WO2013005335A1 - Exhaust purification apparatus for internal combustion engine - Google Patents

Exhaust purification apparatus for internal combustion engine Download PDF

Info

Publication number
WO2013005335A1
WO2013005335A1 PCT/JP2011/065633 JP2011065633W WO2013005335A1 WO 2013005335 A1 WO2013005335 A1 WO 2013005335A1 JP 2011065633 W JP2011065633 W JP 2011065633W WO 2013005335 A1 WO2013005335 A1 WO 2013005335A1
Authority
WO
WIPO (PCT)
Prior art keywords
dpf
ash
amount
internal combustion
combustion engine
Prior art date
Application number
PCT/JP2011/065633
Other languages
French (fr)
Japanese (ja)
Inventor
優一 祖父江
中山 茂樹
寛真 西岡
克彦 押川
佳久 塚本
寛 大月
大地 今井
潤一 松尾
菅原 康
Original Assignee
トヨタ自動車株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by トヨタ自動車株式会社 filed Critical トヨタ自動車株式会社
Priority to PCT/JP2011/065633 priority Critical patent/WO2013005335A1/en
Priority to PCT/JP2012/067404 priority patent/WO2013005849A1/en
Priority to EP12741114.8A priority patent/EP2726175B1/en
Priority to JP2013555681A priority patent/JP5626487B2/en
Priority to CN201280030742.8A priority patent/CN103619438B/en
Priority to EP12741116.3A priority patent/EP2726177B1/en
Priority to PCT/JP2012/067405 priority patent/WO2013005850A2/en
Priority to EP12738240.6A priority patent/EP2726173B1/en
Priority to CN201280032271.4A priority patent/CN103635245B/en
Priority to US14/127,355 priority patent/US9080480B2/en
Priority to CN201280031473.7A priority patent/CN103619441B/en
Priority to US14/126,904 priority patent/US9011569B2/en
Priority to EP12738239.8A priority patent/EP2726172B1/en
Priority to JP2013535609A priority patent/JP5494893B2/en
Priority to EP12741115.5A priority patent/EP2726176A2/en
Priority to US14/110,811 priority patent/US8778053B2/en
Priority to US14/126,947 priority patent/US9057298B2/en
Priority to PCT/JP2012/067407 priority patent/WO2013005852A1/en
Priority to JP2014514345A priority patent/JP2014520229A/en
Priority to PCT/JP2012/067408 priority patent/WO2013005853A2/en
Priority to US14/126,997 priority patent/US9057299B2/en
Priority to JP2013555657A priority patent/JP2014520227A/en
Priority to CN201280031454.4A priority patent/CN103619439B/en
Priority to JP2013555656A priority patent/JP5655961B2/en
Priority to CN201280031461.4A priority patent/CN103619440B/en
Priority to PCT/JP2012/067406 priority patent/WO2013005851A2/en
Publication of WO2013005335A1 publication Critical patent/WO2013005335A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/02Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust
    • F01N3/021Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters
    • F01N3/033Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters in combination with other devices
    • F01N3/035Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters in combination with other devices with catalytic reactors, e.g. catalysed diesel particulate filters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/92Chemical or biological purification of waste gases of engine exhaust gases
    • B01D53/94Chemical or biological purification of waste gases of engine exhaust gases by catalytic processes
    • B01D53/944Simultaneously removing carbon monoxide, hydrocarbons or carbon making use of oxidation catalysts
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/92Chemical or biological purification of waste gases of engine exhaust gases
    • B01D53/94Chemical or biological purification of waste gases of engine exhaust gases by catalytic processes
    • B01D53/9495Controlling the catalytic process
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/96Regeneration, reactivation or recycling of reactants
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/02Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust
    • F01N3/021Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters
    • F01N3/023Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters using means for regenerating the filters, e.g. by burning trapped particles
    • F01N3/029Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters using means for regenerating the filters, e.g. by burning trapped particles by adding non-fuel substances to exhaust
    • F01N3/0293Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters using means for regenerating the filters, e.g. by burning trapped particles by adding non-fuel substances to exhaust injecting substances in exhaust stream
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N9/00Electrical control of exhaust gas treating apparatus
    • F01N9/002Electrical control of exhaust gas treating apparatus of filter regeneration, e.g. detection of clogging
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/30Controlling by gas-analysis apparatus
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2610/00Adding substances to exhaust gases
    • F01N2610/02Adding substances to exhaust gases the substance being ammonia or urea
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/40Engine management systems

