WO2013005339A1 - Exhaust purification device for internal combustion engine - Google Patents

Exhaust purification device for internal combustion engine Download PDF

Info

Publication number
WO2013005339A1
WO2013005339A1 PCT/JP2011/065638 JP2011065638W WO2013005339A1 WO 2013005339 A1 WO2013005339 A1 WO 2013005339A1 JP 2011065638 W JP2011065638 W JP 2011065638W WO 2013005339 A1 WO2013005339 A1 WO 2013005339A1
Authority
WO
WIPO (PCT)
Prior art keywords
dpf
ash
regeneration operation
internal combustion
combustion engine
Prior art date
Application number
PCT/JP2011/065638
Other languages
French (fr)
Japanese (ja)
Inventor
克彦 押川
中山 茂樹
優一 祖父江
寛真 西岡
大地 今井
佳久 塚本
寛 大月
潤一 松尾
菅原 康
Original Assignee
トヨタ自動車株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by トヨタ自動車株式会社 filed Critical トヨタ自動車株式会社
Priority to PCT/JP2011/065638 priority Critical patent/WO2013005339A1/en
Priority to PCT/JP2012/067405 priority patent/WO2013005850A2/en
Priority to EP12741114.8A priority patent/EP2726175B1/en
Priority to EP12741116.3A priority patent/EP2726177B1/en
Priority to CN201280030742.8A priority patent/CN103619438B/en
Priority to CN201280032271.4A priority patent/CN103635245B/en
Priority to EP12738239.8A priority patent/EP2726172B1/en
Priority to EP12738240.6A priority patent/EP2726173B1/en
Priority to US14/126,947 priority patent/US9057298B2/en
Priority to US14/127,355 priority patent/US9080480B2/en
Priority to CN201280031473.7A priority patent/CN103619441B/en
Priority to PCT/JP2012/067404 priority patent/WO2013005849A1/en
Priority to JP2013555681A priority patent/JP5626487B2/en
Priority to JP2013535609A priority patent/JP5494893B2/en
Priority to EP12741115.5A priority patent/EP2726176A2/en
Priority to US14/110,811 priority patent/US8778053B2/en
Priority to PCT/JP2012/067407 priority patent/WO2013005852A1/en
Priority to JP2014514345A priority patent/JP2014520229A/en
Priority to US14/126,904 priority patent/US9011569B2/en
Priority to PCT/JP2012/067408 priority patent/WO2013005853A2/en
Priority to US14/126,997 priority patent/US9057299B2/en
Priority to JP2013555657A priority patent/JP2014520227A/en
Priority to CN201280031454.4A priority patent/CN103619439B/en
Priority to JP2013555656A priority patent/JP5655961B2/en
Priority to CN201280031461.4A priority patent/CN103619440B/en
Priority to PCT/JP2012/067406 priority patent/WO2013005851A2/en
Publication of WO2013005339A1 publication Critical patent/WO2013005339A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/92Chemical or biological purification of waste gases of engine exhaust gases
    • B01D53/94Chemical or biological purification of waste gases of engine exhaust gases by catalytic processes
    • B01D53/944Simultaneously removing carbon monoxide, hydrocarbons or carbon making use of oxidation catalysts
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/96Regeneration, reactivation or recycling of reactants
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/02Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust
    • F01N3/021Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters
    • F01N3/023Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters using means for regenerating the filters, e.g. by burning trapped particles
    • F01N3/0232Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters using means for regenerating the filters, e.g. by burning trapped particles removing incombustible material from a particle filter, e.g. ash
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/02Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust
    • F01N3/021Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters
    • F01N3/033Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters in combination with other devices
    • F01N3/035Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters in combination with other devices with catalytic reactors, e.g. catalysed diesel particulate filters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/70Non-metallic catalysts, additives or dopants
    • B01D2255/707Additives or dopants
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/90Physical characteristics of catalysts
    • B01D2255/915Catalyst supported on particulate filters
    • B01D2255/9155Wall flow filters
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2260/00Exhaust treating devices having provisions not otherwise provided for
    • F01N2260/14Exhaust treating devices having provisions not otherwise provided for for modifying or adapting flow area or back-pressure

