WO2013005336A1 - Exhaust purification apparatus for internal combustion engine - Google Patents

Exhaust purification apparatus for internal combustion engine Download PDF

Info

Publication number
WO2013005336A1
WO2013005336A1 PCT/JP2011/065635 JP2011065635W WO2013005336A1 WO 2013005336 A1 WO2013005336 A1 WO 2013005336A1 JP 2011065635 W JP2011065635 W JP 2011065635W WO 2013005336 A1 WO2013005336 A1 WO 2013005336A1
Authority
WO
WIPO (PCT)
Prior art keywords
dpf
ash
regeneration operation
internal combustion
combustion engine
Prior art date
Application number
PCT/JP2011/065635
Other languages
French (fr)
Japanese (ja)
Inventor
寛真 西岡
寛 大月
克彦 押川
佳久 塚本
潤一 松尾
中山 茂樹
優一 祖父江
大地 今井
菅原 康
Original Assignee
トヨタ自動車株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by トヨタ自動車株式会社 filed Critical トヨタ自動車株式会社
Priority to PCT/JP2011/065635 priority Critical patent/WO2013005336A1/en
Priority to PCT/JP2012/067404 priority patent/WO2013005849A1/en
Priority to CN201280030742.8A priority patent/CN103619438B/en
Priority to JP2013555681A priority patent/JP5626487B2/en
Priority to US14/126,904 priority patent/US9011569B2/en
Priority to EP12741116.3A priority patent/EP2726177B1/en
Priority to EP12741114.8A priority patent/EP2726175B1/en
Priority to PCT/JP2012/067405 priority patent/WO2013005850A2/en
Priority to CN201280032271.4A priority patent/CN103635245B/en
Priority to US14/110,811 priority patent/US8778053B2/en
Priority to US14/127,355 priority patent/US9080480B2/en
Priority to CN201280031473.7A priority patent/CN103619441B/en
Priority to EP12738239.8A priority patent/EP2726172B1/en
Priority to JP2013535609A priority patent/JP5494893B2/en
Priority to EP12741115.5A priority patent/EP2726176A2/en
Priority to EP12738240.6A priority patent/EP2726173B1/en
Priority to US14/126,947 priority patent/US9057298B2/en
Priority to PCT/JP2012/067407 priority patent/WO2013005852A1/en
Priority to JP2014514345A priority patent/JP2014520229A/en
Priority to PCT/JP2012/067408 priority patent/WO2013005853A2/en
Priority to US14/126,997 priority patent/US9057299B2/en
Priority to JP2013555657A priority patent/JP2014520227A/en
Priority to CN201280031454.4A priority patent/CN103619439B/en
Priority to JP2013555656A priority patent/JP5655961B2/en
Priority to CN201280031461.4A priority patent/CN103619440B/en
Priority to PCT/JP2012/067406 priority patent/WO2013005851A2/en
Publication of WO2013005336A1 publication Critical patent/WO2013005336A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N9/00Electrical control of exhaust gas treating apparatus
    • F01N9/002Electrical control of exhaust gas treating apparatus of filter regeneration, e.g. detection of clogging
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/02Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust
    • F01N3/021Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters
    • F01N3/023Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters using means for regenerating the filters, e.g. by burning trapped particles
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/02Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust
    • F01N3/021Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters
    • F01N3/033Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters in combination with other devices
    • F01N3/035Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters in combination with other devices with catalytic reactors, e.g. catalysed diesel particulate filters
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2430/00Influencing exhaust purification, e.g. starting of catalytic reaction, filter regeneration, or the like, by controlling engine operating characteristics
    • F01N2430/06Influencing exhaust purification, e.g. starting of catalytic reaction, filter regeneration, or the like, by controlling engine operating characteristics by varying fuel-air ratio, e.g. by enriching fuel-air mixture
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/40Engine management systems

