WO2013005409A1 - Method for manufacturing glass sheet - Google Patents

Method for manufacturing glass sheet Download PDF

Info

Publication number
WO2013005409A1
WO2013005409A1 PCT/JP2012/004262 JP2012004262W WO2013005409A1 WO 2013005409 A1 WO2013005409 A1 WO 2013005409A1 JP 2012004262 W JP2012004262 W JP 2012004262W WO 2013005409 A1 WO2013005409 A1 WO 2013005409A1
Authority
WO
WIPO (PCT)
Prior art keywords
wall surface
molten glass
glass
molded body
guides
Prior art date
Application number
PCT/JP2012/004262
Other languages
French (fr)
Japanese (ja)
Inventor
浩幸 苅谷
Original Assignee
AvanStrate株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by AvanStrate株式会社 filed Critical AvanStrate株式会社
Priority to KR1020127021627A priority Critical patent/KR101372609B1/en
Priority to JP2012530017A priority patent/JP5452724B2/en
Priority to CN201280003051.9A priority patent/CN103140447B/en
Publication of WO2013005409A1 publication Critical patent/WO2013005409A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B18/00Shaping glass in contact with the surface of a liquid
    • C03B18/02Forming sheets
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B17/00Forming molten glass by flowing-out, pushing-out, extruding or drawing downwardly or laterally from forming slits or by overflowing over lips
    • C03B17/06Forming glass sheets
    • C03B17/064Forming glass sheets by the overflow downdraw fusion process; Isopipes therefor
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B17/00Forming molten glass by flowing-out, pushing-out, extruding or drawing downwardly or laterally from forming slits or by overflowing over lips
    • C03B17/06Forming glass sheets