Definitions

  • the present invention relates to an exhaust purification device for an internal combustion engine.
  • a diesel particulate filter (hereinafter referred to as “DPF”) is installed in the exhaust gas passage of the internal combustion engine, Generally, PM in exhaust gas is collected and removed.
  • PM regeneration since the PM collected in the DPF gradually accumulates, regeneration (hereinafter referred to as “PM regeneration”) is performed periodically or by detecting a decrease in the performance of the DPF and burning and removing the PM collected in the DPF. ”).
  • PM regeneration operation is usually performed by heating the DPF while supplying a reducing agent such as hydrocarbon (HC) to the DPF.
  • a reducing agent such as hydrocarbon (HC)
  • Ash is generated when the engine oil mixed in the cylinder of the engine burns, and the generated ash particles are covered with PM in the DPF.
  • the ash particles covered with PM are exposed to high temperature conditions during the PM regeneration operation in the DPF, and the PM covering the ash particles is burned and removed.
  • Ash deposition occurs because the ash particles are agglomerated and increased in size by further applying heat to the ash particles from which the PM has been burned and removed.
  • the improvement to the conventional DPF and the improvement to the regeneration operation of the DPF are intended to improve the collection efficiency of the DPF and improve the performance of the PM regeneration operation, and not to the accumulation of ash.
  • an invention disclosed in Patent Document 1 for example, there is an invention disclosed in Patent Document 1, and Patent Document 1 shows a configuration of a DPF capable of burning PM at a relatively low temperature. Yes.
  • the structure of the DPF disclosed in Patent Document 1 is characterized in that, in the DPF and the exhaust gas purification method using the DPF, a catalyst made of a solid superacid having an active metal supported on the DPF is held on the filter surface. is there.
  • Patent Document 1 reduces the combustion temperature of PM with a solid super strong acid carrying an active metal, and regenerates DPF at a lower temperature than before, preferably continuously, and CO, HC, NO, NO 2 can be removed at the same time.
  • Patent Document 1 is intended to improve the performance of the PM regeneration operation, and does not correspond to the accumulation of ash. If the use of the DPF is continued, the PM regeneration operation is performed. However, this does not solve the problem that the pressure loss of the DPF gradually increases, and unless the PM regeneration temperature is gradually increased, sufficient regeneration cannot be performed and the fuel consumption deteriorates.
  • Patent Document 2 which is selected from platinum, palladium and rhodium as a catalyst for a diesel engine exhaust gas purification device.
  • SOF Solid Organic Fraction
  • unburned hydrocarbons, etc. contained in particulate matter in diesel engine exhaust gas from a low temperature range.
  • the invention of Patent Document 2 aims at an effect similar to the invention of Patent Document 1 and does not relate to DPF.
  • JP 2006-289175 A Japanese Patent Laid-Open No. 10-033985
  • the present invention provides an exhaust emission control device for an internal combustion engine that can suppress the accumulation of ash on the DPF and suppress an increase in pressure loss, an increase in PM regeneration temperature, and a decrease in fuel consumption over a long period of time. It is aimed.
  • the present invention provides a configuration in which the ash deposited on the DPF is discharged with a reduced particle size, and the DPF is regenerated (hereinafter referred to as “ash regeneration”). It is an object of the present invention to provide an epoch-making DPF that has an advantageous effect of suppressing an increase in temperature and a decrease in fuel consumption.
  • the accumulated ash can be discharged with a reduced particle size.
  • a DPF that is smaller than the conventional DPF can be used from the beginning of the installation of the DPF. Not only cost reduction, but also energy cost of PM regeneration operation can be reduced.
  • the fact that a small DPF can be used means that the space for mounting the DPF on the vehicle can be reduced, and the weight of the vehicle on which the DPF is mounted can be reduced.
  • the inventor of the present application studied the problem of ash accumulation inside the DPF, analyzed the cause of ash accumulation, and the main components of ash were calcium (Ca) contained in engine oil and SOx in exhaust gas. It was found that ash is ion-bonded, CaSO 4 is the main component, and Ca salt has a high melting point, so that in the exhaust gas, ash flows into the DPF as a solid and aggregates to increase the particle size.
  • Ca calcium
  • the inventors of the present application have confirmed by experiments that the size of ash is on the order of submicrons, and that the ash slips through the DPF when the ash size is reduced to the order of nanomicrons.
  • Ca ions associated with stronger acid than SO 3 on the surface of the DPF is different from the stronger acid than SO 3 on the surface of the DPF, if a stronger acid is present in the atmosphere It was confirmed by an experiment that it binds to a stronger acid in the atmosphere, is released from the DPF, and passes through the DPF to be discharged.
  • the particle size will be submicron.
  • CaSO 4 deposited in the DPF turned into, in a reducing atmosphere becomes CaSO 3 SO 4 is reduced in CaSO 4
  • Ca ions CaSO 3 is bonded with the acid on the surface of the DPF, on the surface of the DPF Disperse in atomic form.
  • SO 4 is present in the atmosphere, the Ca on the surface of the DPF combines with the SO 4 in the atmosphere and becomes sub-nanometer-sized CaSO 4 and is released from the DPF.
  • the exhaust gas atmosphere is a stoichiometric or rich atmosphere, it is the above-described reducing atmosphere, and when it is a lean atmosphere, the lean atmosphere contains SO 4 . Therefore, if control for making the atmosphere stoichiometric or rich and control for making the lean atmosphere next are performed on the above-mentioned DPF, ash Ca ions deposited on the DPF in the stoichiometric or rich atmosphere are converted to DPF. Then, in a lean atmosphere, Ca on the surface of the DPF is combined with SO 4 in the lean atmosphere and released from the DPF, and the fine particle size is reduced to a sub-nanometer size. CaSO 4 is converted to pass through the DPF and discharged.
  • the first CaSO 4 having a large particle size of submicron and deposited on the DPF is finally released again from the DPF as CaSO 4.
  • No. 4 is reduced in size to a sub-nanometer size and passes through the DPF and is discharged.
  • the ash regeneration operation following the PM regeneration operation can be further effectively advanced.
  • the present invention provides an embodiment in which the PM regeneration operation performed prior to the ash regeneration operation is more effectively performed.
  • the ash when performing the PM regeneration operation prior to the ash regeneration operation, the ash is exposed to a reducing atmosphere, and if the ash comes into contact with the acid sites of the solid acid, the PM remains without being completely removed.
  • the ash regeneration operation following the PM regeneration operation may effectively proceed.
  • the ash is prevented from agglomerating and increasing the particle size in the PM regeneration operation. There is an effect that can be reduced.
  • OSC ability oxygen storage ability
  • Oxygen occluded in the solid acid by the OSC ability causes the oxygen concentration in the atmosphere near the ash to increase.
  • the ash reduction reaction that is, the transition from CaSO 4 to CaSO 3 is inhibited, and there is a problem that the ash decomposition rate is low.
  • the oxygen storage amount (OSC amount) of the solid acid to be used is obtained in advance by experiments or the like, and the map of PM emission amount according to the engine operating state, the exhaust gas amount and the DPF temperature are used. If a map of PM combustion speed is provided and control is performed so that only the amount of PM burned by the solid acid OSC amount remains in the PM regeneration operation, the oxygen is completely removed without finally remaining PM.
  • the reduction reaction of CaSO 4 having a large particle size can be effectively performed.
  • a means for injecting a reducing agent such as fuel into exhaust gas is generally used, but if the remaining PM is used as described above, The amount of reducing agent required can be reduced, and there is an effect that fuel efficiency is improved.
  • an exhaust purification device for an internal combustion engine in which a DPF is disposed in an exhaust system of the internal combustion engine, wherein the DPF is a DPF whose surface is coated with a solid acid,
  • the acid strength is larger than the acid strength of SO 3 and smaller than the acid strength of SO 4
  • an ash regeneration operation control that removes ash accumulated in the DPF.
  • the PM regeneration operation a predetermined amount of PM remains, and a predetermined amount of P There when remaining, and performs ash regeneration operation, the exhaust gas purification apparatus is provided for an internal combustion engine.
  • the PM regeneration operation is performed before the ash regeneration operation, the CaSO 4 having a large particle size that has been buried in the PM is exposed to the reducing atmosphere.
  • the ash reduced to CaSO 3 comes into contact with the solid acid on the surface of the DPF, and the ash regeneration operation following the PM regeneration operation proceeds effectively, but the ash is in a reducing atmosphere. If the ash comes into contact with the acid sites of the solid acid, the PM may remain in a state where the PM is not completely removed, so that a predetermined amount of PM is left in the PM regeneration operation.
  • the ash regeneration operation is performed when a predetermined amount of PM remains. If it does in this way, the heat energy in PM regeneration operation can be saved and fuel consumption can be improved.
  • the remaining PM prevents the ash from agglomerating and increasing the particle size, there is an effect that the frequency of the ash regeneration operation can be reduced.
  • the oxygen stored in the solid acid is consumed by the remaining PM, and the oxygen near the ash is inhibited from inhibiting the reduction reaction from CaSO4 to CaSO3. And the reduction of the ash decomposition rate can be suppressed. Since this means consumes oxygen using the remaining PM, there is no need to separately inject a reducing agent, which is effective in improving fuel consumption.
  • an exhaust gas purification apparatus for an internal combustion engine is provided in which ash is completely removed and an increase in pressure loss, an increase in PM regeneration temperature, and a decrease in fuel consumption can be suppressed over a long period of time.
  • the predetermined amount of PM remaining is an amount corresponding to the OSC amount of the solid acid.
  • an exhaust emission control device for an internal combustion engine that can completely remove ash in an ash regeneration operation and suppress an increase in pressure loss, an increase in PM regeneration temperature, and a decrease in fuel consumption over a long period of time.
  • an ash regeneration configuration is provided, and the ash is completely removed in the ash regeneration operation, and an increase in pressure loss, an increase in PM regeneration temperature, and a decrease in fuel consumption are suppressed over a long period of time.
  • the present invention provides a common effect of providing an exhaust gas purification device for an internal combustion engine.
  • FIG. 1 is a figure explaining control of PM reproduction
  • (b) is another embodiment of this invention, It is a figure explaining control of PM regeneration operation.
  • 2A and 2B are diagrams for explaining the principle of the present invention.
  • FIG. 2A is a diagram for explaining the state of ash during PM deposition.
  • FIG. 2B is a diagram showing a part of the amount of PM in the PM regeneration operation of the present invention. It is a figure explaining the state made to remain,
  • (c) is a figure explaining immediately after the start of the ash reproduction
  • FIG. 3 is a diagram illustrating a schematic configuration of the embodiment when the present invention is applied to a DPF.
  • FIG. 3 is a diagram showing a basic configuration of the present invention.
  • a solid acid corresponding to an acid strength of SO 3 or more and SO 4 or less is formed on the surface of DPF 2, specifically, on the surface of the DPF substrate of DPF 2.
  • Apply. The exhaust gas from the internal combustion engine is guided to the DPF 2, and the PM in the exhaust gas is collected and removed by the DPF 2, and the exhaust gas from which the PM has been removed is discharged. Since the PM collected in the DPF gradually accumulates, PM regeneration operation is performed periodically or by detecting a decrease in the performance of the DPF and burning and removing the PM collected in the DPF.
  • the reduced size particles 4 pass through the filter gap of the DPF and are discharged together with the exhaust.
  • the ash regeneration operation following the PM regeneration operation can be further effectively advanced.
  • FIG. 2 (a) is a diagram for explaining the presence state of ash before the present invention is applied to the DPF of the present invention.
  • the ash is in a state of CaSO 4 31 buried in the PM 10 deposited in the DPF. Therefore, in order for this even attempt to ash playback state, CaSO 4 31 deposited in the DPF with large grain size to the size of the sub-micron can not be in contact with a reducing atmosphere, CaSO 4 31 SO 4 in Is not reduced.
  • FIG. 1B shows a case where PM regeneration operation is performed so that all PM is burned and removed.
  • all PM is burned and removed as shown in FIG. 1B. without, as shown in FIG. 1 (a), performs PM regeneration operation just in time Z PM, the PM amount is left only R PM, the process proceeds to ash regeneration operation Z a.
  • FIG. 2B is a diagram for explaining a state in which a part of the PM amount remains in the PM regeneration operation as described above, and a part of PM10 remains around the CaSO 4 31.
  • CaSO 4 31 is reduced to a reducing atmosphere, for example, stoichiometric. Alternatively, it is reduced in an air-fuel ratio rich atmosphere to become CaSO 3 32, and then the ash regeneration operation proceeds.
  • a reducing atmosphere for example, stoichiometric.
  • it is reduced in an air-fuel ratio rich atmosphere to become CaSO 3 32, and then the ash regeneration operation proceeds.
  • the oxygen storage amount (OSC amount) of the solid acid to be used is obtained in advance by experiments or the like, and the map of the PM emission amount according to the engine operating state, the exhaust gas amount and the DPF temperature are set. It is preferable to prepare a map of the corresponding PM combustion speed, etc. so that only the amount of PM burned by the solid acid OSC amount remains in the PM regeneration operation. By controlling in this way, it is possible to effectively carry out the reduction reaction of CaSO 4 having a large particle size, with no PM remaining finally and oxygen being completely removed.