Definitions

  • the present invention relates to an exhaust purification device for an internal combustion engine.
  • a diesel particulate filter (hereinafter referred to as “DPF”) is installed in the exhaust gas passage of the internal combustion engine, Generally, PM in exhaust gas is collected and removed.
  • PM regeneration since the PM collected in the DPF gradually accumulates, regeneration (hereinafter referred to as “PM regeneration”) is performed periodically or by detecting a decrease in the performance of the DPF and burning and removing the PM collected in the DPF. ”).
  • PM regeneration operation is usually performed by heating the DPF while supplying a reducing agent such as hydrocarbon (HC) to the DPF.
  • a reducing agent such as hydrocarbon (HC)
  • Ash is generated when the engine oil mixed in the cylinder of the engine burns, and the generated ash particles are covered with PM in the DPF.
  • the ash particles covered with PM are exposed to high temperature conditions during the PM regeneration operation in the DPF, and the PM covering the ash particles is burned and removed.
  • Ash deposition occurs because the ash particles are agglomerated and increased in size by further applying heat to the ash particles from which the PM has been burned and removed.
  • the improvement to the conventional DPF and the improvement to the regeneration operation of the DPF are intended to improve the collection efficiency of the DPF and improve the performance of the PM regeneration operation, and not to the accumulation of ash.
  • an invention disclosed in Patent Document 1 for example, there is an invention disclosed in Patent Document 1, and Patent Document 1 shows a configuration of a DPF capable of burning PM at a relatively low temperature. Yes.
  • the structure of the DPF disclosed in Patent Document 1 is characterized in that, in the DPF and the exhaust gas purification method using the DPF, a catalyst made of a solid superacid having an active metal supported on the DPF is held on the filter surface. is there.
  • Patent Document 1 reduces the combustion temperature of PM with a solid super strong acid carrying an active metal, and regenerates DPF at a lower temperature than before, preferably continuously, and CO, HC, NO, NO 2 can be removed at the same time.
  • Patent Document 1 is intended to improve the performance of the PM regeneration operation, and does not correspond to the accumulation of ash. If the use of the DPF is continued, the PM regeneration operation is performed. However, this does not solve the problem that the pressure loss of the DPF gradually increases, and unless the PM regeneration temperature is gradually increased, sufficient regeneration cannot be performed and the fuel consumption deteriorates.
  • Patent Document 2 which is selected from platinum, palladium and rhodium as a catalyst for a diesel engine exhaust gas purification device.
  • SOF Solid Organic Fraction
  • unburned hydrocarbons, etc. contained in particulate matter in diesel engine exhaust gas from a low temperature range.
  • the invention of Patent Document 2 aims at an effect similar to the invention of Patent Document 1 and does not relate to DPF.
  • JP 2006-289175 A Japanese Patent Laid-Open No. 10-033985
  • the present invention suppresses ash accumulation on the DPF, and can suppress an increase in pressure loss, an increase in PM regeneration temperature, and a decrease in fuel consumption over a long period of time.
  • An object of the present invention is to provide an exhaust gas purification apparatus for an internal combustion engine that can be performed.
  • the present invention provides a configuration in which the ash deposited on the DPF is discharged with a reduced particle size and the DPF is regenerated (hereinafter referred to as “ash regeneration”). With this configuration, an increase in pressure loss and PM regeneration over a long period of time are provided. It is an object of the present invention to provide an epoch-making DPF capable of suppressing an increase in temperature and a decrease in fuel consumption and further achieving an advantageous effect that an ash regeneration operation can be efficiently performed.
  • the accumulated ash can be discharged with a reduced particle size.
  • a DPF that is smaller than the conventional DPF can be used from the beginning of the installation of the DPF. Not only cost reduction, but also energy cost of PM regeneration operation can be reduced.
  • the fact that a small DPF can be used means that the space for mounting the DPF on the vehicle can be reduced, and the weight of the vehicle on which the DPF is mounted can be reduced.
  • the inventor of the present application studied the problem of ash accumulation inside the DPF, analyzed the cause of ash accumulation, and the main components of ash were calcium (Ca) contained in engine oil and SOx in exhaust gas. It was found that ash is ion-bonded, CaSO 4 is the main component, and Ca salt has a high melting point, so that in the exhaust gas, ash flows into the DPF as a solid and aggregates to increase the particle size.
  • Ca calcium
  • the inventors of the present application have confirmed by experiments that the size of ash is on the order of submicrons, and that the ash slips through the DPF when the ash size is reduced to the order of nanomicrons.
  • Ca ions associated with stronger acid than SO 3 on the surface of the DPF is different from the stronger acid than SO 3 on the surface of the DPF, if a stronger acid is present in the atmosphere It was confirmed by an experiment that it binds to a stronger acid in the atmosphere, is released from the DPF, and passes through the DPF to be discharged.
  • the particle size will be submicron.
  • CaSO 4 deposited in the DPF turned into, in a reducing atmosphere becomes CaSO 3 SO 4 is reduced in CaSO 4
  • Ca ions CaSO 3 is bonded with the acid on the surface of the DPF, on the surface of the DPF Disperse in atomic form.
  • SO 4 is present in the atmosphere, the Ca on the surface of the DPF combines with the SO 4 in the atmosphere and becomes sub-nanometer-sized CaSO 4 and is released from the DPF.
  • the exhaust gas atmosphere is a stoichiometric or rich atmosphere, it is the above-described reducing atmosphere, and when it is a lean atmosphere, the lean atmosphere contains SO 4 . Therefore, if control for making the atmosphere stoichiometric or rich and control for making the lean atmosphere next are performed on the above-mentioned DPF, ash Ca ions deposited on the DPF in the stoichiometric or rich atmosphere are converted to DPF. Then, in a lean atmosphere, Ca on the surface of the DPF is combined with SO 4 in the lean atmosphere and released from the DPF, and the fine particle size is reduced to a sub-nanometer size. CaSO 4 is converted to pass through the DPF and discharged.
  • the first CaSO 4 having a large particle size of submicron and deposited on the DPF is finally released again from the DPF as CaSO 4.
  • No. 4 is reduced in size to a sub-nanometer size and passes through the DPF and is discharged.
  • the ash regeneration operation and the PM regeneration operation are performed in accordance with the ash accumulation state and the PM accumulation state, respectively.
  • the frequency of the ash regeneration operation may be less than the frequency of the PM regeneration operation.
  • the ash regeneration operation and the PM regeneration operation can be performed at substantially the same temperature, it is efficient that the ash regeneration operation is performed following the PM regeneration operation using the temperature increase of the PM regeneration operation. Is.
  • the control system of the ash regeneration operation learns the relationship between the implementation time of the ash regeneration operation and the implementation time of the PM regeneration operation during vehicle operation, and the optimum ash regeneration operation is performed.
  • the learning control is provided for determining the interval.
  • an exhaust purification device for an internal combustion engine in which a DPF is disposed in an exhaust system of the internal combustion engine, wherein the DPF is a DPF whose surface is coated with a solid acid, Control of the PM regeneration operation in which the acid strength is larger than the acid strength of SO 3 and smaller than the acid strength of SO 4 , and the PM accumulated in the DPF is burned and removed by raising the temperature of the DPF, and in the DPF
  • the ash regeneration operation is controlled by reducing the particle size of the deposited ash and allowing the DPF to pass through and removing, and the detection means for detecting the back pressure of the DPF.
  • the control of the ash regeneration operation increases the temperature of the DPF.
  • Control for controlling the air-fuel ratio of the atmosphere in the DPF, and learning control for determining an execution interval of the ash regeneration operation based on a change in the back pressure of the DPF before and after the PM regeneration operation is performed a plurality of times.
  • the exhaust gas purification apparatus is provided for an internal combustion engine.
  • the DPF is constituted by applying a solid acid having an acid strength stronger than SO 3 and weaker than SO 4 on the surface of the DPF.
  • a PM regeneration operation and an ash regeneration operation are performed on the DPF configured in this manner in accordance with the PM accumulation state and the ash accumulation state.
  • the timing of the ash regeneration operation and the implementation of the PM regeneration operation are performed.
  • the control system of the ash regeneration operation learns the relationship with the time during the vehicle operation, and determines the optimum ash regeneration operation interval.
  • the CaSO 4 having a large particle size that was buried in the PM is exposed to the reducing atmosphere by the PM regeneration operation, and the ash that is reduced to CaSO 3 is converted into the DPF. It comes into contact with the solid acid on the surface, and the ash regeneration operation proceeds effectively, and the ash regeneration operation proceeds at an optimum ash regeneration operation interval. As a result, the ash is completely removed, an increase in pressure loss, an increase in the PM regeneration temperature, and a decrease in fuel consumption can be suppressed over a long period of time, and further, ash accumulation can be efficiently suppressed.
  • An exhaust purification device for an internal combustion engine is provided.
  • an ash regeneration configuration is provided, and the ash is completely removed in the ash regeneration operation, and an increase in pressure loss, an increase in PM regeneration temperature, and a decrease in fuel consumption are suppressed over a long period of time.
  • an exhaust emission control device for an internal combustion engine that can efficiently suppress ash accumulation.
  • FIG. 1 is a flowchart illustrating a schematic configuration of an embodiment of control when the present invention is applied to an exhaust gas purification apparatus for an internal combustion engine.
  • 2A and 2B are diagrams for explaining the control of the present invention.
  • FIG. 2A is a diagram for explaining a case where the ash regeneration operation is not performed
  • FIG. 2B is a diagram for explaining a case where the ash regeneration operation is performed.
  • FIG. 3 is a diagram for explaining the principle of control of the present invention.
  • FIG. 4 is a diagram for explaining the principle of control of the present invention.
  • FIG. 5 is a diagram for explaining the control of the present invention.
  • FIG. 6 is a diagram illustrating a schematic configuration of an embodiment of the apparatus arrangement when the present invention is applied to an exhaust gas purification apparatus for an internal combustion engine.
  • FIG. 6 is a diagram showing a basic configuration of the present invention.
  • a solid acid corresponding to an acid strength of SO 3 or more and SO 4 or less is formed on the surface of DPF 2, specifically, on the surface of the DPF substrate of DPF 2.
  • Apply. The exhaust gas from the internal combustion engine is guided to the DPF 2, and the PM in the exhaust gas is collected and removed by the DPF 2, and the exhaust gas from which the PM has been removed is discharged. Since the PM collected in the DPF gradually accumulates, PM regeneration operation is performed periodically or by detecting a decrease in the performance of the DPF and burning and removing the PM collected in the DPF.
  • the ash 3 accumulated in the DPF is reduced in particle size by the ash regeneration operation, so that the reduced particle size 4 passes through the filter gap of the DPF and is discharged together with the exhaust gas, which causes a problem of ash accumulation.
  • learning control is performed in which the control system for the ash regeneration operation learns the relationship between the execution timing of the ash regeneration operation and the execution timing of the PM regeneration operation and determines the optimum ash regeneration operation interval during vehicle operation. As a result, the ash regeneration operation is performed efficiently.
  • the PM regeneration operation and the ash regeneration operation are performed on the DPF configured as shown in FIG. 6 according to the PM accumulation state and the ash accumulation state, and the ash regeneration operation is further performed.
  • the control system of the ash regeneration operation learns the relationship between the implementation time and the PM regeneration operation time during vehicle operation, determines the optimum ash regeneration operation interval, and determines the optimum ash based on the determined interval. Regeneration operation is performed.
  • FIG. 1 is a flowchart of learning control for determining an optimum ash regeneration operation interval
  • FIGS. 2 to 4 are diagrams for explaining the principle of determining the optimum ash regeneration operation interval of FIG.
  • the ash regeneration operation is intended to recover the back pressure increase indicated by ⁇ POA , and after the ash regeneration operation is performed and the back pressure is recovered, as shown in FIG.
  • the PM regeneration operation is repeated.
  • the broken line on the lower side of FIG. 2B is a back pressure increase based on the PM remaining unburned, and even if the ash regeneration operation is performed and the back pressure recovers, the back pressure increase based on the PM unburned remains.
  • the increase in the back pressure based on the unburned PM remains large in the initial stage of using the DPF, and then converges to a substantially constant value.
  • the present invention performs learning for determining the interval of the ash regeneration operation in order to optimally recover the back pressure by the ash regeneration operation. That is, the back pressure increase indicated by ⁇ POA in FIG. 2A is recovered at an optimum interval.
  • the ash regeneration operation is performed by changing the interval.
  • the back pressure recovery value by the ash regeneration operation after performing the PM regeneration operation twice is larger than the back pressure recovery value by the ash regeneration operation after performing the PM regeneration operation once.
  • the change is such that the back pressure recovery value by the ash regeneration operation after performing the PM regeneration operation three times is further increased, the back pressure recovery value converges to a substantially constant value.
  • FIG. 4 is a graph schematically explaining the convergence of the back pressure recovery value.
  • FIG. 4 shows an interval until control of each ash regeneration operation.
  • the interval is ideally an accumulated distance through which the exhaust gas passes through the DPF, but in actual control, for example, the travel distance of the vehicle is substituted.
  • FIG. 1 is a flowchart showing learning control for determining the optimum ash regeneration operation interval.
  • the control of FIG. 1 starts, and in step 100, the interval counter for ash regeneration operation control counts the interval from the previous ash regeneration operation to the current ash regeneration operation. Furthermore the process proceeds to step 200, ash regeneration operation before the back pressure, i.e., detects the back pressure P O immediately after PM regeneration operation, in step 300, starts the ash regeneration operation.
  • step 600 the difference between Pd by the previous ash regeneration operation and Pd by the current ash regeneration operation, that is, the increment of the differential pressure Pd is set to ⁇ Pd, the interval by the previous ash regeneration operation, It is determined whether the difference between the intervals due to the ash regeneration operation, that is, the increment of the interval is ⁇ Int, and the ratio of ⁇ Pd and ⁇ Int is equal to or less than a certain value K.
  • FIG. 5 is a diagram for explaining the increment ⁇ Pd of the differential pressure Pd and the increment ⁇ Int of the interval. If the ratio of ⁇ Pd and ⁇ Int does not become a certain value K or less in step 600 of FIG. 1, the process proceeds to step 800 and steps 100 to 600 are repeated.
  • step 600 when the ratio of ⁇ Pd to ⁇ Int becomes a constant value K or less, that is, as shown by Iopt in FIG. It is determined that the recovery has converged, the process proceeds to step 700, and the interval at this time is stored as the optimum interval value. That is, when there is an interval value learned last time, the interval value is updated and the learning control is terminated. Therefore, the ash regeneration operation after learning is performed at the updated interval.
  • the ash regeneration operation proceeds at an optimum ash regeneration operation interval.
  • the ash is completely removed, an increase in pressure loss, an increase in the PM regeneration temperature, and a decrease in fuel consumption can be suppressed over a long period of time, and further, ash accumulation can be efficiently suppressed.
  • An exhaust purification device for an internal combustion engine is provided.
  • an exhaust gas purification apparatus for an internal combustion engine having a DPF whose performance does not deteriorate indefinitely, and the present invention can dramatically improve the performance of the DPF over a long period of time.
  • a DPF smaller than the conventional one can be used from the beginning of the installation of the DPF, which not only reduces the manufacturing cost of the DPF but also reduces the energy cost of the PM regeneration operation. be able to.
  • the fact that a small DPF can be used has the effect that the space for mounting the DPF on the vehicle can be reduced, and the weight of the vehicle on which the DPF is mounted can be reduced. It should be noted.

