WO2013004057A1 - 一种热核聚变堆用不锈钢板的制造方法 - Google Patents

一种热核聚变堆用不锈钢板的制造方法 Download PDF

Info

Publication number
WO2013004057A1
WO2013004057A1 PCT/CN2011/080681 CN2011080681W WO2013004057A1 WO 2013004057 A1 WO2013004057 A1 WO 2013004057A1 CN 2011080681 W CN2011080681 W CN 2011080681W WO 2013004057 A1 WO2013004057 A1 WO 2013004057A1
Authority
WO
WIPO (PCT)
Prior art keywords
molten steel
steel
molten
rolling
stainless steel
Prior art date
Application number
PCT/CN2011/080681
Other languages
English (en)
French (fr)
Inventor
刘承志
Original Assignee
山西太钢不锈钢股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 山西太钢不锈钢股份有限公司 filed Critical 山西太钢不锈钢股份有限公司
Publication of WO2013004057A1 publication Critical patent/WO2013004057A1/zh

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B3/00Rolling materials of special alloys so far as the composition of the alloy requires or permits special rolling methods or sequences ; Rolling of aluminium, copper, zinc or other non-ferrous metals
    • B21B3/02Rolling special iron alloys, e.g. stainless steel
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D7/00Casting ingots, e.g. from ferrous metals
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21CPROCESSING OF PIG-IRON, e.g. REFINING, MANUFACTURE OF WROUGHT-IRON OR STEEL; TREATMENT IN MOLTEN STATE OF FERROUS ALLOYS
    • C21C5/00Manufacture of carbon-steel, e.g. plain mild steel, medium carbon steel or cast steel or stainless steel
    • C21C5/52Manufacture of steel in electric furnaces
    • C21C5/5264Manufacture of alloyed steels including ferro-alloys
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21CPROCESSING OF PIG-IRON, e.g. REFINING, MANUFACTURE OF WROUGHT-IRON OR STEEL; TREATMENT IN MOLTEN STATE OF FERROUS ALLOYS
    • C21C7/00Treating molten ferrous alloys, e.g. steel, not covered by groups C21C1/00 - C21C5/00
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21CPROCESSING OF PIG-IRON, e.g. REFINING, MANUFACTURE OF WROUGHT-IRON OR STEEL; TREATMENT IN MOLTEN STATE OF FERROUS ALLOYS
    • C21C7/00Treating molten ferrous alloys, e.g. steel, not covered by groups C21C1/00 - C21C5/00
    • C21C7/04Removing impurities by adding a treating agent
    • C21C7/072Treatment with gases
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D7/00Modifying the physical properties of iron or steel by deformation
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C1/00Making non-ferrous alloys
    • C22C1/02Making non-ferrous alloys by melting
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C1/00Making non-ferrous alloys
    • C22C1/02Making non-ferrous alloys by melting
    • C22C1/03Making non-ferrous alloys by melting using master alloys
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C19/00Alloys based on nickel or cobalt
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C22/00Alloys based on manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C27/00Alloys based on rhenium or a refractory metal not mentioned in groups C22C14/00 or C22C16/00
    • C22C27/04Alloys based on tungsten or molybdenum
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C27/00Alloys based on rhenium or a refractory metal not mentioned in groups C22C14/00 or C22C16/00
    • C22C27/06Alloys based on chromium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C28/00Alloys based on a metal not provided for in groups C22C5/00 - C22C27/00
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/001Ferrous alloys, e.g. steel alloys containing N
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/44Ferrous alloys, e.g. steel alloys containing chromium with nickel with molybdenum or tungsten
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/48Ferrous alloys, e.g. steel alloys containing chromium with nickel with niobium or tantalum
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/52Ferrous alloys, e.g. steel alloys containing chromium with nickel with cobalt
    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21BFUSION REACTORS
    • G21B1/00Thermonuclear fusion reactors
    • G21B1/11Details
    • G21B1/17Vacuum chambers; Vacuum systems
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B1/00Metal-rolling methods or mills for making semi-finished products of solid or profiled cross-section; Sequence of operations in milling trains; Layout of rolling-mill plant, e.g. grouping of stands; Succession of passes or of sectional pass alternations
    • B21B1/22Metal-rolling methods or mills for making semi-finished products of solid or profiled cross-section; Sequence of operations in milling trains; Layout of rolling-mill plant, e.g. grouping of stands; Succession of passes or of sectional pass alternations for rolling plates, strips, bands or sheets of indefinite length
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21CPROCESSING OF PIG-IRON, e.g. REFINING, MANUFACTURE OF WROUGHT-IRON OR STEEL; TREATMENT IN MOLTEN STATE OF FERROUS ALLOYS
    • C21C5/00Manufacture of carbon-steel, e.g. plain mild steel, medium carbon steel or cast steel or stainless steel
    • C21C5/52Manufacture of steel in electric furnaces
    • C21C5/5211Manufacture of steel in electric furnaces in an alternating current [AC] electric arc furnace
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21CPROCESSING OF PIG-IRON, e.g. REFINING, MANUFACTURE OF WROUGHT-IRON OR STEEL; TREATMENT IN MOLTEN STATE OF FERROUS ALLOYS
    • C21C7/00Treating molten ferrous alloys, e.g. steel, not covered by groups C21C1/00 - C21C5/00
    • C21C7/10Handling in a vacuum
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/10Nuclear fusion reactors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Definitions