Definitions

  • the present invention relates to an exhaust purification device for an internal combustion engine.
  • a diesel particulate filter (hereinafter referred to as “DPF”) is installed in the exhaust gas passage of the internal combustion engine, Generally, PM in exhaust gas is collected and removed.
  • PM regeneration since the PM collected in the DPF gradually accumulates, regeneration (hereinafter referred to as “PM regeneration”) is performed periodically or by detecting a decrease in the performance of the DPF and burning and removing the PM collected in the DPF. ”).
  • PM regeneration operation is usually performed by heating the DPF while supplying a reducing agent such as hydrocarbon (HC) to the DPF.
  • a reducing agent such as hydrocarbon (HC)
  • Ash is generated when the engine oil mixed in the cylinder of the engine burns, and the generated ash particles are covered with PM in the DPF.
  • the ash particles covered with PM are exposed to high temperature conditions during the PM regeneration operation in the DPF, and the PM covering the ash particles is burned and removed.
  • Ash deposition occurs because the ash particles are agglomerated and increased in size by further applying heat to the ash particles from which the PM has been burned and removed.
  • the improvement to the conventional DPF and the improvement to the regeneration operation of the DPF are intended to improve the collection efficiency of the DPF and improve the performance of the PM regeneration operation, and not to the accumulation of ash.
  • an invention disclosed in Patent Document 1 for example, there is an invention disclosed in Patent Document 1, and Patent Document 1 shows a configuration of a DPF capable of burning PM at a relatively low temperature. Yes.
  • the structure of the DPF disclosed in Patent Document 1 is characterized in that, in the DPF and the exhaust gas purification method using the DPF, a catalyst made of a solid superacid having an active metal supported on the DPF is held on the filter surface. is there.
  • Patent Document 1 reduces the combustion temperature of PM with a solid super strong acid carrying an active metal, and regenerates DPF at a lower temperature than before, preferably continuously, and CO, HC, NO, NO 2 can be removed at the same time.
  • Patent Document 1 is intended to improve the performance of the PM regeneration operation, and does not correspond to the accumulation of ash. If the use of the DPF is continued, the PM regeneration operation is performed. However, this does not solve the problem that the pressure loss of the DPF gradually increases, and unless the PM regeneration temperature is gradually increased, sufficient regeneration cannot be performed and the fuel consumption deteriorates.
  • Patent Document 2 which is selected from platinum, palladium and rhodium as a catalyst for a diesel engine exhaust gas purification device.
  • SOF Solid Organic Fraction
  • unburned hydrocarbons, etc. contained in particulate matter in diesel engine exhaust gas from a low temperature range.
  • the invention of Patent Document 2 aims at an effect similar to the invention of Patent Document 1 and does not relate to DPF.
  • JP 2006-289175 A Japanese Patent Laid-Open No. 10-033985
  • the present invention can advantageously perform the ash regeneration operation according to the amount of ash deposited on the DPF, suppress the ash accumulation on the DPF, increase the pressure loss over a long period, increase the PM regeneration temperature,
  • An object of the present invention is to provide an exhaust emission control device for an internal combustion engine that can suppress a reduction in fuel consumption.
  • the present invention provides a preferable means for obtaining the amount of ash deposited on the DPF in a configuration in which the ash deposited on the DPF is discharged with a reduced particle size and the DPF is regenerated (hereinafter referred to as “ash regeneration”).
  • ash regeneration a preferable means for obtaining the amount of ash deposited on the DPF in a configuration in which the ash deposited on the DPF is discharged with a reduced particle size and the DPF is regenerated.
  • the accumulated ash can be discharged with a reduced particle size.
  • a DPF that is smaller than the conventional DPF can be used from the beginning of the installation of the DPF. Not only cost reduction, but also energy cost of PM regeneration operation can be reduced.
  • the fact that a small DPF can be used means that the space for mounting the DPF on the vehicle can be reduced, and the weight of the vehicle on which the DPF is mounted can be reduced.
  • the inventor of the present application studied the problem of ash accumulation inside the DPF, analyzed the cause of ash accumulation, and the main components of ash were calcium (Ca) contained in engine oil and SOx in exhaust gas. It was found that ash is ion-bonded, CaSO 4 is the main component, and Ca salt has a high melting point, so that in the exhaust gas, ash flows into the DPF as a solid and aggregates to increase the particle size.
  • Ca calcium
  • the inventors of the present application have confirmed by experiments that the size of ash is on the order of submicrons, and that the ash slips through the DPF when the ash size is reduced to the order of nanomicrons.
  • Ca ions associated with stronger acid than SO 3 on the surface of the DPF is different from the stronger acid than SO 3 on the surface of the DPF, if a stronger acid is present in the atmosphere It was confirmed by an experiment that it binds to a stronger acid in the atmosphere, is released from the DPF, and passes through the DPF to be discharged.
  • the particle size will be submicron.
  • CaSO 4 deposited in the DPF turned into, in a reducing atmosphere becomes CaSO 3 SO 4 is reduced in CaSO 4
  • Ca ions CaSO 3 is bonded with the acid on the surface of the DPF, on the surface of the DPF Disperse in atomic form.
  • SO 4 is present in the atmosphere, the Ca on the surface of the DPF combines with the SO 4 in the atmosphere and becomes sub-nanometer-sized CaSO 4 and is released from the DPF.
  • the exhaust gas atmosphere is a stoichiometric or rich atmosphere, it is the above-described reducing atmosphere, and when it is a lean atmosphere, the lean atmosphere contains SO 4 . Therefore, if control for making the atmosphere stoichiometric or rich and control for making the lean atmosphere next are performed on the above-mentioned DPF, ash Ca ions deposited on the DPF in the stoichiometric or rich atmosphere are converted to DPF. Then, in a lean atmosphere, Ca on the surface of the DPF is combined with SO 4 in the lean atmosphere and released from the DPF, and the fine particle size is reduced to a sub-nanometer size. CaSO 4 is converted to pass through the DPF and discharged.
  • the first CaSO 4 having a large particle size of submicron and deposited on the DPF is finally released again from the DPF as CaSO 4.
  • No. 4 is reduced in size to a sub-nanometer size and passes through the DPF and is discharged.
  • the increase in the pressure loss of the DPF is usually detected and the timing of the ash regeneration operation is determined, but the increase in the pressure loss of the DPF includes the increase in the pressure loss due to PM accumulation. Therefore, in order to know the state of ash deposition, for example, a procedure is required in which the relationship between ash deposition and PM deposition is obtained separately, and the ash deposition is obtained separately based on this relationship. is doing.
  • an ash regeneration operation can be advantageously performed by providing a means for directly knowing the ash accumulation state.
  • an exhaust purification device for an internal combustion engine in which a DPF is disposed in an exhaust system of the internal combustion engine, wherein the DPF is a DPF whose surface is coated with a solid acid,
  • the acid strength is larger than the acid strength of SO 3 and smaller than the acid strength of SO 4.
  • the ash regeneration operation control for removing the ash deposited in the DPF and the amount of ash deposited in the DPF are as follows.
  • An ash accumulation amount acquisition means wherein the control of the ash regeneration operation includes control for increasing the temperature of the DPF, and control of the air-fuel ratio of the atmosphere in the DPF, and the air-fuel ratio of the atmosphere in the DPF This control is to first change the stoichiometric or air-fuel ratio rich atmosphere and then change to the air-fuel ratio lean atmosphere during the control to increase the temperature of the DPF.
  • the exhaust gas purification apparatus is provided for an internal combustion engine.
  • a preferable ash accumulation amount acquisition means for acquiring the accumulation amount of ash accumulated in the DPF, and the relationship between the ash accumulation and the PM accumulation is obtained by the ash accumulation amount acquisition means. Without using it, the amount of ash deposited can be determined directly. Therefore, the ash regeneration operation can be advantageously performed according to the amount of ash deposited on the DPF, and the ash is completely removed, suppressing an increase in pressure loss, an increase in PM regeneration temperature, and a decrease in fuel consumption over a long period of time.
  • An exhaust emission control device for an internal combustion engine is provided.
  • the ash deposition amount acquisition means comprises: a NOx amount detection means for detecting the NOx amount in the exhaust gas flowing out from the DPF; and an ammonia supply means for supplying an ammonia component to the DPF. , Detecting the NOx amount in the exhaust gas flowing out from the DPF, then supplying the ammonia component to the DPF, and further detecting the NOx amount in the exhaust gas flowing out from the DPF after supplying the ammonia component to the DPF, The amount of ash deposited on the DPF is acquired based on a difference between the NOx amount before supplying the ammonia component to the DPF and the NOx amount after supplying the ammonia component.
  • An exhaust emission control device for an internal combustion engine is provided.
  • preferred ash deposition amount acquisition means for acquiring the accumulation amount of ash deposited in the DPF is provided, and the ash deposition amount acquisition means utilizes ammonia to generate an acid point of the solid acid.
  • the acid points that are not bonded to Ca of ash are counted, so that the ash accumulation amount can be directly measured by this ash accumulation amount acquisition means without using the relationship between ash accumulation and PM accumulation. Can be sought.
  • the ash regeneration operation can be advantageously performed according to the amount of ash deposited on the DPF, and the ash is completely removed in the ash regeneration operation, increasing the pressure loss over a long period of time, increasing the PM regeneration temperature, and fuel consumption
  • An exhaust emission control device for an internal combustion engine that can suppress the reduction of the engine is provided.
  • an ash regeneration configuration is provided, and the ash regeneration operation can be advantageously performed according to the amount of accumulated ash, and the ash is completely removed in the ash regeneration operation,
  • an exhaust purification device for an internal combustion engine that can suppress an increase in pressure loss, an increase in PM regeneration temperature, and a decrease in fuel consumption over a long period of time.
  • FIG. 1 is a flowchart illustrating a schematic configuration of an embodiment of control when the present invention is applied to an exhaust gas purification apparatus for an internal combustion engine.
  • FIG. 2 is a diagram for explaining a schematic configuration of an embodiment of apparatus arrangement when the present invention is applied to a DPF.
  • FIG. 3 is a diagram for explaining the principle of control of the present invention.
  • FIG. 4 is a diagram for explaining the principle of the present invention.
  • FIG. 5 is a diagram for explaining the principle of the present invention.
  • FIG. 6 is a diagram for explaining the principle of the present invention.
  • FIG. 7 is a diagram for explaining the principle of control of the present invention.
  • FIG. 2 is a diagram showing a basic configuration of the present invention.
  • a solid acid corresponding to an acid strength of SO 3 or more and SO 4 or less is formed on the surface of DPF 2, specifically, on the surface of the DPF substrate of DPF 2.
  • Exhaust gas from the internal combustion engine 1 is guided to the DPF 2, PM in the exhaust gas is collected and removed by the DPF 2, and the exhaust gas from which the PM has been removed is discharged.
  • the outlet of the DPF is provided with NOx amount detection means 50 for detecting the NOx amount in the exhaust discharged from the DPF2. Since the PM collected in the DPF gradually accumulates, PM regeneration operation is performed periodically or by detecting a decrease in the performance of the DPF and burning and removing the PM collected in the DPF.
  • the ash 3 deposited in the DPF is reduced in size, so that the particles reduced in size pass through the filter gap of the DPF and are discharged together with the exhaust gas.
  • the present invention will be described in detail with reference to FIG. 6.
  • the ash particles generated by the engine and covered with the PM are regenerated into the PM within the DPF.
  • Ashes 3 exposed to high temperature conditions during operation are burned and removed from the PM particles covering the ash particles, and heat is further applied to the ash particles from which the PM has been burned and removed to aggregate the ash particles, thereby increasing the particle size.
  • the particles of ash 3 are mainly composed of calcium sulfate (CaSO 4 ).
  • the atmosphere is a reducing atmosphere, for example, a stoichiometric atmosphere or a rich atmosphere in FIG. It is reduced to calcium (CaSO 3 ).
  • Ca dispersed in atomic form on the solid acid 6 sO 4 is stronger acid than the solid acid 6 And is sulfated again to form calcium sulfate (CaSO 4 ), which is released from the solid acid.
  • Calcium sulfate (CaSO 4 ) at this time is a particle having a fine particle size of 1 nanometer or less, and the fine particle size passes through the DPF as an aerosol. The accumulated ash is removed.
  • the acid strength of the solid acid 6 applied on the DPF substrate 5 must be larger than the acid strength of SO 3 and smaller than the acid strength of SO 4 .
  • the acid strength of the solid acid 6 is equal to or lower than the acid strength of SO 3 , Ca in the ash particles reduced to CaSO 3 does not bind to the solid acid 6 and therefore ash 3 does not decompose, and This is because when the solid acid 6 is a super strong acid that is equal to or higher than the acid strength of SO 4 , even if SO 4 exists in the atmosphere, Ca is not released from the solid acid 6.
  • a solid acid corresponding to an acid strength of SO 3 or more and SO 4 or less is applied on the DPF base 5 and the air-fuel ratio of the atmosphere in the DPF is set to the stoichiometric or air-fuel ratio first during the ash regeneration operation.
  • the ash having a large particle size in the DPF becomes ash particles having a fine particle size, passes through the DPF, and is discharged.
  • an increase in the pressure loss of the DPF is detected and the timing of the ash regeneration operation is determined.
  • the increase in the pressure loss of the DPF includes the increase in the pressure loss due to PM deposition. Therefore, in order to know the state of ash deposition, for example, a relationship between ash deposition and PM deposition is separately obtained. Based on this relationship, a procedure such as separately obtaining ash deposits is required.
  • an ash regeneration operation can be advantageously performed by providing a means for directly knowing the ash accumulation state.
  • FIG. 7 is a diagram for explaining how the ash accumulation state is grasped in the present invention.
  • the acid point of the solid acid 6 has a property of binding to ammonia. Therefore, as shown in FIG. 7 (a), if there is an acid point 62 of the solid acid 6 that is not bonded to Ca, and ammonia is supplied thereto, the ammonia is added to the acid point 62 to which Ca is not bonded. Join. Therefore, if the amount of bound ammonia can be grasped, the ash accumulation state can be grasped, and the case where the ammonia is not bound may be determined as the ash accumulation upper limit.
  • NOx has a property of reacting with ammonia bonded to the acid point 62 and decomposing into nitrogen (N 2 ) and water (H 2 O). That is, as shown in FIG. 7B, 1 mol of NOx reacts with 1 mol of ammonia bonded to the acid sites 62 and decomposes into nitrogen (N 2 ) and water (H 2 O). Therefore, in order to grasp the amount of ammonia bound to the acid point, a change in the amount of NOx flowing out from the DPF before and after supplying ammonia to the DPF is detected, and the amount of NOx reduction is grasped. . If it does in this way, the amount of ammonia couple
  • FIG. 1 is a flowchart in the case where the ash accumulation state is grasped by the above-described means and the ash regeneration operation is controlled.
  • step 100 of FIG. 1 the ash regeneration operation state before, the amount of NOx flowing out from DPF, detected by NOx detection means 50 of FIG. 2, which is referred to as Y 0.
  • step 200 the atmosphere in the DPF is changed to an air-fuel ratio rich atmosphere, and ammonia is simultaneously supplied from the ammonia supply means.
  • step 300 the air-fuel ratio rich operation is terminated, and the NOx detection means 50 starts detecting the NOx amount Y flowing out from the DPF, and starts integrating the detected values.
  • FIG. 3 shows the above control as the detected value of the NOx detecting means.
  • the atmosphere in the DPF is changed to an air-fuel ratio rich atmosphere in Step 200 of FIG. 1, and the time range for supplying ammonia from the ammonia supply means is indicated by H.
  • the acid point recovery amount Ar Nc.
  • step 600 it is determined whether or not the acid point recovery amount Ar has become smaller than the threshold value, that is, whether or not the acid point has become close to saturation due to Ca.
  • the acid point recovery amount Ar becomes smaller than the threshold value, it is determined that the acid point is close to saturation due to Ca, and the process proceeds to step 700 where the environment in the DPF is set to the air-fuel ratio lean and the acid point is set.
  • the bound Ca is released as CaSO 4 having a reduced particle size, and the ash regeneration operation is terminated.
  • Step 800 the environment in the DPF is set as a reducing atmosphere and the temperature of the DPF is increased.
  • the ash is reduced from CaSO 4 having a large particle size to CaSO 3, and the binding reaction of Ca to the acid point is further advanced to complete this control cycle.
  • the ash accumulation amount when the ash accumulation amount is obtained by the ash accumulation amount acquisition means of the present invention and the ash regeneration operation is controlled, the ash accumulation amount can be directly grasped, and the ash accumulation amount is saturated. Thus, the ash regeneration operation can be appropriately performed. As a result, the ash is completely removed, an increase in pressure loss, an increase in the PM regeneration temperature, and a decrease in fuel consumption can be suppressed over a long period of time, and further, ash accumulation can be efficiently suppressed.
  • An exhaust purification device for an internal combustion engine is provided.
  • an exhaust gas purification apparatus for an internal combustion engine having a DPF whose performance does not deteriorate indefinitely can be configured, and the present invention can dramatically improve the performance of the DPF over a long period of time.
  • a DPF smaller than the conventional one can be used from the beginning of the installation of the DPF, which not only reduces the manufacturing cost of the DPF but also reduces the energy cost of the PM regeneration operation. be able to.
  • the fact that a small DPF can be used has the effect that the space for mounting the DPF on the vehicle can be reduced, and the weight of the vehicle on which the DPF is mounted can be reduced. It should be noted.