Definitions

  • the present invention relates to a method for producing a glass plate by a downdraw method.
  • a thin glass plate having a thickness of, for example, 0.5 to 0.7 mm is used for a glass substrate used in a flat panel display (hereinafter referred to as “FPD”) such as a liquid crystal display or a plasma display.
  • FPD flat panel display
  • the FPD glass substrate has a size of 300 ⁇ 400 mm in the first generation, but has a size of 2850 ⁇ 3050 mm in the tenth generation.
  • the overflow down draw method is most often used to manufacture such a large FPD glass substrate.
  • the overflow down draw method includes a step of forming a glass ribbon below the formed body by causing the molten glass to overflow from the upper part of the formed body in a forming furnace, and a step of gradually cooling the glass ribbon in a slow cooling furnace.
  • the slow cooling furnace draws the glass ribbon between the pair of rollers and stretches it to a desired thickness, and then slowly cools the glass ribbon. Thereafter, the glass ribbon is cut to a predetermined size to form a glass plate, which is laminated on another glass plate and stored. Or a glass plate is conveyed by the following process.
  • the downdraw method it describes in the following patent document 1, for example.
  • glass ribbon can be formed with a stable shape at both ends (ear portions) of the glass ribbon to be formed even when the viscosity of the molten glass is relatively high.
  • An apparatus is known (Patent Document 2).
  • the upper surface on which a supply groove for supplying molten glass is formed, and the molten glass that overflows on both sides of the supply groove from the supply groove along the upper surface and flows down from both ends of the upper surface is guided and fused.
  • a pair of guides that oppose each other and regulate the width of the molten glass flowing down along the pair of wall surfaces.
  • Each of the pair of guides has a downwardly sharp outline with the point on the ridge line formed by the lower ends of the pair of wall surfaces intersecting each other when viewed from the opposite direction.
  • the shape of both ends of the glass ribbon may not be sufficiently stabilized.
  • the glass ribbon formed by the glass forming apparatus is stably maintained at a constant thickness at the ears that are both ends in the width direction of the glass ribbon, as shown in FIG. It is preferable.
  • the molten glass that has flowed through the walls on both sides of the formed body is joined and bonded together at the lowermost end of the formed body.
  • the molten glass ears may open in a bifurcated shape while undulating in the longitudinal direction of the glass ribbon. Such a shape of the ear portion may cause the glass ribbon to break, and the glass ribbon may not be continuously operated.
  • an object of the present invention is to provide a method for producing a glass plate, in which the shape of the ear portion of the glass ribbon can be made more stable than before, and the glass ribbon can be formed.
  • One embodiment of the present invention is a method for producing a glass plate by a downdraw method.
  • the manufacturing method is A melting step of melting glass raw material to obtain molten glass;
  • the molten glass is supplied to a supply groove provided in the upper part of the molded body, thereby overflowing the molten glass from the upper part of the supply groove, and melted by a pair of guides protruding from the wall surface of the molded body.
  • the wall surface of the molded body includes a vertical wall surface in which the molten glass overflowing from the supply groove flows down in the vertical direction, and the vertical wall surface that guides the molten glass that has flowed down the vertical wall surface to the lowest end portion of the molded body. Connected inclined wall surfaces.
  • the height of the pair of guides from the inclined wall surface is a thickness of the molten glass flowing through the inclined wall surface in such a range that the molten glass does not get over the pair of guides. It is set low compared to.
  • the height of the pair of guides from the inclined wall surface is preferably lower at a position below the molded body.
  • the height of the pair of guides from the inclined wall surface decreases continuously or stepwise as it goes downward of the molded body. preferable.
  • the lowermost end portion of the molded body is a linear ridgeline in which the inclined wall surfaces on both sides are connected, and the lowermost end portions of the pair of guides are located on the ridgeline.
  • the height of the pair of guides from the inclined wall surface may be, for example, 10 mm to 20 mm lower than the thickness of the molten glass flowing through the inclined wall surface. it can.
  • the viscosity of the molten glass flowing down the wall surface can be set to 3000 to 60000 [Pa ⁇ sec].
  • One embodiment of the present invention is also a method for manufacturing a glass plate by a downdraw method.
  • the method is A melting step of melting glass raw material to obtain molten glass;
  • the molten glass is supplied to a supply groove provided in the upper part of the molded body, thereby overflowing the molten glass from the upper part of the supply groove, and melted by a pair of guides protruding from the wall surface of the molded body.
  • the wall surface of the molded body includes a vertical wall surface in which the molten glass overflowing from the supply groove flows down in the vertical direction, and the vertical wall surface that guides the molten glass that has flowed down the vertical wall surface to the lowest end portion of the molded body. Connected inclined wall surfaces.
  • the pair of guides has a shape along the outer shape of the cross section of the molded body, and has a lowermost portion at the lowermost end portion of the molded body, and the guide from the inclined wall surface.
  • the height from the wall surface of the pair of guides is provided lower than the thickness of the molten glass flowing through the wall surface in the entire region from which the molten glass flows, so that the both ends at the ends when the molten glass merges are provided. Reduce the thickness of the molten glass.
  • the height of the pair of guides from the wall surface is preferably lower at a position below the molded body.
  • the height of the pair of guides from the wall surface is preferably reduced continuously or stepwise as it goes downward of the molded body.
  • the lowermost end portion of the molded body is a linear ridgeline in which the inclined wall surfaces on both sides are connected, and the lowermost end portions of the pair of guides are located on the ridgeline.
  • the height of the pair of guides from the wall surface can be, for example, 10 mm to 20 mm lower than the thickness of the molten glass flowing through the wall surface.
  • the method for producing a glass ribbon according to the above aspect can form a glass ribbon while making the shape of the ear portion of the glass ribbon more stable than the conventional one.
  • FIG. 1 is a process diagram of a method for producing a glass plate.
  • the glass plate manufacturing method includes a melting step (ST1), a refining step (ST2), a homogenizing step (ST3), a supplying step (ST4), a forming step (ST5), and a slow cooling step (ST6). And a cutting step (ST7).
  • a plurality of glass plates that have a grinding process, a polishing process, a cleaning process, an inspection process, a packing process, and the like and are stacked in the packing process are conveyed to a supplier.
  • FIG. 2 is a diagram schematically showing an apparatus for performing the melting step (ST1) to the cutting step (ST7).
  • the apparatus mainly includes a melting apparatus 200, a forming apparatus 300, and a cutting apparatus 400.
  • the melting apparatus 200 includes a melting tank 201, a clarification tank 202, a stirring tank 203, a first pipe 204, and a second pipe 205.
  • the molding apparatus 300 will be described later.
  • the glass raw material supplied into the melting tank 201 is heated and melted with a flame and an electric heater (not shown) to obtain molten glass.
  • the clarification step (ST2) is performed in the clarification tank 202, and by heating the molten glass in the clarification tank 202, bubbles contained in the molten glass grow by the oxidation-reduction reaction of the clarifier and float on the liquid surface. The gas component in the bubble is released or the gas component in the bubble is absorbed into the molten glass, and the bubble disappears.
  • the homogenization step (ST3) the molten glass in the stirring tank 203 supplied through the first pipe 204 is stirred using a stirrer to homogenize the glass components.
  • the molten glass is supplied to the forming apparatus 300 through the second pipe 205.
  • a molding process (ST5) and a slow cooling process (ST6) are performed.
  • the molten glass is formed into a glass ribbon G (see FIG. 3) to make a flow of the glass ribbon G.
  • an overflow down draw method using a molded body 310 described later is used.
  • the glass ribbon G that has been formed and flows has a desired thickness and is cooled.
  • the cutting device 400 cuts the glass ribbon G supplied from the forming device 300 into a predetermined length, thereby obtaining a plate-like glass plate G1 (see FIG. 3).
  • the cut glass plate G1 is further cut into a predetermined size to produce a glass plate G1 having a target size. Thereafter, grinding, polishing, and cleaning of the glass end surface are performed, and after the presence of abnormal defects such as bubbles and striae is inspected, the glass plate G1 that has passed the inspection is packed as a final product.
  • FIG. 3 is a diagram mainly showing a configuration of a molding apparatus 300 that performs the molding process and the slow cooling process.
  • the glass plate molded by the molding apparatus 300 is preferably used for, for example, a glass substrate for liquid crystal display, a glass substrate for organic EL display, and a cover glass.
  • it can be used as a display for a portable terminal device, a cover glass for a casing, a touch panel plate, a glass substrate of a solar cell, or a cover glass.
  • the forming furnace 40 that performs the forming step (ST5) and the slow cooling furnace 50 that performs the slow cooling step (ST6) are surrounded by a furnace wall made of refractory bricks.
  • the molding furnace 40 is provided vertically above the slow cooling furnace 50.
  • the forming furnace 40 and the slow cooling furnace 50 are collectively referred to as a furnace 30.
  • a molded body 310, a cooling roller 330, and conveying rollers 350a to 350c are provided in the furnace inner space surrounded by the furnace wall of the furnace 30, a molded body 310, a cooling roller 330, and conveying rollers 350a to 350c are provided.
  • the molded body 310 forms the molten glass flowing from the melting device 200 through the second pipe 205 shown in FIG. Thereby, the flow of the glass ribbon G of the vertically lower direction is made in the forming apparatus 300.
  • the molded body 310 is a long and narrow structure made of refractory brick or the like, and has a wedge-shaped cross section as shown in FIG.
  • a supply groove 312 serving as a flow path for guiding the molten glass is provided in the upper part of the molded body 310.
  • the supply groove 312 is connected to the second pipe 205 at a supply port provided in the molding apparatus 300, and the molten glass flowing through the second pipe 205 flows along the supply groove 312.
  • the depth of the supply groove 312 is shallower toward the downstream side of the flow of the molten glass, so that the molten glass overflows vertically downward from the groove 312.
  • the molten glass overflowing from the supply groove 312 flows down along the vertical wall surface and the inclined wall surface of the side wall on both sides of the molded body 310.
  • the molten glass that has flowed through the side walls merges at the lower end 313 of the molded body 310 shown in FIG. 3 to form one glass ribbon G.
  • the molding process will be described in detail later.
  • a cooling roller 330 is provided below the molded body 310.
  • the cooling roller 330 is in contact with the surface of the glass ribbon G near both ends in the width direction of the glass ribbon G, pulls the glass ribbon G downward to form the glass ribbon G to a desired thickness, and cools the glass ribbon G. .
  • transport rollers 350a to 350c are provided at predetermined intervals, and the glass ribbon G is pulled downward.
  • a lower space including the cooling roller 330 is a furnace internal space of the slow cooling furnace 50.
  • Each of the transport rollers 350a to 350c has a pair of rollers and is provided at both end portions in the width direction of the glass ribbon G so as to sandwich both sides of the glass ribbon G.
  • the forming apparatus 300 forms the glass ribbon G from the molten glass flowing down through the formed body 310.
  • the molded glass ribbon G changes from a flow that drops vertically on the wall surface of the molded body 310 according to gravity to a flow that is forcibly drawn downward using the cooling roller 330 and the conveying rollers 350a to 350c positioned below. Change.
  • FIG. 4 is a diagram illustrating the molding process in detail.
  • the molded body 310 used in the molding process mainly includes a main body portion 314 and a pair of guide plates 316.
  • the direction in which the molten glass is supplied is defined as the X direction. This direction is also the width direction of the molten glass flowing on the wall surface of the molded body 310.
  • the main body 314 is a long member whose cut surface forms a pentagon when cut along a plane perpendicular to the X direction, and is composed of refractory bricks.
  • the pair of guide plates 316 are plate members made of platinum or a platinum alloy, and are provided at both end portions of the main body portion 314 and function as guide portions for molten glass, which will be described later.
  • Each of the guide plates 316 has a substantially pentagonal shape having a larger area than the pentagonal shape of the main body portion 314 by the height of the guide portion described later.
  • the guide plate 316 on the side connected to the second pipe 205 is provided with a notch for supplying molten glass to the supply groove 312 of the main body 314.
  • the molding apparatus 300 causes the molten glass to overflow from the upper part of the supply groove 312 by supplying the molten glass to the supply groove 312 provided at the upper part of the molded body 310 via the second pipe 205.
  • the pair of guide portions protruding from the wall surface of the molded body 310 regulates the width of the flow of the molten glass, and causes the molten glass to flow down along the wall surfaces of the respective side walls on the lower side of the molded body 310.
  • the forming apparatus 300 forms the glass ribbon G by guiding the molten glass flowing down to the lowermost end portion 313 of the molded body 312 and joining the molten glass flowing through the both wall surfaces at the lowermost end portion 313.
  • the formed glass ribbon G is pulled downward by the cooling roller 330.
  • the wall surface of the molded body 310 includes a vertical wall surface 313a where the molten glass overflowing from the supply groove 312 flows down vertically, and a vertical wall surface 313a that guides the molten glass flowing down the vertical wall surface 313a to the lowest end portion 313 of the molded body 310. And an inclined wall surface 313b connected to the. Therefore, the molten glass overflowing from the supply groove 312 of the molded body 310 travels through the vertical wall surfaces 313a on both sides when the molded body 310 is viewed in the X direction, and then travels along the inclined wall surfaces 313b to reach the lowermost end portion 313.
  • the guide portion is an edge portion of the guide plate 316 and is a portion protruding from the vertical wall surface 313a and the inclined wall surface 313b, and refers to a portion that regulates the position and width of the molten glass flowing along the wall surface.
  • FIG. 5 is a view for explaining the guide plate 316 and the molten glass viewed from the guide plate 316 on the downstream side in the X direction shown in FIG. 4 in the direction opposite to the X direction.
  • the height of the guide portions of the pair of guide plates 316 from the vertical wall surface 313a and the inclined wall surface 313b is within the range where the molten glass does not get over the guide portions of the pair of guide plates 316. It is lower than the thickness of the molten glass G flowing through (the vertical wall surface 313a and the inclined wall surface 313b).
  • the height of the upper guide portion of the guide plate 316 is higher than the thickness of the molten glass flowing through the upper portion.
  • the difference between the thickness of the molten glass and the height from the wall surface of the guide portion of the guide plate 316 in the vertical wall surface 313a and the inclined wall surface 313b, that is, the height at which the molten glass protrudes from the guide portion is, for example, 10 to 20 mm. It is. In this range, the shape of the molten glass can be maintained by the surface tension of the molten glass, and the guide portion is prevented from getting over. That is, in the entire region where the guide portion protrudes from the inclined wall surface 313b, the height of the guide portion from the inclined wall surface 313b is, for example, 10 mm to 20 mm lower than the thickness of the molten glass flowing through the inclined wall surface 313b.
  • the temperature of the molten glass when the molten glass flows through the vertical wall surface 313a and the inclined wall surface 313b is, for example, 1230 ° C. or less and in the range of 1110 ° C. or more, and the viscosity, which is the viscosity characteristic of the molten glass at that time, For example, it is preferably 3000 to 60000 Pa ⁇ sec, and more preferably 4000 to 50000 Pa ⁇ sec. In this range, the flow of the molten glass can be reliably regulated by the guide portion.
  • the viscosity of the molten glass exhibits an internal resistance so that the velocity inside the fluid is made uniform when shear is acting in the flow field inside the fluid.
  • the lowest end portion 313 of the molded body 310 is a linear ridge line 313c in which the inclined wall surfaces 313b on both sides are connected, and the height of the guide portion of the guide plate 316 on the inclined wall surface is It is substantially zero at the lowermost end 313 (ridge line 313c). That is, the lowermost end portion of the guide portion is located on the ridge line where the two inclined wall surfaces 313b intersect.
  • the guide portion has a lowermost end portion at the lowermost end portion of the molded body 310. Further, when the lowermost end portion of the guide portion is located on the ridge line, or when the guide portion has a lowermost portion at the lowermost end portion of the molded body 310, the lowermost end portion of the guide portion and the molded body 310
  • the allowable range of displacement in the flow direction of the molten glass with respect to the lowermost end is 10 mm with respect to the upper limit, preferably 8 mm, more preferably 6 mm.
  • the viscosity of the molten glass flowing through the molded body 310 can be obtained by converting from the temperature of the molten glass using a temperature-viscosity curve diagram prepared in advance.
  • the above temperature-viscosity curve diagram is obtained by plotting the measurement results at this time by measuring a plurality of viscosities of molten glass having a predetermined glass composition under different temperature conditions.
  • the viscosity at each position of the molded body 310 is specifically calculated by measuring the temperature of the molten glass flowing through the molded body 310 at each position and using the temperature-viscosity curve from the measured temperature.
  • the temperature of the molten glass is obtained by using a method of converting the atmospheric temperature value at each position of the molded body 310 detected using a thermocouple into a molten glass temperature obtained in advance, or melting with a radiation thermometer. It is obtained by measuring the surface temperature of the glass.
  • the viscosity used for creating the temperature-viscosity curve diagram is measured by a well-known ball pulling method.
  • the ball pulling method is a method in which molten glass is used as a Newtonian fluid and the resistance is measured using a balance to determine the viscosity. Specifically, the platinum ball is immersed in the molten glass and the platinum ball is pulled up at a constant speed. In this method, the resistance force of the platinum sphere is measured, and the viscosity is obtained by applying the measurement result to the well-known Stokes law.
  • the guide portion has a shape along the outer shape of the cross section of the inclined wall surface 313b.
  • the shape along the outer shape of the cross-section of the inclined wall surface 313b means that the edge of the guide portion is inclined substantially the same as the inclination of the inclined wall surface 313b.
  • the inclination may be a constant ratio or an inclination that changes the inclination angle stepwise or continuously.
  • the edge of the guide portion may be inclined at a constant inclination angle so as to be directed to the vicinity of the lowermost end portion 313 of the molded body 310. Inclination may be performed while changing the inclination angle continuously or continuously.
  • the vicinity of the lowermost end portion 313 refers to a region within 10 mm from the position of the lowermost end portion 313 in the flow direction of the molten glass.
  • the height of the guide part of the guide plate 316 in the inclined wall surface 313b is lower as the position is lower than the molded body 310.
  • the height of such a guide portion may be such that the height decreases linearly at a constant ratio (gradient), or the ratio (gradient) at which the height decreases may vary discontinuously, It may change continuously. In the embodiment shown in FIG. 5, the ratio (gradient) at which the height of the guide portion is lowered changes discontinuously. Further, as described above, the height of the guide portion protruding from the inclined wall surface 313b continuously decreases toward the lower side of the molded body 310 in the entire protruding region. Good.
  • the height of the guide portion can be lowered as it approaches the position of the lowermost end portion 313 of the molded body 310.
  • the viscosity of the molten glass gradually increases, and the cooling roller 330 and the conveying rollers 350a to 350a- This is because the thickness of the molten glass gradually decreases toward the target thickness by pulling 350c.
  • the lamination with the molten glass flowing down the other wall surface is stabilized, and a bifurcated ear portion as shown in FIG. 9B is generated.
  • the glass ribbon G having the shape as shown in FIG. 9A can be stably flowed.
  • the viscosity of the molten glass that passes through the lowermost end 313 is, for example, 20000 to 50000 Pa ⁇ second, in that the shape of the ear portion of the glass ribbon is stably formed as shown in FIG. preferable.
  • the viscosity of the molten glass when it flows through the wall surface of the molded body 310 and the viscosity of the molten glass that passes through the lowermost end 313 are controlled by a heating device such as a heater (not shown) provided in the molding furnace 40. By adjusting, it can set in the said range.
  • FIG. 6 is a view for explaining a conventional guide plate 316 ′ and molten glass flowing through the molded body 310 ′.
  • FIGS. 7A and 7B are views for explaining a state in which the conventional molten glass is merged and a state in which the molten glass in the present embodiment is merged.
  • the conventional molded body 310 ′ has the same size, the same shape, and the same configuration as the molded body 310 in the above embodiment.
  • the guide plate 316 ′ is larger than the guide plate 316 of the above embodiment, and as shown in FIG. 6, the guide portion protruding from the wall surface of the side wall of the molded body 310 ′ is higher than the guide portion in the above embodiment. Is high. Therefore, as shown in FIG. 6, the whole edge part of the molten glass width direction contacts a guide part. Since the guide plate 316 ′ having the guide portion uses platinum having a good wettability with the molten glass, the guide portion also has a high wettability with the end portion of the molten glass.
  • the molten glass wetted with the guide portion tends to flow vertically downward as indicated by an arrow shown in FIG.
  • edge part which contacts a guide part to the vicinity of the lowest end part 313 has a big component which tends to flow through a guide part to the perpendicular downward direction.
  • the width w ′ in the thickness direction of the two molten glasses that merge at the lowermost end portion 313 ′ is wider than the width of the central portion in the width direction of the molten glass, and the bifurcated shape as shown in FIG. Shaped ears are likely to occur. That is, molten glass may not merge at the end.
  • the molten glass flowing down the molded body 310 of the present embodiment has a smaller contact area between the molten glass and the guide portion where platinum having good wettability is used, compared to the conventional guide portion. A component that tends to flow vertically downward along the guide portion is small. Therefore, as shown in FIG. 7 (b), the width w in the thickness direction of the two molten glasses that merge at the lowermost end portion 313 is equal to the width of the central portion in the width direction of the molten glass. It is difficult to generate a bifurcated ear as shown in FIG.
  • the height of the guide portion is set lower than the thickness of the molten glass flowing through the inclined wall surface 313b, and
  • the shape of the ear portion of the glass sheet can be made more stable as shown in FIG.
  • this embodiment can make the shape of the ear
  • the height of the guide portion of the guide plate 316 is lower than the thickness of the molten glass flowing along these surfaces on the vertical wall surface and the inclined wall surface, but at least in the entire region of the inclined wall surface. It is sufficient that the height is lower than the thickness of the molten glass.
  • the molten glass flowing on the vertical wall surface flows vertically downward, and therefore it is not necessary to reduce the area in contact with the molten glass and suppress the component flowing vertically downward along the guide portion.
  • the guide plate 316 may function as a radiation surface that takes the heat of the molten glass and emits it. For this reason, it is preferable to make the height of a guide part lower than the thickness of a molten glass in the vertical wall surface at the point which suppresses the area where the edge part of molten glass contacts a guide part.
  • the height of the above-described guide portion can be determined so that the molten glass does not get over the guide portion when the glass plate is manufactured. For example, before manufacturing a glass plate, the amount of molten glass supplied to the molded body 310 and the viscosity of the molten glass when the molten glass flows down the molded body 310 are variously changed. The thickness of the molten glass flowing down 310 is examined in advance. Thereby, the information of the thickness (the thickness of the molten glass which flows through the molded object 310) with respect to the said supply amount and the said viscosity is previously acquired as sample information.
  • the molded body 310 is flowed down from the supply amount of the molten glass of the glass plate to be manufactured and the viscosity of the molten glass when the molded body 310 is flowed down. Predict the thickness of the molten glass. Furthermore, the height of the guide portion is determined by subtracting a preset value from the predicted molten glass thickness. The preset value means that when the viscosity of the molten glass of the glass plate to be manufactured and the supply amount of the molten glass are variously changed within the range of the actual manufacturing conditions, the height of the guide portion is the molded body 310.
  • This value is in the range of 10 to 20 mm, for example.
  • this value is a constant value, in order to determine the height of the guide portion in more detail according to the glass plate to be manufactured, the surface tension determined by the composition of the glass plate and the temperature of the molten glass, and further the molten glass It can be adjusted according to the viscosity. The point that the surface tension depends on the composition and temperature is a well-known matter.
  • the thickness of the molten glass is predicted using the supply amount of the molten glass and the viscosity of the molten glass.
  • the surface tension of the molten glass is further added to predict the thickness of the molten glass. You can also.
  • the molten glass is preliminarily supplied to the molded body 310 under the manufacturing conditions when the glass plate is to be manufactured, so that the height of the guide portion is such that the molten glass does not get over the guide portion. May be found.
  • the glass plate is manufactured at the guide portion of the guide plate 316. It is also possible to finely adjust the supply amount and the viscosity of the molten glass so that the thickness of the molten glass flowing on the wall surface of the molded body 310 increases with respect to the height.
  • the supply amount of the molten glass is adjusted using a supply amount adjusting device (not shown) provided in the second pipe 205.
  • the supply amount is adjusted according to the result of the weight of the manufactured glass sheet per unit time. Such adjustment may be performed manually by an operator or automatically by a computer (not shown).
  • FIGS. 8A to 8C are views showing a guide plate 316 having a shape different from the shape of the guide plate 316 shown in FIG.
  • the guide plate 316 shown in FIGS. 8A to 8C can also be used in the glass manufacturing method of the present invention.
  • the guide plate 316 shown in FIG. 8A has a constant ratio as the entire guide portion on the inclined wall surface of the molded body 310 approaches the lowermost end portion 313 of the molded body 310 from the connection portion with the guide portion on the vertical wall surface. (Gradient) has a shape in which the height of the guide portion is lowered.
  • the guide plate 316 shown in FIG. 8 (c) has a shape in which the height of the guide portion on the vertical wall surface gradually decreases as it goes downward, in addition to the shape of the guide portion on the inclined wall surface shown in FIG. 8 (b). And the ratio (gradient) at which the height of the guide portion decreases also increases in the downward direction.
  • Glass composition examples of the glass used in the present embodiment include borosilicate glass, aluminosilicate glass, aluminoborosilicate glass, soda lime glass, alkali silicate glass, and alkali aluminosilicate glass.
  • the glass plate manufactured in this embodiment has the following compositions, for example.
  • compositions (i) and (j) are not essential, but preferably include the compositions (i) and (j). It is preferable that the glass plate of this embodiment does not substantially contain As 2 O 3 , Sb 2 O 3 and PbO.
  • the glass plate of the present embodiment may contain various other oxides to adjust the various physical, melting, fining, and forming properties of the glass. Examples of such other oxides include, but are not limited to, TiO 2 , MnO, ZnO, Nb 2 O 5 , MoO 3 , Ta 2 O 5 , WO 3 , Y 2 O 3 , and La 2. O 3 is mentioned.
  • tin oxide is a component that makes glass easily devitrified.
  • its content is 0.01 to 0.5% by mass. It is preferably 0.05 to 0.3% by mass, more preferably 0.1 to 0.2% by mass.
  • the content of the iron oxide is preferably 0.01 to 0.2% by mass, and more preferably 0.01 to 0.15% by mass. More preferably, the content is 0.01 to 0.10% by mass.
  • compositions include the following compositions.
  • (Disclosure 1) A method for producing a glass plate by a downdraw method, A melting step of melting glass raw material to obtain molten glass; The molten glass is supplied to a supply groove provided in the upper part of the molded body, thereby overflowing the molten glass from the upper part of the supply groove, and melted by a pair of guides protruding from the wall surface of the molded body.
  • the molten glass is caused to flow down along the respective wall surfaces on both sides of the lower part of the molded body, and the molten glass flowing down is guided to the lowermost end portion of the molded body, Forming a glass ribbon by joining the molten glass flowing through each of the wall surfaces; A slow cooling step for cooling the glass ribbon flowing in the slow cooling furnace; A cutting step of cutting the cooled glass ribbon,
  • the wall surface of the molded body includes a vertical wall surface in which the molten glass overflowing from the supply groove flows down in the vertical direction, and the vertical wall surface that guides the molten glass that has flowed down the vertical wall surface to the lowest end portion of the molded body.
  • the height of the pair of guides from the inclined wall surface is a thickness of the molten glass flowing through the inclined wall surface in such a range that the molten glass does not get over the pair of guides.
  • the manufacturing method of the glass plate characterized by being provided low compared with.
  • the height of the pair of guides from the inclined wall surface flows in the inclined wall surface so that the molten glass does not get over the pair of guides. Since it is provided lower than the thickness of the molten glass, it is possible to suppress the molten glass from flowing away from the wall surface along the guide portion and vertically downward.
  • the lamination with the molten glass that has flowed down the other wall surface is stable, and the two-pronged ear portion of the glass ribbon that has been obtained in the past is less likely to occur.
  • the glass ribbon can be flowed in a stable shape.
  • the lowest end portion of the molded body is a linear ridge line in which the inclined wall surfaces on both sides are connected,
  • the height of the pair of guides from the inclined wall surface is 10 mm to 20 mm lower than the thickness of the molten glass flowing through the inclined wall surface. 5.
  • (Disclosure 7) A method for producing a glass plate by a downdraw method, A melting step of melting glass raw material to obtain molten glass; The molten glass is supplied to a supply groove provided in the upper part of the molded body, thereby overflowing the molten glass from the upper part of the supply groove, and melted by a pair of guides protruding from the wall surface of the molded body.
  • the molten glass is caused to flow down along the respective wall surfaces on both sides of the lower part of the molded body, and the molten glass flowing down is guided to the lowermost end portion of the molded body, Forming a glass ribbon by joining the molten glass flowing through each of the wall surfaces; A slow cooling step for cooling the glass ribbon flowing in the slow cooling furnace; A cutting step of cutting the cooled glass ribbon,
  • the wall surface of the molded body includes a vertical wall surface in which the molten glass overflowing from the supply groove flows down in the vertical direction, and the vertical wall surface that guides the molten glass that has flowed down the vertical wall surface to the lowest end portion of the molded body.
  • the pair of guides has a shape along the outer shape of the cross section of the molded body, has a lowermost portion at the lowermost end portion of the molded body, and the guide protrudes from the inclined wall surface.
  • the height of the pair of guides from the wall surface is set lower than the thickness of the molten glass flowing through the wall surface, so that the molten glass at both ends when the molten glass merges is provided.
  • “having a portion which becomes the lowermost end in the lowermost end portion of the molded body” means that the positional deviation in the flow direction of the molten glass between the lowermost end portions is 10 mm or less.
  • the “shape along the outer shape of the cross section of the molded body” means that the edge of the guide portion is inclined to the same degree as the inclination of the inclined wall surface, and the edge of the guide portion is a horizontal plane on the inclined wall surface 313b. It is inclined to the same side as the inclination relative to.
  • the inclination may be a constant ratio, or may be an inclination that changes while changing the inclination angle stepwise or continuously.
  • the edge of the guide portion may be inclined at a constant inclination angle so as to go to the vicinity of the lowermost end portion of the molded body, or may be inclined while changing the inclination angle stepwise or continuously. May be.
  • the vicinity of the lowermost end portion 313 refers to a region within 10 mm from the position of the lowermost end portion 313 in the flow direction of the molten glass.
  • the pair of guides has a shape along the outer shape of the cross section of the molded body, has a lowermost portion at the lowermost end portion of the molded body, and the guide protrudes from the inclined wall surface. In the entire region, the height of the pair of guides from the wall surface is set lower than the thickness of the molten glass flowing through the wall surface. Even if the guide having such a configuration is used, the molten glass can be prevented from getting over the pair of guides.
  • the pair of guides has a shape along the outer shape of the cross section of the molded body, it is possible to suppress the molten glass from moving away from the inclined wall surface and along the guides to flow vertically downward. Further, since the pair of guides has a lowermost portion at the lowermost end portion of the molded body, the molten glass flowing on the inclined surfaces on both sides can be stably stabilized at the lowermost end portion of the molded body. Can be pasted together. Moreover, since the height from the wall surface of the pair of guides is lower than the thickness of the molten glass flowing through the wall surface, the molten glass is prevented from flowing vertically downward along the guide portion away from the wall surface. it can.
  • the lamination with the molten glass that has flowed down the other wall surface is stable, and the two-pronged ear portion of the glass ribbon that has been obtained in the past is less likely to occur.
  • the glass ribbon can be flowed in a stable shape.
  • the lowest end portion of the molded body is a linear ridge line in which the inclined wall surfaces on both sides are connected,
  • the height of the pair of guides from the wall surface is 10 mm to 20 mm lower than the thickness of the molten glass flowing through the wall surface.
  • furnace 40 molding furnace 50 slow cooling furnace 200 melting apparatus 201 melting tank 202 clarification tank 203 stirring tank 204 first pipe 205 second pipe 300 molding apparatus 310, 310 'molded body 312 supply groove 313, 313' lower end 313a, 313a ' Vertical wall surface 313b, 313b ′ Inclined wall surface 313c Ridge line 316 Guide plate 330 Cooling rollers 350a to 350c Conveying roller 400 Cutting device

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Glass Compositions (AREA)

Abstract

A glass ribbon is formed from molten glass in such a manner that the molten glass is caused to overflow a supply groove in the upper part of a forming body, the molten glass is allowed to flow down along the wall surfaces on both sides of the lower part of the forming body while the flow of the molten glass is restricted by a pair of guides protruding from the wall surfaces of the forming body, the molten glass is conducted to the lowermost end of the forming body, and the streams of the molten glass flowing along the wall surfaces on both sides are merged at the lowermost end. The wall surfaces of the forming body along which the molten glass flows include: vertical wall surfaces along which the molten glass flows down in the vertical direction; and sloped wall surfaces for conducting the molten glass, which has flowed down along the vertical wall surfaces, to the lowermost end of the forming body. In the entire region in which the guides protrude from the sloped wall surfaces, the height of the pair of guides from the wall surfaces is set to be less than the thickness of the molten glass.