Abstract

Provided is an exhaust purification apparatus for an internal combustion engine with a DPF disposed in the exhaust system of the internal combustion engine, such that accumulation of ash in the DPF can be suppressed, increases in pressure loss and PM regeneration temperature as well as a decrease in fuel efficiency can be suppressed over a long period, and the suppression of accumulation of ash can be efficiently performed. A surface of the DPF is coated with a solid acid with an acid strength greater than the acid strength of SO3 and smaller than the acid strength of SO4. The exhaust purification apparatus is provided with: a PM regeneration operation control; an ash regeneration operation control; and a learning control for determining the interval at which the ash regeneration operation is performed on the basis of a change in back pressure of the DPF before and after the PM regeneration operation is performed a plurality of times.

Description

内燃機関の排気浄化装置Exhaust gas purification device for internal combustion engine
 本発明は、内燃機関の排気浄化装置に関する。 The present invention relates to an exhaust purification device for an internal combustion engine.
 内燃機関の排気ガス中の粒子状物質(以下「PM」という)の粒子数を低減するためには、内燃機関の排気ガス通路にディーゼルパティキュレートフィルタ(以下「DPF」という)を設置して、排気中のPMを捕集、除去することが一般に行われている。 In order to reduce the number of particles of particulate matter (hereinafter referred to as “PM”) in the exhaust gas of the internal combustion engine, a diesel particulate filter (hereinafter referred to as “DPF”) is installed in the exhaust gas passage of the internal combustion engine, Generally, PM in exhaust gas is collected and removed.
 この場合、DPF内に捕集されたPMは次第に堆積していくので、定期的に或いはDPFの性能低下を検知して、DPF内に捕集されたPMを燃焼除去する再生(以下「PM再生」という)運転を行う。 In this case, since the PM collected in the DPF gradually accumulates, regeneration (hereinafter referred to as “PM regeneration”) is performed periodically or by detecting a decrease in the performance of the DPF and burning and removing the PM collected in the DPF. ”).
 PM再生運転は、通常、DPFに還元剤、例えばハイドロカーボン(HC)等、を供給しつつ、DPFを加熱することによって行われる。 PM regeneration operation is usually performed by heating the DPF while supplying a reducing agent such as hydrocarbon (HC) to the DPF.
 DPFによって排気中のPMを捕集し、DPF内に捕集されたPMを燃焼除去するPM再生運転を行う構成に対しては、その性能向上やコスト低減のため、従来から様々な改良が提案されている。 Various improvements have been proposed to improve the performance and reduce the cost of the PM regeneration operation that collects PM in the exhaust gas using the DPF and burns and removes the PM collected in the DPF. Has been.
 しかし、従来のDPFにおいては、DPFの使用を継続していると、PM再生運転を行っても、次第にDPFの圧力損失が増加し、また、PM再生温度を次第に増加させなければ十分な再生が行われなくなる、という問題があり、燃費が悪化する。この問題は、DPF内部にアッシュが堆積することが原因である。 However, in the conventional DPF, if the use of the DPF is continued, even if the PM regeneration operation is performed, the pressure loss of the DPF gradually increases, and if the PM regeneration temperature is not gradually increased, sufficient regeneration is achieved. There is a problem that it will not be performed, and fuel consumption deteriorates. This problem is caused by the accumulation of ash inside the DPF.
 アッシュは、エンジンのシリンダー内部に混入したエンジンオイルが燃焼することにより生成し、生成したアッシュ粒子は、DPF内でPMに覆われる。PMに覆われたアッシュ粒子は、DPF内でPM再生運転時の高温条件に晒され、アッシュ粒子を覆っていたPMが燃焼除去される。アッシュの堆積は、このPMが燃焼除去されたアッシュ粒子に、更に熱が加わることによって、アッシュ粒子が凝集し、大粒径化するために発生するものである。 Ash is generated when the engine oil mixed in the cylinder of the engine burns, and the generated ash particles are covered with PM in the DPF. The ash particles covered with PM are exposed to high temperature conditions during the PM regeneration operation in the DPF, and the PM covering the ash particles is burned and removed. Ash deposition occurs because the ash particles are agglomerated and increased in size by further applying heat to the ash particles from which the PM has been burned and removed.
 しかし、このようなアッシュの堆積に対しては、今まで有効な解決手段がなく、DPFにアッシュが堆積することによる影響を極力小さくするために、例えば、あらかじめ大容量のDPFを設置しておくという対策がとられていた。 However, there is no effective solution to the accumulation of ash so far, and in order to minimize the influence of the accumulation of ash on the DPF, for example, a large-capacity DPF is installed in advance. Measures were taken.
 すなわち、従来のDPFに対する改良や、DPFの再生運転に対する改良は、DPFの捕集効率の改善や、PM再生運転の性能向上を目的とするものであり、アッシュの堆積に対するものではない。PM再生運転の性能向上を目的とするものとしては、例えば特許文献1に示された発明があり、特許文献1には、比較的低温でPMを燃焼させることができるDPFの構成が示されている。 That is, the improvement to the conventional DPF and the improvement to the regeneration operation of the DPF are intended to improve the collection efficiency of the DPF and improve the performance of the PM regeneration operation, and not to the accumulation of ash. As an object for improving the performance of the PM regeneration operation, for example, there is an invention disclosed in Patent Document 1, and Patent Document 1 shows a configuration of a DPF capable of burning PM at a relatively low temperature. Yes.
 特許文献1に示されたDPFの構成は、DPF及びこれを用いた排ガス浄化方法において、DPFに活性金属を担持した固体超強酸からなる触媒を、フィルタ表面に保持することを特徴とするものである。 The structure of the DPF disclosed in Patent Document 1 is characterized in that, in the DPF and the exhaust gas purification method using the DPF, a catalyst made of a solid superacid having an active metal supported on the DPF is held on the filter surface. is there.
 すなわち、特許文献1の発明は、活性金属を担持した固体超強酸により、PMの燃焼温度を低下させ、従来よりも低温でDPFを、できれば連続的に再生すると共に、CO、HC、NO、NOをも同時に除去することができるというものである。 That is, the invention of Patent Document 1 reduces the combustion temperature of PM with a solid super strong acid carrying an active metal, and regenerates DPF at a lower temperature than before, preferably continuously, and CO, HC, NO, NO 2 can be removed at the same time.
 したがって、特許文献1の発明は、PM再生運転の性能向上を目的としたものであり、アッシュの堆積に対応するものではなく、DPFの使用を継続していると、PM再生運転を行っても、次第にDPFの圧力損失が増加し、また、PM再生温度を次第に増加させなければ十分な再生が行われなくなり、燃費が悪化する、という問題を解決するものではない。 Therefore, the invention of Patent Document 1 is intended to improve the performance of the PM regeneration operation, and does not correspond to the accumulation of ash. If the use of the DPF is continued, the PM regeneration operation is performed. However, this does not solve the problem that the pressure loss of the DPF gradually increases, and unless the PM regeneration temperature is gradually increased, sufficient regeneration cannot be performed and the fuel consumption deteriorates.
 また、特許文献1の発明に類似する触媒構成を開示したものとして、特許文献2の発明があるが、特許文献2には、ディーゼルエンジン排ガス浄化装置用触媒として、白金、パラジウム及びロジウムから選ばれる少なくとも1種の貴金属と、固体の超強酸とを有する触媒を利用すると、ディーゼルエンジン排ガス中の微粒子物質に含まれるSOF(Soluble Organic Fraction)や未燃焼炭化水素などを低温域から浄化することができ、高温域においても二酸化硫黄の酸化抑制効果を示すと記載されており、特許文献2の発明は、特許文献1の発明と類似する効果を狙ったものであり、また、DPFに関するものではない。したがって、DPFへのアッシュの堆積に対応するものではなく、DPFの使用を継続していると、PM再生運転を行っても、次第にDPFの圧力損失が増加し、また、PM再生温度を次第に増加させなければ十分な再生が行われなくなり、燃費が悪化する、という問題を解決するものではない。 Further, as a disclosure of a catalyst structure similar to the invention of Patent Document 1, there is an invention of Patent Document 2, which is selected from platinum, palladium and rhodium as a catalyst for a diesel engine exhaust gas purification device. By using a catalyst having at least one kind of noble metal and a solid super strong acid, it is possible to purify SOF (Soluable Organic Fraction), unburned hydrocarbons, etc. contained in particulate matter in diesel engine exhaust gas from a low temperature range. Further, it is described that the effect of suppressing oxidation of sulfur dioxide is exhibited even in a high temperature range, and the invention of Patent Document 2 aims at an effect similar to the invention of Patent Document 1 and does not relate to DPF. Therefore, it does not correspond to the accumulation of ash on the DPF. If the use of the DPF is continued, the pressure loss of the DPF gradually increases and the PM regeneration temperature gradually increases even if the PM regeneration operation is performed. If this is not done, it will not solve the problem that sufficient regeneration will not be performed and fuel consumption will deteriorate.
特開2006−289175号公報JP 2006-289175 A 特開平10−033985号公報Japanese Patent Laid-Open No. 10-033985
 本発明は、DPFへのアッシュの堆積を抑制し、長期にわたって圧損の増加や、PM再生温度の増加、また、燃費の低下を抑制することができ、更に、アッシュの堆積の抑制を効率的に行うことができる内燃機関の排気浄化装置を提供することを目的としている。 The present invention suppresses ash accumulation on the DPF, and can suppress an increase in pressure loss, an increase in PM regeneration temperature, and a decrease in fuel consumption over a long period of time. An object of the present invention is to provide an exhaust gas purification apparatus for an internal combustion engine that can be performed.
 すなわち、本発明は、DPFに堆積したアッシュを細粒径化して排出し、DPFを再生(以下「アッシュ再生」という)する構成を提供し、この構成により、長期にわたって圧損の増加や、PM再生温度の増加、また、燃費の低下を抑制することができ、更に、アッシュ再生運転を効率的に行うことができるという有利な効果を奏する、画期的なDPFを提供するものである。 That is, the present invention provides a configuration in which the ash deposited on the DPF is discharged with a reduced particle size and the DPF is regenerated (hereinafter referred to as “ash regeneration”). With this configuration, an increase in pressure loss and PM regeneration over a long period of time are provided. It is an object of the present invention to provide an epoch-making DPF capable of suppressing an increase in temperature and a decrease in fuel consumption and further achieving an advantageous effect that an ash regeneration operation can be efficiently performed.