Abstract

Provided is an exhaust purification apparatus for an internal combustion engine with a DPF disposed in the exhaust system of the internal combustion engine, such that accumulation of ash in the DPF can be suppressed, and increases in pressure loss and PM regeneration temperature as well as a decrease in fuel efficiency can be suppressed over a long period. A surface of the DPF is coated with a solid acid with an acid strength greater than the acid strength of SO3 and smaller than the acid strength of SO4. Ash regeneration operation control for removing the ash accumulated in the DPF by making particles of ash finer through control for increasing the temperature of the DPF and air-fuel ratio control for the atmosphere within the DPF is performed on the basis of the amount of accumulated ash acquired by an ash accumulation amount acquisition means.

Description

内燃機関の排気浄化装置Exhaust gas purification device for internal combustion engine
 本発明は、内燃機関の排気浄化装置に関する。 The present invention relates to an exhaust purification device for an internal combustion engine.
 内燃機関の排気ガス中の粒子状物質(以下「PM」という)の粒子数を低減するためには、内燃機関の排気ガス通路にディーゼルパティキュレートフィルタ(以下「DPF」という)を設置して、排気中のPMを捕集、除去することが一般に行われている。 In order to reduce the number of particles of particulate matter (hereinafter referred to as “PM”) in the exhaust gas of the internal combustion engine, a diesel particulate filter (hereinafter referred to as “DPF”) is installed in the exhaust gas passage of the internal combustion engine, Generally, PM in exhaust gas is collected and removed.
 この場合、DPF内に捕集されたPMは次第に堆積していくので、定期的に或いはDPFの性能低下を検知して、DPF内に捕集されたPMを燃焼除去する再生(以下「PM再生」という)運転を行う。 In this case, since the PM collected in the DPF gradually accumulates, regeneration (hereinafter referred to as “PM regeneration”) is performed periodically or by detecting a decrease in the performance of the DPF and burning and removing the PM collected in the DPF. ”).
 PM再生運転は、通常、DPFに還元剤、例えばハイドロカーボン(HC)等、を供給しつつ、DPFを加熱することによって行われる。 PM regeneration operation is usually performed by heating the DPF while supplying a reducing agent such as hydrocarbon (HC) to the DPF.
 DPFによって排気中のPMを捕集し、DPF内に捕集されたPMを燃焼除去するPM再生運転を行う構成に対しては、その性能向上やコスト低減のため、従来から様々な改良が提案されている。 Various improvements have been proposed to improve the performance and reduce the cost of the PM regeneration operation that collects PM in the exhaust gas using the DPF and burns and removes the PM collected in the DPF. Has been.
 しかし、従来のDPFにおいては、DPFの使用を継続していると、PM再生運転を行っても、次第にDPFの圧力損失が増加し、また、PM再生温度を次第に増加させなければ十分な再生が行われなくなる、という問題があり、燃費が悪化する。この問題は、DPF内部にアッシュが堆積することが原因である。 However, in the conventional DPF, if the use of the DPF is continued, even if the PM regeneration operation is performed, the pressure loss of the DPF gradually increases, and if the PM regeneration temperature is not gradually increased, sufficient regeneration is achieved. There is a problem that it will not be performed, and fuel consumption deteriorates. This problem is caused by the accumulation of ash inside the DPF.
 アッシュは、エンジンのシリンダー内部に混入したエンジンオイルが燃焼することにより生成し、生成したアッシュ粒子は、DPF内でPMに覆われる。PMに覆われたアッシュ粒子は、DPF内でPM再生運転時の高温条件に晒され、アッシュ粒子を覆っていたPMが燃焼除去される。アッシュの堆積は、このPMが燃焼除去されたアッシュ粒子に、更に熱が加わることによって、アッシュ粒子が凝集し、大粒径化するために発生するものである。 Ash is generated when the engine oil mixed in the cylinder of the engine burns, and the generated ash particles are covered with PM in the DPF. The ash particles covered with PM are exposed to high temperature conditions during the PM regeneration operation in the DPF, and the PM covering the ash particles is burned and removed. Ash deposition occurs because the ash particles are agglomerated and increased in size by further applying heat to the ash particles from which the PM has been burned and removed.
 しかし、このようなアッシュの堆積に対しては、今まで有効な解決手段がなく、DPFにアッシュが堆積することによる影響を極力小さくするために、例えば、あらかじめ大容量のDPFを設置しておくという対策がとられていた。 However, there is no effective solution to the accumulation of ash so far, and in order to minimize the influence of the accumulation of ash on the DPF, for example, a large-capacity DPF is installed in advance. Measures were taken.
 すなわち、従来のDPFに対する改良や、DPFの再生運転に対する改良は、DPFの捕集効率の改善や、PM再生運転の性能向上を目的とするものであり、アッシュの堆積に対するものではない。PM再生運転の性能向上を目的とするものとしては、例えば特許文献1に示された発明があり、特許文献1には、比較的低温でPMを燃焼させることができるDPFの構成が示されている。 That is, the improvement to the conventional DPF and the improvement to the regeneration operation of the DPF are intended to improve the collection efficiency of the DPF and improve the performance of the PM regeneration operation, and not to the accumulation of ash. As an object for improving the performance of the PM regeneration operation, for example, there is an invention disclosed in Patent Document 1, and Patent Document 1 shows a configuration of a DPF capable of burning PM at a relatively low temperature. Yes.
 特許文献1に示されたDPFの構成は、DPF及びこれを用いた排ガス浄化方法において、DPFに活性金属を担持した固体超強酸からなる触媒を、フィルタ表面に保持することを特徴とするものである。 The structure of the DPF disclosed in Patent Document 1 is characterized in that, in the DPF and the exhaust gas purification method using the DPF, a catalyst made of a solid superacid having an active metal supported on the DPF is held on the filter surface. is there.
 すなわち、特許文献1の発明は、活性金属を担持した固体超強酸により、PMの燃焼温度を低下させ、従来よりも低温でDPFを、できれば連続的に再生すると共に、CO、HC、NO、NOをも同時に除去することができるというものである。 That is, the invention of Patent Document 1 reduces the combustion temperature of PM with a solid super strong acid carrying an active metal, and regenerates DPF at a lower temperature than before, preferably continuously, and CO, HC, NO, NO 2 can be removed at the same time.
 したがって、特許文献1の発明は、PM再生運転の性能向上を目的としたものであり、アッシュの堆積に対応するものではなく、DPFの使用を継続していると、PM再生運転を行っても、次第にDPFの圧力損失が増加し、また、PM再生温度を次第に増加させなければ十分な再生が行われなくなり、燃費が悪化する、という問題を解決するものではない。 Therefore, the invention of Patent Document 1 is intended to improve the performance of the PM regeneration operation, and does not correspond to the accumulation of ash. If the use of the DPF is continued, the PM regeneration operation is performed. However, this does not solve the problem that the pressure loss of the DPF gradually increases, and unless the PM regeneration temperature is gradually increased, sufficient regeneration cannot be performed and the fuel consumption deteriorates.
 また、特許文献1の発明に類似する触媒構成を開示したものとして、特許文献2の発明があるが、特許文献2には、ディーゼルエンジン排ガス浄化装置用触媒として、白金、パラジウム及びロジウムから選ばれる少なくとも1種の貴金属と、固体の超強酸とを有する触媒を利用すると、ディーゼルエンジン排ガス中の微粒子物質に含まれるSOF(Soluble Organic Fraction)や未燃焼炭化水素などを低温域から浄化することができ、高温域においても二酸化硫黄の酸化抑制効果を示すと記載されており、特許文献2の発明は、特許文献1の発明と類似する効果を狙ったものであり、また、DPFに関するものではない。したがって、DPFへのアッシュの堆積に対応するものではなく、DPFの使用を継続していると、PM再生運転を行っても、次第にDPFの圧力損失が増加し、また、PM再生温度を次第に増加させなければ十分な再生が行われなくなり、燃費が悪化する、という問題を解決するものではない。 Further, as a disclosure of a catalyst structure similar to the invention of Patent Document 1, there is an invention of Patent Document 2, which is selected from platinum, palladium and rhodium as a catalyst for a diesel engine exhaust gas purification device. By using a catalyst having at least one kind of noble metal and a solid super strong acid, it is possible to purify SOF (Soluable Organic Fraction), unburned hydrocarbons, etc. contained in particulate matter in diesel engine exhaust gas from a low temperature range. Further, it is described that the effect of suppressing oxidation of sulfur dioxide is exhibited even in a high temperature range, and the invention of Patent Document 2 aims at an effect similar to the invention of Patent Document 1 and does not relate to DPF. Therefore, it does not correspond to the accumulation of ash on the DPF. If the use of the DPF is continued, the pressure loss of the DPF gradually increases and the PM regeneration temperature gradually increases even if the PM regeneration operation is performed. If this is not done, it will not solve the problem that sufficient regeneration will not be performed and fuel consumption will deteriorate.
特開2006−289175号公報JP 2006-289175 A 特開平10−033985号公報Japanese Patent Laid-Open No. 10-033985
 本発明は、DPFへのアッシュの堆積量に応じてアッシュ再生運転を有利に行うことができ、DPFへのアッシュの堆積を抑制し、長期にわたって圧損の増加や、PM再生温度の増加、また、燃費の低下を抑制することができる、内燃機関の排気浄化装置を提供することを目的としている。 The present invention can advantageously perform the ash regeneration operation according to the amount of ash deposited on the DPF, suppress the ash accumulation on the DPF, increase the pressure loss over a long period, increase the PM regeneration temperature, An object of the present invention is to provide an exhaust emission control device for an internal combustion engine that can suppress a reduction in fuel consumption.
 すなわち、本発明は、DPFに堆積したアッシュを細粒径化して排出し、DPFを再生(以下「アッシュ再生」という)する構成において、DPFへのアッシュの堆積量の好ましい取得手段を提供し、この構成により、長期にわたって圧損の増加や、PM再生温度の増加、また、燃費の低下を抑制することができる、という有利な効果を奏する、画期的なDPFを提供するものである。 That is, the present invention provides a preferable means for obtaining the amount of ash deposited on the DPF in a configuration in which the ash deposited on the DPF is discharged with a reduced particle size and the DPF is regenerated (hereinafter referred to as “ash regeneration”). This configuration provides an epoch-making DPF that has an advantageous effect of suppressing an increase in pressure loss, an increase in PM regeneration temperature, and a reduction in fuel consumption over a long period of time.
 本発明によれば、堆積したアッシュを細粒径化させて排出することができるので、更に付随する効果として、DPFの設置当初から従来よりも小型のDPFを使用することができ、DPFの製造コストの低減のみならず、PM再生運転のエネルギーコストを低減することもできる。また、小型のDPFを使用することができるということは、DPFの車両への搭載スペースを低減することができ、当該DPFを搭載した車両の重量を低減することができるということである。 According to the present invention, the accumulated ash can be discharged with a reduced particle size. As a further effect, a DPF that is smaller than the conventional DPF can be used from the beginning of the installation of the DPF. Not only cost reduction, but also energy cost of PM regeneration operation can be reduced. In addition, the fact that a small DPF can be used means that the space for mounting the DPF on the vehicle can be reduced, and the weight of the vehicle on which the DPF is mounted can be reduced.
