WO2013005523A1 - Assembled battery - Google Patents

Assembled battery Download PDF

Info

Publication number
WO2013005523A1
WO2013005523A1 PCT/JP2012/064546 JP2012064546W WO2013005523A1 WO 2013005523 A1 WO2013005523 A1 WO 2013005523A1 JP 2012064546 W JP2012064546 W JP 2012064546W WO 2013005523 A1 WO2013005523 A1 WO 2013005523A1
Authority
WO
WIPO (PCT)
Prior art keywords
heat insulating
battery
insulating medium
temperature
passage
Prior art date
Application number
PCT/JP2012/064546
Other languages
French (fr)
Japanese (ja)
Inventor
小比賀 基治
Original Assignee
日産自動車株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日産自動車株式会社 filed Critical 日産自動車株式会社
Publication of WO2013005523A1 publication Critical patent/WO2013005523A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/65Means for temperature control structurally associated with the cells
    • H01M10/653Means for temperature control structurally associated with the cells characterised by electrically insulating or thermally conductive materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/204Racks, modules or packs for multiple batteries or multiple cells
    • H01M50/207Racks, modules or packs for multiple batteries or multiple cells characterised by their shape
    • H01M50/211Racks, modules or packs for multiple batteries or multiple cells characterised by their shape adapted for pouch cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/61Types of temperature control
    • H01M10/613Cooling or keeping cold
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/64Heating or cooling; Temperature control characterised by the shape of the cells
    • H01M10/647Prismatic or flat cells, e.g. pouch cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/65Means for temperature control structurally associated with the cells
    • H01M10/656Means for temperature control structurally associated with the cells characterised by the type of heat-exchange fluid
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/233Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders characterised by physical properties of casings or racks, e.g. dimensions
    • H01M50/24Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders characterised by physical properties of casings or racks, e.g. dimensions adapted for protecting batteries from their environment, e.g. from corrosion
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to an assembled battery.
  • the conventional technology has a problem that when a battery becomes hot, heat is transferred to an adjacent battery, and the adjacent battery is also heated.
  • An object of the present invention is to provide an assembled battery that can suppress heat transfer to an adjacent battery.
  • a heat insulating medium passage through which the heat insulating medium flows and a refrigerant passage through which the refrigerant flows are provided between the plurality of stacked batteries, and the heat resistance of the refrigerant is made lower than the heat resistance of the heat insulating medium.
  • the cooling effect of the refrigerant and the heat insulating effect of the heat insulating medium can be prevented from being lowered, and heat transfer to the adjacent battery can be suppressed.
  • FIG. 1 It is a block diagram which shows the assembled battery which concerns on one embodiment of this invention. It is sectional drawing which shows the channel
  • the assembled battery 1 is configured by laminating a plurality of batteries 10 and 20, and a passage assembly plate 30 is interposed between the batteries 10 and 20.
  • the assembled battery 1 shown in the figure is a laminate of two batteries 10 and 20, but may be a laminate of three or more batteries.
  • the passage assembly plate 30 may be interposed between all the batteries, or a plurality of batteries may be interposed.
  • the configuration of one battery will be described by taking the battery 10 as an example (the battery 20 has the same configuration).
  • a power generation element is accommodated inside a pair of laminate film exterior members 11, and the pair of The outer peripheral part of the exterior member is sealed.
  • the laminated film constituting the exterior member 11 has, for example, a three-layer structure, and from the inner side to the outer side of the battery 10, for example, an electrolytic solution resistance and a heat fusion property such as polyethylene, modified polyethylene, polypropylene, modified polypropylene, or ionomer.
  • An inner resin layer composed of an excellent resin film, an intermediate metal layer composed of a metal foil such as aluminum, and a resin film excellent in electrical insulation such as a polyamide resin or a polyester resin And an outer resin layer.
  • one surface (inner surface of the battery 10) of the intermediate metal layer made of aluminum foil or the like is made of a resin such as polyethylene, modified polyethylene, polypropylene, modified polypropylene, or ionomer. It is made of a flexible material such as a resin-metal thin film laminate material obtained by laminating and laminating the other surface (the outer surface of the battery 10) with a polyamide resin or a polyester resin.
  • the pair of exterior members 11 includes the intermediate metal layer in addition to the inner and outer resin layers, the strength of the exterior member 11 itself can be improved.
  • the inner resin layer of the exterior member 11 is made of, for example, a resin such as polyethylene, modified polyethylene, polypropylene, modified polypropylene, or ionomer, thereby ensuring good fusion with the metal electrode terminals 12 and 13. It becomes possible to do.
  • the exterior member 11 in the present invention is not limited to the above-described three-layer structure, and may have a single-layer structure of the inner or outer resin layer.
  • the two-layer structure of either one of an inner side or an outer side resin layer, and an intermediate metal layer may be sufficient.
  • the structure of four layers or more may be sufficient as needed.
  • Each of the pair of exterior members 11 has a shape in which a rectangular flat plate is formed into a shallow bowl shape (dish mold) so that the power generation element can be accommodated. And the entire circumference of the outer peripheral part is joined by heat fusion or an adhesive.
  • the battery 10 of this example is a lithium ion secondary battery, and the power generation element is configured by laminating a separator between a positive electrode plate and a negative electrode plate.
  • the power generation element of this example can be composed of, for example, three positive plates, five separators, three negative plates, and an electrolyte.
  • the battery 10 according to the present invention is not limited to a lithium ion secondary battery, and may be another battery.
  • the positive electrode plate constituting the power generation element includes a positive electrode side current collector extending to the positive electrode terminal 12 and positive electrode layers respectively formed on both main surfaces of part of the positive electrode side current collector.
  • the positive electrode plate and the positive electrode side current collector can be formed of a single conductor, or the positive electrode plate and the positive electrode side current collector can be formed of different members, and these can be joined.
  • the positive electrode side current collector of the positive electrode plate is made of an electrochemically stable metal foil such as an aluminum foil, an aluminum alloy foil, a copper foil, or a nickel foil.
  • the positive electrode layer of the positive electrode plate is made of, for example, lithium composite oxide such as lithium nickelate (LiNiO 2 ), lithium manganate (LiMnO 2 ), or lithium cobaltate (LiCoO 2 ), or a chalcogen (S, Se, Te) compound.
  • a mixture of a positive electrode active material such as carbon black, a conductive agent such as carbon black, an adhesive such as an aqueous dispersion of polytetrafluoroethylene, and a solvent, is applied to both main surfaces of the positive electrode current collector plate, It is formed by drying and rolling.
  • the negative electrode plate constituting the power generation element includes a negative electrode side current collector extending to the negative electrode terminal 13 and negative electrode layers formed on both main surfaces of a part of the negative electrode side current collector.
  • the negative electrode plate and the negative electrode side current collector can be formed of a single conductor, or the negative electrode plate and the negative electrode side current collector can be formed of different members and joined together.
  • the negative electrode side current collector of the negative electrode plate is made of an electrochemically stable metal foil such as nickel foil, copper foil, stainless steel foil, or iron foil.
  • the negative electrode layer of the negative electrode plate is, for example, a negative electrode active material that occludes and releases lithium ions of the positive electrode active material, such as amorphous carbon, non-graphitizable carbon, graphitizable carbon, or graphite.
  • the separator laminated between the positive electrode plate and the negative electrode plate prevents a short circuit between the positive electrode plate and the negative electrode plate, and may have a function of holding an electrolyte.
  • This separator is a microporous film made of polyolefin such as polyethylene or polypropylene, for example. When an overcurrent flows, the separator also has a function of blocking the current by closing the pores of the layer due to heat generation.
  • the separator is not limited to a single-layer film such as polyolefin, but a three-layer structure in which a polypropylene film is sandwiched between polyethylene films, or a laminate of a polyolefin microporous film and an organic nonwoven fabric can also be used.
  • various functions such as an overcurrent prevention function, an electrolyte holding function, and a separator shape maintenance (stiffness improvement) function can be provided.
  • the above power generation elements are formed by alternately stacking positive plates and negative plates through separators.
  • the three positive plates are respectively connected to the positive terminal 12 made of metal foil via the positive current collector, while the three negative plates are similarly connected via the negative current collector.
  • the positive electrode terminal 12 and the negative electrode terminal 13 are led out of the exterior member 11 from the positive electrode plate and the negative electrode plate of the power generation element.
  • the positive electrode terminal 12 and the negative electrode terminal 13 are led out from the outer peripheral portion of the opposing sides (left and right sides in FIG. 1) of the exterior member 11.
  • the positive terminal 12 and the negative terminal 13 are also referred to as a positive tab 12 and a negative tab 13.
  • the battery 10 is rectangular in plan view, but the outer shape of the battery 10 is not limited to a rectangle, and can be formed in a square or other polygons. Further, the lead-out positions of the positive electrode terminal 12 and the negative electrode terminal 13 may be led side by side from one outer peripheral portion in addition to being led from two opposing outer peripheral portions as in this example.
  • the battery 10 configured as described above can be used alone, but in this example, the battery 10 is connected to and combined with one or more other batteries 20 to be used as a secondary battery having a desired output and capacity. .
  • the assembled battery 1 When the assembled battery 1 is configured by connecting a plurality of batteries 10 and 20, the main surfaces of the plurality of flat batteries 10 and 20 are stacked and accommodated in the battery case as shown in FIG. 1. Is called.
  • the positive terminals 12 and 22 and the negative terminals 13 and 23 derived from the batteries 10 and 20 are connected in series and / or in parallel using a bus bar.
  • the passage assembly plate 30 interposed between the batteries 10 and 20 is a plate-like member in which a heat insulating medium passage 31 through which a heat insulating medium flows and a refrigerant passage 32 through which a refrigerant flows are integrally formed.