 本発明によれば、堆積したアッシュを細粒径化させて排出することができるので、更に付随する効果として、DPFの設置当初から従来よりも小型のDPFを使用することができ、DPFの製造コストの低減のみならず、PM再生運転のエネルギーコストを低減することもできる。また、小型のDPFを使用することができるということは、DPFの車両への搭載スペースを低減することができ、当該DPFを搭載した車両の重量を低減することができるということである。 According to the present invention, the accumulated ash can be discharged with a reduced particle size. As a further effect, a DPF that is smaller than the conventional DPF can be used from the beginning of the installation of the DPF. Not only cost reduction, but also energy cost of PM regeneration operation can be reduced. In addition, the fact that a small DPF can be used means that the space for mounting the DPF on the vehicle can be reduced, and the weight of the vehicle on which the DPF is mounted can be reduced.
 本願の発明者は、DPF内部へのアッシュの堆積の問題を研究し、アッシュの堆積原因を分析して、アッシュの主成分が、エンジンオイル中に含まれるカルシウム(Ca)と排気中のSOxとがイオン結合した、CaSOが主体であり、Ca塩は融点が高いため、排気中ではアッシュが固体としてDPFに流入し、凝集して、大粒径化するという知見を得た。 The inventor of the present application studied the problem of ash accumulation inside the DPF, analyzed the cause of ash accumulation, and the main components of ash were calcium (Ca) contained in engine oil and SOx in exhaust gas. It was found that ash is ion-bonded, CaSO 4 is the main component, and Ca salt has a high melting point, so that in the exhaust gas, ash flows into the DPF as a solid and aggregates to increase the particle size.
 更に、本願の発明者は、アッシュの大きさはサブミクロンのオーダーであり、これをナノミクロンのオーダーまで細粒径化すると、アッシュがDPFをすり抜けることを、実験により確認した。 Furthermore, the inventors of the present application have confirmed by experiments that the size of ash is on the order of submicrons, and that the ash slips through the DPF when the ash size is reduced to the order of nanomicrons.
 更に、本願の発明者は、サブミクロンの大きさに大粒径化したCaSOを、還元雰囲気におくと、CaSOのSOが還元されてSOとなり、Caとの結合が弱まること、及び、このときDPFの表面上にSOよりも強い酸が存在すると、CaSOのCaとSOとの結合が切断され、CaイオンがDPFの表面上のSOよりも強い酸の上に原子状に分散して結合するということを、実験により確認した。 Furthermore, the inventors of the present application, a CaSO 4 that large grain size to the size of submicron, when placed in a reducing atmosphere, it becomes SO 3 SO 4 of CaSO 4 is reduced, the bond between Ca weakened, At this time, if an acid stronger than SO 3 is present on the surface of the DPF, the bond between Ca and SO 3 in the CaSO 3 is cleaved, and the Ca ions are stronger than the SO 3 on the surface of the DPF. It was confirmed by experiments that the atoms were dispersed and bonded in an atomic form.
 更に、本願の発明者は、DPFの表面上のSOよりも強い酸と結合したCaイオンは、DPFの表面上のSOよりも強い酸と比べて、更に強い酸が雰囲気中に存在すると、雰囲気中の更に強い酸と結合して、DPFから放出され、DPFをすり抜けて排出されるというということを、実験により確認した。 Furthermore, the inventors of the present application, Ca ions associated with stronger acid than SO 3 on the surface of the DPF is different from the stronger acid than SO 3 on the surface of the DPF, if a stronger acid is present in the atmosphere It was confirmed by an experiment that it binds to a stronger acid in the atmosphere, is released from the DPF, and passes through the DPF to be discharged.
 以上を整理すると、DPFの表面上のSOよりも強い酸として、この酸の酸強度を、SOよりも強くSOよりも弱い酸強度とすれば、サブミクロンの大きさに大粒径化してDPF内に堆積したCaSOは、還元雰囲気において、CaSOのSOが還元されてCaSOとなり、CaSOのCaイオンが、DPFの表面上の酸と結合し、DPFの表面上に原子状に分散する。次に、雰囲気中にSOを存在させれば、DPFの表面上のCaは、雰囲気中のSOと結合して、サブナノメートルの大きさのCaSOとなってDPFから放出される。 To summarize the above, if the acid strength of this acid is stronger than SO 3 on the surface of the DPF and the acid strength of this acid is stronger than SO 3 and weaker than SO 4 , the particle size will be submicron. CaSO 4 deposited in the DPF turned into, in a reducing atmosphere, becomes CaSO 3 SO 4 is reduced in CaSO 4, Ca ions CaSO 3 is bonded with the acid on the surface of the DPF, on the surface of the DPF Disperse in atomic form. Next, if SO 4 is present in the atmosphere, the Ca on the surface of the DPF combines with the SO 4 in the atmosphere and becomes sub-nanometer-sized CaSO 4 and is released from the DPF.
 排気ガスの雰囲気が、ストイキ又はリッチ雰囲気である場合には、上述の還元雰囲気であり、リーン雰囲気である場合には、リーン雰囲気にはSOが含まれている。そこで、上述のDPFに対して、雰囲気をストイキ又はリッチ雰囲気にする制御と、次にリーン雰囲気にする制御と、を行えば、ストイキ又はリッチ雰囲気において、DPFに堆積したアッシュのCaイオンが、DPFの表面上に原子状に分散し、次に次にリーン雰囲気において、DPFの表面上のCaが、リーン雰囲気中のSOと結合してDPFから放出され、サブナノメートルの大きさに細粒径化したCaSOとなってDPFをすり抜け、排出される。 When the exhaust gas atmosphere is a stoichiometric or rich atmosphere, it is the above-described reducing atmosphere, and when it is a lean atmosphere, the lean atmosphere contains SO 4 . Therefore, if control for making the atmosphere stoichiometric or rich and control for making the lean atmosphere next are performed on the above-mentioned DPF, ash Ca ions deposited on the DPF in the stoichiometric or rich atmosphere are converted to DPF. Then, in a lean atmosphere, Ca on the surface of the DPF is combined with SO 4 in the lean atmosphere and released from the DPF, and the fine particle size is reduced to a sub-nanometer size. CaSO 4 is converted to pass through the DPF and discharged.
 すなわち、以上の過程では、最初の、サブミクロンの大きさに大粒径化してDPFに堆積したCaSOが、最終的に、再びCaSOとなってDPFから放出されるが、放出されるCaSOは、サブナノメートルの大きさに細粒径化されており、DPFをすり抜けて排出される。 That is, in the above process, the first CaSO 4 having a large particle size of submicron and deposited on the DPF is finally released again from the DPF as CaSO 4. No. 4 is reduced in size to a sub-nanometer size and passes through the DPF and is discharged.
 ところで、以上のアッシュ再生運転を行う場合、通常、アッシュは、DPF内に堆積したPMの中に埋没した状態にある。したがって、この状態でアッシュ再生を行おうとしても、サブミクロンの大きさに大粒径化してDPF内に堆積したCaSOが還元雰囲気と接触することができないために、CaSOのSOが還元されない。或いは、還元されてCaSOとなったアッシュも、DPFの表面上の固体酸に接触することができない。したがって、アッシュを効果的に分解するためには、PM再生運転によってPMを燃焼、除去した後、アッシュ再生運転を行うことが好ましい。 By the way, when performing the above ash reproduction | regeneration operation | movement, the ash is normally in the state buried in PM deposited in DPF. Therefore, even trying to ash reproduced in this state, in order to CaSO 4 deposited in the DPF with large grain size to the size of the sub-micron can not be in contact with a reducing atmosphere, SO 4 of CaSO 4 is reduced Not. Alternatively, the ash reduced to CaSO 3 cannot contact the solid acid on the surface of the DPF. Therefore, in order to effectively decompose the ash, it is preferable to perform the ash regeneration operation after burning and removing PM by the PM regeneration operation.
 アッシュ再生運転とPM再生運転とは、それぞれ、アッシュの堆積状況と、PMの堆積状況と、に応じて行うが、通常、アッシュ再生運転の頻度は、PM再生運転の頻度よりも少なくてよく、また、アッシュ再生運転とPM再生運転とは、ほぼ同一の温度で行うことができるので、アッシュ再生運転は、PM再生運転の温度上昇を利用して、PM再生運転に引き続いて実施するのが効率的である。 The ash regeneration operation and the PM regeneration operation are performed in accordance with the ash accumulation state and the PM accumulation state, respectively. Usually, the frequency of the ash regeneration operation may be less than the frequency of the PM regeneration operation. In addition, since the ash regeneration operation and the PM regeneration operation can be performed at substantially the same temperature, it is efficient that the ash regeneration operation is performed following the PM regeneration operation using the temperature increase of the PM regeneration operation. Is.
 したがって、PM再生運転の何回目の実施時に、アッシュ再生運転をPM再生運転に引き続いて行うのが効果的であるか、という問題がある。 Therefore, there is a problem that it is effective to perform the ash regeneration operation subsequent to the PM regeneration operation when the PM regeneration operation is performed.
 本発明は、この問題を解決するために、アッシュ再生運転の制御系が、車両運転中に、アッシュ再生運転の実施時期とPM再生運転の実施時期との関係を学習し、最適なアッシュ再生運転のインターバルを決定する、学習制御を備えるものである。 According to the present invention, in order to solve this problem, the control system of the ash regeneration operation learns the relationship between the implementation time of the ash regeneration operation and the implementation time of the PM regeneration operation during vehicle operation, and the optimum ash regeneration operation is performed. The learning control is provided for determining the interval.
 請求項1に記載の発明によれば、内燃機関の排気系にDPFを配置した、内燃機関の排気浄化装置であって、DPFが、表面上に固体酸をコーティングしたDPFであり、固体酸の酸強度が、SOの酸強度よりも大きくSOの酸強度よりも小さく、DPFの温度を上昇させてDPF内に堆積したPMを燃焼、除去する、PM再生運転の制御と、DPF内に堆積したアッシュを細粒径化してDPFを通過させ、除去する、アッシュ再生運転の制御と、DPFの背圧を検出する検出手段と、を備え、アッシュ再生運転の制御が、DPFの温度を上昇させる制御と、DPF内の雰囲気の空燃比の制御と、PM再生運転の複数回の実施前後のDPFの背圧の変化に基づいて、アッシュ再生運転の実施インターバルを決定する学習制御と、を備えることを特徴とする、内燃機関の排気浄化装置が提供される。 According to the first aspect of the present invention, there is provided an exhaust purification device for an internal combustion engine in which a DPF is disposed in an exhaust system of the internal combustion engine, wherein the DPF is a DPF whose surface is coated with a solid acid, Control of the PM regeneration operation in which the acid strength is larger than the acid strength of SO 3 and smaller than the acid strength of SO 4 , and the PM accumulated in the DPF is burned and removed by raising the temperature of the DPF, and in the DPF The ash regeneration operation is controlled by reducing the particle size of the deposited ash and allowing the DPF to pass through and removing, and the detection means for detecting the back pressure of the DPF. The control of the ash regeneration operation increases the temperature of the DPF. Control for controlling the air-fuel ratio of the atmosphere in the DPF, and learning control for determining an execution interval of the ash regeneration operation based on a change in the back pressure of the DPF before and after the PM regeneration operation is performed a plurality of times. Wherein the exhaust gas purification apparatus is provided for an internal combustion engine.
