer include glass fiber, silica beads, and polymer beads.
  • the diameter varies depending on the purpose, but is usually 2 ⁇ m to 8 ⁇ m, preferably 4 ⁇ m to 7 ⁇ m.
  • the amount used is usually 0.1 to 4 parts by weight, preferably 0.5 to 2 parts by weight, more preferably 0.9 to 1 part by weight with respect to 100 parts by weight of the liquid crystal sealant of the present invention. About 5 parts by mass.
  • the liquid crystal sealant of the present invention has a very good thermosetting property and quickly cures in the heating step in the liquid crystal dropping method. Accordingly, the elution of the constituent components into the liquid crystal is extremely small, and display defects of the liquid crystal display cell can be reduced. Moreover, since it is excellent also in storage stability, it is suitable for manufacture of a liquid crystal display cell. Furthermore, since the cured product is excellent in various cured product characteristics such as adhesive strength, heat resistance, and moisture resistance, it is possible to produce a liquid crystal display cell with excellent reliability by using the liquid crystal sealant of the present invention. is there. In addition, the liquid crystal display cell prepared using the liquid crystal sealant of the present invention satisfies the characteristics required for a liquid crystal display cell having a high voltage holding ratio and a low ion density.
  • Examples 1 to 3 Comparative Examples 1 to 4
  • Each curable resin component (components (a) and (c)) was mixed and stirred at the ratio shown in Table 1 below, and then heated and dissolved at 90 ° C.
  • the photo radical polymerization initiator (component (f)) was heated and dissolved therein, and then cooled to room temperature.
  • a silane coupling agent (component (d)), an inorganic filler (component (e)), a thermosetting agent ( Component (b)) was added and stirred, and then dispersed with a three-roll mill and filtered through a metal mesh (635 mesh) to prepare sealants for liquid crystal dropping methods of Examples 1 to 3.
  • the curable resin component (component (c)) was heated at 90 ° C. at the ratio shown in Table 1 below.
  • the photo radical polymerization initiator (component (f)) was heated and dissolved therein, and then cooled to room temperature.
  • a silane coupling agent (component (d)), an inorganic filler (component (e)), a thermosetting agent ( Component (b)) and a curing accelerator were added, stirred, dispersed with a three-roll mill, and filtered through a metal mesh (635 mesh) to prepare sealing agents for liquid crystal dropping methods of Comparative Examples 1 to 4. .
  • the evaluation test was carried out by the following method.
  • the obtained liquid crystal sealant was sandwiched between polyethylene terephthalate (PET) films and a thin film with a thickness of 100 ⁇ m was irradiated with 3000 mJ / cm 2 of ultraviolet rays by a UV irradiator, and then put into an oven and thermally cured at 120 ° C. for 1 hour. After curing, the PET film was peeled off to obtain a sample. After measuring the weight of the sample, the sample was left in an environment of 60 ° C. and 90% RH for 12 hours and weighed again. Table 1 shows the weight change rate (%) with respect to the initial weight.
  • an in-plane spacer (NATOCO SPACER KSEB-525F; manufactured by NATCO; gap width of 5 ⁇ m after bonding) is sprayed and thermally fixed on another rubbing-treated substrate, and the substrate is first vacuumed using a bonding apparatus. The liquid crystal dripped substrate was attached. After opening the atmosphere to form a gap, masking only the seal pattern frame, irradiating with 50 mJ / cm 2 of UV light with a UV irradiator, putting it in an oven and thermosetting at 120 ° C. for 1 hour, liquid crystal test cell for evaluation It was created.
  • NATOCO SPACER KSEB-525F manufactured by NATCO; gap width of 5 ⁇ m after bonding
  • the complex viscosity was measured with a dynamic viscoelasticity measuring device (Rhesol-G5000, manufactured by UBM Co., Ltd.).
  • the setting of the dynamic viscoelasticity measuring apparatus is as follows. Cone: Parallel cone with a diameter of 20 mm, frequency: 1 Hz, distortion angle: 3 deg.
  • the measurement temperature was raised from 30 ° C. to 120 ° C. at a rate of 18 ° C./min, and then maintained at 120 ° C.
  • Table 1 shows the time when the viscosity reached 10,000 Pa ⁇ s.
  • Comparative Example 1 that does not contain a curing accelerator component is inferior in curability, and as a result, alignment failure occurs in the panel display characteristics.
  • those using CIC acid, dodecanedioic acid, or a thermal radical initiator as a curing accelerator have improved the curability, but have problems with liquid crystal contamination and moisture-resistant adhesion.
  • Examples 1 to 3 it is confirmed that other characteristics are at a usable level while improving the curability. In particular, Examples 1 and 2 show very excellent results in all characteristics.
  • the liquid crystal sealing agent of the present invention is excellent in workability because of its excellent storage stability and curability, and it is excellent in liquid crystal contamination, moisture-resistant adhesion, and panel display characteristics because of its high liquid crystal display cell performance. It can be said that reliability can be realized.
  • the liquid crystal sealant of the present invention is excellent in workability, it enables stable production of liquid crystal display cells and contributes to ensuring long-term reliability of the liquid crystal display cells.

Abstract

The purpose of the present invention is to provide a liquid crystal sealing material for use in a liquid crystal drop fill method. The sealing material can achieve a rapid thermal reaction, rarely contaminates a liquid crystal throughout the process, and exhibits excellent storage stability and excellent cured product properties such as moisture proof reliability. The liquid crystal sealing material is characterized by comprising (a) one or more curable resins selected from among epoxy resins, (meth)acrylated epoxy resins, and partially (meth)acrylated epoxy resins, each resin bearing active hydrogen in the molecule (with the proviso that the active hydrogen is exclusive of hydrogen contained in a hydroxyl group), and (b) a heat-curing agent.