  • the invention relates to a method for manufacturing a stainless steel plate for a thermonuclear fusion reactor (including an experimental reactor). Background technique
  • Thermonuclear fusion is a new type of nuclear power technology.
  • ITER International Thermonuclear Experimental Reactor
  • the quality of stainless steel plate is very high.
  • the steel plate produced by the existing manufacturing process is 1).
  • the Co, Nb and Ti elements in the molten steel are difficult to meet the requirements of ITER.
  • the Co content of the product is generally above 0.10%.
  • the use of nitride alloy increases.
  • the water and nitrogen content of steel, such as ferromanganese nitride and ferrochrome nitride will increase the inclusion content of molten steel.
  • the present invention provides a method for manufacturing a stainless steel plate for a thermonuclear fusion reactor, the stainless steel plate produced by the method, rolling in a rolling direction and vertical The difference in tensile strength and elongation performance of the direction is small.
  • thermonuclear fusion reactor (ITER is a thermonuclear fusion reactor, an experimental reactor project) uses the weight percentage of stainless steel sheet material as:
  • thermonuclear fusion reactors Specifications: (6-60) (1500-3100) (4000-12000) mm.
  • the present invention mainly improves the above disadvantages through the process design of the smelting and rolling process.
  • the manufacturing method of the stainless steel plate for the thermonuclear fusion reactor includes the following sequential steps:
  • the nickel plate requires Co content: 0 ⁇ Co ⁇ 0.5%; the P requirement in molten iron is: P ⁇ 0.03%.
  • the weight ratio of molten iron, ferrochrome, nickel plate, ferromanganese, ferrosilicon and ferromolybdenum is the composition of molten steel which is smelted into iron, chromium, nickel, manganese and silicon in the stainless steel plate for thermonuclear fusion reactor.
  • the requirement for the weight percentage of molybdenum (the actual added alloy can fluctuate by 10% within the theoretical calculation range).
  • the VOD stainless steel smelting equipment is smelted according to the stainless steel smelting process, and is smelted by any one of electric furnace + VOD smelting method, converter + VOD and electric furnace + AOD + VOD smelting method.
  • the molten iron, ferrochrome, nickel plate, ferromanganese, ferrosilicon and ferromolybdenum are added to the electric furnace or converter for smelting, and then poured into a VOD furnace for smelting, and the top blowing oxygen 3-10 m 3 /t molten steel during the decarburization period, the bottom blowing nitrogen flow rate ⁇ 5L/min-t molten steel; after decarburization, the bottom blowing nitrogen flow rate ⁇ 10L/miirt, stirring ⁇ 10min;
  • the nitrogen content is determined, and the target nitrogen content of the stainless steel product is determined to increase the nitrogen content; then, the ferrosilicon is added (mainly the reduced raw material, into the steel silicon content of about 0.4%) 3-10kg / t molten steel, lime 3-25kg / t molten steel for reduction, after reduction according to (1), according to the product needs to increase the nitrogen content to calculate the bottom blowing
  • the amount of nitrogen is used to control the amount
  • T blowing time, in minutes
  • F coefficient
  • i is determined according to the strength of the nitrogen gas blown, and when the nitrogen flow rate is 5-8 L/miivt molten steel, the f value is 0.9-0.8; When the nitrogen flow rate is 8-lO L/miivt molten steel, the f value is 0.7-0.8; when the nitrogen flow rate is greater than 10 L/min.t molten steel, the f value is 0.6);
  • the molten steel enters the LF furnace station, and the molten steel temperature is adjusted by the LF furnace electrode heating.
  • aluminum is added, and the amount of molten steel per p ⁇ is 0.3-1.5 kg (the aluminum pellet (block) is added as usual or Feed aluminum wire 0.3-1.5kg / t (steel water), or add 0.3-1.5kg / t (steel water) aluminum powder in the slag surface; according to the amount of nitrogen blowing in 1 liter - 2 liter / min ⁇ ton blowing nitrogen ⁇ After 2 minutes; add 0.3-2.0 kg of A 1 ⁇ molten steel of Ca-Si line, and again blow nitrogen for 1 liter - 2 liter / min ⁇ ton of nitrogen for ⁇ 2 minutes.
  • the mass percentage of the composition of the molten steel is as follows:
  • the slab heating temperature is 1230-1310 ° C; the heating time ⁇ (slab thickness value mmxl minutes) is controlled.
  • Slab rolling Firstly, the steel sheet is rolled in the width direction (Y direction) for rolling. When the width of the slab after rolling is different from the required width of the product by 15 mm to 80 mm, the slab width is smaller than the product. Width) Stop rolling, rotate the steel plate by 90 degrees, and roll it along the X direction to complete the rolling until the thickness of the steel plate meets the national standard tolerance requirements.
  • the above method for producing a stainless steel plate for a thermonuclear fusion reactor is characterized in that, in the step III LF treatment process, the mass percentage of the composition of the molten steel reaches the following requirements:
  • the manufacturing method of the stainless steel plate for the thermonuclear fusion reactor can effectively increase the nitrogen content in the product and reduce the content of inclusions in the molten steel; the residual element content, the inclusion content and the mechanical property can reach:
  • the stainless steel grade of this example is 316L (N) -IG.
  • the hot nuclear fusion reactor smelted in this embodiment uses 82 tons of stainless steel steel, and needs 42.4 tons of molten iron. 22.1 tons of ferrochrome, 11.5 tons of nickel plate, 2.1 tons of ferromanganese, 2.05 ⁇ of ferrosilicon and 3.4 tons of ferromolybdenum; the composition of molten steel smelted into iron, chromium, nickel and manganese in the stainless steel plate for thermonuclear fusion reactor , the weight percentage of silicon and molybdenum.
  • the weight percentage of each raw material component is as follows:
  • Hot metal composition C 3.68% Si 0.08% P 0.013% S 0.008%
  • the rest is Fe.
  • Ferrochrome C 7.42% Si 1.06% P 0.028% S 0.006% Cr 67.2% Residual Fe.
  • Nickel plate Ni 99.93% Co 0.03% The rest are impurities.
  • Ferromanganese C 9.07% Si 1.06% P 0.034% S 0.012% ⁇ 72 ⁇ 9% Residual Fe.
  • Ferrosilicon C O.12% P 0.048% S 0.038% Si 75.3% Residual Fe.
  • Molybdenum iron C 0.02% P 0.02% S 0.009% Mo 62.6% Residual Fe.
  • the above raw materials were added to a 90-ton K-OBM-S converter for smelting.
  • the composition and temperature of the molten steel reached the following requirements, the molten steel was poured into a 90-ton VOD furnace for smelting.
  • the rest are Fe and unavoidable impurities, and the molten steel temperature is 1586 °C.
  • the nitrogen flow rate was 11.5 L/min. Tonne of molten steel was blown for 23 minutes.
  • the weight percentage of the molten steel VOD component is:
  • the rest are Fe and unavoidable impurities, and the molten steel temperature is 1577 °C.
  • the molten steel is heated by the electrode of the LF furnace to adjust the temperature to 1586 ° C, and the aluminum powder of 0.5 kg/t (steel water) is added to the slag surface before the exit, and the nitrogen is blown at a pressure of 1.8 liter/min ⁇ ton of steel for 6 minutes.
  • Ca-Si Line 0.6 kg of slag steel, again blowing nitrogen at a rate of 1.1 liters / min 'ton of nitrogen for 7 minutes.
  • the weight percentage of the composition before pouring the molten steel is:
  • the second Kunming billet is a four-kun hot rolling mill for rolling.