 すなわち、請求項1の発明では、DPFの表面上に、SOよりも強くSOよりも弱い酸強度の固体酸を塗布することによって、DPFを構成する。このように構成したDPFに対して、PMの堆積状態、アッシュの堆積状態に応じて、PM再生運転と、アッシュ再生運転と、を行うが、アッシュ再生運転の実施時期と、PM再生運転の実施時期との関係を、アッシュ再生運転の制御系が、車両運転中に学習し、最適なアッシュ再生運転のインターバルを決定する。 That is, in the invention of claim 1, the DPF is constituted by applying a solid acid having an acid strength stronger than SO 3 and weaker than SO 4 on the surface of the DPF. A PM regeneration operation and an ash regeneration operation are performed on the DPF configured in this manner in accordance with the PM accumulation state and the ash accumulation state. The timing of the ash regeneration operation and the implementation of the PM regeneration operation are performed. The control system of the ash regeneration operation learns the relationship with the time during the vehicle operation, and determines the optimum ash regeneration operation interval.
 したがって、PMの中に埋没した状態にあった大粒径化したCaSOが、PM再生運転によって、還元雰囲気に晒されるようになり、また、還元されてCaSOとなったアッシュが、DPFの表面上の固体酸に接触するようになり、アッシュ再生運転が、効果的に進行するとともに、アッシュ再生運転が、最適なアッシュ再生運転のインターバルで進行する。この結果、アッシュが完全に除去され、長期にわたって圧損の増加や、PM再生温度の増加、また、燃費の低下を抑制することができ、更に、アッシュの堆積の抑制を効率的に行うことができる、内燃機関の排気浄化装置が提供される。 Therefore, the CaSO 4 having a large particle size that was buried in the PM is exposed to the reducing atmosphere by the PM regeneration operation, and the ash that is reduced to CaSO 3 is converted into the DPF. It comes into contact with the solid acid on the surface, and the ash regeneration operation proceeds effectively, and the ash regeneration operation proceeds at an optimum ash regeneration operation interval. As a result, the ash is completely removed, an increase in pressure loss, an increase in the PM regeneration temperature, and a decrease in fuel consumption can be suppressed over a long period of time, and further, ash accumulation can be efficiently suppressed. An exhaust purification device for an internal combustion engine is provided.
 請求項1に記載の発明によれば、アッシュ再生の構成が提供され、アッシュ再生運転においてアッシュが完全に除去され、長期にわたって圧損の増加や、PM再生温度の増加、また、燃費の低下を抑制することができ、更に、アッシュの堆積の抑制を効率的に行うことができる、内燃機関の排気浄化装置を提供するという効果を奏する。 According to the first aspect of the present invention, an ash regeneration configuration is provided, and the ash is completely removed in the ash regeneration operation, and an increase in pressure loss, an increase in PM regeneration temperature, and a decrease in fuel consumption are suppressed over a long period of time. In addition, there is an effect of providing an exhaust emission control device for an internal combustion engine that can efficiently suppress ash accumulation.
 図1は、本発明を内燃機関の排気浄化装置に適用した場合の、制御の実施形態の概略構成を説明するフローチャートである。
 図2は、本発明の制御を説明する図であり、(a)はアッシュ再生運転を行わない場合を説明する図であり、(b)はアッシュ再生運転を行う場合を説明する図である。
 図3は、本発明の制御の原理を説明する図である。
 図4は、本発明の制御の原理を説明する図である。
 図5は、本発明の制御を説明する図である。
 図6は、本発明を内燃機関の排気浄化装置に適用した場合の、装置配置の実施形態の概略構成を説明する図である。
FIG. 1 is a flowchart illustrating a schematic configuration of an embodiment of control when the present invention is applied to an exhaust gas purification apparatus for an internal combustion engine.
2A and 2B are diagrams for explaining the control of the present invention. FIG. 2A is a diagram for explaining a case where the ash regeneration operation is not performed, and FIG. 2B is a diagram for explaining a case where the ash regeneration operation is performed.
FIG. 3 is a diagram for explaining the principle of control of the present invention.
FIG. 4 is a diagram for explaining the principle of control of the present invention.
FIG. 5 is a diagram for explaining the control of the present invention.
FIG. 6 is a diagram illustrating a schematic configuration of an embodiment of the apparatus arrangement when the present invention is applied to an exhaust gas purification apparatus for an internal combustion engine.
 以下、添付図面を用いて本発明の実施形態について説明する。なお、複数の添付図面において、同一又は相当する部材には、同一の符号を付している。 Hereinafter, embodiments of the present invention will be described with reference to the accompanying drawings. In the plurality of accompanying drawings, the same or corresponding members are denoted by the same reference numerals.
 図6は、本発明の基本構成を示す図であり、DPF2の表面上に、詳細にはDPF2のDPF基材の表面上に、酸強度がSO以上でSO以下に相当する固体酸を塗布する。内燃機関の排気がDPF2に導かれ、排気中のPMはDPF2によって捕集、除去され、PMの除去された排気が排出される。DPFに捕集されたPMは次第に堆積していくので、定期的に或いはDPFの性能低下を検知して、DPF内に捕集されたPMを燃焼除去するPM再生運転を行う。 FIG. 6 is a diagram showing a basic configuration of the present invention. A solid acid corresponding to an acid strength of SO 3 or more and SO 4 or less is formed on the surface of DPF 2, specifically, on the surface of the DPF substrate of DPF 2. Apply. The exhaust gas from the internal combustion engine is guided to the DPF 2, and the PM in the exhaust gas is collected and removed by the DPF 2, and the exhaust gas from which the PM has been removed is discharged. Since the PM collected in the DPF gradually accumulates, PM regeneration operation is performed periodically or by detecting a decrease in the performance of the DPF and burning and removing the PM collected in the DPF.
 しかし、PM再生運転を繰り返し行っていると、DPF内にアッシュ3が堆積し、PM再生運転を行っても、次第にDPFの圧力損失が増加し、また、PM再生温度を次第に増加させなければ十分な再生が行われなくなる、という問題があり、燃費が悪化する。 However, if the PM regeneration operation is repeatedly performed, the ash 3 accumulates in the DPF, and even if the PM regeneration operation is performed, the pressure loss of the DPF gradually increases, and it is sufficient if the PM regeneration temperature is not increased gradually. There is a problem that proper regeneration is not performed, and fuel consumption deteriorates.
 本発明では、アッシュ再生運転によって、DPF内に堆積したアッシュ3を細粒径化するので、細粒径化粒子4が、DPFのフィルタ隙間を通り抜け、排気とともに排出されて、アッシュ堆積の問題が解決され、更に、アッシュ再生運転の制御系が、車両運転中に、アッシュ再生運転の実施時期とPM再生運転の実施時期との関係を学習し、最適なアッシュ再生運転のインターバルを決定する学習制御を行うので、アッシュ再生運転が効率的に行われる。 In the present invention, the ash 3 accumulated in the DPF is reduced in particle size by the ash regeneration operation, so that the reduced particle size 4 passes through the filter gap of the DPF and is discharged together with the exhaust gas, which causes a problem of ash accumulation. Further, learning control is performed in which the control system for the ash regeneration operation learns the relationship between the execution timing of the ash regeneration operation and the execution timing of the PM regeneration operation and determines the optimum ash regeneration operation interval during vehicle operation. As a result, the ash regeneration operation is performed efficiently.
 すなわち、本発明は、図6のように構成したDPFに対して、PMの堆積状態、アッシュの堆積状態に応じて、PM再生運転と、アッシュ再生運転と、を行い、更に、アッシュ再生運転の実施時期とPM再生運転の実施時期との関係を、アッシュ再生運転の制御系が、車両運転中に学習し、最適なアッシュ再生運転のインターバルを決定し、決定されたインターバルに基づいて最適なアッシュ再生運転を行うものである。 That is, according to the present invention, the PM regeneration operation and the ash regeneration operation are performed on the DPF configured as shown in FIG. 6 according to the PM accumulation state and the ash accumulation state, and the ash regeneration operation is further performed. The control system of the ash regeneration operation learns the relationship between the implementation time and the PM regeneration operation time during vehicle operation, determines the optimum ash regeneration operation interval, and determines the optimum ash based on the determined interval. Regeneration operation is performed.
 図1は、最適なアッシュ再生運転のインターバルを決定する学習制御のフローチャートであり、図2~4は、図1の最適なアッシュ再生運転のインターバルを決定する、原理を説明する図である。図1~4とその説明において、「背圧の上昇」とは、DPFの出口圧の、初期値からの「圧力低下幅の上昇」であるが、説明を簡便にするために、以下の説明では、「背圧の上昇」と表現している。したがって、図1の説明におけるアッシュ再生運転前のDPFの背圧の検出値Pは、アッシュ再生運転終了時のDPFの背圧の検出値Pよりも低い圧力であり、以下で説明するPd=P−Pは、プラスの数値である。 FIG. 1 is a flowchart of learning control for determining an optimum ash regeneration operation interval, and FIGS. 2 to 4 are diagrams for explaining the principle of determining the optimum ash regeneration operation interval of FIG. In FIGS. 1 to 4 and the description thereof, “increase in back pressure” is “increase in pressure drop” from the initial value of the outlet pressure of the DPF, but in order to simplify the explanation, the following explanation will be given. So, it is expressed as “an increase in back pressure”. Therefore, the detection value P O of the back pressure of the ash regeneration operation before the DPF in the description of FIG. 1 is a pressure lower than the detection value P of the back pressure of the ash regeneration operation at the end of the DPF, Pd described below = P- PO is a positive numerical value.