Description

ガラス板の製造方法Manufacturing method of glass plate
 本発明は、ダウンドロー法によるガラス板の製造方法に関する。 The present invention relates to a method for producing a glass plate by a downdraw method.
 液晶ディスプレイやプラズマディスプレイなどのフラットパネルディスプレイ(以下、「FPD」という。)に用いるガラス基板には、厚さが例えば0.5~0.7mmと薄いガラス板が用いられている。このFPD用ガラス基板は、例えば第1世代では300×400mmのサイズであるが、第10世代では2850×3050mmのサイズになっている。 A thin glass plate having a thickness of, for example, 0.5 to 0.7 mm is used for a glass substrate used in a flat panel display (hereinafter referred to as “FPD”) such as a liquid crystal display or a plasma display. For example, the FPD glass substrate has a size of 300 × 400 mm in the first generation, but has a size of 2850 × 3050 mm in the tenth generation.
 このような大きなサイズのFPD用ガラス基板を製造するには、オーバーフローダウンドロー法が最もよく使用される。オーバーフローダウンドロー法は、成形炉において熔融ガラスを成形体の上部から溢れさせることにより成形体の下方においてガラスリボンを成形する工程と、ガラスリボンを徐冷炉において徐冷する工程とを含む。徐冷炉は、対になったローラ間にガラスリボンを引き込むことにより所望の厚さに引き伸ばした後、ガラスリボンを徐冷する。この後、ガラスリボンは、所定の寸法に切断されてガラス板とされて他のガラス板上に積層されて保管される。あるいはガラス板は次工程に搬送される。ダウンドロー法については、例えば、下記特許文献1に記載されている。 The overflow down draw method is most often used to manufacture such a large FPD glass substrate. The overflow down draw method includes a step of forming a glass ribbon below the formed body by causing the molten glass to overflow from the upper part of the formed body in a forming furnace, and a step of gradually cooling the glass ribbon in a slow cooling furnace. The slow cooling furnace draws the glass ribbon between the pair of rollers and stretches it to a desired thickness, and then slowly cools the glass ribbon. Thereafter, the glass ribbon is cut to a predetermined size to form a glass plate, which is laminated on another glass plate and stored. Or a glass plate is conveyed by the following process. About the downdraw method, it describes in the following patent document 1, for example.
 このようなオーバーフローダウンドロー法において、熔融ガラスの粘度が相対的に高くても成形されるガラスリボンの両端部(耳部)の形状を安定した形状にしてガラスリボンを成形することができるガラス成形装置が知られている(特許文献2)。
 当該ガラス成形装置では、熔融ガラスが供給される供給溝が形成された上面と、供給溝から上面に沿って当該供給溝の両側に溢れ出し、上面の両端部から流れ落ちる熔融ガラスを誘導して融合させる一対の壁面と、を有する成形体本体部と、互いに対向し、一対の壁面に沿って流下する熔融ガラスの幅を規制する一対のガイドと、を備えている。一対のガイドのそれぞれは、互いに対向する方向から見たときに、一対の壁面の下端部同士が交わって形成される稜線上の点を頂点とする下向きに尖った輪郭を有している。
In such an overflow down draw method, glass ribbon can be formed with a stable shape at both ends (ear portions) of the glass ribbon to be formed even when the viscosity of the molten glass is relatively high. An apparatus is known (Patent Document 2).
In the glass forming apparatus, the upper surface on which a supply groove for supplying molten glass is formed, and the molten glass that overflows on both sides of the supply groove from the supply groove along the upper surface and flows down from both ends of the upper surface is guided and fused. And a pair of guides that oppose each other and regulate the width of the molten glass flowing down along the pair of wall surfaces. Each of the pair of guides has a downwardly sharp outline with the point on the ridge line formed by the lower ends of the pair of wall surfaces intersecting each other when viewed from the opposite direction.
特開10-291826号公報JP 10-291826 A 特開2010-189220号公報JP 2010-189220 A
 しかし、上記ガラス成形装置を用いた場合、ガラスリボンの両端部の形状を安定させることが十分にできない場合もある。オーバーフローダウンドロー法では、ガラス成形装置により成形されるガラスリボンは、図9(a)に示すように、ガラスリボンの幅方向の両端部である耳部において一定の厚さに安定的に維持されていることが好ましい。 However, when the above glass forming apparatus is used, the shape of both ends of the glass ribbon may not be sufficiently stabilized. In the overflow down draw method, the glass ribbon formed by the glass forming apparatus is stably maintained at a constant thickness at the ears that are both ends in the width direction of the glass ribbon, as shown in FIG. It is preferable.
 しかしながら、特許文献2に記載のガラス成形装置では、成形体の両側の壁を流れた熔融ガラスが成形体最下端において合流して張り合わせられるが、このときの熔融ガラスの張り合わせが適切に行われず、熔融ガラスの耳部がガラスリボンの長手方向に波打ちながら図9(b)に示すように二叉形状に開くことがある。このような耳部の形状は、ガラスリボンの割れの原因となり、ガラスリボンを連続操業できないおそれがある。 However, in the glass forming apparatus described in Patent Document 2, the molten glass that has flowed through the walls on both sides of the formed body is joined and bonded together at the lowermost end of the formed body. As shown in FIG. 9B, the molten glass ears may open in a bifurcated shape while undulating in the longitudinal direction of the glass ribbon. Such a shape of the ear portion may cause the glass ribbon to break, and the glass ribbon may not be continuously operated.
 そこで、本発明は、ガラスリボンの耳部の形状を従来に比べてより安定させてガラスリボンを成形することができるガラス板の製造方法を提供することを目的とする。 Therefore, an object of the present invention is to provide a method for producing a glass plate, in which the shape of the ear portion of the glass ribbon can be made more stable than before, and the glass ribbon can be formed.
 本発明の一態様は、ダウンドロー法によるガラス板の製造方法である。当該製造方法は、
 ガラス原料を熔解して熔融ガラスを得る熔解工程と、
 前記熔融ガラスを成形体の上部に設けられた供給溝に熔融ガラスを供給することにより、前記供給溝の前記上部から熔融ガラスを溢れ出させ、前記成形体の壁面から突出した一対のガイドにより熔融ガラスの流れ幅を規制しつつ、前記成形体の下部の両側それぞれの壁面に沿って熔融ガラスを流下させ、流下する熔融ガラスを前記成形体の最下端部に導き、前記最下端部において前記両側の壁面のそれぞれを流れる熔融ガラスを合流させることにより、ガラスリボンを成形する成形工程と、
 徐冷炉内において流れる前記ガラスリボンを冷却する徐冷工程と、
 冷却された前記ガラスリボンを切断する切断工程と、を備える。
 前記成形体の前記壁面は、前記供給溝から溢れ出た熔融ガラスが鉛直方向に流下する垂直壁面と、前記垂直壁面を流下した熔融ガラスを前記成形体の最下端部に導く、前記垂直壁面と接続した傾斜壁面と、を含む。
 前記傾斜壁面から前記ガイドが突出した領域全体において、前記一対のガイドの前記傾斜壁面からの高さが、熔融ガラスが前記一対のガイドを乗り越えない範囲で、前記傾斜壁面を流れる熔融ガラスの厚さに比べて低く設けられている。
One embodiment of the present invention is a method for producing a glass plate by a downdraw method. The manufacturing method is
A melting step of melting glass raw material to obtain molten glass;
The molten glass is supplied to a supply groove provided in the upper part of the molded body, thereby overflowing the molten glass from the upper part of the supply groove, and melted by a pair of guides protruding from the wall surface of the molded body. While restricting the flow width of the glass, the molten glass is caused to flow down along the respective wall surfaces on both sides of the lower part of the molded body, and the molten glass flowing down is guided to the lowermost end portion of the molded body, Forming a glass ribbon by joining the molten glass flowing through each of the wall surfaces;
A slow cooling step for cooling the glass ribbon flowing in the slow cooling furnace;
A cutting step of cutting the cooled glass ribbon.
The wall surface of the molded body includes a vertical wall surface in which the molten glass overflowing from the supply groove flows down in the vertical direction, and the vertical wall surface that guides the molten glass that has flowed down the vertical wall surface to the lowest end portion of the molded body. Connected inclined wall surfaces.
In the entire region where the guide protrudes from the inclined wall surface, the height of the pair of guides from the inclined wall surface is a thickness of the molten glass flowing through the inclined wall surface in such a range that the molten glass does not get over the pair of guides. It is set low compared to.
 このとき、前記傾斜壁面から前記ガイドが突出した領域全体において、前記一対のガイドの前記傾斜壁面からの高さは、前記成形体の下方の位置ほど低くなっている、ことが好ましい。 At this time, in the entire region where the guide protrudes from the inclined wall surface, the height of the pair of guides from the inclined wall surface is preferably lower at a position below the molded body.
 前記傾斜壁面から前記ガイドが突出した領域全体において、前記一対のガイドの前記傾斜壁面からの高さは、前記成形体の下方に向かうにつれて、連続的に又は段階的に低くなっている、ことが好ましい。 In the entire region where the guide protrudes from the inclined wall surface, the height of the pair of guides from the inclined wall surface decreases continuously or stepwise as it goes downward of the molded body. preferable.
 前記成形体の最下端部は、両側の前記傾斜壁面同士が接続した直線状の稜線であり、前記一対のガイドの最下端部は、前記稜線上に位置する、ことが好ましい。 It is preferable that the lowermost end portion of the molded body is a linear ridgeline in which the inclined wall surfaces on both sides are connected, and the lowermost end portions of the pair of guides are located on the ridgeline.
 前記傾斜壁面から前記ガイドが突出した領域全体において、前記一対のガイドの前記傾斜壁面からの高さは、例えば、前記傾斜壁面を流れる熔融ガラスの厚さに比べて、10mm~20mm低くすることができる。 In the entire region where the guide protrudes from the inclined wall surface, the height of the pair of guides from the inclined wall surface may be, for example, 10 mm to 20 mm lower than the thickness of the molten glass flowing through the inclined wall surface. it can.
 前記壁面を流下する熔融ガラスの粘度を、3000~60000[Pa・秒]とすることができる。 The viscosity of the molten glass flowing down the wall surface can be set to 3000 to 60000 [Pa · sec].
 また、本発明の一態様も、ダウンドロー法によるガラス板の製造方法である。当該方法は、
 ガラス原料を熔解して熔融ガラスを得る熔解工程と、
 前記熔融ガラスを成形体の上部に設けられた供給溝に熔融ガラスを供給することにより、前記供給溝の前記上部から熔融ガラスを溢れ出させ、前記成形体の壁面から突出した一対のガイドにより熔融ガラスの流れ幅を規制しつつ、前記成形体の下部の両側それぞれの壁面に沿って熔融ガラスを流下させ、流下する熔融ガラスを前記成形体の最下端部に導き、前記最下端部において前記両側の壁面のそれぞれを流れる熔融ガラスを合流させることにより、ガラスリボンを成形する成形工程と、
 徐冷炉内において流れる前記ガラスリボンを冷却する徐冷工程と、
 冷却された前記ガラスリボンを切断する切断工程と、を備える。
 前記成形体の前記壁面は、前記供給溝から溢れ出た熔融ガラスが鉛直方向に流下する垂直壁面と、前記垂直壁面を流下した熔融ガラスを前記成形体の最下端部に導く、前記垂直壁面と接続した傾斜壁面と、を含む。
 このとき、前記一対のガイドは、前記成形体の断面の外形に沿った形状を成し、前記成形体の最下端部において、最下端となる部分を有し、かつ、前記傾斜壁面から前記ガイドが突出した領域全体において、前記一対のガイドの前記壁面からの高さが、前記壁面を流れる熔融ガラスの厚さに比べて低く設けられることにより、前記熔融ガラスが合流するときの両端部における前記熔融ガラスの厚さを低減する。
One embodiment of the present invention is also a method for manufacturing a glass plate by a downdraw method. The method is
A melting step of melting glass raw material to obtain molten glass;
The molten glass is supplied to a supply groove provided in the upper part of the molded body, thereby overflowing the molten glass from the upper part of the supply groove, and melted by a pair of guides protruding from the wall surface of the molded body. While restricting the flow width of the glass, the molten glass is caused to flow down along the respective wall surfaces on both sides of the lower part of the molded body, and the molten glass flowing down is guided to the lowermost end portion of the molded body, Forming a glass ribbon by joining the molten glass flowing through each of the wall surfaces;
A slow cooling step for cooling the glass ribbon flowing in the slow cooling furnace;
A cutting step of cutting the cooled glass ribbon.
The wall surface of the molded body includes a vertical wall surface in which the molten glass overflowing from the supply groove flows down in the vertical direction, and the vertical wall surface that guides the molten glass that has flowed down the vertical wall surface to the lowest end portion of the molded body. Connected inclined wall surfaces.
At this time, the pair of guides has a shape along the outer shape of the cross section of the molded body, and has a lowermost portion at the lowermost end portion of the molded body, and the guide from the inclined wall surface. The height from the wall surface of the pair of guides is provided lower than the thickness of the molten glass flowing through the wall surface in the entire region from which the molten glass flows, so that the both ends at the ends when the molten glass merges are provided. Reduce the thickness of the molten glass.
 このとき、前記傾斜壁面から前記ガイドが突出した領域全体において、前記一対のガイドの前記壁面からの高さは、前記成形体の下方の位置ほど低くなっている、ことが好ましい。 At this time, in the entire region where the guide protrudes from the inclined wall surface, the height of the pair of guides from the wall surface is preferably lower at a position below the molded body.
 前記傾斜壁面から前記ガイドが突出した領域全体において、前記一対のガイドの前記壁面からの高さは、前記成形体の下方に向かうにつれて、連続的に又は段階的に低くなっている、ことが好ましい。 In the entire region where the guide protrudes from the inclined wall surface, the height of the pair of guides from the wall surface is preferably reduced continuously or stepwise as it goes downward of the molded body. .
 前記成形体の最下端部は、両側の前記傾斜壁面同士が接続した直線状の稜線であり、前記一対のガイドの最下端部は、前記稜線上に位置する、ことが好ましい。 It is preferable that the lowermost end portion of the molded body is a linear ridgeline in which the inclined wall surfaces on both sides are connected, and the lowermost end portions of the pair of guides are located on the ridgeline.
 前記傾斜壁面から前記ガイドが突出した領域全体において、前記一対のガイドの前記壁面からの高さは、前記壁面を流れる熔融ガラスの厚さに比べて、例えば10mm~20mm低くすることができる。 In the entire region where the guide protrudes from the inclined wall surface, the height of the pair of guides from the wall surface can be, for example, 10 mm to 20 mm lower than the thickness of the molten glass flowing through the wall surface.
 上記態様のガラスリボンの製造方法は、ガラスリボンの耳部の形状を従来に比べてより安定させてガラスリボンを成形することができる。 The method for producing a glass ribbon according to the above aspect can form a glass ribbon while making the shape of the ear portion of the glass ribbon more stable than the conventional one.
本実施形態のガラス板の製造方法の工程図である。It is process drawing of the manufacturing method of the glass plate of this embodiment. 本実施形態の熔解工程~切断工程を行う装置を模式的に示す図である。It is a figure which shows typically the apparatus which performs the melting process-cutting process of this embodiment. 本実施形態の成形工程及び徐冷工程を行う成形装置の構成を主に示す図である。It is a figure which mainly shows the structure of the shaping | molding apparatus which performs the shaping | molding process and slow cooling process of this embodiment. 本実施形態の成形工程を詳細に説明する図である。It is a figure explaining the forming process of this embodiment in detail. 本実施形態に用いるガイド板と熔融ガラスを説明する図である。It is a figure explaining the guide plate and molten glass used for this embodiment. 従来のガラス板の製造方法に用いるガイド板と熔融ガラスを説明する図である。It is a figure explaining the guide plate and molten glass used for the manufacturing method of the conventional glass plate. (a),(b)は、従来における熔融ガラスが合流する様子と、本実施形態における熔融ガラスが合流する様子を説明する図である。(A), (b) is a figure explaining a mode that the molten glass in the past merges, and a mode that the molten glass in this embodiment merges. 本実施形態に用いるガイド板と異なる形態を示す図である。It is a figure which shows the form different from the guide plate used for this embodiment. (a)は、ガラスリボンの正常な形状の耳部を示す断面図であり、(b)は、ガラスリボンの形状不良の耳部を示す断面図である。(A) is sectional drawing which shows the ear | edge part of the normal shape of a glass ribbon, (b) is sectional drawing which shows the ear | edge part of the shape defect of a glass ribbon.
 以下、本実施形態のガラス板の製造方法について説明する。 Hereinafter, the manufacturing method of the glass plate of this embodiment is demonstrated.
(ガラス板の製造方法の全体概要)
 図1は、ガラス板の製造方法の工程図である。
 ガラス板の製造方法は、熔解工程(ST1)と、清澄工程(ST2)と、均質化工程(ST3)と、供給工程(ST4)と、成形工程(ST5)と、徐冷工程(ST6)と、切断工程(ST7)と、を主に有する。この他に、研削工程、研磨工程、洗浄工程、検査工程、梱包工程等を有し、梱包工程で積層された複数のガラス板は、納入先の業者に搬送される。
(Overall overview of glass plate manufacturing method)
FIG. 1 is a process diagram of a method for producing a glass plate.
The glass plate manufacturing method includes a melting step (ST1), a refining step (ST2), a homogenizing step (ST3), a supplying step (ST4), a forming step (ST5), and a slow cooling step (ST6). And a cutting step (ST7). In addition, a plurality of glass plates that have a grinding process, a polishing process, a cleaning process, an inspection process, a packing process, and the like and are stacked in the packing process are conveyed to a supplier.