Abstract

Provided is an exhaust purification device for an internal combustion engine having a DPF disposed in an exhaust system of the internal combustion engine, wherein the accumulation of ash in the DPF is minimized, enabling increases in pressure loss, increases in PM regeneration temperature, and reductions in fuel consumption to be minimized over the long term. In the DPF, which is coated with a solid acid, the acid strength of which, on the surface of the DPF, is greater than acid strength of SO3 but less than the acid strength of SO4, a PM regeneration operation is carried out before an ash regeneration operation is carried out after allowing a prescribed amount of PM to remain in the PM regeneration operation.

Description

内燃機関の排気浄化装置Exhaust gas purification device for internal combustion engine
 本発明は、内燃機関の排気浄化装置に関する。 The present invention relates to an exhaust purification device for an internal combustion engine.
 内燃機関の排気ガス中の粒子状物質(以下「PM」という)の粒子数を低減するためには、内燃機関の排気ガス通路にディーゼルパティキュレートフィルタ(以下「DPF」という)を設置して、排気中のPMを捕集、除去することが一般に行われている。 In order to reduce the number of particles of particulate matter (hereinafter referred to as “PM”) in the exhaust gas of the internal combustion engine, a diesel particulate filter (hereinafter referred to as “DPF”) is installed in the exhaust gas passage of the internal combustion engine, Generally, PM in exhaust gas is collected and removed.
 この場合、DPF内に捕集されたPMは次第に堆積していくので、定期的に或いはDPFの性能低下を検知して、DPF内に捕集されたPMを燃焼除去する再生(以下「PM再生」という)運転を行う。 In this case, since the PM collected in the DPF gradually accumulates, regeneration (hereinafter referred to as “PM regeneration”) is performed periodically or by detecting a decrease in the performance of the DPF and burning and removing the PM collected in the DPF. ”).
 PM再生運転は、通常、DPFに還元剤、例えばハイドロカーボン(HC)等、を供給しつつ、DPFを加熱することによって行われる。 PM regeneration operation is usually performed by heating the DPF while supplying a reducing agent such as hydrocarbon (HC) to the DPF.
 DPFによって排気中のPMを捕集し、DPF内に捕集されたPMを燃焼除去するPM再生運転を行う構成に対しては、その性能向上やコスト低減のため、従来から様々な改良が提案されている。 Various improvements have been proposed to improve the performance and reduce the cost of the PM regeneration operation that collects PM in the exhaust gas using the DPF and burns and removes the PM collected in the DPF. Has been.
 しかし、従来のDPFにおいては、DPFの使用を継続していると、PM再生運転を行っても、次第にDPFの圧力損失が増加し、また、PM再生温度を次第に増加させなければ十分な再生が行われなくなる、という問題があり、燃費が悪化する。この問題は、DPF内部にアッシュが堆積することが原因である。 However, in the conventional DPF, if the use of the DPF is continued, even if the PM regeneration operation is performed, the pressure loss of the DPF gradually increases, and if the PM regeneration temperature is not gradually increased, sufficient regeneration is achieved. There is a problem that it will not be performed, and fuel consumption deteriorates. This problem is caused by the accumulation of ash inside the DPF.
 アッシュは、エンジンのシリンダー内部に混入したエンジンオイルが燃焼することにより生成し、生成したアッシュ粒子は、DPF内でPMに覆われる。PMに覆われたアッシュ粒子は、DPF内でPM再生運転時の高温条件に晒され、アッシュ粒子を覆っていたPMが燃焼除去される。アッシュの堆積は、このPMが燃焼除去されたアッシュ粒子に、更に熱が加わることによって、アッシュ粒子が凝集し、大粒径化するために発生するものである。 Ash is generated when the engine oil mixed in the cylinder of the engine burns, and the generated ash particles are covered with PM in the DPF. The ash particles covered with PM are exposed to high temperature conditions during the PM regeneration operation in the DPF, and the PM covering the ash particles is burned and removed. Ash deposition occurs because the ash particles are agglomerated and increased in size by further applying heat to the ash particles from which the PM has been burned and removed.
 しかし、このようなアッシュの堆積に対しては、今まで有効な解決手段がなく、DPFにアッシュが堆積することによる影響を極力小さくするために、例えば、あらかじめ大容量のDPFを設置しておくという対策がとられていた。 However, there is no effective solution to the accumulation of ash so far, and in order to minimize the influence of the accumulation of ash on the DPF, for example, a large-capacity DPF is installed in advance. Measures were taken.
 すなわち、従来のDPFに対する改良や、DPFの再生運転に対する改良は、DPFの捕集効率の改善や、PM再生運転の性能向上を目的とするものであり、アッシュの堆積に対するものではない。PM再生運転の性能向上を目的とするものとしては、例えば特許文献1に示された発明があり、特許文献1には、比較的低温でPMを燃焼させることができるDPFの構成が示されている。 That is, the improvement to the conventional DPF and the improvement to the regeneration operation of the DPF are intended to improve the collection efficiency of the DPF and improve the performance of the PM regeneration operation, and not to the accumulation of ash. As an object for improving the performance of the PM regeneration operation, for example, there is an invention disclosed in Patent Document 1, and Patent Document 1 shows a configuration of a DPF capable of burning PM at a relatively low temperature. Yes.
 特許文献1に示されたDPFの構成は、DPF及びこれを用いた排ガス浄化方法において、DPFに活性金属を担持した固体超強酸からなる触媒を、フィルタ表面に保持することを特徴とするものである。 The structure of the DPF disclosed in Patent Document 1 is characterized in that, in the DPF and the exhaust gas purification method using the DPF, a catalyst made of a solid superacid having an active metal supported on the DPF is held on the filter surface. is there.
 すなわち、特許文献1の発明は、活性金属を担持した固体超強酸により、PMの燃焼温度を低下させ、従来よりも低温でDPFを、できれば連続的に再生すると共に、CO、HC、NO、NOをも同時に除去することができるというものである。 That is, the invention of Patent Document 1 reduces the combustion temperature of PM with a solid super strong acid carrying an active metal, and regenerates DPF at a lower temperature than before, preferably continuously, and CO, HC, NO, NO 2 can be removed at the same time.
 したがって、特許文献1の発明は、PM再生運転の性能向上を目的としたものであり、アッシュの堆積に対応するものではなく、DPFの使用を継続していると、PM再生運転を行っても、次第にDPFの圧力損失が増加し、また、PM再生温度を次第に増加させなければ十分な再生が行われなくなり、燃費が悪化する、という問題を解決するものではない。 Therefore, the invention of Patent Document 1 is intended to improve the performance of the PM regeneration operation, and does not correspond to the accumulation of ash. If the use of the DPF is continued, the PM regeneration operation is performed. However, this does not solve the problem that the pressure loss of the DPF gradually increases, and unless the PM regeneration temperature is gradually increased, sufficient regeneration cannot be performed and the fuel consumption deteriorates.
 また、特許文献1の発明に類似する触媒構成を開示したものとして、特許文献2の発明があるが、特許文献2には、ディーゼルエンジン排ガス浄化装置用触媒として、白金、パラジウム及びロジウムから選ばれる少なくとも1種の貴金属と、固体の超強酸とを有する触媒を利用すると、ディーゼルエンジン排ガス中の微粒子物質に含まれるSOF(Soluble Organic Fraction)や未燃焼炭化水素などを低温域から浄化することができ、高温域においても二酸化硫黄の酸化抑制効果を示すと記載されており、特許文献2の発明は、特許文献1の発明と類似する効果を狙ったものであり、また、DPFに関するものではない。したがって、DPFへのアッシュの堆積に対応するものではなく、DPFの使用を継続していると、PM再生運転を行っても、次第にDPFの圧力損失が増加し、また、PM再生温度を次第に増加させなければ十分な再生が行われなくなり、燃費が悪化する、という問題を解決するものではない。 Further, as a disclosure of a catalyst structure similar to the invention of Patent Document 1, there is an invention of Patent Document 2, which is selected from platinum, palladium and rhodium as a catalyst for a diesel engine exhaust gas purification device. By using a catalyst having at least one kind of noble metal and a solid super strong acid, it is possible to purify SOF (Soluable Organic Fraction), unburned hydrocarbons, etc. contained in particulate matter in diesel engine exhaust gas from a low temperature range. Further, it is described that the effect of suppressing oxidation of sulfur dioxide is exhibited even in a high temperature range, and the invention of Patent Document 2 aims at an effect similar to the invention of Patent Document 1 and does not relate to DPF. Therefore, it does not correspond to the accumulation of ash on the DPF. If the use of the DPF is continued, the pressure loss of the DPF gradually increases and the PM regeneration temperature gradually increases even if the PM regeneration operation is performed. If this is not done, it will not solve the problem that sufficient regeneration will not be performed and fuel consumption will deteriorate.
特開2006−289175号公報JP 2006-289175 A 特開平10−033985号公報Japanese Patent Laid-Open No. 10-033985
 本発明は、DPFへのアッシュの堆積を抑制し、長期にわたって圧損の増加や、PM再生温度の増加、また、燃費の低下を抑制することができる、内燃機関の排気浄化装置を提供することを目的としている。 The present invention provides an exhaust emission control device for an internal combustion engine that can suppress the accumulation of ash on the DPF and suppress an increase in pressure loss, an increase in PM regeneration temperature, and a decrease in fuel consumption over a long period of time. It is aimed.
 すなわち、本発明は、DPFに堆積したアッシュを細粒径化して排出し、DPFを再生(以下「アッシュ再生」という)する構成を提供し、この構成により、長期にわたって圧損の増加や、PM再生温度の増加、また、燃費の低下を抑制することができる、という有利な効果を奏する、画期的なDPFを提供するものである。 That is, the present invention provides a configuration in which the ash deposited on the DPF is discharged with a reduced particle size, and the DPF is regenerated (hereinafter referred to as “ash regeneration”). It is an object of the present invention to provide an epoch-making DPF that has an advantageous effect of suppressing an increase in temperature and a decrease in fuel consumption.