 まず、図2(a)に示すように、DPFにおいてPM再生運転を繰り返していくと、PM再生運転終了後のDPFの背圧が、次第に上昇していく。図2(a)の鋸歯状の1つ1つの山が、PMの堆積によって次第にDPFの背圧が上昇し、これに対してPM再生運転を実施すると、DPFの背圧が回復する、すなわち上昇していた背圧が下がる、という変化を示しているが、PM再生運転を繰り返していくと、PM再生運転終了後のDPFの背圧は、△POTのように上昇していき、完全には回復しない。図2(a)の破線は、PMの燃え残りに基づく背圧上昇であるが、アッシュが堆積していくことに基づいて、背圧は、△POAだけ高くなり、PM再生運転終了後のDPFの背圧は、△POTで示す実線のように上昇する。 First, as shown in FIG. 2A, when the PM regeneration operation is repeated in the DPF, the back pressure of the DPF after the PM regeneration operation ends gradually increases. Each of the serrated peaks in FIG. 2A gradually increases the back pressure of the DPF due to the accumulation of PM, and when the PM regeneration operation is performed on this, the back pressure of the DPF recovers, that is, rises. However, if the PM regeneration operation is repeated, the back pressure of the DPF after the PM regeneration operation is increased like ΔP OT and completely Will not recover. Broken line in FIG. 2 (a), is a back pressure rise based on the burning remaining PM, based on the ash is gradually deposited, back pressure, △ P OA only increases, PM regeneration operation after completion of the The back pressure of the DPF increases as indicated by a solid line indicated by ΔP OT .
 したがって、アッシュ再生運転は、この、△POAで示す背圧上昇分を回復することを目的としており、アッシュ再生運転を実施して背圧が回復した後は、図2(b)のようにPM再生運転が繰り返される。図2(b)の下側の破線は、PMの燃え残りに基づく背圧上昇であり、アッシュ再生運転を実施して背圧が回復しても、PMの燃え残りに基づく背圧上昇は残るが、PMの燃え残りに基づく背圧上昇は、DPF使用初期に大きく、その後はほぼ一定値に収束する。 Therefore, the ash regeneration operation is intended to recover the back pressure increase indicated by ΔPOA , and after the ash regeneration operation is performed and the back pressure is recovered, as shown in FIG. The PM regeneration operation is repeated. The broken line on the lower side of FIG. 2B is a back pressure increase based on the PM remaining unburned, and even if the ash regeneration operation is performed and the back pressure recovers, the back pressure increase based on the PM unburned remains. However, the increase in the back pressure based on the unburned PM remains large in the initial stage of using the DPF, and then converges to a substantially constant value.
 本発明は、以上の知見に基づいて、アッシュ再生運転による背圧の回復を最適に行うために、アッシュ再生運転のインターバルを決定する学習を行うものである。すなわち、図2(a)の△POAで示す背圧上昇分を、最適なインターバルで回復するものである。 Based on the above knowledge, the present invention performs learning for determining the interval of the ash regeneration operation in order to optimally recover the back pressure by the ash regeneration operation. That is, the back pressure increase indicated by ΔPOA in FIG. 2A is recovered at an optimum interval.
 この原理を図3、4によって例示して説明すると、例えば図3に示すように、PM再生運転を1回行った後、2回行った後、3回行った後、4回行った後、というように、インターバルを変化させてアッシュ再生運転を実施する。このようにアッシュ再生運転を実施すると、PM再生運転を1回行った後のアッシュ再生運転による背圧回復値よりも、PM再生運転を2回行った後のアッシュ再生運転による背圧回復値のほうが大きく、PM再生運転を3回行った後のアッシュ再生運転による背圧回復値のほうが、更に大きくなる、というような変化が得られるが、やがて背圧回復値はほぼ一定値に収束する。 This principle will be described with reference to FIGS. 3 and 4. For example, as shown in FIG. 3, after performing the PM regeneration operation once, performed twice, performed three times, performed four times, As described above, the ash regeneration operation is performed by changing the interval. When the ash regeneration operation is performed in this manner, the back pressure recovery value by the ash regeneration operation after performing the PM regeneration operation twice is larger than the back pressure recovery value by the ash regeneration operation after performing the PM regeneration operation once. Although the change is such that the back pressure recovery value by the ash regeneration operation after performing the PM regeneration operation three times is further increased, the back pressure recovery value converges to a substantially constant value.
 図4は、この背圧回復値の収束を、模式的に説明するグラフであり、図4の最上段のグラフのようにアッシュ再生運転のインターバルを徐々に延長する制御を行うと、図4の中段のグラフのように、やがて背圧回復値△POTはほぼ一定値に収束していくので、図4の中段のグラフから、最適なアッシュ再生運転のインターバルIoptを決定する。図4の最下段のグラフは、各アッシュ再生運転の制御までのインターバルを示している。インターバルは、理想的には排気ガスがDPFを通過する積算距離であるが、実際の制御においては、例えば車両の走行距離で代用する。 FIG. 4 is a graph schematically explaining the convergence of the back pressure recovery value. When control is performed to gradually extend the ash regeneration operation interval as shown in the uppermost graph of FIG. 4, FIG. As shown in the middle graph, the back pressure recovery value ΔP OT eventually converges to a substantially constant value. Therefore, the optimum ash regeneration operation interval I opt is determined from the middle graph of FIG. The lowermost graph in FIG. 4 shows an interval until control of each ash regeneration operation. The interval is ideally an accumulated distance through which the exhaust gas passes through the DPF, but in actual control, for example, the travel distance of the vehicle is substituted.
 図1は、以上の、最適なアッシュ再生運転のインターバルを決定する、学習制御を示すフローチャートである。制御系の学習条件が成立すると、図1の制御がスタートし、ステップ100で、アッシュ再生運転制御のインターバルカウンタが、前回のアッシュ再生運転から今回のアッシュ再生運転までのインターバルをカウントする。更にステップ200に進み、アッシュ再生運転前の背圧、すなわち、PM再生運転直後の背圧Pを検出し、ステップ300の、アッシュ再生運転を開始する。 FIG. 1 is a flowchart showing learning control for determining the optimum ash regeneration operation interval. When the learning condition of the control system is satisfied, the control of FIG. 1 starts, and in step 100, the interval counter for ash regeneration operation control counts the interval from the previous ash regeneration operation to the current ash regeneration operation. Furthermore the process proceeds to step 200, ash regeneration operation before the back pressure, i.e., detects the back pressure P O immediately after PM regeneration operation, in step 300, starts the ash regeneration operation.
 アッシュ再生運転が終了すると、ステップ400で、アッシュ再生運転終了時のDPFの背圧Pを検出し、ステップ500に進んで、PとPの差圧Pd=P−Pを計算する。 When ash regeneration operation is completed, at step 400, detects the back pressure P of the ash regeneration operation at the end of the DPF, the routine proceeds to step 500 to calculate the pressure difference Pd = P-P O P and P O.
 次に、ステップ600で、前回のアッシュ再生運転によるPdと、今回のアッシュ再生運転によるPdとの差、すなわち、差圧Pdの増分を△Pdとし、前回のアッシュ再生運転によるインターバルと、今回のアッシュ再生運転によるインターバルの差、すなわちインターバルの増分を△Intとし、△Pdと△Intの比が一定値K以下になるかを判定する。 Next, in step 600, the difference between Pd by the previous ash regeneration operation and Pd by the current ash regeneration operation, that is, the increment of the differential pressure Pd is set to ΔPd, the interval by the previous ash regeneration operation, It is determined whether the difference between the intervals due to the ash regeneration operation, that is, the increment of the interval is ΔInt, and the ratio of ΔPd and ΔInt is equal to or less than a certain value K.
 図5は、差圧Pdの増分△Pdと、インターバルの増分△Intと、を説明する図である。図1のステップ600で、△Pdと△Intの比が一定値K以下にならなければ、ステップ800に進み、今までのステップ100からステップ600までを繰り返す。 FIG. 5 is a diagram for explaining the increment ΔPd of the differential pressure Pd and the increment ΔInt of the interval. If the ratio of ΔPd and ΔInt does not become a certain value K or less in step 600 of FIG. 1, the process proceeds to step 800 and steps 100 to 600 are repeated.
 ステップ600において、△Pdと△Intの比が一定値K以下になった場合、すなわち、図5のIoptで示すように、ほぼ一定値のPdになった場合には、アッシュ再生運転による背圧の回復が収束したものと判断し、ステップ700に進んで、このときのインターバルを、最適インターバル値として記憶する。すなわち、前回学習したインターバル値がある場合には、インターバル値を更新して、学習制御を終了する。したがって、学習後のアッシュ再生運転は、更新されたインターバルで実施される。 In step 600, when the ratio of ΔPd to ΔInt becomes a constant value K or less, that is, as shown by Iopt in FIG. It is determined that the recovery has converged, the process proceeds to step 700, and the interval at this time is stored as the optimum interval value. That is, when there is an interval value learned last time, the interval value is updated and the learning control is terminated. Therefore, the ash regeneration operation after learning is performed at the updated interval.
 以上のように、本発明の学習制御を行ったアッシュ再生運転の制御では、アッシュ再生運転が、最適なアッシュ再生運転のインターバルで進行する。この結果、アッシュが完全に除去され、長期にわたって圧損の増加や、PM再生温度の増加、また、燃費の低下を抑制することができ、更に、アッシュの堆積の抑制を効率的に行うことができる、内燃機関の排気浄化装置が提供される。 As described above, in the control of the ash regeneration operation in which the learning control of the present invention is performed, the ash regeneration operation proceeds at an optimum ash regeneration operation interval. As a result, the ash is completely removed, an increase in pressure loss, an increase in the PM regeneration temperature, and a decrease in fuel consumption can be suppressed over a long period of time, and further, ash accumulation can be efficiently suppressed. An exhaust purification device for an internal combustion engine is provided.
 したがって、本発明により、いつまでも性能が低下しないDPFを備えた内燃機関の排気浄化装置を構成することができ、本発明は、DPFの性能を、長期間にわたって飛躍的に向上させることができるという、有利な効果を奏する。更に、この効果に付随する更なる効果として、DPFの設置当初から、従来よりも小型のDPFを使用することができ、DPFの製造コストの低減のみならず、PM再生運転のエネルギーコストも低減することができる。更に、小型のDPFを使用することができるということは、DPFの車両への搭載スペースを低減することができ、当該DPFを搭載した車両の重量を低減することができるという効果があることにも注目すべきである。 Therefore, according to the present invention, it is possible to configure an exhaust gas purification apparatus for an internal combustion engine having a DPF whose performance does not deteriorate indefinitely, and the present invention can dramatically improve the performance of the DPF over a long period of time. There is an advantageous effect. Furthermore, as a further effect that accompanies this effect, a DPF smaller than the conventional one can be used from the beginning of the installation of the DPF, which not only reduces the manufacturing cost of the DPF but also reduces the energy cost of the PM regeneration operation. be able to. Furthermore, the fact that a small DPF can be used has the effect that the space for mounting the DPF on the vehicle can be reduced, and the weight of the vehicle on which the DPF is mounted can be reduced. It should be noted.
1 内燃機関
2 DPF
3 アッシュ
4 細粒径化粒子
1 Internal combustion engine 2 DPF
3 Ash 4 Fine particle size