Description

液晶シール剤及びそれを用いた液晶表示セルLiquid crystal sealant and liquid crystal display cell using the same
 本発明は、熱による硬化性が良好である液晶シール剤に関する。より詳細には、熱による良好な硬化性を有し、かつ保存安定性にも優れ、更に硬化物の耐湿性等にも優れる液晶シール剤、及びその硬化物でシールされた液晶表示セルに関する。 The present invention relates to a liquid crystal sealant having good curability by heat. More specifically, the present invention relates to a liquid crystal sealing agent having good curability by heat, excellent storage stability, and excellent moisture resistance of a cured product, and a liquid crystal display cell sealed with the cured product.
 近年の液晶表示セルの大型化に伴い、液晶表示セルの製造方法として、より量産性の高い、いわゆる液晶滴下工法が提案されている(特許文献1、2)。具体的には、一方の基板に形成された液晶シール剤の堰の内側に液晶を滴下した後、もう一方の基板を貼り合わせることにより液晶が封止される液晶表示セルの製造方法である。 With the recent increase in size of liquid crystal display cells, a so-called liquid crystal dropping method with higher mass productivity has been proposed as a liquid crystal display cell manufacturing method (Patent Documents 1 and 2). Specifically, it is a method of manufacturing a liquid crystal display cell in which liquid crystal is sealed by dropping a liquid crystal inside a weir of a liquid crystal sealant formed on one substrate and then bonding the other substrate.
 しかし、液晶滴下工法は、未硬化の状態の液晶シール剤が液晶に接触するため、その際に液晶シール剤の成分が液晶に溶解(溶出)して液晶の抵抗値を低下させ、シール近傍の表示不良を発生させるという問題点がある。 However, in the liquid crystal dropping method, the liquid crystal sealant in an uncured state comes into contact with the liquid crystal. At that time, the components of the liquid crystal sealant are dissolved (eluting) in the liquid crystal to reduce the resistance value of the liquid crystal, There is a problem that a display defect occurs.
 この課題を解決するため、現在は液晶滴下工法用の液晶シール剤として光熱併用型のものが用いられ、実用化されている(特許文献3、4)。この液晶シール剤を使用した液晶滴下工法では、基板に挟まれた液晶シール剤に光を照射して一次硬化させた後、加熱して二次硬化させることを特徴とする。この方法によれば、未硬化の液晶シール剤を光によって速やかに硬化でき、液晶シール剤成分の液晶への溶解(溶出)を抑えることが可能である。さらに、光硬化のみでは光硬化時の硬化収縮等による接着強度不足という問題も発生するが、光熱併用型であれば加熱による二次硬化によって、そういった問題も解消できるという利点を有する。 In order to solve this problem, a photothermal combination type liquid crystal sealant for a liquid crystal dropping method is currently used and put into practical use (Patent Documents 3 and 4). The liquid crystal dropping method using the liquid crystal sealant is characterized in that the liquid crystal sealant sandwiched between the substrates is irradiated with light to be primarily cured and then heated to be secondarily cured. According to this method, the uncured liquid crystal sealant can be quickly cured by light, and dissolution (elution) of the liquid crystal sealant component into the liquid crystal can be suppressed. Furthermore, the problem of insufficient adhesive strength due to curing shrinkage at the time of photocuring occurs only by photocuring, but the photothermal combination type has an advantage that such problems can be solved by secondary curing by heating.
 しかし、近年では、液晶表示素子の小型化に伴い、液晶表示素子のアレイ基板のメタル配線部分やカラーフィルター基板のブラックマトリックス部分により液晶シール剤に光が当たらない遮光部が生じ、シール近傍の表示不良の問題が以前よりも深刻なものとなっている。すなわち、遮光部の存在によって上記光による一次硬化が不十分となり、液晶シール剤中に未硬化成分が多量に残存する。この状態で熱による二次硬化工程に進んだ場合、当該未硬化成分の液晶への溶解は、熱によって促進されてしまうという結果をもたらし、シール近傍の表示不良を引き起こす。 However, in recent years, with the miniaturization of liquid crystal display elements, a light shielding portion where the liquid crystal sealant is not exposed to light is generated due to the metal wiring part of the array substrate of the liquid crystal display element and the black matrix part of the color filter substrate. The defect problem is more serious than before. That is, the primary curing by the light becomes insufficient due to the presence of the light shielding part, and a large amount of uncured components remain in the liquid crystal sealant. When the process proceeds to the secondary curing step by heat in this state, the dissolution of the uncured component into the liquid crystal is accelerated by the heat, resulting in a display defect near the seal.
 この課題を解決するため、熱反応性を改良する様々な検討がなされている。上記遮光部において、光によって十分に硬化していない液晶シール剤を、低温から速やかに反応させ、液晶汚染を抑えようという試みである。例えば、特許文献5、6では、熱ラジカル開始剤を用いる方法が開示されている。また、特許文献7~9では、硬化促進剤として多価カルボン酸を用いる方法が開示されている。 In order to solve this problem, various studies for improving thermal reactivity have been made. It is an attempt to suppress liquid crystal contamination by reacting a liquid crystal sealant that is not sufficiently cured by light in the light shielding portion from a low temperature. For example, Patent Documents 5 and 6 disclose a method using a thermal radical initiator. Patent Documents 7 to 9 disclose methods using polyvalent carboxylic acids as curing accelerators.
 しかし、一般に、熱ラジカル開始剤は常温においても少しずつラジカルが発生するため、液晶シール剤の保存安定性や作業安定性が悪いという問題を抱えている。また、多価カルボン酸のような硬化促進剤は、触媒として作用するものであり、それ自体が反応し、硬化物中に化学的結合によって取り込まれることが無いため、液晶中に溶解し、表示不良を引き起こすといった問題がある。 However, in general, a thermal radical initiator generates radicals little by little even at room temperature, and thus has a problem that the storage stability and work stability of the liquid crystal sealant are poor. In addition, a curing accelerator such as a polyvalent carboxylic acid acts as a catalyst, reacts itself, and is not taken into the cured product by a chemical bond. There is a problem of causing defects.
 以上述べたように、液晶シール剤の開発は非常に精力的に行われているにも拘わらず、優れた熱反応性を有しながら、良好な保存安定性をも併せ持ち、かつ低液晶汚染性を有する液晶シール剤は未だ実現していない。 As described above, the development of liquid crystal sealants has been carried out very vigorously, but also has excellent thermal stability and good storage stability and low liquid crystal contamination. A liquid crystal sealant having the above has not been realized yet.
特開昭63-179323号公報Japanese Unexamined Patent Publication No. 63-179323 特開平10-239694号公報JP-A-10-239694 特許第3583326号公報Japanese Patent No. 3583326 特開2004-61925号公報JP 2004-61925 A 特開2004-126211号公報Japanese Patent Application Laid-Open No. 2004-126211 特開2009-8754号公報JP 2009-8754 A 国際公開第2007/138870号International Publication No. 2007/138870 特開2008-15155号公報JP 2008-15155 A 特開2009-139922号公報JP 2009-139922 A
 本発明は、加熱のみ、又は光熱併用によって硬化する液晶シール剤に関するものであり、熱による反応が速いため、工程を通して液晶に対して極めて汚染性が低く、かつ保存安定性にも優れ、また耐湿信頼性等の硬化物特性にも優れる液晶滴下工法用の液晶シール剤を提案するものである。 The present invention relates to a liquid crystal sealant that is cured only by heating or by combined use of light and heat, and since the reaction by heat is fast, it is extremely low in contamination with liquid crystals throughout the process and has excellent storage stability and moisture resistance. The present invention proposes a liquid crystal sealant for a liquid crystal dropping method that is excellent in properties of cured products such as reliability.
 本発明者らは、鋭意検討の結果、分子内に活性水素を有する、エポキシ樹脂、(メタ)アクリル化エポキシ樹脂、及び部分(メタ)アクリル化エポキシ樹脂から選択される1種又は2種以上からなる硬化性樹脂(ただし、活性水素として、ヒドロキシ基に含まれる水素は除く)を含有する液晶シール剤が上記熱反応性に優れ、その結果、液晶汚染性も抑えることが可能であり、更には保存安定性にも優れることを見出し、本発明を完成するに至った。
 すなわち本発明は、次の1)~13)に関するものである。なお、本明細書中、成分(a)について、「(a)分子内に活性水素を有する、エポキシ樹脂、(メタ)アクリル化エポキシ樹脂、及び部分(メタ)アクリル化エポキシ樹脂から選択される1種又は2種以上からなる硬化性樹脂」と記載する煩雑さを避けるため、「成分(a)硬化性樹脂」と記載する場合がある。
As a result of intensive studies, the inventors have one or more selected from epoxy resins, (meth) acrylated epoxy resins, and partially (meth) acrylated epoxy resins having active hydrogen in the molecule. A liquid crystal sealing agent containing a curable resin (however, excluding hydrogen contained in a hydroxy group as active hydrogen) has excellent thermal reactivity, and as a result, liquid crystal contamination can be suppressed. The inventors have found that the storage stability is excellent and have completed the present invention.
That is, the present invention relates to the following 1) to 13). In addition, in this specification, about the component (a), "(a) 1 selected from the epoxy resin which has active hydrogen in a molecule | numerator, (meth) acrylated epoxy resin, and partial (meth) acrylated epoxy resin" In order to avoid the trouble of describing “a curable resin composed of two or more species”, it may be described as “component (a) curable resin”.
1)
 (a)分子内に活性水素を有する、エポキシ樹脂、(メタ)アクリル化エポキシ樹脂、及び部分(メタ)アクリル化エポキシ樹脂から選択される1種又は2種以上からなる硬化性樹脂(ただし、活性水素として、ヒドロキシ基に含まれる水素は除く)、(b)熱硬化剤を含有することを特徴とする液晶シール剤。
2)
 上記成分(a)が分子内に活性水素を有する(メタ)アクリル化エポキシ樹脂である上記1)に記載の液晶シール剤。
3)
 上記成分(a)が分子内にカルボキシ基、スルファニル基、又はアミノ基を有する(メタ)アクリル化エポキシ樹脂である上記1)又は2)に記載の液晶シール剤。
4)
 上記成分(a)が分子内にカルボキシ基を有する(メタ)アクリル化エポキシ樹脂である上記1)乃至3)のいずれか一項に記載の液晶シール剤。
5)
 上記成分(a)が分子内にカルボキシ基を有するアクリル化レゾルシノールジグリジルエーテルである上記1)乃至4)のいずれか一項に記載の液晶シール剤。
6)
 更に、(c)分子内に活性水素を有さない、エポキシ樹脂、(メタ)アクリル化エポキシ樹脂、及び部分(メタ)アクリル化エポキシ樹脂から選択される1種又は2種以上からなる硬化性樹脂(ただし、活性水素として、ヒドロキシ基に含まれる水素は除く)を含有する上記1)乃至5)のいずれか一項に記載の液晶シール剤。
7)
 上記成分(a)の含有量が液晶シール剤の総量を100質量部とした場合に5質量部~50質量部である上記1)乃至6)のいずれか一項に記載の液晶シール剤。
8)
 上記成分(b)熱硬化剤が多価ヒドラジド化合物である上記1)乃至7)のいずれか一項に記載の液晶シール剤。
9)
 上記成分(b)熱硬化剤が下記式(1)で表される1又は2以上のヒドラジド化合物である上記8)に記載の液晶シール剤。
Figure JPOXMLDOC01-appb-C000003
[式中、R~Rは各々独立して水素原子、又は下記式(2)
Figure JPOXMLDOC01-appb-C000004
(式中、nは1~6の整数を示す。)
で表される分子骨格を示す。]
10)
 更に、(d)シランカップリング剤を含有する上記1)乃至9)のいずれか一項に記載の液晶シール剤。
11)
 更に、(e)無機フィラーを含有する上記1)乃至10)のいずれか一項に記載の液晶シール剤。
12)
 更に、(f)光重合開始剤を含有する上記1)乃至11)のいずれか一項に記載の液晶シール剤。
13)
 上記1)乃至12)のいずれか一項に記載の液晶シール剤を硬化して得られる硬化物でシールされた液晶表示セル。
1)
(A) A curable resin composed of one or more selected from epoxy resin, (meth) acrylated epoxy resin, and partial (meth) acrylated epoxy resin having active hydrogen in the molecule (however, active (B) A liquid crystal sealant containing a thermosetting agent as hydrogen (excluding hydrogen contained in a hydroxy group).
2)
The liquid crystal sealant according to 1) above, wherein the component (a) is a (meth) acrylated epoxy resin having active hydrogen in the molecule.
3)
The liquid crystal sealant according to 1) or 2) above, wherein the component (a) is a (meth) acrylated epoxy resin having a carboxy group, a sulfanyl group, or an amino group in the molecule.
4)
The liquid crystal sealing agent according to any one of 1) to 3), wherein the component (a) is a (meth) acrylated epoxy resin having a carboxy group in the molecule.
5)
5. The liquid crystal sealant according to any one of 1) to 4), wherein the component (a) is an acrylated resorcinol diglycidyl ether having a carboxy group in the molecule.
6)
Further, (c) a curable resin composed of one or more selected from epoxy resin, (meth) acrylated epoxy resin, and partial (meth) acrylated epoxy resin that does not have active hydrogen in the molecule. The liquid crystal sealing agent according to any one of 1) to 5) above, which contains (excluding hydrogen contained in a hydroxy group as active hydrogen).
7)
The liquid crystal sealant according to any one of 1) to 6) above, wherein the content of the component (a) is 5 to 50 parts by mass when the total amount of the liquid crystal sealant is 100 parts by mass.
8)
The liquid crystal sealant according to any one of 1) to 7) above, wherein the component (b) thermosetting agent is a polyhydric hydrazide compound.
9)
The liquid crystal sealing agent according to 8), wherein the component (b) thermosetting agent is one or more hydrazide compounds represented by the following formula (1).
Figure JPOXMLDOC01-appb-C000003
[Wherein R 1 to R 3 are each independently a hydrogen atom or the following formula (2)
Figure JPOXMLDOC01-appb-C000004
(In the formula, n represents an integer of 1 to 6.)
The molecular skeleton represented by is shown. ]
10)