 本発明によれば、堆積したアッシュを細粒径化させて排出することができるので、更に付随する効果として、DPFの設置当初から従来よりも小型のDPFを使用することができ、DPFの製造コストの低減のみならず、PM再生運転のエネルギーコストを低減することもできる。また、小型のDPFを使用することができるということは、DPFの車両への搭載スペースを低減することができ、当該DPFを搭載した車両の重量を低減することができるということである。 According to the present invention, the accumulated ash can be discharged with a reduced particle size. As a further effect, a DPF that is smaller than the conventional DPF can be used from the beginning of the installation of the DPF. Not only cost reduction, but also energy cost of PM regeneration operation can be reduced. In addition, the fact that a small DPF can be used means that the space for mounting the DPF on the vehicle can be reduced, and the weight of the vehicle on which the DPF is mounted can be reduced.
 本願の発明者は、DPF内部へのアッシュの堆積の問題を研究し、アッシュの堆積原因を分析して、アッシュの主成分が、エンジンオイル中に含まれるカルシウム(Ca)と排気中のSOxとがイオン結合した、CaSOが主体であり、Ca塩は融点が高いため、排気中ではアッシュが固体としてDPFに流入し、凝集して、大粒径化するという知見を得た。 The inventor of the present application studied the problem of ash accumulation inside the DPF, analyzed the cause of ash accumulation, and the main components of ash were calcium (Ca) contained in engine oil and SOx in exhaust gas. It was found that ash is ion-bonded, CaSO 4 is the main component, and Ca salt has a high melting point, so that in the exhaust gas, ash flows into the DPF as a solid and aggregates to increase the particle size.
 更に、本願の発明者は、アッシュの大きさはサブミクロンのオーダーであり、これをナノミクロンのオーダーまで細粒径化すると、アッシュがDPFをすり抜けることを、実験により確認した。 Furthermore, the inventors of the present application have confirmed by experiments that the size of ash is on the order of submicrons, and that the ash slips through the DPF when the ash size is reduced to the order of nanomicrons.
 更に、本願の発明者は、サブミクロンの大きさに大粒径化したCaSOを、還元雰囲気におくと、CaSOのSOが還元されてSOとなり、Caとの結合が弱まること、及び、このときDPFの表面上にSOよりも強い酸が存在すると、CaSOのCaとSOとの結合が切断され、CaイオンがDPFの表面上のSOよりも強い酸の上に原子状に分散して結合するということを、実験により確認した。 Furthermore, the inventors of the present application, a CaSO 4 that large grain size to the size of submicron, when placed in a reducing atmosphere, it becomes SO 3 SO 4 of CaSO 4 is reduced, the bond between Ca weakened, At this time, if an acid stronger than SO 3 is present on the surface of the DPF, the bond between Ca and SO 3 in the CaSO 3 is cleaved, and the Ca ions are stronger than the SO 3 on the surface of the DPF. It was confirmed by experiments that the atoms were dispersed and bonded in an atomic form.
 更に、本願の発明者は、DPFの表面上のSOよりも強い酸と結合したCaイオンは、DPFの表面上のSOよりも強い酸と比べて、更に強い酸が雰囲気中に存在すると、雰囲気中の更に強い酸と結合して、DPFから放出され、DPFをすり抜けて排出されるというということを、実験により確認した。 Furthermore, the inventors of the present application, Ca ions associated with stronger acid than SO 3 on the surface of the DPF is different from the stronger acid than SO 3 on the surface of the DPF, if a stronger acid is present in the atmosphere It was confirmed by an experiment that it binds to a stronger acid in the atmosphere, is released from the DPF, and passes through the DPF to be discharged.
 以上を整理すると、DPFの表面上のSOよりも強い酸として、この酸の酸強度を、SOよりも強くSOよりも弱い酸強度とすれば、サブミクロンの大きさに大粒径化してDPF内に堆積したCaSOは、還元雰囲気において、CaSOのSOが還元されてCaSOとなり、CaSOのCaイオンが、DPFの表面上の酸と結合し、DPFの表面上に原子状に分散する。次に、雰囲気中にSOを存在させれば、DPFの表面上のCaは、雰囲気中のSOと結合して、サブナノメートルの大きさのCaSOとなってDPFから放出される。 To summarize the above, if the acid strength of this acid is stronger than SO 3 on the surface of the DPF and the acid strength of this acid is stronger than SO 3 and weaker than SO 4 , the particle size will be submicron. CaSO 4 deposited in the DPF turned into, in a reducing atmosphere, becomes CaSO 3 SO 4 is reduced in CaSO 4, Ca ions CaSO 3 is bonded with the acid on the surface of the DPF, on the surface of the DPF Disperse in atomic form. Next, if SO 4 is present in the atmosphere, the Ca on the surface of the DPF combines with the SO 4 in the atmosphere and becomes sub-nanometer-sized CaSO 4 and is released from the DPF.
 排気ガスの雰囲気が、ストイキ又はリッチ雰囲気である場合には、上述の還元雰囲気であり、リーン雰囲気である場合には、リーン雰囲気にはSOが含まれている。そこで、上述のDPFに対して、雰囲気をストイキ又はリッチ雰囲気にする制御と、次にリーン雰囲気にする制御と、を行えば、ストイキ又はリッチ雰囲気において、DPFに堆積したアッシュのCaイオンが、DPFの表面上に原子状に分散し、次に次にリーン雰囲気において、DPFの表面上のCaが、リーン雰囲気中のSOと結合してDPFから放出され、サブナノメートルの大きさに細粒径化したCaSOとなってDPFをすり抜け、排出される。 When the exhaust gas atmosphere is a stoichiometric or rich atmosphere, it is the above-described reducing atmosphere, and when it is a lean atmosphere, the lean atmosphere contains SO 4 . Therefore, if control for making the atmosphere stoichiometric or rich and control for making the lean atmosphere next are performed on the above-mentioned DPF, ash Ca ions deposited on the DPF in the stoichiometric or rich atmosphere are converted to DPF. Then, in a lean atmosphere, Ca on the surface of the DPF is combined with SO 4 in the lean atmosphere and released from the DPF, and the fine particle size is reduced to a sub-nanometer size. CaSO 4 is converted to pass through the DPF and discharged.
 すなわち、以上の過程では、最初の、サブミクロンの大きさに大粒径化してDPFに堆積したCaSOが、最終的に、再びCaSOとなってDPFから放出されるが、放出されるCaSOは、サブナノメートルの大きさに細粒径化されており、DPFをすり抜けて排出される。 That is, in the above process, the first CaSO 4 having a large particle size of submicron and deposited on the DPF is finally released again from the DPF as CaSO 4. No. 4 is reduced in size to a sub-nanometer size and passes through the DPF and is discharged.
 ところで、以上のアッシュ再生運転を行う場合、通常、アッシュは、DPF内に堆積したPMの中に埋没した状態にある。したがって、この状態でアッシュ再生を行おうとしても、サブミクロンの大きさに大粒径化してDPF内に堆積したCaSOが還元雰囲気と接触することができないために、CaSOのSOが還元されない。或いは、還元されてCaSOとなったアッシュも、DPFの表面上の固体酸に接触することができない。したがって、アッシュを分解することができないという問題がある。 By the way, when performing the above ash reproduction | regeneration operation | movement, the ash is normally in the state buried in PM deposited in DPF. Therefore, even trying to ash reproduced in this state, in order to CaSO 4 deposited in the DPF with large grain size to the size of the sub-micron can not be in contact with a reducing atmosphere, SO 4 of CaSO 4 is reduced Not. Alternatively, the ash reduced to CaSO 3 cannot contact the solid acid on the surface of the DPF. Therefore, there is a problem that the ash cannot be decomposed.
 この問題を解決するためには、アッシュ再生運転を行うに先立ち、PM再生運転を行うことによって、DPF内に堆積したPMを燃焼させ、除去することが効果的である。すなわち、PMの中に埋没した状態にあった大粒径化したCaSOが、還元雰囲気に晒されるようになり、また、還元されてCaSOとなったアッシュが、DPFの表面上の固体酸に接触するようになり、アッシュ再生運転が、効果的に進行する。 In order to solve this problem, it is effective to burn and remove the PM accumulated in the DPF by performing the PM regeneration operation before performing the ash regeneration operation. That is, CaSO 4 having a large particle size that was buried in PM is exposed to a reducing atmosphere, and the ash that has been reduced to CaSO 3 is a solid acid on the surface of the DPF. As a result, the ash regeneration operation proceeds effectively.
 この場合、PM再生運転において、PMの一部を残存させると、PM再生運転に続くアッシュ再生運転を、更に効果的に進行させることができる。本発明は、アッシュ再生運転に先立って行うPM再生運転を、更に効果的に行う実施形態を提供するものである。 In this case, if a part of the PM remains in the PM regeneration operation, the ash regeneration operation following the PM regeneration operation can be further effectively advanced. The present invention provides an embodiment in which the PM regeneration operation performed prior to the ash regeneration operation is more effectively performed.
 すなわち、アッシュ再生運転に先立って行うPM再生運転を行う場合、アッシュが還元雰囲気に晒され、また、アッシュが固体酸の酸点と接触すれば、PMを完全に除去しない状態で、PMが残存していてもよく、PM再生運転に続くアッシュ再生運転が、効果的に進行する。 That is, when performing the PM regeneration operation prior to the ash regeneration operation, the ash is exposed to a reducing atmosphere, and if the ash comes into contact with the acid sites of the solid acid, the PM remains without being completely removed. The ash regeneration operation following the PM regeneration operation may effectively proceed.
 そこで、PM再生運転で残存してもよいPMの量を把握し、この量のPMを残すようにPM再生運転を行うと、PM再生運転における、運転エネルギーを節減することができ、燃費を向上させることができる。 Therefore, by grasping the amount of PM that may remain in the PM regeneration operation and performing the PM regeneration operation so as to leave this amount of PM, the driving energy can be saved in the PM regeneration operation, and the fuel efficiency is improved. Can be made.
 また、PM再生運転においてPMを一部残存させ、アッシュをPMに内包された状態にしておくと、PM再生運転においてアッシュが凝集して大粒径化することを妨げるので、アッシュ再生運転の頻度を低減することができるという効果がある。 In addition, if a part of the PM remains in the PM regeneration operation and the ash is included in the PM, the ash is prevented from agglomerating and increasing the particle size in the PM regeneration operation. There is an effect that can be reduced.