  • the heat insulating medium is preferably a gas such as air or argon having a high thermal resistance
  • the refrigerant is preferably a liquid such as ethylene glycol or silicon oil having a low thermal resistance.
  • the heat resistance of the refrigerant is relatively lower than the heat resistance of the heat insulating medium.
  • the heat insulating medium mainly functions to suppress transmission of relatively large temperature rise heat generated in the battery 10 or 20 to the adjacent battery 20 or 10, and the refrigerant is generated mainly when the batteries 10 and 20 are charged / discharged. It functions to suppress a relatively gradual temperature rise.
  • the passage assembly plate 30 of this example is made of a resin material having a high thermal resistance, for example, polypropylene, and is attached to the concave and convex plates 33 and 34 having a honeycomb cross section and both the concave and convex plates 33 and 34, respectively.
  • thin plates 35 and 35 made of a metal material having a low thermal resistance, for example, aluminum. Then, the convex portions of the concavo-convex plates 33 and 34 are overlapped and bonded as shown in FIG. 2, and the thin plates 35 and 35 are attached to both surfaces thereof, so that the heat insulating medium passage 31 and the refrigerant passage 32 are hermetically sealed.
  • the refrigerant passages 32 are formed so that the refrigerant passages 32 are located on both surfaces of the heat insulation medium passage 31 so as to be in a state.
  • the passage assembly plate 30 is preferably extendable and contractible at least in the plane direction (two-dimensional direction). Further, since the heat insulating medium passage 31 and the refrigerant passage 32 are in contact with each other, the temperature rise of the heat insulating medium in the heat insulating medium passage 31 can be effectively suppressed by the refrigerant.
  • the refrigerant passage 32 on the upper surface of the passage assembly plate 30 is in contact with the lower main surface of the battery 10, and the refrigerant passage 32 on the lower surface is in contact with the upper main surface of the battery 20. Further, the heat insulating medium passage 31 of the passage assembly plate 30 shown in FIG. 1 is located between the batteries 10 and 20.
  • the passage assembly plate 30 is formed to have the same size or larger than the exterior members 11 and 21 of the batteries 10 and 20 in plan view. Therefore, a space exists between the batteries 10 and 20 and the passage assembly plate 30 in the outer peripheral portion where the exterior members 11 and 21 of the batteries 10 and 20 are sealed.
  • the refrigerant is stored in the refrigerant tank 36, sucked into the refrigerant circulation pipe 38 by the pump 37, circulated through the upper and lower refrigerant passages 32, 32 of the passage assembly plate 30, and then returned to the refrigerant tank 36. .
  • the flow rate control device 39 may further control the flow rate by outputting a control signal to the pump 37. For example, since the batteries 10 and 20 generate heat gradually when charging and discharging, the refrigerant is circulated during charging and discharging, and the circulation of the refrigerant is stopped except during charging and discharging.
  • the heat insulating medium is air
  • the surrounding air is sucked into the heat insulating medium circulation pipe 41 by the fan 40, and after flowing through the heat insulating medium passage 31 of the passage assembly plate 30, is released to the outside.
  • the heat insulating medium is a gas such as argon gas
  • the air is sucked from the argon gas storage container to the heat insulating medium circulation pipe 41 by the fan 40 and circulated through the heat insulating medium passage 31 of the passage assembly plate 30. Return to gas storage container.
  • the flow rate control device 39 may control the flow rate by outputting a control signal to the fan 40.
  • Each of the batteries 10 and 20 is provided with battery temperature sensors 42 and 43 for detecting the temperature of the batteries 10 and 20, and the detection signals are output to the flow rate control device 39.
  • an external temperature sensor 44 that detects the external temperature of the batteries 10 and 20 is provided in the vicinity of the batteries 10 and 20, and the detection signal is output to the flow control device 39. Note that the temperature of the heat insulating medium may be directly detected instead of the external temperature sensor 44.
  • step ST1 it is determined whether or not the battery temperatures of the batteries 10 and 20 detected by the battery temperature sensors 42 and 43 are equal to or higher than a first predetermined temperature T1.
  • the first predetermined temperature T 1 is a temperature higher than the normal outside air temperature and is a limit temperature for protecting the batteries 10 and 20.
  • step ST 2 the abnormal heat insulation medium circulation mode is set, and an operation command signal is sent from the flow controller 39 to the fan 40.
  • the heat insulation medium is circulated through the heat insulation medium passage 31 of the passage assembly plate 30. If the heat insulation medium is not circulated, the heat insulation medium itself staying in the heat insulation medium passage 31 of the passage assembly plate 30 also becomes a high temperature, so that the effect of suppressing the transfer of the heat of the battery 10 or 20 to the adjacent battery 20 or 10 is small. Become.
  • the heat insulating medium is circulated even when the battery 10 or 20 becomes high temperature, it is possible to suppress the temperature rise of the heat insulating medium in the heat insulating medium passage 31 of the passage assembly plate 30, thereby transmitting to the adjacent battery. Heat can be suppressed.
  • step ST3 it is determined whether or not the external temperature detected by the external temperature sensor 44 is equal to or higher than a second predetermined temperature T2.
  • the second predetermined temperature T 2 is lower than the first predetermined temperature T 1 and is, for example, higher than the normal outside air temperature.
  • step ST5 the normal heat insulation medium circulation stop mode is set, a stop command signal is output from the flow control device 39 to the fan 40, and the passage assembly plate.
  • the circulation of the heat insulation medium to the 30 heat insulation medium passages 31 is stopped. If the heat insulation medium is circulated through the heat insulation medium passage 31 when the external temperature is higher than the second predetermined temperature T2, the heat insulation medium having a high temperature heats the refrigerant in the adjacent refrigerant passage 32.
  • the cooling effect of the batteries 10 and 20 by the refrigerant is reduced. According to this example, it is possible to prevent the cooling effect of such a refrigerant from being hindered.
  • step ST4 further external temperature determines whether a third predetermined temperature T 3 below.
  • the third predetermined temperature T 3 is lower than the second predetermined temperature T 2 and is, for example, a temperature close to or lower than the refrigerant temperature.
  • the process proceeds to step ST 6, the normal heat insulating medium circulation mode is set, an operation command signal is output from the flow control device 39 to the fan 40, and the passage assembly plate 30 The heat insulating medium is circulated through the heat insulating medium passage 31.
  • the heat insulating medium is circulated through the heat insulating medium passage 31 of the passage assembly plate 30 so that the heat insulating medium can be used as the refrigerant in addition to the refrigerant.
  • step ST5 sets the stop mode of the heat insulating medium circulating in the normal, the flow controller 39 to the fan 40 outputs a stop command signal Then, the circulation of the heat insulating medium to the heat insulating medium passage 31 of the passage assembly plate 30 is stopped.
  • the cooling effect cannot be expected.
  • the refrigerant in the adjacent refrigerant passage 32 is heated, and the cooling effect of the batteries 10 and 20 by the refrigerant is increased. This is because it may decrease.
  • FIG. 4 is a graph in which the vertical axis in FIG. 4 represents the battery temperature and the horizontal axis represents the external temperature, with the ranges of the abnormal heat insulation medium circulation mode, the normal insulation medium circulation stop mode, and the normal insulation medium circulation mode as described above. Is shown.
  • the batteries 10 and 20 and the passage assembly plate 30 are simply stacked and not bonded, but one side of the passage assembly plate 30 is attached to the main body of the battery 10 as shown in FIG.
  • the other surface may be bonded to the main surface of the battery 20.
  • a gap due to sealing of the batteries 10 and 20 exists between the outer periphery of the passage assembly plate 30 and the outer periphery of the batteries 10 and 20, and the passage assembly plate 30 can be extended and contracted. Yes.
  • the passage assembly plate 30 is also stretched in the surface direction (two-dimensional direction) along with the expansion.
  • path assembly plate 30 expand
  • the heat insulating medium passage 31 and the refrigerant passage 32 are provided between the batteries 10 and 20 so that the heat resistance of the refrigerant is lower than the heat resistance of the heat insulating medium. Decrease in the cooling effect and the heat insulating effect of the heat insulating medium can be prevented, and heat transfer to adjacent batteries can be suppressed.
  • the refrigerant passage is provided between the battery and the heat insulating medium passage, it is possible to suppress the relatively large temperature rise heat generated in the battery 10 or the battery 20 from being transmitted to the adjacent battery 20 or the battery 10. In addition, for example, it is possible to suppress a relatively gradual temperature rise that occurs during charging / discharging of the batteries 10 and 20, for example.
  • the flow rate of the heat insulation medium is appropriately controlled according to the battery temperature and the external temperature, the heat insulation effect is sufficiently exhibited even when the temperature of the batteries 10 and 20 rises abnormally without deteriorating the normal cooling performance by the refrigerant. can do.
  • abnormality such as when the temperature of the battery 10, 20 is a first predetermined temperature above T 1, since overwhelmingly higher than the battery temperature is outside the temperature, the heat insulating medium itself is stopped the flow of the heat insulating medium
  • the temperature of the batteries 10 and 20 is lower than the first predetermined temperature T 1 but is normal such that the temperature is equal to or higher than the second predetermined temperature T 2 , when the heat insulating medium is circulated, for example, the external temperature is high. In some cases, the temperature of the heat insulating medium gradually increases, which may hinder cooling of the battery by the refrigerant. However, in this example, by stopping the circulation of the heat insulating medium, it can be prevented and a sufficient cooling effect can be maintained.
  • the refrigerant is circulated by circulating the low-temperature heat insulating medium.
  • it can be used as a cooling medium.
  • the passage assembly plate 30 also moves in the plane direction (two-dimensional direction). To be stretched. Thereby, the heat insulation medium channel
  • the battery temperature sensors 42 and 43 correspond to the battery temperature detection means according to the present invention
  • the external temperature sensor 44 corresponds to the external temperature detection means according to the present invention
  • the flow rate control device 39 corresponds to the flow rate control according to the present invention. Corresponds to means.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Secondary Cells (AREA)
  • Battery Mounting, Suspending (AREA)