 本願の発明者は、DPF内部へのアッシュの堆積の問題を研究し、アッシュの堆積原因を分析して、アッシュの主成分が、エンジンオイル中に含まれるカルシウム(Ca)と排気中のSOxとがイオン結合した、CaSOが主体であり、Ca塩は融点が高いため、排気中ではアッシュが固体としてDPFに流入し、凝集して、大粒径化するという知見を得た。 The inventor of the present application studied the problem of ash accumulation inside the DPF, analyzed the cause of ash accumulation, and the main components of ash were calcium (Ca) contained in engine oil and SOx in exhaust gas. It was found that ash is ion-bonded, CaSO 4 is the main component, and Ca salt has a high melting point, so that in the exhaust gas, ash flows into the DPF as a solid and aggregates to increase the particle size.
 更に、本願の発明者は、アッシュの大きさはサブミクロンのオーダーであり、これをナノミクロンのオーダーまで細粒径化すると、アッシュがDPFをすり抜けることを、実験により確認した。 Furthermore, the inventors of the present application have confirmed by experiments that the size of ash is on the order of submicrons, and that the ash slips through the DPF when the ash size is reduced to the order of nanomicrons.
 更に、本願の発明者は、サブミクロンの大きさに大粒径化したCaSOを、還元雰囲気におくと、CaSOのSOが還元されてSOとなり、Caとの結合が弱まること、及び、このときDPFの表面上にSOよりも強い酸が存在すると、CaSOのCaとSOとの結合が切断され、CaイオンがDPFの表面上のSOよりも強い酸の上に原子状に分散して結合するということを、実験により確認した。 Furthermore, the inventors of the present application, a CaSO 4 that large grain size to the size of submicron, when placed in a reducing atmosphere, it becomes SO 3 SO 4 of CaSO 4 is reduced, the bond between Ca weakened, At this time, if an acid stronger than SO 3 is present on the surface of the DPF, the bond between Ca and SO 3 in the CaSO 3 is cleaved, and the Ca ions are stronger than the SO 3 on the surface of the DPF. It was confirmed by experiments that the atoms were dispersed and bonded in an atomic form.
 更に、本願の発明者は、DPFの表面上のSOよりも強い酸と結合したCaイオンは、DPFの表面上のSOよりも強い酸と比べて、更に強い酸が雰囲気中に存在すると、雰囲気中の更に強い酸と結合して、DPFから放出され、DPFをすり抜けて排出されるというということを、実験により確認した。 Furthermore, the inventors of the present application, Ca ions associated with stronger acid than SO 3 on the surface of the DPF is different from the stronger acid than SO 3 on the surface of the DPF, if a stronger acid is present in the atmosphere It was confirmed by an experiment that it binds to a stronger acid in the atmosphere, is released from the DPF, and passes through the DPF to be discharged.
 以上を整理すると、DPFの表面上のSOよりも強い酸として、この酸の酸強度を、SOよりも強くSOよりも弱い酸強度とすれば、サブミクロンの大きさに大粒径化してDPF内に堆積したCaSOは、還元雰囲気において、CaSOのSOが還元されてCaSOとなり、CaSOのCaイオンが、DPFの表面上の酸と結合し、DPFの表面上に原子状に分散する。次に、雰囲気中にSOを存在させれば、DPFの表面上のCaは、雰囲気中のSOと結合して、サブナノメートルの大きさのCaSOとなってDPFから放出される。 To summarize the above, if the acid strength of this acid is stronger than SO 3 on the surface of the DPF and the acid strength of this acid is stronger than SO 3 and weaker than SO 4 , the particle size will be submicron. CaSO 4 deposited in the DPF turned into, in a reducing atmosphere, becomes CaSO 3 SO 4 is reduced in CaSO 4, Ca ions CaSO 3 is bonded with the acid on the surface of the DPF, on the surface of the DPF Disperse in atomic form. Next, if SO 4 is present in the atmosphere, the Ca on the surface of the DPF combines with the SO 4 in the atmosphere and becomes sub-nanometer-sized CaSO 4 and is released from the DPF.
 排気ガスの雰囲気が、ストイキ又はリッチ雰囲気である場合には、上述の還元雰囲気であり、リーン雰囲気である場合には、リーン雰囲気にはSOが含まれている。そこで、上述のDPFに対して、雰囲気をストイキ又はリッチ雰囲気にする制御と、次にリーン雰囲気にする制御と、を行えば、ストイキ又はリッチ雰囲気において、DPFに堆積したアッシュのCaイオンが、DPFの表面上に原子状に分散し、次に次にリーン雰囲気において、DPFの表面上のCaが、リーン雰囲気中のSOと結合してDPFから放出され、サブナノメートルの大きさに細粒径化したCaSOとなってDPFをすり抜け、排出される。 When the exhaust gas atmosphere is a stoichiometric or rich atmosphere, it is the above-described reducing atmosphere, and when it is a lean atmosphere, the lean atmosphere contains SO 4 . Therefore, if control for making the atmosphere stoichiometric or rich and control for making the lean atmosphere next are performed on the above-mentioned DPF, ash Ca ions deposited on the DPF in the stoichiometric or rich atmosphere are converted to DPF. Then, in a lean atmosphere, Ca on the surface of the DPF is combined with SO 4 in the lean atmosphere and released from the DPF, and the fine particle size is reduced to a sub-nanometer size. CaSO 4 is converted to pass through the DPF and discharged.
 すなわち、以上の過程では、最初の、サブミクロンの大きさに大粒径化してDPFに堆積したCaSOが、最終的に、再びCaSOとなってDPFから放出されるが、放出されるCaSOは、サブナノメートルの大きさに細粒径化されており、DPFをすり抜けて排出される。 That is, in the above process, the first CaSO 4 having a large particle size of submicron and deposited on the DPF is finally released again from the DPF as CaSO 4. No. 4 is reduced in size to a sub-nanometer size and passes through the DPF and is discharged.
 ところで、以上のアッシュ再生運転を行う場合、通常、DPFの圧損の上昇を検出して、アッシュ再生運転のタイミングを決定するが、DPFの圧損の上昇には、PMの堆積による圧損の上昇も含まれているので、アッシュの堆積状態を知るためには、例えば、アッシュの堆積とPMの堆積との関係を別途求め、この関係に基づいてアッシュの堆積を分離して求める、等の手順を要している。 By the way, when performing the above ash regeneration operation, the increase in the pressure loss of the DPF is usually detected and the timing of the ash regeneration operation is determined, but the increase in the pressure loss of the DPF includes the increase in the pressure loss due to PM accumulation. Therefore, in order to know the state of ash deposition, for example, a procedure is required in which the relationship between ash deposition and PM deposition is obtained separately, and the ash deposition is obtained separately based on this relationship. is doing.
 そこで、アッシュの堆積状態を直接知る手段を備えると、アッシュ再生運転を有利に行うことができる。 Therefore, an ash regeneration operation can be advantageously performed by providing a means for directly knowing the ash accumulation state.
 請求項1に記載の発明によれば、内燃機関の排気系にDPFを配置した、内燃機関の排気浄化装置であって、DPFが、表面上に固体酸をコーティングしたDPFであり、固体酸の酸強度が、SOの酸強度よりも大きくSOの酸強度よりも小さく、更に、DPF内に堆積したアッシュを除去する、アッシュ再生運転の制御と、DPF内に堆積したアッシュの堆積量を取得する、アッシュ堆積量取得手段と、を備え、アッシュ再生運転の制御が、DPFの温度を上昇させる制御と、DPF内の雰囲気の空燃比の制御と、を備え、DPF内の雰囲気の空燃比の制御が、DPFの温度を上昇させる制御の間に、先にストイキ又は空燃比リッチ雰囲気とし、次に空燃比リーン雰囲気に変化させる制御であり、アッシュ堆積量取得手段によって取得されたアッシュの堆積量に基づいて、アッシュ再生運転の制御を行うことを特徴とする、内燃機関の排気浄化装置が提供される。 According to the first aspect of the present invention, there is provided an exhaust purification device for an internal combustion engine in which a DPF is disposed in an exhaust system of the internal combustion engine, wherein the DPF is a DPF whose surface is coated with a solid acid, The acid strength is larger than the acid strength of SO 3 and smaller than the acid strength of SO 4. Further, the ash regeneration operation control for removing the ash deposited in the DPF and the amount of ash deposited in the DPF are as follows. An ash accumulation amount acquisition means, wherein the control of the ash regeneration operation includes control for increasing the temperature of the DPF, and control of the air-fuel ratio of the atmosphere in the DPF, and the air-fuel ratio of the atmosphere in the DPF This control is to first change the stoichiometric or air-fuel ratio rich atmosphere and then change to the air-fuel ratio lean atmosphere during the control to increase the temperature of the DPF. Based on the amount of the deposited ash, which is characterized by controlling the ash regeneration operation, the exhaust gas purification apparatus is provided for an internal combustion engine.
 すなわち、請求項1の発明では、DPF内に堆積したアッシュの堆積量を取得する、好ましいアッシュ堆積量取得手段を備え、このアッシュ堆積量取得手段によって、アッシュの堆積とPMの堆積との関係を利用することなく、アッシュの堆積量を直接求めることができる。したがって、DPFへのアッシュの堆積量に応じてアッシュ再生運転を有利に行うことができ、アッシュが完全に除去され、長期にわたって圧損の増加や、PM再生温度の増加、また、燃費の低下を抑制することができる、内燃機関の排気浄化装置が提供される。 That is, according to the first aspect of the present invention, there is provided a preferable ash accumulation amount acquisition means for acquiring the accumulation amount of ash accumulated in the DPF, and the relationship between the ash accumulation and the PM accumulation is obtained by the ash accumulation amount acquisition means. Without using it, the amount of ash deposited can be determined directly. Therefore, the ash regeneration operation can be advantageously performed according to the amount of ash deposited on the DPF, and the ash is completely removed, suppressing an increase in pressure loss, an increase in PM regeneration temperature, and a decrease in fuel consumption over a long period of time. An exhaust emission control device for an internal combustion engine is provided.
 請求項2に記載の発明によれば、DPFから流出する排気中のNOx量を検出するNOx量検出手段と、DPFへアンモニア成分を供給するアンモニア供給手段と、を備え、アッシュ堆積量取得手段が、DPFから流出する排気中のNOx量を検出し、次に、DPFへアンモニア成分を供給し、更に、DPFへアンモニア成分を供給した後の、DPFから流出する排気中のNOx量を検出し、DPFへアンモニア成分を供給する前のNOx量とアンモニア成分を供給した後のNOx量との差に基づいて、DPFへのアッシュの堆積量を取得することを特徴とする、請求項1に記載の内燃機関の排気浄化装置が提供される。 According to the second aspect of the present invention, the ash deposition amount acquisition means comprises: a NOx amount detection means for detecting the NOx amount in the exhaust gas flowing out from the DPF; and an ammonia supply means for supplying an ammonia component to the DPF. , Detecting the NOx amount in the exhaust gas flowing out from the DPF, then supplying the ammonia component to the DPF, and further detecting the NOx amount in the exhaust gas flowing out from the DPF after supplying the ammonia component to the DPF, The amount of ash deposited on the DPF is acquired based on a difference between the NOx amount before supplying the ammonia component to the DPF and the NOx amount after supplying the ammonia component. An exhaust emission control device for an internal combustion engine is provided.