 更に、DPFにコーティングする固体酸には、酸素ストレージ能(OSC能)を有するものがあり、この場合には、OSC能によって固体酸に吸蔵された酸素が、アッシュ近傍の雰囲気中の酸素濃度を高め、アッシュの還元反応すなわちCaSOからCaSOへの移行を阻害するので、アッシュの分解率が低いという問題がある。 Furthermore, some solid acids coated on the DPF have an oxygen storage ability (OSC ability). In this case, oxygen occluded in the solid acid by the OSC ability causes the oxygen concentration in the atmosphere near the ash to increase. The ash reduction reaction, that is, the transition from CaSO 4 to CaSO 3 is inhibited, and there is a problem that the ash decomposition rate is low.
 この問題は、PM再生運転で、固体酸に吸蔵された酸素量に対応する量のPMを残存させ、残存させたPMと吸蔵された酸素とを反応させて酸素を消費し、アッシュ近傍の酸素濃度をゼロにすることによって解決することができる。すなわち、大粒径化したCaSOが還元されてCaSOとなる還元反応が阻害されず、アッシュの分解率が向上する。 This problem is that in the PM regeneration operation, an amount of PM corresponding to the amount of oxygen occluded in the solid acid remains, the remaining PM and the occluded oxygen react to consume oxygen, and oxygen in the vicinity of ash This can be solved by reducing the concentration to zero. That is, the reduction reaction of CaSO 4 having a larger particle size to be reduced to CaSO 3 is not inhibited, and the ash decomposition rate is improved.
 この場合、使用する固体酸の酸素吸蔵量(OSC量)を、あらかじめ実験等によって把握しておき、また、エンジン運転状態に応じたPM排出量のマップや、排気ガス量とDPF温度に応じたPM燃焼速度のマップ等を備えておき、PM再生運転において固体酸のOSC量によって燃焼するPM量だけ残存させるように制御すれば、最終的にPMが残存することなく、酸素が完全に除去され、大粒径化したCaSOの還元反応を効果的に行うことができる。 In this case, the oxygen storage amount (OSC amount) of the solid acid to be used is obtained in advance by experiments or the like, and the map of PM emission amount according to the engine operating state, the exhaust gas amount and the DPF temperature are used. If a map of PM combustion speed is provided and control is performed so that only the amount of PM burned by the solid acid OSC amount remains in the PM regeneration operation, the oxygen is completely removed without finally remaining PM. The reduction reaction of CaSO 4 having a large particle size can be effectively performed.
 触媒のOSC能によって吸蔵された酸素を消費する手段としては、排気ガス中に、例えば燃料等の還元剤を注入する手段が一般的であるが、上述のように残存するPMを利用すれば、必要な還元剤の量を低減することができ、燃費が向上するという効果もある。 As a means for consuming oxygen occluded by the OSC ability of the catalyst, a means for injecting a reducing agent such as fuel into exhaust gas is generally used, but if the remaining PM is used as described above, The amount of reducing agent required can be reduced, and there is an effect that fuel efficiency is improved.
 請求項1に記載の発明によれば、内燃機関の排気系にDPFを配置した、内燃機関の排気浄化装置であって、DPFが、表面上に固体酸をコーティングしたDPFであり、固体酸の酸強度が、SOの酸強度よりも大きくSOの酸強度よりも小さく、更に、DPF内に堆積したアッシュを除去する、アッシュ再生運転の制御を備え、アッシュ再生運転の制御が、DPFの温度を上昇させる制御と、DPF内の雰囲気の空燃比の制御と、を備え、DPF内の雰囲気の空燃比の制御が、DPFの温度を上昇させる制御の間に、先にストイキ又は空燃比リッチ雰囲気とし、次に空燃比リーン雰囲気に変化させる制御であり、アッシュ再生運転を行う前に、PM再生運転を行い、PM再生運転において、所定の量のPMを残存させ、所定の量のPMが残存しているときに、アッシュ再生運転を行うことを特徴とする、内燃機関の排気浄化装置が提供される。 According to the first aspect of the present invention, there is provided an exhaust purification device for an internal combustion engine in which a DPF is disposed in an exhaust system of the internal combustion engine, wherein the DPF is a DPF whose surface is coated with a solid acid, The acid strength is larger than the acid strength of SO 3 and smaller than the acid strength of SO 4 , and further includes an ash regeneration operation control that removes ash accumulated in the DPF. The control for increasing the temperature and the control of the air-fuel ratio of the atmosphere in the DPF, and the control of the air-fuel ratio of the atmosphere in the DPF is performed before the control for increasing the temperature of the DPF. This is a control to change the atmosphere to the air-fuel ratio lean atmosphere, and before performing the ash regeneration operation, the PM regeneration operation is performed. In the PM regeneration operation, a predetermined amount of PM remains, and a predetermined amount of P There when remaining, and performs ash regeneration operation, the exhaust gas purification apparatus is provided for an internal combustion engine.
 すなわち、請求項1の発明では、アッシュ再生運転を行う前に、PM再生運転を行うので、PMの中に埋没した状態にあった大粒径化したCaSOが、還元雰囲気に晒されるようになり、また、還元されてCaSOとなったアッシュが、DPFの表面上の固体酸に接触するようになり、PM再生運転に続くアッシュ再生運転が、効果的に進行するが、アッシュが還元雰囲気に晒され、また、アッシュが固体酸の酸点と接触すれば、PMを完全に除去しない状態で、PMが残存していてもよいので、PM再生運転において、所定の量のPMを残存させ、所定の量のPMが残存しているときに、アッシュ再生運転を行う。このようにすると、PM再生運転における熱エネルギーを節減することができ、燃費を向上させることができる。また、残存するPMが、アッシュが凝集して大粒径化することを妨げるので、アッシュ再生運転の頻度を低減することができるという効果がある。更に、固体酸がOSC能を有する場合には、残存するPMによって固体酸に吸蔵されていた酸素を消費させ、アッシュ近傍の酸素がCaSO4からCaSO3への還元反応を阻害することを、抑制することができ、アッシュ分解率の低下を抑制することができる。この手段は、残存するPMを利用して酸素を消費させるので、別途還元剤を注入する必要が無く、燃費の向上に有効である。この結果、アッシュが完全に除去され、長期にわたって圧損の増加や、PM再生温度の増加、また、燃費の低下を抑制することができる、内燃機関の排気浄化装置が提供される。 That is, in the invention of claim 1, since the PM regeneration operation is performed before the ash regeneration operation, the CaSO 4 having a large particle size that has been buried in the PM is exposed to the reducing atmosphere. In addition, the ash reduced to CaSO 3 comes into contact with the solid acid on the surface of the DPF, and the ash regeneration operation following the PM regeneration operation proceeds effectively, but the ash is in a reducing atmosphere. If the ash comes into contact with the acid sites of the solid acid, the PM may remain in a state where the PM is not completely removed, so that a predetermined amount of PM is left in the PM regeneration operation. The ash regeneration operation is performed when a predetermined amount of PM remains. If it does in this way, the heat energy in PM regeneration operation can be saved and fuel consumption can be improved. Further, since the remaining PM prevents the ash from agglomerating and increasing the particle size, there is an effect that the frequency of the ash regeneration operation can be reduced. Furthermore, when the solid acid has OSC ability, the oxygen stored in the solid acid is consumed by the remaining PM, and the oxygen near the ash is inhibited from inhibiting the reduction reaction from CaSO4 to CaSO3. And the reduction of the ash decomposition rate can be suppressed. Since this means consumes oxygen using the remaining PM, there is no need to separately inject a reducing agent, which is effective in improving fuel consumption. As a result, an exhaust gas purification apparatus for an internal combustion engine is provided in which ash is completely removed and an increase in pressure loss, an increase in PM regeneration temperature, and a decrease in fuel consumption can be suppressed over a long period of time.
 請求項2に記載の発明によれば、固体酸が、OSC能を有する場合において、残存するPMの所定の量が、固体酸のOSC量に対応する量であることを特徴とする、請求項1に記載の内燃機関の排気浄化装置が提供される。 According to the invention described in claim 2, when the solid acid has OSC ability, the predetermined amount of PM remaining is an amount corresponding to the OSC amount of the solid acid. An exhaust gas purification apparatus for an internal combustion engine according to 1, is provided.
 すなわち、請求項2の発明では、固体酸がOSC能を有する場合において、PM再生運転を行う際に、固体酸のOSC量に対応するPM量だけ残存するようにPM再生運転を行い、次にアッシュ再生運転を行う。このようにすると、最終的にPMが残存することなく、酸素が完全に除去され、大粒径化したCaSOの還元反応を効果的に行うことができる。したがって、アッシュ再生運転においてアッシュが完全に除去され、長期にわたって圧損の増加や、PM再生温度の増加、また、燃費の低下を抑制することができる、内燃機関の排気浄化装置が提供される。 That is, in the invention of claim 2, when the solid acid has OSC ability, when performing the PM regeneration operation, the PM regeneration operation is performed so that only the PM amount corresponding to the OSC amount of the solid acid remains, Perform ash regeneration operation. In this way, the oxygen can be completely removed without any PM finally remaining, and the reduction reaction of CaSO 4 having a large particle size can be effectively performed. Accordingly, there is provided an exhaust emission control device for an internal combustion engine that can completely remove ash in an ash regeneration operation and suppress an increase in pressure loss, an increase in PM regeneration temperature, and a decrease in fuel consumption over a long period of time.
 各請求項に記載の発明によれば、アッシュ再生の構成が提供され、アッシュ再生運転においてアッシュが完全に除去され、長期にわたって圧損の増加や、PM再生温度の増加、また、燃費の低下を抑制することができる、内燃機関の排気浄化装置を提供するという、共通の効果を奏する。 According to the invention described in each claim, an ash regeneration configuration is provided, and the ash is completely removed in the ash regeneration operation, and an increase in pressure loss, an increase in PM regeneration temperature, and a decrease in fuel consumption are suppressed over a long period of time. The present invention provides a common effect of providing an exhaust gas purification device for an internal combustion engine.
 図1の、(a)は、本発明を、本発明のDPFに適用した実施形態における、PM再生運転の制御を説明する図であり、(b)は、本発明の別の実施形態における、PM再生運転の制御を説明する図である。
 図2は、本発明の原理を説明する図であり、(a)はPMの堆積時のアッシュの状態を説明する図であり、(b)は本発明のPM再生運転においてPM量を一部残存させた状態を説明する図であり、(c)は本発明のアッシュ再生運転の開始直後を説明する図であり、(d)は本発明においてOSC能を有する固体酸の酸素を消費した後の状態を説明する図である。
 図3は、本発明をDPFに適用した場合の、実施形態の概略構成を説明する図である。