Abstract

An assembled battery (1) is provided with: a plurality of batteries (10, 20), which are laminated to each other; a heat insulating medium channel (31), which is provided between the batteries, and has a heat insulating medium circulating therein; and a cooling medium channel (32), which is provided between the batteries, and has a cooling medium circulating therein. The thermal resistance of the cooling medium is lower than that of the heat insulating medium. Heat transfer to the adjacent battery can be suppressed.

Description

組電池Assembled battery
 本発明は、組電池に関するものである。 The present invention relates to an assembled battery.
 複数の電池を積層してなる組電池において、断熱部の両面に伝熱部を有するスペーサを電池間に介挿し、電池に発生した熱をスペーサの伝熱部及び外装部材を介して外部へ放散させる組電池が提案されている(特許文献1)。 In a battery pack in which a plurality of batteries are stacked, spacers having heat transfer portions on both sides of the heat insulating portion are inserted between the batteries, and the heat generated in the batteries is dissipated to the outside through the heat transfer portion of the spacer and the exterior member. An assembled battery is proposed (Patent Document 1).
 しかしながら、上記従来技術では電池が高温になると隣接する電池に伝熱し、これにより当該隣接する電池も昇温するという問題がある。 However, the conventional technology has a problem that when a battery becomes hot, heat is transferred to an adjacent battery, and the adjacent battery is also heated.
特開2010-218716号公報JP 2010-218716 A
 本発明の目的は、隣接する電池への伝熱を抑制できる組電池を提供することである。 An object of the present invention is to provide an assembled battery that can suppress heat transfer to an adjacent battery.
 本発明は、積層された複数の電池の間に、断熱媒体が流通する断熱媒体通路及び冷媒が流通する冷媒通路を設け、冷媒の熱抵抗を断熱媒体の熱抵抗より低くした。 In the present invention, a heat insulating medium passage through which the heat insulating medium flows and a refrigerant passage through which the refrigerant flows are provided between the plurality of stacked batteries, and the heat resistance of the refrigerant is made lower than the heat resistance of the heat insulating medium.
 本発明によれば、冷媒及び断熱媒体を流通することで、冷媒の冷却効果及び断熱媒体の断熱効果の低下を防止でき、隣接する電池への伝熱を抑制することができる。 According to the present invention, by circulating the refrigerant and the heat insulating medium, the cooling effect of the refrigerant and the heat insulating effect of the heat insulating medium can be prevented from being lowered, and heat transfer to the adjacent battery can be suppressed.
本発明の一実施の形態に係る組電池を示すブロック図である。It is a block diagram which shows the assembled battery which concerns on one embodiment of this invention. 図1の通路アッセンブリプレートを示す断面図である。It is sectional drawing which shows the channel | path assembly plate of FIG. 図1の流量制御装置の制御手順を示すフローチャートである。It is a flowchart which shows the control procedure of the flow control apparatus of FIG. 図3による断熱媒体の制御モードを示すグラフである。It is a graph which shows the control mode of the heat insulation medium by FIG. 本発明の他の実施の形態に係る組電池を示す側面図である。It is a side view which shows the assembled battery which concerns on other embodiment of this invention.
 図1に示すように、組電池1は、複数の電池10,20を積層して構成され、さらに電池10,20の間に通路アッセンブリプレート30が介装されている。同図に示す組電池1は2つの電池10,20を積層したものであるが、3つ以上の電池を積層したものであってもよい。また、3つ以上の電池を積層した組電池においては、全ての電池の間に通路アッセンブリプレート30を介装してもよいが、複数個おきに介装してもよい。 As shown in FIG. 1, the assembled battery 1 is configured by laminating a plurality of batteries 10 and 20, and a passage assembly plate 30 is interposed between the batteries 10 and 20. The assembled battery 1 shown in the figure is a laminate of two batteries 10 and 20, but may be a laminate of three or more batteries. In the assembled battery in which three or more batteries are stacked, the passage assembly plate 30 may be interposed between all the batteries, or a plurality of batteries may be interposed.
 一つの電池の構成を、電池10を例に挙げて説明すると(電池20も同じ構成である)、電池10は、一対のラミネートフィルム製外装部材11の内部に発電要素が収容され、当該一対の外装部材の外周部が封止されたものである。図1においては外装部材11のみを示し、発電要素はその図示を省略する。外装部材11を構成するラミネートフィルムは、たとえば三層構造とされ、電池10の内側から外側に向かって、たとえばポリエチレン、変性ポリエチレン、ポリプロピレン、変性ポリプロピレン又はアイオノマー等の耐電解液性及び熱融着性に優れた樹脂フィルムから構成された内側樹脂層と、たとえばアルミニウム等の金属箔から構成された中間金属層と、たとえばポリアミド系樹脂又はポリエステル系樹脂等の電気絶縁性に優れた樹脂フィルムで構成された外側樹脂層とを有する。 The configuration of one battery will be described by taking the battery 10 as an example (the battery 20 has the same configuration). In the battery 10, a power generation element is accommodated inside a pair of laminate film exterior members 11, and the pair of The outer peripheral part of the exterior member is sealed. In FIG. 1, only the exterior member 11 is shown, and the illustration of the power generation element is omitted. The laminated film constituting the exterior member 11 has, for example, a three-layer structure, and from the inner side to the outer side of the battery 10, for example, an electrolytic solution resistance and a heat fusion property such as polyethylene, modified polyethylene, polypropylene, modified polypropylene, or ionomer. An inner resin layer composed of an excellent resin film, an intermediate metal layer composed of a metal foil such as aluminum, and a resin film excellent in electrical insulation such as a polyamide resin or a polyester resin And an outer resin layer.
 このように、一対の外装部材11は何れも、たとえばアルミニウム箔等からなる中間金属層の一方の面(電池10の内側面)をポリエチレン、変性ポリエチレン、ポリプロピレン、変性ポリプロピレン、又はアイオノマー等の樹脂でラミネートし、他方の面(電池10の外側面)をポリアミド系樹脂又はポリエステル系樹脂でラミネートした、樹脂-金属薄膜ラミネート材等の可撓性を有する材料で形成されている。 As described above, in each of the pair of exterior members 11, for example, one surface (inner surface of the battery 10) of the intermediate metal layer made of aluminum foil or the like is made of a resin such as polyethylene, modified polyethylene, polypropylene, modified polypropylene, or ionomer. It is made of a flexible material such as a resin-metal thin film laminate material obtained by laminating and laminating the other surface (the outer surface of the battery 10) with a polyamide resin or a polyester resin.
 一対の外装部材11が内側及び外側樹脂層に加えて中間金属層を具備することにより、外装部材11自体の強度向上を図ることが可能となる。また、外装部材11の内側樹脂層を、たとえばポリエチレン、変性ポリエチレン、ポリプロピレン、変性ポリプロピレン、又はアイオノマー等の樹脂で構成することにより、金属製の電極端子12,13との良好な融着性を確保することが可能となる。 When the pair of exterior members 11 includes the intermediate metal layer in addition to the inner and outer resin layers, the strength of the exterior member 11 itself can be improved. Further, the inner resin layer of the exterior member 11 is made of, for example, a resin such as polyethylene, modified polyethylene, polypropylene, modified polypropylene, or ionomer, thereby ensuring good fusion with the metal electrode terminals 12 and 13. It becomes possible to do.
 なお、本発明における外装部材11は、上述した三層構造にのみ限定されず、内側又は外側樹脂層のいずれか一層構造であってもよい。また、内側又は外側樹脂層のいずれか一方と中間金属層との二層構造であってもよい。さらに、必要に応じて四層以上の構造であってもよい。 In addition, the exterior member 11 in the present invention is not limited to the above-described three-layer structure, and may have a single-layer structure of the inner or outer resin layer. Moreover, the two-layer structure of either one of an inner side or an outer side resin layer, and an intermediate metal layer may be sufficient. Furthermore, the structure of four layers or more may be sufficient as needed.
 一対の外装部材11のそれぞれは、発電要素が収容できるように矩形状平板を浅い椀型(皿型)に成形した形状とされ、内部に発電要素と電解液を入れたのち、それぞれの外周部を重ね合わせ、当該外周部の全周が熱融着や接着剤により接合されている。 Each of the pair of exterior members 11 has a shape in which a rectangular flat plate is formed into a shallow bowl shape (dish mold) so that the power generation element can be accommodated. And the entire circumference of the outer peripheral part is joined by heat fusion or an adhesive.
 本例の電池10は、リチウムイオン二次電池であり、発電要素は正極板と負極板との間にセパレータを積層して構成されている。本例の発電要素は、たとえば3枚の正極板と、5枚のセパレータと、3枚の負極板と、電解質とから構成することができる。なお、本発明に係る電池10はリチウムイオン二次電池に限定されず、他の電池であってもよい。 The battery 10 of this example is a lithium ion secondary battery, and the power generation element is configured by laminating a separator between a positive electrode plate and a negative electrode plate. The power generation element of this example can be composed of, for example, three positive plates, five separators, three negative plates, and an electrolyte. The battery 10 according to the present invention is not limited to a lithium ion secondary battery, and may be another battery.
 発電要素を構成する正極板は、正極端子12まで伸びている正極側集電体と、この正極側集電体の一部の両主面にそれぞれ形成された正極層とを有する。なお、正極板と正極側集電体とを一枚の導電体で形成することもできるし、正極板と正極側集電体とを別の部材で構成し、これらを接合することもできる。 The positive electrode plate constituting the power generation element includes a positive electrode side current collector extending to the positive electrode terminal 12 and positive electrode layers respectively formed on both main surfaces of part of the positive electrode side current collector. Note that the positive electrode plate and the positive electrode side current collector can be formed of a single conductor, or the positive electrode plate and the positive electrode side current collector can be formed of different members, and these can be joined.