Furthermore, (d) Liquid crystal sealing agent as described in any one of said 1) thru | or 9) containing a silane coupling agent.
11)
Furthermore, (e) Liquid crystal sealing agent as described in any one of said 1) thru | or 10) containing an inorganic filler.
12)
Furthermore, (f) Liquid crystal sealing agent as described in any one of said 1) thru | or 11) containing a photoinitiator.
13)
A liquid crystal display cell sealed with a cured product obtained by curing the liquid crystal sealing agent according to any one of 1) to 12) above.
 本発明の液晶シール剤は、熱硬化時の反応速度が速いため、光熱併用型液晶滴下工法において、光の届き難い配線下においても十分な硬化性を有し、このため、パネルの配線設計の自由度を確保でき、信頼性の高い液晶表示パネルの製造を容易にすることができ、また更には、熱のみで液晶シール剤を硬化させる液晶滴下工法への応用も可能である。 Since the liquid crystal sealant of the present invention has a high reaction rate at the time of thermosetting, the photothermal combined liquid crystal dropping method has sufficient curability even under wiring where light is difficult to reach. The degree of freedom can be secured and the manufacture of a highly reliable liquid crystal display panel can be facilitated, and furthermore, application to a liquid crystal dropping method in which the liquid crystal sealant is cured only by heat is also possible.
 本発明の液晶シール剤は、成分(a)分子内に活性水素を有する、エポキシ樹脂、(メタ)アクリル化エポキシ樹脂、及び部分(メタ)アクリル化エポキシ樹脂から選択される1種又は2種以上からなる硬化性樹脂を含有する。ただし、該活性水素の解釈にあたり、ヒドロキシ基に含まれる水素は除かれる。ヒドロキシ基は一般に酸解離定数(pKa)が大きく、またヒドロキシ基自体の求核性も弱いため、触媒として機能し難い。実際に通常のエポキシアクリレートは、2級ヒドロキシ基を有するが、熱硬化時に反応触媒として機能しない。本発明では、該硬化性樹脂を有することによって、良好な熱反応性を実現することができる。更に、該硬化性樹脂は(メタ)アクリロイル基又はエポキシ基といった光又は熱によって反応する官能基を有するため、硬化物中に取り込まれ、液晶に対して溶解する量を劇的に抑えることができ、液晶表示素子の表示特性を損なわない。
 なお、本明細書中、「(メタ)アクリル」とは、「アクリル」及び「メタクリル」の一方又は両方を意味する。また、本明細書中、「(メタ)アクリロイル」とは、「アクリロイル」及び「メタクリロイル」の一方又は両方を意味する。
The liquid-crystal sealing compound of this invention is 1 type (s) or 2 or more types selected from the epoxy resin which has active hydrogen in a component (a) molecule | numerator, (meth) acrylated epoxy resin, and partial (meth) acrylated epoxy resin The curable resin which consists of is contained. However, in interpreting the active hydrogen, hydrogen contained in the hydroxy group is excluded. A hydroxy group generally has a large acid dissociation constant (pKa) and also has a weak nucleophilicity of the hydroxy group itself, so that it is difficult to function as a catalyst. Actually, a normal epoxy acrylate has a secondary hydroxy group, but does not function as a reaction catalyst during heat curing. In the present invention, good thermal reactivity can be realized by having the curable resin. Furthermore, since the curable resin has a functional group that reacts with light or heat such as a (meth) acryloyl group or an epoxy group, the amount of the curable resin taken into the cured product and dissolved in the liquid crystal can be dramatically reduced. The display characteristics of the liquid crystal display element are not impaired.
In the present specification, “(meth) acryl” means one or both of “acryl” and “methacryl”. In the present specification, “(meth) acryloyl” means one or both of “acryloyl” and “methacryloyl”.
 上記活性水素としては、カルボキシ基、スルファニル基、アミノ基、スルホ基、ホスホ基等に含まれる活性水素が挙げられる。すなわち、上記成分(a)としては、例えば分子内にカルボキシ基、スルファニル基、アミノ基、スルホ基、ホスホ基等を有する(メタ)アクリル化エポキシ樹脂及び部分(メタ)アクリル化エポキシ樹脂、並びに分子内にカルボキシ基、チオール基、アミノ基、スルホ基、ホスホ基等を有するエポキシ樹脂から選択される1種又は2種以上を含有する硬化性樹脂が挙げられる。活性水素を含む官能基の中でも、触媒としての機能及び合成の容易さから、カルボキシ基、チオール基、アミノ基が好ましく、更にはカルボキシ基が特に好ましい。例えば、アミノ基を有するエポキシ樹脂としては、アミン変性ビスフェノールA型エポキシアクリレートEBECRYL3703(ダイセル・サイテック株式会社製)等が市販品として容易に入手できる。 Examples of the active hydrogen include active hydrogen contained in a carboxy group, a sulfanyl group, an amino group, a sulfo group, a phospho group, and the like. That is, as the component (a), for example, a (meth) acrylated epoxy resin and a partial (meth) acrylated epoxy resin having a carboxy group, a sulfanyl group, an amino group, a sulfo group, a phospho group or the like in the molecule, and a molecule Examples thereof include a curable resin containing one or more selected from epoxy resins having a carboxy group, a thiol group, an amino group, a sulfo group, a phospho group, and the like. Among the functional groups containing active hydrogen, a carboxy group, a thiol group, and an amino group are preferable, and a carboxy group is particularly preferable because of its function as a catalyst and ease of synthesis. For example, as an epoxy resin having an amino group, amine-modified bisphenol A type epoxy acrylate EBECRYL 3703 (manufactured by Daicel Cytec Co., Ltd.) and the like are easily available as commercial products.
 成分(a)の硬化性樹脂としては、エポキシ樹脂や部分(メタ)アクリル化エポキシ樹脂よりも(メタ)アクリル化エポキシ樹脂の方が好ましい。(メタ)アクリル化エポキシ樹脂は、光によって速やかに反応するため、液晶への溶解をより抑えることが可能である。この硬化性樹脂は、例えばエポキシ樹脂と(メタ)アクリル酸との周知の反応により得られる(メタ)アクリル化エポキシ樹脂に、酸無水物、多価カルボン酸等を反応させることにより得ることができる。 The component (a) curable resin is preferably a (meth) acrylated epoxy resin rather than an epoxy resin or a partially (meth) acrylated epoxy resin. Since the (meth) acrylated epoxy resin reacts quickly by light, it is possible to further suppress dissolution in the liquid crystal. This curable resin can be obtained, for example, by reacting an acid anhydride, a polyvalent carboxylic acid, or the like with a (meth) acrylated epoxy resin obtained by a known reaction between an epoxy resin and (meth) acrylic acid. .
 具体的には、まずエポキシ樹脂に、所定の当量比の(メタ)アクリル酸、触媒(例えば、ベンジルジメチルアミン、トリエチルアミン、ベンジルトリメチルアンモニウムクロライド、トリフェニルホスフィン、トリフェニルスチビン等)、及び重合防止剤(例えば、メトキノン、ハイドロキノン、メチルハイドロキノン、フェノチアジン、ジブチルヒドロキシトルエン等)を添加して、例えば80℃~110℃でエステル化反応を行うことにより(メタ)アクリル化エポキシ樹脂を得る。得られた(メタ)アクリル化エポキシ樹脂に、例えば特開昭49-2601号公報、特開平3-143911号公報、特開平5-32746号公報等に記載の方法で酸無水物を反応させ、分子内に活性水素を有する(メタ)アクリル化エポキシ樹脂を得ることができる。ここで、原料となるエポキシ樹脂としては、特に限定されるものではないが、2官能以上のエポキシ樹脂が好ましく、例えばレゾルシノールジグリシジルエーテル、ビスフェノールA型エポキシ樹脂、ビスフェノールF型エポキシ樹脂、ビスフェノールS型エポキシ樹脂、フェノールノボラック型エポキシ樹脂、クレゾールノボラック型エポキシ樹脂、ビスフェノールAノボラック型エポキシ樹脂、ビスフェノールFノボラック型エポキシ樹脂、脂環式エポキシ樹脂、脂肪族鎖状エポキシ樹脂、グリシジルエステル型エポキシ樹脂、グリシジルアミン型エポキシ樹脂、ヒダントイン型エポキシ樹脂、イソシアヌレート型エポキシ樹脂、トリフェノールメタン骨格を有するフェノールノボラック型エポキシ樹脂、その他、二官能フェノール類のジグリシジルエーテル化物、二官能アルコール類のジグリシジルエーテル化物、及びそれらのハロゲン化物、水素添加物等が挙げられる。この中でも、レゾルシノールジグリシジルエーテル、ビスフェノールA型エポキシ樹脂、ビスフェノールF型エポキシ樹脂が好ましく、レゾルシノールジグリシジルエーテルが特に好ましい。 Specifically, first, epoxy resin, (meth) acrylic acid having a predetermined equivalent ratio, catalyst (for example, benzyldimethylamine, triethylamine, benzyltrimethylammonium chloride, triphenylphosphine, triphenylstibine, etc.), and a polymerization inhibitor (For example, methoquinone, hydroquinone, methylhydroquinone, phenothiazine, dibutylhydroxytoluene, etc.) is added and, for example, an esterification reaction is performed at 80 ° C. to 110 ° C. to obtain a (meth) acrylated epoxy resin. The obtained (meth) acrylated epoxy resin is reacted with an acid anhydride by the method described in, for example, JP-A-49-2601, JP-A-3-143911, JP-A-5-32746, A (meth) acrylated epoxy resin having active hydrogen in the molecule can be obtained. Here, the epoxy resin used as a raw material is not particularly limited, but a bifunctional or higher functional epoxy resin is preferable, for example, resorcinol diglycidyl ether, bisphenol A type epoxy resin, bisphenol F type epoxy resin, bisphenol S type. Epoxy resin, phenol novolac type epoxy resin, cresol novolac type epoxy resin, bisphenol A novolac type epoxy resin, bisphenol F novolac type epoxy resin, alicyclic epoxy resin, aliphatic chain epoxy resin, glycidyl ester type epoxy resin, glycidylamine Type epoxy resin, hydantoin type epoxy resin, isocyanurate type epoxy resin, phenol novolac type epoxy resin having triphenolmethane skeleton, and other bifunctional phenols Glycidyl ethers, difunctional alcohols diglycidyl ethers of, and their halides, hydrogenated product and the like. Among these, resorcinol diglycidyl ether, bisphenol A type epoxy resin, and bisphenol F type epoxy resin are preferable, and resorcinol diglycidyl ether is particularly preferable.
 成分(a)の含有量は、本発明の液晶シール剤の総量を100質量部とした場合に、5質量部~50質量部であることが好ましく、5質量部~30質量部であることが特に好ましい。成分(a)が少なすぎると十分な熱硬化性が得られず、逆に多すぎると液晶シール剤が高粘度化するため、その他の成分の配合に制約を生じることになる。 The content of component (a) is preferably 5 to 50 parts by mass, preferably 5 to 30 parts by mass, when the total amount of the liquid crystal sealant of the present invention is 100 parts by mass. Particularly preferred. If the amount of the component (a) is too small, sufficient thermosetting property cannot be obtained. On the other hand, if the amount is too large, the liquid crystal sealant has a high viscosity, which restricts the blending of other components.
 本発明の液晶シール剤で用いられる成分(b)である熱硬化剤は特に限定されるものではなく、多価アミン類、多価フェノール類、ヒドラジド化合物等を挙げることができるが、多価ヒドラジド化合物が特に好適に用いられる。例えば、芳香族ヒドラジドであるテレフタル酸ジヒドラジド、イソフタル酸ジヒドラジド、2,6-ナフトエ酸ジヒドラジド、2,6-ピリジンジヒドラジド、1,2,4-ベンゼントリヒドラジド、1,4,5,8-ナフトエ酸テトラヒドラジド、ピロメリット酸テトラヒドラジド等を挙げることができる。また、脂肪族ヒドラジド化合物であれば、例えば、ホルムヒドラジド、アセトヒドラジド、プロピオン酸ヒドラジド、シュウ酸ジヒドラジド、マロン酸ジヒドラジド、コハク酸ジヒドラジド、グルタル酸ジヒドラジド、アジピン酸ジヒドラジド、ピメリン酸ジヒドラジド、1,4-シクロヘキサンジヒドラジド、酒石酸ジヒドラジド、リンゴ酸ジヒドラジド、イミノジ酢酸ジヒドラジド、N,N’-ヘキサメチレンビスセミカルバジド、クエン酸トリヒドラジド、ニトリロ酢酸トリヒドラジド、シクロヘキサントリカルボン酸トリヒドラジド、1,3-ビス(ヒドラジノカルボノエチル)-5-イソプロピルヒダントイン等のヒダントイン骨格、好ましくはバリンヒダントイン骨格(ヒダントイン環の炭素原子がイソプロピル基で置換された骨格)を有するジヒドラジド化合物、上記式(1)で表される化合物等を挙げることができる。上記(1)で表される化合物としては、例えばトリス(1-ヒドラジノカルボニルメチル)イソシアヌレート、トリス(2-ヒドラジノカルボニルエチル)イソシアヌレート、トリス(2-ヒドラジノカルボニルエチル)イソシアヌレート、トリス(3-ヒドラジノカルボニルプロピル)イソシアヌレート、ビス(2-ヒドラジノカルボニルエチル)イソシアヌレート等を挙げることができるが、式(1)の構造であればこれらに限定されるものではない。硬化反応性と潜在性とのバランスから好ましくは、イソフタル酸ジヒドラジド、マロン酸ジヒドラジド、アジピン酸ジヒドラジド、トリス(1-ヒドラジノカルボニルメチル)イソシアヌレート、トリス(2-ヒドラジノカルボニルエチル)イソシアヌレート、トリス(2-ヒドラジノカルボニルエチル)イソシアヌレート、トリス(3-ヒドラジノカルボニルプロピル)イソシアヌレートであり、特に好ましくはトリス(2-ヒドラジノカルボニルエチル)イソシアヌレートである。 The thermosetting agent that is the component (b) used in the liquid crystal sealing agent of the present invention is not particularly limited, and examples thereof include polyvalent amines, polyhydric phenols, hydrazide compounds, and the like. Compounds are particularly preferably used. For example, the aromatic hydrazide terephthalic acid dihydrazide, isophthalic acid dihydrazide, 2,6-naphthoic acid dihydrazide, 2,6-pyridinedihydrazide, 1,2,4-benzenetrihydrazide, 1,4,5,8-naphthoic acid Examples include tetrahydrazide and pyromellitic acid tetrahydrazide. Examples of the aliphatic hydrazide compound include form hydrazide, acetohydrazide, propionic acid hydrazide, oxalic acid dihydrazide, malonic acid dihydrazide, succinic acid dihydrazide, glutaric acid dihydrazide, adipic acid dihydrazide, pimelic acid dihydrazide, 1,4- Cyclohexane dihydrazide, tartaric acid dihydrazide, malic acid dihydrazide, iminodiacetic acid dihydrazide, N, N'-hexamethylenebissemicarbazide, citric acid trihydrazide, nitriloacetic acid trihydrazide, cyclohexanetricarboxylic acid trihydrazide, 1,3-bis (hydrazinocarbono Hydantoin skeleton such as ethyl) -5-isopropylhydantoin, preferably valine hydantoin skeleton (carbon atom of hydantoin ring is substituted with isopropyl group) Dihydrazide compounds having a rated), can be exemplified compounds represented by the above formula (1). Examples of the compound represented by the above (1) include tris (1-hydrazinocarbonylmethyl) isocyanurate, tris (2-hydrazinocarbonylethyl) isocyanurate, tris (2-hydrazinocarbonylethyl) isocyanurate, tris. (3-hydrazinocarbonylpropyl) isocyanurate, bis (2-hydrazinocarbonylethyl) isocyanurate, and the like can be mentioned, but the structure of the formula (1) is not limited thereto. Preferably, from the balance between curing reactivity and latency, isophthalic acid dihydrazide, malonic acid dihydrazide, adipic acid dihydrazide, tris (1-hydrazinocarbonylmethyl) isocyanurate, tris (2-hydrazinocarbonylethyl) isocyanurate, tris (2-hydrazinocarbonylethyl) isocyanurate and tris (3-hydrazinocarbonylpropyl) isocyanurate, particularly preferably tris (2-hydrazinocarbonylethyl) isocyanurate.