 すなわち、請求項2の発明では、DPF内に堆積したアッシュの堆積量を取得する、好ましいアッシュ堆積量取得手段を備え、このアッシュ堆積量取得手段が、アンモニアを利用して、固体酸の酸点のうち、アッシュのCaと結合していない酸点を数えるものであるので、このアッシュ堆積量取得手段によって、アッシュの堆積とPMの堆積との関係を利用することなく、アッシュの堆積量を直接求めることができる。したがって、DPFへのアッシュの堆積量に応じてアッシュ再生運転を有利に行うことができ、アッシュ再生運転においてアッシュが完全に除去され、長期にわたって圧損の増加や、PM再生温度の増加、また、燃費の低下を抑制することができる、内燃機関の排気浄化装置が提供される。 That is, according to the second aspect of the present invention, preferred ash deposition amount acquisition means for acquiring the accumulation amount of ash deposited in the DPF is provided, and the ash deposition amount acquisition means utilizes ammonia to generate an acid point of the solid acid. Of these, the acid points that are not bonded to Ca of ash are counted, so that the ash accumulation amount can be directly measured by this ash accumulation amount acquisition means without using the relationship between ash accumulation and PM accumulation. Can be sought. Therefore, the ash regeneration operation can be advantageously performed according to the amount of ash deposited on the DPF, and the ash is completely removed in the ash regeneration operation, increasing the pressure loss over a long period of time, increasing the PM regeneration temperature, and fuel consumption An exhaust emission control device for an internal combustion engine that can suppress the reduction of the engine is provided.
 各請求項に記載の発明によれば、アッシュ再生の構成が提供され、また、アッシュの堆積量に応じてアッシュ再生運転を有利に行うことができ、アッシュ再生運転においてアッシュが完全に除去され、長期にわたって圧損の増加や、PM再生温度の増加、また、燃費の低下を抑制することができる、内燃機関の排気浄化装置を提供するという、共通の効果を奏する。 According to the invention described in each claim, an ash regeneration configuration is provided, and the ash regeneration operation can be advantageously performed according to the amount of accumulated ash, and the ash is completely removed in the ash regeneration operation, There is a common effect of providing an exhaust purification device for an internal combustion engine that can suppress an increase in pressure loss, an increase in PM regeneration temperature, and a decrease in fuel consumption over a long period of time.
 図1は、本発明を内燃機関の排気浄化装置に適用した場合の、制御の実施形態の概略構成を説明するフローチャートである。
 図2は、本発明をDPFに適用した場合の、装置配置の実施形態の概略構成を説明する図である。
 図3は、本発明の制御の原理を説明する図である。
 図4は、本発明の原理を説明する図である。
 図5は、本発明の原理を説明する図である。
 図6は、本発明の原理を説明する図である。
 図7は、本発明の制御の原理を説明する図である。
FIG. 1 is a flowchart illustrating a schematic configuration of an embodiment of control when the present invention is applied to an exhaust gas purification apparatus for an internal combustion engine.
FIG. 2 is a diagram for explaining a schematic configuration of an embodiment of apparatus arrangement when the present invention is applied to a DPF.
FIG. 3 is a diagram for explaining the principle of control of the present invention.
FIG. 4 is a diagram for explaining the principle of the present invention.
FIG. 5 is a diagram for explaining the principle of the present invention.
FIG. 6 is a diagram for explaining the principle of the present invention.
FIG. 7 is a diagram for explaining the principle of control of the present invention.
 以下、添付図面を用いて本発明の実施形態について説明する。なお、複数の添付図面において、同一又は相当する部材には、同一の符号を付している。 Hereinafter, embodiments of the present invention will be described with reference to the accompanying drawings. In the plurality of accompanying drawings, the same or corresponding members are denoted by the same reference numerals.
 図2は、本発明の基本構成を示す図であり、DPF2の表面上に、詳細にはDPF2のDPF基材の表面上に、酸強度がSO以上でSO以下に相当する固体酸を塗布する。内燃機関1の排気がDPF2に導かれ、排気中のPMはDPF2によって捕集、除去され、PMの除去された排気が排出される。DPFの出口には、DPF2から排出される排気中のNOx量を検出するための、NOx量検出手段50を備える。DPFに捕集されたPMは次第に堆積していくので、定期的に或いはDPFの性能低下を検知して、DPF内に捕集されたPMを燃焼除去するPM再生運転を行う。 FIG. 2 is a diagram showing a basic configuration of the present invention. A solid acid corresponding to an acid strength of SO 3 or more and SO 4 or less is formed on the surface of DPF 2, specifically, on the surface of the DPF substrate of DPF 2. Apply. Exhaust gas from the internal combustion engine 1 is guided to the DPF 2, PM in the exhaust gas is collected and removed by the DPF 2, and the exhaust gas from which the PM has been removed is discharged. The outlet of the DPF is provided with NOx amount detection means 50 for detecting the NOx amount in the exhaust discharged from the DPF2. Since the PM collected in the DPF gradually accumulates, PM regeneration operation is performed periodically or by detecting a decrease in the performance of the DPF and burning and removing the PM collected in the DPF.
 しかし、PM再生運転を繰り返し行っていると、図4に示すように、DPF内にアッシュ3が堆積し、PM再生運転を行っても、次第にDPFの圧力損失が増加し、また、PM再生温度を次第に増加させなければ十分な再生が行われなくなる、という問題があり、燃費が悪化する。 However, when the PM regeneration operation is repeatedly performed, as shown in FIG. 4, the ash 3 accumulates in the DPF, and even when the PM regeneration operation is performed, the pressure loss of the DPF gradually increases, and the PM regeneration temperature is increased. There is a problem in that sufficient regeneration cannot be performed unless the value is gradually increased, and fuel consumption deteriorates.
 本発明では、図5に示すように、DPF内に堆積したアッシュ3を細粒径化するので、細粒径化された粒子が、DPFのフィルタ隙間を通り抜け、排気とともに排出される。 In the present invention, as shown in FIG. 5, the ash 3 deposited in the DPF is reduced in size, so that the particles reduced in size pass through the filter gap of the DPF and are discharged together with the exhaust gas.
 本発明を、図6によって詳しく説明すると、まず、図6(a)に示すように、DPFを使用し続けた場合、エンジンで生成しPMに覆われているアッシュ粒子が、DPF内でPM再生運転時の高温条件に晒され、アッシュ粒子を覆っていたPMが燃焼除去され、PMが燃焼除去されたアッシュ粒子に、更に熱が加わってアッシュ粒子が凝集し、大粒径化したアッシュ3として堆積する。このときアッシュ3の粒子は、硫酸カルシウム(CaSO)が主成分であるが、図6(a)において雰囲気が還元雰囲気、例えばストイキ雰囲気又はリッチ雰囲気の場合には、アッシュ3の粒子は、亜硫酸カルシウム(CaSO)に還元される。したがって、DPF基材5の上にSO以上の酸強度の固体酸6が存在する場合には、図6(b)に示すように、アッシュ粒子中のカルシウム(Ca)が、SOより強い酸である固体酸6と結合し、アッシュ3は分解する。このときCaは、固体酸6上に原子状に分散する。次に、固体酸6上に原子状に分散したCaが、SOを含んだ雰囲気に晒されると、例えば、内燃機関からの排気中には、通常SOxが含まれており、リーン雰囲気の中ではSOが多く含まれるため、リーン雰囲気に晒されると、図6(c)に示すように、固体酸6上に原子状に分散したCaが、固体酸6よりも強い酸であるSOと結合して再度硫酸塩化し、硫酸カルシウム(CaSO)となり、固体酸上から放出される。このときの硫酸カルシウム(CaSO)は、大きさが1ナノメートル以下の細粒径の粒子となっており、この細粒径化粒子は、エアロゾルとなってDPFをすり抜け、その結果、DPFに堆積したアッシュが除去される。 The present invention will be described in detail with reference to FIG. 6. First, as shown in FIG. 6A, when the DPF is continuously used, the ash particles generated by the engine and covered with the PM are regenerated into the PM within the DPF. Ashes 3 exposed to high temperature conditions during operation are burned and removed from the PM particles covering the ash particles, and heat is further applied to the ash particles from which the PM has been burned and removed to aggregate the ash particles, thereby increasing the particle size. accumulate. At this time, the particles of ash 3 are mainly composed of calcium sulfate (CaSO 4 ). However, when the atmosphere is a reducing atmosphere, for example, a stoichiometric atmosphere or a rich atmosphere in FIG. It is reduced to calcium (CaSO 3 ). Therefore, when the solid acid 6 having an acid strength of SO 3 or more is present on the DPF substrate 5, as shown in FIG. 6B, calcium (Ca) in the ash particles is stronger than SO 3. It binds to solid acid 6 which is an acid, and ash 3 decomposes. At this time, Ca is dispersed atomically on the solid acid 6. Next, when Ca dispersed atomically on the solid acid 6 is exposed to an atmosphere containing SO 4 , for example, the exhaust from the internal combustion engine usually contains SOx, and the lean atmosphere in order to sO 4 is contained in a large amount, when exposed to a lean atmosphere, as shown in FIG. 6 (c), Ca dispersed in atomic form on the solid acid 6, sO 4 is stronger acid than the solid acid 6 And is sulfated again to form calcium sulfate (CaSO 4 ), which is released from the solid acid. Calcium sulfate (CaSO 4 ) at this time is a particle having a fine particle size of 1 nanometer or less, and the fine particle size passes through the DPF as an aerosol. The accumulated ash is removed.
 この場合、DPF基材5の上に塗布する固体酸6の酸強度は、SOの酸強度よりも大きく、SOの酸強度よりも小さくなければならない。固体酸6の酸強度が、SOの酸強度以下の場合には、CaSOに還元されたアッシュ粒子中のCaが、固体酸6と結合せず、したがってアッシュ3は分解せず、また、固体酸6がSOの酸強度以上の超強酸である場合には、雰囲気中にSOが存在しても、Caが固体酸6から放出されないからである。 In this case, the acid strength of the solid acid 6 applied on the DPF substrate 5 must be larger than the acid strength of SO 3 and smaller than the acid strength of SO 4 . When the acid strength of the solid acid 6 is equal to or lower than the acid strength of SO 3 , Ca in the ash particles reduced to CaSO 3 does not bind to the solid acid 6 and therefore ash 3 does not decompose, and This is because when the solid acid 6 is a super strong acid that is equal to or higher than the acid strength of SO 4 , even if SO 4 exists in the atmosphere, Ca is not released from the solid acid 6.
 したがって、DPF基材5の上に、酸強度がSO以上、SO以下に相当する固体酸を塗布し、アッシュ再生運転中に、DPF内の雰囲気の空燃比を、先にストイキ又は空燃比リッチ雰囲気とし、次に空燃比リーン雰囲気に変化させるように制御すると、DPF内の大粒径化したアッシュが、細粒径化したアッシュ粒子となってDPFをすり抜け、排出される。 Therefore, a solid acid corresponding to an acid strength of SO 3 or more and SO 4 or less is applied on the DPF base 5 and the air-fuel ratio of the atmosphere in the DPF is set to the stoichiometric or air-fuel ratio first during the ash regeneration operation. When control is performed so as to change to a rich atmosphere and then change to an air-fuel ratio lean atmosphere, the ash having a large particle size in the DPF becomes ash particles having a fine particle size, passes through the DPF, and is discharged.
 ところで、以上のようなアッシュ再生運転を行う場合、アッシュの堆積状態を把握することが必要である。 By the way, when performing the ash regeneration operation as described above, it is necessary to grasp the ash accumulation state.