 正極板の正極側集電体は、たとえばアルミニウム箔、アルミニウム合金箔、銅箔、又は、ニッケル箔等の電気化学的に安定した金属箔から構成されている。また正極板の正極層は、たとえば、ニッケル酸リチウム(LiNiO2)、マンガン酸リチウム(LiMnO2)又はコバルト酸リチウム(LiCoO2)等のリチウム複合酸化物や、カルコゲン(S、Se、Te)化物等の正極活物質と、カーボンブラック等の導電剤と、ポリ四フッ化エチレンの水性ディスパージョン等の接着剤と、溶剤とを混合したものを、正極集電板の両主面に塗布し、乾燥及び圧延することにより形成されている。 The positive electrode side current collector of the positive electrode plate is made of an electrochemically stable metal foil such as an aluminum foil, an aluminum alloy foil, a copper foil, or a nickel foil. The positive electrode layer of the positive electrode plate is made of, for example, lithium composite oxide such as lithium nickelate (LiNiO 2 ), lithium manganate (LiMnO 2 ), or lithium cobaltate (LiCoO 2 ), or a chalcogen (S, Se, Te) compound. A mixture of a positive electrode active material such as carbon black, a conductive agent such as carbon black, an adhesive such as an aqueous dispersion of polytetrafluoroethylene, and a solvent, is applied to both main surfaces of the positive electrode current collector plate, It is formed by drying and rolling.
 発電要素を構成する負極板は、負極端子13まで伸びている負極側集電体と、当該負極側集電体の一部の両主面にそれぞれ形成された負極層とを有する。なお、負極板と負極側集電体とを一枚の導電体で形成することもできるし、負極板と負極側集電体とを別の部材で構成し、これらを接合することもできる。 The negative electrode plate constituting the power generation element includes a negative electrode side current collector extending to the negative electrode terminal 13 and negative electrode layers formed on both main surfaces of a part of the negative electrode side current collector. In addition, the negative electrode plate and the negative electrode side current collector can be formed of a single conductor, or the negative electrode plate and the negative electrode side current collector can be formed of different members and joined together.
 負極板の負極側集電体は、たとえばニッケル箔、銅箔、ステンレス箔、又は、鉄箔等の電気化学的に安定した金属箔から構成されている。また、負極板の負極層は、たとえば非晶質炭素、難黒鉛化炭素、易黒鉛化炭素、又は、黒鉛等のような上記の正極活物質のリチウムイオンを吸蔵及び放出する負極活物質に、有機物焼成体の前駆体材料としてのスチレンブタジエンゴム樹脂粉末の水性ディスパージョンを混合し、乾燥させた後に粉砕することで、炭素粒子表面に炭化したスチレンブタジエンゴムを担持させたものを主材料とし、これにアクリル樹脂エマルジョン等の結着剤をさらに混合し、この混合物を負極集電板の両主面に塗布し、乾燥及び圧延させることにより形成されている。 The negative electrode side current collector of the negative electrode plate is made of an electrochemically stable metal foil such as nickel foil, copper foil, stainless steel foil, or iron foil. In addition, the negative electrode layer of the negative electrode plate is, for example, a negative electrode active material that occludes and releases lithium ions of the positive electrode active material, such as amorphous carbon, non-graphitizable carbon, graphitizable carbon, or graphite. Mixing an aqueous dispersion of styrene butadiene rubber resin powder as a precursor material of an organic fired body, and drying and then pulverizing, the carbon material surface carrying carbonized styrene butadiene rubber as the main material, This is formed by further mixing a binder such as an acrylic resin emulsion, applying the mixture to both main surfaces of the negative electrode current collector plate, drying and rolling.
 正極板と負極板との間に積層されるセパレータは、正極板と負極板との短絡を防止するものであり、電解質を保持する機能を備えてもよい。このセパレータは、たとえばポリエチレンやポリプロピレンなどのポリオレフィン等から構成される微多孔性膜であり、過電流が流れると、その発熱によって層の空孔が閉塞され電流を遮断する機能をも有する。ただし、セパレータは、ポリオレフィン等の単層膜にのみ限られず、ポリプロピレン膜をポリエチレン膜でサンドイッチした三層構造や、ポリオレフィン微多孔膜と有機不織布等を積層したものも用いることができる。このようにセパレータを複層化することで、過電流の防止機能、電解質保持機能及びセパレータの形状維持(剛性向上)機能等の諸機能を付与することができる。 The separator laminated between the positive electrode plate and the negative electrode plate prevents a short circuit between the positive electrode plate and the negative electrode plate, and may have a function of holding an electrolyte. This separator is a microporous film made of polyolefin such as polyethylene or polypropylene, for example. When an overcurrent flows, the separator also has a function of blocking the current by closing the pores of the layer due to heat generation. However, the separator is not limited to a single-layer film such as polyolefin, but a three-layer structure in which a polypropylene film is sandwiched between polyethylene films, or a laminate of a polyolefin microporous film and an organic nonwoven fabric can also be used. By forming the separator in multiple layers as described above, various functions such as an overcurrent prevention function, an electrolyte holding function, and a separator shape maintenance (stiffness improvement) function can be provided.
 以上の発電要素は、セパレータを介して正極板と負極板とが交互に積層されてなる。そして、3枚の正極板は、正極側集電体を介して、金属箔製の正極端子12にそれぞれ接続される一方で、3枚の負極板は、負極側集電体を介して、同様に金属箔製の負極端子13にそれぞれ接続されている。 The above power generation elements are formed by alternately stacking positive plates and negative plates through separators. The three positive plates are respectively connected to the positive terminal 12 made of metal foil via the positive current collector, while the three negative plates are similarly connected via the negative current collector. And a negative electrode terminal 13 made of metal foil.
 図1に示すように、正極端子12と負極端子13は、発電要素の正極板及び負極板のそれぞれから外装部材11の外部へ導出されている。本例の電池10では、外装部材11の対向する辺(図1の左右の辺)の外周部から正極端子12と負極端子13とがそれぞれ導出されている。正極端子12及び負極端子13は正極タブ12及び負極タブ13とも称される。 As shown in FIG. 1, the positive electrode terminal 12 and the negative electrode terminal 13 are led out of the exterior member 11 from the positive electrode plate and the negative electrode plate of the power generation element. In the battery 10 of the present example, the positive electrode terminal 12 and the negative electrode terminal 13 are led out from the outer peripheral portion of the opposing sides (left and right sides in FIG. 1) of the exterior member 11. The positive terminal 12 and the negative terminal 13 are also referred to as a positive tab 12 and a negative tab 13.
 電池10は平面視において長方形とされているが、電池10の外形形状は長方形にのみ限定されず、正方形や他の多角形に形成することも可能である。また、正極端子12と負極端子13の導出位置は、本例のように対向する二つの外周部からそれぞれ導出させること以外にも、一つの外周部から並んで導出させてもよい。 The battery 10 is rectangular in plan view, but the outer shape of the battery 10 is not limited to a rectangle, and can be formed in a square or other polygons. Further, the lead-out positions of the positive electrode terminal 12 and the negative electrode terminal 13 may be led side by side from one outer peripheral portion in addition to being led from two opposing outer peripheral portions as in this example.
 以上のように構成された電池10は単体で使用に供することもできるが、本例では他の一または複数の電池20と接続して組み合わせ、所望の出力、容量の二次電池として使用に供する。 The battery 10 configured as described above can be used alone, but in this example, the battery 10 is connected to and combined with one or more other batteries 20 to be used as a secondary battery having a desired output and capacity. .
 複数の電池10,20を接続して組電池1を構成する場合に、図1に示すように複数の扁平状の電池10,20の主面同士を積み重ねて電池ケース内に収容することが行われる。この場合に、バスバを用いて電池10,20から導出された正極端子12、22及び負極端子13,23を直列及び/又は並列に接続する。 When the assembled battery 1 is configured by connecting a plurality of batteries 10 and 20, the main surfaces of the plurality of flat batteries 10 and 20 are stacked and accommodated in the battery case as shown in FIG. 1. Is called. In this case, the positive terminals 12 and 22 and the negative terminals 13 and 23 derived from the batteries 10 and 20 are connected in series and / or in parallel using a bus bar.
 次に、電池10,20の間に介装された通路アッセンブリプレート30について説明する。本例の通路アッセンブリプレート30は、断熱媒体が流通する断熱媒体通路31と、冷媒が流通する冷媒通路32とが一体的に形成された板状部材である。 Next, the passage assembly plate 30 interposed between the batteries 10 and 20 will be described. The passage assembly plate 30 of this example is a plate-like member in which a heat insulating medium passage 31 through which a heat insulating medium flows and a refrigerant passage 32 through which a refrigerant flows are integrally formed.
 断熱媒体は、熱抵抗が高い空気やアルゴンなどの気体を用いることが好ましく、冷媒は、熱抵抗が低いエチレングリコールやシリコンオイルなどの液体を用いることが好ましい。冷媒の熱抵抗は、断熱媒体の熱抵抗よりも相対的に低い。断熱媒体は、主として電池10又は20で発生した比較的大きな温度上昇熱が隣接する電池20又は10へ伝達するのを抑制するために機能し、冷媒は、主として電池10,20の充放電時に生じる比較的緩やかな温度上昇を抑制するために機能する。 The heat insulating medium is preferably a gas such as air or argon having a high thermal resistance, and the refrigerant is preferably a liquid such as ethylene glycol or silicon oil having a low thermal resistance. The heat resistance of the refrigerant is relatively lower than the heat resistance of the heat insulating medium. The heat insulating medium mainly functions to suppress transmission of relatively large temperature rise heat generated in the battery 10 or 20 to the adjacent battery 20 or 10, and the refrigerant is generated mainly when the batteries 10 and 20 are charged / discharged. It functions to suppress a relatively gradual temperature rise.