 成分(b)の含有量は、本発明の液晶シール剤の総量を100質量部とした場合に、1質量部~20質量部であることが好ましく、更に好ましくは2質量部~15質量部であり、2種以上を混合して用いてもよい。 The content of component (b) is preferably 1 part by mass to 20 parts by mass, more preferably 2 parts by mass to 15 parts by mass, when the total amount of the liquid crystal sealant of the present invention is 100 parts by mass. Yes, two or more may be used in combination.
 本発明の液晶シール剤は、成分(c)として、分子内に活性水素を有さない、エポキシ樹脂、(メタ)アクリル化エポキシ樹脂、及び部分(メタ)アクリル化エポキシ樹脂から選択される1種又は2種以上からなる硬化性樹脂(ただし、活性水素として、ヒドロキシ基に含まれる水素は除く)を含有してもよい。例えば、エポキシ樹脂、エポキシ樹脂と(メタ)アクリル化エポキシ樹脂との混合物、(メタ)アクリル化エポキシ樹脂、部分(メタ)アクリル化エポキシ樹脂等が挙げられる。本発明で用いる成分(c)は、何れも液晶に対する汚染性、溶解性が低いものが好ましく、好適なエポキシ樹脂の例としては、ビスフェノールA型エポキシ樹脂、ビスフェノールF型エポキシ樹脂、ビスフェノールS型エポキシ樹脂、フェノールノボラック型エポキシ樹脂、クレゾールノボラック型エポキシ樹脂、ビスフェノールAノボラック型エポキシ樹脂、ビスフェノールFノボラック型エポキシ樹脂、脂環式エポキシ樹脂、脂肪族鎖状エポキシ樹脂、グリシジルエステル型エポキシ樹脂、ヒダントイン型エポキシ樹脂、イソシアヌレート型エポキシ樹脂、トリフェノールメタン骨格を有するフェノールノボラック型エポキシ樹脂、その他、二官能フェノール類のジグリシジルエーテル化物、二官能アルコール類のジグリシジルエーテル化物、及びそれらのハロゲン化物、水素添加物等が挙げられるが、これらに限定されるものではない。(メタ)アクリロイル化エポキシ樹脂、部分(メタ)アクリロイル化エポキシ樹脂は、エポキシ樹脂と(メタ)アクリル酸との周知の反応により得ることができる。例えば、エポキシ樹脂に、所定の当量比の(メタ)アクリル酸、触媒(例えば、ベンジルジメチルアミン、トリエチルアミン、ベンジルトリメチルアンモニウムクロライド、トリフェニルホスフィン、トリフェニルスチビン等)、及び重合防止剤(例えば、メトキノン、ハイドロキノン、メチルハイドロキノン、フェノチアジン、ジブチルヒドロキシトルエン等)を添加して、例えば80℃~110℃でエステル化反応を行うことにより得られる。原料となるエポキシ樹脂としては、特に限定されるものではないが、2官能以上のエポキシ樹脂が好ましく、例えばビスフェノールA型エポキシ樹脂、ビスフェノールF型エポキシ樹脂、ビスフェノールS型エポキシ樹脂、フェノールノボラック型エポキシ樹脂、クレゾールノボラック型エポキシ樹脂、ビスフェノールAノボラック型エポキシ樹脂、ビスフェノールFノボラック型エポキシ樹脂、脂環式エポキシ樹脂、脂肪族鎖状エポキシ樹脂、グリシジルエステル型エポキシ樹脂、ヒダントイン型エポキシ樹脂、イソシアヌレート型エポキシ樹脂、トリフェノールメタン骨格を有するフェノールノボラック型エポキシ樹脂、その他、二官能フェノール類のジグリシジルエーテル化物、二官能アルコール類のジグリシジルエーテル化物、及びそれらのハロゲン化物、水素添加物等が挙げられる。これらのうち液晶汚染性の観点から、より好ましいものはビスフェノール型エポキシ樹脂、ノボラック型エポキシ樹脂である。また、エポキシ基と(メタ)アクリロイル基との比率は限定されるものではなく、工程適合性及び液晶汚染性の観点から適切に選択される。 The liquid crystal sealant of the present invention is selected from an epoxy resin, a (meth) acrylated epoxy resin, and a partially (meth) acrylated epoxy resin having no active hydrogen in the molecule as the component (c). Or you may contain the curable resin (However, the hydrogen contained in a hydroxyl group is remove | excluded as active hydrogen) which consists of 2 or more types. Examples thereof include an epoxy resin, a mixture of an epoxy resin and a (meth) acrylated epoxy resin, a (meth) acrylated epoxy resin, and a partial (meth) acrylated epoxy resin. The component (c) used in the present invention preferably has low contamination and solubility in liquid crystals. Examples of suitable epoxy resins include bisphenol A type epoxy resin, bisphenol F type epoxy resin, and bisphenol S type epoxy. Resin, phenol novolac type epoxy resin, cresol novolac type epoxy resin, bisphenol A novolak type epoxy resin, bisphenol F novolac type epoxy resin, alicyclic epoxy resin, aliphatic chain epoxy resin, glycidyl ester type epoxy resin, hydantoin type epoxy Resin, isocyanurate type epoxy resin, phenol novolac type epoxy resin having triphenolmethane skeleton, other diglycidyl ethers of difunctional phenols, diglycidyl ether of difunctional alcohols Things, and their halides, but hydrogenated product or the like, but is not limited thereto. The (meth) acryloylated epoxy resin and the partial (meth) acryloylated epoxy resin can be obtained by a known reaction between an epoxy resin and (meth) acrylic acid. For example, epoxy resin, (meth) acrylic acid having a predetermined equivalent ratio, catalyst (for example, benzyldimethylamine, triethylamine, benzyltrimethylammonium chloride, triphenylphosphine, triphenylstibine, etc.), and a polymerization inhibitor (for example, methoquinone) For example, hydroquinone, methylhydroquinone, phenothiazine, dibutylhydroxytoluene, etc.) and an esterification reaction is carried out at 80 ° C. to 110 ° C., for example. Although it does not specifically limit as an epoxy resin used as a raw material, An epoxy resin more than bifunctional is preferable, for example, a bisphenol A type epoxy resin, a bisphenol F type epoxy resin, a bisphenol S type epoxy resin, a phenol novolac type epoxy resin , Cresol novolac type epoxy resin, bisphenol A novolac type epoxy resin, bisphenol F novolak type epoxy resin, alicyclic epoxy resin, aliphatic chain epoxy resin, glycidyl ester type epoxy resin, hydantoin type epoxy resin, isocyanurate type epoxy resin , Phenol novolac type epoxy resins having a triphenolmethane skeleton, other diglycidyl ethers of difunctional phenols, diglycidyl ethers of difunctional alcohols, and These halides, hydrogenated product and the like. Of these, bisphenol type epoxy resin and novolac type epoxy resin are more preferable from the viewpoint of liquid crystal contamination. Further, the ratio of the epoxy group to the (meth) acryloyl group is not limited, and is appropriately selected from the viewpoint of process compatibility and liquid crystal contamination.
 本発明の液晶シール剤が成分(c)を含有する場合、その使用量は、得られる液晶シール剤の作業性、物性を考慮して適宜決定される。通常、液晶シール剤の総量を100質量部とした場合に、20質量部~80質量部であることが好ましく、更に好ましくは30質量部~70質量部である。 When the liquid crystal sealant of the present invention contains the component (c), the amount used is appropriately determined in consideration of the workability and physical properties of the liquid crystal sealant obtained. Usually, when the total amount of the liquid crystal sealant is 100 parts by mass, it is preferably 20 parts by mass to 80 parts by mass, and more preferably 30 parts by mass to 70 parts by mass.
 本発明の液晶シール剤では、成分(d)シランカップリング剤を用いて、接着強度向上や耐湿信頼性向上を図ることができる。シランカップリング剤としては、3-グリシドキシプロピルトリメトキシシラン、3-グリシドキシプロピルメチルジメトキシシラン、3-グリシドキシプロピルメチルジメトキシシラン、2-(3,4-エポキシシクロヘキシル)エチルトリメトキシシラン、N-フェニル-γ-アミノプロピルトリメトキシシラン、N-(2-アミノエチル)3-アミノプロピルメチルジメトキシシラン、N-(2-アミノエチル)3-アミノプロピルメチルトリメトキシシラン、3-アミノプロピルトリエトキシシラン、3-メルカプトプロピルトリメトキシシラン、ビニルトリメトキシシラン、N-(2-(ビニルベンジルアミノ)エチル)3-アミノプロピルトリメトキシシラン塩酸塩、3-メタクリロキシプロピルトリメトキシシラン、3-クロロプロピルメチルジメトキシシラン、3-クロロプロピルトリメトキシシラン等が挙げられる。シランカップリング剤(d)の液晶シール剤に占める含有量は、本発明の液晶シール剤の総量を100質量部とした場合、0.05質量部~3質量部が好適である。 In the liquid crystal sealant of the present invention, the component (d) silane coupling agent can be used to improve adhesive strength and moisture resistance reliability. Examples of silane coupling agents include 3-glycidoxypropyltrimethoxysilane, 3-glycidoxypropylmethyldimethoxysilane, 3-glycidoxypropylmethyldimethoxysilane, 2- (3,4-epoxycyclohexyl) ethyltrimethoxy Silane, N-phenyl-γ-aminopropyltrimethoxysilane, N- (2-aminoethyl) 3-aminopropylmethyldimethoxysilane, N- (2-aminoethyl) 3-aminopropylmethyltrimethoxysilane, 3-amino Propyltriethoxysilane, 3-mercaptopropyltrimethoxysilane, vinyltrimethoxysilane, N- (2- (vinylbenzylamino) ethyl) 3-aminopropyltrimethoxysilane hydrochloride, 3-methacryloxypropyltrimethoxysilane, 3 -Black Propyl methyl dimethoxy silane, 3-chloropropyl trimethoxy silane, and the like. The content of the silane coupling agent (d) in the liquid crystal sealant is preferably 0.05 parts by mass to 3 parts by mass when the total amount of the liquid crystal sealant of the present invention is 100 parts by mass.
 本発明の液晶シール剤では、成分(e)無機フィラーを用いて、接着強度向上や耐湿信頼性向上を図ることができる。この(e)無機フィラーとしては、溶融シリカ、結晶シリカ、シリコンカーバイド、窒化珪素、窒化ホウ素、炭酸カルシウム、炭酸マグネシウム、硫酸バリウム、硫酸カルシウム、マイカ、タルク、クレー、アルミナ、酸化マグネシウム、酸化ジルコニウム、水酸化アルミニウム、水酸化マグネシウム、珪酸カルシウム、珪酸アルミニウム、珪酸リチウムアルミニウム、珪酸ジルコニウム、チタン酸バリウム、硝子繊維、炭素繊維、二硫化モリブデン、アスベスト等が挙げられ、好ましくは溶融シリカ、結晶シリカ、窒化珪素、窒化ホウ素、炭酸カルシウム、硫酸バリウム、硫酸カルシウム、マイカ、タルク、クレー、アルミナ、水酸化アルミニウム、珪酸カルシウム、珪酸アルミニウムであり、更に好ましくは溶融シリカ、結晶シリカ、アルミナ、タルクである。これら無機フィラーは2種以上を混合して用いてもよい。その平均粒径は、大きすぎると狭ギャップの液晶セル製造時に上下ガラス基板貼り合わせ時のギャップ形成がうまくできない等の不良要因となるため、3μm以下が適当であり、好ましくは2μm以下である。粒径はレーザー回折・散乱式粒度分布測定器(乾式)(株式会社セイシン企業製;LMS-30)により測定できる。 In the liquid crystal sealant of the present invention, the component (e) inorganic filler can be used to improve the adhesive strength and improve the moisture resistance reliability. As this (e) inorganic filler, fused silica, crystalline silica, silicon carbide, silicon nitride, boron nitride, calcium carbonate, magnesium carbonate, barium sulfate, calcium sulfate, mica, talc, clay, alumina, magnesium oxide, zirconium oxide, Aluminum hydroxide, magnesium hydroxide, calcium silicate, aluminum silicate, lithium aluminum silicate, zirconium silicate, barium titanate, glass fiber, carbon fiber, molybdenum disulfide, asbestos, etc., preferably fused silica, crystalline silica, nitriding Silicon, boron nitride, calcium carbonate, barium sulfate, calcium sulfate, mica, talc, clay, alumina, aluminum hydroxide, calcium silicate, aluminum silicate, more preferably fused silica, crystalline silica, aluminum Mina, is a talc. Two or more of these inorganic fillers may be mixed and used. If the average particle size is too large, it becomes a cause of defects such as failure to form a gap when laminating the upper and lower glass substrates when manufacturing a narrow gap liquid crystal cell, and therefore 3 μm or less is appropriate, and preferably 2 μm or less. The particle size can be measured with a laser diffraction / scattering particle size distribution analyzer (dry type) (manufactured by Seishin Enterprise Co., Ltd .; LMS-30).
 本発明の液晶シール剤で使用し得る無機フィラー(e)の液晶シール剤中の含有量は、本発明の液晶シール剤の総量を100質量部とした場合、通常3質量部~60質量部であり、好ましくは5質量部~50質量部である。無機フィラーの含有量が少なすぎる場合、ガラス基板に対する接着強度が低下し、また耐湿信頼性も劣るために、吸湿後の接着強度の低下も大きくなる場合がある。一方、無機フィラーの含有量が多すぎると、つぶれにくく液晶セルのギャップ形成ができなくなってしまう場合がある。 The content of the inorganic filler (e) that can be used in the liquid crystal sealant of the present invention in the liquid crystal sealant is usually 3 parts by mass to 60 parts by mass when the total amount of the liquid crystal sealant of the present invention is 100 parts by mass. Yes, preferably 5 to 50 parts by mass. When there is too little content of an inorganic filler, since the adhesive strength with respect to a glass substrate falls and moisture resistance reliability is also inferior, the fall of the adhesive strength after moisture absorption may also become large. On the other hand, if the content of the inorganic filler is too large, the liquid crystal cell may not be able to form a gap because it is difficult to be crushed.
 本発明の液晶シール剤は、光熱併用硬化型の液晶シール剤とするために、成分(f)光ラジカル重合開始剤を含有しても良い。光ラジカル重合開始剤は、UVや可視光の照射によって、ラジカルを生じ、連鎖重合反応を開始させる化合物であれば特に限定されないが、例えば、ベンジルジメチルケタール、1-ヒドロキシシクロヘキシルフェニルケトン、ジエチルチオキサントン、ベンゾフェノン、2-エチルアンスラキノン、2-ヒドロキシ-2-メチルプロピオフェノン、2-メチル-〔4-(メチルチオ)フェニル〕-2-モルフォリノ-1-プロパン、2,4,6-トリメチルベンゾイルジフェニルホスフィンオキサイド等を挙げることができる。また、液晶汚染性の観点から、分子内に(メタ)アクリロイル基を有するものを使用することが好ましく、例えば2-メタクリロイルオキシエチルイソシアネートと1-[4-(2-ヒドロキシエトキシ)-フェニル]-2-ヒドロキシ-2メチル-1-プロパン-1-オンとの反応生成物が好適に用いられる。この化合物は国際公開第2006/027982号記載の方法にて製造して得ることができる。 The liquid crystal sealant of the present invention may contain a component (f) a photoradical polymerization initiator in order to obtain a photothermal combination curable liquid crystal sealant. The radical photopolymerization initiator is not particularly limited as long as it is a compound that generates radicals by UV or visible light irradiation and initiates a chain polymerization reaction. For example, benzyl dimethyl ketal, 1-hydroxycyclohexyl phenyl ketone, diethyl thioxanthone, Benzophenone, 2-ethylanthraquinone, 2-hydroxy-2-methylpropiophenone, 2-methyl- [4- (methylthio) phenyl] -2-morpholino-1-propane, 2,4,6-trimethylbenzoyldiphenylphosphine An oxide etc. can be mentioned. From the viewpoint of liquid crystal contamination, it is preferable to use those having a (meth) acryloyl group in the molecule. For example, 2-methacryloyloxyethyl isocyanate and 1- [4- (2-hydroxyethoxy) -phenyl]- The reaction product with 2-hydroxy-2methyl-1-propan-1-one is preferably used. This compound can be obtained by the method described in International Publication No. 2006/027982.