 図2は、熔解工程(ST1)~切断工程(ST7)を行う装置を模式的に示す図である。当該装置は、図2に示すように、主に熔解装置200と、成形装置300と、切断装置400と、を有する。熔解装置200は、熔解槽201と、清澄槽202と、攪拌槽203と、第1配管204と、第2配管205と、を有する。成形装置300については後述する。 FIG. 2 is a diagram schematically showing an apparatus for performing the melting step (ST1) to the cutting step (ST7). As shown in FIG. 2, the apparatus mainly includes a melting apparatus 200, a forming apparatus 300, and a cutting apparatus 400. The melting apparatus 200 includes a melting tank 201, a clarification tank 202, a stirring tank 203, a first pipe 204, and a second pipe 205. The molding apparatus 300 will be described later.
 熔解工程(ST1)では、熔解槽201内に供給されたガラス原料を、図示されない火焔および電気ヒータで加熱して熔解することで熔融ガラスを得る。
 清澄工程(ST2)は、清澄槽202において行われ、清澄槽202内の熔融ガラスを加熱することにより、熔融ガラス中に含まれる気泡が、清澄剤の酸化還元反応により成長し液面に浮上して気泡中のガス成分を放出する、あるいは、気泡中のガス成分が熔融ガラス中に吸収されて、気泡が消滅する。
 均質化工程(ST3)では、第1配管204を通って供給された攪拌槽203内の熔融ガラスを、スターラを用いて攪拌することにより、ガラス成分の均質化を行う。
 供給工程(ST4)では、第2配管205を通して熔融ガラスが成形装置300に供給される。
In the melting step (ST1), the glass raw material supplied into the melting tank 201 is heated and melted with a flame and an electric heater (not shown) to obtain molten glass.
The clarification step (ST2) is performed in the clarification tank 202, and by heating the molten glass in the clarification tank 202, bubbles contained in the molten glass grow by the oxidation-reduction reaction of the clarifier and float on the liquid surface. The gas component in the bubble is released or the gas component in the bubble is absorbed into the molten glass, and the bubble disappears.
In the homogenization step (ST3), the molten glass in the stirring tank 203 supplied through the first pipe 204 is stirred using a stirrer to homogenize the glass components.
In the supplying step (ST4), the molten glass is supplied to the forming apparatus 300 through the second pipe 205.
 成形装置300では、成形工程(ST5)及び徐冷工程(ST6)が行われる。
 成形工程(ST5)では、熔融ガラスをガラスリボンG(図3参照)に成形し、ガラスリボンGの流れを作る。本実施形態では、後述する成形体310を用いたオーバーフローダウンドロー法を用いる。徐冷工程(ST6)では、成形されて流れるガラスリボンGが所望の厚さになり冷却される。
 切断工程(ST7)では、切断装置400において、成形装置300から供給されたガラスリボンGを所定の長さに切断することで、板状のガラス板G1(図3参照)を得る。切断されたガラス板G1はさらに、所定のサイズに切断され、目標サイズのガラス板G1が作製される。この後、ガラス端面の研削、研磨、洗浄が行われ、さらに、気泡や脈理等の異常欠陥の有無が検査された後、検査合格品のガラス板G1が最終製品として梱包される。
In the molding apparatus 300, a molding process (ST5) and a slow cooling process (ST6) are performed.
In the forming step (ST5), the molten glass is formed into a glass ribbon G (see FIG. 3) to make a flow of the glass ribbon G. In this embodiment, an overflow down draw method using a molded body 310 described later is used. In the slow cooling step (ST6), the glass ribbon G that has been formed and flows has a desired thickness and is cooled.
In the cutting step (ST7), the cutting device 400 cuts the glass ribbon G supplied from the forming device 300 into a predetermined length, thereby obtaining a plate-like glass plate G1 (see FIG. 3). The cut glass plate G1 is further cut into a predetermined size to produce a glass plate G1 having a target size. Thereafter, grinding, polishing, and cleaning of the glass end surface are performed, and after the presence of abnormal defects such as bubbles and striae is inspected, the glass plate G1 that has passed the inspection is packed as a final product.
(成形工程及び徐冷工程の説明)
 図3は、成形工程及び徐冷工程を行う成形装置300の構成を主に示す図である。
 成形装置300で成形されるガラス板は、例えば、液晶ディスプレイ用ガラス基板、有機ELディスプレイ用ガラス基板、カバーガラスに好適に用いられる。その他、携帯端末機器などのディスプレイや筐体用のカバーガラス、タッチパネル板、太陽電池のガラス基板やカバーガラスとしても用いることができる。
(Description of molding process and slow cooling process)
FIG. 3 is a diagram mainly showing a configuration of a molding apparatus 300 that performs the molding process and the slow cooling process.
The glass plate molded by the molding apparatus 300 is preferably used for, for example, a glass substrate for liquid crystal display, a glass substrate for organic EL display, and a cover glass. In addition, it can be used as a display for a portable terminal device, a cover glass for a casing, a touch panel plate, a glass substrate of a solar cell, or a cover glass.
 成形工程(ST5)を行う成形炉40および徐冷工程(ST6)を行う徐冷炉50は、耐火レンガで構成された炉壁に囲まれて構成されている。成形炉40は、徐冷炉50に対して鉛直上方に設けられている。なお、成形炉40および徐冷炉50をあわせて炉30という。炉30の炉壁で囲まれた炉内部空間に、成形体310と、冷却ローラ330と、搬送ローラ350a~350cと、が設けられている。
 成形体310は、図2に示す第2配管205を通して熔解装置200から流れてくる熔融ガラスをガラスリボンGに成形する。これにより、成形装置300内で、鉛直下方のガラスリボンGの流れが作られる。成形体310には、耐火レンガ等によって構成された細長い構造体であり、図3に示すように断面が楔形状を成している。成形体310の上部には、熔融ガラスを導く流路となる供給溝312が設けられている。供給溝312は、成形装置300に設けられた供給口において第2配管205と接続され、第2配管205を通して流れてくる熔融ガラスは、供給溝312を伝って流れる。供給溝312の深さは、熔融ガラスの流れの下流ほど浅くなっており、溝312から熔融ガラスが鉛直下方に向かって溢れ出るようになっている。
 供給溝312から溢れ出た熔融ガラスは、成形体310の両側の側壁の垂直壁面および傾斜壁面を伝わって流下する。側壁を流れた熔融ガラスは、図3に示す成形体310の下方端部313で合流し、1つのガラスリボンGが成形される。成形工程については以降で詳述する。
The forming furnace 40 that performs the forming step (ST5) and the slow cooling furnace 50 that performs the slow cooling step (ST6) are surrounded by a furnace wall made of refractory bricks. The molding furnace 40 is provided vertically above the slow cooling furnace 50. The forming furnace 40 and the slow cooling furnace 50 are collectively referred to as a furnace 30. In the furnace inner space surrounded by the furnace wall of the furnace 30, a molded body 310, a cooling roller 330, and conveying rollers 350a to 350c are provided.
The molded body 310 forms the molten glass flowing from the melting device 200 through the second pipe 205 shown in FIG. Thereby, the flow of the glass ribbon G of the vertically lower direction is made in the forming apparatus 300. The molded body 310 is a long and narrow structure made of refractory brick or the like, and has a wedge-shaped cross section as shown in FIG. A supply groove 312 serving as a flow path for guiding the molten glass is provided in the upper part of the molded body 310. The supply groove 312 is connected to the second pipe 205 at a supply port provided in the molding apparatus 300, and the molten glass flowing through the second pipe 205 flows along the supply groove 312. The depth of the supply groove 312 is shallower toward the downstream side of the flow of the molten glass, so that the molten glass overflows vertically downward from the groove 312.
The molten glass overflowing from the supply groove 312 flows down along the vertical wall surface and the inclined wall surface of the side wall on both sides of the molded body 310. The molten glass that has flowed through the side walls merges at the lower end 313 of the molded body 310 shown in FIG. 3 to form one glass ribbon G. The molding process will be described in detail later.
 成形体310の下方には冷却ローラ330が設けられている。冷却ローラ330は、ガラスリボンGの幅方向の両端近傍のガラスリボンG表面と接触して、ガラスリボンGを下方に引き下げて所望の厚さにガラスリボンGをするとともに、ガラスリボンGを冷却する。 A cooling roller 330 is provided below the molded body 310. The cooling roller 330 is in contact with the surface of the glass ribbon G near both ends in the width direction of the glass ribbon G, pulls the glass ribbon G downward to form the glass ribbon G to a desired thickness, and cools the glass ribbon G. .
 冷却ローラ330の下方には、搬送ローラ350a~350cが所定の間隔で設けられ、ガラスリボンGを下方向にけん引する。冷却ローラ330を含む下方の空間は、徐冷炉50の炉内部空間となっている。搬送ローラ350a~350cのそれぞれは、ローラ対を有し、ガラスリボンGの両側を挟むようにガラスリボンGの幅方向の両側端部に設けられている。
 このように、成形装置300は、成形体310を通って流下した熔融ガラスからガラスリボンGを成形する。その際、成形したガラスリボンGは重力に従って成形体310の壁面を鉛直下方に落下する流れから、下方に位置する冷却ローラ330および搬送ローラ350a~350cを用いて下方に強制的に引かれる流れに変化する。
Below the cooling roller 330, transport rollers 350a to 350c are provided at predetermined intervals, and the glass ribbon G is pulled downward. A lower space including the cooling roller 330 is a furnace internal space of the slow cooling furnace 50. Each of the transport rollers 350a to 350c has a pair of rollers and is provided at both end portions in the width direction of the glass ribbon G so as to sandwich both sides of the glass ribbon G.
As described above, the forming apparatus 300 forms the glass ribbon G from the molten glass flowing down through the formed body 310. At that time, the molded glass ribbon G changes from a flow that drops vertically on the wall surface of the molded body 310 according to gravity to a flow that is forcibly drawn downward using the cooling roller 330 and the conveying rollers 350a to 350c positioned below. Change.
 図4は、成形工程を詳細に説明する図である。
 成形工程で用いる成形体310は、本体部314と、一対のガイド板316と、を主に有する。図4に示すように、熔融ガラスが供給される方向をX方向とする。また、この方向は、成形体310の壁面を流れる熔融ガラスの幅方向でもある。
 本体部314は、X方向に垂直な面で切断したとき、その切断面が五角形を成した長尺状の部材であり、耐火レンガで構成されている。一対のガイド板316は、白金または白金合金により構成された板部材であり、本体部314の両側の端部に設けられて、後述する熔融ガラスのガイド部として機能する。ガイド板316のそれぞれは、後述するガイド部の高さの分、本体部314の5角形形状に比べて面積が大きい概略5角形形状を成している。一対のガイド板316のうち、第2配管205と接続される側のガイド板316には、本体部314の供給溝312に熔融ガラスを供給するための切り欠き部が設けられている。
FIG. 4 is a diagram illustrating the molding process in detail.
The molded body 310 used in the molding process mainly includes a main body portion 314 and a pair of guide plates 316. As shown in FIG. 4, the direction in which the molten glass is supplied is defined as the X direction. This direction is also the width direction of the molten glass flowing on the wall surface of the molded body 310.
The main body 314 is a long member whose cut surface forms a pentagon when cut along a plane perpendicular to the X direction, and is composed of refractory bricks. The pair of guide plates 316 are plate members made of platinum or a platinum alloy, and are provided at both end portions of the main body portion 314 and function as guide portions for molten glass, which will be described later. Each of the guide plates 316 has a substantially pentagonal shape having a larger area than the pentagonal shape of the main body portion 314 by the height of the guide portion described later. Of the pair of guide plates 316, the guide plate 316 on the side connected to the second pipe 205 is provided with a notch for supplying molten glass to the supply groove 312 of the main body 314.
 成形装置300は、成形体310の上部に設けられた供給溝312に第2配管205を介して熔融ガラスを供給することにより、供給溝312の上部から熔融ガラスを溢れ出させる。そのとき、成形体310の壁面から突出した一対のガイド部が熔融ガラスの流れの幅を規制しつつ、成形体310の下部の両側それぞれの側壁の壁面に沿って熔融ガラスを流下させる。成形装置300は、流下する熔融ガラスを、成形体312の最下端部313に導き、最下端部313において両側の壁面のそれぞれを流れる熔融ガラスを合流させることにより、ガラスリボンGを成形する。成形されたガラスリボンGは、冷却ローラ330によって下方に引っ張られる。
 成形体310の壁面は、供給溝312から溢れ出た熔融ガラスが鉛直下方に流下する垂直壁面313aと、垂直壁面313aを流下した熔融ガラスを成形体310の最下端部313に導く、垂直壁面313aと接続した傾斜壁面313bと、を有する。したがって、成形体310の供給溝312から溢れ出た熔融ガラスは、成形体310をX方向に見て両側にある垂直壁面313aを伝い、その後傾斜壁面313bを伝って、最下端部313に至る。このとき、垂直壁面313aの全領域及び傾斜壁面313bからガイド板316が突出した領域全体において、一対のガイド板316のガイド部の壁面(垂直壁面313a、傾斜壁面313b)からの高さは、熔融ガラスが一対のガイド板316を乗り越えない範囲で、壁面(垂直壁面313a、傾斜壁面313b)を流れる熔融ガラスの厚さに比べて低く設けられている。ガイド部とは、ガイド板316の縁部分であって、垂直壁面313a及び傾斜壁面313bから突出した部分であり、壁面を伝って流れる熔融ガラスの位置と幅を規制する部分をいう。
The molding apparatus 300 causes the molten glass to overflow from the upper part of the supply groove 312 by supplying the molten glass to the supply groove 312 provided at the upper part of the molded body 310 via the second pipe 205. At that time, the pair of guide portions protruding from the wall surface of the molded body 310 regulates the width of the flow of the molten glass, and causes the molten glass to flow down along the wall surfaces of the respective side walls on the lower side of the molded body 310. The forming apparatus 300 forms the glass ribbon G by guiding the molten glass flowing down to the lowermost end portion 313 of the molded body 312 and joining the molten glass flowing through the both wall surfaces at the lowermost end portion 313. The formed glass ribbon G is pulled downward by the cooling roller 330.
The wall surface of the molded body 310 includes a vertical wall surface 313a where the molten glass overflowing from the supply groove 312 flows down vertically, and a vertical wall surface 313a that guides the molten glass flowing down the vertical wall surface 313a to the lowest end portion 313 of the molded body 310. And an inclined wall surface 313b connected to the. Therefore, the molten glass overflowing from the supply groove 312 of the molded body 310 travels through the vertical wall surfaces 313a on both sides when the molded body 310 is viewed in the X direction, and then travels along the inclined wall surfaces 313b to reach the lowermost end portion 313. At this time, in the entire area of the vertical wall surface 313a and the entire area where the guide plate 316 protrudes from the inclined wall surface 313b, the height from the wall surface (vertical wall surface 313a, inclined wall surface 313b) of the guide portion of the pair of guide plates 316 is melted. As long as the glass does not pass over the pair of guide plates 316, the glass is provided lower than the thickness of the molten glass flowing through the wall surfaces (vertical wall surface 313a and inclined wall surface 313b). The guide portion is an edge portion of the guide plate 316 and is a portion protruding from the vertical wall surface 313a and the inclined wall surface 313b, and refers to a portion that regulates the position and width of the molten glass flowing along the wall surface.
 図5は、図4に示すX方向下流側のガイド板316からX方向と反対の向きに見たガイド板316と熔融ガラスを説明する図である。図5に示すように、一対のガイド板316のガイド部の垂直壁面313a及び傾斜壁面313bからの高さは、熔融ガラスが一対のガイド板316のガイド部分を乗り越えない範囲で成形体310の壁面(垂直壁面313a、傾斜壁面313b)を流れる熔融ガラスGの厚さに比べて低い。一方、ガイド板316の上部のガイド部の高さは、上部を流れる熔融ガラスの厚さに比べて高い。熔融ガラスの厚さと、垂直壁面313a及び傾斜壁面313bにおけるガイド板316のガイド部の壁面からの高さとの間の差、すなわち、熔融ガラスがガイド部から飛び出している高さは、例えば10~20mmである。この範囲において、熔融ガラスの表面張力によって、熔融ガラスが形状を維持することができ、ガイド部を乗り越えないようになっている。すなわち、傾斜壁面313bからガイド部が突出した領域全体において、ガイド部の傾斜壁面313bからの高さは、傾斜壁面313bを流れる熔融ガラスの厚さに比べて、例えば10mm~20mm低くなっている。なお、熔融ガラスが垂直壁面313a及び傾斜壁面313bを流れるときの熔融ガラスの温度は例えば、1230℃以下であり1110℃以上の範囲にあり、そのときの熔融ガラスの粘性の特性である粘度は、例えば3000~60000Pa・秒であることが好ましく、より好ましくは、4000~50000Pa・秒である。この範囲において、熔融ガラスの流れは、ガイド部によって確実に規制され得る。
 なお、熔融ガラスの粘性は、流体内部の流れ場内にせん断が働いているとき、流体内部の速度を一様にならすように内部抵抗を発揮する。したがって、熔融ガラスがガイド部を乗り越えようとして、流体内部の流れ場中にせん断が働いても、粘度が大きい場合、小さい場合に比べて内部抵抗により熔融ガラスは乗り越え難くなる。
 なお、成形体310の最下端部313は、図4に示すように、両側の傾斜壁面313b同士が接続した直線状の稜線313cであり、ガイド板316のガイド部の傾斜壁面における高さは、最下端部313(稜線313c)において略0になっている。すなわち、ガイド部の最下端部は、2つの傾斜壁面313bが交わる稜線上に位置する。また、ガイド部は、成形体310の最下端部において最下端部を有する。また、ガイド部の最下端部が稜線上に位置する場合、あるいは、ガイド部が、成形体310の最下端部において最下端となる部分を有する場合、ガイド部の最下端部と成形体310の最下端部との間の、熔融ガラスの流下方向における位置ずれの許容範囲は、上限に関して10mmであり、好ましくは8mm、より好ましくは6mmである。