 通路アッセンブリプレート30の断面構造を図2に示す。本例の通路アッセンブリプレート30は、熱抵抗が高い樹脂材料、たとえばポリプロピレンで構成され、断面がハニカム状とされた凹凸プレート33,34と、これら凹凸プレート33,34の両面のそれぞれに貼り付けられ、熱抵抗が低い金属材料、たとえばアルミニウムで構成された薄板35,35と、を備える。そして、凹凸プレート33,34の凸部同士を図2に示すように重ねて張り合わせ、その両面のそれぞれに薄板35,35を貼り付けることで、内部に断熱媒体通路31と冷媒通路32が互いに気密状態となるように、かつ断熱媒体通路31の両面それぞれに冷媒通路32が位置するように形成される。なお、通路アッセンブリプレート30は少なくとも面方向(二次元方向)に伸縮可能とされていることが好ましい。また断熱媒体通路31と冷媒通路32が接していることで、断熱媒体通路31内の断熱媒体の昇温を冷媒によって効果的に抑制することができる。 A cross-sectional structure of the passage assembly plate 30 is shown in FIG. The passage assembly plate 30 of this example is made of a resin material having a high thermal resistance, for example, polypropylene, and is attached to the concave and convex plates 33 and 34 having a honeycomb cross section and both the concave and convex plates 33 and 34, respectively. And thin plates 35 and 35 made of a metal material having a low thermal resistance, for example, aluminum. Then, the convex portions of the concavo- convex plates 33 and 34 are overlapped and bonded as shown in FIG. 2, and the thin plates 35 and 35 are attached to both surfaces thereof, so that the heat insulating medium passage 31 and the refrigerant passage 32 are hermetically sealed. The refrigerant passages 32 are formed so that the refrigerant passages 32 are located on both surfaces of the heat insulation medium passage 31 so as to be in a state. The passage assembly plate 30 is preferably extendable and contractible at least in the plane direction (two-dimensional direction). Further, since the heat insulating medium passage 31 and the refrigerant passage 32 are in contact with each other, the temperature rise of the heat insulating medium in the heat insulating medium passage 31 can be effectively suppressed by the refrigerant.
 図1に示す通路アッセンブリプレート30の上面の冷媒通路32は電池10の下側の主面に接し、下面の冷媒通路32は電池20の上側の主面に接する。また、図1に示す通路アッセンブリプレート30の断熱媒体通路31は、電池10及び20の間に位置することになる。なお、通路アッセンブリプレート30は、平面視において電池10,20の外装部材11,21とほぼ同じ大きさか或いはこれより大きく形成されている。したがって、電池10,20の外装部材11,21が封止された外周部においては、電池10,20と通路アッセンブリプレート30との間に空間が存在することになる。 1, the refrigerant passage 32 on the upper surface of the passage assembly plate 30 is in contact with the lower main surface of the battery 10, and the refrigerant passage 32 on the lower surface is in contact with the upper main surface of the battery 20. Further, the heat insulating medium passage 31 of the passage assembly plate 30 shown in FIG. 1 is located between the batteries 10 and 20. The passage assembly plate 30 is formed to have the same size or larger than the exterior members 11 and 21 of the batteries 10 and 20 in plan view. Therefore, a space exists between the batteries 10 and 20 and the passage assembly plate 30 in the outer peripheral portion where the exterior members 11 and 21 of the batteries 10 and 20 are sealed.
 図1に示すように、冷媒は冷媒タンク36に貯留され、ポンプ37によって冷媒循環配管38に吸引され、通路アッセンブリプレート30の上下それぞれの冷媒通路32,32を流通したのち冷媒タンク36に戻される。冷媒通路32を通過する冷媒の流量は、一定量であっても冷却効果を得ることができるが、更に流量制御装置39がポンプ37に制御信号を出力することにより制御してもよい。たとえば、電池10,20は充放電する際に緩やかに発熱するので充放電時に冷媒を循環させ、充放電時以外は冷媒の循環を停止する。 As shown in FIG. 1, the refrigerant is stored in the refrigerant tank 36, sucked into the refrigerant circulation pipe 38 by the pump 37, circulated through the upper and lower refrigerant passages 32, 32 of the passage assembly plate 30, and then returned to the refrigerant tank 36. . Although the cooling effect can be obtained even if the flow rate of the refrigerant passing through the refrigerant passage 32 is a constant amount, the flow rate control device 39 may further control the flow rate by outputting a control signal to the pump 37. For example, since the batteries 10 and 20 generate heat gradually when charging and discharging, the refrigerant is circulated during charging and discharging, and the circulation of the refrigerant is stopped except during charging and discharging.
 断熱媒体が空気の場合は、ファン40によって周囲の空気が断熱媒体循環配管41に吸引され、通路アッセンブリプレート30の断熱媒体通路31を流通したのち外部へ放出される。断熱媒体がアルゴンガスなどの気体の場合は、図示を省略するが、アルゴンガス貯蔵容器からファン40によって断熱媒体循環配管41に吸引し、通路アッセンブリプレート30の断熱媒体通路31を流通させたのちアルゴンガス貯蔵容器へ戻す。断熱媒体通路31を通過する断熱媒体の流量は、一定量であっても断熱効果を得ることができるが、更に流量制御装置39がファン40に制御信号を出力することにより制御してもよい。 When the heat insulating medium is air, the surrounding air is sucked into the heat insulating medium circulation pipe 41 by the fan 40, and after flowing through the heat insulating medium passage 31 of the passage assembly plate 30, is released to the outside. In the case where the heat insulating medium is a gas such as argon gas, although not shown in the drawing, the air is sucked from the argon gas storage container to the heat insulating medium circulation pipe 41 by the fan 40 and circulated through the heat insulating medium passage 31 of the passage assembly plate 30. Return to gas storage container. Even if the flow rate of the heat insulating medium passing through the heat insulating medium passage 31 is a constant amount, the heat insulating effect can be obtained. However, the flow rate control device 39 may control the flow rate by outputting a control signal to the fan 40.
 電池10,20のそれぞれには、当該電池10,20の温度を検出する電池温度センサ42,43が設けられ、その検出信号は流量制御装置39へ出力される。また、電池10,20の外部温度を検出する外部温度センサ44が電池10,20の近傍に設けられ、その検出信号は流量制御装置39へ出力される。なお、外部温度センサ44に代えて断熱媒体の温度を直接検出してもよい。 Each of the batteries 10 and 20 is provided with battery temperature sensors 42 and 43 for detecting the temperature of the batteries 10 and 20, and the detection signals are output to the flow rate control device 39. In addition, an external temperature sensor 44 that detects the external temperature of the batteries 10 and 20 is provided in the vicinity of the batteries 10 and 20, and the detection signal is output to the flow control device 39. Note that the temperature of the heat insulating medium may be directly detected instead of the external temperature sensor 44.
 次に、流量制御装置39の断熱媒体の流量の制御手順を説明する。
 まず、ステップST1にて電池温度センサ42,43により検出された電池10,20の電池温度が第1の所定温度T1以上か否かを判断する。第1の所定温度T1は、通常の外気温度より高い温度であって、電池10,20を保護するための限界温度である。
Next, the control procedure of the flow rate of the heat insulating medium of the flow rate control device 39 will be described.
First, in step ST1, it is determined whether or not the battery temperatures of the batteries 10 and 20 detected by the battery temperature sensors 42 and 43 are equal to or higher than a first predetermined temperature T1. The first predetermined temperature T 1 is a temperature higher than the normal outside air temperature and is a limit temperature for protecting the batteries 10 and 20.
 電池10,20の電池温度の少なくとも一方が第1の所定温度T1以上の場合はステップST2へ進み、異常時の断熱媒体循環モードに設定し、流量制御装置39からファン40へ動作指令信号を出力し、通路アッセンブリプレート30の断熱媒体通路31に断熱媒体を流通させる。断熱媒体を流通させないと通路アッセンブリプレート30の断熱媒体通路31に滞留した断熱媒体自体も高温になるため、電池10又は20の熱が隣接する電池20又は10に伝達するのを抑制する効果が小さくなる。本例によれば、電池10又は20が高温になっても断熱媒体を流通させるので通路アッセンブリプレート30の断熱媒体通路31内の断熱媒体の昇温を抑制でき、これにより隣接する電池への伝熱を抑制することができる。 When at least one of the battery temperatures of the batteries 10 and 20 is equal to or higher than the first predetermined temperature T 1, the process proceeds to step ST 2, the abnormal heat insulation medium circulation mode is set, and an operation command signal is sent from the flow controller 39 to the fan 40. The heat insulation medium is circulated through the heat insulation medium passage 31 of the passage assembly plate 30. If the heat insulation medium is not circulated, the heat insulation medium itself staying in the heat insulation medium passage 31 of the passage assembly plate 30 also becomes a high temperature, so that the effect of suppressing the transfer of the heat of the battery 10 or 20 to the adjacent battery 20 or 10 is small. Become. According to this example, since the heat insulating medium is circulated even when the battery 10 or 20 becomes high temperature, it is possible to suppress the temperature rise of the heat insulating medium in the heat insulating medium passage 31 of the passage assembly plate 30, thereby transmitting to the adjacent battery. Heat can be suppressed.
 ステップST1にて電池10,20の電池温度が第1の所定温度未満である場合はステップST3へ進む。ステップST3では、外部温度センサ44により検出された外部温度が第2の所定温度T2以上か否かを判断する。第2の所定温度T2は、第1の所定温度T1未満であって、たとえば通常の外気温度より高い温度である。 When the battery temperature of the batteries 10 and 20 is lower than the first predetermined temperature in step ST1, the process proceeds to step ST3. In step ST3, it is determined whether or not the external temperature detected by the external temperature sensor 44 is equal to or higher than a second predetermined temperature T2. The second predetermined temperature T 2 is lower than the first predetermined temperature T 1 and is, for example, higher than the normal outside air temperature.
 外部温度が第2の所定温度T2以上の場合はステップST5へ進み、正常時の断熱媒体循環の停止モードに設定し、流量制御装置39からファン40へ停止指令信号を出力し、通路アッセンブリプレート30の断熱媒体通路31へ断熱媒体を流通させるのを停止する。外部温度が第2の所定温度T2以上の高温である場合に断熱媒体を断熱媒体通路31へ流通させると、温度が高くなっている断熱媒体が隣接する冷媒通路32の冷媒を加熱してしまい、冷媒による電池10,20の冷却効果が減少する。本例によれば、こうした冷媒による冷却効果を阻害するのを防止することができる。 If the external temperature is equal to or higher than the second predetermined temperature T2, the process proceeds to step ST5, the normal heat insulation medium circulation stop mode is set, a stop command signal is output from the flow control device 39 to the fan 40, and the passage assembly plate. The circulation of the heat insulation medium to the 30 heat insulation medium passages 31 is stopped. If the heat insulation medium is circulated through the heat insulation medium passage 31 when the external temperature is higher than the second predetermined temperature T2, the heat insulation medium having a high temperature heats the refrigerant in the adjacent refrigerant passage 32. The cooling effect of the batteries 10 and 20 by the refrigerant is reduced. According to this example, it is possible to prevent the cooling effect of such a refrigerant from being hindered.