  • Slab rolling After the slab is out of the heating furnace, it is rolled according to the blank 180 (thickness) ⁇ 1000 (width) ⁇ 1800 (length) mm along the 1000 mm direction (Y direction). When the billet width reaches 1550 mm, the steel sheet rotates. At 90 degrees, rolling is performed along the longitudinal direction (X direction) of 1800 mm, and when the thickness of the steel sheet reaches 30.4 mm, rolling is completed.
  • the stainless steel grade of this embodiment is 316LN.
  • the hot nuclear fusion reactor used in this embodiment is 85 tons of stainless steel molten steel, which requires 44.4 tons of molten iron, 23.2 tons of ferrochrome, 11.8 tons of nickel plate, 1.6 tons of ferromanganese, 2.2 tons of ferrosilicon and 3.5 tons of ferromolybdenum.
  • the composition meets the requirements for the weight percentage of iron, chromium, nickel, manganese, silicon and molybdenum in the thermonuclear fusion reactor with stainless steel sheets.
  • the weight percentage of each raw material component is as follows:
  • Hot metal composition C 3.44% Si 0.010% P 0.012% S 0.009% The rest is Fe.
  • Ferrochrome C 7.42% Si 1.06% P 0.028% S 0.006% Cr 67.2% Residual Fe.
  • Nickel plate Ni 99.93% Co 0.03% The rest are impurities.
  • Ferromanganese C 9.07% Si 1.06% P 0.034% S 0.012% ⁇ 72 ⁇ 9% Residual Fe.
  • Ferrosilicon C O.12% P 0.048% S 0.038% Si 75.3% Residual Fe.
  • Molybdenum iron C 0.02% P 0.02% S 0.009% Mo 62.6% Residual Fe.
  • the above raw materials are added to a 90-ton K-OBM-S converter.
  • the composition and temperature of the molten steel reach the following requirements, the molten steel is poured into a 90-ton VOD furnace for smelting;
  • the rest is Fe and inevitable impurities, molten steel temperature 1580 ° C VOD furnace smelting bottom blowing nitrogen gas, decarburization period top blowing oxygen 4.2m 3 /t molten steel, decarburization period nitrogen flow 5.6 liters / min.
  • the rest is Fe and the inevitable impurities.
  • the molten steel temperature is 1541 °C.
  • the molten steel is heated by the electrode of the LF furnace.
  • the temperature of the molten steel is adjusted from the temperature of 1541 °C to 1588 °C.
  • the molten steel is added with an aluminum wire of 0.66 kg/t (steel water), and the amount of nitrogen blown is 1.6 liters/min. After nitrogening for 3 minutes; 0.5 kg of A 1 ⁇ molten steel of Ca-Si wire was added, and nitrogen gas was again blown at 1.0 liter/min-ton for 5 minutes.
  • the two rolls are opened and rolled by a four-roll hot rolling mill.
  • Y direction tensile strength 592 Mp / mm 2 ; elongation of 47%.
  • the stainless steel grade of this embodiment is 316L.
  • the stainless steel molten steel for the thermonuclear fusion reactor smelted in this embodiment is required to use 45 tons of molten iron, 23.6 tons of ferrochrome, 12.0 tons of nickel plate, 1.6 tons of ferromanganese, 2.45 p of ferrosilicon and 3.6 tons of ferromolybdenum.
  • the composition of the molten steel meets the requirements for the weight percentage of iron, chromium, nickel, manganese, silicon and molybdenum in the stainless steel plate for thermonuclear fusion reactors.
  • the weight percentage of each raw material component is as follows:
  • Hot metal composition C3.61% Si 0.011% P 0.013% S 0.009% The rest is Fe.
  • Ferrochrome C 7.42% Si 1.06% P 0.028% S 0.006% Cr67.2% Residual Fe.
  • Nickel plate Ni 99.93% Co 0.03% The rest are impurities.
  • Ferromanganese C 9.07% Si 1.06% P 0.034% S 0.012% ⁇ 72 ⁇ 9% Residual Fe.
  • Ferrosilicon C O.12% P 0.048% S 0.038% Si 75.3% Residual Fe.
  • Ferro Molybdenum C O.02% P 0.02% S 0.009% Mo 62.6% Residual Fe.
  • the above raw materials are added to a 90-ton K-OBM-S converter.
  • the composition and temperature of the molten steel reach the following requirements, the molten steel is poured into a 90-ton VOD furnace for smelting;
  • the rest are Fe and unavoidable impurities, and the molten steel temperature is 1582 °C.
  • the rest is Fe and the inevitable impurities.
  • the molten steel temperature is 1545 °C.
  • the molten steel is heated by the electrode of the LF furnace.
  • the temperature of the molten steel is adjusted from 1545 V to 1585 °C.
  • the molten steel is added to the aluminum wire of 0.60 kg/t (steel water) before the exit, and the nitrogen blowing amount is 1.7 L/min ⁇ ton of steel. After a minute; add 0.5 kg of A 1 ⁇ molten steel to the Ca-Si line, and again blow nitrogen for 5 minutes at 1.0 liter/min-ton.
  • Pre-casting composition of molten steel :
  • the two rolls are opened and rolled by a four-roll hot rolling mill.
  • Slab rolling After the slab is out of the heating furnace, it is first rolled according to the blank 180 (thickness) x100 (width) ⁇ 2100 (length) mm along the 1000mm direction (Y direction). When the billet width reaches 2000mm, the steel sheet rotates. At 90 degrees, rolling is performed along the length direction (X direction) of 2100 mm, and when the thickness of the steel sheet reaches 20.1 mm, rolling is completed.
  • X direction tensile strength 563Mp/mm 2 ; elongation 50%.
  • Y direction tensile strength 558Mp/mm 2 ; elongation 48%.
  • the stainless steel grade of this embodiment is 304.
  • the hot nuclear fusion reactor smelted in this embodiment is 85 tons of stainless steel molten steel, which requires 52.5 tons of molten iron, 25.7 tons of ferrochrome, 7.8 tons of nickel plate, 1.6 tons of ferromanganese, 2.3 tons of ferrosilicon (0 tons with ferromolybdenum);
  • the composition of the molten steel meets the requirements for the weight percentage of iron, chromium, nickel, manganese and silicon in the thermonuclear fusion stack with stainless steel sheets.
  • the weight percentage of each raw material component is as follows:
  • Hot metal composition C 3.52% Si 0.010% P 0.012% S 0.009% The rest is Fe.
  • Ferrochrome C 7.42% Si 1.06% P 0.028% S 0.006% Cr 67.2% Residual Fe.
  • Nickel plate Ni 99.93% Co 0.03% The rest are impurities.
  • Ferromanganese C 9.07% Si 1.06% P 0.034% S 0.012% ⁇ 72 ⁇ 9% is Fe.
  • Ferrosilicon C O.12% P 0.048% S 0.038% Si75.3% Residual Fe.
  • the above raw materials are added to a 90-ton K-OBM-S converter.
  • the composition and temperature of the molten steel reach the following requirements, the molten steel is poured into a 90-ton VOD furnace for smelting;
  • the rest are Fe and unavoidable impurities, and the molten steel temperature is 1580 °C.
  • the rest are Fe and unavoidable impurities, and the molten steel temperature is 1556 °C.
  • the two rolls are opened and rolled by a four-roll hot rolling mill.
  • Slab rolling After the slab is out of the heating furnace, it is first rolled according to the blank 180 (thickness) x lOOO (width) ⁇ 2100 (length) mm along the 1000mm direction (Y direction). When the slab width reaches 1800mm, the steel plate The rotation was performed at 90 degrees, and the rolling was performed along the length direction (X direction) of 2100 mm. When the thickness of the steel sheet reached 35.3 mm, rolling was completed.
  • X direction tensile strength 572Mp/mm 2 ; elongation 50%.
  • Y direction tensile strength 565Mp/mm 2 ; elongation 48%.
  • [(X-direction tensile strength performance - Y-direction tensile strength performance) ⁇ direction tensile strength l 00% 1.2% ⁇ 15%.
  • step (2) smelting equipment, process can also be smelted by electric furnace + VOD smelting method or electric furnace + AOD + VOD smelting method.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Plasma & Fusion (AREA)
  • General Engineering & Computer Science (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Thermal Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Treatment Of Steel In Its Molten State (AREA)
  • Heat Treatment Of Steel (AREA)