Claims (1)

  1.  内燃機関の排気系にDPFを配置した、内燃機関の排気浄化装置であって、
     前記DPFが、表面上に固体酸をコーティングしたDPFであり、
     前記固体酸の酸強度が、SOの酸強度よりも大きくSOの酸強度よりも小さく、
     前記DPFの温度を上昇させて前記DPF内に堆積したPMを燃焼、除去する、PM再生運転の制御と、
     前記DPF内に堆積したアッシュを細粒径化して前記DPFを通過させ、除去する、アッシュ再生運転の制御と、
     前記DPFの背圧を検出する検出手段と、を備え、
     前記アッシュ再生運転の制御が、
     前記DPFの温度を上昇させる制御と、
     前記DPF内の雰囲気の空燃比の制御と、
     前記PM再生運転の複数回の実施前後の前記DPFの背圧の変化に基づいて、前記アッシュ再生運転の実施インターバルを決定する学習制御と、を備えることを特徴とする、
     内燃機関の排気浄化装置。
    An exhaust purification device for an internal combustion engine in which a DPF is disposed in an exhaust system of the internal combustion engine,
    The DPF is a DPF having a surface coated with a solid acid,
    The acid strength of the solid acid is greater than the acid strength of SO 3 and less than the acid strength of SO 4 ;
    Control of PM regeneration operation in which the temperature of the DPF is raised to burn and remove PM accumulated in the DPF;
    Control of the ash regeneration operation, which reduces the ash deposited in the DPF and passes the DPF to remove it;
    Detecting means for detecting the back pressure of the DPF,
    The control of the ash regeneration operation is
    Control for increasing the temperature of the DPF;
    Control of the air-fuel ratio of the atmosphere in the DPF;
    Learning control for determining an execution interval of the ash regeneration operation based on a change in the back pressure of the DPF before and after the PM regeneration operation is performed a plurality of times.
    An exhaust purification device for an internal combustion engine.
PCT/JP2011/065635 2011-07-01 2011-07-01 Exhaust purification apparatus for internal combustion engine WO2013005336A1 (en)