 外部温度が第2の所定温度T2未満である場合はステップST4へ進み、さらに外部温度が第3の所定温度T3以下か否かを判断する。第3の所定温度T3は、第2の所定温度T2未満であって、たとえば冷媒温度に近いかそれ以下の温度である。外部温度が第3の所定温度T3以下である場合はステップST6へ進み、正常時断熱媒体循環モードに設定し、流量制御装置39からファン40へ動作指令信号を出力し、通路アッセンブリプレート30の断熱媒体通路31に断熱媒体を流通させる。外部温度が第3の所定温度以下である場合に断熱媒体を通路アッセンブリプレート30の断熱媒体通路31へ流通させることにより、冷媒に加えて当該断熱媒体を冷媒として利用することができる。 If external temperature is a second lower than the predetermined temperature T 2, the process proceeds to step ST4, further external temperature determines whether a third predetermined temperature T 3 below. The third predetermined temperature T 3 is lower than the second predetermined temperature T 2 and is, for example, a temperature close to or lower than the refrigerant temperature. When the external temperature is equal to or lower than the third predetermined temperature T 3 , the process proceeds to step ST 6, the normal heat insulating medium circulation mode is set, an operation command signal is output from the flow control device 39 to the fan 40, and the passage assembly plate 30 The heat insulating medium is circulated through the heat insulating medium passage 31. When the external temperature is equal to or lower than the third predetermined temperature, the heat insulating medium is circulated through the heat insulating medium passage 31 of the passage assembly plate 30 so that the heat insulating medium can be used as the refrigerant in addition to the refrigerant.
 ステップST4にて外部温度が第3の所定温度T3を超える場合はステップST5へ進み、正常時の断熱媒体循環の停止モードに設定し、流量制御装置39からファン40へ停止指令信号を出力し、通路アッセンブリプレート30の断熱媒体通路31へ断熱媒体を流通させるのを停止する。外部温度が第2の所定温度と第3の所定温度の間にある場合は、冷却効果が期待できず、却って隣接する冷媒通路32の冷媒を加熱し、冷媒による電池10,20の冷却効果が減少することがあるからである。以上の異常時の断熱媒体循環モード、正常時の断熱媒体循環の停止モード、正常時の断熱媒体循環モードの範囲を、図4の縦軸に電池温度をとり横軸に外部温度をとったグラフにて示す。 If the external temperature exceeds a third predetermined temperature T 3 at step ST4 proceeds to step ST5, sets the stop mode of the heat insulating medium circulating in the normal, the flow controller 39 to the fan 40 outputs a stop command signal Then, the circulation of the heat insulating medium to the heat insulating medium passage 31 of the passage assembly plate 30 is stopped. When the external temperature is between the second predetermined temperature and the third predetermined temperature, the cooling effect cannot be expected. On the contrary, the refrigerant in the adjacent refrigerant passage 32 is heated, and the cooling effect of the batteries 10 and 20 by the refrigerant is increased. This is because it may decrease. FIG. 4 is a graph in which the vertical axis in FIG. 4 represents the battery temperature and the horizontal axis represents the external temperature, with the ranges of the abnormal heat insulation medium circulation mode, the normal insulation medium circulation stop mode, and the normal insulation medium circulation mode as described above. Is shown.
 なお、上述した実施形態では、電池10,20と通路アッセンブリプレート30とは積層しているだけで接着されていないが、図5に示すように通路アッセンブリプレート30の一方の面を電池10の主面に接着し、他方の面を電池20の主面に接着してもよい。既述したとおり、通路アッセンブリプレート30の外周部と電池10,20の外周部との間には、電池10,20の封止による隙間が存在し、また通路アッセンブリプレート30は伸縮可能とされている。 In the above-described embodiment, the batteries 10 and 20 and the passage assembly plate 30 are simply stacked and not bonded, but one side of the passage assembly plate 30 is attached to the main body of the battery 10 as shown in FIG. The other surface may be bonded to the main surface of the battery 20. As described above, a gap due to sealing of the batteries 10 and 20 exists between the outer periphery of the passage assembly plate 30 and the outer periphery of the batteries 10 and 20, and the passage assembly plate 30 can be extended and contracted. Yes.
 このため、電池10,20が高温となって外装部材11,21が膨張した場合に、通路アッセンブリプレート30もこの膨張にともなって面方向(二次元方向)に引き伸ばされる。これにより、通路アッセンブリプレート30の断熱媒体通路31が膨張し、断熱媒体による断熱効果が向上することになる。 For this reason, when the batteries 10 and 20 become hot and the exterior members 11 and 21 expand, the passage assembly plate 30 is also stretched in the surface direction (two-dimensional direction) along with the expansion. Thereby, the heat insulation medium channel | path 31 of the channel | path assembly plate 30 expand | swells, and the heat insulation effect by a heat insulation medium improves.
 以上のように、本例の組電池1によれば、電池10、20の間に、断熱媒体通路31及び冷媒通路32を設け、冷媒の熱抵抗を断熱媒体の熱抵抗より低くするので、冷媒の冷却効果及び断熱媒体の断熱効果の低下を防止でき、隣接する電池への伝熱を抑制することができる。 As described above, according to the assembled battery 1 of the present example, the heat insulating medium passage 31 and the refrigerant passage 32 are provided between the batteries 10 and 20 so that the heat resistance of the refrigerant is lower than the heat resistance of the heat insulating medium. Decrease in the cooling effect and the heat insulating effect of the heat insulating medium can be prevented, and heat transfer to adjacent batteries can be suppressed.
 また、冷媒通路を電池と断熱媒体通路との間に設けているので、電池10又は電池20で発生した比較的大きな温度上昇熱が隣接する電池20又は電池10へ伝達するのを抑制することができ、また、例えば電池10,20の充放電時に生じる比較的緩やか温度上昇も抑制することができる。 Further, since the refrigerant passage is provided between the battery and the heat insulating medium passage, it is possible to suppress the relatively large temperature rise heat generated in the battery 10 or the battery 20 from being transmitted to the adjacent battery 20 or the battery 10. In addition, for example, it is possible to suppress a relatively gradual temperature rise that occurs during charging / discharging of the batteries 10 and 20, for example.
 また、電池温度と外部温度に応じて適宜断熱媒体の流量を制御するので、冷媒による通常の冷却性能を悪化させることなく、電池10,20が異常に温度上昇した場合でも十分に断熱効果を発揮することができる。 In addition, since the flow rate of the heat insulation medium is appropriately controlled according to the battery temperature and the external temperature, the heat insulation effect is sufficiently exhibited even when the temperature of the batteries 10 and 20 rises abnormally without deteriorating the normal cooling performance by the refrigerant. can do.
 また、電池10,20の温度が第1の所定温度T1以上である場合のような異常時は、電池温度は外部温度よりも圧倒的に高いため、断熱媒体の流通を停止すると断熱媒体自体が昇温してしまい、断熱効果が著しく低下するおそれがあるが、本例では断熱媒体を循環させることで断熱効果の低下を防止し、十分な断熱効果を維持することができる。 Further, abnormality such as when the temperature of the battery 10, 20 is a first predetermined temperature above T 1, since overwhelmingly higher than the battery temperature is outside the temperature, the heat insulating medium itself is stopped the flow of the heat insulating medium However, in this example, it is possible to prevent a decrease in the heat insulation effect and maintain a sufficient heat insulation effect by circulating the heat insulation medium.
 また、電池10,20の温度が第1の所定温度T1未満であるが、第2の所定温度T2以上であるような正常時は、断熱媒体を流通させると、例えば外部温度が高温の場合には断熱媒体が徐々に昇温し、冷媒による電池の冷却の妨げになるおそれがある。しかしながら、本例では断熱媒体の流通を停止させることで、それを防止し、十分な冷却効果を維持することができる。 Further, when the temperature of the batteries 10 and 20 is lower than the first predetermined temperature T 1 but is normal such that the temperature is equal to or higher than the second predetermined temperature T 2 , when the heat insulating medium is circulated, for example, the external temperature is high. In some cases, the temperature of the heat insulating medium gradually increases, which may hinder cooling of the battery by the refrigerant. However, in this example, by stopping the circulation of the heat insulating medium, it can be prevented and a sufficient cooling effect can be maintained.
 また、電池10,20の温度が第1の所定温度T1未満であり、さらに第3の所定温度T3以下であるような正常時は、低温となった断熱媒体を流通させることにより、冷媒に加えて冷却媒体として利用することができる。 Further, when the temperature of the batteries 10 and 20 is lower than the first predetermined temperature T 1 and is normally lower than the third predetermined temperature T 3 , the refrigerant is circulated by circulating the low-temperature heat insulating medium. In addition, it can be used as a cooling medium.
 さらに、電池10,20と通路アッセンブリプレート30とを接着すれば、異常時に電池10,20の外装部材11,21が膨張すると、通路アッセンブリプレート30もこの膨張にともなって面方向(二次元方向)に引き伸ばされる。これにより、通路アッセンブリプレート30の断熱媒体通路31が膨張し、断熱媒体による断熱効果が向上することになる。 Further, if the batteries 10 and 20 and the passage assembly plate 30 are bonded together, and the exterior members 11 and 21 of the batteries 10 and 20 expand in the event of an abnormality, the passage assembly plate 30 also moves in the plane direction (two-dimensional direction). To be stretched. Thereby, the heat insulation medium channel | path 31 of the channel | path assembly plate 30 expand | swells, and the heat insulation effect by a heat insulation medium improves.
 上記電池温度センサ42,43は本発明に係る電池温度検出手段に相当し、上記外部温度センサ44は本発明に係る外部温度検出手段に相当し、上記流量制御装置39は本発明に係る流量制御手段に相当する。 The battery temperature sensors 42 and 43 correspond to the battery temperature detection means according to the present invention, the external temperature sensor 44 corresponds to the external temperature detection means according to the present invention, and the flow rate control device 39 corresponds to the flow rate control according to the present invention. Corresponds to means.