Abstract

本发明涉及一种热核聚变堆用不锈钢板的制造方法,它包括下述依次的步骤:Ⅰ准备原料:Ⅱ冶炼装备、工艺将铁水、铬铁、镍板、锰铁、硅铁与钼铁加入电炉或转炉中冶炼后,倒入VOD炉中冶炼,钢水还原后按(1)式底吹氮气量;Y=2.5×f×X×t 式中:X——吹入钢水氮气流量,单位升/分钟⋅吨;t——吹氮气时间,单位分钟;f——系数,取值范围0.60-1.0;Y——产品需要增加氮含量值,ppm;ⅢLF处理工艺钢水的成分的质量百分比达要求时出钢:Ⅳ出钢浇注钢锭或连铸坯;Ⅴ热轧工艺先把钢板沿着宽度方向延展进行轧制,再把钢板旋转90度沿着另一个方向延展进行轧制。本发明制造的不锈钢板,纵向与横向方向的抗拉强度、伸长率性能差异性较小。

Description

一种热核聚变堆用不锈钢板的制造方法 技术领域
本发明涉及一种热核聚变堆(包括实验堆)用不锈钢板的制造方法。 背景技术
热核聚变是新型核电技术, 其中 ITER ( International Thermonuclear Experimental Reactor国际热核聚变堆)是欧盟、 美国、 中国、 日本、 俄罗 斯、 印度、 韩国七个国家地区参加的新型聚变核电实验计划, 其需求的不 锈钢钢板质量要求很高, 采用现有的制造工艺生产的钢板, 1 )钢水中 Co、 Nb、 Ti元素难以满足 ITER要求范围,其中产品 Co含量一般在 0.10%以上; 2 )采用氮化合金增加钢水氮含量, 如氮化锰铁、 氮化铬铁, 会增加钢水夹 杂物含量, 产品中的八、 B、 C、 D类型 (粗、 细) 夹杂物都难以分别达到 0级 -1.5级, 夹杂物总量级别难以控制在 0级 -6级; 3 ) 热轧钢板沿轧制方 向和垂直轧制方向的抗拉强度、伸长率性能差异性大于 15%,—般可达 40%
(用 Y方向表示垂直于轧制方向, 用 X方向表示沿着轧制方向)。 一般产 品在 X、 Y方向的抗拉强度、 伸长率性能存在很大的差异: [ ( X方向性能
- Y方向性能) ÷X方向性能] χ 100%的值大于等于 15%, —般在 40%左右, 使其产品在各个方向受力时, 安全性大大降低, 影响产品使用。 发明内容
为了克服现有热核聚变堆用不锈钢板的制造方法的上述不足, 本发明提 供一种用于热核聚变堆的不锈钢板制造方法, 本方法制造的不锈钢板, 沿轧 制方向和垂直轧制方向的抗拉强度、 伸长率性能差异性较小。
热核聚变堆(ITER计划属于热核聚变堆一个实验堆项目 )用不锈钢板材 料成分的重量百分比为:
0 < C <0.08%; 0 < Si<0.75% ; 0 < Mn< 2.00%; P<0.03%;
S<0.01%; Cr 16.00%-22.50%; Ni 8.00%- 14.00%; Mo 0.01%-3.00%; 0 < Co<0.10%; N 0.01%-0.25%; 0 < Nb<0.10%; 0 < Ta<0.10%; 其余 为 Fe和不可避免的杂质。
热核聚变堆用不锈钢板规格范围: ( 6-60 ) ( 1500-3100 ) ( 4000-12000 ) mm。
针对现有热核聚变堆用不锈钢板的制造方法的三点不足, 本发明主要通 过冶炼、 轧制过程工艺设计, 改善了以上不足。
本热核聚变堆用不锈钢板的制造方法包括下述依次的步骤:
I 准备原料: 以铁水、 铬铁、 镍板、 锰铁、 硅铁与钼铁为原料。
其中镍板要求 Co含量: 0 < Co≤0.5%; 铁水中 P要求为: P≤0.03% 。
铁水、 铬铁、 镍板、 锰铁、 硅铁与钼铁的重量配比是使冶炼成的钢水的 成分, 符合热核聚变堆用不锈钢板的中的铁、 铬、 镍、 锰、 硅与钼的重量百 分比的要求(实际加入的合金可以在理论计算范围内波动士 10% )。
II 冶炼装备、 工艺:
采用 VOD不锈钢冶炼设备按不锈钢冶炼工艺进行冶炼,用电炉 +VOD冶 炼法、 转炉 +VOD与电炉 +AOD+VOD冶炼法的任一种冶炼。
将铁水、 铬铁、 镍板、 锰铁、 硅铁与钼铁加入电炉或转炉中冶炼后, 倒 入 VOD炉中冶炼, 脱碳期顶吹氧气 3-10m3/t钢水, 底吹氮气流量≥5L/min-t 钢水; 脱碳完毕, 底吹氮气流量≥10L/miirt, 搅拌≥10min; 此时测定氮含量, 由不锈钢产品的目标氮含量确定产品需要增加氮含量; 然后, 加入硅铁(主 要是还原的原料, 进入钢水硅含量约 0.4% ) 3-10kg/t钢水、石灰 3-25kg/t钢水 进行还原, 还原后按(1 ) 式, 根据产品需要增加氮含量来计算底吹氮气量, 控制钢水增氮量。
Y = 2.5xfxXxt ( 1 )
式中: X——吹入钢水氮气流量, 单位 升 /分钟 ·吨;
t——吹氮气时间, 单位 分钟;
f——系数, 取值范围 0.60-1.0 (—般经验是, 根据吹入氮气强度 来确定 i, 吹入氮气流量在 5-8 L/miivt钢水时, f值取 0.9-0.8; 当吹入氮气 流量在 8-lO L/miivt钢水时, f值取 0.7-0.8; 氮气流量大于 10 L/min.t钢水时, f值取 0.6 );
Y——产品需要增加氮含量值, ppm (百万分之一)。
III LF处理工艺: 将钢水进入 LF炉工位, 通过 LF炉电极加热调整钢水温度, 出 LF炉 处理工位前, 加入铝, 每 p屯钢水的加入量为 0.3-1.5kg (—般加入铝丸(块) 或喂入铝线 0.3-1.5kg/t (钢水 ), 或者在渣面加入 0.3-1.5kg/t (钢水) 的铝粉);按吹氮量在 1升 -2升 /分钟 ·吨吹氮气≥2分钟后;加入 Ca-Si线 0.3-2.0 公斤 A1屯钢水, 再次按吹氮量 1升 -2升 /分钟 ·吨吹氮气≥2分钟。 钢水的成分 的质量百分比达下述要求时出钢:
0 < C <0.08% ; 0 < Si<0.75% ; 0 < Mn< 2.00%; P<0.03%;
S<0.01%; Cr 16.00%-22.50%; Ni 8.00%-14.00%;
Mo 0.01%-3.00%; 0 < Co<0.10%; N 0.01%-0.25%; 0 < Nb<0.10%;
0 < Ta<0.10%; 其余为 Fe和不可避免的杂质。
IV 出钢浇注钢锭或连铸坯。
板坯要求:
(最终产品要求宽度 -原料板坯宽度 ) χΐοο%/板坯宽度控制在0%- 100%。
V 热轧工艺:
板坯加热温度 1230-1310°C ; 加热时间≥ (板坯厚度数值 mmxl分钟) 进行控制。
板坯轧制: 先按使钢板沿着宽度方向 (Y 方向)延展进行轧制, 当轧 后的板坯宽度与产品要求宽度相差值在 15毫米—— 80毫米时, (板坯宽度 小于产品宽度)停止轧制,把钢板旋转 90度,沿着使 X方向延展进行轧制, 直到钢板厚度满足国家标准公差要求时, 完成轧制。
上述的热核聚变堆用不锈钢板的制造方法, 其特征是在步骤 III LF处理 工艺中, 钢水的成分的质量百分比达下述要求时出钢:
0 < C<0.03% ; 0 < Si<0.75%; 0 < Mn< 2.00%; P<0.03%;
S<0.01%; Cr 16.00%-18.50%; Ni 10.00%-14.00%; Mo 2.00%-3.00%; 0 < Co<0.05%; N 0.12%-0.17%; 0 < Nb<0.10%;
0 < Ta<0.10%; 其余为 Fe和不可避免的杂质。
上述的热核聚变堆用不锈钢板的制造方法, 其特征是在步骤 III LF处理 工艺中, 钢水的成分的质量百分比达下述要求时出钢:
0 < C<0.03% ; 0 < Si<0.75%; 0 < Mn< 2.00%; P<0.03%; S<0.01%; Cr 16.00%-18.50%; Ni 10.00%-14.00%; Mo 2.00%-3.00%; 0 < Co<0.05%; N0.01%-0.10%; 0<Nb<0.10%;
0<Ta<0.10%; 其余为 Fe和不可避免的杂质。
上述的热核聚变堆用不锈钢板的制造方法,其特征是在步骤 III LF处理 工艺中, 钢水的成分的质量百分比达下述要求时出钢:
0 < C<0.08% ; 0 < Si<0.75%; 0<Mn<2.00%; P<0.03%;
S<0.01%; Cr 18.00%-20.00%; Ni 8.00%-10.00%; Mo 0.01%-0.20%; 0 <Co<0.05%; NO.01%-0.10%; 0<Nb<0.10%;
0<Ta<0.10%; 其余为 Fe和不可避免的杂质。
本热核聚变堆用不锈钢板的制造方法可以有效增加产品中的氮含量、 降低钢水中夹杂物含量; 残余元素含量、 夹杂物含量、 机械性能可以达到:
1 )钢水中 0<Co≤0.10%、 0<Nb<0. 1%; 2)产品中的入、 B、 C、 D类型 (粗、 细) 夹杂物分别 0级到 1.5级、 同时夹杂物总级别 0级到 6.0级; 3 ) 使不锈钢热轧钢板沿轧制方向和垂直轧制方向的抗拉强度、 伸长率性能差 异性较小, 一般为 0%— 15%。 具体实施方式
下面通过实施例对本热核聚变堆用不锈钢板的制造方法的具体实施方 实施例一
本实施例的不锈钢钢种为 316L (N) -IG。
钢号: 316L (N) -IG, 成分的重量百分比要求:
0 < C <0.08% ; 0 < Si<0.75% ; 0<Mn<2.00%; P<0.03%;
S<0.01%; Cr 16.00%-22.50%; Ni 8.00%-14.00%;
Mo 0.01%-3.00%; 0<Co<0.10%; N 0.01%-0.25%; 0< Nb<0.10%; 0<Ta<0.10%; 其余为 Fe和不可避免的杂质。
产品规格: 30xl500x6000mm。
本实施例的步骤依次如下:
I 准备原料:
本实施例冶炼的热核聚变堆用不锈钢钢水 82吨, 需用铁水 42.4吨、 铬铁 22.1吨、 镍板 11.5吨、 锰铁 2.1吨、 硅铁 2.05 屯与钼铁 3.4吨; 冶炼成 的钢水的成分, 符合热核聚变堆用不锈钢板的中的铁、 铬、 镍、 锰、 硅 与钼的重量百分比的要求。