(A) of FIG. 1 is a figure explaining control of PM reproduction | regeneration driving | operation in embodiment which applied this invention to DPF of this invention, (b) is another embodiment of this invention, It is a figure explaining control of PM regeneration operation.
2A and 2B are diagrams for explaining the principle of the present invention. FIG. 2A is a diagram for explaining the state of ash during PM deposition. FIG. 2B is a diagram showing a part of the amount of PM in the PM regeneration operation of the present invention. It is a figure explaining the state made to remain, (c) is a figure explaining immediately after the start of the ash reproduction | regeneration operation | movement of this invention, (d) is after consuming oxygen of the solid acid which has OSC capability in this invention. It is a figure explaining the state of.
FIG. 3 is a diagram illustrating a schematic configuration of the embodiment when the present invention is applied to a DPF.
 以下、添付図面を用いて本発明の実施形態について説明する。なお、複数の添付図面において、同一又は相当する部材には、同一の符号を付している。 Hereinafter, embodiments of the present invention will be described with reference to the accompanying drawings. In the plurality of accompanying drawings, the same or corresponding members are denoted by the same reference numerals.
 図3は、本発明の基本構成を示す図であり、DPF2の表面上に、詳細にはDPF2のDPF基材の表面上に、酸強度がSO以上でSO以下に相当する固体酸を塗布する。内燃機関の排気がDPF2に導かれ、排気中のPMはDPF2によって捕集、除去され、PMの除去された排気が排出される。DPFに捕集されたPMは次第に堆積していくので、定期的に或いはDPFの性能低下を検知して、DPF内に捕集されたPMを燃焼除去するPM再生運転を行う。 FIG. 3 is a diagram showing a basic configuration of the present invention. A solid acid corresponding to an acid strength of SO 3 or more and SO 4 or less is formed on the surface of DPF 2, specifically, on the surface of the DPF substrate of DPF 2. Apply. The exhaust gas from the internal combustion engine is guided to the DPF 2, and the PM in the exhaust gas is collected and removed by the DPF 2, and the exhaust gas from which the PM has been removed is discharged. Since the PM collected in the DPF gradually accumulates, PM regeneration operation is performed periodically or by detecting a decrease in the performance of the DPF and burning and removing the PM collected in the DPF.
 しかし、PM再生運転を繰り返し行っていると、DPF内にアッシュ3が堆積し、PM再生運転を行っても、次第にDPFの圧力損失が増加し、また、PM再生温度を次第に増加させなければ十分な再生が行われなくなる、という問題があり、燃費が悪化する。 However, if the PM regeneration operation is repeatedly performed, the ash 3 accumulates in the DPF, and even if the PM regeneration operation is performed, the pressure loss of the DPF gradually increases, and it is sufficient if the PM regeneration temperature is not increased gradually. There is a problem that proper regeneration is not performed, and fuel consumption deteriorates.
 本発明では、DPF内に堆積したアッシュ3を細粒径化するので、細粒径化粒子4が、DPFのフィルタ隙間を通り抜け、排気とともに排出される。 In the present invention, since the ash 3 deposited in the DPF is reduced in size, the reduced size particles 4 pass through the filter gap of the DPF and are discharged together with the exhaust.
 しかし、アッシュ再生運転を行う場合、通常、アッシュは、DPF内に堆積したPMの中に埋没した状態にある。したがって、この状態でアッシュ再生を行おうとしても、サブミクロンの大きさに大粒径化してDPF内に堆積したCaSOが還元雰囲気と接触することができないために、CaSOのSOが還元されない。或いは、還元されてCaSOとなったアッシュも、DPFの表面上の固体酸に接触することができない。したがって、アッシュを分解することができないという問題がある。 However, when performing the ash regeneration operation, the ash is normally buried in the PM deposited in the DPF. Therefore, even trying to ash reproduced in this state, in order to CaSO 4 deposited in the DPF with large grain size to the size of the sub-micron can not be in contact with a reducing atmosphere, SO 4 of CaSO 4 is reduced Not. Alternatively, the ash reduced to CaSO 3 cannot contact the solid acid on the surface of the DPF. Therefore, there is a problem that the ash cannot be decomposed.
 この問題を解決するためには、アッシュ再生運転を行うに先立ち、PM再生運転を行うことによって、DPF内に堆積したPMを燃焼させ、除去することが効果的である。すなわち、PMの中に埋没した状態にあった大粒径化したCaSOが、還元雰囲気に晒されるようになり、また、還元されてCaSOとなったアッシュが、DPFの表面上の固体酸に接触するようになり、アッシュ再生運転が、効果的に進行する。 In order to solve this problem, it is effective to burn and remove the PM accumulated in the DPF by performing the PM regeneration operation before performing the ash regeneration operation. That is, CaSO 4 having a large particle size that was buried in PM is exposed to a reducing atmosphere, and the ash that has been reduced to CaSO 3 is a solid acid on the surface of the DPF. As a result, the ash regeneration operation proceeds effectively.
 この場合、PM再生運転において、PMの一部を残存させると、PM再生運転に続くアッシュ再生運転を、更に効果的に進行させることができる。 In this case, if a part of the PM remains in the PM regeneration operation, the ash regeneration operation following the PM regeneration operation can be further effectively advanced.
 図2(a)は、本発明を、本発明のDPFに対して実施する前の、アッシュの存在状態を説明する図である。通常、アッシュは、図2(a)のように、DPF内に堆積したPM10の中に埋没したCaSO31の状態にある。したがって、この状態でアッシュ再生を行おうとしても、サブミクロンの大きさに大粒径化してDPF内に堆積したCaSO31が還元雰囲気と接触することができないために、CaSO31のSOが還元されない。 FIG. 2 (a) is a diagram for explaining the presence state of ash before the present invention is applied to the DPF of the present invention. Usually, as shown in FIG. 2A, the ash is in a state of CaSO 4 31 buried in the PM 10 deposited in the DPF. Therefore, in order for this even attempt to ash playback state, CaSO 4 31 deposited in the DPF with large grain size to the size of the sub-micron can not be in contact with a reducing atmosphere, CaSO 4 31 SO 4 in Is not reduced.
 そこで、アッシュ再生運転を行うに先立ち、PM再生運転を行うことによって、DPF内に堆積したPMを燃焼させ、除去するが、本発明では、図1(a)に示すように、PM再生運転の時間を短縮し、一部のPMを残存させる。すなわち、PMを全て燃焼させ、除去するようにPM再生運転を行う場合を図1(b)に示すが、本発明では、図1(b)のようにPMを全て燃焼させ、除去するのではなく、図1(a)に示すように、ZPMの時間だけPM再生運転を行い、PM量をRPMだけ残存させ、アッシュ再生運転Zに移行する。 Therefore, prior to performing the ash regeneration operation, PM accumulated in the DPF is combusted and removed by performing the PM regeneration operation. In the present invention, as shown in FIG. Reduce time and leave some PM remaining. That is, FIG. 1B shows a case where PM regeneration operation is performed so that all PM is burned and removed. In the present invention, all PM is burned and removed as shown in FIG. 1B. without, as shown in FIG. 1 (a), performs PM regeneration operation just in time Z PM, the PM amount is left only R PM, the process proceeds to ash regeneration operation Z a.
 図2(b)は、このようにしてPM再生運転においてPM量を一部残存させた状態を説明する図であり、CaSO31の周囲にPM10の一部が残存している。 FIG. 2B is a diagram for explaining a state in which a part of the PM amount remains in the PM regeneration operation as described above, and a part of PM10 remains around the CaSO 4 31.
 図2(b)の状態において、DPF内の雰囲気を、還元雰囲気、例えばストイキ又は空燃比リッチ雰囲気とすると、図2(c)に示すように、固体酸6に吸蔵されていた酸素種65が、固体酸6の表面に拡散し、固体酸6の表面に付着した残存PM10を酸化し、除去する。 In the state of FIG. 2B, when the atmosphere in the DPF is a reducing atmosphere, for example, a stoichiometric or air-fuel ratio rich atmosphere, as shown in FIG. 2C, the oxygen species 65 occluded in the solid acid 6 is reduced. The remaining PM10 that diffuses to the surface of the solid acid 6 and adheres to the surface of the solid acid 6 is oxidized and removed.
 CaSO31の周囲に残存していたPM10が酸化、除去され、固体酸に吸蔵された酸素が消費されると、図2(d)に示すように、CaSO31は、還元雰囲気、例えばストイキ又は空燃比リッチ雰囲気の中で還元され、CaSO32となり、以下、アッシュ再生運転が進行する。 When PM10 remaining around CaSO 4 31 is oxidized and removed and oxygen stored in the solid acid is consumed, as shown in FIG. 2D, CaSO 4 31 is reduced to a reducing atmosphere, for example, stoichiometric. Alternatively, it is reduced in an air-fuel ratio rich atmosphere to become CaSO 3 32, and then the ash regeneration operation proceeds.
 以上の制御は、使用する固体酸の酸素吸蔵量(OSC量)を、あらかじめ実験等によって把握しておき、また、エンジン運転状態に応じたPM排出量のマップや、排気ガス量とDPF温度に応じたPM燃焼速度のマップ等を備えておき、PM再生運転において固体酸のOSC量によって燃焼するPM量だけ残存させるように行うことが好ましい。このように制御すると、最終的にPMが残存することなく、また、酸素が完全に除去され、大粒径化したCaSOの還元反応を効果的に行うことができる。 In the above control, the oxygen storage amount (OSC amount) of the solid acid to be used is obtained in advance by experiments or the like, and the map of the PM emission amount according to the engine operating state, the exhaust gas amount and the DPF temperature are set. It is preferable to prepare a map of the corresponding PM combustion speed, etc. so that only the amount of PM burned by the solid acid OSC amount remains in the PM regeneration operation. By controlling in this way, it is possible to effectively carry out the reduction reaction of CaSO 4 having a large particle size, with no PM remaining finally and oxygen being completely removed.
1 内燃機関
2 DPF
3 アッシュ
4 細粒径化粒子
5 DPF基材
6 固体酸
10 PM
31 CaSO
32 CaSO
65 酸素種
PM:残存PM量
PM:PM再生運転
:アッシュ再生運転
1 Internal combustion engine 2 DPF
3 Ash 4 Fine particle 5 DPF base 6 Solid acid 10 PM
31 CaSO 4
32 CaSO 3
65 Oxygen species R PM : Residual PM amount Z PM : PM regeneration operation Z A : Ash regeneration operation