Claims (7)

  1.  積層された複数の電池と、
     前記電池の間に設けられ、断熱媒体が流通する断熱媒体通路と、
     前記電池の間に設けられ、冷媒が流通する冷媒通路と、
     を備え、
     前記冷媒の熱抵抗は、前記断熱媒体の熱抵抗より低い組電池。
    A plurality of stacked batteries;
    A heat insulating medium passage provided between the batteries and through which the heat insulating medium flows;
    A refrigerant passage provided between the batteries and through which the refrigerant flows;
    With
    The battery pack has a thermal resistance lower than that of the heat insulating medium.
  2.  前記冷媒通路は、前記電池と前記断熱媒体通路との間に設けられている請求項1記載の組電池。 The assembled battery according to claim 1, wherein the refrigerant passage is provided between the battery and the heat insulating medium passage.
  3.  前記電池の温度を検出する電池温度検出手段と、
     前記電池の外部温度を検出する外部温度検出手段と、
     前記断熱媒体通路を流れる断熱媒体の流量を制御する流量制御手段と、
     をさらに備え、
     前記流量制御手段は、前記電池の温度と前記外部温度に応じて、前記断熱媒体通路を流れる断熱媒体の流量を制御する請求項1又は2に記載の組電池。
    Battery temperature detecting means for detecting the temperature of the battery;
    An external temperature detecting means for detecting an external temperature of the battery;
    Flow rate control means for controlling the flow rate of the heat insulating medium flowing through the heat insulating medium passage;
    Further comprising
    The assembled battery according to claim 1, wherein the flow rate control unit controls the flow rate of the heat insulating medium flowing through the heat insulating medium passage according to the temperature of the battery and the external temperature.
  4.  前記流量制御手段は、前記電池の温度が第1の所定温度以上の場合に、前記断熱媒体通路に断熱媒体を流通させる請求項3に記載の組電池。 The assembled battery according to claim 3, wherein the flow rate control means causes the heat insulating medium to flow through the heat insulating medium passage when the temperature of the battery is equal to or higher than a first predetermined temperature.
  5.  前記流量制御手段は、前記電池の温度が前記第1の所定温度未満であり、前記外部温度が第2の所定温度以上の場合に、前記断熱媒体通路における断熱媒体の流通を停止する請求項4に記載の組電池。 The flow rate control means stops the flow of the heat insulating medium in the heat insulating medium passage when the temperature of the battery is lower than the first predetermined temperature and the external temperature is equal to or higher than a second predetermined temperature. The assembled battery described in 1.
  6.  前記流量制御手段は、前記電池の温度が前記第1の所定温度未満であり、前記外部温度が第3の所定温度以下の場合に、前記断熱媒体通路に断熱媒体を流通させる請求項4又は5に記載の組電池。 The flow rate control means causes the heat insulating medium to flow through the heat insulating medium passage when the temperature of the battery is lower than the first predetermined temperature and the external temperature is equal to or lower than a third predetermined temperature. The assembled battery described in 1.
  7.  前記断熱媒体通路と前記冷媒通路とが一体的に形成された通路アッセンブリプレートを有し、
     前記通路アッセンブリプレートは、前記電池の主面に接着されている請求項1~6のいずれか一項に記載の組電池。
    A passage assembly plate in which the heat insulating medium passage and the refrigerant passage are integrally formed;
    The assembled battery according to any one of claims 1 to 6, wherein the passage assembly plate is bonded to a main surface of the battery.
PCT/JP2012/064546 2011-07-04 2012-06-06 Assembled battery WO2013005523A1 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2011148225 2011-07-04
JP2011-148225 2011-07-04
JP2012115249A JP2013033723A (en) 2011-07-04 2012-05-21 Battery pack
JP2012-115249 2012-05-21