各原料成分的重量百分比如下:
铁水成分: C 3.68% Si 0.08% P 0.013% S 0.008% 其余为 Fe。 铬铁: C 7.42% Si 1.06% P 0.028% S 0.006% Cr 67.2% 余为 Fe。 镍板: Ni 99.93% Co 0.03% 其余为杂质。
锰铁: C 9.07% Si 1.06% P 0.034% S 0.012% Μη 72·9% 余为 Fe。 硅铁: C O.12% P 0.048% S 0.038% Si 75.3% 余为 Fe。
钼铁: C 0.02% P 0.02% S 0.009% Mo 62.6% 余为 Fe。
II 冶炼装备、 工艺:
将上述的原料加入 90吨 K-OBM-S转炉中进行冶炼, 当钢水的成分和温 度达到下述要求时, 把钢水倒入 90吨 VOD炉中冶炼。
C 0.22% Si 0.10% Mn 1.82% Cr 16.23%
Ni 13.81% P 0.016% S 0.002% N 1874ppm
Mo 2.15% Co 0.03%, Nb 0.01%, Ta 0.010%
其余为 Fe和不可避免的杂质, 钢水温度 1586°C。
VOD炉冶炼全过程底吹氮气,脱碳期顶吹氧气 5.2m3/t钢水,脱碳期氮气 流量 6.2升 /分钟 .吨钢水; 脱碳完毕, 底吹氮气流量 11.5升 /分钟 ·吨钢水搅拌 15分钟; 钢水氮含量 320ppm, 加入硅铁 4.8kg/t钢水、 石灰 680kg进行还原, 还原后钢水增氮量目标量 400ppm, 根据计算式(1 )式, 其中, f=0.605 求得 底吹氮气流量 11.5升 /分钟 .吨钢水吹 23分钟。 钢水出 VOD成分的重量百分 比为:
C 0.008% Si 0.41% Mn 1.78% Cr 16.27%
Ni 13.75% P 0.016% S 0.002% N 717ppm
Mo 2.13% Co 0.03%, Nb 0.01%, Ta 0.010%
其余为 Fe和不可避免的杂质, 钢水温度 1577°C。
ΠΙ LF处理工艺:
钢水通过 LF炉电极加热调整温度到 1586°C , 出站前渣面加入 0. 5kg/t (钢水)的铝粉, 按吹氮量在 1.8升 /分钟 ·吨钢吹氮气 6分钟后; 加入 Ca-Si 线 0.6公斤 屯钢水, 再次按吹氮量在 1.1升 /分钟 '吨吹氮气 7分钟。 钢水浇 注前成分重量百分比为:
C 0.012% Si 0.43% Mn 1.77% Cr 16.26%
Ni 13.77% P 0.016% S 0.002% N 751ppm
Mo 2.15% Co 0.03%, NbO.01%, Ta 0.010%
其余为 Fe和不可避免的杂质。 钢水浇注 7.2吨扁钢锭。
IV 板坯要求:
钢锭轧制规格为: 180 (厚) xlOOO (宽) X1800 (长) mm。 与产品的宽 度相比:(产品宽度-板坯宽度) χ100%/板坯宽度= ( 1500- 1000 )χ100%/1000 = 50%。
V 热轧工艺:
二昆开坯一四昆热轧机进行轧制。
板坯加热温度 1280-1300 °C; 加热时间 203分钟(加热时间大于(板坯 厚度数值 mmxl分钟))。
板坯轧制: 板坯出加热炉后,先按坯料 180(厚) χ1000(宽) χ1800(长) mm沿着 1000mm方向延展( Y方向)进行轧制, 当坯宽度达到 1550mm时, 钢板旋转 90度, 沿着使 1800mm长度方向 (X方向)延展进行轧制, 当钢 板厚度达到 30.4mm时, 完成轧制。
产品主要检测项目值:
1 )钢水中 Co 0.03%、 NbO.01%;
2)产品中夹杂物级别
A B C D
细 粗 细 粗 细 粗 细 粗
0.5 0 1.0 0 0.5 0 1.0 0
3 )机械性能
X方向: 抗拉强度 593Mp/mm2; 伸长率 56%。
Y方向: 抗拉强度 566Mp/mm2; 伸长率 49%。
[ (X方向抗拉强度性能 -Y方向抗拉强度性能) ÷X方向抗拉强度性 能] xl 00% = 4.6% < 15%。
[(X方向伸长率性能 - Y方向伸长率性能)÷X方向伸长率性能] χΐοο% = 12.5% < 15%c 实施例二
本实施例的不锈钢钢种为 316LN。
钢号: 316LN, 成分的重量百分比要求:
0 < C<0.03% ; 0 < Si<0.75%; 0 < Mn< 2.00%; P<0.03%;
S<0.01%; Cr 16.00%-18.50%; Ni 10.00%-14.00%; Mo 2.00%-3.00%; 0 < Co<0.05%; N O.12%-0.17%; 0 < Nb<0.10%;
0 < Ta<0.10%; 其余为 Fe和不可避免的杂质。
产品规格: 35xl800x5000mm。
本实施例的步骤依次如下:
(一 ) 准备原料:
本实施例冶炼的热核聚变堆用不锈钢钢水 85吨, 需用铁水 44.4吨、 铬铁 23.2吨、 镍板 11.8吨、 锰铁 1.6吨、 硅铁 2.2 屯与钼铁 3.5吨; 冶炼成 的钢水的成分, 符合热核聚变堆用不锈钢板的中的铁、 铬、 镍、 锰、 硅与钼 的重量百分比的要求。
各原料成分的重量百分比如下:
铁水成分: C 3.44% Si 0.010% P 0.012% S 0.009% 其余为 Fe。 铬铁: C 7.42% Si 1.06% P 0.028% S 0.006% Cr 67.2% 余为 Fe。 镍板: Ni 99.93% Co 0.03% 其余为杂质。
锰铁: C 9.07% Si 1.06% P 0.034% S 0.012% Μη 72·9% 余为 Fe。 硅铁: C O.12% P 0.048% S 0.038% Si 75.3% 余为 Fe。
钼铁: C 0.02% P 0.02% S 0.009% Mo 62.6% 余为 Fe。
(二) 冶炼装备、 工艺:
将上述的原料加入 90吨 K-OBM-S转炉中, 当钢水的成分和温度达到下 述要求时, 把钢水倒入 90吨 VOD炉中冶炼;
C 0.18% Si 0.09% Mn 1.30% Cr 16.52%
Ni 13.58% P 0.018% S 0.002% N 2133ppm
Mo 2.14% Co 0.03%, Nb 0.01%, Ta 0.010%
其余为 Fe和不可避免的杂质, 钢水温度 1580°C VOD炉冶炼全过程底吹氮气,脱碳期顶吹氧气 4.2m3/t钢水,脱碳期氮 气流量 5.6升 /分钟 .吨钢水; 脱碳完毕, 底吹氮气流量 12.1升 /分钟 ·吨钢水 搅拌 18分钟; 钢水氮含量 522ppm, 加入硅铁 5.1kg/t钢水、 石灰 620kg进 行还原, 还原后钢水增氮量目标量 lOOOppm, 根据计算式(1 ) 式, 其中, f=0.60求得底吹氮气流量 12.8升 /分钟 .吨钢水吹 52分钟。钢水出 VOD成分: C 0.012% Si 0.38% Mn 1.25% Cr 16.43%
Ni 13.52% P 0.018% S 0.002% N 1531ppm
Mo 2.14% Co 0.03%, Nb 0.01%, Ta 0.010%
其余为 Fe和不可避免的杂质 钢水温度 1541 °C。
(三) LF处理工艺:
钢水通过 LF炉电极加热, 钢水温度 1541 °C从调整温度到 1588°C , 出 站前钢水加入 0. 61kg/t (钢水) 的铝线, 按吹氮量在 1.6升 /分钟 .吨钢吹氮 气 3分钟后;加入 Ca-Si线 0.5公斤 A1屯钢水,再次按吹氮量在 1.0升 /分钟 -吨 吹氮气 5分钟。 钢水浇注前成分:
C 0.012% Si 0.38% Mn 1.25% Cr 16.43%
Ni 13.52% P 0.018% S 0.002% N 1558ppm
Mo 2.14% Co 0.03%, Nb 0.01%, Ta 0.010%
钢水浇注 7.2吨扁钢键。
(四)板坯要求:
钢锭轧制规格为: 180 (厚) X 1000 (宽) X2 100 (长) mm。 与产品的宽 度相比: (产品宽度 -板坯宽度) X 100%/板坯宽度 = ( 1800 - 1000 ) χ 100%/ 1000 = 80%。
(五)热轧工艺:
二辊开坯一四辊热轧机进行轧制。
板坯加热温度 1280-1300 °C ; 加热时间 203分钟, 大于(板坯厚度数值 mmx l分钟 )。
板坯轧制: 板坯出加热炉后, 先按坯料 180 (厚) X 1000 (宽) χ2100 (长)mm沿着 1000mm方向延展( Y方向)进行轧制,当坯宽度达到 1800mm 时, 钢板旋转 90度, 沿着使 2100mm长度方向 (X方向)延展进行轧制, 当钢板厚度达到 35.3mm时, 完成轧制。 产品主要检测项目值:
1 )钢水中 Co 0.03%, Nb 0.01%;
2)产品中夹杂物
A B C D
细 粗 细 粗 细 粗 细 粗
0 0 0.5 0 0 0 1.0 0
3 )机械性能
X方向: 抗拉强度 613Mp/mm2; 伸长率 51%。
Y方向: 抗拉强度 592Mp/mm2; 伸长率 47%。
[ (X方向抗拉强度性能 -Y方向抗拉强度性能) ÷x方向抗拉强度性 能] xl 00% = 3.4% < 15%。
[ (X方向伸长率性能 -Y方向伸长率性能) ÷X方向伸长率性能] χΐοο% = 7·8%< 15%。
实施例三
本实施例的不锈钢钢种为 316L。
钢号: 316L, 成分的重量百分比要求:
0 < C<0.03% ; 0 < Si<0.75%; 0<Mn<2.00%; P<0.03%;