Claims (2)

  1.  内燃機関の排気系にDPFを配置した、内燃機関の排気浄化装置であって、
     前記DPFが、表面上に固体酸をコーティングしたDPFであり、
     前記固体酸の酸強度が、SOの酸強度よりも大きくSOの酸強度よりも小さく、
     更に、前記DPF内に堆積したアッシュを除去する、アッシュ再生運転の制御を備え、
     前記アッシュ再生運転の制御が、
     DPFの温度を上昇させる制御と、
     DPF内の雰囲気の空燃比の制御と、を備え、
     前記DPF内の雰囲気の空燃比の制御が、前記DPFの温度を上昇させる制御の間に、先にストイキ又は空燃比リッチ雰囲気とし、次に空燃比リーン雰囲気に変化させる制御であり、
     前記アッシュ再生運転を行う前に、PM再生運転を行い、
     前記PM再生運転において、所定の量のPMを残存させ、
     前記所定の量のPMが残存しているときに、前記アッシュ再生運転を行うことを特徴とする、
     内燃機関の排気浄化装置。
    An exhaust purification device for an internal combustion engine in which a DPF is disposed in an exhaust system of the internal combustion engine,
    The DPF is a DPF having a surface coated with a solid acid,
    The acid strength of the solid acid is greater than the acid strength of SO 3 and less than the acid strength of SO 4 ;
    Furthermore, the ash regeneration operation control for removing the ash accumulated in the DPF is provided,
    The control of the ash regeneration operation is
    Control to increase the temperature of the DPF;
    An air-fuel ratio control of the atmosphere in the DPF,
    The control of the air-fuel ratio of the atmosphere in the DPF is a control for changing the atmosphere to the stoichiometric or air-fuel ratio rich atmosphere first and then changing to the air-fuel ratio lean atmosphere during the control to increase the temperature of the DPF.
    Before performing the ash regeneration operation, perform the PM regeneration operation,
    In the PM regeneration operation, a predetermined amount of PM is left,
    The ash regeneration operation is performed when the predetermined amount of PM remains.
    An exhaust purification device for an internal combustion engine.
  2.  前記固体酸が、OSC能を有する場合において、
     残存するPMの前記所定の量が、前記固体酸のOSC量に対応する量であることを特徴とする、
     請求項1に記載の内燃機関の排気浄化装置。
    In the case where the solid acid has OSC ability,
    The predetermined amount of remaining PM is an amount corresponding to the amount of OSC of the solid acid,
    The exhaust emission control device for an internal combustion engine according to claim 1.
PCT/JP2011/065638 2011-07-01 2011-07-01 Exhaust purification device for internal combustion engine WO2013005339A1 (en)