FIG. 5 is a view for explaining the guide plate 316 and the molten glass viewed from the guide plate 316 on the downstream side in the X direction shown in FIG. 4 in the direction opposite to the X direction. As shown in FIG. 5, the height of the guide portions of the pair of guide plates 316 from the vertical wall surface 313a and the inclined wall surface 313b is within the range where the molten glass does not get over the guide portions of the pair of guide plates 316. It is lower than the thickness of the molten glass G flowing through (the vertical wall surface 313a and the inclined wall surface 313b). On the other hand, the height of the upper guide portion of the guide plate 316 is higher than the thickness of the molten glass flowing through the upper portion. The difference between the thickness of the molten glass and the height from the wall surface of the guide portion of the guide plate 316 in the vertical wall surface 313a and the inclined wall surface 313b, that is, the height at which the molten glass protrudes from the guide portion is, for example, 10 to 20 mm. It is. In this range, the shape of the molten glass can be maintained by the surface tension of the molten glass, and the guide portion is prevented from getting over. That is, in the entire region where the guide portion protrudes from the inclined wall surface 313b, the height of the guide portion from the inclined wall surface 313b is, for example, 10 mm to 20 mm lower than the thickness of the molten glass flowing through the inclined wall surface 313b. The temperature of the molten glass when the molten glass flows through the vertical wall surface 313a and the inclined wall surface 313b is, for example, 1230 ° C. or less and in the range of 1110 ° C. or more, and the viscosity, which is the viscosity characteristic of the molten glass at that time, For example, it is preferably 3000 to 60000 Pa · sec, and more preferably 4000 to 50000 Pa · sec. In this range, the flow of the molten glass can be reliably regulated by the guide portion.
The viscosity of the molten glass exhibits an internal resistance so that the velocity inside the fluid is made uniform when shear is acting in the flow field inside the fluid. Therefore, even if shearing works in the flow field inside the fluid as the molten glass tries to get over the guide portion, the molten glass is more difficult to get over due to internal resistance when the viscosity is large than when the viscosity is small.
As shown in FIG. 4, the lowest end portion 313 of the molded body 310 is a linear ridge line 313c in which the inclined wall surfaces 313b on both sides are connected, and the height of the guide portion of the guide plate 316 on the inclined wall surface is It is substantially zero at the lowermost end 313 (ridge line 313c). That is, the lowermost end portion of the guide portion is located on the ridge line where the two inclined wall surfaces 313b intersect. Further, the guide portion has a lowermost end portion at the lowermost end portion of the molded body 310. Further, when the lowermost end portion of the guide portion is located on the ridge line, or when the guide portion has a lowermost portion at the lowermost end portion of the molded body 310, the lowermost end portion of the guide portion and the molded body 310 The allowable range of displacement in the flow direction of the molten glass with respect to the lowermost end is 10 mm with respect to the upper limit, preferably 8 mm, more preferably 6 mm.
 上記成形体310を流れる熔融ガラスの粘度は、予め作成された温度-粘性曲線図を用いて、熔融ガラスの温度から換算することで得られる。上記温度-粘性曲線図は、予め定められたガラス組成の熔融ガラスについて、温度条件を変えて粘度を複数測定し、このときの測定結果をプロットしたものである。成形体310の各位置での粘度は、具体的には、成形体310を流れる熔融ガラスの温度を各位置で測定し、測定した温度から上記温度-粘性曲線を用いて算出される。熔融ガラスの温度は、熱電対を用いて検出した成形体310の各位置の雰囲気温度の値を、予め得られている熔融ガラス温度に変換する方法を用いて得られ、あるいは放射温度計で熔融ガラスの表面温度を測定することによって得られる。なお、上記温度-粘性曲線図の作成に用いる粘度の測定は、周知の球引き上げ法によって行われる。球引き上げ法は、熔融ガラスをニュートン流体として天秤を用いて抵抗力を測定して粘度を求める方法であり、具体的には、熔融ガラス中に白金球を浸し、白金球を等速運動で引き上げる際の白金球の抵抗力を測定し、この測定結果を周知のストークスの法則に当てはめることで粘度を求める方法である。 The viscosity of the molten glass flowing through the molded body 310 can be obtained by converting from the temperature of the molten glass using a temperature-viscosity curve diagram prepared in advance. The above temperature-viscosity curve diagram is obtained by plotting the measurement results at this time by measuring a plurality of viscosities of molten glass having a predetermined glass composition under different temperature conditions. The viscosity at each position of the molded body 310 is specifically calculated by measuring the temperature of the molten glass flowing through the molded body 310 at each position and using the temperature-viscosity curve from the measured temperature. The temperature of the molten glass is obtained by using a method of converting the atmospheric temperature value at each position of the molded body 310 detected using a thermocouple into a molten glass temperature obtained in advance, or melting with a radiation thermometer. It is obtained by measuring the surface temperature of the glass. The viscosity used for creating the temperature-viscosity curve diagram is measured by a well-known ball pulling method. The ball pulling method is a method in which molten glass is used as a Newtonian fluid and the resistance is measured using a balance to determine the viscosity. Specifically, the platinum ball is immersed in the molten glass and the platinum ball is pulled up at a constant speed. In this method, the resistance force of the platinum sphere is measured, and the viscosity is obtained by applying the measurement result to the well-known Stokes law.
 このときガイド部の高さ(高さ方向の頂部の位置)が、成形体310の下方に進むにつれて直線的に低下し最下端部313で0になる場合、図5に示すガイド部の頂部同士の交わる角度θは180度未満、好ましくは、120度以下、より好ましくは90度以下となっている。したがって、ガイド部は、傾斜壁面313bの断面の外形に沿った形状を成しているともいえる。この場合、「傾斜壁面313bの断面の外形に沿った形状」とは、ガイド部の縁が、傾斜壁面313bの傾斜と略同程度に傾斜していることを意味し、ガイド部の縁が、傾斜壁面313bにおける水平面に対する傾斜と同じ側に傾斜していることをいう。この場合、上記傾斜は、一定の比率の傾斜でもよいし、段階的に又は連続的に傾斜角を変える傾斜でもよい。また、段階的に又は連続的に傾斜角を変える傾斜の場合、ガイド部の縁は、成形体310の最下端部313近傍に向かうように、一定の傾斜角で傾斜してもよいし、段階的に又は連続的に傾斜角を変えながら、傾斜してもよい。ここで、最下端部313近傍とは、最下端部313の位置から熔融ガラスの流下方向において10mm以内の範囲の領域をいう。
 なお、傾斜壁面313bにおけるガイド板316のガイド部の高さは、成形体310の下方の位置ほど低くなっている。このようなガイド部の高さは、一定の比率(勾配)で高さが直線的に低くなってもよいし、高さが低くなる比率(勾配)が不連続に変化しても良いし、連続的に変化してもよい。図5に示す実施形態では、ガイド部の高さが低くなる比率(勾配)は、不連続に変化している。また、このように、傾斜壁面313bから突出するガイド部の高さは、この突出した領域全体において、成形体310の下方に向かうにつれて、連続的低くなっているが、段階的に低くなってもよい。
 このように、成形体310の最下端部313の位置に近づくほどガイド部の高さを低くすることができるのは、熔融ガラスの粘度が徐々に高くなるとともに、冷却ローラ330や搬送ローラ350a~350cの牽引によって熔融ガラスの厚さも徐々に目標厚さに近づくように薄くなるからである。
 ガイド板316のガイド部の高さを上述のように定めることにより、熔融ガラスが壁面から離れてガイド部を伝って鉛直下方に流れることを抑制できる。つまり、熔融ガラスが成形体310の最下端部313を通過した後、他の壁面を流下した熔融ガラスとの張り合わせが安定し、図9(b)に示すような二又形状の耳部が発生しにくくなり抑制され、図9(a)に示すような形状のガラスリボンGを安定して流すことができる。
 なお、最下端部313を通過する熔融ガラスの粘度は、例えば20000~50000Pa・秒であることが、ガラスリボンの耳部の形状を安定的に図9(a)に示す形状にする点で、好ましい。
 上述した成形体310の壁面を流れるときの熔融ガラスの粘度、および最下端部313を通過する熔融ガラスの粘度は、成形炉40内に設けた図示されないヒータ等の加熱装置によって熔融ガラスの温度を調整することにより、上記範囲内に設定することができる。
At this time, when the height of the guide portion (the position of the top portion in the height direction) decreases linearly as it goes downward of the molded body 310 and becomes 0 at the lowermost end portion 313, the top portions of the guide portions shown in FIG. Is less than 180 degrees, preferably 120 degrees or less, more preferably 90 degrees or less. Therefore, it can be said that the guide portion has a shape along the outer shape of the cross section of the inclined wall surface 313b. In this case, “the shape along the outer shape of the cross-section of the inclined wall surface 313b” means that the edge of the guide portion is inclined substantially the same as the inclination of the inclined wall surface 313b. It means that it inclines to the same side as the inclination with respect to the horizontal surface in the inclined wall surface 313b. In this case, the inclination may be a constant ratio or an inclination that changes the inclination angle stepwise or continuously. Further, in the case of an inclination that changes the inclination angle stepwise or continuously, the edge of the guide portion may be inclined at a constant inclination angle so as to be directed to the vicinity of the lowermost end portion 313 of the molded body 310. Inclination may be performed while changing the inclination angle continuously or continuously. Here, the vicinity of the lowermost end portion 313 refers to a region within 10 mm from the position of the lowermost end portion 313 in the flow direction of the molten glass.
In addition, the height of the guide part of the guide plate 316 in the inclined wall surface 313b is lower as the position is lower than the molded body 310. The height of such a guide portion may be such that the height decreases linearly at a constant ratio (gradient), or the ratio (gradient) at which the height decreases may vary discontinuously, It may change continuously. In the embodiment shown in FIG. 5, the ratio (gradient) at which the height of the guide portion is lowered changes discontinuously. Further, as described above, the height of the guide portion protruding from the inclined wall surface 313b continuously decreases toward the lower side of the molded body 310 in the entire protruding region. Good.
As described above, the height of the guide portion can be lowered as it approaches the position of the lowermost end portion 313 of the molded body 310. The viscosity of the molten glass gradually increases, and the cooling roller 330 and the conveying rollers 350a to 350a- This is because the thickness of the molten glass gradually decreases toward the target thickness by pulling 350c.
By determining the height of the guide portion of the guide plate 316 as described above, it is possible to suppress the molten glass from moving away from the wall surface along the guide portion and vertically downward. That is, after the molten glass passes through the lowermost end portion 313 of the molded body 310, the lamination with the molten glass flowing down the other wall surface is stabilized, and a bifurcated ear portion as shown in FIG. 9B is generated. The glass ribbon G having the shape as shown in FIG. 9A can be stably flowed.
In addition, the viscosity of the molten glass that passes through the lowermost end 313 is, for example, 20000 to 50000 Pa · second, in that the shape of the ear portion of the glass ribbon is stably formed as shown in FIG. preferable.
The viscosity of the molten glass when it flows through the wall surface of the molded body 310 and the viscosity of the molten glass that passes through the lowermost end 313 are controlled by a heating device such as a heater (not shown) provided in the molding furnace 40. By adjusting, it can set in the said range.
 図6は、従来のガイド板316’と、成形体310’を流れる熔融ガラスを説明する図である。図7(a),(b)は、従来における熔融ガラスが合流する様子と、本実施形態における熔融ガラスが合流する様子を説明する図である。 FIG. 6 is a view for explaining a conventional guide plate 316 ′ and molten glass flowing through the molded body 310 ′. FIGS. 7A and 7B are views for explaining a state in which the conventional molten glass is merged and a state in which the molten glass in the present embodiment is merged.
 従来の成形体310’は、上記実施形態における成形体310と同じ大きさ、同じ形状及び同じ構成を有している。ガイド板316’は、上記実施形態のガイド板316に比べて大きく、図6に示すように、成形体310’の側壁の壁面から飛び出したガイド部は、上記実施形態におけるガイド部に比べて高さが高い。したがって、図6に示すように、熔融ガラスの幅方向の端部全体がガイド部と接触することになる。ガイド部を有するガイド板316’は、熔融ガラスと良好な濡れ性を有する白金が用いられるので、ガイド部も熔融ガラスの端部との濡れ性が高い。このため、ガイド部を濡らした熔融ガラスは、図7(a)に示す矢印のように、鉛直下方に流れようとする。このため、最下端部313近傍までガイド部と接触する耳部近傍に位置する熔融ガラスは、ガイド部を伝って鉛直下方に流れようとする成分が大きい。このため、最下端部313’において合流する2つの熔融ガラスの厚さ方向の幅w’は熔融ガラスの幅方向の中央部の幅に比べて広く、図9(b)に示すような二又形状の耳部が発生しやすい。すなわち、端部において熔融ガラス同士が合流しない場合がある。 The conventional molded body 310 ′ has the same size, the same shape, and the same configuration as the molded body 310 in the above embodiment. The guide plate 316 ′ is larger than the guide plate 316 of the above embodiment, and as shown in FIG. 6, the guide portion protruding from the wall surface of the side wall of the molded body 310 ′ is higher than the guide portion in the above embodiment. Is high. Therefore, as shown in FIG. 6, the whole edge part of the molten glass width direction contacts a guide part. Since the guide plate 316 ′ having the guide portion uses platinum having a good wettability with the molten glass, the guide portion also has a high wettability with the end portion of the molten glass. For this reason, the molten glass wetted with the guide portion tends to flow vertically downward as indicated by an arrow shown in FIG. For this reason, the molten glass located in the vicinity of the ear | edge part which contacts a guide part to the vicinity of the lowest end part 313 has a big component which tends to flow through a guide part to the perpendicular downward direction. For this reason, the width w ′ in the thickness direction of the two molten glasses that merge at the lowermost end portion 313 ′ is wider than the width of the central portion in the width direction of the molten glass, and the bifurcated shape as shown in FIG. Shaped ears are likely to occur. That is, molten glass may not merge at the end.
 これに対して、本実施形態の成形体310を流下する熔融ガラスは、熔融ガラスと良好な濡れ性を有する白金が用いられるガイド部との接触面積が、従来のガイド部に比べて小さいので、ガイド部を伝って鉛直下方に流れようとする成分が小さい。したがって、図7(b)に示すように、最下端部313において合流する2つの熔融ガラスの厚さ方向の幅wは熔融ガラスの幅方向の中央部の幅と同等になり、図9(b)に示すような二又形状の耳部が発生し難い。
 特に、本実施形態のように、傾斜壁面313bから突出したガイド部の領域全体において、ガイド部の高さを、傾斜壁面313bを流れる熔融ガラスの厚さに比べて低く設け、かつ、ガイド部の斜壁面313bにおける高さを最下端部313において0にする形態を用いることで、ガラスシートの耳部の形状を図9(a)に示すような形状に、より安定的にすることができる。すなわち、最下端部313の直前の領域で、ガイド部の高さを熔融ガラスの厚さに対して急激に低くし、最下端部313においてガイド高さを0にする従来の形態に比べて、本実施形態は、最下端部313において熔融ガラスが合流するとき、ガイド部を伝って鉛直下方に流れようとする小さな成分をより穏やかに変化させて0にすることができる。したがって、本実施形態は、ガラスシートの耳部の形状を図9(a)に示すような形状に、より安定的にすることができる。
On the other hand, the molten glass flowing down the molded body 310 of the present embodiment has a smaller contact area between the molten glass and the guide portion where platinum having good wettability is used, compared to the conventional guide portion. A component that tends to flow vertically downward along the guide portion is small. Therefore, as shown in FIG. 7 (b), the width w in the thickness direction of the two molten glasses that merge at the lowermost end portion 313 is equal to the width of the central portion in the width direction of the molten glass. It is difficult to generate a bifurcated ear as shown in FIG.
In particular, as in this embodiment, in the entire region of the guide portion protruding from the inclined wall surface 313b, the height of the guide portion is set lower than the thickness of the molten glass flowing through the inclined wall surface 313b, and By using a form in which the height of the inclined wall surface 313b is set to 0 at the lowermost end portion 313, the shape of the ear portion of the glass sheet can be made more stable as shown in FIG. That is, in the region immediately before the lowest end portion 313, the height of the guide portion is drastically lowered with respect to the thickness of the molten glass, and compared with the conventional form in which the guide height is 0 at the lowest end portion 313, In the present embodiment, when the molten glass merges at the lowermost end portion 313, a small component that tends to flow vertically downward through the guide portion can be changed to 0 more gently. Therefore, this embodiment can make the shape of the ear | edge part of a glass sheet more stable in the shape as shown to Fig.9 (a).