S<0.01%; Cr 16.00%-18.50%; Ni 10.00%-14.00%; Mo 2.00%-3.00%; 0 <Co<0.05%; NO.01%-0.10%; 0<Nb<0.10%;
0<Ta<0.10%; 其余为 Fe和不可避免的杂质。
产品规格: 20x2000x8000mm。
本实施例的步骤依次如下:
(一 ) 准备原料:
本实施例冶炼的热核聚变堆用不锈钢钢水 86吨, 需用铁水 45吨、 铬铁 23.6吨、 镍板 12.0吨、 锰铁 1.6吨、 硅铁 2.45 p屯与钼铁 3.6吨; 冶炼成 的钢水的成分, 符合热核聚变堆用不锈钢板的中的铁、 铬、 镍、 锰、 硅与钼 的重量百分比的要求。
各原料成分的重量百分比如下:
铁水成分: C3.61% Si 0.011% P 0.013% S 0.009% 其余为 Fe。 铬铁: C 7.42% Si 1.06% P 0.028% S 0.006% Cr67.2% 余为 Fe。 镍板: Ni 99.93% Co 0.03% 其余为杂质。
锰铁: C 9.07% Si 1.06% P 0.034% S 0.012% Μη 72·9% 余为 Fe。 硅铁: C O.12% P 0.048% S 0.038% Si 75.3% 余为 Fe。
钼铁: C O.02% P 0.02% S 0.009% Mo 62.6% 余为 Fe。
(二) 冶炼装备、 工艺:
将上述的原料加入 90吨 K-OBM-S转炉中, 当钢水的成分和温度达到下 述要求时, 把钢水倒入 90吨 VOD炉中冶炼;
C 0.16% Si 0.09% Mn 1.33% Cr 16.48%
Ni 13.49% P 0.018% S 0.002% N 2170ppm
Mo 2.16% Co 0.03%, Nb 0.01%, Ta 0.010%
其余为 Fe和不可避免的杂质, 钢水温度 1582°C。
VOD炉冶炼全过程底吹氮气,脱碳期顶吹氧气 4.1m3/t钢水,脱碳期氮 气流量 5.8升 /分钟 .吨钢水; 脱碳完毕, 底吹氮气流量 12.3升 /分钟 ·吨钢水 搅拌 10分钟; 钢水氮含量 469ppm, 加入硅铁 5.0kg/t钢水、 石灰 620kg进 行还原, 还原后钢水不进行增氮, 钢水出 VOD成分:
C 0.010% Si 0.35% Mn 1.35% Cr 16.40%
Ni 13.48% P 0.018% S 0.002% N 469ppm
Mo 2.15% Co 0.03%, Nb 0.01%, Ta 0.010%
其余为 Fe和不可避免的杂质 钢水温度 1545°C。
(三) LF处理工艺:
钢水通过 LF炉电极加热, 钢水温度 1545 V从调整温度到 1585 °C , 出 站前钢水加入 0.60kg/t (钢水) 的铝线, 按吹氮量在 1.7升 /分钟 ·吨钢吹 氮气 3分钟后;加入 Ca-Si线 0.5公斤 A1屯钢水,再次按吹氮量在 1.0升 /分钟 -吨 吹氮气 5分钟。 钢水浇注前成分:
C 0.012% Si 0.38% Mn 1.25% Cr 16.43%
Ni 13.52% P 0.018% S 0.002% N 526ppm
Mo 2.14% Co 0.03%, Nb 0.01%, Ta 0.010%
钢水浇注 7.2吨扁钢键。
(四)板坯要求:
钢锭轧制规格为: 180 (厚) X 1000 (宽) X2 100 (长) mm。 与产品的宽 度相比: (产品宽度 -板坯宽度) X 100%/板坯宽度 = ( 1800 - 1000 )χ 100%/ 1000 = 80%。
(五)热轧工艺:
二辊开坯一四辊热轧机进行轧制。
板坯加热温度 1240-1260 °C; 加热时间 215分钟, 大于(板坯厚度数值 mmxl分钟 )。
板坯轧制: 板坯出加热炉后, 先按坯料 180 (厚) xlOOO (宽) χ2100 (长)mm沿着 1000mm方向延展( Y方向)进行轧制,当坯宽度达到 2000mm 时, 钢板旋转 90度, 沿着使 2100mm长度方向 (X方向)延展进行轧制, 当钢板厚度达到 20.1mm时, 完成轧制。
产品主要检测项目值:
1 )钢水中 Co 0.03%、 Nb 0.01%;
2)产品中夹杂物
A B C D
细 粗 细 粗 细 粗 细 粗
0 0.5 0.5 0 0 0 1.0 0
3 )机械性能
X方向: 抗拉强度 563Mp/mm2; 伸长率 50%。
Y方向: 抗拉强度 558Mp/mm2; 伸长率 48%。
[ (X方向抗拉强度性能 -Y方向抗拉强度性能) ÷x方向抗拉强度性 能] xl 00% = 0.9% < 15%。
[ (X方向伸长率性能 -Y方向伸长率性能) ÷X方向伸长率性能] χΐοο% = 4·0%< 15%。
实施例四
本实施例的不锈钢钢种为 304。
钢号: 304, 成分的重量百分比要求:
0 < C<0.08% ; 0 < Si<0.75%; 0<Mn<2.00%; P<0.03%;
S<0.01%; Cr 18.00%-20.00%; Ni 8.00%-10.00%; Mo 0.01%-0.20%; 0 <Co<0.05%; NO.01%-0.10%; 0<Nb<0.10%;
0<Ta<0.10%; 其余为 Fe和不可避免的杂质。 产品规格: 35xl800x5000mm。
本实施例的步骤依次如下:
(一 ) 准备原料:
本实施例冶炼的热核聚变堆用不锈钢钢水 85吨, 需用铁水 52.5吨、 铬铁 25.7吨、 镍板 7.8吨、 锰铁 1.6吨、 硅铁 2.3吨(与钼铁 0吨 ); 冶炼成 的钢水的成分, 符合热核聚变堆用不锈钢板的中的铁、 铬、 镍、 锰、 硅的重 量百分比的要求。
各原料成分的重量百分比如下:
铁水成分: C 3.52% Si 0.010% P 0.012% S 0.009% 其余为 Fe。 铬铁: C 7.42% Si 1.06% P 0.028% S 0.006% Cr 67.2% 余为 Fe。 镍板: Ni 99.93% Co 0.03% 其余为杂质。
锰铁: C 9.07% Si 1.06% P 0.034% S 0.012% Μη72·9%余为 Fe。 硅铁: C O.12% P 0.048% S 0.038% Si75.3% 余为 Fe。
(二) 冶炼装备、 工艺:
将上述的原料加入 90吨 K-OBM-S转炉中, 当钢水的成分和温度达到下 述要求时, 把钢水倒入 90吨 VOD炉中冶炼;
C 0.14% Si 0.09% Mn 1.30% Cr 18.42%
Ni 9.25% P 0.018% S 0.002% N 2133ppm
Mo 0.03% Co 0.03%, Nb O.01%, Ta 0.010%
其余为 Fe和不可避免的杂质, 钢水温度 1580°C。
VOD炉冶炼全过程底吹氮气,脱碳期顶吹氧气 4.2m3/t钢水,脱碳期氮 气流量 5.6升 /分钟 .吨钢水; 脱碳完毕, 底吹氮气流量 12.1升 /分钟 ·吨钢水 搅拌 18分钟; 钢水氮含量 478ppm, 加入硅铁 5.1kg/t钢水、 石灰 620kg进 行还原,还原后钢水增氮量目标量 300ppm,根据计算式( 1 )式,其中, f=0.70 求得底吹氮气流量 9.0升 /分钟 .吨钢水吹 19.1分钟。 钢水出 VOD成分: C 0.04% Si 0.38% Mn 1.25% Cr 18.28%
Ni 9.27% P 0.018% S 0.002% N 780ppm
Mo 0.03% Co 0.03%, Nb O.01%, Ta 0.010%
其余为 Fe和不可避免的杂质, 钢水温度 1556°C。
(三) LF处理工艺: 钢水通过 LF炉电极加热, 钢水温度 1556°C从调整温度到 1580°C , 出 站前钢水加入 0. 61kg/t (钢水) 的铝线, 按吹氮量在 1.6升 /分钟 .吨钢吹氮 气 3分钟后;加入 Ca-Si线 0.5公斤 A1屯钢水,再次按吹氮量在 1.0升 /分钟 -吨 吹氮气 5分钟。 钢水浇注前成分:
C 0.04% Si 0.38% Mn 1.25% Cr 18.28%
Ni 9.27% P 0.018% S 0.002% N 802ppm
Mo 0.03% Co 0.03%, Nb O.01%, Ta 0.010% 其余为 Fe和不可避免的杂质钢水浇注 7.2吨扁钢锭。
(四)板坯要求:
钢锭轧制规格为: 180 (厚) x lOOO (宽) X2100 (长) mm。 与产品的宽 度相比: (产品宽度 -板坯宽度) X 100%/板坯宽度 = ( 1800 - 1000 ) χ 100%/ 1000 = 80%。
(五)热轧工艺:
二辊开坯一四辊热轧机进行轧制。
板坯加热温度 1240-1260 °C ; 加热时间 217分钟, 大于(板坯厚度数值 mmx l分钟 )。
板坯轧制: 板坯出加热炉后, 先按坯料 180 (厚) x lOOO (宽) χ2100 (长)mm沿着 1000mm方向延展( Y方向)进行轧制,当坯宽度达到 1800mm 时, 钢板旋转 90度, 沿着使 2100mm长度方向 (X方向)延展进行轧制, 当钢板厚度达到 35.3mm时, 完成轧制。
产品主要检测项目值:
1 )钢水中 Co 0.03%、 Nb 0.01%;
2 )产品中夹杂物
A B C D
细 粗 细 粗 细 粗 细 粗
01 0 0.5 0 0 0 1.0 0
3 )机械性能
X方向: 抗拉强度 572Mp/mm2; 伸长率 50%。
Y方向: 抗拉强度 565Mp/mm2; 伸长率 48%。 [ (X方向抗拉强度性能 -Y方向抗拉强度性能) ÷χ方向抗拉强度性 l 00%= 1.2% < 15%。
[ (X方向伸长率性能 -Υ方向伸长率性能) ÷Χ方向伸长率性能] χΐοο%%< 15%。
上述四个实施例在步骤(二) 冶炼装备、 工艺 也可用电炉 +VOD冶炼法 或电炉 +AOD+VOD冶炼法冶炼。