 本発明の液晶シール剤で使用し得る成分(f)光重合開始剤の液晶シール剤中の含有量は、本発明の液晶シール剤の総量を100質量部とした場合、通常0.5質量部~20質量部であり、好ましくは1質量部~15質量部である。 The content of the component (f) photopolymerization initiator that can be used in the liquid crystal sealant of the present invention in the liquid crystal sealant is usually 0.5 parts by mass when the total amount of the liquid crystal sealant of the present invention is 100 parts by mass. -20 parts by mass, preferably 1-15 parts by mass.
 本発明の液晶シール剤には、さらに必要に応じて、(メタ)アクリル酸エステルのモノマーやオリゴマーを使用してもよい。そのようなモノマー、オリゴマーとしては、例えば、ジペンタエリスリトールと(メタ)アクリル酸との反応物、ジペンタエリスリトール・カプロラクトンと(メタ)アクリル酸との反応物等が挙げられるが、液晶に対する汚染性が低いものならば特に制限されるものではない。 In the liquid crystal sealant of the present invention, a monomer or oligomer of (meth) acrylic acid ester may be used as necessary. Such monomers and oligomers include, for example, a reaction product of dipentaerythritol and (meth) acrylic acid, a reaction product of dipentaerythritol / caprolactone and (meth) acrylic acid, etc., but has a contamination property to liquid crystals. If it is low, it will not be restricted in particular.
 本発明の液晶シール剤には、さらに必要に応じて、有機酸やイミダゾール等の硬化促進剤、有機フィラー、並びに顔料、レベリング剤、消泡剤、溶剤等の添加剤を配合することができる。 In the liquid crystal sealing agent of the present invention, if necessary, additives such as curing accelerators such as organic acids and imidazoles, organic fillers, pigments, leveling agents, antifoaming agents, and solvents can be blended.
 本発明の液晶シール剤を得る方法の一例としては、次に示す方法がある。まず、(a)成分に必要に応じ、(c)成分、(f)成分を加熱溶解する。次いで室温まで冷却後、(b)成分を添加し、必要に応じて(d)成分、(e)成分、並びに有機フィラー、消泡剤、レベリング剤、溶剤等を添加し、公知の混合装置、例えば3本ロール、サンドミル、ボールミル等により均一に混合し、金属メッシュにて濾過することにより本発明の液晶シール剤を製造することができる。 An example of a method for obtaining the liquid crystal sealant of the present invention is the following method. First, the component (c) and the component (f) are heated and dissolved in the component (a) as necessary. Next, after cooling to room temperature, component (b) is added, and if necessary, component (d), component (e), and organic filler, antifoaming agent, leveling agent, solvent, etc. are added, For example, the liquid crystal sealant of the present invention can be produced by uniformly mixing with a three-roll, sand mill, ball mill or the like and filtering with a metal mesh.
 本発明の液晶表示セルは、基板に所定の電極を形成した一対の基板を所定の間隔に対向配置し、周囲を本発明の液晶シール剤でシールし、その間隙に液晶が封入されたものである。封入される液晶の種類は特に限定されない。ここで、基板とはガラス、石英、プラスチック、シリコン等からなる少なくとも一方に光透過性がある組み合わせの基板から構成される。その製法としては、本発明の液晶シール剤に、グラスファイバー等のスペーサ(間隙制御材)を添加後、該一対の基板の一方にディスペンサー、またはスクリーン印刷装置等を用いて該液晶シール剤を塗布した後、必要に応じて、80℃~120℃で仮硬化を行う。その後、該液晶シール剤の堰の内側に液晶を滴下し、真空中にてもう一方のガラス基板を重ね合わせ、ギャップ出しを行う。ギャップ形成後、90℃~130℃で1時間~2時間硬化することにより本発明の液晶表示セルを得ることができる。また光熱併用型として使用する場合は、紫外線照射機により液晶シール剤部に紫外線を照射させて光硬化させる。紫外線照射量は、好ましくは500mJ/cm~6000mJ/cmであり、より好ましくは1000mJ/cm~4000mJ/cmである。その後必要に応じて、90℃~130℃で1~2時間硬化することにより本発明の液晶表示セルを得ることができる。このようにして得られた本発明の液晶表示セルは、液晶汚染による表示不良が無く、接着性、耐湿信頼性に優れたものである。スペーサとしては、例えばグラスファイバー、シリカビーズ、ポリマービーズ等が挙げられる。その直径は、目的に応じ異なるが、通常2μm~8μm、好ましくは4μm~7μmである。その使用量は、本発明の液晶シール剤100質量部に対し、通常0.1質量部~4質量部、好ましくは0.5質量部~2質量部、更に好ましくは0.9質量部~1.5質量部程度である。 The liquid crystal display cell of the present invention is a cell in which a pair of substrates having predetermined electrodes formed on a substrate are arranged opposite to each other at a predetermined interval, the periphery is sealed with the liquid crystal sealant of the present invention, and the liquid crystal is sealed in the gap. is there. The kind of liquid crystal to be sealed is not particularly limited. Here, the substrate is composed of a combination of substrates made of at least one of glass, quartz, plastic, silicon, etc. and having light transmission properties. As a manufacturing method thereof, after adding a spacer (gap control material) such as glass fiber to the liquid crystal sealant of the present invention, the liquid crystal sealant is applied to one of the pair of substrates using a dispenser or a screen printing device. After that, temporary curing is performed at 80 ° C. to 120 ° C. as necessary. Thereafter, a liquid crystal is dropped inside the weir of the liquid crystal sealant, and the other glass substrate is overlaid in a vacuum to create a gap. After forming the gap, the liquid crystal display cell of the present invention can be obtained by curing at 90 ° C. to 130 ° C. for 1 to 2 hours. When used as a photothermal combination type, the liquid crystal sealant is irradiated with ultraviolet rays by an ultraviolet irradiator and photocured. Ultraviolet irradiation amount is preferably 500mJ / cm 2 ~ 6000mJ / cm 2, more preferably 1000mJ / cm 2 ~ 4000mJ / cm 2. Thereafter, if necessary, the liquid crystal display cell of the present invention can be obtained by curing at 90 ° C. to 130 ° C. for 1 to 2 hours. The liquid crystal display cell of the present invention thus obtained is free from display defects due to liquid crystal contamination and has excellent adhesion and moisture resistance reliability. Examples of the spacer include glass fiber, silica beads, and polymer beads. The diameter varies depending on the purpose, but is usually 2 μm to 8 μm, preferably 4 μm to 7 μm. The amount used is usually 0.1 to 4 parts by weight, preferably 0.5 to 2 parts by weight, more preferably 0.9 to 1 part by weight with respect to 100 parts by weight of the liquid crystal sealant of the present invention. About 5 parts by mass.
 本発明の液晶シール剤は、熱硬化性が非常に良好であり、液晶滴下工法における加熱工程において速やかに硬化する。したがって、構成成分の液晶への溶出も極めて少なく、液晶表示セルの表示不良を低減することが可能である。また、保存安定性にも優れるため、液晶表示セルの製造に適している。更に、その硬化物は接着強度、耐熱性、耐湿性等の各種硬化物特性にも優れるため、本発明の液晶シール剤を用いることにより、信頼性に優れる液晶表示セルを作成することが可能である。また、本発明の液晶シール剤を用いて作成した液晶表示セルは、電圧保持率が高く、イオン密度が低いという液晶表示セルとして必要な特性も充足される。 The liquid crystal sealant of the present invention has a very good thermosetting property and quickly cures in the heating step in the liquid crystal dropping method. Accordingly, the elution of the constituent components into the liquid crystal is extremely small, and display defects of the liquid crystal display cell can be reduced. Moreover, since it is excellent also in storage stability, it is suitable for manufacture of a liquid crystal display cell. Furthermore, since the cured product is excellent in various cured product characteristics such as adhesive strength, heat resistance, and moisture resistance, it is possible to produce a liquid crystal display cell with excellent reliability by using the liquid crystal sealant of the present invention. is there. In addition, the liquid crystal display cell prepared using the liquid crystal sealant of the present invention satisfies the characteristics required for a liquid crystal display cell having a high voltage holding ratio and a low ion density.
 以下、合成例、実施例により本発明を更に詳細に説明するが、本発明は実施例に限定されるものではない。なお、特別の記載のない限り、本文中「部」及び「%」とあるのは質量基準である。 Hereinafter, the present invention will be described in more detail with reference to synthesis examples and examples, but the present invention is not limited to the examples. Unless otherwise specified, “part” and “%” in the text are based on mass.
[合成例1:ビスフェノールA型エポキシ樹脂のエポキシアクリレートの合成]
 ビスフェノールA型エポキシ樹脂282.5g(製品名:YD-8125、新日鉄化学株式会社製)をトルエン266.8gに溶解し、これに重合禁止剤としてジブチルヒドロキシトルエン0.8gを加え、60℃まで昇温した。その後、エポキシ基の100%当量のアクリル酸117.5gを加え、更に80℃まで昇温し、これに反応触媒であるトリメチルアンモニウムクロライド0.6gを添加して、98℃で約30時間撹拌し、反応液を得た。この反応液を水洗し、トルエンを留去することにより、目的とするビスフェノールA型のエポキシアクリレート(アクリル化ビスフェノールA型エポキシ樹脂)395gを得た(KAYARADRTMR-93100)。
[Synthesis Example 1: Synthesis of epoxy acrylate of bisphenol A type epoxy resin]
282.5 g of bisphenol A type epoxy resin (product name: YD-8125, manufactured by Nippon Steel Chemical Co., Ltd.) was dissolved in 266.8 g of toluene, and 0.8 g of dibutylhydroxytoluene was added to this as a polymerization inhibitor, and the temperature was raised to 60 ° C. Warm up. Thereafter, 117.5 g of acrylic acid having 100% equivalent of epoxy group was added, and the temperature was further raised to 80 ° C., and 0.6 g of trimethylammonium chloride as a reaction catalyst was added thereto, followed by stirring at 98 ° C. for about 30 hours. A reaction solution was obtained. This reaction solution was washed with water and toluene was distilled off to obtain 395 g of the desired bisphenol A type epoxy acrylate (acrylated bisphenol A type epoxy resin) (KAYARAD RTM R-93100).
[合成例2:ビスフェノールA型エポキシアクリレートの酸無水物付加物の合成]
 合成例1で得られたビスフェノールA型エポキシアクリレート4.84g、4-ジメチルアミノピリジン0.049g、トリエチルアミン6.07g、塩化メチレン1000mlを加え、室温にて撹拌して溶解させた後、テトラヒドロ無水フタル酸18.3gを加え、室温で3時間撹拌した。得られた反応液を6回水洗した後、塩化メチレンを留去することにより、分子内にカルボキシ基を有するビスフェノールA型エポキシアクリレート7gを得た。LC MS(m/z)=787(M-H)、IR 1709cm-1(COOH)。
[Synthesis Example 2: Synthesis of acid anhydride adduct of bisphenol A type epoxy acrylate]
4.84 g of the bisphenol A type epoxy acrylate obtained in Synthesis Example 1, 0.049 g of 4-dimethylaminopyridine, 6.07 g of triethylamine, and 1000 ml of methylene chloride were added and dissolved by stirring at room temperature. The acid 18.3g was added and it stirred at room temperature for 3 hours. The obtained reaction solution was washed 6 times with water, and then methylene chloride was distilled off to obtain 7 g of bisphenol A type epoxy acrylate having a carboxy group in the molecule. LC MS (m / z) = 787 (MH), IR 1709 cm- 1 (COOH).
[合成例3:アクリル化レゾルシンジグリシジルエーテルの合成]
 レゾルシンジグリシジルエーテル181.2g(ナガセケムテックス株式会社)をトルエン266.8gに溶解し、これに重合禁止剤としてジブチルヒドロキシトルエン0.8gを加え、60℃まで昇温した。その後、エポキシ基の100%当量のアクリル酸117.5gを加え、更に80℃まで昇温し、これに反応触媒であるトリメチルアンモニウムクロライド0.6gを添加して、98℃で約30時間撹拌し、反応液を得た。この反応液を水洗し、トルエンを留去することにより、目的とするレゾルシンジグリシジルエーテルのエポキシアクリレート(アクリル化レゾルシンジグリシジルエーテル)253gを得た。
[Synthesis Example 3: Synthesis of Acrylated Resorcin Diglycidyl Ether]
Resorcin diglycidyl ether 181.2 g (Nagase ChemteX Corporation) was dissolved in 266.8 g of toluene, and 0.8 g of dibutylhydroxytoluene as a polymerization inhibitor was added thereto, and the temperature was raised to 60 ° C. Thereafter, 117.5 g of acrylic acid having 100% equivalent of epoxy group was added, and the temperature was further raised to 80 ° C., and 0.6 g of trimethylammonium chloride as a reaction catalyst was added thereto, followed by stirring at 98 ° C. for about 30 hours. A reaction solution was obtained. This reaction solution was washed with water, and toluene was distilled off to obtain 253 g of a desired resorcin diglycidyl ether epoxy acrylate (acrylated resorcin diglycidyl ether).
[合成例4:アクリル化レゾルシンジグリシジルエーテルの酸無水物付加物の合成]
 合成例3で得られたレゾルシンジグリシジルエーテルのエポキシアクリレート3.66g、4-ジメチルアミノピリジン0.049g、トリエチルアミン6.07g、塩化メチレン1000mlを加え、室温にて撹拌して溶解させた後、無水マレイン酸11.8gを加え、室温で2時間撹拌した。得られた反応液を6回水洗した後、塩化メチレンを留去することにより、分子内にカルボキシ基を有するアクリル化レゾルシノールジグリシジルエーテル5gを得た。LC MS(m/z)=561(M-H)、IR 1705cm-1(COOH)。