 アッシュの堆積状態を把握するために、通常は、DPFの圧損の上昇を検出して、アッシュ再生運転のタイミングを決定する。しかし、DPFの圧損の上昇には、PMの堆積による圧損の上昇も含まれているので、アッシュの堆積状態を知るためには、例えば、アッシュの堆積とPMの堆積との関係を別途求め、この関係に基づいてアッシュの堆積を分離して求める、等の手順を必要とする。 In order to grasp the accumulation state of ash, usually, an increase in the pressure loss of the DPF is detected and the timing of the ash regeneration operation is determined. However, the increase in the pressure loss of the DPF includes the increase in the pressure loss due to PM deposition. Therefore, in order to know the state of ash deposition, for example, a relationship between ash deposition and PM deposition is separately obtained. Based on this relationship, a procedure such as separately obtaining ash deposits is required.
 そこで、アッシュの堆積状態を直接知る手段を備えると、アッシュ再生運転を有利に行うことができる。 Therefore, an ash regeneration operation can be advantageously performed by providing a means for directly knowing the ash accumulation state.
 図7は、本発明において、どのようにしてアッシュの堆積状態を把握するかを説明する図である。 FIG. 7 is a diagram for explaining how the ash accumulation state is grasped in the present invention.
 固体酸6の酸点は、アンモニアと結合する性質がある。そこで、図7(a)に示すように、もし固体酸6の酸点62にCaと結合していないものがあり、そこにアンモニアを供給すると、Caが結合していない酸点62にアンモニアが結合する。そこで、結合したアンモニアの量を把握することができれば、アッシュの堆積状態を把握することができ、アンモニアが結合しなくなった場合をアッシュの堆積上限と判断すればよい。 The acid point of the solid acid 6 has a property of binding to ammonia. Therefore, as shown in FIG. 7 (a), if there is an acid point 62 of the solid acid 6 that is not bonded to Ca, and ammonia is supplied thereto, the ammonia is added to the acid point 62 to which Ca is not bonded. Join. Therefore, if the amount of bound ammonia can be grasped, the ash accumulation state can be grasped, and the case where the ammonia is not bound may be determined as the ash accumulation upper limit.
 一方、NOxは、酸点62に結合したアンモニアと反応して、窒素(N)と水(HO)とに分解する性質がある。すなわち、図7(b)に示すように、酸点62に結合したアンモニア1モルに対し、NOx1モルが反応し、窒素(N)と水(HO)とに分解する。そこで、酸点に結合したアンモニアの量を把握するために、DPFにアンモニアを供給する前とアンモニアを供給した後の、DPFから流出するNOx量の変化を検出し、NOxの減少量を把握する。このようにすると、NOxの減少量から、酸点に結合したアンモニアの量が把握でき、アッシュの堆積状態が把握できる。 On the other hand, NOx has a property of reacting with ammonia bonded to the acid point 62 and decomposing into nitrogen (N 2 ) and water (H 2 O). That is, as shown in FIG. 7B, 1 mol of NOx reacts with 1 mol of ammonia bonded to the acid sites 62 and decomposes into nitrogen (N 2 ) and water (H 2 O). Therefore, in order to grasp the amount of ammonia bound to the acid point, a change in the amount of NOx flowing out from the DPF before and after supplying ammonia to the DPF is detected, and the amount of NOx reduction is grasped. . If it does in this way, the amount of ammonia couple | bonded with the acid point can be grasped | ascertained from the decrease amount of NOx, and the accumulation state of ash can be grasped | ascertained.
 したがって、DPFの出口におけるNOxの減少量がゼロとなった場合が、酸点62がCaで飽和した状態であり、NOxの減少量がゼロに近くなった場合を、アッシュ堆積の上限と判断して、アッシュ再生制御を行うと、アッシュが完全に除去され、いつまでも性能が低下しないDPFを備えた内燃機関の排気浄化装置を構成することができる。 Therefore, when the NOx reduction amount at the DPF outlet becomes zero, the acid point 62 is saturated with Ca, and when the NOx reduction amount is close to zero, the upper limit of ash deposition is determined. Thus, when the ash regeneration control is performed, it is possible to configure an exhaust gas purification apparatus for an internal combustion engine having a DPF in which the ash is completely removed and the performance does not deteriorate forever.
 図1は、上述の手段によってアッシュの堆積状態を把握し、アッシュ再生運転の制御を行う場合の、フローチャートである。 FIG. 1 is a flowchart in the case where the ash accumulation state is grasped by the above-described means and the ash regeneration operation is controlled.
 まず、図1のステップ100で、アッシュ再生運転前の状態において、DPFから流出するNOx量を、図2のNOx検出手段50で検出し、これをYとする。次に、ステップ200で、DPF内の雰囲気を、空燃比リッチ雰囲気とし、同時にアンモニア供給手段からアンモニアを供給する。更に、ステップ300に進み、空燃比リッチ運転を終了し、NOx検出手段50で、DPFから流出するNOx量Yの検出を開始し、検出値の積算を開始する。次に、ステップ400に進み、Y=YとなるまでNOxの検出と積算を継続する。Y=Yとなったら、ステップ500に進み、Y=YとなるまでDPFに蓄積されたNOxの総量を、酸点回復量Arとする。 First, in step 100 of FIG. 1, the ash regeneration operation state before, the amount of NOx flowing out from DPF, detected by NOx detection means 50 of FIG. 2, which is referred to as Y 0. Next, in step 200, the atmosphere in the DPF is changed to an air-fuel ratio rich atmosphere, and ammonia is simultaneously supplied from the ammonia supply means. Further, the routine proceeds to step 300, where the air-fuel ratio rich operation is terminated, and the NOx detection means 50 starts detecting the NOx amount Y flowing out from the DPF, and starts integrating the detected values. Then, the process proceeds to step 400 to continue the detection and integration of NOx until Y = Y 0. If a Y = Y 0, the process proceeds to step 500, the total amount of NOx accumulated in the DPF until Y = Y 0, and acid site recovery amount Ar.
 以上の制御を、NOx検出手段の検出値として示したものが、図3である。図3では、図1のステップ200で、DPF内の雰囲気を、空燃比リッチ雰囲気とし、同時にアンモニア供給手段からアンモニアを供給する時間の範囲を、Hで示しており、図1のステップ300で空燃比リッチ運転を終了し、NOx検出手段50で、DPFを通過するNOx量Yを検出し、NOx量の積算を開始する時間を、Tで示している。また、ステップ400でY=Yとなったときの時間を、Tで示し、Y=Yとなるまでに積算されたNOxの総量すなわちDPFに蓄積されたNOxの総量を、Ncで示している。すなわち、Y=YとなるまでDPFに蓄積されたNOxの総量Ncは、(Y−Y)を、時間TからTまで積分したものとなる。酸点回復量Ar=Ncである。 FIG. 3 shows the above control as the detected value of the NOx detecting means. In FIG. 3, the atmosphere in the DPF is changed to an air-fuel ratio rich atmosphere in Step 200 of FIG. 1, and the time range for supplying ammonia from the ammonia supply means is indicated by H. In Step 300 of FIG. Exit fuel ratio rich operation, the NOx detection means 50 detects a NOx amount Y which passes through the DPF, the time to begin accumulating NOx amount is indicated by T 0. Further, the time when it becomes Y = Y 0 at step 400, shown in T 1, the total amount of NOx stored in the total i.e. DPF of NOx that has been accumulated until the Y = Y 0, indicated by Nc ing. That is, the total amount Nc of the NOx accumulated in the DPF until Y = Y 0 becomes that the (Y 0 -Y), was integrated from time T 0 to T 1. The acid point recovery amount Ar = Nc.
 図1に戻り、更に、ステップ600に進み、酸点回復量Arが、閾値よりも小さくなったかどうか、すなわち、酸点がCaによって飽和状態に近くなったかどうかを判定する。酸点回復量Arが、閾値よりも小さくなった場合には、酸点がCaによって飽和状態に近くなったと判定し、ステップ700へ進み、DPF内の環境を、空燃比リーンとし、酸点に結合したCaを、細粒径化したCaSOとして放出し、アッシュ再生運転を終了する。酸点回復量Arが、閾値よりも小さくない場合には、酸点がまだCaによって飽和状態になっていないので、ステップ800へ進み、DPF内の環境を、還元雰囲気とし、DPFの温度を上昇させ、アッシュを、大粒径のCaSO4からCaSO3に還元し、Caの酸点への結合反応を更に進めて、この制御サイクルを終了する。 Returning to FIG. 1, the process further proceeds to step 600, where it is determined whether or not the acid point recovery amount Ar has become smaller than the threshold value, that is, whether or not the acid point has become close to saturation due to Ca. When the acid point recovery amount Ar becomes smaller than the threshold value, it is determined that the acid point is close to saturation due to Ca, and the process proceeds to step 700 where the environment in the DPF is set to the air-fuel ratio lean and the acid point is set. The bound Ca is released as CaSO 4 having a reduced particle size, and the ash regeneration operation is terminated. If the acid point recovery amount Ar is not smaller than the threshold value, the acid point is not yet saturated with Ca, so the process proceeds to Step 800, where the environment in the DPF is set as a reducing atmosphere and the temperature of the DPF is increased. The ash is reduced from CaSO 4 having a large particle size to CaSO 3, and the binding reaction of Ca to the acid point is further advanced to complete this control cycle.
 以上のように、本発明のアッシュ堆積量取得手段によってアッシュの堆積量を把握し、アッシュ再生運転の制御を行うと、アッシュの堆積量を直接把握することができ、アッシュの堆積量が飽和状態になったときに、適切にアッシュ再生運転を行うことができる。この結果、アッシュが完全に除去され、長期にわたって圧損の増加や、PM再生温度の増加、また、燃費の低下を抑制することができ、更に、アッシュの堆積の抑制を効率的に行うことができる、内燃機関の排気浄化装置が提供される。 As described above, when the ash accumulation amount is obtained by the ash accumulation amount acquisition means of the present invention and the ash regeneration operation is controlled, the ash accumulation amount can be directly grasped, and the ash accumulation amount is saturated. Thus, the ash regeneration operation can be appropriately performed. As a result, the ash is completely removed, an increase in pressure loss, an increase in the PM regeneration temperature, and a decrease in fuel consumption can be suppressed over a long period of time, and further, ash accumulation can be efficiently suppressed. An exhaust purification device for an internal combustion engine is provided.
 したがって、本発明により、いつまでも性能が低下しないDPFを備えた内燃機関の排気浄化装置を構成することができ、本発明は、DPFの性能を、長期間にわたって飛躍的に向上させることができるという、有利な効果を奏する。更に、この効果に付随する更なる効果として、DPFの設置当初から、従来よりも小型のDPFを使用することができ、DPFの製造コストの低減のみならず、PM再生運転のエネルギーコストも低減することができる。更に、小型のDPFを使用することができるということは、DPFの車両への搭載スペースを低減することができ、当該DPFを搭載した車両の重量を低減することができるという効果があることにも注目すべきである。 Therefore, according to the present invention, an exhaust gas purification apparatus for an internal combustion engine having a DPF whose performance does not deteriorate indefinitely can be configured, and the present invention can dramatically improve the performance of the DPF over a long period of time. There is an advantageous effect. Furthermore, as a further effect that accompanies this effect, a DPF smaller than the conventional one can be used from the beginning of the installation of the DPF, which not only reduces the manufacturing cost of the DPF but also reduces the energy cost of the PM regeneration operation. be able to. Furthermore, the fact that a small DPF can be used has the effect that the space for mounting the DPF on the vehicle can be reduced, and the weight of the vehicle on which the DPF is mounted can be reduced. It should be noted.
1 内燃機関
2 DPF
3 アッシュ
4 細粒径化粒子
5 DPF基材
6 固体酸
40 DOC
50 NOx検出手段
61 担体
62 固体酸点
1 Internal combustion engine 2 DPF
3 Ash 4 Fine particle size 5 DPF base 6 Solid acid 40 DOC
50 NOx detection means 61 Carrier 62 Solid acid point