 本実施形態では、ガイド板316のガイド部の高さは、垂直壁面及び傾斜壁面において、これらの面を伝って流れる熔融ガラスの厚さよりも低いが、少なくとも傾斜壁面の全領域において、ガイド部の高さが熔融ガラスの厚さよりも低ければよい。垂直壁面を流れる熔融ガラスは、傾斜壁面と異なり、鉛直下方に流れているので、熔融ガラスが接触する面積を小さくしてガイド部に沿って鉛直下方に流れる成分を抑える必要はない。しかし、ガイド板316は、熔融ガラスの熱を奪って放射する放射面として機能する場合もある。このため、熔融ガラスの端部がガイド部と接触する面積を抑制する点で、垂直壁面においてガイド部の高さを熔融ガラスの厚さより低くすることが好ましい。 In this embodiment, the height of the guide portion of the guide plate 316 is lower than the thickness of the molten glass flowing along these surfaces on the vertical wall surface and the inclined wall surface, but at least in the entire region of the inclined wall surface. It is sufficient that the height is lower than the thickness of the molten glass. Unlike the inclined wall surface, the molten glass flowing on the vertical wall surface flows vertically downward, and therefore it is not necessary to reduce the area in contact with the molten glass and suppress the component flowing vertically downward along the guide portion. However, the guide plate 316 may function as a radiation surface that takes the heat of the molten glass and emits it. For this reason, it is preferable to make the height of a guide part lower than the thickness of a molten glass in the vertical wall surface at the point which suppresses the area where the edge part of molten glass contacts a guide part.
 上述したガイド部の高さは、ガラス板の製造時に熔融ガラスがガイド部を乗り越えないように定めることができる。
 例えば、ガラス板を製造する前に、熔融ガラスを成形体310に供給する熔融ガラスの供給量と、熔融ガラスが成形体310を流下するときの熔融ガラスの粘度とを種々変更して、成形体310を流下する熔融ガラスの厚さを予め調べる。これにより、上記供給量及び上記粘度に対する熔融ガラスの厚さ(成形体310を流れる熔融ガラスの厚さ)の情報をサンプル情報として予め取得する。ガラス板を製造しようとするとき、取得したサンプル情報を用いて、製造しようとするガラス板の熔融ガラスの供給量及び成形体310を流下するときの熔融ガラスの粘度から、成形体310を流下するときの熔融ガラスの厚さを予測する。さらに、予測した熔融ガラスの厚さから予め設定された値を減算することにより、ガイド部の高さを定める。予め設定された値とは、製造しようとするガラス板の熔融ガラスの粘度と熔融ガラスの供給量とを実際の製造条件の範囲内で種々変化させたとき、ガイド部の高さが成形体310を流下するときの熔融ガラスの厚さより低くても熔融ガラスがガイド部を乗り越えないような、熔融ガラスの厚さとガイド部の高さの差分の最大値である。この値は、例えば10~20mmの範囲にある。この値は一定値であるが、ガイド部の高さを、製造しようとするガラス板に応じてより詳細に定めるには、ガラス板の組成及び熔融ガラスの温度により定まる表面張力、さらには熔融ガラスの粘度に応じて調整することができる。なお、表面張力が組成および温度の依存性を有する点は周知事項であり、例えば「ガラスハンドブック」(作花済夫、境野照雄、高橋克明編者、朝倉書店、1985年11月20日第8刷)の第772頁~第778頁に記載されている。
 なお、熔融ガラスの厚さは、熔融ガラスの供給量と、熔融ガラスの粘度を用いて予測されるが、この他に、さらに熔融ガラスの表面張力を加えて熔融ガラスの厚さを予測することもできる。
 また、ガラス板を製造する前に、ガラス板を製造しようとするときの製造条件で熔融ガラスを成形体310に予備的に供給して、熔融ガラスがガイド部を乗り越えないようなガイド部の高さを見出してもよい。
The height of the above-described guide portion can be determined so that the molten glass does not get over the guide portion when the glass plate is manufactured.
For example, before manufacturing a glass plate, the amount of molten glass supplied to the molded body 310 and the viscosity of the molten glass when the molten glass flows down the molded body 310 are variously changed. The thickness of the molten glass flowing down 310 is examined in advance. Thereby, the information of the thickness (the thickness of the molten glass which flows through the molded object 310) with respect to the said supply amount and the said viscosity is previously acquired as sample information. When trying to manufacture a glass plate, using the acquired sample information, the molded body 310 is flowed down from the supply amount of the molten glass of the glass plate to be manufactured and the viscosity of the molten glass when the molded body 310 is flowed down. Predict the thickness of the molten glass. Furthermore, the height of the guide portion is determined by subtracting a preset value from the predicted molten glass thickness. The preset value means that when the viscosity of the molten glass of the glass plate to be manufactured and the supply amount of the molten glass are variously changed within the range of the actual manufacturing conditions, the height of the guide portion is the molded body 310. The maximum value of the difference between the thickness of the molten glass and the height of the guide portion so that the molten glass does not get over the guide portion even if it is lower than the thickness of the molten glass when flowing down. This value is in the range of 10 to 20 mm, for example. Although this value is a constant value, in order to determine the height of the guide portion in more detail according to the glass plate to be manufactured, the surface tension determined by the composition of the glass plate and the temperature of the molten glass, and further the molten glass It can be adjusted according to the viscosity. The point that the surface tension depends on the composition and temperature is a well-known matter. For example, “Glass Handbook” (Sakuo Sakuo, Teruo Sakino, Katsuaki Takahashi, Asakura Shoten, November 20, 1985, 8th edition) ) Pages 772 to 778.
In addition, the thickness of the molten glass is predicted using the supply amount of the molten glass and the viscosity of the molten glass. In addition to this, the surface tension of the molten glass is further added to predict the thickness of the molten glass. You can also.
Further, before the glass plate is manufactured, the molten glass is preliminarily supplied to the molded body 310 under the manufacturing conditions when the glass plate is to be manufactured, so that the height of the guide portion is such that the molten glass does not get over the guide portion. May be found.
 熔融ガラスの厚さは、成形体310に供給する熔融ガラスの供給量、さらには熔融ガラスの成形体310を流れるときの粘度に依存するので、ガラス板の製造時、ガイド板316のガイド部の高さに対して、成形体310の壁面を流れる熔融ガラスの厚さが高くなるように、熔融ガラスの供給量と粘度を微調整することも可能である。
 例えば、供給工程(ST5)において、第2配管205に設けられる供給量調整装置(不図示)を用いて熔融ガラスの供給量が調整される。例えば、製造された単位時間当たりのガラスシートの重量の結果に応じて上記供給量が調整される。このような調整は、作業者によるマニュアルで行われてもよいし、コンピュータ(不図示)によって自動的に行われてもよい。
Since the thickness of the molten glass depends on the supply amount of the molten glass supplied to the molded body 310 and also the viscosity when flowing through the molten glass molded body 310, the glass plate is manufactured at the guide portion of the guide plate 316. It is also possible to finely adjust the supply amount and the viscosity of the molten glass so that the thickness of the molten glass flowing on the wall surface of the molded body 310 increases with respect to the height.
For example, in the supply step (ST5), the supply amount of the molten glass is adjusted using a supply amount adjusting device (not shown) provided in the second pipe 205. For example, the supply amount is adjusted according to the result of the weight of the manufactured glass sheet per unit time. Such adjustment may be performed manually by an operator or automatically by a computer (not shown).
 図8(a)~(c)は、図5に示すガイド板316の形状と異なる形状を有するガイド板316を示す図である。図8(a)~(c)に示すガイド板316も、本発明におけるガラス製造方法に用いることができる。
 図8(a)に示すガイド板316は、成形体310の傾斜壁面におけるガイド部全体が、垂直壁面におけるガイド部との接続部分から、成形体310の最下端部313に近づくにつれて、一定の比率(勾配)でガイド部の高さが低くなる形状を有する。
 図8(b)に示すガイド板316は、成形体310の傾斜壁面におけるガイド部全体が、垂直壁面におけるガイド部との接続部分から、成形体310の最下端部313に近づくにつれて、ガイド部の高さが徐々に低くなる形状を有するが、ガイド部の高さの低くなる比率(勾配)が最下端部313に近づくにつれて大きくなる形状を有する。
 図8(c)に示すガイド板316は、図8(b)に示す傾斜壁面におけるガイド部の形状に加えて、垂直壁面におけるガイド部の高さも、下方向に進むほど徐々に低くなる形状を有し、ガイド部の高さの低くなる比率(勾配)も下方向に進むにつれて大きくなる形状を有する。
FIGS. 8A to 8C are views showing a guide plate 316 having a shape different from the shape of the guide plate 316 shown in FIG. The guide plate 316 shown in FIGS. 8A to 8C can also be used in the glass manufacturing method of the present invention.
The guide plate 316 shown in FIG. 8A has a constant ratio as the entire guide portion on the inclined wall surface of the molded body 310 approaches the lowermost end portion 313 of the molded body 310 from the connection portion with the guide portion on the vertical wall surface. (Gradient) has a shape in which the height of the guide portion is lowered.
The guide plate 316 shown in FIG. 8B has a guide plate 316 as the entire guide portion on the inclined wall surface of the molded body 310 approaches the lowermost end portion 313 of the molded body 310 from the connection portion with the guide portion on the vertical wall surface. Although it has a shape in which the height gradually decreases, it has a shape in which the ratio (gradient) at which the height of the guide portion decreases becomes larger as it approaches the lowest end portion 313.
The guide plate 316 shown in FIG. 8 (c) has a shape in which the height of the guide portion on the vertical wall surface gradually decreases as it goes downward, in addition to the shape of the guide portion on the inclined wall surface shown in FIG. 8 (b). And the ratio (gradient) at which the height of the guide portion decreases also increases in the downward direction.
(ガラス組成)
 本実施形態に用いるガラスの種類は、ボロシリケイトガラス、アルミノシリケイトガラス、アルミノボロシリケイトガラス、ソーダライムガラス、アルカリシリケイトガラス、アルカリアルミノシリケイトガラス等が挙げられる。
 本実施形態において製造されるガラス板は、例えば、以下の組成を有する。
(a)SiO:50~70質量%、
(b)B:5~18質量%、
(c)Al:10~25質量%、
(d)MgO:0~10質量%、
(e)CaO:0~20質量%、
(f)SrO:0~20質量%、
(g)BaO:0~10質量%、
(h)RO:5~20質量%(ただしRはMg、Ca、SrおよびBaから選ばれる少なくとも1種であり、ROは、MgO、CaO、SrOおよびBaOのうち含有する成分の合計)、
(i)R’O:0.20質量%を超え2.0質量%以下(ただしR’はLi、NaおよびKから選ばれる少なくとも1種であり、R’OはLiO、NaO及びKOのうち含有する成分の合計)、
(j)酸化錫、酸化鉄および酸化セリウムなどから選ばれる少なくとも1種の金属酸化物を合計で0.05~1.5質量%。
 なお、上記(i),(j)の組成は必須ではないが、(i),(j)の組成を含むことが好ましい。本実施形態のガラス板には、As、SbおよびPbOを実質的に含まないことが好ましい。
 上述した成分に加え、本実施形態のガラス板は、ガラスの様々な物理的、溶融、清澄、および成形の特性を調節するために、様々な他の酸化物を含有しても差し支えない。そのような他の酸化物の例としては、以下に限られないが、TiO2、MnO、ZnO、Nb25、MoO3、Ta25、WO3、Y23、およびLa23が挙げられる。
 また、本実施形態においては、酸化スズはガラスを失透しやすくする成分であるため、清澄性を高めつつ失透を起こさせないためには、その含有量が0.01~0.5質量%であることが好ましく、0.05~0.3質量%であることがより好ましく、0.1~0.2質量%であることがさらに好ましい。
 上記金属酸化物に酸化鉄を含む場合、上記酸化鉄は、その含有量が0.01~0.2質量%であることが好ましく、0.01~0.15質量%であることがより好ましく、0.01~0.10質量%であることがさらに好ましい。
(Glass composition)
Examples of the glass used in the present embodiment include borosilicate glass, aluminosilicate glass, aluminoborosilicate glass, soda lime glass, alkali silicate glass, and alkali aluminosilicate glass.
The glass plate manufactured in this embodiment has the following compositions, for example.
(A) SiO 2 : 50 to 70% by mass,
(B) B 2 O 3 : 5 to 18% by mass,
(C) Al 2 O 3 : 10 to 25% by mass,
(D) MgO: 0 to 10% by mass,
(E) CaO: 0 to 20% by mass,
(F) SrO: 0 to 20% by mass,
(G) BaO: 0 to 10% by mass,
(H) RO: 5 to 20% by mass (wherein R is at least one selected from Mg, Ca, Sr and Ba, and RO is the total of components contained in MgO, CaO, SrO and BaO),
(I) R ′ 2 O: more than 0.20% by mass and 2.0% by mass or less (where R ′ is at least one selected from Li, Na and K, and R ′ 2 O is Li 2 O, Na 2 O and the sum of the components contained in K 2 O),
(J) 0.05 to 1.5 mass% in total of at least one metal oxide selected from tin oxide, iron oxide, cerium oxide, and the like.
The compositions (i) and (j) are not essential, but preferably include the compositions (i) and (j). It is preferable that the glass plate of this embodiment does not substantially contain As 2 O 3 , Sb 2 O 3 and PbO.
In addition to the components described above, the glass plate of the present embodiment may contain various other oxides to adjust the various physical, melting, fining, and forming properties of the glass. Examples of such other oxides include, but are not limited to, TiO 2 , MnO, ZnO, Nb 2 O 5 , MoO 3 , Ta 2 O 5 , WO 3 , Y 2 O 3 , and La 2. O 3 is mentioned.
In the present embodiment, tin oxide is a component that makes glass easily devitrified. Therefore, in order to prevent devitrification while enhancing clarity, its content is 0.01 to 0.5% by mass. It is preferably 0.05 to 0.3% by mass, more preferably 0.1 to 0.2% by mass.
When the metal oxide contains iron oxide, the content of the iron oxide is preferably 0.01 to 0.2% by mass, and more preferably 0.01 to 0.15% by mass. More preferably, the content is 0.01 to 0.10% by mass.
 他の好ましいガラス組成として、下記組成を挙げることができる。
(a)SiO:50~70質量%、
(b)B:0~10質量%、
(c)Al:1~20質量%、
(d)MgO:0~10質量%、
(e)CaO:0~15質量%、
(f)SrO:0~10質量%、
(g)BaO:0~10質量%、
(h)RO:0~20質量%(ただしRはMg、Ca、SrおよびBaから選ばれる少なくとも1種であり、ROはMgO、CaO、SrOおよびBaOのうち含有する成分の合計)、
(i)LiO:0~10質量%、
(j)NaO:0~20質量%、
(k)KO:0~10質量%、
(l)R’O:10質量~20質量%以下(ただしR’はLi、NaおよびKから選ばれる少なくとも1種であり、R’OはLiO、NaO及びKOのうち含有する成分の合計)、
(m)ZrO:0~10質量%。
Other preferable glass compositions include the following compositions.
(A) SiO 2 : 50 to 70% by mass,
(B) B 2 O 3 : 0 to 10% by mass,
(C) Al 2 O 3 : 1 to 20% by mass,
(D) MgO: 0 to 10% by mass,
(E) CaO: 0 to 15% by mass,
(F) SrO: 0 to 10% by mass,
(G) BaO: 0 to 10% by mass,
(H) RO: 0 to 20% by mass (wherein R is at least one selected from Mg, Ca, Sr and Ba, and RO is the total of components contained in MgO, CaO, SrO and BaO),
(I) Li 2 O: 0 to 10% by mass,
(J) Na 2 O: 0 to 20% by mass,
(K) K 2 O: 0 to 10% by mass,
(L) R ′ 2 O: 10% by mass to 20% by mass or less (where R ′ is at least one selected from Li, Na and K, and R ′ 2 O is Li 2 O, Na 2 O and K 2 O) Of the total ingredients)
(M) ZrO 2 : 0 to 10% by mass.
 以上纏めると、本明細書は以下の内容を開示する。 In summary, this specification discloses the following contents.
(開示1)
 ダウンドロー法によるガラス板の製造方法であって、
 ガラス原料を熔解して熔融ガラスを得る熔解工程と、
 前記熔融ガラスを成形体の上部に設けられた供給溝に熔融ガラスを供給することにより、前記供給溝の前記上部から熔融ガラスを溢れ出させ、前記成形体の壁面から突出した一対のガイドにより熔融ガラスの流れ幅を規制しつつ、前記成形体の下部の両側それぞれの壁面に沿って熔融ガラスを流下させ、流下する熔融ガラスを前記成形体の最下端部に導き、前記最下端部において前記両側の壁面のそれぞれを流れる熔融ガラスを合流させることにより、ガラスリボンを成形する成形工程と、
 徐冷炉内において流れる前記ガラスリボンを冷却する徐冷工程と、
 冷却された前記ガラスリボンを切断する切断工程と、を備え、
 前記成形体の前記壁面は、前記供給溝から溢れ出た熔融ガラスが鉛直方向に流下する垂直壁面と、前記垂直壁面を流下した熔融ガラスを前記成形体の最下端部に導く、前記垂直壁面と接続した傾斜壁面と、を含み、
 前記傾斜壁面から前記ガイドが突出した領域全体において、前記一対のガイドの前記傾斜壁面からの高さが、熔融ガラスが前記一対のガイドを乗り越えない範囲で、前記傾斜壁面を流れる熔融ガラスの厚さに比べて低く設けられている、ことを特徴とするガラス板の製造方法。
 上記開示1では、前記傾斜壁面から前記ガイドが突出した領域全体において、前記一対のガイドの前記傾斜壁面からの高さが、熔融ガラスが前記一対のガイドを乗り越えない範囲で、前記傾斜壁面を流れる熔融ガラスの厚さに比べて低く設けられているので、熔融ガラスが壁面から離れてガイド部を伝って鉛直下方に流れることを抑制できる。つまり、熔融ガラスが前記成形体の最下端部を通過した後、他の壁面を流下した熔融ガラスとの張り合わせが安定し、従来得られていたガラスリボンの二又形状の耳部が発生しにくくなり、ガラスリボンを安定した形状で流すことができる。
(Disclosure 1)
A method for producing a glass plate by a downdraw method,
A melting step of melting glass raw material to obtain molten glass;
The molten glass is supplied to a supply groove provided in the upper part of the molded body, thereby overflowing the molten glass from the upper part of the supply groove, and melted by a pair of guides protruding from the wall surface of the molded body. While restricting the flow width of the glass, the molten glass is caused to flow down along the respective wall surfaces on both sides of the lower part of the molded body, and the molten glass flowing down is guided to the lowermost end portion of the molded body, Forming a glass ribbon by joining the molten glass flowing through each of the wall surfaces;
A slow cooling step for cooling the glass ribbon flowing in the slow cooling furnace;
A cutting step of cutting the cooled glass ribbon,
The wall surface of the molded body includes a vertical wall surface in which the molten glass overflowing from the supply groove flows down in the vertical direction, and the vertical wall surface that guides the molten glass that has flowed down the vertical wall surface to the lowest end portion of the molded body. Connected inclined wall surfaces,