[Synthesis Example 4: Synthesis of acid anhydride adduct of acrylated resorcin diglycidyl ether]
3.66 g of epoxy acrylate of resorcin diglycidyl ether obtained in Synthesis Example 3, 0.049 g of 4-dimethylaminopyridine, 6.07 g of triethylamine and 1000 ml of methylene chloride were added and dissolved by stirring at room temperature. 11.8 g of maleic acid was added and stirred at room temperature for 2 hours. The obtained reaction solution was washed with water six times, and then methylene chloride was distilled off to obtain 5 g of acrylated resorcinol diglycidyl ether having a carboxy group in the molecule. LC MS (m / z) = 561 (MH), IR 1705 cm- 1 (COOH).
[実施例1~3、比較例1~4]
 下記表1に示す割合で各硬化性樹脂成分(成分(a)、(c))を混合撹拌した後、90℃で加熱溶解した。そこへ、光ラジカル重合開始剤(成分(f))を加熱溶解させた後、室温まで冷却し、シランカップリング剤(成分(d))、無機フィラー(成分(e))、熱硬化剤(成分(b))を添加し、撹拌した後、3本ロールミルにて分散させ、金属メッシュ(635メッシュ)で濾過し、実施例1~3の液晶滴下工法用シール剤を調製した。
 また、同様に下記表1に示す割合で硬化性樹脂成分(成分(c))を90℃で加熱した。そこへ、光ラジカル重合開始剤(成分(f))を加熱溶解させた後、室温まで冷却し、シランカップリング剤(成分(d))、無機フィラー(成分(e))、熱硬化剤(成分(b))、硬化促進剤を添加し、撹拌した後、3本ロールミルにて分散させ、金属メッシュ(635メッシュ)で濾過し、比較例1~4の液晶滴下工法用シール剤を調製した。
[Examples 1 to 3, Comparative Examples 1 to 4]
Each curable resin component (components (a) and (c)) was mixed and stirred at the ratio shown in Table 1 below, and then heated and dissolved at 90 ° C. The photo radical polymerization initiator (component (f)) was heated and dissolved therein, and then cooled to room temperature. A silane coupling agent (component (d)), an inorganic filler (component (e)), a thermosetting agent ( Component (b)) was added and stirred, and then dispersed with a three-roll mill and filtered through a metal mesh (635 mesh) to prepare sealants for liquid crystal dropping methods of Examples 1 to 3.
Similarly, the curable resin component (component (c)) was heated at 90 ° C. at the ratio shown in Table 1 below. The photo radical polymerization initiator (component (f)) was heated and dissolved therein, and then cooled to room temperature. A silane coupling agent (component (d)), an inorganic filler (component (e)), a thermosetting agent ( Component (b)) and a curing accelerator were added, stirred, dispersed with a three-roll mill, and filtered through a metal mesh (635 mesh) to prepare sealing agents for liquid crystal dropping methods of Comparative Examples 1 to 4. .
 評価試験は下記の方法で実施した。 The evaluation test was carried out by the following method.
(接着強度測定)
 得られた液晶シール剤100gにスペーサとして5μmのグラスファイバー1gを添加して混合撹拌した。この液晶シール剤を50mm×50mmのガラス基板上に塗布し、その液晶シール剤上に1.5mm×1.5mmのガラス片を貼り合わせ、UV照射機により3000mJ/cmの紫外線を照射後、オーブンに投入して120℃で1時間熱硬化させた。ガラス片のせん断接着強度をボンドテスター(SS-30WD:西進商事株式会社製)にて測定した。結果を表1に示す。
(Adhesive strength measurement)
As a spacer, 1 g of 5 μm glass fiber was added to 100 g of the obtained liquid crystal sealant and mixed and stirred. This liquid crystal sealing agent was applied onto a 50 mm × 50 mm glass substrate, a 1.5 mm × 1.5 mm glass piece was bonded onto the liquid crystal sealing agent, and after irradiation with 3000 mJ / cm 2 of ultraviolet rays by a UV irradiator, It was put into an oven and thermally cured at 120 ° C. for 1 hour. The shear adhesive strength of the glass pieces was measured with a bond tester (SS-30WD: manufactured by Seishin Shoji Co., Ltd.). The results are shown in Table 1.
(耐湿接着強度測定)
 上記の接着強度テストと同一の測定サンプルを作成した。その測定サンプルを121℃、2気圧、湿度100%の条件で、プレッシャークッカー試験機(TPC-411:タバイエスペック株式会社製)に12時間投入した後、上記ボンドテスターにてガラス片のせん断接着強度を測定した。その結果を表1に示す。
(Moisture resistance measurement)
The same measurement sample as the above-mentioned adhesive strength test was prepared. The measurement sample was placed in a pressure cooker tester (TPC-411: manufactured by Tabai Espec Co., Ltd.) for 12 hours under the conditions of 121 ° C., 2 atm, and humidity of 100%, and then the shear bond strength of the glass pieces was measured with the above bond tester. Was measured. The results are shown in Table 1.
(吸湿率測定)
 得られた液晶シール剤をポリエチレンテレフタレート(PET)フィルムに挟み、厚み100μmの薄膜としたものにUV照射機により3000mJ/cmの紫外線を照射後、オーブンに投入して120℃1時間熱硬化させ、硬化後にPETフィルムを剥がしてサンプルとした。サンプルの重量を測定した後、60℃90%RHの環境下に12時間放置し、再度重量測定をした。初期重量に対する重量変化率(%)を表1に示す。
(Measurement of moisture absorption rate)
The obtained liquid crystal sealant was sandwiched between polyethylene terephthalate (PET) films and a thin film with a thickness of 100 μm was irradiated with 3000 mJ / cm 2 of ultraviolet rays by a UV irradiator, and then put into an oven and thermally cured at 120 ° C. for 1 hour. After curing, the PET film was peeled off to obtain a sample. After measuring the weight of the sample, the sample was left in an environment of 60 ° C. and 90% RH for 12 hours and weighed again. Table 1 shows the weight change rate (%) with respect to the initial weight.
(ポットライフ測定)
 得られた液晶シール剤の25℃における粘度変化を測定した。25℃50RH%の条件下で72時間放置した後の粘度測定を行い、初期粘度に対する粘度増加率(%)を求めた。その結果を表1に示す。
(Pot life measurement)
The viscosity change at 25 ° C. of the obtained liquid crystal sealant was measured. Viscosity was measured after being left for 72 hours at 25 ° C. and 50 RH%, and the rate of increase in viscosity (%) relative to the initial viscosity was determined. The results are shown in Table 1.
(評価用液晶セルの作成)
 透明電極付き基板に配向膜液(PIA-5540-05A;チッソ株式会社製)を塗布、焼成し、ラビング処理を施した。この基板に、貼り合わせ後の線幅が1mmとなるように液晶シール剤をディスペンスしてメインシール及びダミーシールとし、次いで液晶(JC-5015LA;チッソ株式会社製)の微小滴をシールパターンの枠内に滴下した。更にもう一枚のラビング処理済み基板に面内スペーサ(ナトコスペーサKSEB-525F;ナトコ株式会社製;貼り合せ後のギャップ幅5μm)を散布、熱固着し、貼り合わせ装置を用いて真空中で先の液晶滴下済み基板と貼り合わせた。大気開放してギャップ形成した後、シールパターン枠内のみマスクをしてUV照射機により50mJ/cmの紫外線を照射後、オーブンに投入して120℃1時間熱硬化させ、評価用液晶テストセルを作成した。
(Creation of liquid crystal cell for evaluation)
An alignment film solution (PIA-5540-05A; manufactured by Chisso Corporation) was applied to a substrate with a transparent electrode, baked, and rubbed. A liquid crystal sealant is dispensed on this substrate so that the line width after bonding becomes 1 mm to form a main seal and a dummy seal, and then a fine droplet of liquid crystal (JC-5015LA; manufactured by Chisso Corporation) is put into a frame of a seal pattern. It was dripped in. Furthermore, an in-plane spacer (NATOCO SPACER KSEB-525F; manufactured by NATCO; gap width of 5 μm after bonding) is sprayed and thermally fixed on another rubbing-treated substrate, and the substrate is first vacuumed using a bonding apparatus. The liquid crystal dripped substrate was attached. After opening the atmosphere to form a gap, masking only the seal pattern frame, irradiating with 50 mJ / cm 2 of UV light with a UV irradiator, putting it in an oven and thermosetting at 120 ° C. for 1 hour, liquid crystal test cell for evaluation It was created.
 作成した評価用液晶セルのシールの耐差込み性及びシール近傍の液晶配向乱れを偏光顕微鏡にて観察し、耐差込み性及びシール近傍の液晶配向について以下に示す基準に従って評価を行った。結果を表1に示す。 The insertion resistance of the seal of the prepared liquid crystal cell for evaluation and the liquid crystal alignment disorder in the vicinity of the seal were observed with a polarizing microscope, and the evaluation of the insertion resistance and the liquid crystal alignment in the vicinity of the seal was performed according to the following criteria. The results are shown in Table 1.
(耐差込み性の評価)
◎:シールへの液晶の差込みが0.2mm未満であり、液晶の封止には問題が無いレベルである。
○:シールへの液晶の差込みが0.2mm以上0.4mm未満であり、液晶の封止には問題が無いレベルである。
△:シールへの液晶の差込みが0.4mm以上0.6mm未満であり、液晶の封止には問題が無いレベルである。
×:シールへの液晶の差込みが0.6mm以上1.0mm未満であり、液晶の封止には問題が無いレベルである。
××:シールが決壊し、セルが形成できない。
(Evaluation of insertion resistance)
A: The insertion of the liquid crystal into the seal is less than 0.2 mm, and there is no problem in sealing the liquid crystal.
○: The insertion of the liquid crystal into the seal is 0.2 mm or more and less than 0.4 mm, and there is no problem in sealing the liquid crystal.
(Triangle | delta): The insertion of the liquid crystal to a seal | sticker is 0.4 mm or more and less than 0.6 mm, and is a level which does not have a problem in sealing of a liquid crystal.
X: The insertion of the liquid crystal into the seal is 0.6 mm or more and less than 1.0 mm, and there is no problem in sealing the liquid crystal.
XX: The seal is broken and a cell cannot be formed.
(シール近傍の液晶配向の評価)
◎:液晶の配向乱れがシールから0.2mm未満である。
○:液晶の配向乱れがシールから0.2mm以上0.4mm未満である。
△:液晶の配向乱れがシールから0.4mm以上0.6mm未満である。
×:液晶の配向乱れがシールから0.6mm以上1.0mm未満である。
××:シールが決壊し、セルが形成できない。
(Evaluation of liquid crystal alignment near the seal)
A: The alignment disorder of the liquid crystal is less than 0.2 mm from the seal.
○: The alignment disorder of the liquid crystal is 0.2 mm or more and less than 0.4 mm from the seal.
Δ: The alignment disorder of the liquid crystal is 0.4 mm or more and less than 0.6 mm from the seal.
X: The alignment disorder of the liquid crystal is 0.6 mm or more and less than 1.0 mm from the seal.
XX: The seal is broken and a cell cannot be formed.
(硬化速度測定)
 得られた液晶シール剤について、動的粘弾性率測定装置(Rheosol-G5000、株式会社ユービーエム製)にて複素粘性率を測定した。動的粘弾性率測定装置の設定は、以下のとおりである。コーン:直径20mmのパラレルコーン、周波数:1Hz、歪み角度:3deg.、測定温度30℃から120℃まで18℃/分の速度で昇温させ、その後120℃を維持させた。粘度が10000Pa・sに到達したときの時間を表1に示す。
(Curing rate measurement)
With respect to the obtained liquid crystal sealant, the complex viscosity was measured with a dynamic viscoelasticity measuring device (Rhesol-G5000, manufactured by UBM Co., Ltd.). The setting of the dynamic viscoelasticity measuring apparatus is as follows. Cone: Parallel cone with a diameter of 20 mm, frequency: 1 Hz, distortion angle: 3 deg. The measurement temperature was raised from 30 ° C. to 120 ° C. at a rate of 18 ° C./min, and then maintained at 120 ° C. Table 1 shows the time when the viscosity reached 10,000 Pa · s.
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000005
 表1の結果より、硬化促進剤成分を含有しない比較例1は硬化性に劣り、その結果、パネル表示特性において配向不良を生じている。また、硬化促進剤としてCIC酸やドデカン二酸、熱ラジカル開始剤を用いたものは、硬化性の向上は達成しているものの、液晶汚染性や耐湿接着性に不具合を生じている。これに対し、実施例1~3については、硬化性向上を実現しながら、他の特性も使用可能レベルであることが確認される。特に実施例1、2においては全ての特性において非常に優れた結果を示している。
 この結果より、本発明の液晶シール剤は、保存安定性、硬化性に優れることから作業性に優れるといえ、また液晶汚染性、耐湿接着性、パネル表示特性に優れることから液晶表示セルの高信頼性を実現できるといえる。
From the results of Table 1, Comparative Example 1 that does not contain a curing accelerator component is inferior in curability, and as a result, alignment failure occurs in the panel display characteristics. In addition, those using CIC acid, dodecanedioic acid, or a thermal radical initiator as a curing accelerator have improved the curability, but have problems with liquid crystal contamination and moisture-resistant adhesion. On the other hand, in Examples 1 to 3, it is confirmed that other characteristics are at a usable level while improving the curability. In particular, Examples 1 and 2 show very excellent results in all characteristics.
From these results, it can be said that the liquid crystal sealing agent of the present invention is excellent in workability because of its excellent storage stability and curability, and it is excellent in liquid crystal contamination, moisture-resistant adhesion, and panel display characteristics because of its high liquid crystal display cell performance. It can be said that reliability can be realized.
 本発明の液晶シール剤は、作業性に優れるため、液晶表示セルの安定生産を可能とし、更には液晶表示セルの長期信頼性確保にも貢献するものである。 Since the liquid crystal sealant of the present invention is excellent in workability, it enables stable production of liquid crystal display cells and contributes to ensuring long-term reliability of the liquid crystal display cells.