Priority Applications (26)

Application Number Priority Date Filing Date Title
PCT/JP2011/065635 WO2013005336A1 (en) 2011-07-01 2011-07-01 Exhaust purification apparatus for internal combustion engine
PCT/JP2012/067404 WO2013005849A1 (en) 2011-07-01 2012-06-29 Exhaust Purification System for Internal Combustion Engine
CN201280030742.8A CN103619438B (en) 2011-07-01 2012-06-29 Method of removing ash from particulate filter
JP2013555681A JP5626487B2 (en) 2011-07-01 2012-06-29 Particulate filter
US14/126,904 US9011569B2 (en) 2011-07-01 2012-06-29 Particulate filter
EP12741116.3A EP2726177B1 (en) 2011-07-01 2012-06-29 Exhaust purification system for internal combustion engine
EP12741114.8A EP2726175B1 (en) 2011-07-01 2012-06-29 Exhaust Purification System for Internal Combustion Engine
PCT/JP2012/067405 WO2013005850A2 (en) 2011-07-01 2012-06-29 Exhaust Purification System for Internal Combustion Engine
CN201280032271.4A CN103635245B (en) 2011-07-01 2012-06-29 Particulate filter
US14/110,811 US8778053B2 (en) 2011-07-01 2012-06-29 Method of removing ash from particulate filter
US14/127,355 US9080480B2 (en) 2011-07-01 2012-06-29 Exhaust purification system for internal combustion engine
CN201280031473.7A CN103619441B (en) 2011-07-01 2012-06-29 Exhaust purification system for internal combustion engine
EP12738239.8A EP2726172B1 (en) 2011-07-01 2012-06-29 Particulate filter
JP2013535609A JP5494893B2 (en) 2011-07-01 2012-06-29 How to remove ash from particulate filters
EP12741115.5A EP2726176A2 (en) 2011-07-01 2012-06-29 Exhaust purification system for internal combustion engine
EP12738240.6A EP2726173B1 (en) 2011-07-01 2012-06-29 Method of removing ash from particulate filter
US14/126,947 US9057298B2 (en) 2011-07-01 2012-06-29 Exhaust purification system for internal combustion engine
PCT/JP2012/067407 WO2013005852A1 (en) 2011-07-01 2012-06-29 Particulate Filter
JP2014514345A JP2014520229A (en) 2011-07-01 2012-06-29 Exhaust gas purification device for internal combustion engine
PCT/JP2012/067408 WO2013005853A2 (en) 2011-07-01 2012-06-29 Method of Removing Ash from Particulate Filter
US14/126,997 US9057299B2 (en) 2011-07-01 2012-06-29 Exhaust purification system for internal combustion engine
JP2013555657A JP2014520227A (en) 2011-07-01 2012-06-29 Exhaust gas purification device for internal combustion engine
CN201280031454.4A CN103619439B (en) 2011-07-01 2012-06-29 For the emission control system of internal combustion engine
JP2013555656A JP5655961B2 (en) 2011-07-01 2012-06-29 Exhaust gas purification device for internal combustion engine
CN201280031461.4A CN103619440B (en) 2011-07-01 2012-06-29 Exhaust purification system for internal combustion engine
PCT/JP2012/067406 WO2013005851A2 (en) 2011-07-01 2012-06-29 Exhaust Purification System for Internal Combustion Engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2011/065635 WO2013005336A1 (en) 2011-07-01 2011-07-01 Exhaust purification apparatus for internal combustion engine

Publications (1)

Publication Number Publication Date
WO2013005336A1 true WO2013005336A1 (en) 2013-01-10

Family

ID=47436708

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/065635 WO2013005336A1 (en) 2011-07-01 2011-07-01 Exhaust purification apparatus for internal combustion engine

Country Status (1)

Country Link
WO (1) WO2013005336A1 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1054268A (en) * 1996-08-08 1998-02-24 Toyota Motor Corp Exhaust emission control device for diesel engine
JP2004513771A (en) * 2001-05-16 2004-05-13 ケイエイチ ケミカルズ カンパニー、リミテッド Catalyst for purification of diesel engine exhaust gas

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1054268A (en) * 1996-08-08 1998-02-24 Toyota Motor Corp Exhaust emission control device for diesel engine
JP2004513771A (en) * 2001-05-16 2004-05-13 ケイエイチ ケミカルズ カンパニー、リミテッド Catalyst for purification of diesel engine exhaust gas

Similar Documents

Publication Publication Date Title
CN1978035B (en) Method and apparatus for controlling regeneration of simultaneous nox-pm reduction device
US20140116028A1 (en) Particulate Filter Control System And Method
JP4972914B2 (en) Exhaust gas purification system regeneration control method and exhaust gas purification system
KR102025922B1 (en) Automotive catalytic aftertreatment system
JP6054057B2 (en) Exhaust gas purification filter, smoke filter regeneration system, and regeneration method thereof
JP2010025043A (en) Particulate filter regenerating system
JP6129514B2 (en) Diesel oxidation catalyst device regeneration cycle determination method
AU2016244347B2 (en) Exhaust gas cleaning apparatus for internal combustion engine
JP5994928B2 (en) Exhaust gas purification system for internal combustion engine
WO2013005336A1 (en) Exhaust purification apparatus for internal combustion engine
KR101724453B1 (en) System for purifying exhaust gas and method for controlling the same
JPWO2013005336A1 (en) Exhaust gas purification device for internal combustion engine
WO2013005340A1 (en) Exhaust purification apparatus for internal combustion engine
WO2013005337A1 (en) Exhaust purification apparatus for internal combustion engine
WO2013005335A1 (en) Exhaust purification apparatus for internal combustion engine
WO2013005338A1 (en) Exhaust purification apparatus for internal combustion engine
WO2013005341A1 (en) Exhaust gas purifier for internal combustion engine
WO2013005339A1 (en) Exhaust purification device for internal combustion engine
WO2013005334A1 (en) Exhaust purification apparatus for internal combustion engine
KR100957275B1 (en) Multiple regeneration method for catalyzed particulate filter of exhaust system in vehicle
WO2013005342A1 (en) Exhaust purification device for internal combustion engine
JPWO2013005337A1 (en) Exhaust gas purification device for internal combustion engine
JPWO2013005334A1 (en) Exhaust gas purification device for internal combustion engine
EP2880291B1 (en) Exhaust gas treatment system (ats) for internal combustion engine
JPWO2013005340A1 (en) Exhaust gas purification device for internal combustion engine

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2011553021

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11869015

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11869015

Country of ref document: EP

Kind code of ref document: A1