Claims

权 利 要 求 书
1、 本热核聚变堆用不锈钢板的制造方法包括下述依次的步骤:
I 准备原料: 以铁水、 铬铁、 镍板、 锰铁、 硅铁与钼铁为原料; 其中镍板要求 Co含量: 0 < Co≤0.5%; 铁水中 P要求为: P≤0.03% ;
铁水、 铬铁、 镍板、 锰铁、 硅铁与钼铁的重量配比是使冶炼成的钢水的 成分, 符合热核聚变堆用不锈钢板的中的铁、 铬、 镍、 锰、 硅与钼的重量百 分比的要求;
II 冶炼装备、 工艺:
采用 VOD不锈钢冶炼设备按不锈钢冶炼工艺进行冶炼,用电炉 +VOD冶 炼法、 转炉 +VOD与电炉 +AOD+VOD冶炼法的任一种冶炼
将铁水、 铬铁、 镍板、 锰铁、 硅铁与钼铁加入电炉或转炉中冶炼后, 倒 入 VOD炉中冶炼, 脱碳期顶吹氧气 3-10m3/t钢水, 底吹氮气流量≥5L/min-t 钢水; 脱碳完毕, 底吹氮气流量≥10L/min.t, 搅拌≥10min; 加入硅铁 3-10kg/t 钢水、 石灰 3-25kg/t钢水进行还原, 还原后按(1 ) 式底吹氮气量, 控制钢水 增氮量;
Y = 2.5xfxXxt ( 1 )
式中: X——吹入钢水氮气流量, 单位 升 /分钟 ·吨;
t——吹氮气时间, 单位 分钟;
f——系数, 取值范围 0.60-1.0;
Y——产品需要增加氮含量值, ppm;
III LF处理工艺:
将钢水进入 LF炉工位, 通过 LF炉电极加热调整钢水温度, 出 LF炉 处理工位前, 加入铝, 每 p屯钢水的加入量为 0.3-1.5kg; 按吹氮量在 1升 -2 升 /分钟 ·吨吹氮气≥2分钟后; 加入 Ca-Si线 0.3-2.0公斤 A1屯钢水, 再次按吹 氮量 1升 -2升 /分钟 ·吨吹氮气≥2分钟;
钢水的成分的质量百分比达下述要求时出钢:
0 < C <0.08% ; 0 < Si<0.75% ; 0 < Mn< 2.00%; P<0.03%;
S<0.01%; Cr 16.00%-22.50%; Ni 8.00%-14.00%;
Mo 0.01%-3.00%; 0 < Co<0.10%; N 0.01%-0.25%; 0 < Nb<0.10%; 0 < Ta<0.10%; 其余为 Fe和不可避免的杂质;
IV 出钢浇注钢锭或连铸坯;
板坯要求:
(最终产品要求宽度 -原料板坯宽度 ) χΐοο%/板坯宽度控制在0%- 100%;
V 热轧工艺
板坯加热温度 1230-1310°C; 加热时间≥ (板坯厚度数值 mmxl分钟) 进行控制;
板坯轧制是先按使钢板沿着宽度方向延展进行轧制, 当轧后的板坯宽 度与产品要求宽度相差值在 15毫米—— 80毫米时,停止轧制,把钢板旋转 90度, 沿着钢板的另一个方向延展进行轧制, 直到钢板厚度满足国家标准 公差要求时, 完成轧制。
2、 根据权利要求 1 所述的热核聚变堆用不锈钢板的制造方法, 其特征 是在步骤 III LF处理工艺中, 钢水的成分的质量百分比达下述要求时出钢:
0 < C<0.03% ; 0 < Si<0.75%; 0<Mn<2.00%; P<0.03%;
S<0.01%; Cr 16.00%-18.50%; Ni 10.00%-14.00%; Mo 2.00%-3.00%; 0
< Co<0.05%; NO.12%-0.17%; 0<Nb<0.10%;
0<Ta<0.10%; 其余为 Fe和不可避免的杂质。
3、 根据权利要求 1 所述的热核聚变堆用不锈钢板的制造方法, 其特征 是在步骤 III LF处理工艺中, 钢水的成分的质量百分比达下述要求时出钢:
0 < C<0.03% ; 0 < Si<0.75%; 0<Mn<2.00%; P<0.03%;
S<0.01%; Cr 16.00%-18.50%; Ni 10.00%-14.00%; Mo 2.00%-3.00%; 0
< Co<0.05%; NO.01%-0.10%; 0<Nb<0.10%;
0<Ta<0.10%; 其余为 Fe和不可避免的杂质。
4、 根据权利要求 1所述的热核聚变堆用不锈钢板的制造方法, 其特征 是在步骤 III LF处理工艺中, 钢水的成分的质量百分比达下述要求时出钢: 0 < C<0.08% ; 0 < Si<0.75%; 0<Mn<2.00%; P<0.03%;
S<0.01%; Cr 18.00%-20.00%; Ni 8.00%- 10.00%; Mo 0.01%-0.20%; 0<Co<0.05%; N 0.01%-0.10%; 0<Nb<0.10%; 0<Ta<0.10%; 其余 为 Fe和不可避免的杂质。
PCT/CN2011/080681 2011-07-01 2011-10-12 一种热核聚变堆用不锈钢板的制造方法 WO2013004057A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201110184466.8 2011-07-01
CN2011101844668A CN102312175B (zh) 2011-07-01 2011-07-01 一种热核聚变堆用不锈钢板的制造方法