Claims (13)

  1.  (a)分子内に活性水素を有する、エポキシ樹脂、(メタ)アクリル化エポキシ樹脂、及び部分(メタ)アクリル化エポキシ樹脂から選択される1種又は2種以上からなる硬化性樹脂(ただし、活性水素として、ヒドロキシ基に含まれる水素は除く)、(b)熱硬化剤を含有することを特徴とする液晶シール剤。 (A) A curable resin composed of one or more selected from epoxy resin, (meth) acrylated epoxy resin, and partial (meth) acrylated epoxy resin having active hydrogen in the molecule (however, active (B) A liquid crystal sealant containing a thermosetting agent as hydrogen (excluding hydrogen contained in a hydroxy group).
  2.  前記成分(a)が分子内に活性水素を有する(メタ)アクリル化エポキシ樹脂である請求項1に記載の液晶シール剤。 The liquid crystal sealant according to claim 1, wherein the component (a) is a (meth) acrylated epoxy resin having active hydrogen in the molecule.
  3.  前記成分(a)が分子内にカルボキシ基、スルファニル基、又はアミノ基を有する(メタ)アクリル化エポキシ樹脂である請求項1又は2に記載の液晶シール剤。 The liquid crystal sealant according to claim 1 or 2, wherein the component (a) is a (meth) acrylated epoxy resin having a carboxy group, a sulfanyl group, or an amino group in the molecule.
  4.  前記成分(a)が分子内にカルボキシ基を有する(メタ)アクリル化エポキシ樹脂である請求項1乃至3のいずれか一項に記載の液晶シール剤。 The liquid crystal sealant according to any one of claims 1 to 3, wherein the component (a) is a (meth) acrylated epoxy resin having a carboxy group in the molecule.
  5.  前記成分(a)が分子内にカルボキシ基を有するアクリル化レゾルシノールジグリジルエーテルである請求項1乃至4のいずれか一項に記載の液晶シール剤。 The liquid crystal sealant according to any one of claims 1 to 4, wherein the component (a) is an acrylated resorcinol diglycidyl ether having a carboxy group in the molecule.
  6.  更に、(c)分子内に活性水素を有さない、エポキシ樹脂、(メタ)アクリル化エポキシ樹脂、及び部分(メタ)アクリル化エポキシ樹脂から選択される1種又は2種以上からなる硬化性樹脂(ただし、活性水素として、ヒドロキシ基に含まれる水素は除く)を含有する請求項1乃至5のいずれか一項に記載の液晶シール剤。 Further, (c) a curable resin composed of one or more selected from epoxy resin, (meth) acrylated epoxy resin, and partial (meth) acrylated epoxy resin that does not have active hydrogen in the molecule. The liquid crystal sealing agent according to any one of claims 1 to 5, which contains (however, hydrogen contained in a hydroxy group is excluded as active hydrogen).
  7.  前記成分(a)の含有量が液晶シール剤の総量を100質量部とした場合に5質量部~50質量部である請求項1乃至6のいずれか一項に記載の液晶シール剤。 The liquid crystal sealant according to any one of claims 1 to 6, wherein the content of the component (a) is 5 parts by mass to 50 parts by mass when the total amount of the liquid crystal sealant is 100 parts by mass.
  8.  前記成分(b)熱硬化剤が多価ヒドラジド化合物である請求項1乃至7のいずれか一項に記載の液晶シール剤。 The liquid crystal sealant according to any one of claims 1 to 7, wherein the component (b) thermosetting agent is a polyhydric hydrazide compound.
  9.  前記成分(b)熱硬化剤が下記式(1)で表される1又は2以上のヒドラジド化合物である請求項8に記載の液晶シール剤。
    Figure JPOXMLDOC01-appb-C000001
    [式中、R~Rは各々独立して水素原子、又は下記式(2)
    Figure JPOXMLDOC01-appb-C000002
    (式中、nは1~6の整数を示す。)
    で表される分子骨格を示す。]
    The liquid crystal sealant according to claim 8, wherein the component (b) thermosetting agent is one or more hydrazide compounds represented by the following formula (1).
    Figure JPOXMLDOC01-appb-C000001
    [Wherein R 1 to R 3 are each independently a hydrogen atom or the following formula (2)
    Figure JPOXMLDOC01-appb-C000002
    (In the formula, n represents an integer of 1 to 6.)
    The molecular skeleton represented by is shown. ]
  10.  更に、(d)シランカップリング剤を含有する請求項1乃至9のいずれか一項に記載の液晶シール剤。 Furthermore, (d) The liquid-crystal sealing compound as described in any one of Claim 1 thru | or 9 containing a silane coupling agent.
  11.  更に、(e)無機フィラーを含有する請求項1乃至10のいずれか一項に記載の液晶シール剤。 Furthermore, (e) The liquid-crystal sealing compound as described in any one of Claims 1 thru | or 10 containing an inorganic filler.
  12.  更に、(f)光ラジカル重合開始剤を含有する請求項1乃至11のいずれか一項に記載の液晶シール剤。 Furthermore, the liquid-crystal sealing compound as described in any one of Claims 1 thru | or 11 containing (f) radical photopolymerization initiator.
  13.  請求項1乃至12のいずれか一項に記載の液晶シール剤を硬化して得られる硬化物でシールされた液晶表示セル。 A liquid crystal display cell sealed with a cured product obtained by curing the liquid crystal sealing agent according to any one of claims 1 to 12.
PCT/JP2012/066792 2011-07-03 2012-06-29 Liquid crystal sealing material and liquid crystal display cell using same WO2013005692A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201280032956.9A CN103649824B (en) 2011-07-03 2012-06-29 Liquid crystal sealing agent and use its liquid crystal display
KR1020147001603A KR20140039314A (en) 2011-07-03 2012-06-29 Liquid crystal sealing material and liquid crystal display cell using same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011-147813 2011-07-03
JP2011147813A JP5748273B2 (en) 2011-07-03 2011-07-03 Liquid crystal sealant and liquid crystal display cell using the same