In the entire region where the guide protrudes from the inclined wall surface, the height of the pair of guides from the inclined wall surface is a thickness of the molten glass flowing through the inclined wall surface in such a range that the molten glass does not get over the pair of guides. The manufacturing method of the glass plate characterized by being provided low compared with.
In the first disclosure, in the entire region where the guide protrudes from the inclined wall surface, the height of the pair of guides from the inclined wall surface flows in the inclined wall surface so that the molten glass does not get over the pair of guides. Since it is provided lower than the thickness of the molten glass, it is possible to suppress the molten glass from flowing away from the wall surface along the guide portion and vertically downward. That is, after the molten glass has passed through the lowermost end of the molded body, the lamination with the molten glass that has flowed down the other wall surface is stable, and the two-pronged ear portion of the glass ribbon that has been obtained in the past is less likely to occur. Thus, the glass ribbon can be flowed in a stable shape.
(開示2)
 前記傾斜壁面から前記ガイドが突出した領域全体において、前記一対のガイドの前記傾斜壁面からの高さは、前記成形体の下方の位置ほど低くなっている、開示1に記載のガラス板の製造方法。
 前記成形体の最下端部の位置に近づくほど下方のガラスリボンの牽引によって熔融ガラスの厚さも徐々に薄くなるので、前記ガイドの高さを上述のように定めることにより、熔融ガラスが壁面から離れてガイド部を伝って鉛直下方に流れることを抑制できる。
(Disclosure 2)
The manufacturing method of the glass plate of Claim 1 with which the height from the said inclined wall surface of the said pair of guides is low as the position below the said molded object in the whole area | region where the said guide protruded from the said inclined wall surface. .
Since the thickness of the molten glass is gradually reduced by pulling the lower glass ribbon as it approaches the position of the lowermost end of the molded body, the molten glass is separated from the wall surface by determining the height of the guide as described above. Therefore, it is possible to suppress the vertical downward flow through the guide portion.
(開示3)
 前記傾斜壁面から前記ガイドが突出した領域全体において、前記一対のガイドの前記傾斜壁面からの高さは、前記成形体の下方に向かうにつれて、連続的に又は段階的に低くなっている、開示2に記載のガラス板の製造方法。
 前記一対のガイドの前記傾斜壁面からの高さを、前記成形体の下方に向かうにつれて、連続的に又は段階的に低くすることにより、熔融ガラスが前記傾斜壁面から離れて前記ガイドを伝って鉛直下方に流れることを確実に抑制できる。
(Disclosure 3)
In the entire region where the guide protrudes from the inclined wall surface, the height of the pair of guides from the inclined wall surface decreases continuously or stepwise as it goes downward of the molded body. The manufacturing method of the glass plate of description.
The height of the pair of guides from the inclined wall surface is lowered continuously or stepwise as it goes downward of the molded body, so that the molten glass moves vertically away from the inclined wall surface along the guide. It can suppress reliably flowing below.
(開示4)
 前記成形体の最下端部は、両側の前記傾斜壁面同士が接続した直線状の稜線であり、
 前記一対のガイドの最下端部は、前記稜線上に位置する、開示1~3のいずれか1項に記載のガラス板の製造方法。
 前記一対のガイドの最下端部は、前記稜線上に位置するので、熔融ガラスが前記ガイドを伝わることなく、前記傾斜壁面から確実に離れて鉛直下方に流れを作ることができる。
(Disclosure 4)
The lowest end portion of the molded body is a linear ridge line in which the inclined wall surfaces on both sides are connected,
The method for producing a glass sheet according to any one of claims 1 to 3, wherein the lowermost ends of the pair of guides are located on the ridgeline.
Since the lowermost end portions of the pair of guides are located on the ridgeline, the molten glass can be surely separated from the inclined wall surface and flowed vertically downward without being transmitted through the guide.
(開示5)
 前記傾斜壁面から前記ガイドが突出した領域全体において、前記一対のガイドの前記傾斜壁面からの高さは、前記傾斜壁面を流れる熔融ガラスの厚さに比べて、10mm~20mm低くなっている、開示1~4のいずれか1項に記載のガラス板の製造方法。
 前記傾斜壁面からの高さを、前記傾斜壁面を流れる熔融ガラスの厚さに比べて、10mm~20mm低くしても、熔融ガラスが前記一対のガイドを乗り越えることはない。このような熔融ガラスが前記成形体で用いられる。
(Disclosure 5)
In the entire region in which the guide protrudes from the inclined wall surface, the height of the pair of guides from the inclined wall surface is 10 mm to 20 mm lower than the thickness of the molten glass flowing through the inclined wall surface. 5. The method for producing a glass plate according to any one of 1 to 4.
Even if the height from the inclined wall surface is lower by 10 mm to 20 mm than the thickness of the molten glass flowing through the inclined wall surface, the molten glass does not get over the pair of guides. Such a molten glass is used in the molded body.
(開示6)
 前記壁面を流下する熔融ガラスの粘度は、3000~60000[Pa・秒]である、開示1~5のいずれか1項に記載のガラス板の製造方法。
 熔融ガラスの粘度を3000~60000[Pa・秒]とすることにより、熔融ガラスが前記一対のガイドを乗り越えることを確実に抑制できる。
(Disclosure 6)
The method for producing a glass sheet according to any one of disclosures 1 to 5, wherein the viscosity of the molten glass flowing down the wall surface is 3000 to 60000 [Pa · sec].
By setting the viscosity of the molten glass to 3000 to 60000 [Pa · sec], it is possible to reliably suppress the molten glass from getting over the pair of guides.
(開示7)
 ダウンドロー法によるガラス板の製造方法であって、
 ガラス原料を熔解して熔融ガラスを得る熔解工程と、
 前記熔融ガラスを成形体の上部に設けられた供給溝に熔融ガラスを供給することにより、前記供給溝の前記上部から熔融ガラスを溢れ出させ、前記成形体の壁面から突出した一対のガイドにより熔融ガラスの流れ幅を規制しつつ、前記成形体の下部の両側それぞれの壁面に沿って熔融ガラスを流下させ、流下する熔融ガラスを前記成形体の最下端部に導き、前記最下端部において前記両側の壁面のそれぞれを流れる熔融ガラスを合流させることにより、ガラスリボンを成形する成形工程と、
 徐冷炉内において流れる前記ガラスリボンを冷却する徐冷工程と、
 冷却された前記ガラスリボンを切断する切断工程と、を備え、
 前記成形体の前記壁面は、前記供給溝から溢れ出た熔融ガラスが鉛直方向に流下する垂直壁面と、前記垂直壁面を流下した熔融ガラスを前記成形体の最下端部に導く、前記垂直壁面と接続した傾斜壁面と、を含み、
 前記一対のガイドは、前記成形体の断面の外形に沿った形状を成し、前記成形体の最下端部において、最下端となる部分を有し、かつ、前記傾斜壁面から前記ガイドが突出した領域全体において、前記一対のガイドの前記壁面からの高さが、前記壁面を流れる熔融ガラスの厚さに比べて低く設けられることにより、前記熔融ガラスが合流するときの両端部における前記熔融ガラスの厚さを低減する、ことを特徴とするガラス板の製造方法。
 ここで、「前記成形体の最下端部において、最下端となる部分を有し」とは、最下端部同士の熔融ガラスの流下方向における位置ずれが、10mm以下であることをいう
 また、「前記成形体の断面の外形に沿った形状」とは、ガイド部の縁が、傾斜壁面の傾斜と略同程度に傾斜していることを意味し、ガイド部の縁が、傾斜壁面313bにおける水平面に対する傾斜と同じ側に傾斜していることをいう。この場合、上記傾斜は、一定の比率の傾斜でもよいし、段階的に又は連続的に傾斜角を変えながら変化する傾斜であってもよい。また、この場合、ガイド部の縁は、成形体の最下端部近傍に向かうように、一定の傾斜角で傾斜してもよいし、段階的に又は連続的に傾斜角を変えながら、傾斜してもよい。ここで、最下端部313近傍とは、最下端部313の位置から熔融ガラスの流下方向において10mm以内の範囲の領域をいう。
 前記一対のガイドは、前記成形体の断面の外形に沿った形状を成し、前記成形体の最下端部において、最下端となる部分を有し、かつ、前記傾斜壁面から前記ガイドが突出した領域全体において、前記一対のガイドの前記壁面からの高さが、前記壁面を流れる熔融ガラスの厚さに比べて低く設けられる。このような構成のガイドを用いても、熔融ガラスが前記一対のガイドを乗り越えないようにすることができる。このとき、前記一対のガイドは、前記成形体の断面の外形に沿った形状を成しているので、熔融ガラスが前記傾斜壁面から離れてガイドを伝って鉛直下方に流れることを抑制できる。また、前記一対のガイドは、前記成形体の最下端部において、最下端となる部分を有しているので、前記成形体の最下端部において、両側の傾斜面を流れる熔融ガラスを安定して張り合わせることができる。また、前記一対のガイドの前記壁面からの高さが、前記壁面を流れる熔融ガラスの厚さに比べて低くいので、熔融ガラスが壁面から離れてガイド部を伝って鉛直下方に流れることを抑制できる。つまり、熔融ガラスが前記成形体の最下端部を通過した後、他の壁面を流下した熔融ガラスとの張り合わせが安定し、従来得られていたガラスリボンの二又形状の耳部が発生しにくくなり、ガラスリボンを安定した形状で流すことができる。
(Disclosure 7)
A method for producing a glass plate by a downdraw method,
A melting step of melting glass raw material to obtain molten glass;
The molten glass is supplied to a supply groove provided in the upper part of the molded body, thereby overflowing the molten glass from the upper part of the supply groove, and melted by a pair of guides protruding from the wall surface of the molded body. While restricting the flow width of the glass, the molten glass is caused to flow down along the respective wall surfaces on both sides of the lower part of the molded body, and the molten glass flowing down is guided to the lowermost end portion of the molded body, Forming a glass ribbon by joining the molten glass flowing through each of the wall surfaces;
A slow cooling step for cooling the glass ribbon flowing in the slow cooling furnace;
A cutting step of cutting the cooled glass ribbon,
The wall surface of the molded body includes a vertical wall surface in which the molten glass overflowing from the supply groove flows down in the vertical direction, and the vertical wall surface that guides the molten glass that has flowed down the vertical wall surface to the lowest end portion of the molded body. Connected inclined wall surfaces,
The pair of guides has a shape along the outer shape of the cross section of the molded body, has a lowermost portion at the lowermost end portion of the molded body, and the guide protrudes from the inclined wall surface. In the entire region, the height of the pair of guides from the wall surface is set lower than the thickness of the molten glass flowing through the wall surface, so that the molten glass at both ends when the molten glass merges is provided. A method for producing a glass plate, wherein the thickness is reduced.
Here, “having a portion which becomes the lowermost end in the lowermost end portion of the molded body” means that the positional deviation in the flow direction of the molten glass between the lowermost end portions is 10 mm or less. The “shape along the outer shape of the cross section of the molded body” means that the edge of the guide portion is inclined to the same degree as the inclination of the inclined wall surface, and the edge of the guide portion is a horizontal plane on the inclined wall surface 313b. It is inclined to the same side as the inclination relative to. In this case, the inclination may be a constant ratio, or may be an inclination that changes while changing the inclination angle stepwise or continuously. Further, in this case, the edge of the guide portion may be inclined at a constant inclination angle so as to go to the vicinity of the lowermost end portion of the molded body, or may be inclined while changing the inclination angle stepwise or continuously. May be. Here, the vicinity of the lowermost end portion 313 refers to a region within 10 mm from the position of the lowermost end portion 313 in the flow direction of the molten glass.
The pair of guides has a shape along the outer shape of the cross section of the molded body, has a lowermost portion at the lowermost end portion of the molded body, and the guide protrudes from the inclined wall surface. In the entire region, the height of the pair of guides from the wall surface is set lower than the thickness of the molten glass flowing through the wall surface. Even if the guide having such a configuration is used, the molten glass can be prevented from getting over the pair of guides. At this time, since the pair of guides has a shape along the outer shape of the cross section of the molded body, it is possible to suppress the molten glass from moving away from the inclined wall surface and along the guides to flow vertically downward. Further, since the pair of guides has a lowermost portion at the lowermost end portion of the molded body, the molten glass flowing on the inclined surfaces on both sides can be stably stabilized at the lowermost end portion of the molded body. Can be pasted together. Moreover, since the height from the wall surface of the pair of guides is lower than the thickness of the molten glass flowing through the wall surface, the molten glass is prevented from flowing vertically downward along the guide portion away from the wall surface. it can. That is, after the molten glass has passed through the lowermost end of the molded body, the lamination with the molten glass that has flowed down the other wall surface is stable, and the two-pronged ear portion of the glass ribbon that has been obtained in the past is less likely to occur. Thus, the glass ribbon can be flowed in a stable shape.
(開示8)
 前記傾斜壁面から前記ガイドが突出した領域全体において、前記一対のガイドの前記壁面からの高さは、前記成形体の下方の位置ほど低くなっている、開示7に記載のガラス板の製造方法。
 前記成形体の最下端部の位置に近づくほど下方のガラスリボンの牽引によって熔融ガラスの厚さも徐々に薄くなるので、前記ガイドの高さを上述のように定めることにより、熔融ガラスが壁面から離れてガイド部を伝って鉛直下方に流れることを抑制できる。
(Disclosure 8)
The manufacturing method of the glass plate of Claim 7 with which the height from the said wall surface of the said pair of guide is so low that the position below the said molded object in the whole area | region where the said guide protruded from the said inclined wall surface.
Since the thickness of the molten glass is gradually reduced by pulling the lower glass ribbon as it approaches the position of the lowermost end of the molded body, the molten glass is separated from the wall surface by determining the height of the guide as described above. Therefore, it is possible to suppress the vertical downward flow through the guide portion.
(開示9)
 前記傾斜壁面から前記ガイドが突出した領域全体において、前記一対のガイドの前記壁面からの高さは、前記成形体の下方に向かうにつれて、連続的に又は段階的に低くなっている、開示8に記載のガラス板の製造方法。
 前記一対のガイドの前記傾斜壁面からの高さを、前記成形体の下方に向かうにつれて、連続的に又は段階的に低くすることにより、熔融ガラスが前記傾斜壁面から離れて前記ガイドを伝って鉛直下方に流れることを確実に抑制できる。
(Disclosure 9)
In the entire region where the guide protrudes from the inclined wall surface, the height of the pair of guides from the wall surface decreases continuously or stepwise as it goes downward of the molded body. The manufacturing method of the glass plate of description.
The height of the pair of guides from the inclined wall surface is lowered continuously or stepwise as it goes downward of the molded body, so that the molten glass moves vertically away from the inclined wall surface along the guide. It can suppress reliably flowing below.
(開示10)
 前記成形体の最下端部は、両側の前記傾斜壁面同士が接続した直線状の稜線であり、
 前記一対のガイドの最下端部は、前記稜線上に位置する、開示7~9のいずれか1項に記載のガラス板の製造方法。
 前記一対のガイドの最下端部は、前記稜線上に位置するので、熔融ガラスが前記ガイドを伝わることなく、前記傾斜壁面から確実に離れて鉛直下方に流れを作ることができる。
(Disclosure 10)
The lowest end portion of the molded body is a linear ridge line in which the inclined wall surfaces on both sides are connected,
The method for producing a glass plate according to any one of claims 7 to 9, wherein the lowermost ends of the pair of guides are located on the ridgeline.
Since the lowermost end portions of the pair of guides are located on the ridgeline, the molten glass can be surely separated from the inclined wall surface and flowed vertically downward without being transmitted through the guide.
(開示11)
 前記傾斜壁面から前記ガイドが突出した領域全体において、前記一対のガイドの前記壁面からの高さは、前記壁面を流れる熔融ガラスの厚さに比べて、10mm~20mm低くなっている、開示7~10のいずれか1項に記載のガラス板の製造方法。
 前記傾斜壁面からの高さを、前記傾斜壁面を流れる熔融ガラスの厚さに比べて、10mm~20mm低くしても、熔融ガラスが前記一対のガイドを乗り越えることはない。このような熔融ガラスが前記成形体で用いられる。
(Disclosure 11)
In the entire region where the guide protrudes from the inclined wall surface, the height of the pair of guides from the wall surface is 10 mm to 20 mm lower than the thickness of the molten glass flowing through the wall surface. The method for producing a glass plate according to any one of 10.
Even if the height from the inclined wall surface is lower by 10 mm to 20 mm than the thickness of the molten glass flowing through the inclined wall surface, the molten glass does not get over the pair of guides. Such a molten glass is used in the molded body.
 以上、本発明のガラス板の製造方法について詳細に説明したが、本発明は上記実施形態に限定されず、本発明の主旨を逸脱しない範囲において、種々の改良や変更をしてもよいのはもちろんである。 As mentioned above, although the manufacturing method of the glass plate of this invention was demonstrated in detail, this invention is not limited to the said embodiment, In the range which does not deviate from the main point of this invention, what may be variously improved and changed. Of course.
30 炉
40 成形炉
50 徐冷炉
200 熔解装置
201 熔解槽
202 清澄槽
203 攪拌槽
204 第1配管
205 第2配管
300 成形装置
310,310’ 成形体
312 供給溝
313,313’ 下方端部
313a,313a’ 垂直壁面
313b,313b’ 傾斜壁面
313c 稜線
316 ガイド板
330 冷却ローラ
350a~350c 搬送ローラ
400 切断装置
 