Claims (2)

  1.  内燃機関の排気系にDPFを配置した、内燃機関の排気浄化装置であって、
     前記DPFが、表面上に固体酸をコーティングしたDPFであり、
     前記固体酸の酸強度が、SOの酸強度よりも大きくSOの酸強度よりも小さく、
     更に、前記DPF内に堆積したアッシュを除去する、アッシュ再生運転の制御と、
     前記DPF内に堆積したアッシュの堆積量を取得する、アッシュ堆積量取得手段と、を備え、
     前記アッシュ再生運転の制御が、
     DPFの温度を上昇させる制御と、
     DPF内の雰囲気の空燃比の制御と、を備え、
     前記DPF内の雰囲気の空燃比の制御が、前記DPFの温度を上昇させる制御の間に、先にストイキ又は空燃比リッチ雰囲気とし、次に空燃比リーン雰囲気に変化させる制御であり、
     前記アッシュ堆積量取得手段によって取得されたアッシュの堆積量に基づいて、前記アッシュ再生運転の制御を行うことを特徴とする、
     内燃機関の排気浄化装置。
    An exhaust purification device for an internal combustion engine in which a DPF is disposed in an exhaust system of the internal combustion engine,
    The DPF is a DPF having a surface coated with a solid acid,
    The acid strength of the solid acid is greater than the acid strength of SO 3 and less than the acid strength of SO 4 ;
    Further, control of ash regeneration operation for removing ash accumulated in the DPF;
    Ash accumulation amount acquisition means for acquiring an accumulation amount of ash accumulated in the DPF,
    The control of the ash regeneration operation is
    Control to increase the temperature of the DPF;
    An air-fuel ratio control of the atmosphere in the DPF,
    The control of the air-fuel ratio of the atmosphere in the DPF is a control for changing the atmosphere to the stoichiometric or air-fuel ratio rich atmosphere first and then changing to the air-fuel ratio lean atmosphere during the control to increase the temperature of the DPF.
    The ash regeneration operation is controlled based on the ash accumulation amount acquired by the ash accumulation amount acquisition means,
    An exhaust purification device for an internal combustion engine.
  2.  前記DPFから流出する排気中のNOx量を検出するNOx量検出手段と、
     前記DPFへアンモニア成分を供給するアンモニア供給手段と、を備え、
     前記アッシュ堆積量取得手段が、
     前記DPFから流出する排気中のNOx量を検出し、
     次に、前記DPFへアンモニア成分を供給し、
     更に、前記DPFへアンモニア成分を供給した後の、前記DPFから流出する排気中のNOx量を検出し、
     前記DPFへアンモニア成分を供給する前のNOx量とアンモニア成分を供給した後のNOx量との差に基づいて、前記DPFへのアッシュの堆積量を取得することを特徴とする、
     請求項1に記載の内燃機関の排気浄化装置。
    NOx amount detection means for detecting the NOx amount in the exhaust gas flowing out from the DPF;
    Ammonia supply means for supplying an ammonia component to the DPF,
    The ash deposition amount acquisition means is
    Detecting the amount of NOx in the exhaust gas flowing out from the DPF;
    Next, an ammonia component is supplied to the DPF,
    Further, the amount of NOx in the exhaust gas flowing out from the DPF after supplying the ammonia component to the DPF is detected,
    Based on the difference between the NOx amount before supplying the ammonia component to the DPF and the NOx amount after supplying the ammonia component, the amount of ash deposited on the DPF is obtained,
    The exhaust emission control device for an internal combustion engine according to claim 1.
PCT/JP2011/065633 2011-07-01 2011-07-01 Exhaust purification apparatus for internal combustion engine WO2013005335A1 (en)