Publications (1)

Publication Number Publication Date
WO2013005692A1 true WO2013005692A1 (en) 2013-01-10

Family

ID=47437044

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/066792 WO2013005692A1 (en) 2011-07-03 2012-06-29 Liquid crystal sealing material and liquid crystal display cell using same

Country Status (5)

Country Link
JP (1) JP5748273B2 (en)
KR (1) KR20140039314A (en)
CN (1) CN103649824B (en)
TW (1) TW201319109A (en)
WO (1) WO2013005692A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018201428A1 (en) * 2017-05-05 2018-11-08 Henkel Ag & Co. Kgaa Thermally curable sealant composition and use thereof

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6373181B2 (en) * 2014-12-10 2018-08-15 日本化薬株式会社 Liquid crystal sealant and liquid crystal display cell using the same
WO2018092508A1 (en) * 2016-11-21 2018-05-24 協立化学産業株式会社 Resin composition for electronic device

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006039096A (en) * 2004-07-26 2006-02-09 Three Bond Co Ltd Composition for liquid crystal display device
JP2008129216A (en) * 2006-11-20 2008-06-05 Mitsui Chemicals Inc Sealing agent for liquid crystal dropping method, method for manufacturing liquid crystal display panel using the same and liquid crystal display panel
WO2009001689A1 (en) * 2007-06-25 2008-12-31 Nippon Kayaku Kabushiki Kaisha Sealing material for liquid crystal and liquid-crystal display cell made with the same
JP2010014771A (en) * 2008-07-01 2010-01-21 Nippon Kayaku Co Ltd Thermosetting liquid crystal sealing material for liquid crystal dropping method and liquid crystal display cell using the same

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004027502A1 (en) * 2002-09-19 2004-04-01 Mitsui Chemicals, Inc. Sealing composition for liquid crystal displays and process for production of liquid crystal display panels
JP4802461B2 (en) * 2004-07-22 2011-10-26 株式会社スリーボンド Photopolymerization initiator and photocurable material using the same
JP5008682B2 (en) * 2009-01-21 2012-08-22 株式会社Adeka Sealant for liquid crystal dropping method containing photo-curing resin and thermosetting resin
JP5152868B2 (en) * 2009-06-11 2013-02-27 日本化薬株式会社 Visible light curable liquid crystal sealant and liquid crystal display cell using the same

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006039096A (en) * 2004-07-26 2006-02-09 Three Bond Co Ltd Composition for liquid crystal display device
JP2008129216A (en) * 2006-11-20 2008-06-05 Mitsui Chemicals Inc Sealing agent for liquid crystal dropping method, method for manufacturing liquid crystal display panel using the same and liquid crystal display panel
WO2009001689A1 (en) * 2007-06-25 2008-12-31 Nippon Kayaku Kabushiki Kaisha Sealing material for liquid crystal and liquid-crystal display cell made with the same
JP2010014771A (en) * 2008-07-01 2010-01-21 Nippon Kayaku Co Ltd Thermosetting liquid crystal sealing material for liquid crystal dropping method and liquid crystal display cell using the same

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018201428A1 (en) * 2017-05-05 2018-11-08 Henkel Ag & Co. Kgaa Thermally curable sealant composition and use thereof

Also Published As

Publication number Publication date
JP2013015645A (en) 2013-01-24
KR20140039314A (en) 2014-04-01
CN103649824A (en) 2014-03-19
CN103649824B (en) 2016-09-07
JP5748273B2 (en) 2015-07-15
TW201319109A (en) 2013-05-16

Similar Documents

Publication Publication Date Title
JP5268235B2 (en) Liquid crystal sealant and liquid crystal display cell using the same
EP1612597B1 (en) Liquid crystal sealing agent and liquid crystalline display cell using the same
JP4490282B2 (en) Liquid crystal sealant and liquid crystal display cell using the same
JP5651177B2 (en) Liquid crystal sealant and liquid crystal display cell using the same
JP4977896B2 (en) Liquid crystal sealant and liquid crystal display cell using the same
JP5757522B2 (en) Liquid crystal sealant and liquid crystal display cell using the same
JP2007010769A (en) Liquid crystal sealing agent and liquid crystal display cell using same
WO2006043454A1 (en) Radiation curable resin, liquid crystal sealing material, and liquid crystal display cell using same
US20070020405A1 (en) Sealant for liquid crystal and liquid-crystal display cell made with the same
WO2014014013A1 (en) Liquid-crystal sealant and lcd cell using same
JP2004037937A (en) Liquid crystal sealing agent and liquid crystal display cell using same
JP4974344B2 (en) Liquid crystal sealant and liquid crystal display cell using the same
JP5645765B2 (en) Liquid crystal sealant and liquid crystal display cell using the same
JP2010277072A (en) Liquid crystal sealing agent and liquid crystal display cell obtained using the same
JP5748273B2 (en) Liquid crystal sealant and liquid crystal display cell using the same
JP5773782B2 (en) Novel (meth) acrylic resin and resin composition using the same
JP5112433B2 (en) Liquid crystal sealant and liquid crystal display cell using the same
JP2017203830A (en) Liquid crystal sealant and liquid crystal display cell using the same
JP5796890B2 (en) Novel hydrazide compound and resin composition using the same
JP2014006325A (en) Liquid crystal sealing agent and liquid crystal display cell using the same
JP6249946B2 (en) Liquid crystal sealant and liquid crystal display cell using the same
JP2014006324A (en) Liquid crystal sealing agent and liquid crystal display cell using the same
JP5182834B2 (en) Liquid crystal sealant and liquid crystal display cell using the same
JP2018040947A (en) Liquid crystal sealing agent and liquid crystal display cell using the same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12807046

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20147001603

Country of ref document: KR

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 12807046

Country of ref document: EP

Kind code of ref document: A1