30 furnace 40 molding furnace 50 slow cooling furnace 200 melting apparatus 201 melting tank 202 clarification tank 203 stirring tank 204 first pipe 205 second pipe 300 molding apparatus 310, 310 'molded body 312 supply groove 313, 313' lower end 313a, 313a ' Vertical wall surface 313b, 313b ′ Inclined wall surface 313c Ridge line 316 Guide plate 330 Cooling rollers 350a to 350c Conveying roller 400 Cutting device

Claims (11)

  1.  ダウンドロー法によるガラス板の製造方法であって、
     ガラス原料を熔解して熔融ガラスを得る熔解工程と、
     前記熔融ガラスを成形体の上部に設けられた供給溝に熔融ガラスを供給することにより、前記供給溝の前記上部から熔融ガラスを溢れ出させ、前記成形体の壁面から突出した一対のガイドにより熔融ガラスの流れ幅を規制しつつ、前記成形体の下部の両側それぞれの壁面に沿って熔融ガラスを流下させ、流下する熔融ガラスを前記成形体の最下端部に導き、前記最下端部において前記両側の壁面のそれぞれを流れる熔融ガラスを合流させることにより、ガラスリボンを成形する成形工程と、
     徐冷炉内において流れる前記ガラスリボンを冷却する徐冷工程と、
     冷却された前記ガラスリボンを切断する切断工程と、を備え、
     前記成形体の前記壁面は、前記供給溝から溢れ出た熔融ガラスが鉛直方向に流下する垂直壁面と、前記垂直壁面を流下した熔融ガラスを前記成形体の最下端部に導く、前記垂直壁面と接続した傾斜壁面と、を含み、
     前記傾斜壁面から前記ガイドが突出した領域全体において、前記一対のガイドの前記傾斜壁面からの高さが、熔融ガラスが前記一対のガイドを乗り越えない範囲で、前記傾斜壁面を流れる熔融ガラスの厚さに比べて低く設けられている、ことを特徴とするガラス板の製造方法。
    A method for producing a glass plate by a downdraw method,
    A melting step of melting glass raw material to obtain molten glass;
    The molten glass is supplied to a supply groove provided in the upper part of the molded body, thereby overflowing the molten glass from the upper part of the supply groove, and melted by a pair of guides protruding from the wall surface of the molded body. While restricting the flow width of the glass, the molten glass is caused to flow down along the respective wall surfaces on both sides of the lower part of the molded body, and the molten glass flowing down is guided to the lowermost end portion of the molded body, Forming a glass ribbon by joining the molten glass flowing through each of the wall surfaces;
    A slow cooling step for cooling the glass ribbon flowing in the slow cooling furnace;
    A cutting step of cutting the cooled glass ribbon,
    The wall surface of the molded body includes a vertical wall surface in which the molten glass overflowing from the supply groove flows down in the vertical direction, and the vertical wall surface that guides the molten glass that has flowed down the vertical wall surface to the lowest end portion of the molded body. Connected inclined wall surfaces,
    In the entire region where the guide protrudes from the inclined wall surface, the height of the pair of guides from the inclined wall surface is a thickness of the molten glass flowing through the inclined wall surface in such a range that the molten glass does not get over the pair of guides. The manufacturing method of the glass plate characterized by being provided low compared with.
  2.  前記傾斜壁面から前記ガイドが突出した領域全体において、前記一対のガイドの前記傾斜壁面からの高さは、前記成形体の下方の位置ほど低くなっている、請求項1に記載のガラス板の製造方法。 The manufacturing of the glass plate according to claim 1, wherein the height of the pair of guides from the inclined wall surface in the entire region where the guide protrudes from the inclined wall surface is lower as the position is lower than the molded body. Method.
  3.  前記傾斜壁面から前記ガイドが突出した領域全体において、前記一対のガイドの前記傾斜壁面からの高さは、前記成形体の下方に向かうにつれて、連続的に又は段階的に低くなっている、請求項2に記載のガラス板の製造方法。 The height of the pair of guides from the inclined wall surface in the entire region where the guide protrudes from the inclined wall surface decreases continuously or stepwise as it goes downward of the molded body. The manufacturing method of the glass plate of 2.
  4.  前記成形体の最下端部は、両側の前記傾斜壁面同士が接続した直線状の稜線であり、
     前記一対のガイドの最下端部は、前記稜線上に位置する、請求項1~3のいずれか1項に記載のガラス板の製造方法。
    The lowest end portion of the molded body is a linear ridge line in which the inclined wall surfaces on both sides are connected,
    The method for producing a glass sheet according to any one of claims 1 to 3, wherein the lowermost ends of the pair of guides are located on the ridge line.
  5.  前記傾斜壁面から前記ガイドが突出した領域全体において、前記一対のガイドの前記傾斜壁面からの高さは、前記傾斜壁面を流れる熔融ガラスの厚さに比べて、10mm~20mm低くなっている、請求項1~4のいずれか1項に記載のガラス板の製造方法。 The height of the pair of guides from the inclined wall surface in the entire region where the guide protrudes from the inclined wall surface is 10 mm to 20 mm lower than the thickness of the molten glass flowing through the inclined wall surface. Item 5. The method for producing a glass plate according to any one of Items 1 to 4.
  6.  前記壁面を流下する熔融ガラスの粘度は、3000~60000[Pa・秒]である、請求項1~5のいずれか1項に記載のガラス板の製造方法。 6. The method for producing a glass plate according to claim 1, wherein the viscosity of the molten glass flowing down the wall surface is 3000 to 60000 [Pa · sec].
  7.  ダウンドロー法によるガラス板の製造方法であって、
     ガラス原料を熔解して熔融ガラスを得る熔解工程と、
     前記熔融ガラスを成形体の上部に設けられた供給溝に熔融ガラスを供給することにより、前記供給溝の前記上部から熔融ガラスを溢れ出させ、前記成形体の壁面から突出した一対のガイドにより熔融ガラスの流れ幅を規制しつつ、前記成形体の下部の両側それぞれの壁面に沿って熔融ガラスを流下させ、流下する熔融ガラスを前記成形体の最下端部に導き、前記最下端部において前記両側の壁面のそれぞれを流れる熔融ガラスを合流させることにより、ガラスリボンを成形する成形工程と、
     徐冷炉内において流れる前記ガラスリボンを冷却する徐冷工程と、
     冷却された前記ガラスリボンを切断する切断工程と、を備え、
     前記成形体の前記壁面は、前記供給溝から溢れ出た熔融ガラスが鉛直方向に流下する垂直壁面と、前記垂直壁面を流下した熔融ガラスを前記成形体の最下端部に導く、前記垂直壁面と接続した傾斜壁面と、を含み、
     前記一対のガイドは、前記成形体の断面の外形に沿った形状を成し、前記成形体の最下端部において、最下端となる部分を有し、かつ、前記傾斜壁面から前記ガイドが突出した領域全体において、前記一対のガイドの前記壁面からの高さが、前記壁面を流れる熔融ガラスの厚さに比べて低く設けられることにより、前記熔融ガラスが合流するときの両端部における前記熔融ガラスの厚さを低減する、ことを特徴とするガラス板の製造方法。
    A method for producing a glass plate by a downdraw method,
    A melting step of melting glass raw material to obtain molten glass;
    The molten glass is supplied to a supply groove provided in the upper part of the molded body, thereby overflowing the molten glass from the upper part of the supply groove, and melted by a pair of guides protruding from the wall surface of the molded body. While restricting the flow width of the glass, the molten glass is caused to flow down along the respective wall surfaces on both sides of the lower part of the molded body, and the molten glass flowing down is guided to the lowermost end portion of the molded body, Forming a glass ribbon by joining the molten glass flowing through each of the wall surfaces;
    A slow cooling step for cooling the glass ribbon flowing in the slow cooling furnace;
    A cutting step of cutting the cooled glass ribbon,
    The wall surface of the molded body includes a vertical wall surface in which the molten glass overflowing from the supply groove flows down in the vertical direction, and the vertical wall surface that guides the molten glass that has flowed down the vertical wall surface to the lowest end portion of the molded body. Connected inclined wall surfaces,
    The pair of guides has a shape along the outer shape of the cross section of the molded body, has a lowermost portion at the lowermost end portion of the molded body, and the guide protrudes from the inclined wall surface. In the entire region, the height of the pair of guides from the wall surface is set lower than the thickness of the molten glass flowing through the wall surface, so that the molten glass at both ends when the molten glass merges is provided. A method for producing a glass plate, wherein the thickness is reduced.
  8.  前記傾斜壁面から前記ガイドが突出した領域全体において、前記一対のガイドの前記壁面からの高さは、前記成形体の下方の位置ほど低くなっている、請求項7に記載のガラス板の製造方法。 The manufacturing method of the glass plate according to claim 7, wherein the height of the pair of guides from the wall surface in the entire region where the guide protrudes from the inclined wall surface is lower as the position is lower than the molded body. .
  9.  前記傾斜壁面から前記ガイドが突出した領域全体において、前記一対のガイドの前記壁面からの高さは、前記成形体の下方に向かうにつれて、連続的に又は段階的に低くなっている、請求項8に記載のガラス板の製造方法。 The height from the wall surface of the pair of guides in the entire region where the guide protrudes from the inclined wall surface decreases continuously or stepwise as it goes downward of the molded body. The manufacturing method of the glass plate of description.
  10.  前記成形体の最下端部は、両側の前記傾斜壁面同士が接続した直線状の稜線であり、
     前記一対のガイドの最下端部は、前記稜線上に位置する、請求項7~9のいずれか1項に記載のガラス板の製造方法。
    The lowest end portion of the molded body is a linear ridge line in which the inclined wall surfaces on both sides are connected,
    The method for producing a glass plate according to any one of claims 7 to 9, wherein the lowermost ends of the pair of guides are located on the ridge line.
  11.  前記傾斜壁面から前記ガイドが突出した領域全体において、前記一対のガイドの前記壁面からの高さは、前記壁面を流れる熔融ガラスの厚さに比べて、10mm~20mm低くなっている、請求項7~10のいずれか1項に記載のガラス板の製造方法。
     
     
    The height of the pair of guides from the wall surface in the entire region where the guide protrudes from the inclined wall surface is 10 mm to 20 mm lower than the thickness of the molten glass flowing through the wall surface. The method for producing a glass plate according to any one of 1 to 10.

PCT/JP2012/004262 2011-07-01 2012-06-29 Method for manufacturing glass sheet WO2013005409A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
KR1020127021627A KR101372609B1 (en) 2011-07-01 2012-06-29 Method for making glass sheet
JP2012530017A JP5452724B2 (en) 2011-07-01 2012-06-29 Manufacturing method of glass plate
CN201280003051.9A CN103140447B (en) 2011-07-01 2012-06-29 The manufacture method of sheet glass

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011-147781 2011-07-01
JP2011147781 2011-07-01

Publications (1)

Publication Number Publication Date
WO2013005409A1 true WO2013005409A1 (en) 2013-01-10

Family

ID=47436774

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/004262 WO2013005409A1 (en) 2011-07-01 2012-06-29 Method for manufacturing glass sheet

Country Status (5)

Country Link
JP (1) JP5452724B2 (en)
KR (1) KR101372609B1 (en)
CN (1) CN103140447B (en)
TW (1) TWI429602B (en)
WO (1) WO2013005409A1 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014163063A1 (en) * 2013-04-01 2014-10-09 日本電気硝子株式会社 Sheet glass forming method and sheet glass forming device
KR20150112895A (en) * 2014-03-29 2015-10-07 아반스트레이트 가부시키가이샤 Method and apparatus for making glass sheet
WO2016054130A1 (en) * 2014-09-30 2016-04-07 Corning Incorporated Isopipe with curb at the compression end and method for forming a glass ribbon
WO2017087556A1 (en) 2015-11-16 2017-05-26 Q30 Sports Science, Llc Traumatic brain injury protection devices
WO2024010704A1 (en) * 2022-07-08 2024-01-11 Corning Incorporated Methods and apparatus for manufacturing a glass ribbon

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017087585A1 (en) 2015-11-20 2017-05-26 Corning Incorporated Laminated glass ribbons and apparatuses for forming laminated glass ribbons
TW201718417A (en) * 2015-11-24 2017-06-01 康寧公司 Apparatus and method for forming a glass article
WO2017091526A1 (en) * 2015-11-24 2017-06-01 Corning Incorporated Method for forming a glass article
JP2017119617A (en) * 2015-12-28 2017-07-06 AvanStrate株式会社 Glass substrate manufacturing method, and glass substrate manufacturing apparatus
WO2019104039A2 (en) 2017-11-22 2019-05-31 Corning Incorporated Apparatuses including edge directors for forming glass ribbons
CN108996895B (en) * 2018-08-01 2021-10-08 彩虹显示器件股份有限公司 Glass substrate overflow shaping crystallization control device

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009132595A (en) * 2007-10-29 2009-06-18 Nippon Electric Glass Co Ltd Refractory material for glass production, method for producing the same, glass melting furnace, and method for producing glass article
JP2010189220A (en) * 2009-02-18 2010-09-02 Avanstrate Inc Glass forming apparatus

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8397538B2 (en) * 2009-02-26 2013-03-19 Corning Incorporated Apparatus and method for drawing a ribbon of glass

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009132595A (en) * 2007-10-29 2009-06-18 Nippon Electric Glass Co Ltd Refractory material for glass production, method for producing the same, glass melting furnace, and method for producing glass article
JP2010189220A (en) * 2009-02-18 2010-09-02 Avanstrate Inc Glass forming apparatus

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014163063A1 (en) * 2013-04-01 2014-10-09 日本電気硝子株式会社 Sheet glass forming method and sheet glass forming device
JPWO2014163063A1 (en) * 2013-04-01 2017-02-16 日本電気硝子株式会社 Sheet glass forming method and sheet glass forming apparatus
KR20150112895A (en) * 2014-03-29 2015-10-07 아반스트레이트 가부시키가이샤 Method and apparatus for making glass sheet
KR101661062B1 (en) 2014-03-29 2016-09-28 아반스트레이트 가부시키가이샤 Method and apparatus for making glass sheet
WO2016054130A1 (en) * 2014-09-30 2016-04-07 Corning Incorporated Isopipe with curb at the compression end and method for forming a glass ribbon
US10703664B2 (en) 2014-09-30 2020-07-07 Corning Incorporated Isopipe with curb at the compression end and method for forming a glass ribbon
WO2017087556A1 (en) 2015-11-16 2017-05-26 Q30 Sports Science, Llc Traumatic brain injury protection devices
WO2024010704A1 (en) * 2022-07-08 2024-01-11 Corning Incorporated Methods and apparatus for manufacturing a glass ribbon

Also Published As

Publication number Publication date
JPWO2013005409A1 (en) 2015-02-23
JP5452724B2 (en) 2014-03-26
TWI429602B (en) 2014-03-11
KR101372609B1 (en) 2014-03-10
CN103140447B (en) 2016-02-17
TW201309605A (en) 2013-03-01
KR20130024881A (en) 2013-03-08
CN103140447A (en) 2013-06-05

Similar Documents

Publication Publication Date Title
JP5452724B2 (en) Manufacturing method of glass plate
KR101300980B1 (en) Glass substrate production method
US9061931B2 (en) Methods for reducing zirconia defects in glass sheets
KR102483260B1 (en) Manufacturing method of alkali-free glass substrate
JP5890559B2 (en) Manufacturing method of glass substrate
TW201739714A (en) Glass
KR102291453B1 (en) Method and apparatus for making glass substrate
KR101559198B1 (en) Method for making glass sheet
JP7197835B2 (en) Glass plate manufacturing method
JP2014189483A (en) Glass plate manufacturing method and glass plate manufacturing device
JP6489783B2 (en) Glass substrate manufacturing method and glass substrate manufacturing apparatus
KR20170003405A (en) Method for producing glass substrate
JP6498933B2 (en) Manufacturing method and manufacturing apparatus for glass substrate for display
JP6577215B2 (en) Manufacturing method of glass substrate
JP5192100B2 (en) Manufacturing method of glass substrate
JP6352755B2 (en) Glass substrate manufacturing method and glass substrate manufacturing apparatus
KR20130115118A (en) Method for making glass sheet

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2012530017

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 201280003051.9

Country of ref document: CN

ENP Entry into the national phase

Ref document number: 20127021627

Country of ref document: KR

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12807283

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12807283

Country of ref document: EP

Kind code of ref document: A1