Priority Applications (26)

Application Number Priority Date Filing Date Title
PCT/JP2011/065633 WO2013005335A1 (en) 2011-07-01 2011-07-01 Exhaust purification apparatus for internal combustion engine
PCT/JP2012/067404 WO2013005849A1 (en) 2011-07-01 2012-06-29 Exhaust Purification System for Internal Combustion Engine
EP12741114.8A EP2726175B1 (en) 2011-07-01 2012-06-29 Exhaust Purification System for Internal Combustion Engine
JP2013555681A JP5626487B2 (en) 2011-07-01 2012-06-29 Particulate filter
CN201280030742.8A CN103619438B (en) 2011-07-01 2012-06-29 Method of removing ash from particulate filter
EP12741116.3A EP2726177B1 (en) 2011-07-01 2012-06-29 Exhaust purification system for internal combustion engine
PCT/JP2012/067405 WO2013005850A2 (en) 2011-07-01 2012-06-29 Exhaust Purification System for Internal Combustion Engine
EP12738240.6A EP2726173B1 (en) 2011-07-01 2012-06-29 Method of removing ash from particulate filter
CN201280032271.4A CN103635245B (en) 2011-07-01 2012-06-29 Particulate filter
US14/127,355 US9080480B2 (en) 2011-07-01 2012-06-29 Exhaust purification system for internal combustion engine
CN201280031473.7A CN103619441B (en) 2011-07-01 2012-06-29 Exhaust purification system for internal combustion engine
US14/126,904 US9011569B2 (en) 2011-07-01 2012-06-29 Particulate filter
EP12738239.8A EP2726172B1 (en) 2011-07-01 2012-06-29 Particulate filter
JP2013535609A JP5494893B2 (en) 2011-07-01 2012-06-29 How to remove ash from particulate filters
EP12741115.5A EP2726176A2 (en) 2011-07-01 2012-06-29 Exhaust purification system for internal combustion engine
US14/110,811 US8778053B2 (en) 2011-07-01 2012-06-29 Method of removing ash from particulate filter
US14/126,947 US9057298B2 (en) 2011-07-01 2012-06-29 Exhaust purification system for internal combustion engine
PCT/JP2012/067407 WO2013005852A1 (en) 2011-07-01 2012-06-29 Particulate Filter
JP2014514345A JP2014520229A (en) 2011-07-01 2012-06-29 Exhaust gas purification device for internal combustion engine
PCT/JP2012/067408 WO2013005853A2 (en) 2011-07-01 2012-06-29 Method of Removing Ash from Particulate Filter
US14/126,997 US9057299B2 (en) 2011-07-01 2012-06-29 Exhaust purification system for internal combustion engine
JP2013555657A JP2014520227A (en) 2011-07-01 2012-06-29 Exhaust gas purification device for internal combustion engine
CN201280031454.4A CN103619439B (en) 2011-07-01 2012-06-29 For the emission control system of internal combustion engine
JP2013555656A JP5655961B2 (en) 2011-07-01 2012-06-29 Exhaust gas purification device for internal combustion engine
CN201280031461.4A CN103619440B (en) 2011-07-01 2012-06-29 Exhaust purification system for internal combustion engine
PCT/JP2012/067406 WO2013005851A2 (en) 2011-07-01 2012-06-29 Exhaust Purification System for Internal Combustion Engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2011/065633 WO2013005335A1 (en) 2011-07-01 2011-07-01 Exhaust purification apparatus for internal combustion engine

Publications (1)

Publication Number Publication Date
WO2013005335A1 true WO2013005335A1 (en) 2013-01-10

Family

ID=47436707

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/065633 WO2013005335A1 (en) 2011-07-01 2011-07-01 Exhaust purification apparatus for internal combustion engine

Country Status (1)

Country Link
WO (1) WO2013005335A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016089699A (en) * 2014-11-04 2016-05-23 本田技研工業株式会社 Exhaust emission control device for internal combustion engine
JP2016153605A (en) * 2015-02-20 2016-08-25 株式会社デンソー Urea addition control device and learning device

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1054268A (en) * 1996-08-08 1998-02-24 Toyota Motor Corp Exhaust emission control device for diesel engine
JP2004513771A (en) * 2001-05-16 2004-05-13 ケイエイチ ケミカルズ カンパニー、リミテッド Catalyst for purification of diesel engine exhaust gas

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1054268A (en) * 1996-08-08 1998-02-24 Toyota Motor Corp Exhaust emission control device for diesel engine
JP2004513771A (en) * 2001-05-16 2004-05-13 ケイエイチ ケミカルズ カンパニー、リミテッド Catalyst for purification of diesel engine exhaust gas

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016089699A (en) * 2014-11-04 2016-05-23 本田技研工業株式会社 Exhaust emission control device for internal combustion engine
JP2016153605A (en) * 2015-02-20 2016-08-25 株式会社デンソー Urea addition control device and learning device

Similar Documents

Publication Publication Date Title
KR101899919B1 (en) Filter for filtering particulate matter from exhaust gas emitted from a compression ignition engine
RU2455503C2 (en) Device with internal combustion engine operating on lean mixture and exhaust system
Johnson Diesel emissions in review
Russell et al. Diesel oxidation catalysts
CN101808714B (en) Catalyst composition and structure for a diesel-fueled reformer configured in an exhaust stream
KR20150087341A (en) Zoned catalyst on monolithic substrate
US20110120093A1 (en) Process and apparatus for purifying exhaust gases from an internal combustion engine
US8092767B2 (en) Method of decomposing nitrogen dioxide
JP2016196886A (en) EXHAUST SYSTEM COMPRISING NOx STORAGE CATALYST AND CATALYZED SOOT FILTER
KR20190112178A (en) Automotive catalytic aftertreatment system
JP6129514B2 (en) Diesel oxidation catalyst device regeneration cycle determination method
EP2298432A1 (en) Exhaust gas purifier
WO2013005335A1 (en) Exhaust purification apparatus for internal combustion engine
Hu et al. Advanced NOx aftertreatment system and controls for on-highway heavy duty diesel engines
JPWO2013005335A1 (en) Exhaust gas purification device for internal combustion engine
WO2013005340A1 (en) Exhaust purification apparatus for internal combustion engine
Joshi A Review of Emissions Control Technologies for On-Road Vehicles
JP4874093B2 (en) Decomposition method of nitrogen dioxide
WO2013005338A1 (en) Exhaust purification apparatus for internal combustion engine
Johnson SAE 2010 World Congress
WO2013005341A1 (en) Exhaust gas purifier for internal combustion engine
Vrabie et al. The new exhaust aftertreatment system for reducing nox emissions OF diesel engines: Lean nox trap (LNT). A study
WO2013005339A1 (en) Exhaust purification device for internal combustion engine
WO2013005342A1 (en) Exhaust purification device for internal combustion engine
WO2013005337A1 (en) Exhaust purification apparatus for internal combustion engine

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2011554014

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11869188

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11869188

Country of ref document: EP

Kind code of ref document: A1