Publications (1)

Publication Number Publication Date
WO2013005523A1 true WO2013005523A1 (en) 2013-01-10

Family

ID=47436880

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/064546 WO2013005523A1 (en) 2011-07-04 2012-06-06 Assembled battery

Country Status (2)

Country Link
JP (1) JP2013033723A (en)
WO (1) WO2013005523A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106797061A (en) * 2014-08-28 2017-05-31 橙力电池株式会社 Energy-storage system
CN110114903A (en) * 2016-12-27 2019-08-09 三菱化学株式会社 The heat transfer control method of partition member, battery pack and battery pack

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6192467B2 (en) * 2013-09-30 2017-09-06 積水化学工業株式会社 Assembled battery
JP6277838B2 (en) * 2014-04-14 2018-02-14 株式会社Gsユアサ Power storage device
JP6459207B2 (en) * 2014-04-30 2019-01-30 株式会社Gsユアサ Power storage device
WO2016032101A1 (en) * 2014-08-28 2016-03-03 (주)오렌지파워 Energy storage system
KR102585988B1 (en) * 2018-06-20 2023-10-05 주식회사 엘지에너지솔루션 Battery module, battery pack comprising the battery module and vehicle comprising the battery pack

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61173470A (en) * 1984-10-05 1986-08-05 スペイス・システムズ・ローラル・インコーポレイテッド Positively cooling type cooler for electrochemical battery
JPH09199186A (en) * 1996-01-22 1997-07-31 Toyota Autom Loom Works Ltd Storage battery cooling structure, storage battery module using storage battery cooling structure and storage battery cooling method
JP2004504702A (en) * 2000-07-13 2004-02-12 ダイムラークライスラー アーゲー Heat exchanger structure for multiple electrochemical batteries
JP2009009853A (en) * 2007-06-28 2009-01-15 Sanyo Electric Co Ltd Power source device for vehicle

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61173470A (en) * 1984-10-05 1986-08-05 スペイス・システムズ・ローラル・インコーポレイテッド Positively cooling type cooler for electrochemical battery
JPH09199186A (en) * 1996-01-22 1997-07-31 Toyota Autom Loom Works Ltd Storage battery cooling structure, storage battery module using storage battery cooling structure and storage battery cooling method
JP2004504702A (en) * 2000-07-13 2004-02-12 ダイムラークライスラー アーゲー Heat exchanger structure for multiple electrochemical batteries
JP2009009853A (en) * 2007-06-28 2009-01-15 Sanyo Electric Co Ltd Power source device for vehicle

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106797061A (en) * 2014-08-28 2017-05-31 橙力电池株式会社 Energy-storage system
CN110114903A (en) * 2016-12-27 2019-08-09 三菱化学株式会社 The heat transfer control method of partition member, battery pack and battery pack
CN110114903B (en) * 2016-12-27 2022-09-27 三菱化学株式会社 Partition member, battery pack, and heat transfer control method for battery pack
US11837705B2 (en) 2016-12-27 2023-12-05 Mitsubishi Chemical Corporation Partition member, assembled battery and method for controlling heat transfer in an assembled battery

Also Published As

Publication number Publication date
JP2013033723A (en) 2013-02-14

Similar Documents

Publication Publication Date Title
JP5772428B2 (en) Secondary battery cooling device
WO2013005523A1 (en) Assembled battery
JP5906354B2 (en) Secondary battery, secondary battery component applied to the secondary battery, and secondary battery manufacturing method
JP4374947B2 (en) Multilayer bipolar secondary battery having a cooling tab
JP5477467B2 (en) Bipolar secondary battery
WO2012172829A1 (en) Assembled cell
JP2009187889A (en) Battery case and battery pack
US20120301777A1 (en) Secondary battery
KR20140041057A (en) Pouch-type secondary battery
JP2009016275A (en) Secondary battery, battery pack, and vehicle
JPWO2019031457A1 (en) Power storage module and power storage element
KR101459179B1 (en) Pouch type secondary battery
KR20150051178A (en) Pouch-type secondary battery for preventing humidity penetration
JPWO2014010395A1 (en) Battery structure
JP2006079987A (en) Hybrid battery system
JP2006318752A (en) Battery
JP2012069283A (en) Method for manufacturing stacked cell and stacked cell separator
KR20140032701A (en) Pouch type secondary battery
KR102498952B1 (en) Pouch for secondary battery and secondary battery comprising the same
KR20150062688A (en) Battery cell, Battery module and battery pack comprising the same
JP2006236775A (en) Secondary battery
JP2006185709A (en) Secondary battery and battery pack using it
KR101243550B1 (en) Secondary battery improved safety characteristic using fixing element
KR101722662B1 (en) Pouch-Type Secondary Battery
KR20140129600A (en) Secondary battery and Component for secondary battery applied for it

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12807236

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12807236

Country of ref document: EP

Kind code of ref document: A1