Publications (1)

Publication Number Publication Date
WO2013004057A1 true WO2013004057A1 (zh) 2013-01-10

Family

ID=45425735

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2011/080681 WO2013004057A1 (zh) 2011-07-01 2011-10-12 一种热核聚变堆用不锈钢板的制造方法

Country Status (2)

Country Link
CN (1) CN102312175B (zh)
WO (1) WO2013004057A1 (zh)

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103418613A (zh) * 2012-05-15 2013-12-04 核工业西南物理研究院 一种控制热核聚变堆用不锈钢板拉伸强度的轧制方法
CN103418614B (zh) * 2012-05-22 2015-09-30 核工业西南物理研究院 一种控制热核聚变堆用不锈钢板材晶粒度的轧制方法
CN102719610A (zh) * 2012-06-26 2012-10-10 山西太钢不锈钢股份有限公司 一种不锈钢增氮的方法
CN102719611A (zh) * 2012-06-27 2012-10-10 山西太钢不锈钢股份有限公司 一种不锈钢的增氮方法
CN103060709B (zh) * 2013-01-08 2014-12-31 江苏银环精密钢管股份有限公司 一种核电机组用精密不锈钢管及其制造工艺
CN104962800B (zh) * 2015-07-03 2017-01-25 共享铸钢有限公司 一种不锈钢材料的冶炼方法
CN105296867B (zh) * 2015-11-17 2017-06-16 攀钢集团江油长城特殊钢有限公司 一种低硅低铝高硼的马氏体不锈钢的冶炼方法
CN108642376B (zh) * 2018-04-27 2019-10-15 大冶特殊钢股份有限公司 一种含钽不锈钢及其冶炼方法
CN110846595A (zh) * 2019-11-14 2020-02-28 深圳市特发信息光电技术有限公司 不锈钢带及其制造方法、制造设备、微型管成型方法
CN111500930B (zh) * 2020-05-06 2022-01-28 山西太钢不锈钢股份有限公司 核电用超纯净不锈钢的成分控制方法
CN111690864B (zh) * 2020-05-22 2021-09-28 重庆材料研究院有限公司 高放废料玻璃固化容器用核级不锈钢的制备方法
CN113186471A (zh) * 2021-03-18 2021-07-30 兴化市广福金属制品有限公司 一种高纯度和高硬度的不锈钢材料
CN113444950B (zh) * 2021-07-08 2022-04-29 烟台新钢联冶金科技有限公司 一种硅钢高温加热炉用铬基高氮合金垫块及其制备方法

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58197211A (ja) * 1982-05-11 1983-11-16 Nippon Stainless Steel Co Ltd 含窒素超低炭素ステンレス鋼の製造法
JPH0285341A (ja) * 1988-09-19 1990-03-26 Agency Of Ind Science & Technol イオン放出速度の小さい耐食ステンレス鋼
CN101169984A (zh) * 2007-11-29 2008-04-30 贵州航天新力铸锻有限责任公司 百万千瓦级核电压力容器安全端制造工艺
CN101275174A (zh) * 2007-03-27 2008-10-01 宝山钢铁股份有限公司 一种真空氧气脱碳装置冶炼不锈钢氮含量控制方法
JP2008274329A (ja) * 2007-04-26 2008-11-13 Jfe Steel Kk リジング特性に優れた低炭フェライト系ステンレス鋼およびその製造方法
CN101338402A (zh) * 2008-08-19 2009-01-07 山西太钢不锈钢股份有限公司 一种含铜铁素体抗菌不锈钢钢带及其制造方法
CN101538636A (zh) * 2008-03-19 2009-09-23 宝山钢铁股份有限公司 钢包炉用氮气进行氮合金化工艺
CN101613783A (zh) * 2009-08-07 2009-12-30 山西太钢不锈钢股份有限公司 一种在精炼炉中增氮的方法
CN102041457A (zh) * 2009-10-20 2011-05-04 宝山钢铁股份有限公司 一种奥氏体不锈钢

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1389575A (zh) * 2002-07-03 2003-01-08 太原钢铁(集团)有限公司 Aod炉用氮气进行氮合金化工艺
CN101671763A (zh) * 2009-10-13 2010-03-17 山西太钢不锈钢股份有限公司 氩氧精炼炉冶炼高氮不锈钢增氮的方法

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58197211A (ja) * 1982-05-11 1983-11-16 Nippon Stainless Steel Co Ltd 含窒素超低炭素ステンレス鋼の製造法
JPH0285341A (ja) * 1988-09-19 1990-03-26 Agency Of Ind Science & Technol イオン放出速度の小さい耐食ステンレス鋼
CN101275174A (zh) * 2007-03-27 2008-10-01 宝山钢铁股份有限公司 一种真空氧气脱碳装置冶炼不锈钢氮含量控制方法
JP2008274329A (ja) * 2007-04-26 2008-11-13 Jfe Steel Kk リジング特性に優れた低炭フェライト系ステンレス鋼およびその製造方法
CN101169984A (zh) * 2007-11-29 2008-04-30 贵州航天新力铸锻有限责任公司 百万千瓦级核电压力容器安全端制造工艺
CN101538636A (zh) * 2008-03-19 2009-09-23 宝山钢铁股份有限公司 钢包炉用氮气进行氮合金化工艺
CN101338402A (zh) * 2008-08-19 2009-01-07 山西太钢不锈钢股份有限公司 一种含铜铁素体抗菌不锈钢钢带及其制造方法
CN101613783A (zh) * 2009-08-07 2009-12-30 山西太钢不锈钢股份有限公司 一种在精炼炉中增氮的方法
CN102041457A (zh) * 2009-10-20 2011-05-04 宝山钢铁股份有限公司 一种奥氏体不锈钢

Also Published As

Publication number Publication date
CN102312175B (zh) 2013-03-13
CN102312175A (zh) 2012-01-11

Similar Documents

Publication Publication Date Title
WO2013004057A1 (zh) 一种热核聚变堆用不锈钢板的制造方法
JP4688890B2 (ja) マンガン含有量の多い軽量鋼を製造するための方法及び設備
CN102392187B (zh) 一种含Cr的管线钢X70热轧平板及生产方法
CN102796945B (zh) 建筑用hpb300热轧盘条钢筋及其制备
CN106834942B (zh) 一种含铜纳米相强化中锰钢及其制备方法
CN101880818A (zh) 一种x80弯管和管件用钢的制备方法
CN108486506B (zh) 一种高性能低密度钢板的制备方法及应用
CN110735085A (zh) 一种薄规格Q345qE、Q370qE钢板的制造方法
CN114480806B (zh) 一种厚规格TiC粒子增强型马氏体耐磨钢板的制造方法
CN102534409A (zh) 一种低成本抗皱铁素体不锈钢及其生产方法
CN102127697A (zh) 一种x70钢级弯管和管件的制备方法
CN111945074A (zh) 一种635MPa级高强抗震钢筋及其制备方法
CN104561826B (zh) 低合金高强度结构钢q460c带钢及其生产工艺
CN102400045B (zh) 大规格高强度d40船用热轧球扁钢及生产工艺
CN113604738A (zh) 一种高强度和高韧性大规格风电螺栓用圆钢及其制造方法
CN114717377B (zh) 连铸型厚钢板及其生产方法
CN113106350A (zh) 一种热轧含钛高强钢及其温度参数联动控扎方法
CN108474090B (zh) 低屈强比高强度钢材及其制造方法
CN102851599B (zh) 一种螺旋焊管用厚壁低成本x65热轧卷板及其制造方法
CN109628693A (zh) 一种低成本镁处理微合金钢及其制备方法
CN109536835A (zh) 一种耐候耐低温热轧型钢及其制备方法
CN111500933A (zh) 一种稀土元素微合金化高强钢筋及其生产工艺
CN115216710B (zh) 一种基于薄带连铸的抗拉强度≥2000MPa的低密度钢的生产方法
CN114622135B (zh) 微铌合金化q355b低合金高强度结构钢板及其制造方法
CN114657467B (zh) 一种屈服强度415MPa级耐候钢板的生产方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11868985

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11868985

Country of ref document: EP

Kind code of ref document: A1