Priority Applications (26)

Application Number Priority Date Filing Date Title
PCT/JP2011/065638 WO2013005339A1 (en) 2011-07-01 2011-07-01 Exhaust purification device for internal combustion engine
PCT/JP2012/067405 WO2013005850A2 (en) 2011-07-01 2012-06-29 Exhaust Purification System for Internal Combustion Engine
EP12741114.8A EP2726175B1 (en) 2011-07-01 2012-06-29 Exhaust Purification System for Internal Combustion Engine
EP12741116.3A EP2726177B1 (en) 2011-07-01 2012-06-29 Exhaust purification system for internal combustion engine
CN201280030742.8A CN103619438B (en) 2011-07-01 2012-06-29 Method of removing ash from particulate filter
CN201280032271.4A CN103635245B (en) 2011-07-01 2012-06-29 Particulate filter
EP12738239.8A EP2726172B1 (en) 2011-07-01 2012-06-29 Particulate filter
EP12738240.6A EP2726173B1 (en) 2011-07-01 2012-06-29 Method of removing ash from particulate filter
US14/126,947 US9057298B2 (en) 2011-07-01 2012-06-29 Exhaust purification system for internal combustion engine
US14/127,355 US9080480B2 (en) 2011-07-01 2012-06-29 Exhaust purification system for internal combustion engine
CN201280031473.7A CN103619441B (en) 2011-07-01 2012-06-29 Exhaust purification system for internal combustion engine
PCT/JP2012/067404 WO2013005849A1 (en) 2011-07-01 2012-06-29 Exhaust Purification System for Internal Combustion Engine
JP2013555681A JP5626487B2 (en) 2011-07-01 2012-06-29 Particulate filter
JP2013535609A JP5494893B2 (en) 2011-07-01 2012-06-29 How to remove ash from particulate filters
EP12741115.5A EP2726176A2 (en) 2011-07-01 2012-06-29 Exhaust purification system for internal combustion engine
US14/110,811 US8778053B2 (en) 2011-07-01 2012-06-29 Method of removing ash from particulate filter
PCT/JP2012/067407 WO2013005852A1 (en) 2011-07-01 2012-06-29 Particulate Filter
JP2014514345A JP2014520229A (en) 2011-07-01 2012-06-29 Exhaust gas purification device for internal combustion engine
US14/126,904 US9011569B2 (en) 2011-07-01 2012-06-29 Particulate filter
PCT/JP2012/067408 WO2013005853A2 (en) 2011-07-01 2012-06-29 Method of Removing Ash from Particulate Filter
US14/126,997 US9057299B2 (en) 2011-07-01 2012-06-29 Exhaust purification system for internal combustion engine
JP2013555657A JP2014520227A (en) 2011-07-01 2012-06-29 Exhaust gas purification device for internal combustion engine
CN201280031454.4A CN103619439B (en) 2011-07-01 2012-06-29 For the emission control system of internal combustion engine
JP2013555656A JP5655961B2 (en) 2011-07-01 2012-06-29 Exhaust gas purification device for internal combustion engine
CN201280031461.4A CN103619440B (en) 2011-07-01 2012-06-29 Exhaust purification system for internal combustion engine
PCT/JP2012/067406 WO2013005851A2 (en) 2011-07-01 2012-06-29 Exhaust Purification System for Internal Combustion Engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2011/065638 WO2013005339A1 (en) 2011-07-01 2011-07-01 Exhaust purification device for internal combustion engine

Publications (1)

Publication Number Publication Date
WO2013005339A1 true WO2013005339A1 (en) 2013-01-10

Family

ID=47436711

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/065638 WO2013005339A1 (en) 2011-07-01 2011-07-01 Exhaust purification device for internal combustion engine

Country Status (1)

Country Link
WO (1) WO2013005339A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20170026982A1 (en) * 2014-01-24 2017-01-26 Nokia Solutions And Networks Oy Method, Apparatus and Computer Program for Scheduling in Dual Connectivity Scenarios

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1054268A (en) * 1996-08-08 1998-02-24 Toyota Motor Corp Exhaust emission control device for diesel engine
JP2004513771A (en) * 2001-05-16 2004-05-13 ケイエイチ ケミカルズ カンパニー、リミテッド Catalyst for purification of diesel engine exhaust gas
JP2006255539A (en) * 2005-03-15 2006-09-28 Toyota Motor Corp Exhaust gas purifying device

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1054268A (en) * 1996-08-08 1998-02-24 Toyota Motor Corp Exhaust emission control device for diesel engine
JP2004513771A (en) * 2001-05-16 2004-05-13 ケイエイチ ケミカルズ カンパニー、リミテッド Catalyst for purification of diesel engine exhaust gas
JP2006255539A (en) * 2005-03-15 2006-09-28 Toyota Motor Corp Exhaust gas purifying device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20170026982A1 (en) * 2014-01-24 2017-01-26 Nokia Solutions And Networks Oy Method, Apparatus and Computer Program for Scheduling in Dual Connectivity Scenarios

Similar Documents

Publication Publication Date Title
JP4503593B2 (en) Exhaust mechanism for lean burn engine including particulate matter filter and NOx absorbent
RU2455503C2 (en) Device with internal combustion engine operating on lean mixture and exhaust system
RU2451189C2 (en) Method of recovery carbon-black filters in exhaust system of ice running on lean mixes and exhaust system to this end
JP2011256869A (en) Method for removing nitrogen oxide and carbon black particulates from lean exhaust gas of internal combustion engine
KR20050057213A (en) Exhaust system for lean burn ic engines
JP2007291980A (en) Exhaust emission control device
JP2016196886A (en) EXHAUST SYSTEM COMPRISING NOx STORAGE CATALYST AND CATALYZED SOOT FILTER
JP6129514B2 (en) Diesel oxidation catalyst device regeneration cycle determination method
FR2956039A1 (en) Method for treating exhaust gas containing nitrogen oxides in exhaust gas treating line of engine i.e. diesel engine, of vehicle i.e. heavy lorry, involves injecting variable quantities of reducer into exhaust gas treating line
WO2013005339A1 (en) Exhaust purification device for internal combustion engine
JP2011032952A (en) Exhaust emission control device for ship and method for exhaust emission control
JP2009150279A (en) Exhaust gas treatment device
JP2005511942A (en) Method and equipment for regenerating the storage catalyst during exhaust gas purification, especially for desulfurization
KR101724453B1 (en) System for purifying exhaust gas and method for controlling the same
WO2013005335A1 (en) Exhaust purification apparatus for internal combustion engine
JPWO2013005339A1 (en) Exhaust gas purification device for internal combustion engine
WO2013005340A1 (en) Exhaust purification apparatus for internal combustion engine
WO2013005337A1 (en) Exhaust purification apparatus for internal combustion engine
WO2013005338A1 (en) Exhaust purification apparatus for internal combustion engine
WO2013005334A1 (en) Exhaust purification apparatus for internal combustion engine
US20070144148A1 (en) System for assisting the regeneration of depollution means included in a motor vehicle exhaust line
WO2013005342A1 (en) Exhaust purification device for internal combustion engine
JPWO2013005337A1 (en) Exhaust gas purification device for internal combustion engine
JPWO2013005334A1 (en) Exhaust gas purification device for internal combustion engine
JPWO2013005342A1 (en) Exhaust gas purification device for internal combustion engine

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2012503564

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11869030

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11869030

Country of ref document: EP

Kind code of ref document: A1